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Abstract

Storing pallets of Stock Keeping Units (SKUs) on top of one another on a warehouse

floor is known as block stacking. Although this storage system can be inexpensively imple-

mented in any open area, it is challenging in terms of space planning. Designing an optimal

layout for this storage system involves determining the optimal numbers of aisles and cross-

aisles, bay depths, cross-aisle types, and their locations in the layout. The storage space

is wasted in this system by a combination of honeycombing and accessibility aisles. Hon-

eycombing refers to unoccupied pallet positions in a partially occupied lane that are only

available to the SKU that has occupied the first pallet position of the lane. The accessibility

waste refers to the space devoted to aisles and cross-aisles because they are not used for pallet

storage. There is a trade-off between honeycombing and accessibility waste with respect to

lane depths. Shallow lanes generate less honeycombing waste but impose more aisles to the

layout, whereas the opposite is true for deep lanes. Cross-aisles improve transportation costs

within the warehouse, but their devoted space contributes to the wasted space. Hence, both

space utilization and transportation costs must be considered to study cross-aisles. This

dissertation explores the above trade-offs and relations from three different perspectives: (1)

it proposes a closed-form solution model to obtain optimal lane depths for block stacking in

diverse manufacturing and non-manufacturing environments; (2) it studies the layout design

problem from space utilization perspective, and proposes an optimal model to find space-

efficient layouts; and, (3) it investigates the effects of cross-aisles on transportation costs

and proposes a multi-objective model to design layouts that optimize both space utilization

and transportation costs. The proposed models along with the highlighted future exten-

sions provide proper tools to the companies to design efficient warehouses and implement a

comprehensive foundation for further research.
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Chapter 1

Introduction

1.1 Problem definition and research questions

Storing pallets of Stock Keeping Units (SKUs) on the floor of a warehouse is called block

stacking. In this storage system, pallets are stacked on top of one another to their maximum

stackable heights, which depend on the condition and height of the pallets, load weights,

safety limits, clear height of the warehouse, and so on. These inexpensive storage systems

do not require any storage racks and can be implemented in any open area (see Figure 1.1).

Hence, they are widely used in manufacturing systems and distribution centers.

Space planning is challenging in these warehouses. They are mainly operated under one

of two storage policies: dedicated or shared. In the dedicated policy, lanes are dedicated to

SKUs, and each SKU is allowed to be stored only in its assigned lanes, whereas in the shared

policy empty lanes are available to all SKUs (see Figure 1.2). Thus, shared policy is more

Figure 1.1: A block stacking warehouse.
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Figure 1.2: Dedicated policy vs. shared policy.

efficient in utilizing storage space but is less efficient in order picking as the result of variable

lane assignments.

To avoid blockage or relocation of pallets in the shared policy, a lane is dedicated to

a SKU once it occupies the first pallet position of the lane. This restriction wastes storage

space because unoccupied pallet positions in a partially occupied lane are unavailable to

other SKUs. This effect is called honeycombing and waste associated with it is incurred to

the system until a lane becomes entirely occupied or emptied. In addition to honeycombing,

aisles also contribute to the overall wasted space. They are required to access lanes, but

their devoted space is not used directly for pallet storage. Figure 1.2 compares these two

types of waste between the shared and dedicated policies.

There is a trade-off between honeycombing and accessibility wastes with respect to the

lane depth. Deep lanes impose high honeycombing waste but produce fewer aisles in the

layout, whereas the opposite is true for shallow lanes. As explained in [2], this trade-off

must be optimized to minimize the total waste of storage space in a warehouse.

Cross-aisles reduce travel distances within a warehouse (see Figure 1.3) but, like aisles,

they are not used for pallet storage and therefore, considered as a waste of storage space. It

has been shown that there is a trade-off between space utilization and total travel distance
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Figure 1.3: Components of a block stacking layout.

within the warehouse with respect to the layout bay depths [3]. The total travel distance

decreases as bay depths decrease in the layout, whilst utilization of the storage space increases

as bay depths increase.

The warehouse layout defines the shape, location, and size of the bays, lanes, aisles, and

cross-aisles on the warehouse floor. The layout design problem is defined in this dissertation

as determining the numbers and arrangement of bays, aisles, and cross-aisles, and the bay

depths for the given warehouse area. To design an optimal layout, all aforementioned trade-

offs must be considered. This dissertation aims to explore the layout design problem from

both space utilization and transportation cost perspectives. It addresses the following major

questions that have remained unanswered in the literature.

1. What is the lane depth that minimizes waste of storage space for block stacking in

manufacturing environments?

2. How many aisles and bays should a layout have to maximize utilization of the storage

space?

3. What are the optimal bay depths in a layout to efficiently utilize the storage space?

4. What is the most space-efficient SKU assignment policy?

5. How many cross-aisles and aisles should a layout have to minimize transportation costs

and maximize space utilization?

3



1.2 Background

The research papers that investigated the warehouse layout problem mostly considered

the conventional warehouses with storage racks [1, 6]. These studies mostly aimed to mini-

mize transportation costs in order picking [7, 8, 12, 15]. The other objectives considered in

designing a warehouse layout are operational costs [16], product allocation [11], warehouse

throughput [13], and operating policies [14].

Few research papers studied designing a layout for block stacking. Kind [9] considered

the trade-off between honeycombing and accessibility wastes to find the optimal lane depth

that minimizes waste of storage space. However, he did not provide any derivations for

his formula. Matson [10] developed another model to approximate the optimal lane depth

under instantaneous replenishment (i.e., infinite storage rate) assumption. Her model is

appropriate for warehouses that store products received from suppliers.

Goetschalckx and Ratliff [5] showed that if storage in multiple lane depths is allowed,

the set of optimal lane depths follows a continuous triangular pattern. They developed a

dynamic programming algorithm to select the set of optimal lane depths from a set of finite

allowable lane depths to minimize the occupied floor space. Their approaches, especially the

one that assumes unlimited multiple lane depths, are not practical for multiple SKUs.

This dissertation identifies three major gaps in the research focusing on block stacking

warehouses.

1. All studies above assumed instantaneous lane replenishment [10, 2, 5]. In practice, this

case only occurs in warehouses that store products received from suppliers. In such

warehouses, a truck quickly unloads pallets and hence, it appears realistic to assume

infinite arrival rate for incoming pallets. This is generally not true for warehouses

located in manufacturing systems. In such systems, products are stored at finite rates,

which are close to their production rates. The existing models cannot accurately ad-

dress this prevalent case. The other restrictive assumption behind the existing optimal
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lane depth model [10] is continuous demand. This limits using this model for seasonal

products whose demands occur just at specific time periods, for instance, beginning of

every month.

2. The research papers that studied block stacking warehouses focused exclusively on

determining the lane depth that optimizes the trade-off between a block depth and

width and do not provide any insights on designing the warehouse layout. To design

a space-efficient layout, the number of aisles, bay depths, and SKU assignment policy

must be determined. The optimal lane depth model [10, 5] cannot be used to find the

optimal bay depth for a layout because it has a different waste function. It computes

accessibility waste for the period that a lane is occupied. Therefore, it treats aisle space

as a waste only when a lane is occupied and considers it as an available storage space

otherwise. This is not true from the layout design perspective. In the layout design

problem, the space dedicated to aisles is a permanent waste whether the adjoining

lanes are occupied or not.

3. The transportation costs have not been studied adequately in designing the layout for

block stacking warehouses. Most of the research projects in this field focus on improving

utilization of space. The number of cross-aisles can be determined by considering the

transportation costs. They reduce travel distance within the warehouse but wastes

the storage space as well. It has been shown that there is a trade-off between space

utilization and transportation costs with respect to bay depths [3]. Therefore, in order

to find the optimal number of cross-aisles and aisles in the layout, both space utilization

and transportation costs must be taken into account simultaneously.

This dissertation covers these gaps as follows. First, motivated by real-world problems,

we extend the optimal lane depth model for manufacturing environments, where pallets

are block stacked under various production conditions. For the first time, we evaluate the

accuracy of the optimal lane depth model, which is built using deterministic assumptions,
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under stochastic conditions exist in real-world situations. We then explore the layout design

problem and propose a model to design a space-efficient layout with multiple bay depths.

Finally, we study the effects of the number of aisles and cross-aisles on transportation costs

and space utilization and develop a model to design optimal layouts with respect to both of

these objectives.

1.3 Contributions

This dissertation uses the following methodologies to address the current gaps in the

literature. The second chapter explores the optimal lane depth model under various pro-

duction and demand conditions. We relax the instantaneous resupply assumption made in

the existing model [10] and develop closed-form solution models to obtain the optimal lane

depth under finite production rate constraint. The proposed approach maximizes volume

utilization in the warehouse rather than the floor area. We also relax the continuous demand

assumption considered in [10]. That is, the storage (production) rate in our models can be

finite and higher than the demand or less when the demand is discrete and intermittent. We

develop a simulation model to evaluate performance of the proposed models under stochas-

tic variations exist on the production and demand in real-world situations. The simulation

results show that using infinite production rate model in a finite production rate system

produces lane depths about twice as deep as they should be. However, the resulting waste

of storage space is modest because the space utilization curve, as a function of lane depth,

becomes quite flat as the lane depth grows [4].

The third chapter investigates the problem of designing a space-efficient layout for block

stacking warehouses. In this chapter, we analyze waste of storage space from the layout

design perspective and show that the waste function calculated by the optimal lane depth

model underestimates the accessibility waste for the layout design purpose. We propose a

new function to calculate waste of storage space with respect to bay depths and the number

of aisles in the layout. We use a mixed integer programming model to optimize this function
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and to find the optimal number of aisles, bays, and bay depths in a layout. The model is

NP-hard and highly symmetric. We propose various effective cuts to reduce the problem

symmetry and to tighten the LP-relaxation lower bound. Our exhaustive experimental study

that covers small to industrial-sized test problems shows that the proposed cuts effectively

reduce the computational time of the proposed model. We found that accessibility waste

outweighs honeycombing waste in their trade-off and an optimal model tends to choose deep

lanes to reduce the number of aisles in the layout.

The fourth chapter studies the layout design problem from transportation cost perspec-

tive in addition to space utilization. We develop a simulation-based optimization model

that finds the optimal number of aisles, cross-aisles, and cross-aisle types (unidirectional

vs. bidirectional) that minimize transportation costs and maximize space utilization. The

simulation model developed for this purpose is a discrete event-based model that simulates

retrieval and replenishment operations in the warehouse. It benefits the proposed algorithm

by incorporating the stochastic conditions that exist in real-world situations to the layout

design problem. The simulation also accurately estimates the total travel distance for a

multi-command operations environment (i.e. a warehouse where vehicles continue picking

and delivering pallets without returning to their home or parking), where analytical models

fail to provide accurate estimations. We develop a closed-form solution model to find the op-

timal number of aisles that maximizes space utilization under common bay depth constraint.

Using this model along with numerical experiments, the model determines the simulation

scenarios (layouts). Our exhaustive experimental study shows that the model is capable of

exploring the Pareto front for industrial-sized layouts in a reasonable computational time.

1.4 Organization of the dissertation

The next chapters of this dissertation are organized as follows. First, the optimal lane

depth models under finite production rate constraint are presented in chapter 2. Then,

the proposed models to design a space-efficient layout is described in chapter 3. Next,
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the multi-objective model to optimize both space utilization and transportation costs in a

layout is presented in chapter 4. Finally, the major findings and future research directions

are highlighted in chapter 5. Chapters 2-4 start by introducing the research problems and

describing the research motivations. Then, related research papers are reviewed, and the

gaps in the literature and contributions are highlighted. Finally, the methodologies are

presented, and the experimental studies and important findings are discussed.
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Chapter 2

Optimizing space utilization in block stacking warehouses

2.1 Abstract

Block stacking storage is an inexpensive storage system widely used in manufacturing

systems where pallets of stock keeping units (SKUs) are stored in a warehouse at the fi-

nite production rates. However, determining the optimal lane depth that maximizes space

utilization under a finite production rate constraint has not been adequately addressed in

the literature and is an open problem. In this research, we propose mathematical models

to obtain the optimal lane depth for single and multiple SKUs where the pallet production

rates are finite. A simulation model is used to evaluate performance of the proposed models

under stochastic uncertainty in the major production parameters and the demand.

Keywords: block stacking; facility layout; optimal lane depth; warehouse design; space

utilization

2.2 Introduction

Optimizing space utilization has been one of the main goals in designing and operating

warehouses [29]. The U.S. Roadmap for Material Handling and Logistics recognizes low

warehouse utilization as one of the main factors that propels companies, associations and

governments to employ collaborative warehouses more in the next decade. It also predicts

that requests for high speed delivery or same-day delivery forces companies to build their

warehouses and distribution centers near major metropolitan area where real estate is very

expensive and therefore efficient use of space becomes more important [10].
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Various approaches from the design to the operational phase of a warehouse have been

developed to better utilize storage space. Block stacking is an inexpensive and conventional

storage system whose performance depends on the efficient use of space. It is a unit load

storage system in which pallets of stock keeping units (SKUs) are stacked on top of one

another in lanes on the warehouse floor. Pallets are stacked to the maximum stacking height

which depends on the conditions and heights of the pallets, load weights, safety limits,

clearance height of the warehouse, and so on. No racking or storage facility is required for

this system and it can be employed in any warehouse with wide floor space. This makes it

an inexpensive storage system to implement but challenging to manage in terms of space

planning.

Two major operating policies that are widely used to manage storage spaces in this

system are dedicated and shared storage policies. In the dedicated policy, lanes are dedicated

to SKUs and only pallets of the assigned SKU are allowed to be stored in a lane. So, a lane

may remain empty until it is replenished with its assigned SKU. On the other hand, lanes are

not dedicated to any SKUs in the shared storage policy and they are available to all SKUs

once they become empty. This policy utilizes space more efficiently than the former one

though the order picking process is generally less efficient since the SKUs storage locations

change over time and SKUs are assigned to the lanes based on their availability rather than

convenience of their locations. However, shared storage is widely used in warehouses that

deal with numerous SKUs and limited storage space.

The shared policy is operated with allowing or not allowing blockage. When the variety

of SKUs is large but their inventory is small, assigning a lane to a single SKU is not justifiable

and therefore different SKUs have to be stored in the same lane. In this case, blockage is

inevitable and the goal is to arrange SKUs such that the relocation costs are minimized.

An example of such a case is the storage space allocation problem in a marine container

terminal [30, 23, 13, 4]. On the other hand, when the inventories of the SKUs are big enough

to justify assigning a lane to a single SKU, no blockage policy is enforced. In this case to
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Figure 2.1: Waste of space in Example 2.1

avoid blockage and relocation, a lane is dedicated to a SKU once it occupies the first position

of the lane. This case mainly occurs in the warehouses located in manufacturing systems or

the distribution centers where plenty of pallets of different SKUs are block-stacked. However,

this restriction wastes storage spaces in a lane when it is filled or depleted as there will be

some unoccupied pallet positions in the lane that are just available to the pallets of the

assigned SKU. This effect is termed honeycombing and waste associated with it is incurred

to the system until a lane becomes entirely occupied or empty [12].

In addition to honeycombing, aisles also contribute to the overall wasted space. Aisles

are required to have access to the lanes but their devoted spaces are not directly used for

storage. Warehouse designers aim to minimize these two types of waste to enhance space

utilization in the warehouse. The following example shows how waste of storage space is

calculated in a lane.

Example 2.1. Consider a batch of 10 pallets of a SKU is stored in a lane of two pallets

deep. Pallets are produced at the rate of (1/5) pallets per hour, stacked up to two pallets

high and depleted at the rate of (1/18) pallets per hour. Assume that an aisle with width

equivalent to two pallets is required to access the lane. Figure 2.1 shows waste of storage

space generated in the inventory cycle time of this SKU. At time zero, waste is zero because

an empty lane is available to all SKUs. At time five, the first pallet is stored in the lane

and makes the three unoccupied pallet positions in the lane unavailable to the other SKUs.
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Figure 2.2: Optimal lane depth in Example 2.1.

This is the honeycombing waste. Moreover, four pallet positions are dedicated to the aisle

to provide accessibility to the lane. So, seven pallet positions are wasted at this time. At

times 10 and 15, the next two pallets are stored in the lane and the total number of wasted

positions decreases to six and then five pallets, respectively. The first depletion event occurs

at time 18 and increases the number of wasted positions to six. This procedure continues

until all 10 pallets are produced, stored in the lane, and depleted. The area under the waste

plot in Figure 2.1 is the pallets-time waste of storage space during the inventory cycle time,

and dividing it by 175 hours gives the average waste of storage space in the inventory cycle

time which is 7.48 pallets.

Storing a batch of pallets in deep lanes increases the honeycombing waste, but the space

required for aisles decreases while the reverse is true for the shallow lanes. Hence, a trade-off

between the lane depth and width must be considered to optimize space utilization. This

trade-off is shown in Figure 2.2 by comparing the average waste of storage space generated

by storing the SKU described in Example 2.1 in lanes with one to four pallets deep. In this

case, the minimum waste achieved when the SKU is stored in the lanes with three pallets

deep.

In this paper, we consider this trade-off from a mathematical point of view and develop

models to compute an optimal lane depth that minimizes waste of storage space in the

warehouse. Our models are different from those existing in the literature in two major
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respects. First, the instantaneous pallet storage assumption, which was made in all previous

research is relaxed and models are built for finite production rates. Hence, they are more

suitable for the warehouses located in manufacturing systems where pallets are stored at

finite production rates. Second, our proposed models aim to maximize utilization of the

volume instead of the floor space. A review of the previous research on block stacking is

provided in the next section.

2.3 Related research

Various studies have investigated designing the layout of a warehouse [7]. Most of them

considered designing the layout with respect to the construction and maintenance costs

[1, 27, 22], material handling costs in order picking process [9, 24, 20, 21, 25], products

allocation [11, 26] and few of them considered objectives pertinent to the space utilization

[8]. Extensive reviews on different approaches used to design different storage systems are

found in [7, 2, 6, 15, 28]. Studies that investigated space utilization in the block stacking

storage systems are reviewed in the following.

To the best of our knowledge, Kind [14] was the first person who considered the trade-

off between the lane depth and width in the block stacking storage and proposed a model

to approximately find the optimal lane depth that minimizes waste of storage space. He

proposed this approximation for a single SKU whose batch of pallets are instantaneously

stored in a warehouse. Marsh [17] developed a simulation model to evaluate different storage

and operating policies for block-stacking. Later, Matson [18] developed a more accurate

version of Kind’s approximation [14] for a single SKU and extended it to obtain the optimal

common lane depth for multiple SKUs. Her models aim to maximize utilization of the floor

space (area).

Goetschalckx and Donald Ratliff [5] showed that if a batch of pallets of a SKU is allowed

to be stored in lanes with unlimited different depths, then the optimal lane depths follow

a continuous triangular pattern. They developed a continuous and discrete approximations
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to obtain the optimal multiple lane depths considering limited and unlimited lane depths.

They compared their proposed models with scenarios like equal lane depth models devel-

oped by Matson [18] and two extreme heuristics in which a batch of pallets is stored in the

lanes whose depths are equal to one or to the batch size, respectively. They concluded space

utilization is “relatively insensitive” to the lane depth and all heuristic methods except the

two extreme cases provide comparatively equivalent results in terms of accuracy and compu-

tational complexity. However, their approaches, especially the one that assumes unlimited

multiple lane depths, are not practical for multiple SKUs.

Larson et al. [16] proposed a heuristic approach to design the layout of a block stacking

warehouse where the objectives are maximizing space utilization and minimizing transporta-

tion costs. Their class-based storage approach classifies SKUs based on the throughput to

the required storage space ratio, ranks classes based on their average ratios, and constructs

and dedicates the storage regions to the classes considering their ranks and required storage

spaces. The algorithm considers honeycombing, fluctuations in the inventory level and the

maximum stacking height to determine storage medium (i.e., racks or floor stacking) for a

SKU, and assumes randomized storage policy among the classes (storage zones).

Bartholdi [3] developed Matson’s model to optimize volume utilization instead of the

floor utilization. He suggested that maximizing the volume utilization is the better objective

in the current modern warehouse because volume within a warehouse is worth as much as

floor space in today’s modern warehouses.

All aforementioned studies assumed pallets of SKUs are instantaneously stored in a

warehouse. In practice, this case occurs in a distribution center where trucks quickly unload

pallets of SKUs, and hence it appears realistic to assume infinite arrival rate for incoming

pallets. However, this assumption cannot be justified in the warehouses located in manu-

facturing systems where pallets of SKUs are stored in the warehouse at finite production

rates. In such a warehouse, waste of storage space is generated either when a lane is filled

or depleted. However, the traditional models are not capable of taking the first part into
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account and therefore do not correctly compute the optimal lane depth for such cases. We

address this drawback in this paper by developing models to determine the optimal lane

depth for both single and multiple SKUs under the finite production rate constraint.

2.4 Optimal lane depth

Minimizing the waste of storage space maximizes space utilization. So, one can obtain

the optimal lane depth that maximizes the space utilization by deriving a mathematical

expression to calculate waste of storage space and then finding the optimal lane depth that

minimizes this waste expression. The waste of storage space is obtained by calculating three

types of waste:

1. Waste of storage space caused by honeycombing, WH .

2. Waste of storage space dedicated to the aisles, WA.

3. Waste of unoccupied storage space on top of the occupied lanes, WU .

WU is incurred as the result of different stacking and pallet heights for different SKUs. This

waste is not computed in the single SKU models as it does not affect the optimal lane depth

in that cases. Figure 2.3 shows total waste of storage space and its components with respect

to the optimal lane depth. The relation between the total waste of storage space and lane

depth is analogous to the relation between the total cost and order quantity in the Economic

Order Quantity (EOQ) model.

In general, the number of SKUs stored in a warehouse is too numerous to assign all

SKUs to their optimal lane depths and assort all the lane depths in the warehouse. To

overcome this issue, the optimal common lane depth is computed — one that minimizes

total waste for multiple SKUs.

The models in this section are derived by assuming that a batch of Q pallets of a SKU

is produced (or unloaded to a warehouse) at the deterministic production rate of P pallets

per unit of time and block-stacked in the lanes of x pallets deep to the height of z pallets.
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Figure 2.3: Total waste of storage space.

Pallets are depleted at the deterministic rate of λ pallets per unit of time and aisles with a

pallets width are required to access the lanes. Table 2.1 describes the notation used in the

following models. The following assumptions are made for all models in this paper:

1. Lanes are accessible from one side and as a result, they are depleted based on last-in-

first-out (LIFO).

2. Partially occupied lanes are prioritized to be depleted first. This helps to utilize space

more efficiently because unlike the fully occupied lanes which incur only accessibility

wastes to the system, a partially occupied lane generates both honeycombing and

accessibility waste. Thus, the longer it remains incomplete, the more storage space is

wasted. Another advantage of this policy is that these lanes are depleted faster than

the fully occupied lanes and consequently, their devoted spaces are released sooner.

3. Fully occupied lanes are depleted in an arbitrary order. This is because the order of

depleting such lanes does not affect waste of storage space.

4. The production, if exists, and the depletion quantities are one pallet at a time and the

storage, and depletion times are assumed to be zero.

5. No safety stock is kept in the warehouse. Production stops once all pallets of a batch

are produced and it is restarted when the inventory of the SKU becomes zero.
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Table 2.1: Table of notation.

P production rate (in units of pallet/time)
λ depletion rate (in units of pallet/time)
x lane depth (in units of pallet)
x∗ optimal lane depth for single SKU (in units of pallet)
x∗c optimal common lane depth for multiple SKUs (in units of pallet)
z stackable height (in units of pallet)
Q production (arrival) batch quantity (in units of pallet)
H maximum inventory level (approximation)
K maximum number of lanes required for storage (approximation)
a aisle width (in units of pallets)
h height of a pallet of a SKU (in units of distance i.e., inch, cm)
e clear height of the warehouse (in units of pallet)
n number of SKUs
T inventory cycle time
OT occupied space-time in the inventory cycle time
U space utilization (single SKU)
Uc space utilization for a common lane depth (multiple SKUs)
WH waste of storage space caused by honeycombing
WA waste of storage space dedicated to the aisles
WU waste of unoccupied storage space on top of the occupied lanes
W average waste of storage space (single SKU)
Wc average waste of storage space for a common lane depth (multiple SKUs)

2.4.1 P =∞ demand is continuous

In this case, pallets of SKUs are instantaneously stored in a warehouse and depleted

at a finite rate. So, the production rate is considered to be infinite. Figure 2.4 shows the

inventory level of such a SKU over its inventory cycle time. Kind [14] proposed the following

formula to estimate the optimal lane depth in this case:

x∗ =

√
Qa

z
− a

2
. (2.1)

However, he did not provide any derivation for his formula. Later, Matson [18] developed

another approximation for the optimal lane depth. We derive the optimal lane depth for this

case by providing a correction on the model proposed by Matson [18] and also considering

volume utilization instead of the floor utilization as proposed by Bartholdi [3]. The correc-

tion herein is correcting the approach used to calculate total space dedicated to the aisles.
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Figure 2.4: Changes in the inventory of a SKU stored instantaneously, P =∞.

However, applying this correction does not change the original lane depth model proposed

by Matson [18] for the single SKU, but the model for multiple SKUs changes as the result

of optimizing volume utilization.

2.4.1.1 Optimal lane depth for a single SKU

The number of lanes required for storage is dQ/zxe, where dxe is the smallest integer

not less than x. Relaxing the integrality restriction, the approximate number of lanes would

be

K ≈ Q

zx
. (2.2)

Assume a fully occupied lane is being depleted at the rate of λ pallets per unit of time.

Once the first pallet is depleted, the lane will have one unoccupied but unavailable position

to the other SKUs. This waste of storage space remains in the lane for the time period of

(1/λ). Then the second pallet is depleted and two pallet positions are wasted for the same

amount of time. This waste is rendered and accumulated until the last pallet is depleted

at which (zx − 1) pallet positions are unoccupied. Total pallets-time wasted in a lane as a

result of honeycombing is (
1

λ

)
(1 + 2 + · · ·+ (zx− 1)) , (2.3)
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Multiplying (2.3) by approximate number of lanes gives

WH ≈
(

1

λ

)(
Q(zx− 1)

2

)
. (2.4)

WA is calculated by computing total time that lanes are occupied and require acces-

sibility. Herein, in accordance with assumption (2) in section (2.4), the last lane, which is

most likely a partially occupied lane, is depleted first and the remaining lanes are depleted

in an arbitrary order. The lane that is depleted at the last remains occupied until the whole

batch is gone. So, this lane remains occupied for (1/λ)(Q) time periods. The lane depleted

before this lane becomes entirely empty (1/λ)(zx) time periods before the latter one. Thus,

it remains occupied for (1/λ)(Q−zx) time periods. This process is applied to the remaining

lanes, and the total time that all lanes are occupied is

(
1

λ

)
(Q+ (Q− zx) + (Q− 2zx) + · · ·+ (Q−Kzx)) . (2.5)

Each aisle is shared between two lanes located on both sides of it, so half of an aisle volume

is dedicated to each lane. It is equal to (az/2) pallets. This follows that

WA ≈
(

1

λ

)(
Q(K + 1)−

(
K(K + 1)

2

)
zx

)(az
2

)
. (2.6)

OT is given by

OT ≈
(

1

λ

)
(Q+ (Q− 1) + · · ·+ 1) ,

≈
(

1

λ

)(
Q(Q+ 1)

2

)
. (2.7)
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Subsequently, space utilization is obtained by

U ≈ OT

OT +WA +WH

,

≈ 2x(Q+ 1)

(2x+ a)(Q+ zx)
. (2.8)

Finally, the average waste of storage space is obtained by summing (2.4) and (2.6) and

dividing the result by T which is (Q/λ). That is,

W ≈
(

1

4x

)
(Qa− 2x+ zx(2x+ a)) . (2.9)

Proposition 2.1. The optimal lane depth to block-stack a SKU whose batch of Q pallets is

instantaneously stored in a warehouse is

x∗ ≈
√
Qa

2z
. (2.10)

Proof. The optimal lane depth is obtained by taking the derivative of (2.9) with respect to

x, set it equal to zero and solve for x.

From a practical point of view, the optimal lane depth should be an integer. To obtain

an integer lane depth, the two nearest integers to x∗ are obtained by rounding x∗ up and

down and then evaluating (2.9) at these values. This method can be used to obtain integer

solutions for all further propositions.

2.4.1.2 Common optimal lane depth for multiple SKUs

WU needs to be computed for the multiple SKUs model. If the clear height of a ware-

house in units of pallets of a particular SKU is denoted by e, then (e− z)x is the total pallet

positions wasted on top of a lane (stack) for the period of time that the lane is occupied by
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that SKU. The total time that all lanes are occupied is given by (2.5). It follows that

WU ≈
(

1

λ

)(
Q(K + 1)−

(
K(K + 1)

2

)
zx

)
(e− z)x. (2.11)

Taking the clear height of the warehouse into account changes the space that a lane requires

for accessibility to (ae/2). So, expression (2.6) is updated accordingly.

Denote the height of a pallet of SKU i by hi. Different SKUs may have different pallet

heights and consequently be stackable to different heights. To take this into account, all waste

expressions are scaled by multiplying to a factor of hi. Total waste of storage space for each

SKU is obtained by aggregating all three types of waste. Denote the least common multiple

of the inventory cycle times of all SKUs by TLCM . Since SKUs have different inventory cycle

times, Wc is determined by calculating the total waste that all SKUs generate in TLCM and

then dividing the result by TLCM . The number of inventory turns of SKU i in TLCM is

TLCM (λi/Qi), and multiplying it by the total waste that SKU i generates in its inventory

cycle time gives the total waste that SKU i generates in the TLCM . Summing these wastes

for all SKUs and dividing the result by the TLCM results in the TLCM terms to be canceled

out from the expression. Therefore from a mathematical point of view, Wc is obtained by

summing W s for all SKUs.

Wc ≈
n∑
i=1

(
hi

4zix

)
(Qiei(2x+ a) + zix(2eix+ aei − 2Qi − 2)) . (2.12)

Uc is calculated similarly by computing the occupied and wasted space-time in TLCM . That

is,

Uc ≈

∑n
i=1

(
λi
Qi

)
(Oi

T )∑n
i=1

(
λi
Qi

)
(Oi

T +W i
A +W i

H)

≈ 2x
∑n

i=1 hi(Qi + 1)

(2x+ a)
∑n

i=1 eihi

(
Qi

zi
+ x
) . (2.13)
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Figure 2.5: Changes in the inventory of a SKU stored at the rate P and depleted at the rate
λ, where P > λ.

where W i
H , W i

A and Oi
T are obtained for SKU i by (2.4), (2.6) and (2.7), respectively. Note

that TLCM is canceled out in this expression too.

Proposition 2.2. The optimal common lane depth to block-stack n SKUs whose batches of

pallets are instantaneously stored in a warehouse is

x∗c ≈

√√√√a
∑n

i=1

(
eihi
zi

)
Qi

2
∑n

i=1 eihi
. (2.14)

Proof. Differentiating (2.12) with respect to x, setting it equal to zero and solving for x gives

the result.

2.4.2 P > λ demand is continuous

This is a prevalent case in manufacturing systems where pallets of SKUs are produced

at finite rates, stored in the warehouse and depleted at finite rates. Figure 2.5 shows changes

in the inventory level of a SKU in this system. Period T1 is the production phase in which

Q pallets of the SKU are produced at the rate P and stored in the warehouse. Since the

demand is constant, pallets are depleted at the rate λ in this period. To simplify calculations,

we assume that lanes are filled at the rate (P − λ). Production stops at the end of T1 when

the inventory reaches its maximum level. Then, the inventory starts decreasing in T2 at the
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rate λ. Since the demand is constant, the inventory cycle time is (Q/λ), the maximum on-

hand inventory, H, is (Q−bQλ/P c), and the maximum number of lanes required for storage

is (dH/zxe) where bxc is the largest integer not greater than x. Relaxing the integrality

restriction results in the following approximations:

H ≈ Q (P − λ)

P
, (2.15)

K ≈ Q (P − λ)

Pzx
. (2.16)

2.4.2.1 Optimal lane depth for a single SKU

WH is generated in two phases, T1 and T2. First the former is calculated. Once a pallet

is stored in an empty lane, (zx−1) pallet positions are wasted in that lane for 1/(P−λ) time

periods. This is the time that it takes until the next unoccupied position is filled. Then,

(zx − 2) pallet positions are wasted for the same period of time. This waste is generated

and accumulated until the last unoccupied pallet position in the lane is filled. So, the total

honeycombing waste in a single lane in T1 is

(
1

P − λ

)
((zx− 1) + (zx− 2) + · · ·+ (zx− (zx− 1))) . (2.17)

Multiplying (2.17) by K gives

WHT1
≈
(

(zx− 1)

2

)(
Q

P

)
. (2.18)

WHT2
is calculated similar to (2.3). Multiplying (2.3) by K results in

WHT2
≈
(
zx− 1

2λ

)(
Q (P − λ)

P

)
. (2.19)
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WA is calculated by approximating the total time that lanes are occupied in T1 and

T2. Once the first pallet is stored in the first lane in T1, this lane remains occupied until

all (H − 1) positions are filled. Since the inventory increases at the rate (P − λ), this lane

remains occupied for (H−1)/(P−λ) time periods. The second lane is used when the first one

becomes fully occupied. It means (H − zx) pallet positions are remained to be filled. Once

the first pallet is stored in the second lane, this lane remains occupied until the remaining

(H−1−zx) pallet positions are filled. That is, it remains occupied for (H−1−zx)/(P −λ)

time periods. Thus, that the total time that all lanes are occupied in T1 is

(
1

P − λ

)
((H − 1) + (H − 1− zx) + (H − 1− 2zx) + · · ·+ (H −Kzx)) . (2.20)

The total time that lanes are occupied in T2 is calculated similar to (2.5) but herein H

pallets are depleted, therefore Q is substituted with H in (2.5). Given that the dedicated

aisle space to a lane is (az/2),

WA ≈
((

1

P − λ
+

1

λ

)(
H (K + 1)− zx

(
K (1 +K)

2

))
− K

P − λ

)(az
2

)
. (2.21)

OT is computed in T1 and T2 by

OT ≈
(

1

(P − λ)

)
(1 + 2 + · · ·+ (H − 1)) +

(
1

λ

)
(H + (H − 1) + · · ·+ 1) . (2.22)

It follows that

U ≈ 2x(Q(P − λ) + P − 2λ)

(2x+ a)(Q(P − λ) + Pzx− 2λ)
. (2.23)

The average waste of storage space is obtained by accumulating all types of waste and

dividing the result by T , which is (Q/λ). That is,

W ≈
(

1

4Px

)
(2Px(zx− 1) + aP (Q+ zx)− aλ(Q+ 2)) . (2.24)
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Figure 2.6: Space utilization vs. average waste of storage space.

Figure 2.6 compares space utilization and the average waste of storage space with respect

to lane depth. At x∗, the space utilization and the average waste of storage space reach their

maximum and minimum values, respectively.

Proposition 2.3. The optimal lane depth to block-stack a SKU whose batch of pallets is

produced at the rate P and depleted at the rate λ, where P > λ, is

x∗ ≈
√
a (Q(P − λ)− 2λ)

2zP
. (2.25)

Proof. It is proved by taking the derivative of (2.24) with respect to x, setting it equal to

zero and solving for x.

2.4.2.2 Common optimal lane depth for multiple SKUs

WU is calculated by multiplying the total time that lanes are occupied in T1 and T2 by

the unoccupied volume on top of lanes which is (e − z)x pallets. WA is computed similar

to (2.21), except that the aisle space that a lane requires for accessibility changes to (ae/2).

Scaling all waste expressions by multiplying them by hi, summing them, and dividing the

result by T results in W for SKU i. Wc is obtained by aggregating the W s for all SKUs.
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Figure 2.7: Changes in the inventory of a SKU stored at the rate P and depleted at the rate
λ, where λ > P .

That is,

Wc ≈
n∑
i=1

(
hi

4Pizix

)
(Pi(Qiei(2x+ a) + zix(2eix− 2Qi + aei − 2))− λ(Qi + 2)(2x(ei − zi) + aei)) . (2.26)

Uc is obtained as described in (2.13). That is,

Uc ≈
2x
∑n

i=1

(
hi
Pi

)
(Qi(Pi − λi)− 2λi + Pi)

(2x+ a)
∑n

i=1 eihi(x+
(

1
Pizi

)
(Qi(Pi − λi)− 2λi))

. (2.27)

Proposition 2.4. The optimal common lane depth to block-stack n SKUs whose batches of

pallets are produced at the rate P and depleted at the rate λ, where P > λ, is

x∗c ≈

√√√√a
∑n

i=1

(
eihi
ziPi

)
(Qi(Pi − λi)− 2λi)

2
∑n

i=1 eihi
. (2.28)

Proof. Differentiating (2.26) with respect to x, setting the result equal to zero and solving

for x, proves the proposition.
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2.4.3 P < λ demand is intermittent

In this case, the demand rate is higher than the production rate, but it is not constant.

So, the production strategy shall be make-to-stock in order to catch up with the demand.

We assume that the demand is known and the production is started soon enough to make

sufficient stock in order to catch up with the demand. Figure 2.7 shows changes in the

inventory of a SKU in this system. In period T1, the SKU is produced and stored in the

warehouse. No depletion occurs in this period and lanes are filled at the rate P . The

depletion starts in period T2, while the SKU is still produced and stored in the warehouse.

In this period, the demand is fulfilled by the stock and production together. Since the

demand rate is higher than the production rate, lanes are depleted at the rate (λ−P ) in T2.

An example of this case is seasonal products.

Inventory reaches its maximum level at the end of T1; therefore, T1 is (H/P ). The entire

production batch is depleted in T2; hence, T2 is (Q/λ) and the inventory cycle time, T , is

equal to (Q/P ). The maximum number of lanes required for storage is (dH/zxe) where H is

(Q− bQP/λc). Relaxing the integrality restriction results in the following approximations:

H ≈ Q (λ− P )

λ
, (2.29)

K ≈ Q (λ− P )

λzx
. (2.30)

One should notice that (2.29) could also be obtained by substituting the values of T , T1 and

T2 in T = T1 + T2.

2.4.3.1 Optimal lane depth for a single SKU

WH in T1 and T2 is calculated by replacing filling rates in (2.17) with P and depletion

rates in (2.3) with (λ− P ). WA and OT are similarly calculated by updating the new filling
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and depletion rates in (2.21) and (2.22), respectively. It follows that

U ≈ 2x(Q(λ− P ) + 2P − λ)

(2x+ a)(Q(λ− P ) + λzx+ 2P − 2λ)
. (2.31)

W is determined by summing all types of waste and then dividing the result by T , which is

(Q/P ). That is,

W ≈
(

1

4λx

)
(2λx(zx− 1) + aλ(Q+ zx− 2)− aP (Q− 2)) . (2.32)

Proposition 2.5. The optimal lane depth to block-stack a SKU whose batch of pallets is

produced at the rate P and depleted at the rate λ, where P < λ, is

x∗ ≈
√
a(Q− 2)(λ− P )

2zλ
. (2.33)

Proof. It is proven by taking the derivative of (2.32) with respect to x, setting it equal to

zero and solving for x.

2.4.3.2 Common optimal lane depth for multiple SKUs

WU is calculated as described in section (2.4.2.2) using the new filling and depletion

rates. WA is computed as described for the single SKU model. Herein, the aisle space that

a lane requires for accessibility changes to (ez/2). To take the pallet heights into account,

all waste expressions are scaled by multiplying by hi. Summing the W s for all SKUs results

in the average waste of storage space for a common lane depth.

Wc ≈
n∑
i=1

(
hi

4λizix

)
(λi(ei(Qi − 2)(2x+ a)

+ zix(2eix+ aei − 2Qi + 2))− Pi(Qi − 2)(2x(ei − zi) + aei)). (2.34)
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Algorithm 2.1 Pseudo-code of the simulation.

Initialize parameters (Pi, λi, Qi, zi, x, a, n)
Schedule first events for all SKUs
while (simulation time not terminated) do

Find the earliest event
if (the event is production (arrival)) then

if (a partially occupied lane is available for the SKU) then
Assign the SKU to the lane

else
Dedicate a new lane to the SKU

else
if (a partially occupied lane is available for the SKU) then

Deplete the SKU from the lane
else

Deplete the SKU from a fully occupied lane

Update the lane occupancies
Update WH , WA, WU and OT

Schedule the next event for the SKU
return Wc and Uc

It follows that

Uc ≈
2x
∑n

i=1

(
hi
λi

)
(Qi(λi − Pi) + 2Pi − λi)

(2x+ a)
∑n

i=1 eihi(x+
(

1
λizi

)
(Qi(λi − Pi) + 2Pi − 2λi))

. (2.35)

Proposition 2.6. The optimal common lane depth to block-stack n SKUs whose batches of

pallets are produced at the rate P and depleted at the rate λ, where P < λ, is

x∗c ≈

√√√√a
∑n

i=1

(
eihi
ziλi

)
(Qi − 2)(λi − Pi)

2
∑n

i=1 eihi
. (2.36)

Proof. Differentiating (2.34) with respect to x, setting the result equal to zero and solving

for x, proves it.
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Table 2.2: Parameters of the triangular distributions used in the simulation.

Variables Low Mode High

Production time 1
P

(1− 0.3) 1
P

1
P

(1 + 0.3)

Demand inter-arrival time 1
λ
(1− 0.5) 1

λ
1
λ
(1 + 0.5)

Batch size Q(1− 0.3) Q Q(1 + 0.3)

2.5 Experimental framework

The experimental framework is designed as follows: First, we describe the simulation

model used to evaluate performance of the proposed models. Next, the test problem sets are

described and then accuracy of the proposed models is evaluated by the simulation model.

Finally, the finite and infinite production rate models are compared with respect to the

optimal lane depth and space utilization.

2.5.1 Simulation model

The pseudo-code of the simulation model used for evaluation (an event-oriented model

written in Python) is shown in Algorithm 2.1. The main goal of the experimental analysis

is to evaluate accuracy of the proposed models for the real world situations where stochastic

variations exist among the major production factors and demand. For this reason, the

simulation model utilizes random variables for the production times, demand inter-arrival

times, and the batch sizes as presented in Table 2.2.

To compute the performance metrics under the stochastic variations, the simulation

model is run for lane depths from 5 to 50 pallets deep and replicated 40 times for each lane

depth. The average waste of storage space is computed for each replication and the average

of results across the replications is recorded for each lane depth. Finally the lane depth

that generated the minimum average waste of space is reported as the optimal lane depth.

Common random numbers were used for all lane depths in the same replication to ensure

that randomness does not interfere in selecting the optimal lane depth. However, the number
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Table 2.3: Parameters of the uniform distributions used to generate the random SKUs.

Variables
P > λ P < λ

Min Max Min Max

P (pallets/hour) λ 100 0.5 10
λ (pallets/hour) 0.1 2 P 15
z (pallets) 2 5 2 5
a (pallets) 2 4 2 4
h (feet) 2 5 2 5
Pallet cost 50$ 500$ 50$ 500$

of replications must be determined such that the confidence intervals on the average waste of

space obtained for any two consecutive lane depths do not overlap. Our experiments showed

that 40 replications sufficiently narrows the confidence intervals such that this condition is

met. Also, they showed that the space utilization converges faster when the warm-up period

is set to 10 percent of the simulation period.

Our objective is to evaluate the long time performance of the system, therefore the

simulation period must be defined long enough to cover sufficient numbers of inventory cycles

for each SKU in the test problems. Considering the randomly generated test problems, the

inventory cycle times in our test problems vary from less than a month to higher than 6

months. Thus, we set the simulation period to five years for both single and the multiple

SKU test problems.

2.5.2 Analyzing accuracy of the models

The performance of the models was analyzed on randomly generated test problems for

single and multiple SKUs. The test problems were designed as described in the following:

• Single SKU: A repository of 1000 SKUs was randomly generated for each of the

two finite production rate models. Uniform random distributions with the parameters

shown in Table 2.3 were used to generate the SKUs. The following are the non-random

parameters used in generating the SKUs:
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– monthly holding cost: (pallet cost)×0.3/12

– setup cost: (pallet cost)×5

– warehouse clear height: 25 feet

– Q: computed by the EOQ model [19]

The SKU repository for the infinite production rate model was created by duplicating

the SKU repository generated for the finite production rate with P > λ and discarding

the P s.

The simulation model was run for the 1000 SKUs in each repository one by one and

the results were compared with the outputs of the relevant models.

• Multiple SKUs: For each of the three cases investigated in this paper, three test

sets were designed for 10, 50 and 100 SKU test problems. Each test set consists of

30 different test problems whose SKUs were randomly chosen from the relevant SKU

repository. For all multiple SKU test problems, aisle width was set to three pallets.

The accuracy of the proposed models in estimating the optimal lane depth and space

utilization was evaluated by calculating the Mean Absolute Percentage Error (MAPE) be-

tween the model estimations and the simulation results. The MAPE for the optimal lane

depth is calculated as

MAPE x∗ =
1

N

N∑
i=1

∣∣xSi − x∗i ∣∣
xSi

, (2.37)

where xSi and x∗i are the optimal lane depth obtained by the simulation and the proposed

models for the ith test problem, respectively, and N is the number of the test problems,

which is equal to 1000 and 30 for the single and multiple SKU test sets, respectively. The

MAPE for space utilization is obtained by

MAPEU =
1

(N × 45)

N∑
i=1

50∑
j=5

∣∣ŪS
ij − Uij

∣∣
ŪS
ij

, (2.38)
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Figure 2.8: The MAPE for the optimal lane depth and space utilization, P =∞.

Figure 2.9: The MAPE for the optimal lane depth and space utilization, P > λ.

where ŪS
ij is the average space utilization within the 40 replications of simulation for the lane

depth j in test problem i and Uij is the space utilization estimated by the relevant model

for the lane depth j in test problem i. Figures 2.8, 2.9 and 2.10 show the MAPE x∗ and

MAPEU for the three investigated cases. The following observations are obtained from the

experimental study:

• The MAPEU and MAPE x∗ are less than 2.6 and 8 percent for all three cases for all

four test sets, respectively. This shows that despite the high variations applied to the

P , λ, and Q in the simulations, the models accurately estimated both the optimal lane
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Figure 2.10: The MAPE for the optimal lane depth and space utilization, P < λ.

Figure 2.11: The MAPE for the space utilization estimated by the finite and infinite pro-
duction rate models.

depth and space utilization in all three cases and their performance are robust under

the presence of stochastic variations.

• Performance of the models are consistent and do not depend on the size of the problems

(number of SKUs). The MAPEU varies less than one percent as the number of SKUs

increases from 10 to 100 SKUs. This variation is less than three percent for the

MAPE x∗ .
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Figure 2.12: The MAPE for the optimal lane depth estimated by the finite and infinite
production rate models.

• Single SKU models estimated both performance metrics more accurately than the

multiple SKU models, though the difference is relatively small. The MAPEU and

MAPE x∗ are less than 0.5 and 1 percent for these models, respectively.

2.5.3 Finite vs. infinite production rate model

The infinite production rate model is the only existing model in the literature that

addresses optimal lane depth in block stacking warehouses [18]. Employing this model in

the warehouses located in manufacturing systems is equivalent to disregarding the production

flow to the warehouse and assuming instantaneous SKU arrivals. In this section, we show

the disadvantages of disregarding the production rates in such warehouses. We compare the

infinite production rate model with the finite model on the same test problems using the

simulation model to compute space utilization for the optimal lane depths obtained by the

two models. The experimental study in this section is designed as follows:

First, we test the single SKU models for different (λ/P ) ratios. From a mathematical

point of view, the infinite production rate model is a special case of the finite model where

P > λ. That is, (2.10) can be alternatively obtained by substituting (P =∞) in (2.25). This

experiment aims to determine when the infinite model is capable of estimating optimal lane

depth for a finite production rate problem with a relatively small error. Then, performance
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of both models are examined for multiple SKUs with respect to space utilization. Single and

multiple SKU test problems are designed for this experiment as described in the following:

• Single SKU: 10 different test problems each consisting of 1000 randomly generated

SKUs were generated similar to the SKU repositories in section 2.5.2 except that

here, the demand rates were generated such that the (λ/P ) ratios for all SKUs in the

first, second, ..., and the tenth test problems were in the ranges 1-10 percent, 11-20

percent,..., 91-99 percent, respectively.

• Multiple SKUs: Two SKU repositories were randomly generated as described in

section 2.5.2. Herein, the demand rates were generated such that (λ/P ) ratios were

between 5 to 30 percent for the SKUs in the first repository and between 70 to 95

percent for the ones in the second repository. Then, three test sets were designed

each containing 30 test problems for 10, 50 and 100 SKUs, respectively. For each test

problem, 70 percent of its SKUs were randomly chosen from the first SKU repository

and the remaining were randomly chosen from the second repository. This setup aims

to preserve diversity among the SKUs in the test problems.

Figure 2.11 and 2.12 compare the MAPEU and MAPE x∗ for the single SKU models

for different (λ/P ) ratios. The infinite production rate model obtained relatively small

errors when the ratio is less than 10 percent. As the ratio increases, both the MAPEU and

the MAPE x∗ drastically increase for the infinite model. On the contrary, the finite model

obtained relatively small and consistent errors for all ranges.

Table 2.4 shows the test results for the multiple SKU test problems. On average,

the optimal lane depths obtained by the finite production rate model resulted in about

two percent higher space utilization than the ones obtained by the infinite model. This

improvement is almost consistent among the three test sets. On the other hand, the infinite

model obtained much deeper lanes than the finite model. The average of the optimal lane

depths estimated by the infinite model is more than 68 percent deeper than the average
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Table 2.4: Finite vs. infinite production rate models.

Metric
10 SKUs 50 SKUs 100 SKUs

Min Max Avg. Min Max Avg. Min Max Avg.

Improvement in space utilization by
finite model

0.36% 3.67% 2.09% 0.87% 3.25% 1.94% 0.76% 2.68% 1.86%

Optimal lane depth (finite model) 14 21 17.8 15 19 17.60 16 19 17.43
Optimal lane depth (infinite model) 24 40 30.00 26 34 29.90 26 33 29.63

of the ones obtained by the finite model. Deep lanes form a warehouse layout that has

few cross aisles and therefore, the transportation costs increase in the warehouse. So, the

layout designed by the finite model is more flexible and also incurs less transportation costs.

However, quantifying this cost is out of the scope of this paper and is an open problem for

a future research.

The optimal lane depths obtained by the finite model achieved higher space utilization

in all test problems. This improvement increases when the production rates are closer to

the demand rates, like just-in-time manufacturing systems where the production lines are in

balance with the demand.

2.6 Conclusions

In this paper, we developed mathematical models to obtain the optimal lane depth for

single and multiple SKUs in block stacking storage systems under finite production rate con-

straints. The following cases were studied: infinite production rate, finite production rate

where the production rate is higher than the demand rate, and less than the demand rate.

A simulation model was developed to evaluate performance of the models for the real word

situation where uncertainty exists in production and demand. That is, the assumptions of

constant, deterministic production and demand were relaxed in the simulation. An experi-

mental study was carried out on the randomly generated test problems for single and multiple

SKUs. The experimental analysis shows that although the models were developed based on

the assumption of deterministic production and demand, they are robust and accurate under

uncertainty.
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We evaluated the finite production rate model with the only existing model in the

literature (infinite production rate model) on the same test problems and highlighted the

advantages achieved in the space utilization and transportation costs by taking the pro-

duction rates into consideration. The optimal lane depth obtained by the finite model led

to higher space utilization in all test problems. They are nearly half as deep as the ones

obtained by the infinite production rate model. This implies, they form a flexible layout

that contains more cross aisles and as a result less transportation costs are incurred to the

system.

Our proposed models accurately estimate the lane depth that enhances space utilization

in block stacking warehouses in manufacturing systems. However, it is important to note

that our model does not consider safety stock or transportation costs which could influence

the results in practice. Considering both space utilization and Transportation costs in finding

the optimal lane depth seems a substantial problem for future research.
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Chapter 3

Space-efficient layouts for block stacking warehouses

3.1 Abstract

In block stacking warehouses, pallets of stock keeping units are stacked on top of one

another on the warehouse floor. The arrangement of lanes in the layout of this storage system

affects utilization of the storage volume. Existing research that studies space utilization

exclusively attempts to find the optimal lane depth and does not address the design of a

space-efficient layout. We describe a model for block stacking warehouses that chooses a set

of bay depths and arranges them in a layout to minimize wasted space. We use simulation

to evaluate performance of the proposed model through an experimental analysis that covers

small to industrial-sized warehouses.

Keywords: block stacking; facility design; layout design, warehouse design; space

utilization

3.2 Introduction

Storing pallets of Stock Keeping Units (SKUs) on top of one another on a warehouse

floor is known as block stacking. This inexpensive storage system does not generally require

storage racks and can be inexpensively implemented in any open area. For this reason, it

is widely used in manufacturing systems and distribution centers. Block stacking is mainly

used with a shared or a dedicated storage policy. In the dedicated policy, lanes are dedicated

to SKUs, and each SKU is allowed to be stored only in its assigned lanes, whereas in the

shared (random) policy empty lanes are available to all SKUs. Hence, the shared policy is

more efficient in utilizing storage space, but is generally less efficient for order picking. The
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space-efficient nature of this policy makes it a common space management policy for block

stacking. However, to prevent lane blockage or extra pallet relocations, a lane in the shared

policy is temporarily dedicated to the SKU that occupies its first pallet position, making

unoccupied pallet positions of the lane unavailable to other SKUs. This effect is called

honeycombing and waste associated with it remains in the system until the lane becomes

fully occupied or empty.

As explained in Bartholdi and Hackman [2], aisles also contribute to the waste of space,

because they are not used for pallet storage but are required to access lanes. To enhance

utilization of the storage space, the warehouse must be designed such that both of these

wastes are minimized. However, there is a trade-off. Layouts with shallow lanes generate

less honeycombing waste but require more aisles, whereas the opposite is true for deep lanes.

Various studies have investigated layout design for conventional rack storage systems

[1, 9]. These studies mostly considered designing the layout with respect to transportation

costs for order picking [10, 11, 21, 22, 28, 3]. Further details can be found in [4]. Other

research investigated this problem from the perspectives of operational cost [29, 20, 30],

space utilization [7], product allocation [19, 25, 16], operating policies [24, 26, 12], and

warehouse throughput [23, 14].

Kind [13] proposed the first model to take into account the trade-off between lane depth

and width to find the lane depth that minimizes the waste of floor space. However, he did

not provide any derivations for his formula. Later, Marsh [17] used simulation to evaluate

space utilization on alternative lane depths and storage policies in this storage system.

Matson [18] extended Kind’s model [13] and proposed a model to approximate the

optimal lane depth when lanes are replenished instantaneously (i.e., replenishment rate is

infinity). She also developed a model to find the common optimal lane depth for multiple

SKUs. Her models are suitable for warehouses that store products received from suppliers,

in which a truck unloads a batch of pallets at once (infinite replenishment rate).
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Goetschalckx and Ratliff [8] showed that if multiple lane depths are allowed, then the

optimal lane depths follow a triangular pattern. They developed a dynamic programming

algorithm to select multiple optimal lane depths from a set of finite allowable lane depths

so that the occupied floor space is minimized. They used a heuristic to form the warehouse

layout by selecting at most five depths that form an approximately geometric series and then

calculating the required number of lanes for each product based on the selected lane depths.

The algorithm then rounds up or down the aggregated number of required lanes for each

depth to the nearest multiple of lanes in an aisle.

Larson et al. [15] proposed a heuristic to design a class-based layout that maximizes

floor space utilization and minimizes material handling cost. Their algorithm consists of

three phases. In the first phase, the aisle directions (layout) and storage zone dimensions are

determined. Then, storage types (rack storage or floor storage) are determined for all SKUs,

and the required storage space for each storage type is calculated. Finally, the floor space

is allocated for the storage zones (types) based on their types, required number of storage

locations, and throughputs.

Derhami et al. [7] extended Matson’s model [18] with two models to minimize waste of

storage volume instead of floor space. They developed two finite production (replenishment)

rate models: one for continuous demand less than the production rate, and the other for

demand greater than the production rate. They showed that using an infinite production

rate model in a finite production rate system results in lane depths about twice as deep as

they should be. However, the resulting waste of volume is not significant because the space

utilization curve, as a function of lane depth, is quite flat as the lane depth increases.

Existing research on space utilization in block stacking systems focuses exclusively on

determining the optimal lane depth and does not provide any insights on designing the

warehouse layout. Consider a traditional block stacking warehouse layout like the one in

Figure 3.1b. To design a layout one must answer the following questions:

• How many aisles and bays should the layout have?
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• How deep should the bays be?

• How to assign SKUs to lanes?

To the best of our knowledge, no analytical model exists to answer these design questions

comprehensively. The optimal lane depth model cannot be used to design an optimal ware-

house layout because the cost function is different. The optimal lane depth model [7, 18]

computes waste of aisle space only for the period that a lane is occupied. Therefore, it treats

aisle space as waste only when a lane is occupied and considers it available storage space oth-

erwise. In the layout design problem, the space dedicated to aisles is always waste whether

the adjoining lanes are occupied or not. Therefore, using the optimal lane depth model to

design a layout underestimates aisle waste or, in other words, it assumes that storage lanes

are immediately replenished as soon as they become empty.

Another reason the optimal lane depth model is inappropriate for the layout design

problem is that it does not take warehouse dimensions into account. It attempts to optimize

the trade-off between a block depth and width. Thus, it is a suitable tool to find the block

size for temporary storage in a wide area.

In this research, we analyze waste of storage volume in block stacking from a layout

design perspective. Our approach relaxes the immediate replenishment assumption of the

optimal lane depth model and considers the volume dedicated to aisles as wasted storage

volume for the entire planning horizon. We define a mixed integer programming model that

finds the optimal number of bays and depths to minimize the total waste of the storage

volume. The model allows multiple bay depths in the layout. We design an experimental

study to investigate computational difficulty of the model and use a simulation model to

evaluate performance of our model under stochastic conditions.
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(a) (b)

Figure 3.1: A layout generated by the proposed model (a) and after adding cross-aisles and
an extra aisle (b).

3.3 Waste of the storage volume

The warehouse layout defines the shape, location and size of bays, lanes, aisles and

cross-aisles on the warehouse floor. The layout is defined, in this research, as the number

and arrangement of bays, aisles, cross-aisles, and bay depths for the given warehouse area.

A typical warehouse layout and its elements are shown in Figure 3.1b.

Cross-aisles are used to facilitate access to lanes and to reduce travel distances inside

the warehouse. So, unlike picking aisles, they are not necessary for pallet storage and conse-

quently their space is considered pure waste of storage space. Because the objective of our

model is to maximize utilization of the storage volume, including the number of cross-aisles

as a decision variable in the model would lead to zero cross-aisles. Hence, they are not

considered in the modeling, and we assume that the number of cross-aisles is given based

on the warehouse width, material handling system, and traffic congestion [6]. To better

utilize the storage volume, we assume that each aisle is shared between two bays. Therefore,

any additional aisles and cross-aisles (for ease of transportation) must be added afterward

(Figure 3.1).
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We assume:

• The production schedule and production sequences are not known in advance.

• The warehouse is sufficiently large and the production sequences will be such that the

warehouse can accommodate all produced SKUs under a shared storage policy.

• All lanes in the same bay have the same depth.

• Lanes are accessible from one side and they are depleted in the Last-In-First-Out

(LIFO) order.

• Lanes are perpendicular to the short sides of the warehouse (labeled “Effective width”

in Figure 3.1).

• The warehouse is unit-load (pallets).

To simplify modeling, we represent dimensions in units of floor space (pallets) rather than

units of distance like feet or meters. In the next section, we calculate the total waste of

storage volume and describe a model to minimize this waste. We develop the model for

finite production rates where the production rates are bigger than the demand rates, and

demand is continuous. Note that this model can be converted to instantaneous replenishment

by letting the production rate equal infinity.

3.3.1 Waste of storage space

Assume that SKU i is produced in batches of Qi pallets at rate Pi pallets per unit time

and the pallets are stored on the floor at the same rate. Pallets are retrieved from the storage

lanes at rate λi pallets per unit time, where Pi > λi. Assume that pallets of this SKU are

Hi feet high and can be stacked up to Zi pallets. The change in the inventory of this SKU

over the cycle time is shown in Figure 3.2. The maximum inventory of the SKU is

Vi ≈
Qi (Pi − λi)

Pi
, (3.1)
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Figure 3.2: Changes in the inventory of SKU i over time, Pi > λi.

and the number of storage lanes that this SKU requires if it is stored in lanes xi pallets deep

is

Ki =

⌈
Qi (Pi − λi)
PiZixi

⌉
. (3.2)

Relaxing the integrality assumption yields

Ki ≈
Qi (Pi − λi)
PiZixi

. (3.3)

Equations (3.1) and (3.3) are approximations because we assume that lanes are filled in T 1
i

at rate Pi − λi rather than being replenished and retrieved at rates Pi and λi at the same

period. Three types of waste are generated in the warehouse:

1. Honeycombing waste: Pallet positions in a partially occupied lane that are unoc-

cupied but unavailable to the other SKUs. This waste remains in the system until a

lane becomes entirely occupied or empty.

2. Unoccupied volume at the top of stacks: Unoccupied space between the top

of lanes and the clear height of the warehouse. This waste is incurred as a result of

different pallet heights or technical restrictions on the stackable heights (like pallet

weights, safety policies, etc.) that lead to various stack heights for different SKUs.
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3. Volume dedicated to the aisles: The dedicated aisle volume is not directly used

for pallet storage and therefore considered as waste of storage space. Unlike optimal

lane depth models, for which this waste is considered as long as a lane is occupied, it

is considered a permanent waste in the layout design problem.

3.3.1.1 Honeycombing waste

Assume SKU i is stored in an empty lane with depth xi pallets. Zixi pallets of this SKU

can be stored in the lane. When the first pallet is stored, the entire lane is dedicated to this

SKU; therefore, the remaining (Zixi − 1) pallet positions in the lane become unavailable to

other SKUs. This waste is incurred to the system until the next pallet is stored. For the sake

of simplicity, we assume that pallet positions are replenished at rate (Pi − λi). Therefore,

(Zixi − 1)Hi pallet-feet are wasted for (1/(Pi − λi)) time periods. Then, the next pallet is

stored in the lane and waste of storage volume decreases to (Zixi−2)Hi. The honeycombing

waste continues to decrease until the lane becomes fully occupied. The total honeycombing

waste incurred by a lane replenishment is

(
Hi

Pi − λi

)
((Zixi − 1) + (Zixi − 2) + · · ·+ (Zixi − (Zixi − 1))) . (3.4)

Similarly, honeycombing waste is generated when a lane is being emptied. When the

first pallet is retrieved from a fully occupied lane, one pallet position becomes unoccupied for

(1/λi) time period. Then, the next pallet is retrieved and the lane will have two unoccupied

pallet positions for the same amount of time. The total honeycombing waste incurred by a

lane retrieval is (
Hi

λi

)
(1 + 2 + · · ·+ (Zixi − 1)) . (3.5)

The total honeycombing waste generated by replenishing and retrieving a batch of Qi

pallets is obtained by summing (3.4) and (3.5), and multiplying the result by Ki. It follows

50



that

WH
i ≈

(
1

2λi

)
(HiQi (Zixi − 1)) . (3.6)

3.3.1.2 Waste of unoccupied volume at the top of stacks

We define the clear height of the warehouse as the highest stackable height. So, unoc-

cupied waste at the top of a stack is zero if a SKU can be stored to the maximum stackable

height. Consequently, it will be removed from the model if all SKUs have the same stackable

height. This waste is incurred to the system for the entire time that a lane is partially or

fully occupied. Therefore, the time that lanes will be occupied must be calculated. Consider

storing a batch of Qi pallets. Note that Vi pallet positions are replenished and emptied in T 1
i .

Once the first pallet is stored in the first lane, that lane will be occupied until the remaining

(Vi− 1) positions are filled. Pallet positions are replenished at rate (Pi− λi), hence the first

lane remains occupied for (Vi−1)/(Pi−λi) time period in T 1
i . The second lane is being used

when the Zixi positions of the first lane are filled. It remains occupied until (Vi − Zixi − 1)

remaining positions are replenished. The same process applies to the rest of lanes and the

total time that all lanes are occupied in T 1
i is obtained from

(
1

Pi − λi

)
((Vi − 1) + (Vi − Zixi − 1) + (Vi − 2Zixi − 1) + · · ·+ (Vi −KiZixi)) . (3.7)

Now consider retrieving a batch of Vi pallets. The lane that is retrieved last remains

occupied until the entire batch of Vi pallets are gone. Since retrievals occur at rate λi, this

lane remains occupied for (1/λi)(Vi) time period in T 2
i . The lane that is retrieved before this

lane, remains occupied for (1/λi)(Vi − Zixi) time period, and so on. Thus, the total time

that lanes are occupied in T 2
i is given by

(
1

λi

)
(Vi + (Vi − Zixi) + (Vi − 2Zixi) + · · ·+ (Vi −KiZixi)) . (3.8)
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The total waste of unoccupied volume at the top of lanes is obtained by adding (3.7)

and (3.8) and multiplying the result by the volume wasted at the top of a lane, which is

(Sh − ZiHi)xi, where Sh is the clear height of the warehouse in units of distance. That is,

WU
i ≈

(
Qi(S

h − ZiHi)

2PiλiZi

)
(Qi(Pi − λi) + PiZixi − 2λi) . (3.9)

3.3.1.3 Waste of the dedicated volume to the aisles

As opposed to the optimal lane depth models in which the waste of the dedicated volume

to aisles is computed only for the period that a lane is occupied [7], we consider the volume

devoted to aisles as a permanent waste. Thus, the total waste of the dedicated volume to

the aisles is

WA = AShSwn, (3.10)

where n is the number of aisles in the layout, A is the aisle widths, and Sw is the warehouse

width.

3.3.1.4 Total waste of the storage volume in the warehouse

The total waste of storage volume in the warehouse is the sum of honeycombing waste,

unoccupied volume at the top of stacks, and the volume dedicated to the aisles. Denote the

least common multiple of the cycle times of all SKUs by TL. It also can be considered as

a long period of time (steady state) in which all SKUs will have sufficient inventory turns.

Given that the cycle time of SKU i is Qi/λi, the number of inventory turns for this SKU in

TL is TLλi/Qi. Therefore, the total WH
i and WU

i generated by SKU i in TL is

WHU
i =

TLλi(W
H
i +WU

i )

Qi

. (3.11)

The total waste in the warehouse is given by summing WHU
i for all SKUs and adding

the aisle volume to the result. Note that the aisle volume remains as a waste for the entire

52



TL. Hence, the total storage volume wasted in the warehouse in TL is given by

W = TLAShSwn+
∑
i∈I

(
TLλi(W

i
H +W i

U)

Qi

)
, (3.12)

where I is the set of all SKUs stored in the warehouse. Dividing (3.12) by TL gives the

average waste of storage volume in the warehouse. That is,

W̄ = AShSwn+
Sh

2

∑
i∈I

xi

+
∑
i∈I

(
1

2PiZi

)(
(Qi(S

h − ZiHi)− ZiHi)(Pi − λi)− λi(2Sh − ZiHi)
)
. (3.13)

Expression (3.13) depends on the following decision variables: set of SKUs’ assigned lane

depths, xi, and the number of aisles in the layout, n. It is also restricted to the following

constraint: the sum of bay depths and aisle widths must add up to the warehouse length.

This causes a trade-off between bay depths and the number of aisles. A layout with deep

bays has fewer aisles but generates higher honeycombing waste while the reverse is true for

a layout with shallow bays. In the next section, we develop a model to optimally address

this trade-off and minimize the total waste of storage volume in the warehouse.

3.3.2 Designing the warehouse layout

We minimize (3.13) with a mixed integer programming model that finds the optimal

values for n and xi. We call it MBD to distinguish it from the common lane depth model,

which we call CLD. The MBD finds the optimal number of aisles and also bay depths for the

given warehouse dimensions. It allows multiple depths in a layout. Hence, to measure the

waste of space, it assigns SKUs to bays considering the number of lanes that they require

with respect to their assigned bay depths.

Since the warehouse is intended to operate under the shared policy, it is not spacious

enough to dedicate the required number of lanes to all SKUs (i.e. the warehouse cannot
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accommodate all SKUs at the same time to their maximum inventory levels). Notice that

this would not be an issue in a layout operated with a dedicated policy. Therefore, the

model hypothetically expands the layout width to provide sufficient space to dedicate re-

quired number of lanes to all SKUs (i.e. sufficient hypothetical space to allow switching the

operating policy to the dedicated policy). That is, the same number of hypothetical lanes

are added to all bays.

The model then assigns SKUs to bays ensuring that all SKUs have been assigned to

the exact number of lanes that they require with respect to their assigned bay depths, and

no bay is over-assigned. The resulting SKU assignment is a space-efficient operating policy

used to prioritize bays with empty lanes for assignment to incoming SKUs.

To provide a clear view to the readers, we first present the initial version of the MBD,

which is a nonlinear model. The linearized model will be described next.

3.3.2.1 Nonlinear model

Sets and data:

B set of bays, B = {1, . . . , bmax}

E expansion ratio

Sl warehouse length (in units of pallets)

Sw warehouse width (in units of pallets)

bmax maximum number of bays in a layout

Decision variables:

yib 1 if SKU i is assigned to bay b, 0 otherwise

rb depth of bay b (in units of pallets)

eb 1 if bay b exists in the optimal layout (i.e., rb > 0), 0 otherwise
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Minimize ASw
∑
b∈B

eb +
∑
i∈I

∑
b∈B

yibrb (3.14)

Subject to

eb−1 = eb ∀b ∈ {2, 4, . . . , bmax} (3.15)∑
b∈B

rb +
A

2

∑
b∈B

eb = Sl (3.16)

Lmineb ≤ rb ≤ Lmaxeb ∀b ∈ B (3.17)⌈
Qi (Pi − λi)
PiZirb

⌉
yib ≤ Sweb ∀i ∈ I, b ∈ B (3.18)

Sweb ≤
∑
i∈I

⌈
Qi (Pi − λi)
PiZirb

⌉
yib ≤ ESw ∀b ∈ B (3.19)

yib ∈ {0, 1} ∀i ∈ I, b ∈ B (3.20)

eb ∈ {0, 1} ∀b ∈ B (3.21)

rb ≥ 0, integer ∀b ∈ B (3.22)

The objective function (3.14) minimizes the total waste of storage volume in the ware-

house. It takes into account the variable parts of (3.13). Note that considering constraint

(3.15), xi =
∑

b∈B yibrb and n =
∑

b∈B eb/2. We removed the common factor Sh/2 from both

terms in (3.14).

Constraint (3.15) guarantees that the number of bays is twice the number of aisles. It

pairs the existence of two subsequent bays together and hence forces the total number of

existing bays to be even. As a result,
∑

b∈B eb/2 gives the number of aisles in the layout.

Note that bmax must be even. Constraint (3.16) ensures that the sum of all bay depths and

aisle widths adds up to the warehouse length.

Constraint (3.17) relates eb and rb together in addition to setting lower and upper bounds

on rb. If bay b exists in the solution (i.e. eb = 1), rb is forced to be between Lmin and Lmax.

Otherwise it is forced to be zero. Note that bmax is sufficiently large to allow the model to

select the optimal number of bays. Hence, the optimal solution may have fewer bays than

55



bmax. In this case, a zero bay depth implies that the respective bay does not exist in the

optimal layout.

Constraint (3.18) ensures that the total number of assigned lanes from a bay to a SKU

does not exceed the number of lanes in a bay. As shown in (3.2), dQi (Pi − λi) /PiZirbe is

the maximum number of lanes that a SKU occupies if it is assigned to a bay whose depth is

rb pallets.

Constraint (3.19) restricts the SKU assignments and ensures the SKU assignments are

feasible. It aims to balance the assignment loads among bays and to prevent accumulating

SKUs in more favorable bays (shallow bays that incur less honeycombing waste). Without

this constraint, an infeasible solution with only two bays and all SKUs assigned to the

shallower bay would be found. The left hand side of constraint (3.19) ensures that all lanes

of an existing bay are assigned to at least one SKU. The right hand side restricts the total

number of assigned lanes of a bay to all SKUs to be fewer than or equal to the warehouse

width (the original number of lanes in a bay) multiplied by the expansion ratio, E.

The model hypothetically expands the number of lanes in all bays to provide enough

space to dedicate the maximum number of required lanes to all SKUs. E is the minimum

ratio that satisfies this condition. It must be determined carefully because a large value of

E allows the model to assign many SKUs to the shallow bays to minimize
∑

i∈I xi and a

small E results in an infeasible solution. We compute E for bmin and bmax and then select

the highest ratio. The procedure is as follows. First, a common bay depth is calculated for

a layout with bmin bays:

x̄min =

[
Sl −

(
1
2

)
bminA

bmin

]
. (3.23)

Then, using (3.2), Ki for xi = x̄min is calculated. Summing Kis for all SKUs and dividing

the result by the total number of lanes in the layout gives

Emin =
1

bminSw

(∑
i∈I

⌈
Qi (Pi − λi)
PiZix̄min

⌉)
. (3.24)
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Similarly, Emax is calculated for bmax. The expansion ratio is

E = Max{Emin , Emax}+ ε, (3.25)

where ε is a small number to compensate for the approximation error due to the common

bay depth assumption. We set it equal to 0.05 in our experiment.

3.3.2.2 Linearized model

We linearize the model by introducing the following two sets of decision variables:

xid 1 if SKU i is assigned to a bay whose depth is Ld pallets, 0 otherwise

zib number of lanes of bay b assigned to SKU i

The following set and data are used in the new model in addition to the ones defined before.

D set of allowable depths, D = {1, . . . , dmax}

Lmin minimum allowable bay depth

Lmax maximum allowable bay depth

Ld dth allowable bay depth (in units of pallets), L = {Lmin, Lmin + 1 , . . . , Lmax}

Rid number of lanes that SKU i occupies when stored in a bay whose depth is Ld pallets

Sl warehouse length (in units of pallets).

Mi arbitrarily large number, (i = {1, . . . , 3}).

Minimize ASw
∑
b∈B

eb +
∑
d∈D

Ldxid (3.26)

Subject to∑
d∈D

xid = 1 ∀i ∈ I (3.27)

∑
b∈B

zib =
∑
d∈D

Ridxid ∀i ∈ I (3.28)

zib ≤ Sweb ∀i ∈ I, b ∈ B (3.29)
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Sweb ≤
∑
i∈I

zib ≤ ESw ∀b ∈ B (3.30)

yib ≤ zib ≤M1yib ∀i ∈ I, b ∈ B (3.31)

rb ≤
∑
d∈D

Ldxid +M2(1− yib) ∀i ∈ I, b ∈ B (3.32)

rb ≥
∑
d∈D

Ldxid −M3(1− yib) ∀i ∈ I, b ∈ B (3.33)

∑
b∈B

yib = 1 ∀i ∈ I (3.34)

constraints (3.15)+(3.16)+(3.17)

yib ∈ {0, 1} ∀i ∈ I, b ∈ B (3.35)

eb ∈ {0, 1} ∀b ∈ B (3.36)

rb ≥ 0, integer ∀b ∈ B (3.37)

xid ∈ {0, 1} ∀i ∈ I, d ∈ D (3.38)

zib ≥ 0, integer ∀i ∈ I, d ∈ D (3.39)

The objective function (3.14) was linearized to (3.26) by introducing xid and substi-

tuting
∑

i∈I
∑

b∈D yibrb with
∑

d∈D Ldxid. Constraint (3.27) limits SKUs to only one depth.

Constraints (3.28) and (3.29) linearize constraint (3.18). Constraint (3.28) forces the total

number of assigned lanes to a SKU be exactly equal to the number of lanes that it requires

with respect to the assigned bay depth. Rid is calculated using (3.2). That is,

Rid =

⌈
Qi (Pi − λi)
PiZiLd

⌉
∀d ∈ D. (3.40)

Constraint (3.29) ensures that the total number of lanes assigned to a SKU from one

bay does not exceed the warehouse width. Constraint (3.30) is a linearization of constraint

(3.19). Constraint (3.31) relates zib and yib. The right hand side of (3.31) forces yib = 1 if a

lane from bay b is assigned to SKU i (i.e., zib > 0). Otherwise, yib is forced to zero by the

left hand side of 3.31). Since always zib ≤ Sw, M1 must be greater than or equal to Sw.
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Constraints (3.32) and (3.33) assign bay depths to the SKUs. If SKU i is assigned to bay

b (i.e., yib = 1), 1−yib becomes zero, forcing both constraints to work as an equality constraint

that sets
∑

d∈D Ldxid = rb. Considering constraint (3.27), xid will be one for Ld = rb. If

the SKU is not assigned to the bay, the right hand side of constraint (3.32) becomes a

large positive number, making the constraint a loose constraint. Similarly, constraint (3.33)

becomes non-binding as its right hand side becomes less than zero. M2 and M3 must be

large enough to prevent violating these constraints when a SKU is not assigned to a bay.

M2 ≥ Lmax − Lmin and M3 ≥ Lmax satisfy this condition.

Constraint (3.34) ensures that each SKU is assigned to only one bay. It reduces the

computational efforts of the model. Removing this constraint allows the model to assign

lanes to a SKU from multiple bays that have the same depth. However, this increases the

search space and also interferes with the cut that we will describe in section 3.3.3.3. If this

constraint is included in the model, Ri1 must be less than Sw for all SKUs; otherwise, the

model will be infeasible. Those SKUs that do not satisfy this condition must be broken

down into multiple SKUs with the same characteristics (Pi, λi, and Zi) but smaller batch

quantities, Qi. The sum of the batch quantities of the child-SKUs must add up to the batch

quantity of the original SKU and they all must meet this condition.

3.3.3 Solution techniques

The solution of the MBD model includes the optimal number of aisles, SKU assignments

to bays and bay depths. The search space is highly symmetric as all possible combinations

of bay depths with the same SKU assignments result in degenerate solutions that have

the same objective value. We introduce symmetry-breaking constraints to remove these

symmetric solutions from the search space. We also develop another class of inequalities

to tighten the lower bound of the LP-relaxation and reduce the search space by developing

tight lower and upper bounds on the number of bays.
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3.3.3.1 Reducing problem symmetry

For every feasible solution in the MBD, there exist multiple degenerate solutions that

have different depth orders but same depth assignments to the SKUs. For example, assume

a warehouse with three bays and three SKUs. The following solutions all provide identical

layout regarding space utilization.

Sol 1: r = (10, 15, 20) , (y1,1 = 1, y2,2 = 1, y3,3 = 1) , x = (10, 15, 20),

Sol 2: r = (15, 10, 20) , (y1,2 = 1, y2,1 = 1, y3,3 = 1) , x = (10, 15, 20),

Sol 3: r = (20, 10, 15) , (y1,2 = 1, y2,3 = 1, y3,1 = 1) , x = (10, 15, 20).

The following inequality prevents such symmetric solutions by forcing the bay depths

to a non-decreasing lexicographic order.

rb ≤ rb+1 ∀b ∈ B − {bmax}. (3.41)

This inequality forces the bay depths to a non-decreasing order and therefore arranges the

empty bays (non-existing bays for which rb = 0), if any exist, to the initial index values.

3.3.3.2 Tightening the LP-relaxation lower bounds

Set L contains the set of allowable depths bounded by Lmin and Lmax. Solving the

model with many allowable depths increases the computational burden, so the bounds must

be selected carefully. From the space utilization perspective, setting large Lmax is preferable

because it provides the model with more depth choices. However, retrieving and replenish-

ing deep lanes are more laborious from the transportation and safety perspectives because

forklifts have to travel longer distances inside narrow lanes. So, forklift restrictions, safety

instructions, and other technical restrictions limit Lmax. We arbitrarily set it equal to 30

pallets in our experiments.
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Derhami et al. [7] showed that the space utilization curve, as a function of lane depth,

drops significantly when lanes are too shallow. This loss is significant enough to prevent the

model from selecting very small bay depths. So, we set Lmin equal to 5 in our experiment.

Therefore, L = {5, 6, , . . . , 30}.

Setting tight lower and upper bounds on the number of bays significantly reduces the

search space. Lmax can be used to find a tight lower bound on the number of bays, as follows

bmin = 2

⌈
Sl

2Lmax + A

⌉
. (3.42)

Lmin does not provide a tight upper bound on the number of bays because it is generally

too small. We use the trade-off between honeycombing and accessibility waste to find bmax.

As expression (3.6) shows, honeycombing waste depends on the lane depth. The deeper the

lane, the more honeycombing waste is generated. It also depends on the frequency of re-

trievals and replenishments. The MBD aims to optimize the trade-off between honeycombing

and accessibility wastes. If honeycombing waste is low, then the model makes bays deeper

to decrease the number of aisles in the layout. But if honeycombing waste is significant,

then the model minimizes the total waste by decreasing the bay depths and consequently

increasing the number of aisles. Hence, the maximum possible honeycombing waste forces

the maximum number of bays to the layout. For the sake of simplicity in modeling assume

that all SKUs have the same stack height denoted by Z. The honeycombing waste generated

to retrieve and replenish a lane with x pallets deep is obtained from

WH
l =

(
1

λi
+

1

Pi − λi

)(
Zx(Zx− 1)

2

)
. (3.43)

The time it takes to retrieve and replenish this lane is

tl =

(
1

λi
+

1

Pi − λi

)
Zx. (3.44)
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The maximum honeycombing cost is generated in this lane when it never remains fully

occupied or empty (it is replenished immediately after it becomes empty and emptied im-

mediately after it becomes fully occupied). So, the highest honeycombing waste that this

lane generates in TL (long time) will be WH
l T

L/tL. It follows that

WH
l−max =

(
1

2

)
TL (Zx− 1) . (3.45)

Similarly, the maximum honeycombing waste in a bay with rb pallets deep is obtained from

WH
b−max =

(
1

2

)
TLSw (Zrb − 1) , (3.46)

and the maximum honeycombing waste in the entire warehouse would be

WH
max =

(
1

2

)
TLSw(Z

∑
b∈B

rb − bmax). (3.47)

Adding the waste dedicated to the aisles, the total waste of storage volume in the warehouse

is given by

W =

(
1

2

)
TLSw

(
Z
∑
b∈B

rb − bmax + ZAbmax

)
. (3.48)

Assuming common bay depth x̄ for all bays yields

∑
b∈B

rb = x̄bmax, (3.49)

and the total cost appears as

W =

(
1

2

)
TLSwbmax (Zx̄− 1 + ZA) , (3.50)
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subject to the following constraint:

bmax

(
x̄+

A

2

)
= Sl. (3.51)

Solving (3.51) for x̄ and substituting the result in (3.50) converts the total cost to a

function of bmax. Taking the derivative of the new W with respect to bmax, setting it to zero,

and then solving for bmax gives the optimal value for bmax:

bmax ≈
√

SLZ

AZ − 1
. (3.52)

Expression (3.52) provides a continuous approximation for bmax. The smallest even

integer greater than or equal to bmax provides a tight upper bound on the number of bays.

However, to compensate for the same bay depth and stackable height assumptions made in

the modeling, we adjust bmax by incrementing it by a factor of two (the number of bays

is even). In our experiment we increment it by two. The following inequality restricts the

number of bays in the model:

bmin ≤ n ≤ bmax (3.53)

Since bays are arranged in a nondecreasing order of their depths, the depth of the last

bmin bays will be always nonzero. Hence, the following equality can be added to tighten the

lower bound of the LP-relaxation:

eb = 1 ∀b ∈ {bmax − bmin + 1, ..., bmax}. (3.54)

Furthermore, we propose to replace constraint (3.30) with the following constraint to

tighten the lower bound of the LP-relaxation:

Sweb ≤
∑
i∈I

zib ≤ ESweb ∀b ∈ B. (3.55)
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Constraint (3.30) will be loose when bay depth is zero. This update changes it to a binding

constraint when bay depth is zero.

3.3.3.3 Extra cut to reduce solution efforts

Derhami et al. [7] proposed the following formula to find the optimal lane depth for a

single SKU:

x∗i ≈

√
A (Qi(Pi − λi)− 2λi)

2ZiPi
. (3.56)

Taking advantage of non-decreasing bay depths imposed by inequality (3.41), we use (3.56)

to assign SKUs to bays based on the magnitudes of their optimal lane depths. We calculate

x∗i for all SKUs and sort them in a non-decreasing order. Let fi be the index of the SKU

located at the ith position of the sorted list. Then, the following inequality ensures that

SKUs are assigned to bays based on the ascending order of their optimal lane depths:

∑
b∈B

b(yb,fi) ≤
∑
b∈B

b(yb,fi+1
) ∀i ∈ {1, . . . , Ns − 1}, (3.57)

where Ns is the number of SKUs stored in the warehouse. Inequality (3.57) allows SKU

i to be assigned to bay b only if all SKUs whose optimal lane depths are smaller than or

equal to the optimal lane depth of SKU i are assigned to bays b and before. That means it

assigns SKUs with smaller optimal lane depths to the shallower, initial bays. Although this

inequality reduces the feasible region by restricting SKU assignments, it may remove some

valid feasible integer solutions from the solution space. However, this may not considerably

deteriorate the objective function as the order of the SKU assignment is still based on their

optimal lane depths. We will study this cut from the computational perspective in the

experimental analysis section and investigate its effect on the quality of the solution as well.
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Table 3.1: Parameters of the uniform distributions used to generate the pool of random
SKUs.

Parameter Min Max

Pi (pallets/month) 7200 36000
λi (pallets/month) 30 3000
Zi (pallet) 2 4
Hi (feet) 3 5
cpi (dollars) 50 500

3.4 Experimental analysis

The experimental framework is as follows. First, the characteristics of the test prob-

lems are described in the next section. Then, computational difficulty of the model and

effectiveness of the proposed cuts and bounds are analyzed on the test problems. Next, the

simulation model used for the layout evaluation is described and finally the layouts obtained

by the MBD model are evaluated by the simulation model and compared with the ones

obtained by the CLD model.

3.4.1 Test problems

We generated test problems that vary from small to industrial-sized to analyze perfor-

mance of the proposed model on different warehouse sizes. First, a pool of 4000 different

SKUs was randomly generated. The parameters of the SKUs were sampled from the uniform

random distributions whose parameters are shown in Table 3.1. cpi in the table is the cost of

producing one pallet of SKU i. The Qis were obtained using the Economic Order Quantity

(EOQ) model as follows:

Qi =


√√√√ 2csiλi

chi

(
1− λi

Pi

)
 , (3.58)

where chi is the monthly holding cost and was set to cpi /4, and csi is the set-up cost to produce

SKU i and was set to 5cpi .
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We designed 19 test problems with 10 to 1000 SKUs. SKUs in each test problem were

randomly sampled from the pool of random SKUs. We used disproportionate stratified

random sampling based on the SKUs’ optimal lane depths. This is to ensure that multiple

SKUs with a wide range of desirable lane depths exist in each test problem. The optimal

lane depths were calculated using (3.56).

We divided the pool of SKUs into four groups such that the optimal lane depths for the

SKUs in the groups were less than or equal to 13 pallets, between 14 and 18 pallets, between

19 and 24 pallets, and greater than or equal to 25 pallets, respectively 30% of the SKUs in

each test problem were randomly selected from the first group, 35% from the second group,

20% from the third group, and 15% from the last group. We considered two cross-aisles

(assuming one next to each long side of the warehouse) for the test problems that contain

50 SKUs or fewer and three cross-aisles (the additional one at the middle of the warehouse)

for the remaining problems. The clear height of the warehouse was set to 16 feet for all test

problems, and the aisle and cross-aisle widths were set to three pallets. We also assumed

that pallet sizes are 42 by 42 inches.

Warehouse dimensions must be determined such that there would be sufficient space

(storage and aisle) to accommodate the maximum possible inventory. To find the maximum

possible inventory for each test problem, we developed an event-based simulation model only

to keep track of the SKU inventories over the simulation time. We used the event log of

the main simulation model for this purpose. We calculated the required floor space for the

maximum inventory level recorded by simulation. Using (3.59), we then approximated the

number of aisles in the warehouse for any given warehouse length. We assumed that the

warehouse layout has a rectangular shape and its length is almost twice its width. Hence, we

determined the warehouse length and width such that the available floor space for storage

(warehouse area subtracted by the space dedicated to the aisles and cross-aisles) is 10%

higher than the maximum required floor space (to account for the underestimated waste by

the optimal lane depth model).
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3.4.2 Computational experiment

The proposed model was coded with Python 2.7.11 and solved using Gurobi 6.0.5. The

model was run on the Auburn University Hopper Cluster on Intel Xeon processors E5-2660

(2.6GHz) with 128 GB of RAM. We ran all experiments on 20 cores. We tested three

scenarios to evaluate effectiveness of the proposed cuts and bounds:

• MBD, which only includes the MBD without any of the cuts and bounds developed in

the paper.

• MBDC, which includes the MBD with the cuts (3.41), (3.53), (3.54), and (3.55) and

excludes constraint (3.30).

• MBDCE, which includes the MBD with the cuts and the extra cut developed in the

paper. It includes the MBD with cuts (3.41), (3.53), (3.54), (3.55), and (3.57) and

excludes constraint (3.30).

To have a fair comparison, we disabled the built-in symmetry detection function in

Gurobi but kept the other parameters of the solver to their default values. Also, a time limit

of 10 hours was forced on the optimization process. Table 3.2 compares the computational

efforts for all scenarios. As the results show, using the developed cuts and bounds reduces

the solution time. The MBDC model found optimal solutions for the first two small test

problems and feasible solutions within reasonable GAPs (up to 7.6% for the large problems)

for the remaining problems that it did not solve optimally. While the MBD, which does not

use any of the developed cuts and bounds, resulted in solving only one problem optimally in a

significantly longer computational time (comparing to the MBDC) and no feasible solutions

for the problems that contain 250 or more SKUs. Also, the MBDC model obtained smaller

GAPs than the MBD model for all test problems (20-200 SKUs).

Comparing the MBDC with MBDCE shows that, as we expected, the extra constraint

significantly improves performance. The MBDCE model found optimal solutions for the test

problems that contain 150 or fewer SKUs and obtained best feasible solutions with relatively
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Table 3.2: Computational efforts with/without the developed cuts and bounds.

Problems
MBD MBDC MBDCE

GAP Obj. Ex. nodes Time GAP Obj. Ex. nodes Time GAP Obj. Ex. nodes Time
10 SKUs 0.00 11642.7 31811598 2421 0.00 11642.7 21934 2 0.00 11642.7 161 1
20 SKUs 5.30∗ 17268.6 179684803 36000 0.00 17268.6 239845458 22136 0.00 17276.6 9270 2
30 SKUs 9.25∗ 31259.9 96154756 36000 3.77∗ 31219.9 153487249 36000 0.00 31219.9 18915 17
40 SKUs 3.56∗ 35449.9 84169226 36000 2.37∗ 35329.9 72580693 36000 0.00 35353.9 30580 23
50 SKUs 3.86∗ 45108.3 71044945 36000 3.34∗ 45044.3 119435452 36000 0.00 45028.3 38253 31
100 SKUs 5.28∗ 92386.1 29715077 36000 5.01∗ 92282.1 62559424 36000 0.00 92194.1 331882 818
150 SKUs 3.77∗ 140945.8 15799077 36000 2.83∗ 140401.8 47609432 36000 0.00 140441.8 514334 2516
200 SKUs 5.74∗ 186478.3 736440 36000 5.48∗ 186318.3 1703775 36000 0.24∗ 185750.3 22742389 36000
250 SKUs NIF — — 36000 5.37∗ 232791.4 25157771 36000 2.25∗ 232535.4 7277756 36000
300 SKUs NIF — — 36000 4.32∗ 279102.9 19094755 36000 2.63∗ 279038.9 9910535 36000
350 SKUs NIF — — 36000 4.64∗ 325601.5 7765123 36000 1.31∗ 324945.5 5070159 36000
400 SKUs NIF — — 36000 7.50∗ 374733.0 5596467 36000 3.72∗ 369837.0 1477441 36000
450 SKUs NIF — — 36000 5.05∗ 421758.6 8519992 36000 3.79∗ 421406.6 1638156 36000
500 SKUs NIF — — 36000 5.32∗ 456491.3 8252609 36000 4.01∗ 455459.3 562694 36000
600 SKUs NIF — — 36000 5.02∗ 531191.4 2917775 36000 NIF — — 36000
700 SKUs NIF — — 36000 6.63∗ 650150.5 7047738 36000 3.76∗ 643254.5 — 36000
800 SKUs NIF — — 36000 7.05∗ 732353.8 2289581 36000 NIF — — 36000
900 SKUs NIF — — 36000 7.56∗ 822260.9 2494914 36000 NIF — — 36000
1000 SKUs NIF — — 36000 7.04∗ 920743.6 1507563 36000 NIF — — 36000

∗Optimization prematurely terminated after 10 hours of computation.
NIF: no integer solution found after 10 hours of computation.

small GAPs (up to 4.01%) for the remaining problems that it could not solve optimally.

However, it did not find feasible solutions for the test problems with 600, 800, and more

SKUs. This is because cut (3.57) forces additional limitation on the SKU assignments and

adds extra complexity to the model as the problem size increases.

From the computational point of view, the MBDCE performed faster than MBDC. This

is because it explored fewer nodes to find the optimal solutions. The objective values of the

solutions obtained by the MBDCE are also very close to that of the MBDC. Both models

obtained the same objective values for the 10 and 30 SKUs test problems. MBDCE did not

perform as well as the MBDC model on the 20, 40, 150 SKUs test problems. Its solutions

are 0.05%, 0.07%, and 0.03% higher than the MBDC, respectively. However, it improved

the results of the MBDC between 0.02% to 1.31% for the remaining test problems. The

small differences between the results of these two models show that the extra cut employed

in the MBDCE model did not significantly deteriorate the objective values and led to small

improvements in some cases.
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From the computational perspective, the solution GAP increases, for all three models, as

the problem size increases. Among the three models, however, the MBDCE model obtained

smaller GAPs on the problems that it could solve (small to medium-sized problems). On the

other hand, the MBDC model is capable of finding a feasible solution with relatively small

GAP for the industrial-sized problems.

3.4.3 Analyzing performance of the layouts

We evaluated the layouts obtained by the MBD model using the simulation model of

Derhami et al. [5]. They developed an event-oriented simulation model, coded in Python, to

evaluate a given warehouse layout with respect to multiple performance metrics pertinent

to space utilization and transportation cost. Their model simulates lane replenishment and

retrieval operations under stochastic variations on the production times, demand, retrieval

quantities, and production line set-up times. We tuned variations of these parameters in

our experiments as follows. The production times were sampled from symmetric triangular

distributions with parameters (0.8/Pi, 1/Pi, 1.2/Pi) hour. Similarly, the outbound load times

and production line set-up times were sampled from analogous distributions with parameters

(0.5/λi, 1/λi, 1.5/λi) hour and (10, 20, 30) minutes, respectively. The retrieval quantities were

sampled from a discrete uniform distribution with parameters [1, 5] pallets.

We disabled the transportation module in the simulation because our analytical model

does not take transportation into account. We set the warm-up period to one month, start-

up inventories to zero, number of replications to 8, and simulation time to 8 months as

described in [5]. We ran simulations on the Auburn University Hopper Cluster on Intel

Xeon processors E5-2660 (2.6GHz) with 128 GB of RAM memory. We ran replications of

the simulation on parallel processors and therefore used 8 cores for each experiment. We

used common random numbers (CRN) across the replications for variance reduction. The

following models were tested:

69



1. CLD: To have a baseline for performance comparison and also evaluate the layouts

obtained by the common optimal lane depth model proposed in [7], we developed

a simple algorithm to design the warehouse layout using the common optimal lane

depth. The CLD algorithm works as follows. First, the common optimal lane depth is

calculated as follows:

x∗c =

[√(
A

2Ns

)∑
i∈I

(
1

ZiPi

)
(Qi(Pi − λi)− 2λi)

]
. (3.59)

Then, the layout is divided into evenly deep bays whose depths are x∗c pallets. Since

this approach does not take the warehouse length into account, it is possible that

the number of bays becomes an odd integer with the last bay depth smaller than x∗c .

This means one aisle is used to access only one bay instead of two. We remove this

inefficiency by splitting the last bay to two equally deep bays if its depth is higher than

10 pallets. Otherwise, the last bay is equally split between the other bays and removed

from the layout. The layouts produced by invoking this adjustment are marked in

Table 3.5 for the respective test problems.

2. MBDC-RAN: The MBDC model finds the optimal bay depths and also SKU as-

signments. The optimal SKU assignment prioritizes bay assignment when more than

one bay has empty lanes. That is, when a new pallet of a SKU requires a new empty

lane, the storage lane is chosen among bays with empty lanes through the following

process. First the assigned bay to the SKU is checked for any empty lanes. If no lane

is available in that bay, bays whose depths are equal to the assigned depth to the SKU

are checked for an empty lane. If such an empty lane is not available then the bay with

the closest depth to the assigned depth to the SKU that has an empty lane is selected.

It may be costly (time or labor) for non-automated material handling systems to fol-

low the SKU assignments. Such warehouses may prefer employing a random SKU

assignment rather than the optimal assignment. In the random assignment, an empty
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lane from a randomly selected bay is assigned to the incoming SKU. However, this

decision imposes storage waste to the system. We are interested in first, examining

the significance of the optimal SKU assignments on the volume utilization and second,

estimating the loss in storage volume incurred by ignoring the optimal SKU assign-

ments. For this reason, we tested the layouts obtained by the MBDC model under

random SKU assignment policy and called it MBDC-RAN.

3. MBDCE: We showed that the MBDCE model is computationally faster than the

MBDC model for small to medium-sized problems. However, this model removes some

valid feasible solutions. We simulate the layouts obtained by this model to study the

impact of the extra cut (3.57) on the quality of the solution.

4. MBDC: The layouts obtained by the MBDC model are compared, as baselines, with

the ones obtained by the CLD, MBDC-RAN, and MBDCE.

Table 3.3 presents average waste of the storage volume (yd3), volume utilization (%),

and floor utilization (%) for the four scenarios. Interested readers are referred to [5] for more

details on the definition and calculation of these parameters. We used a paired t-test to

evaluate significant differences among the alternatives. Table 3.4 shows the test statistics

and p-values for all comparisons. The paired t-test relies on the normality assumption

among the pairs (replications). We used Shapiro-Wilk test [27] to examine normality of the

differences between the pairs. The test statistics and p-values for the Shapiro-Wilk test are

also shown in Table 3.4. The results of the normality tests show that the null hypothesis (i.e.

samples are taken from a normal population) cannot be rejected for any of the comparisons

at the significant level of 5%. The following alternatives are analyzed pairwise:

3.4.3.1 MBDC vs. CLD

The layouts produced by the CLD model imposed higher waste of storage volume than

the MBDC’s in all test problems. The paired t-test detects significant differences between
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Table 3.3: Average waste of storage volume, volume utilization, and floor utilization obtained
by simulation.

Problems
CLD MBDC MBDC-RAN MBDCE

Waste Vol. Util. Fl. util. Waste Vol. Util. Fl. util. Waste Vol. Util. Fl. util. Waste Vol. Util. Fl. util.
10 SKUs 10733±15 42.72±0.05 64.85±0.07 10674±16 42.85±0.05 65.05±0.07 10837±17 42.48±0.06 64.49±0.09 10674±16 42.85±0.05 65.05±0.07
20 SKUs 15282±13 49.51±0.04 68.96±0.04 14574±18 50.69±0.04 70.61±0.04 14836±12 50.25±0.04 69.99±0.05 14564±15 50.71±0.04 70.63±0.03
30 SKUs 23660±17 45.89±0.02 72.45±0.03 23526±18 46.03±0.02 72.67±0.02 23912±26 45.62±0.02 72.04±0.03 23532±19 46.02±0.01 72.66±0.02
40 SKUs 27407±16 51.26±0.01 74.01±0.02 26404±18 52.19±0.01 75.36±0.01 26946±18 51.68±0.01 74.63±0.02 26411±16 52.18±0.01 75.35±0.02
50 SKUs 33566±20 51.29±0.02 75.54±0.01 32573±15 52.04±0.02 76.65±0.02 33278±36 51.51±0.03 75.86±0.04 32504±19 52.10±0.02 76.72±0.01
100 SKUs 70617±40 50.02±0.02 76.05±0.02 69034±40 50.58±0.02 76.91±0.02 69648±40 50.36±0.02 76.58±0.02 68730±35 50.69±0.02 77.08±0.02
150 SKUs 98033±32 51.31±0.01 76.50±0.01 95514±24 51.96±0.01 77.47±0.01 96655±30 51.66±0.01 77.03±0.01 95118±26 52.06±0.01 77.62±0.01
200 SKUs 129212±37 52.02±0.01 78.27±0.01 125965±40 52.66±0.01 79.23±0.01 127823±54 52.29±0.01 78.68±0.01 125673±42 52.72±0.01 79.31±0.01
250 SKUs 155664±26 51.96±0.01 79.28±0.01 152994±24 52.39±0.00 79.94±0.00 156673±36 51.80±0.01 79.04±0.01 152842±23 52.42±0.00 79.98±0.01
300 SKUs 185261±33 52.47±0.01 79.86±0.00 181800±29 52.94±0.01 80.58±0.01 186578±67 52.30±0.01 79.59±0.01 181730±26 52.95±0.01 80.59±0.00
350 SKUs 212269±47 53.56±0.00 80.39±0.00 207845±39 54.09±0.00 81.17±0.00 211176±49 53.69±0.00 80.58±0.01 207531±44 54.12±0.00 81.23±0.00
400 SKUs 241280±42 53.52±0.01 80.32±0.00 236940±44 53.97±0.01 80.99±0.00 239286±27 53.73±0.01 80.62±0.01 234514±34 54.23±0.01 81.38±0.00
450 SKUs 272822±83 53.82±0.01 81.21±0.00 267527±82 54.30±0.01 81.95±0.00 273618±123 53.75±0.01 81.10±0.01 267348±74 54.32±0.00 81.97±0.01
500 SKUs 294926±33 54.82±0.00 81.27±0.00 287833±37 55.42±0.00 82.16±0.00 295697±56 54.75±0.01 81.17±0.01 287333±27 55.46±0.00 82.23±0.00
600 SKUs 339243±44 56.32±0.00 81.80±0.00 332589±47 56.81±0.00 82.51±0.00 339560±81 56.30±0.01 81.77±0.01 — — —
700 SKUs 387753±90 54.45±0.01 81.11±0.01 382820±72 54.76±0.01 81.59±0.01 387210±71 54.48±0.01 81.17±0.01 379576±78 54.97±0.01 81.90±0.00
800 SKUs 436859±48 55.31±0.00 81.08±0.00 428758±43 55.77±0.00 81.76±0.00 436664±111 55.32±0.01 81.10±0.01 — — —
900 SKUs 486855±64 55.28±0.00 81.30±0.00 479724±70 55.64±0.00 81.84±0.00 485179±100 55.37±0.00 81.43±0.00 — — —
1000 SKUs 536423±96 55.38±0.00 81.81±0.00 531729±86 55.60±0.00 82.13±0.00 541648±79 55.14±0.01 81.46±0.01 — — —

the two alternatives and rejects the null-hypothesis for all comparisons at the significant

level of 5%. The layouts produced by the MBDC model generated, on average, 0.5% to

4.6% less waste of storage volume than the ones produced by the CLD model. This shows

that, as it was explained in section 3.2, the CLD model underestimates the waste of storage

volume (for the layout design purpose) and therefore, cannot find the optimal bay depths.

However, the improvement in volume utilization is between 0.3% to 2.4%. This is because,

as mentioned in [7], the volume utilization curve, as a function of bay depths, becomes flat

around the optimal solution and therefore changes in the bay depth vector in the vicinity of

the optimal solution do not result in significant changes in volume utilization.

3.4.3.2 MBDC vs. MBDC-RAN

This comparison shows the impact of using the optimal SKU assignment rather than the

random assignment on the utilization of the storage volume. The layouts obtained by the

MBDC model wasted less storage volume than the MBDC-RAN in all test problems. The

paired t-test rejects equivalence of results between the two alternatives for all test problems.

Discarding the optimal SKU assignments increased the average waste of storage volume

between 0.9% to 2.7%. This shows that the optimal SKU assignments found by the MBDC

model are statistically significant in better utilizing the storage volume.
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Table 3.4: Statistical results of the the pairwise comparisons, α = 0.05.

Problems

MBDC vs. CLD MBDC vs. MBDC-RAN MBDC vs. MBDCE

Paired t-test Shapiro-Wilk Paired t-test Shapiro-Wilk Paired t-test Shapiro-Wilk

Stat. p-value Stat. p-value Stat. p-value Stat. p-value Stat. p-value Stat. p-value
10 SKUs 47.95 4.49× 10−10 0.91 0.3766 30.4 1.07× 10−08 0.93 0.5532 — — — —
20 SKUs 203.71 1.81× 10−14 0.92 0.4607 43.0 9.57× 10−10 0.93 0.5180 2.44 0.0447 0.91 0.3608
30 SKUs 65.37 5.15× 10−11 0.95 0.6670 74.4 2.08× 10−11 0.95 0.6772 4.34 0.0034 0.96 0.8247
40 SKUs 320.37 7.62× 10−16 0.87 0.1547 106.0 1.75× 10−12 0.94 0.6277 2.03 0.0814 0.91 0.3362
50 SKUs 323.77 7.08× 10−16 0.98 0.9811 52.9 2.25× 10−10 0.99 0.9986 32.77 6.37× 10−09 0.93 0.4792
100 SKUs 240.16 5.72× 10−15 0.90 0.3132 114.8 1.00× 10−12 0.86 0.1151 43.99 8.19× 10−10 0.96 0.8066
150 SKUs 427.89 1.00× 10−16 0.94 0.6390 105.6 1.80× 10−12 0.91 0.3742 83.89 9.00× 10−12 0.94 0.6506
200 SKUs 512.03 2.86× 10−17 0.89 0.2431 110.3 1.32× 10−12 0.91 0.3388 59.51 9.92× 10−11 0.84 0.0727
250 SKUs 391.05 1.88× 10−16 0.92 0.4178 172.4 5.84× 10−14 0.86 0.1280 40.91 1.35× 10−09 0.95 0.7459
300 SKUs 397.88 1.67× 10−16 0.87 0.1356 215.0 1.24× 10−14 0.86 0.1259 17.26 5.38× 10−07 0.84 0.0766
350 SKUs 446.36 7.48× 10−17 0.94 0.5812 217.2 1.15× 10−14 0.97 0.9022 42.56 1.03× 10−09 0.83 0.0533
400 SKUs 411.10 1.33× 10−16 0.96 0.8317 164.9 7.94× 10−14 0.97 0.9062 223.14 9.58× 10−15 0.95 0.7363
450 SKUs 531.50 2.20× 10−17 0.91 0.3855 215.3 1.23× 10−14 0.93 0.4770 20.44 1.68× 10−07 0.96 0.7963
500 SKUs 980.40 3.03× 10−19 0.89 0.2579 301.6 1.16× 10−15 0.83 0.0561 65.56 5.04× 10−11 0.93 0.5123
600 SKUs 778.94 1.51× 10−18 0.92 0.4067 310.9 9.41× 10−16 0.91 0.3790 — — — —
700 SKUs 252.64 4.01× 10−15 0.94 0.6079 366.6 2.96× 10−16 0.98 0.9819 266.51 2.76× 10−15 0.91 0.3585
800 SKUs 696.36 3.32× 10−18 0.90 0.2833 187.0 3.29× 10−14 0.99 0.9985 — — — —
900 SKUs 489.30 3.93× 10−17 0.92 0.4359 249.0 4.45× 10−15 0.88 0.1716 — — — —
1000 SKUs 304.96 1.07× 10−15 0.86 0.1244 364.8 3.07× 10−16 0.91 0.3684 — — — —

3.4.3.3 MBDC vs. MBDCE

Both models obtained the same solution for the 10 SKUs problem and hence the simula-

tion results are the same for this test problem. The MBDC obtained slightly better solutions

for 30 and 40 SKUs problems (0.03% improvement). For the remaining test problems, the

MBDCE obtained slightly smaller waste of storage volume. It achieved 0.04% to 0.44%

improvement over the MBDC results. The results of the paired t-tests show that they have

explored significant differences between the two alternatives for all test problems. This shows

that the extra cut (3.54) not only did not deteriorate the solution quality but it also slightly

improved the quality of the feasible solutions obtained by the MBDC model.

3.4.3.4 Analysis of optimal layouts

The layouts obtained by the CLD, MBDC, and MBDCE models are displayed in Table

3.5. They are presented in pairs of ab, which represent b bays with a pallets depth. Parameter

β is the number of aisles to warehouse length ratio, which is calculated by dividing the number

of aisles in the layout by the warehouse length.
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As Table 3.5 shows, CLD finds the same bay depth for almost all test problems, while

the other two approaches use a diverse set of depths. The common lane depth is 20 pallets

for the first problem and 18 pallets for the second problem. Then, it produces the same

depth for the remaining problems.

The CLD model underestimates the optimal bay depth in almost all test problems. On

average bay depths in the layouts produced by the CLD are 28% and 26% shallower than

that of the MBDC and MBDCE models, respectively. This is because CLD underestimates

the accessibility waste and consequently imposes unnecessary aisles in the layout.

The total average bay depth across the problems are 24.3 and 23.2 pallets for the MBDC

and MBDCE models, respectively. Their layouts contain bays with 11 pallets and deeper

(except two problems). This shows that honeycombing waste is not as costly as the acces-

sibility waste; therefore, an optimal model tends to choose deeper bays to prevent having

many aisles in the layout. This is because honeycombing waste is incurred only when lanes

are being filled or depleted (i.e. no honeycombing waste when lanes are entirely occupied

or emptied), and it also depends on the frequency of retrievals and replenishments, whereas

the accessibility waste is permanent. Therefore, a layout with deep lanes better utilizes the

storage space.

Using the β ratio, we suggest a rule of thumb to determine the number of aisles for a

warehouse similar to our test problems. The β ratio equals 0.020±0.001 for both MBDC and

MBDCE models and remained almost steady for all test problems. Hence, a near optimal

solution can be found by calculating the number of aisles by n =
[
βSl
]

and then dividing

the layout into 2n evenly deep bays whose depths are (Sl − An)/2n pallets.

3.5 Conclusions

We have developed a model to design a space-efficient layout for block stacking ware-

houses. We showed that the common lane depth (CLD) model is not appropriate to find

bay depths for a layout and developed a new waste function to estimate the total waste of

75



storage volume in the layout. We optimized this function with a mixed integer programming

model to find the optimal bay depths and the number of aisles in the layout. We developed

various cuts to reduce the problem symmetry and effectively bounded the decision variables

to tighten the lower bound of the LP-relaxation (MBDC and MBDCE models). While both

models produce good quality solutions, we found that the MBDCE model more likely per-

forms better and faster on small to medium-sized problems (less than 700 SKUs) and the

MBDC model performs better on large-sized problems.

The simulation experiments showed that the layouts produced by our models always

generate less waste of storage volume than the layouts obtained by the CLD model. The

improvement varied between 0.5% to 4.7% in our experimental study. We found that the

CLD model underestimates the accessibility waste; as a result, its bay depths were on average

27% shallower than the optimal solution. In other words, the layouts obtained by the CLD

model devoted up to 50% more space to the aisles. This model becomes insensitive as the

number of SKUs increases, and the resulting bay depths remain steady between 18 to 20

pallets when more than 30 SKUs exist. However, the volume utilizations of the layouts

produced by this model are close to the optimal solutions. This is because the volume

utilization curve, as a function of bay depth, is almost flat around the optimal solution, and

changes in bay depths would not result in significant changes in volume utilization. Hence,

the CLD model produces near optimal solutions with respect to volume utilization.

We found that the accessibility waste outweighs honeycombing waste in their trade-off

and an optimal model tends to choose deep bays for the layout. So, a layout with deep bays

and fewer aisles utilizes the storage volume better than a layout with shallow bays. The

average bay depth across the optimal solutions was 23.9 pallets in our experimental study.

We introduced a new ratio, the number of aisles to warehouse length, to approximate the

number of aisles for a given warehouse length. This ratio remained steady around 0.020 for

all test problems in our experimentation. This can be used as a rule of thumb to find a near

optimal solution for the warehouses similar to the ones tested in our experiments.
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The results of our experiments also support that the optimal SKU assignments pro-

posed by our model are statistically significant in better utilizing the storage volume, and

implementing them decreased the wasted volume about 2% on average.
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Chapter 4

Determining the optimal numbers of aisles and cross-aisles for block stacking warehouses:

A simulation approach

4.1 Abstract

Storing pallets of products on the floor of a warehouse on top of one another is called

block stacking. The arrangement of lanes, aisles, and cross-aisles affects utilization of the

storage space and also transportation costs in this type of storage system. The existing litera-

ture focuses exclusively on determining the optimal lane depth to maximize space utilization

and ignores transportation costs. In this paper, we develop a simulation-based optimiza-

tion algorithm to find the optimal numbers of aisles and cross-aisles to maximize utilization

of the storage space and to minimize transportation costs in a block stacking warehouse.

Our computational experiments show that the proposed model finds the Pareto front in a

reasonable time for large problems.

Keywords: block stacking; facility design; layout design, warehouse design; cross-aisle;

transportation cost; space utilization

4.2 Introduction

Block stacking warehouses are unit load storage systems in which pallets of stock keeping

units (SKUs) are stacked on top of one another on the warehouse floor. This type of storage

system does not require storage racks and can be inexpensively implemented in any open area.

However, space planning is challenging in this system. Block stacking is widely operated

under the shared storage policy. In this policy, which is also known as random storage

policy, unlike the dedicated storage policy, lanes are not dedicated to SKUs, and an empty
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Figure 4.1: Travel distance vs. space utilization with respect to the number of aisles.

lane is available to all SKUs. However, to avoid blockage and relocation of pallets, a lane is

temporarily allocated to a SKU once it occupies the first pallet position of the lane.

This restriction results in wasting storage space as there will be unoccupied pallet po-

sitions in a partially occupied lane that are not available to all SKUs. This effect is called

honeycombing and waste associated with it is incurred by the system until a lane becomes

entirely occupied or emptied [2]. Aisles also contribute to the overall amount of wasted space

as they are used for accessibility rather than storage. There is a trade-off between honey-

combing and accessibility wastes—shallow lanes generate less honeycombing waste but force

more aisles to the layout while the opposite is true for deep lanes.

Transportation cost is another important factor that must be considered in designing

a layout. The number of cross-aisles and their configurations (locations, directions, etc.)

affect transportation costs within a warehouse, especially in warehouses operated with multi-

command operations, where vehicles perform multiple replenishment or retrieval operations

continuously before going to their home/parking. Cross-aisles decreases travel distances

within the warehouse. However, like aisles, they are not used directly for pallet storage and

subsequently, considered as waste of space.
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Bay depths also affect the travel distances within a warehouse. Consider the two layouts

presented in Figure 4.1. One layout has two bays each seven pallet positions deep, and the

other one has the same dimensions but consists of six bays each two pallet positions deep.

Note that the total warehouse area in both layouts are the same. Assume that aisles and

cross-aisles are one pallet position wide. The total vertical distance a picker has to travel to

and from the P/D point to replenish all pallet positions in both layouts are

Deep bays: 9((14 + 12+, . . . ,+2) + (44 + 42+, . . . ,+32)) = 2898 floor-positions.

Shallow bays: 9((4 + 2) + 2(14 + 12) + 2(24 + 22) + (34 + 32)) = 1944 floor-positions.

A longer distance must be traveled to replenish the layout with deeper bays. However,

this layout has more storage positions than the other one. Note that the horizontal travel

distances are the same for both cases, so they were not considered in the comparison. Der-

hami et al. [6] used simulation and showed there is a trade-off between space utilization

and transportations costs with respect to bay depths. Hence, both of these objectives must

be considered simultaneously to design a layout. Otherwise, part of the decision space is

discarded and the layout performs poorly with respect to the ignored objective.

We develop an algorithm that aims to consider both space utilization and transportation

costs in designing a warehouse layout. Our simulation-based algorithm optimizes the total

travel distance within a warehouse by selecting the optimal number of cross-aisles and aisles

while considering the space utilization as well. Our exhaustive experimental study shows

that the algorithm finds the Pareto front for industrial-sized problems in a reasonable time.

4.3 Related research

The research studied the warehouse layout mostly considered the conventional ware-

houses with storage racks [30, 9, 1, 10]. These studies mostly aimed to design a layout that

minimizes transportation costs for order picking [11, 12, 21, 22, 31, 3]. Interested readers
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are referred to [4] for further details on this research. The other objectives considered in de-

signing a warehouse layout are operational costs [32, 20, 34], product allocation [19, 25, 17],

warehouse throughput [23, 15], and operating policies [24, 29, 13].

Multiple articles exclusively studied the effect of cross-aisles on transportation costs.

Roodbergen and de Koster [26] developed multiple heuristics to find the shortest path for

order picking process when multiple cross-aisles exist in the layout. Vaughan and Petersen

[33] proposed a heuristic to find the shortest path for order picking and studied the effect

of adding cross-aisles on transportation costs. They showed that the number of cross-aisles

that results in the maximum transportation efficiency depends primarily on the length of the

storage aisles relative to the length of the cross-aisles. Roodbergen and Vis [27] proposed an

analytical model to approximate the average length of an order picking route for two routing

policies in a layout with one block (two cross-aisles). Their approximation can be used as an

objective function in a nonlinear model to obtain the optimal number of aisles. Roodbergen

et al. [28] developed an analogous approximation for a layout with multiple blocks.

Few published papers in the literature studied designing a layout for block stacking.

Kind [14] considered the trade-off between the honeycombing and accessibility wastes to

find the optimal lane depth. He proposed a model to approximate the lane depth that

optimizes this trade-off. However, he did not provide any derivations for his model. Matson

[18] developed another model to approximate the optimal lane depth under instantaneous

replenishment (i.e., infinite storage rates). Her model was appropriate for warehouses that

store products received from suppliers.

Goetschalckx and Ratliff [8] showed that if storage in multiple lane depths is allowed,

the set of optimal lane depths follows a continuous triangular pattern. They developed a

dynamic programming algorithm to select the set of optimal lane depths from a set of finite

allowable lane depths to minimize the occupied floor space.
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Figure 4.2: Space utilization vs. travel distance [6].

Larson et al. [16] proposed a heuristic to design a class-based layout. Their three-phases

algorithm first characterizes aisle directions and dimensions of the storage zones. Then, it

determines the storage types and assigns the required storage space to each storage zone.

Derhami et al. [5] further proposed a closed-form solution to find the optimal lane depth

to maximize volume utilization under finite production rate constraint. They showed that

using infinite production rate model in a finite production rate environment produces lane

depths about twice as deep as they should be, but the resulting loss of space is not significant.

This is because the space utilization curve, as a function of lane depth, becomes relatively

flat as the lane depth increases. Derhami et al. [7] later showed that the optimal lane depth

model [5, 18, 14] underestimates the accessibility cost for the layout design problem and

developed an appropriate cost function to compute the total waste of storage volume in a

layout with respect to the bay depths. They proposed a mixed integer programming model

to optimize this function and to find the optimal bay depths.

Derhami et al. [6] used simulation to study space utilization and transportation costs

in block stacking warehouses. Using a common bay depth, they simulated multiple layouts

with various number of aisles to study the effect of bay depth on space utilization and travel

distance. Figure 4.2 shows the results of their simulation for a warehouse with 50 SKUs.

As the graph shows, utilization of the storage volume improves as the bay depth decreases.
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It reaches its peak at the optimal bay depth and then starts decreasing as the bay depth

becomes shallower. This is because the number of aisles (and consequently accessibility

waste) increases in the layout as a result of having multiple shallow bays. On the other

hand, the travel distance decreases as the bay depth decreases. However, this improvement

becomes modest after a certain point. Hence, the transportation costs improve at the cost

of lower space utilization.

Most of the research studied the design of block stacking systems focuses exclusively on

improving utilization of the storage volume [18, 5, 7] and does not take the transportation

costs into account. As discussed, both bay depths and the number of cross-aisles affect trans-

portation costs. Hence, a comprehensive model should take into account the transportation

costs as well as space utilization. Consider a conventional block stacking layout similar to the

one presented in Figure 4.3. The following important design questions remain unanswered:

• How many cross-aisles should a layout have?

• How many aisles should a layout have to minimize transportation costs and maximize

space utilization?

• How deep should bays be?

In this research, we develop a simulation-based optimization model to address these

questions. Our model develops the warehouse layout considering two objectives simulta-

neously: maximizing space utilization and minimizing transportation costs. It takes into

account the number of cross-aisles, their types, and the number of aisles as decision vari-

ables and uses simulation to evaluate different layouts with respect to these objectives. Using

simulation enables the model to take the stochastic conditions that exist in the real world sit-

uation into account. It also provides the decision maker with a tool that accurately evaluates

the trade-off between the two objectives in warehouses that use multi-command operations.
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Figure 4.3: Components of a conventional block stacking layout.

4.4 Designing optimal layouts

The proposed model aims to find layouts that maximize space utilization and minimize

transportation costs in a warehouse. The numbers of aisles and cross-aisles, their types

(unidirectional vs. bidirectional), and their arrangements in the layout are the major design

factors that affect these objectives. Cross-aisles decrease utilization of the storage space in a

warehouse but improve transportation costs—especially in our targeted warehouse where ve-

hicles continuously perform multiple retrieval or replenishment operations without returning

to their home/parking. The number of aisles in the layout determines bay depths (assuming

a common bay depth) and, as it was described before, there is a trade-off between the two

objective functions with respect to bay depths.

Our model takes into account the number of aisles and cross-aisles and cross-aisle

types as decision variables. To solve this multi-objective optimization problem, we de-

velop a simulation-based optimization algorithm to explore the Pareto front and provide

non-dominated solutions to the decision maker. The model consists of three main steps:

layout generation, distance calculation, and simulation.

In the layout generation, layouts with different numbers of aisles and cross-aisles are

generated. We develop a closed-form solution model to approximate the number of aisles

that maximizes space utilization in the layout. This model along with numerical experiments
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Algorithm 4.1 Pseudo-code of the proposed model

Import warehouse data
Calculate n∗ and determine nmin, nmax, cmin, and cmax
Generate all allowable layouts
for all (generated layouts) do

Calculate distances considering unidirectional cross-aisles
Calculate distances considering bidirectional cross-aisles
Simulate the layout with the smaller total distance

Report non-dominated solutions

are used to determine lower and upper bounds on the number of allowable aisles and cross-

aisles in a layout. The distances between all potential origins and destinations of a layout

are calculated in the distance calculation step. Finally, the generated layout is evaluated

by a steady state simulation. Algorithm 4.1 demonstrates the pseudo code of the proposed

algorithm.

The following assumptions are made in this paper:

1. Lanes are arranged perpendicular to the short side of the warehouse.

2. All lanes in a bay have the same depth.

3. Cross-aisles are placed evenly spaced from each other. That is, the distance between

any two subsequent cross-aisles is the same.

4. Unidirectional cross-aisles are one pallet position wide, and bidirectional cross-aisles

are two pallet positions wide.

5. The unidirectional cross-aisles are placed in pairs of two unidirectional cross-aisles with

opposite directions.

6. Aisles are bidirectional and two pallet positions wide (they must be wide enough to

provide vehicles maneuvering space).

7. Traffic congestion in the warehouse is not directly modeled. Vehicles travel with a

constant speed of V miles per hour. To accommodate for the lower speeds on the
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turns, acceleration in straight lines, and delays and variations caused by the traffic

congestion, we add stochastic variations to the calculated travel times.

8. Vehicles continuously perform multiple retrieval or replenishment operations per work

shift without returning to their home/parking.

9. Aisles and cross-aisles next to the vehicle parking, pick-up points, and outbound docks

are bidirectional.

10. Lanes are accessible from one side and they are emptied in the Last-In-First-Out

(LIFO) order.

11. The number of bays is twice the number of aisles plus one. That is, each aisle is shared

between two opposite bays, and the additional aisle is to keep two aisles next to the

short side of the warehouse (see Figure 4.3).

12. The warehouse is unit-load (pallets).

The components of our algorithm are described in the following order. First, the layout

generation algorithm is described in section 4.4.1. Then, the procedure to calculate travel

distances in a layout is presented in section 4.4.2. After that, the simulation model is

described in section 4.4.3. Finally, an experimental analysis is provided in section 4.5.

4.4.1 Layout generation

Each generated layout is a simulation scenario. To provide a comprehensive Pareto

front, all potentially efficient layouts must be generated and evaluated by simulation. The

number of aisles, cross-aisles, and cross-aisle types specify a layout. The model determines

the lower and upper bounds of the numbers of aisles and cross-aisles and then enumerates all

combinations of these two variables to generate the candidate layouts. For each candidate

layout, two alternatives are considered: having all cross-aisles unidirectional or bidirectional.

For each alternative, the sum of all travel distances within the layout is calculated, and the
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Figure 4.4: Changes in inventory of SKU i over its cycle time, Pi > λi.

layout with smaller total travel distance is selected for simulation. Note that both compared

alternatives have the same storage area; therefore, the one with smaller total travel distance is

a non-dominated solution among the two. Denote the lower and upper bounds of the numbers

of aisles and cross-aisles by nmin, nmax ,cmin, and cmax, respectively. The total number of

layouts evaluated by the simulation model is then (cmax − cmin + 1)(nmax − nmin + 1).

Setting tight bounds on the numbers of aisles and cross-aisles significantly decreases

the number of simulation scenarios and consequently decrease the computational time. For

this reason, we develop a closed-form solution model in next section to obtain an optimal

common bay depth that maximizes space utilization. This model is then used to define the

bounds on the number of aisles.

4.4.1.1 Space Utilization

Consider SKU i that is produced in batches of Qi pallets and stored at rate Pi pallets

per unit of time. Assume it is retrieved from the storage lanes at rate λi pallets per unit of

time, where Pi > λi and replenishment starts when the inventory of the SKU reaches zero.

Pallets of this SKU are Hi feet high and can be stacked up to Zi pallets. The changes in the

inventory of this SKU is shown in Figure 4.4. As it was shown in [7], the average waste of

storage volume incurred to the warehouse by this SKU is given by

90



W̄ = AShSwn+
Sh

2

∑
i∈I

xi

+
∑
i∈I

(
1

2PiZi

)(
(Qi(S

h − ZiHi)− ZiHi)(Pi − λi)− λi(2Sh − ZiHi)
)
, (4.1)

where Sw is the warehouse width (in units of pallets), Sh is the warehouse clear height (in

units of distance, i.e., inch, feet, etc.), n is the number of aisles, A is the aisle width (in units

of pallets), xi is assigned lane depth to SKU i, and I is the set of all SKUs.

The set of optimal bay depths that minimizes the total waste of storage volume is

obtained by optimizing (4.1) with respect to xi and n (note that these two variables are

dependent, i.e. the sum of aisle widths and bay depths adds up to the warehouse length).

Therefore, the constant part of (4.1) can be ignored in the optimization process. To develop

a closed-form solution for the optimal bay depth, consider a common bay depth denoted by

x̄. It follows that ∑
i∈I

xi = Nsx̄, (4.2)

where Ns is the number of SKUs stored in the warehouse. Thus, the optimal common bay

depth is obtained by solving the following one-constraint optimization problem:

Minimize AShSwn+

(
1

2

)
ShNsx̄. (4.3)

Subject to:

2nx̄+ nA = Sl, (4.4)

where Sl is the length of the warehouse (in units of pallets). Constraint (4.4) guarantees

that the sum of bay depths and aisle widths are equal to the warehouse length. Solving (4.4)

for x̄ and substituting x̄ in the objective function (4.3) gives an unconstrained optimization
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model whose objective function is

Minimize AShSwn+

(
1

4n

)
Sh(Sl − nA). (4.5)

Differentiating (4.5) with respect to n, setting the results equal to zero, and solving for n

gives the optimal number of aisles:

n∗ =

√
SlNs

4SwA
. (4.6)

Consequently the optimal common bay depth is

x̄∗ =

√
SlSwA

Ns

− A

2
. (4.7)

Expression (4.5) is continuously differentiable and has one extreme point. Hence, it is a

unimodal function. The optimal number of bays must be integer. So, to obtain integer n∗,

the two nearest integers smaller and greater than n∗ are evaluated in (4.5) and the one that

obtains the smaller value is chosen. Once n∗ is determined, x̄∗ is obtained by

x̄∗ =
Sl − n∗A

2n∗
. (4.8)

If x̄∗ is not integer, then it is not possible to divide the warehouse layout into exactly 2n∗

equally deep bays. In this case, the initial bay depths are set to bx̄∗c for all bays. Then,

the remaining Sl− n∗(2bx̄∗c+A) pallet positions are split into the bays one by one starting

from the first bay.

From the operational point of view, deep lanes decrease availability of the storage space

as it takes longer to fully deplete or replenish a deep lane. This issue is magnified especially

when many SKUs are stored in the warehouse. In such situation, the goal is to keep lanes
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available (empty) as much as possible to provide storage space to incoming SKUs. The

following proposition considers designing a layout from this perspective.

Proposition 4.1. n∗ maximizes the space availability in the layout.

Proof. Once a lane is fully occupied, Shxi storage volume becomes unavailable for the period

that the lane is partially or fully occupied. As described in [7], the total lane-time that SKU

i occupies in T 1
i is

(
1

Pi − λi

)
((Imaxi − 1) + (Imaxi − Zixi − 1) + (Imaxi − 2Zixi − 1) + · · ·+ (Imaxi −KiZixi)) ,

(4.9)

where Imaxi is the maximum inventory of SKU i and obtained by

Imaxi ≈ Qi (Pi − λi)
Pi

, (4.10)

and Ki is the number of required lanes for storage and is given by

Ki ≈
Qi (Pi − λi)
PiZixi

. (4.11)

Similarly, the total lane-time that SKU i occupies in T 2
i is calculated by

(
1

λi

)
(Imaxi + (Imaxi − Zixi) + (Imaxi − 2Zixi) + · · ·+ (Imaxi −KiZixi)) . (4.12)

Adding (4.9) and (4.12) gives the total lane-time that SKU i occupies in its cycle time.

Multiplying the result by Shxi gives the total occupied volume-time and multiplying the

result by λi/Qi, the cycle time of SKU i, gives the average unavailable storage space that is

occupied by SKU i

Ui =
Shxi

2
+
Sh(Qi(Pi − λi)− 2λi)

2PiZi
. (4.13)
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Adding unavailable space due to the aisle accessibility to the variable part of (4.13) gives

the total unavailable space in the warehouse

Ū = AShSwn+

(
Sh

2

)∑
i∈I

xi. (4.14)

Expression (4.14) is equivalent to the variable part of (4.1). Assuming a common bay depth,

it converts to (4.3) and n∗ that maximizes the space availability is obtained.

4.4.1.2 Determining the bounds on the numbers of aisles and cross-aisles

Using the optimal common bay depth model (4.6), we set nmin = αn∗ and nmax = βn∗.

Denote the minimum and maximum number of lanes between the two subsequent cross-

aisles by Lmin and Lmax, respectively. Then, cmin = (Sw + Lmax)/(Lmax + 2C) and cmax =

(Sw + Lmin)/(Lmin + 2C), where C is the width of a unidirectional cross-aisle in units of

pallets. Setting narrow bounds decreases the number of simulation scenarios at the risk of

removing potential solutions.

We developed a numerical experiment to define efficient ranges for the allowable numbers

of aisles and cross-aisles and to find the critical values for α, β, Lmin, and Lmax. We tested

six test problems ranging from 10 to 300 SKUs using wide ranges for the allowable umber

of aisles and cross-aisles. We set α = 0.8, β = 1.5, Lmin = 10, and Lmax = 40, and run

the algorithm by following the steps presented in Algorithm 4.1. The parameters of the

algorithm and main properties of the Pareto fronts are displayed in Table 4.1 for all test

problems.

Parameters nomin and nomax in Table 4.1 are the smallest and largest number of aisles

observed in solutions of a Pareto front, respectively; comin and comax are the smallest and

largest number of cross-aisles observed in solutions of a Pareto front, respectively. As Table

4.1 shows, nomin = n∗ for all test problems. This is because decreasing the number of
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Table 4.1: The parameters of the algorithm and properties of the Pareto fronts for prelimi-
nary experiments.

Test problem
# of aisles # of cross-aisles

n∗ nmin nmax nomin nomax cmin cmax comin comax
10 SKUs 2 1 3 2 3 2 5 2 5
50 SKUs 3 2 5 3 5 2 10 2 9
100 SKUs 5 4 8 5 8 2 12 2 5
150 SKUs 6 4 9 6 9 2 15 2 9
200 SKUs 7 5 11 7 11 2 17 2 5
300 SKUs 8 6 12 8 12 2 20 2 7

aisles beyond n∗ deteriorates both objective functions. Therefore, we set α = 1 in our final

experiment.

Increasing the number of aisles decreases utilization of the storage space but improves

the total travel distance. However, as highlighted in [6], this improvement declines as the

number of aisles grows and becomes insignificant once the layout has many aisles. Beyond

this point, increasing the number of aisles does not justify loss of space. Taking this into

account, we set β = 1.4.

The comaxs are smaller than cmaxs in almost all test problems except 10 SKUs test problem

for which it is equal to cmax. This shows that cmax can be efficiently shrunk without taking

the risk of removing potential good solutions. The largest Lmin that yields a cmax equal or

larger than comax for all test problems is obtained by setting Lmin = (0.1)Sw. This set-up

limits cmax while preserving all solutions in Pareto fronts of all test problems (this includes

10 SKUs problem as well for which it yields cmax = 5, i.e. no scenario reduction is achieved

for this test problem). We set cmin = 2 because we assumed one cross-aisle exists next to

the long sides of the warehouse (see assumption 9).

4.4.2 Transportation costs

For the sake of computational efficiency, we pre-calculate the rectilinear shortest dis-

tances between all potential origin and destinations pair in the layout and provide them

to the simulation model as data matrices. Figure 4.5 presents the relative locations and
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Figure 4.5: Components of the layout designed in this paper and their configurations.

directions of the important components in a layout. Note that the locations of production

lines, vehicle parking, and outbound docks, as well as the number of P/D points, are given

to the model and they can be different from those presented in Figure 4.5. Although the

main purpose of the model is not to optimize the location of these components, one can

analyze their arrangement by simulating different scenarios with different locations for these

components while keeping the remaining design factors fixed. The following distances are

calculated:

• distances between all storage lanes.

• distances from storage lanes to the production line and vice versa.

• distances from storage lanes to outbound docks and vice versa.

• distances from storage lanes to the vehicle parking and vice versa.

• distances from outbound docks to the production line.

• distances from outbound docks to the vehicle parking.
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• distances from the vehicle parking to the production line.

A rectilinear distance between two locations is obtained by adding the distances traveled

along the x-axis and y-axis. As Figure 4.5 illustrates, we used a Cartesian coordinate system

and assumed the origin is located at the southwest corner of the layout. Instead of designing

a network of locations and finding the shortest path, we take advantage of the special shape

of the layout to simplify the distance calculations as explained in the following.

The proposed model considers both unidirectional and bidirectional cross-aisles. This

adds an extra level of complexity to calculating the distances. When both origin and des-

tination are surrounded by the same two cross-aisles, the shortest path is selected from the

two paths that connect them from the closest cross-aisles located at the north or south of

the origin (see Figure 4.5). Therefore the distance to the closest cross-aisles located at the

north or south of all origin points must be taken into account. Also, the travel direction

(west to east or vice versa in Figure 4.5) must be considered because the closest cross-aisle

may be a unidirectional cross-aisle heading to the opposite direction. Note that the shortest

path is the path that travels through at most two aisles (aisles that origin and destination

points are located in) and one cross-aisle. For the sake of computational efficiency, the other

paths are not evaluated.

Consider a west-to-east trip. The shortest path through the cross-aisle located at the

north of the origin is obtained by

DN
W→E =


|yci − yo|+

∣∣yci − yd∣∣+ xd − xo if i /∈ ∅,

∞ otherwise,

(4.15)

where i is the index of the closest cross-aisle located at the north of the origin heading

east, yci is the y-coordinate of the cross-aisle i, yo is the y-coordinate of the origin, yd is

the y-coordinate of the destination, and xo and xd are the x-coordinates of the origin and

destination points, respectively. If such a cross-aisle does not exist (i.e. there is no cross-aisle
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at the north of the origin or they are all unidirectional heading opposite directions) then the

distance is set to infinity.

Similarly, the shortest path from the southern cross-aisle is obtained by

DS
W→E =


∣∣ycj − yo∣∣+

∣∣yci − yd∣∣+ xd − xo if j /∈ ∅,

∞ otherwise,

(4.16)

where j is the index of the closest cross-aisle located at the south of the origin heading east.

Consequently, the shortest path between these two locations is obtained by

DW→E = min{DN
W→E , DS

W→E}. (4.17)

Note that DE→W is not necessarily equal to DW→E because different paths may have to

be taken to travel from east to west due to existence of unidirectional cross-aisles. Expressions

(4.15)-(4.17) are valid for all distances between storage lanes. They are also valid for distances

between storage lanes and pick-up points, outbound docks, and vehicle parking if they are

located on the short sides of the warehouse. They are also valid for the distances between

any pair of outbound docks, pick-up points, and vehicle parking if they are located on the

short sides of the layout. If either of these components located on the long sides of the

warehouse, the distance between the storage lane and that component is simply obtained by

DS→N = DN→S =
∣∣yo − yd∣∣+

∣∣xo − xd∣∣ . (4.18)

This is because aisles are bidirectional and the cross-aisles located in front of those locations

are assumed to be bidirectional (see assumptions 6 and 9). Expression 4.18 is also used to

calculate distances between pairs of outbound docks, pick-up points, and vehicle parking if

either origin or destination is located on the long sides of the layout.
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4.4.3 Simulation model

The core of the proposed model is an event-oriented simulation model that simulates

pallet storage and retrieval operations in a warehouse while computing the performance

metrics pertinent to the space utilization and transportation costs. The model consists

of nine procedures: three events to simulate a replenishment operation, three events for a

retrieval operation, two events for a vehicle release, and a warm-up event.

In a replenishment operation, a vehicle picks up a produced (or inbound arrival) pallet

from the production line (or inbound dock) and delivers it to a storage lane. The retrieval

operation is referred to an operation in which a vehicle picks up a pallet from the storage

area and delivers it to an outbound dock. The simulation events are:

• Production pick-up: The closest available vehicle to the pick-up point (production line

or inbound dock) is dispatched to pick up a waiting pallet, and the “lane drop-off”

event is scheduled taking the travel distance into account.

• Lane drop-off: The dispatched vehicle picks up the pallet from the production line or

inbound dock and starts traveling to the assigned storage lane. The “replenishment”

event is scheduled taking the travel distance into account.

• Replenishment: The pallet is stored in the target lane, and the “release vehicle” event

is scheduled at the simulation time plus epsilon time unit.

• Outbound pick-up: The closest vehicle to the pick-up lane is dispatched to pick up the

requested SKU from its assigned lane. The “retrieval” event is scheduled taking the

travel distance into consideration.

• Retrieval: The dispatched vehicle picks up the requested pallet from the floor stack

and starts traveling to the assigned outbound dock. The “truck drop-off” event is

scheduled considering the travel time.
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• Truck drop-off: The requested SKU is delivered to the assigned outbound dock and

“release vehicle” event is scheduled at the simulation time plus epsilon time unit.

• Release vehicle: The empty vehicle starts traveling to the parking. The “Park vehicle”

event is scheduled considering the travel distance.

• Park vehicle: The dispatched vehicle is parked and becomes available.

• Warm-up: This event is executed once and resets all variables used for performance

evaluation (not the control variables) to their initial values.

Note that the “Release vehicle” event is scheduled at the simulation time plus epsilon

time unit to allow waiting requests for pick-up to be processed earlier (continuous pick-up

operations). Interested readers are referred to [6] for more details on the simulation model.

The simulation model particularly computes two performance metrics: required number

of labors/vehicles in the warehouse (Cl), and percentage of wasted space (Cs). The required

number of labors/vehicles is obtained by summing the distance traveled by all vehicles in

the simulation and then dividing the result by the total distance that a labors/vehicles can

travel in the simulated period. That is,

Cl =
du + dl

V ∗ (T s − Tw)
, (4.19)

where du, and dl are the total loaded and unloaded distances traveled by all vehicles in

simulation, T s is the simulation time, Tw is the warm-up time, and V is the average speed of

a vehicle/labor in the warehouse. The percentage of wasted space is obtained by summing

the total wasted space in lanes during simulation and dividing it by the total space-time of

the warehouse. That is,

Cs =
Sh(nASw + cCSl)(T s − Tw) +

∑Nb

i=1

∑Nl

j=1W
H
ij

(SwSlSh)(T s − Tw)
, (4.20)
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Table 4.2: Computational experiments.

Problem
Warehouse

size (ft)
nmin nmax cmin cmax

# of simulated
layouts

# of layouts
in Pareto front

Avg. Simulation time
per scenario (sec)

Computational
time (sec)

10 SKUs 200× 400 2 3 2 8 14 5 16 67
50 SKUs 400× 720 3 5 2 10 27 9 21 65
100 SKUs 520× 960 5 7 2 10 27 8 108 330
200 SKUs 760× 1400 7 10 2 10 36 12 110 448
300 SKUs 920× 1600 8 12 2 11 50 18 412 2117
400 SKUs 1080× 1840 9 13 2 11 50 12 257 1321
500 SKUs 1200× 2080 10 14 2 11 50 16 340 1780
600 SKUs 1320× 2200 11 16 2 11 60 19 1070 6665
700 SKUs 1440× 2400 12 17 2 11 60 24 547 3458
800 SKUs 1600× 2600 13 19 2 11 70 24 548 18505
900 SKUs 1720× 2880 14 20 2 11 70 25 776 11580
1000 SKUs 1840× 3000 14 20 2 11 70 24 1148 17403

where c is the number of cross-aisles in the layout, C is the cross-aisle width, Nb is the number

of bays in the layout, Nl is the number of lanes in a bay, and WH
ij is the honeycombing waste

at jth lane of bay i during simulation. All simulation scenarios are compared with respect

to these two factors and non-dominated solutions form the Pareto front.

4.5 Experimental analysis

In this section, we design an experimental study to analyze efficiency of our model in

terms of computational time and also comprehensibility of the generated Pareto fronts. We

tested the algorithm on 12 randomly generated test problems introduced in [7]. The size

of the selected test problems vary from small (10 SKUs) to industrial-sized (1000 SKUs) to

better study the effect of the warehouse size on the computational time.

The proposed model was coded with Python 2.7.11 and run on the Auburn University

Hopper Cluster on Intel Xeon processors E5-2660 (2.6GHz) with 128 GB of RAM. We ran all

scenarios in parallel on ten cores. We set warm-up period to one month, start-up inventories

to zero, and simulation time to 8 months as described in [6]. We used common random

numbers among scenarios for variance reduction.

Table 4.2 shows the computational times and the numbers of simulated scenarios for all

test problems. The simulation module itself took on average 16 seconds for the smallest prob-

lem to 1148 seconds for the largest problem to evaluate a layout. The total computational
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Figure 4.6: Pareto front of the 100 SKUs test problem.

time grows from 67 seconds for the smallest problem to 17403 seconds for the largest test

problem. One should note that since the simulation scenarios were run in parallel, the total

computational time is much smaller than the sum of simulation time for all scenarios. From

the computational perspective, it can be seen that despite the fact that multiple scenarios

are simulated for a steady state; the algorithm is capable of finding the optimal Pareto front

in a reasonable time for large size test problems.

Figure 4.7: Pareto front of the 500 SKUs test problem.
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Figure 4.8: Pareto front of the 1000 SKUs test problem.

Table 4.3: Solutions of the Pareto fronts for 100, 500, and 1000 SKUs test problems.

Layout
100 SKUs 500 SKUs 1000 SKUs

# aisles # cross. cross. type # aisles # cross. cross. type # aisles # cross. cross. type
1 4 4 Uni 10 4 Uni 14 4 Uni
2 5 4 Uni 11 4 Uni 15 4 Uni
3 6 4 Uni 12 4 Uni 16 4 Uni
4 4 3 Bi 13 4 Uni 17 4 Uni
5 5 3 Bi 9 16 Uni 18 4 Uni
6 6 3 Bi 11 3 Bi 14 3 Bi
7 5 5 Bi 12 3 Bi 15 3 Bi
8 6 5 Bi 13 3 Bi 16 3 Bi
9 — — — 10 5 Bi 17 3 Bi
10 — — — 11 5 Bi 18 3 Bi
11 — — — 12 5 Bi 19 3 Bi
12 — — — 13 5 Bi 14 5 Bi
13 — — — 11 7 Bi 15 5 Bi
14 — — — 12 7 Bi 16 5 Bi
15 — — — 13 7 Bi 17 5 Bi
16 — — — 13 9 Bi 18 5 Bi
17 — — — — — — 19 5 Bi
18 — — — — — — 16 7 Bi
19 — — — — — — 17 7 Bi
20 — — — — — — 18 7 Bi
21 — — — — — — 19 7 Bi
22 — — — — — — 18 9 Bi
23 — — — — — — 19 9 Bi
24 — — — — — — 19 11 Bi
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We selected a small (100 SKUs), medium (500 SKUs) and large (1000 SKUs) test

problem to analyze their respective Pareto fronts. Figures 4.6, 4.7, and 4.8 demonstrate

the Pareto fronts for these test problems, respectively. Table 4.3 shows solutions in these

Pareto fronts in order of their appearances from left to right. The following observations are

highlighted.

• Solutions in the Pareto fronts can be clustered into two groups. The first group covers

few solutions at the top left of the Pareto front. These solutions mainly incur less

wasted space to the warehouse at the cost of higher transportation costs. The second

group consists of larger portion of solutions and covers the ones located at the bottom of

the Pareto front. These solutions mainly incur smaller transportation costs but higher

waste of space. The first group will be optimal when the space unit cost (rent, main-

tenance,...) is considerably higher than the transportation unit cost (labors/vehicles,

maintenance ,...). If both costs are almost equal or the transportation unit cost is

higher, then the second group of solutions are optimal. Adding a new cross-aisle or

aisle decreases the transportation costs a little among the solutions in this group while

the utilization of storage space exacerbates considerably.

• Bidirectional cross-aisles are more efficient than the unidirectional cross-aisles when

the warehouse has more than three cross-aisles. Note that the traffic congestion has

not been taken into account.

• Increasing the number of cross-aisles from two to three makes significant improvement

in transportation costs while wasted space deteriorates not as much. Adding more

cross-aisles improves the transportation costs, but the impact becomes less significant

as more cross-aisles are added whereas the utilization of the storage space keeps de-

creasing considerably. Therefore, adding many cross-aisles does not necessarily improve

transportation costs as pickers have to traverse the cross-aisles themselves too.
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• Fixing the number of cross-aisles, transportation costs (or travel distance) decrease

as the number of aisles increases (consequently bay depths decrease in the layout);

However, utilization of the storage space decreases as the number of aisles increases.

This is in line with the findings of [6].

• Although increasing the number of aisles improves the transportation costs, the im-

provement is not significant comparing to adding a new cross-aisle.

• The number of solutions in a Pareto front increases as the size of the warehouse grows.

This is because the number of allowable set-ups for the layout increases.

4.6 Conclusions

In this paper, we developed a simulation-based optimization algorithm to simultaneously

optimize utilization of the storage space and transportation costs through designing a layout

for block stacking warehouses. We developed a closed-form solution to find a common bay

depth to maximize utilization of the storage space in the warehouse. Our approach finds the

optimal number of aisles, cross-aisles and cross-aisle type for a block stacking warehouse.

The model provides the Pareto front to the decision maker.

Our exhaustive computational experiment shows that the model finds the Pareto front in

a reasonable time for large-sized test problems. Analyzing Pareto fronts shows that although

adding new cross-aisles improves the total travel distance in a warehouse, the improvement

rate decreases as more cross-aisles are added to the layout whereas reduction in utilization

of storage space continues. Hence adding new cross-aisles beyond some level does not justify

loss of storage space even if the transportation unit cost is higher than the space unit cost.

The solutions in Pareto fronts can be clustered into two clusters: layouts that are highly

utilized but less efficient in terms of transportation and vice versa (no solution at the middle).

Layouts in the first group contain two to three cross-aisles whereas the solutions in the next

105



group have many cross-aisles up to ten. Our experiments also show that bidirectional cross-

aisles are in general more efficient in terms of the travel distances especially when more than

three cross-aisles exist in the layout.

The number of aisles and consequently bay depths affect the transportation costs in the

warehouse in addition to the utilization of the storage space. Increasing the number of aisles

in a layout leads to reduction in the travel distance; However, this reduction becomes less

significant as the number of aisles grows.
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Chapter 5

Concluding remarks

This dissertation studied designing optimal layouts for block stacking warehouses from

space utilization and transportation cost perspectives. We developed models to find optimal

lane depths for block stacking in diverse environments and proposed multiple optimization

models to design space and transportation-efficient layouts for this storage system. We

developed a diverse set of analytical and statistical approaches, including non-constraint op-

timization, mixed integer programming, and event-based simulation, to address the literature

gaps in designing block stacking warehouses.

We proposed three closed-form solution models to minimize wasted space in diverse

manufacturing and non-manufacturing environments by finding the optimal lane depth. We

showed that although our proposed are built assuming deterministic production and demand

rates, the resulting lane depths are robust and remain near optimal under uncertainty. We

demonstrated that using an infinite production rate model in a finite production rate system

results in lane depths about twice as deep as they should be. However, the resulting waste

of volume is not significant because the space utilization curve, as a function of lane depth,

is quite flat as the lane depth increases.

We proved that the optimal lane depth model underestimates the accessibility waste for

the layout design problem and therefore, cannot be used to calculate optimal bay depths for

a space-efficient layout. We developed two models to find the optimal bay depths for a space-

efficient layout based on the problem size. We showed that the random SKU assignment

policy is not an optimal policy when the layout has multiple bay depths. We found that

accessibility waste outweigh honeycombing waste in their trade-off and a layout with deep

bays better utilizes the storage space.
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Our simulation results highlighted that both space utilization and transportation costs

must be taken into account to find the optimal number of cross-aisles for a layout. Motivated

by this finding, we developed a multi-objective simulation-based optimization algorithm to

find the optimal number of cross-aisles and aisles in a layout. Our experimental study showed

that the improvement rate in transportation cost decreases as more cross-aisles are added

to the layout, and that the solutions of a Pareto front for this multi-objective problem are

clustered into two groups: layouts that are highly space utilized but less efficient in terms of

transportation; and, vice versa (there is no solution in the middle). We found that bidirec-

tional cross-aisles are in general more efficient in terms of the total travel distance especially

when more than three cross-aisles exist in the layout. We also showed that increasing the

number of aisles in a layout results in a reduction in total travel distance; however, this

reduction becomes less significant as the number of aisles grows.

This dissertation aimed to provide comprehensive and accurate models to address the

layout design problem for block stacking warehouses from three different perspectives mo-

tivated from real-world situations. While we relaxed many restrictive and unrealistic as-

sumptions of the previous studies and covered the major gaps in the literature, there exist

promising extensions to our models that would further enhance performance of a warehouse

layout. These extensions are:

• Flexible layout: We assumed all lanes in a bay have the same depth. While this

assumption reduces the computational difficulty of the layout design problem and fa-

cilitates transportation within the warehouse, relaxing it provides more depth choices

to SKUs and would improve utilization of the storage space.

• Traffic congestion: We indirectly modeled traffic congestion by adding stochastic

variations to the travel times. Although this simplification does not undermine the

main findings of this dissertation, modeling the traffic congestion may influence the

warehouse throughput. Considering the traffic congestion in determining the number
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and type of cross-aisles would further enhance the layout performance in real-world

situations.

• Robust design: Designing a robust layout that remains optimal over changes in

influential factors like the demand and production over multiple periods is another

future direction that benefits systems with high level of uncertainty.

We believe the models presented in this dissertation along with the future research

directions described above will help companies to design their warehouses more efficiently

and provide the researchers a deep insight to investigate further the design of block stacking

warehouses.
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