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Abstract

This research explores the intersection of facility layout and vehicle routing, beginning

with a study on a real-world semiconductor manufacturing facility layout problem (FLP), fol-

lowed by a study of facility layout alternative analysis for the implementation of autonomous

warehousing robots, and concluding with a research of the vehicle routing problems (VRPs)

for the warehousing robots. The first study proposes a new type of FLP with space uti-

lization concerns to determine if the existing facility is large enough to accommodate the

machines required by a suite of capacity contingency plans. New efficient heuristic solution

procedures have been developed to help our industry partner identify the facility layout

alternatives for future demand satisfaction. The second study seeks to determine if any

common warehouse layouts that work well with only human pickers are also preferable when

novel autonomous warehousing systems are deployed. In order to answer the question, the

warehousing behavior of the autonomous system is modeled as a vehicle routing problem

(VRP) with multiple synchronization constraints. Numerical experiments are conducted

and analyzed to provide guidelines for warehouse design under the proposed routing sys-

tems. The Third study proposes an efficient heuristic to solve two related routing problems

for the autonomous warehousing systems. Numerical analyses conducted indicate that the

heuristic is able to provide optimal or near-optimal solutions in a reasonable computing time

for practical situations, and demonstrate the benefit associated with the proposed routing

model. In conclusion, managerial insights of these three studies and the potential future

research are discussed.
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Chapter 1

Introduction

This research addresses the intersection of facility layout and vehicle routing problems.

Three distinct research topics are addressed in this dissertation, beginning with a study on

a real-world facility layout problem (FLP), followed by an investigation of the impacts of

facility layout on autonomous item-picking robots, and concluding with a study of the vehicle

routing problems (VRPs) as the extension of the second topic.

The first research topic, “Maximizing Space Utilization in Semiconductor Manufacturing

Facilities,” focuses on a FLP for semiconductor manufacturing systems from the perspective

of space utilization. Traditional FLPs seek to minimize the cost of material handling, which is

measured as the total distance travelled by each product through the manufacturing process.

In such problems, the determination of where to place each machine is a decision based on

current product demands. In this research, a new type of FLP with space utilization concerns

for semiconductor manufacturing wafer fabrication facilities (fabs) is proposed to analyze

the feasibility of fitting the required machine sets into an existing facility. This research is

motivated by a real-world challenge faced by a semiconductor manufacturer with long-term

capacity planning uncertainty. In particular, this manufacturer seeks to determine if the

existing facility is large enough to accommodate the machines required by a suite of capacity

contingency plans. The resulting problem of maximizing space utilization is complicated by

the required “functional area” layout structure employed by our industrial partner. This

layout structure allows clearance space sharing for adjacent machines and non-rectangular

functional areas. We have developed mathematical programming formulations, which are

an amalgamation of multiple NP-hard problems for the resulting facility layout problems.
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New efficient heuristic solution procedures have been developed to help our industry partner

identify the facility layout alternatives for future demand satisfaction.

In the second topic, “Robotics in order picking: Evaluating warehouse layout for pick,

place, and transport-vehicle routing systems,” a novel routing problem of a new autonomous

warehouse order picking system is presented. The problem was inspired by the development

of warehousing robotics: Fetch and Freight. An item picking robot hand, a Fetch, picks up an

item from the shelf then places it into the tote on a Freight, which is an autonomous vehicle

transiting items from each Fetch to the depot. The routing problem is modeled as a variant

of VRP with multiple synchronization constraints, which seeks to minimize the makespan

associated with delivering all items from a batch pick list to the packing station. The problem

termed the pick, place, and transport- vehicle routing problem (PPT-VRP). A mixed integer

linear programming formulation is developed to answer two related research questions. First,

what combination of picker and transport robots is required to obtain performance exceeding

traditional human-based picking operations, where human workers pick items and return

the entire batch to the packing station manually? Second, if it is possible to expand the

fleet of robots or to enhance the capabilities of the current fleet, which type of additional

robot or enhancement leads to the greatest performance improvement? Furthermore, this

research seeks to determine if warehouse layouts that work well with only human pickers

are also preferable when coordinated mobile robots are deployed. In conclusion, numerical

experiments are conducted and analyzed to provide guidelines for warehouse design under

the proposed routing systems.

An extension of the PPT-VRP, “Heuristic Approaches for Advanced Pick, Place, and

Transport vehicle Routing Optimization Problems: Applications in Warehouse Order Picking

Robotics,” is studied as the third topic. Although the PPT-VRP assumes a picker can only

pass the held item to a transporter at the picking location, the performance of order picking

could be improved if pickers can pass items to transporters at any locations of the warehouse.

Thus, an advanced routing model of the PPT-VRP (APPT-VRP)is proposed to address this

2



situation. A heuristic approach for solving the model is developed because of the excessive

computational time required in our preliminary results by existing MILP solvers. Numerical

analyses conducted indicate that the newly proposed heuristic approach is able to provide

near-optimal solutions in a reasonable computing time for practical situations. In order to

provide managerial insight of this study, we investigate the overall performance for the two

formulations. According to the results, the APPT-VRP is not only superior to the PPT-

VRP in terms of average makespan, but also yields a smaller variance, which provides better

service level in terms of overall response time for warehousing under uniform storage policy.
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Chapter 2

Maximizing Space Utilization in Semiconductor Manufacturing Facilities

2.1 Introduction

This research is motivated by a problem experienced by a semiconductor foundry located

in the northeastern United States with whom we have collaborated. Whereas semiconduc-

tor manufacturers such as Intel design and produce their own products in-house, foundries

fabricate the designs of other companies (which then sell these products to third parties).

One of the challenges faced by foundries in particular is that long-range production plan-

ning forecasts are difficult to determine, as the foundry does not maintain its own product

line. Owing to the high cost of cleanroom space required in semiconductor manufacturing

facilities (known as fabs), as well as the long lead times associated with altering production

capacity, semiconductor manufacturers are required to plan far in advance to ensure tool

quantities that are sufficient to accommodate dynamic demands. As fab construction costs

can exceed $4,000 per square foot, with annual operating costs of $750 per square foot [26],

adding square footage to a facility is an expensive proposition.

Our industrial partner approached us with a simple question: Do we have enough space

in our existing facility to house all of the machines required for a particular capacity plan?

Although this is a straightforward question, a number of constraints lead to a new and

challenging class of facility layout problem. First, machines in fabs are generally grouped

according to functional areas (or modules). Each functional area (FA) contains machines

that perform similar processes, such as photolithography, etching, or implantation. This

configuration is common due to the complex re-entrant flow required to fabricate a semicon-

ductor, such that each wafer may revisit each functional area multiple times. Because a fab
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may produce a number of different products, each requiring a unique process flow, functional

area layouts are the standard layout configuration across the industry.

For the capacity planning in the industry, Chen et al. [6] proposed a fab design procedure

to develop and evaluate fab design alternatives based on availability of both machines and

automated material handling systems (AMHS). The procedure considers the pre-determined

material flows and distances among FAs, the efficiency of the AMHS, and the capacities of

machines to estimate required machines in each FA based on the future demands in order

to provide and to evaluate facility design alternatives in the initial phase of fab design. Due

to the complexity of the facility layout problem for a whole facility in practice, the relative

location of FAs is pre-determined in order to provide the estimates of material flows among

FAs for the capacity planning. Thus, the common material handling flow objective for facility

layout research is incorporated in pre-determined relative location of FAs, so in our research,

the objective is to minimize total space consumption when considering the total number of

machines required for a particular capacity contingency plan, column sharing for FAs, column

space sharing for machines, and clearance requirements between machines. Our particular

problem needs to consider the overall (outer) dimensions of the facility, the height of each

row, and the width of the walkways separating the rows, all of which are pre-determined

(given). Furthermore, in the case of the particular question posed by our industry partner,

the sequence of functional areas assigned to each row is given. However, the size of each

functional area in each row (determined by the allocation of machines to each bay and the

number of bays/walkways required) is unknown. Moreover, the proposed methodology is

applicable for the situation when the relative location of FAs is flexible, because in practice,

some semiconductor manufacturers may have their own production process and their own

way to manage contamination to make the relative location flexible. In such case, given an

initial relative location of FAs, the proposed method searches for better layout alternatives

by relaxing the initial relative locations. Details will be introduced later.

5



To introduce the facility layout in details, within the fab, functional areas may be

distributed across multiple rows of differing heights, as shown in Figure 1. Each row contains

contiguous groups of FAs, and may be of differing “heights.” Note that some functional areas

may be assigned to multiple rows (e.g., the “films” FA appears in all three rows in Figure

2.1). Thus, this problem requires us to not only locate the machines in each FA, but also to

determine to which replicate of that FA each machine should be allocated.

Figure 2.1: A fab layout showing FAs located in three rows.

Space utilization is improved by allowing adjacent FAs within the same row to share a

machine column on the boundaries, which we term “FA interlocking.” For example, the films

and implant FAs located in the top row of Figure 2.1 are non-rectangular interlocking FAs.

Within each FA, a “bay” structure is common, whereby a walkway separates two parallel

“columns” of machines, as shown in Figure 2.2. Cassettes of wafers are loaded into the ports

of machines, which are accessible from the walkway. Similar to the concept of FA interlocking,

6



space can also be conserved by allowing “machine interlocking,” whereby machines in back-

to-back columns may extend into the adjacent bay. This interlocking must observe the pre-

determined clearance requirements between machines, including side and back clearances,

to allow sufficient ventilation and access to the machines for maintenance. We term this the

multi-row multi-interlocking-column (MRMIC) facility layout configuration.

Figure 2.2: Detailed view within a FA, showing a layout with interlocking machines.

Although the MRMIC layout structure is widely applied in the semiconductor manufac-

turing industry, we are not aware of any published studies in which this particular structure

was examined. Furthermore, no facility layout design problems have considered space uti-

lization as a primary objective function. This paper provides a mathematical programming

formulation with corresponding heuristics in an attempt to solve the resulting facility layout

problem, which is an amalgamation of multiple NP-hard problems, including different types

of facility layout problems (FLPs) and bin packing problems. Unlike existing FLP literature,

large-scale problems with more than 1000 machines are considered as a test bed to measure

the performance of the proposed approach. Because we were unable to find any applicable

approaches to solving our problem in the existing literature on FLPs and bin packing, a

lower bound is proposed to assess the quality of the resulting solutions.
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This paper is organized as follows: A review of related literature is provided in Section

2.2. A formal problem description, including mathematical programming formulations, is

given in Section 2.3. The proposed solution approach is described in Section 2.4, followed

by a numerical analysis in Section 2.5. Finally, concluding remarks and opportunities for

further research are presented in Section 2.6.

2.2 Related literature

Among the myriad streams of facility layout literature, the unequal size (block) FLP –

which seeks to minimize material flow costs by allocating unequal-sized departments into a

given floor space – is most closely related to the problem of interest. A variety of mathemat-

ical programming formulations have been provided for this problem, including Castillo and

Westerlund [3], Castillo et al. [4], and Taghavi and Murat [25]. The bay block FLP, which has

been applied in determining the relative location of FAs in semiconductor manufacturing, has

been studied by Chae and Peters [5], Chen et al. [7], Konak et al. [16], and Kulturel-Konak

[17]. This problem focuses on locating departments in parallel bays of varying heights that

are bounded by straight aisles on both sides and are connected at the ends by AMHS. The

variants of the FLP with stochastic material flows are considered in Kulturel-Konak et al.

[18], Norman and Smith [20], and the problem with deterministic flows but with heteroge-

neous from/to distance metrics is discussed inOzdemir et al. [22]. In addition, the problems

with determining numbers and locations of input/output (I/O) points were discussed by

Arapoglu et al. [2] and Norman et al. [21]. Most block FLPs seek to minimize material flow

costs in layouts with departments in parallel bays, but the shapes of departments are flexi-

ble or pre-determined with the same widths. The proposed MRMIC layout design extends

the block FLP by considering space sharing for differently-shaped machines between two

machine columns in each bay, walkways between every two columns, clearance requirements

between machines, and an objective of minimizing total space requirements.
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A number of fab layout design studies have addressed the use of AMHS with uni-

directional (bi-directional) tracks to minimize the cost of material flow between FAs. For

example, Peters and Yang [23] solved an integrated facility and material handling system

layout design problem which considered spine and perimeter configurations with two types of

material handling patterns. An integer programming (IP) model with a branch and bound

approach to solve a spine semiconductor layout design problem with a given unidirectional

AMHS was proposed by Yang and Peters [29], while Yang et al. [30, 31] have proposed depart-

ment fab layout design problems with a fixed two-way spine AMHS. Yang et al. [32] proposed

a fuzzy logic methodology using linguistic variables to evaluate 10 fab layout alternatives.

Several approaches, such as systematic layout planning (SLP), analytic hierarchy process

(AHP) for multiple objectives, integer linear programming (ILP), simulated annealing (SA),

and tabu search (TS) have been applied to solve fab layout design problems. However, these

only dealt with the problem on a functional area level and assumed all the FAs are a rect-

angular shape. Although Ueda et al. [27] proposed an open space layout design problem at

the machine level with non-track automatic guided vehicles (AGV), this required much more

floor space than using a spine layout design with AMHS. In addition, due to the complexity

of the problem, only small-scale problems with less than 150 departments have been tested

using these methods.

Also related to our study is the double row layout problem (DRLP), which seeks the

arrangement of machines on two sides of a single corridor to minimize material handling

costs, subject to minimum clearance requirements between machines. A mathematical pro-

gramming formulation was proposed and corrected by Chung and Tanchoco [9] and Zhang

and Murray [34], respectively. Due to the cost of floor space, multi-objective DRLPs have

been proposed with minimizing space requirements as one of the objectives by Murray et al.

[19], Zuo et al. [35]. To further improve space utilization and material handling cost, the

concept of shared clearances between adjacent machines was proposed in Zuo et al. [36].

Unlike the DRLP, the present work considers multiple double-row layouts simultaneously.
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Simulation models have been developed to assess the performance of alternative layout

designs. For example, Geiger et al. [12] compared five layout alternatives in simulation with

differing quantities of machines. Several levels of availability, setup time, and transfer time

were evaluated according to the resulting cycle time. Chung and Jang [8] compared the

integrated room layout (IRL) design with the traditional spine layout design, and the results

showed that IRL dominated spine design in several respects, such as process flexibility, cycle

time, and space usage. While these simulation models provide a way to compare alternatives

that were generated by experience and intuition, they are unable to identify the optimality

of a particular layout alternative.

Beyond the FLP, the present paper also features aspects of bin packing problems, which

aim to optimize space utilization by packing a collection of items within a number of given-

sized bins. Bin packing problems with different considerations were reviewed in Delorme

et al. [10]. Recent proposed upper and lower bounds for bin packing problems were sur-

veyed in Zhang et al. [33]. A number of solution approaches for bin packing problems have

been proposed, including greedy random local search [1], memetic algorithm [11], maximum

rectangular rest space arrangement [13], edge score with search algorithms [14, 33], and a

goal-driven approach with skyline representation [28]. Because these bin packing problems

assume that the bin sizes are given, solution approaches for these problems are not directly

applicable to the proposed problem, in which sizes and shapes of the FAs and tool columns

are flexible.

A summary of the related literature is provided in Table 2.1, which highlights the key

features of our research and the scale of test problems evaluated. This paper makes several

contributions to the literature. First, motivated by real problems to determine the detailed

facility layout alternatives of fitting the required machine set , which is based on the results of

the capacity planning process, into expensive and existing facility. This research is the first to

focus on maximizing space utilization in terms of minimizing required floor space in FLP to

address the problems. Second, unlike the DRLP, which only considers layout design within

10



Table 2.1: A comparison of related literature

Research Reference Objective Function Problem Scale Configuration
Bin Packing
Problem

[1] [11] [13]
[14] [28]
[33]

Number of Used
Bins, Total Used
Bin Costs, ...

≤ 1,000
≤ 2,900
([28])

Objects in
Given Size Bins

Block FLP [3] [4] [25] Material Flow Costs ≤ 20 Open Space

DRLP [9] [19] [23]
[30] [31] [34]
[35] [36]

Material Flow Costs
w/o Space
Requirement

≤ 50 Double Row

FLP for
Semiconduc-
tor
Manufacturing

[23] [27] [29]
[30] [31]

Material Flow Costs ≤ 150 Double Row
/ Open Space

Layout
Analysis

[8][12] Material Flow
Costs,
Flexibility,
Cycle Time ...

≤ 500 Multiple-
Double Row

Parallel-Bay
Block FLP

[2] [5] [7]
[16] [17]
[18] [20]
[21] [22]

Material Flow Costs ≤ 60 Open Space
with Single
Column
Department in
each Bay

This Research - Space Requirement ≥ 1,500
MRMIC
Layout

one double-row, this research implements the MRMIC layout structure for facilities with

multiple double-rows. Although DRLP has practical values by determining the locations of

FAs within two rows in the industry, it cannot be applied to the proposed problem. This

paper presents a new mathematical programming formulation for this new space-minimizing

facility layout problem with non-rectangular FAs and space sharing for adjacent columns.

Finally, an efficient approach for solving large-scale instances of this problem is proposed.

11



2.3 Problem definition

The MRMIC facility layout design problem considers the allocation of machines into

parallel columns within parallel functional area rows. We define and formulate the restricted

version of the problem, which is the relative location of the FAs in each row is given (as was

the case with our industrial partner and for the most of the manufacturers), although the

width of each FA is flexible.

Consistent with the DRLP, the loadport side of machines should be lined up on the

left or right edge of walkways. Each walkway between adjacent columns has a fixed width,

W P , but the total number required walkways is unknown a priori. Unlike [36], which only

considered clearance sharing on the sides of machines, the back clearances can also be shared

in the proposed problem. The back clearance of a machine is on the opposite side of the

loadport, while the side clearance is on the two flank sides. The minimum clearance of each

type between two machines must be at least the maximum clearance requirement of either

machine.

Several parameters and variables are defined to formulate this problem. For parameters,

let W F represents the width of the floor. A layout plan is only feasible if the required width

to fit all targeted machines does not exceed W F . Let R represent the set of rows, where

R = {1, 2, . . .}. We define HR
r to represent the available height of row r, where r ∈ R. In

order to make sure machines are located within a row, we define Y L
r (Y U

r ) to represent the

lower (upper) edge y-coordinates of row r, where r ∈ R. Next, let F represent the set of

functional areas, and we define Φf,r to represent the order of functional area f in row r from

left to right. For example, if functional area f is the third functional area from the left in

row r, then Φf,r = 3. Note if functional area f does not appear in row r then Φf,r = 0, where

f ∈ F and r ∈ R. Moreover, let Mf represent the set of machines from functional area f ,

where f ∈ F , and let HM
m (WM

m ) represent the height (width) of machine i, where m ∈Mf ,

and f ∈ F . For determining the clearance requirement, let CM,B
m,n (CM,S

m,n ) represent the

required back (side) clearance between machine m and machine n. CM,b
m,o (CM,S

m,o ) represents

12



the back (side) clearance requirement of machine m (also the clearance requirement between

machine m and the wall). We can calculate CM,B
m,n =max{CM,B

m,o , C
M,B
n,o }, where m,n ∈ Mf ,

f ∈ F , and m 6= n. The same rule applies to CM,S
m,n . Additionally, let P represent the possible

walkways in each row, where P = {1, 2, . . . , Pmax}, so we can define W P to represent the

width of walkways between every two machine columns. Note that the front side of the

machines are required to be lined-up on one sides of a walkway. Thus, Pmax is the upper

bound of the required number of walkways, and the space consumption of a walkway does

not include in the required space if there is not any machines on one side of the walkway.

For defining decision variables, let wRr represent the occupied width for row r, where

r ∈ R, and let wF ≥ max{wRr , ∀ r ∈ R} represent the total occupied width of the floor.

Then, we define xMm,f and yMm,f as the lower left coordinates of the position of machine m

from functional area f , where m ∈ Mf , and f ∈ F . Then we set xPp,r as the left edge

x-coordinate of walkway p in row r, where p ∈ P and r ∈ R. In order to prevent overlapping

in the layout plans, we apply binary variables to determine the relative locations of two

objects, such as two machines, one machine and a walkway, or two walkways. Let bM,left
m,n = 1

(bM,below
m,n = 1) if physical machine m is placed to the left of machine n (or below) machine

n, where m, n ∈ Mf , m 6= n, and f ∈ F , and let bM,P
m,p,r = 1 (bP,Mm,p,r = 1) if physical machine

m is placed to the left (right) of walkway p in row r, where m ∈ Mf , f ∈ F , p ∈ P , and

r ∈ R. Then we define bP,left
p,q,r = 1 if physical walkway p is placed to the left of walkway q,

where p, q ∈ P , p 6= q, and r ∈ R. Furthermore, as described, the problem involves machine

assignment, which is to determine which machines from a FA should be placed on which

side of a walkway in which row. Hence, let aMm,r = 1 if machine m from functional area f

is assigned (placed) in the row r, where m ∈ Mf , f ∈ F , and r ∈ R, and let aPp,r = 1 if at

least one machine is assigned (placed) on the either edge of walkway p in row r (walkway p

is needed in row r), where p ∈ P , and r ∈ R. For determining the relative location of FAs,

we define b
S,left(right)
m,f,p,r = 1 if physical machine m from the functional area f is placed on the

left (right) side edge of walkway p in row r , where m ∈Mf , f ∈ F , p ∈ P , and r ∈ R.
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Finally, the formulations for the lined-up requirement of machines are non-linear, and

we linearize the constraints by introducing l
S,left(right)
m,f,p,r , which represents b

S,left(right)
m,f,p,r xPp,r for

linearizing Constraint (2.20), where m ∈ Mf , f ∈ F , p ∈ P , and r ∈ R. Details of the

constraints will be introduced later. A summary of all parameters and decision variable

employed by the MILP model are provided in Tables 2.2 and 2.3, respectively, while the

size notations are illustrated in Figure 2.3 for ease of understanding. The remainder of

this section is devoted to the mixed integer linear programming (MILP) formulation for the

proposed problem.

Table 2.2: Summary of parameter notations

F Set of functional areas.
Mf Set of machines from functional area f , where f ∈ F .
P Set of possible walkways in each row, where P = {1, 2, . . . , Pmax}.
R Set of rows, where R = {1, 2, . . .}.
Φf,r The order of functional area f in row r from left to right. For example, if functional

area f is the third functional area from the left in row r, then Φf,r = 3. Note if
functional area f does not appear in row r then Φf,r = 0, where f ∈ F and r ∈ R.

CM,B
m,n The required back clearance between machine m and machine n. CM,b

m,o represents the
back clearance requirement of machine m (also the clearance requirement between
machine m and the wall), so CM,B

m,n =max{CM,B
m,o , C

M,B
n,o }, where m,n ∈Mf , f ∈ F ,

and m 6= n.

CM,S
m,n The required side clearance between machine m and machine n, where m,n ∈Mf ,

f ∈ F , and m 6= n. As CM,b
m,o , CM,S

m,o represents the back clearance requirement of
machine m.

HM
m The height of machine i, where m ∈Mf , and f ∈ F .

HR
r The available height of row r, where r ∈ R.

WF The width of the floor.

WM
m The width of machine m, where m ∈Mf , and f ∈ F .

WP The width of walkways between every two machine columns.

Y L
r The lower edge y-coordinates of row r, where r ∈ R.

Y U
r The upper edge y-coordinates of row r, where r ∈ R.

This problem seeks to determine whether a given collection of machines could be feasibly

located within the existing facility. To answer this question, the objective of the MILP
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Table 2.3: Summary of decision variable notations

aMm,f,r ∈ {0, 1} aMm,r = 1 if machine m from functional area f is assigned (placed) in the row
r, where m ∈Mf , f ∈ F , and r ∈ R.

aPp,r ∈ {0, 1} aPp,r = 1 if at least one machine is assigned (placed) on the either edge of
walkway p in row r (walkway p is needed in row r), where p ∈ P, and r ∈ R.

b
S,left(right)
m,f,p,r ∈ {0, 1} b

S,left(right)
m,f,p,r = 1 if physical machine m from the functional area f is placed

on the left(right) side edge of walkway p in row r , where m ∈ Mf , f ∈ F ,
p ∈ P, and r ∈ R.

bM,below
m,n ∈ {0, 1} bM,below

m,n = 1 if physical machine m is placed below machine n, where m,
n ∈Mf , m 6= n, and f ∈ F .

bM,left
m,n ∈ {0, 1} bM,left

m,n = 1 if physical machine m is placed to the left of machine n, where
m, n ∈Mf , m 6= n, and f ∈ F .

bM,P
m,p,r ∈ {0, 1} bM,P

m,p,r = 1 if physical machine m is placed to the left of walkway p in row r,
where m ∈Mf , f ∈ F , p ∈ P, and r ∈ R.

bP,Mm,p,r ∈ {0, 1} bP,Mm,p,r = 1 if physical machine m is placed to the right of walkway p in row

r. Note that bP,Mm,p,r + bP,Mm,p,r = 0 if machine m is not assigned in row r, where
m ∈Mf , f ∈ F , p ∈ P, and r ∈ R.

bP,left
p,q,r ∈ {0, 1} bP,left

p,q,r = 1 if physical walkway p is placed to the left of walkway q, where p,
q ∈ P, p 6= q, and r ∈ R.

l
S,left(right)
m,f,p,r To represent b

S,left(right)
m,f,p,r xPp,r for linearizing Constraint (2.20), where m ∈Mf ,

f ∈ F , p ∈ P, and r ∈ R.

wF Total occupied width of the floor; wF ≥ max{wRr , ∀ r ∈ R}.
wRr The occupied width for row r, where r ∈ R.

xMm,f , y
M
m,f The lower left coordinates of the position of machine m from functional area

f , where m ∈Mf , and f ∈ F .

xPp,r The left edge x-coordinate of walkway p in row r, where p ∈ P and r ∈ R.

formulated below is to minimize the total required width of the facility, wF , given that the

total height dimension is fixed (i.e., the heights of each row, HR
r , and the walkways between

rows are known). Thus, any solution with an objective function value less than the width of

the current facility would indicate that this facility is sufficiently large.

The MILP model of the MRMIC layout design problem is provided below.

Min wF (2.1)

s.t. wF ≥ wRr ∀ r ∈ R, (2.2)

xMm,f +WM
m + CM,B

m,o ≤ wRr , ∀ m ∈Mf , f ∈ F , r ∈ {R : Φf,r > 0}, (2.3)
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Figure 2.3: An illustration of the facility dimension notation employed in the MRMIC model

xPp,r +W P ≤ wRr +W F (1− aPp,r), ∀ p ∈ P , r ∈ R, (2.4)∑
m∈Mf

(bS,left
m,f,p,r + bS,right

m,f,p,r) ≤ PmaxaPp,r, ∀ f ∈ F , p ∈ P , r ∈ {R : Φf,r > 0}, (2.5)

bM,left
m,n + bM,left

n,m + bM,below
m,n + bM,below

n,m ≥ 1, ∀ m,n ∈Mf ,m 6= n, f ∈ F , (2.6)

bP,left
p,q,r + bP,left

q,p,r = 1, ∀ p, q ∈ P , p 6= q, r ∈ R, (2.7)∑
r∈R

aMm,f,r = 1, ∀ m ∈Mf , f ∈ {F : Φf,r > 0}, (2.8)

bM,P
m,p,r + bP,Mm,p,r = aMm,f,r, ∀ m ∈Mf , f ∈ F , r ∈ {R : Φf,r > 0}, (2.9)

xMm,f − xMn,f +W F bM,left
m,n ≤ W F −WM

m − CM,B
m,n ,

∀ m,n ∈Mf ,m 6= n, f ∈ F , r ∈ {R : Φf,r > 0}, (2.10)

yMm,f − yMn,f +HR
r b

M,below
m,n ≤ HR

r −HM
m − CM,S

m,n ,

∀ m,n ∈Mf ,m 6= n, f ∈ F , r ∈ {R : Φf,r > 0}, (2.11)

xMm,r − xPp,r +W F bM,P
m,p,r ≤ W F −WM

m ,

∀ m ∈Mf , p ∈ P , f ∈ F , r ∈ {R : Φf,r > 0}, (2.12)
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xPp,r − xMm,r +W F bP,Mm,p,r ≤ W F −W P , ∀ m ∈Mf , p ∈ P , f ∈ F , r ∈ {R : Φf,r > 0},

(2.13)

xPp,r − xPq,r +W F bP,left
p,q,r ≤ W F −W P , ∀ p, q ∈ P , p 6= q, r ∈ R, (2.14)

yMm,f ≤
∑
r∈R

Y U
r (1− aMm,f,r)− CM,S

m,o , ∀ m ∈Mf , f ∈ F , r ∈ {R : Φf,r > 0}, (2.15)

xMm,f ≥ CM,B
m,o , ∀ m ∈Mf , f ∈ F , r ∈ {R : Φf,r > 0}, (2.16)

yMm,f ≥ CM,S
m,o +

∑
r∈R

Y L
r (1− aMm,f,r), ∀ m ∈Mf , f ∈ F , r ∈ {R : Φf,r > 0}, (2.17)

∑
m∈Mf

∑
p∈P

(bS,left
m,f,p,r + bS,right

m,f,p,r) ≥ 1, ∀ f ∈ F , r ∈ {R : Φf,r > 0}, (2.18)

p(bS,left
m,f,p,r + bS,right

m,f,p,r)− p(b
S,left
m′,f ′,r,p + bS,right

m′,f ′,r,p) ≤ 0,

∀ m ∈Mf ,m
′ ∈M′

f , f, f
′ ∈ F, p ∈ P , r ∈ {R : Φf ′,r > Φf,r > 0, }, (2.19)∑

p∈P

[bS,left
m,f,p,r(x

P
p,r −WM

m ) + bS,right
m,f,p,r(x

P
p,r +W P )] = xMm,f ,

∀ m ∈Mf , f ∈ F , r ∈ {R : Φf,r > 0}, (2.20)

aMm,f,r, a
P
p,r, b

P,left
p,q,r , b

S,left
m,f,p,r, b

S,right
m,f,p,r, b

M,P
m,p,r, b

P,M
m,p,r,∈ {0, 1},

∀ m ∈Mf , p, q ∈ P , p 6= q, f ∈ F , r ∈ {R : Φf,r > 0}, (2.21)

bM,below
m,n , bM,left

m,n ∈ {0, 1}, ∀ m,n ∈Mf ,m 6= n, (2.22)

xPp,r, x
M
m,f , y

M
m,f , w

F , wRr ≥ 0, ∀ m ∈Mf , p ∈ P , f ∈ F , r ∈ R. (2.23)

The objective function (2.1) and Constraint (2.2), which determines the maximum occu-

pied width of any row, serve to minimize the total required floor area in terms of minimizing

the maximum used row width. Constraints (2.3) and (2.4) determine the required floor

width for the layout, where the widths of unused walkways (e.g., where no machines are lo-

cated on either side) are ignored. Constraint (2.5) determines which walkways are not used.

Constraints (2.6)–(2.9) require every machine and walkway to be placed on either side edge

of a walkway in exactly one row. Constraints (2.10)–(2.14) prevent overlapping machines

and walkways, while Constraints (2.15)–(2.17) ensure that all machines and walkways are
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located within the facility boundaries. Constraint (2.18) ensures at least one machine from

functional area f is placed in the designated row r ∈ {R : Φf,r > 0} in the given relative

location. Constraint (2.19) ensures that all machines are not violating the given relative

location of FAs in each row. Constraint (2.20), which is the only non-linear constraint in

this model, ensures that all machines are aligned on either side edge of a walkway. Finally,

Constraints (2.21)–(2.23) describe the decision variable definitions.

By introducing new binary decision variables lS,left
m,f,p,r and lS,right

m,f,p,r, Constraint (2.20) can

be linearized as follows:

lS,left
m,f,p,r ≤ W F bS,left

m,f,p,r, ∀ m ∈Mf , p ∈ P , f ∈ F , r ∈ {R : Φf,r > 0}, (2.24)

lS,right
m,f,p,r ≤ W F bS,right

m,f,p,r, ∀ m ∈Mf , p ∈ P , f ∈ F , r ∈ {R : Φf,r > 0}, (2.25)

lS,left
m,f,p,r ≥ xPp,r −W F (1− bS,left

m,f,p,r), ∀ m ∈Mf , p ∈ P , f ∈ F , r ∈ {R : Φf,r > 0}, (2.26)

lS,right
m,f,p,r ≥ xPp,r −W F (1− bS,right

m,f,p,r) ∀ m ∈Mf , p ∈ P , f ∈ F , r ∈ {R : Φf,r > 0}, (2.27)

lS,left
m,f,p,r ≤ xPp,r, ∀ m ∈Mf , p ∈ P , f ∈ F , r ∈ {R : Φf,r > 0}, (2.28)

lS,right
m,f,p,r ≤ xPp,r, ∀ m ∈Mf , p ∈ P , f ∈ F , r ∈ {R : Φf,r > 0}, (2.29)∑
p∈P

(lS,left
m,f,p,r −W

M
m bS,left

m,f,p,r + lS,right
m,f,p,r +W P bS,right

m,f,p,r) = xMm,f ,

∀ m ∈Mf , f ∈ F , r ∈ {R : Φf,r > 0}, (2.30)

lS,left
m,f,p,r, l

S,right
m,f,p,r ≥ 0, ∀ m ∈Mf , p ∈ P , f ∈ F , r ∈ {R : Φf,r > 0}. (2.31)

As mentioned, the MRMIC problem is an amalgamation of multiple NP-hard problems,

which makes small-scale problems difficult, and practically-sized large-scale problems impos-

sible, to solve directly. To overcome this issue, a heuristic solution approach that utilizes

two integer programming sub-problems is proposed.
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2.4 Solution approach

The MRMIC problem seeks to determine the exact location of each machine to minimize

the total required space. The problem incorporates both continuous (locations of machines)

and combinatorial (machine assignment and relative locations of machines) decision vari-

ables. Preliminary testing indicated that MILP solvers may require hours to solve a simple

10-machine problem. Thus, a construction heuristic is proposed to reduce the problems to

a practical size to enable them to be solved by starting with a manufacturing facility that is

initially empty.

As introduced in Section 2.4.1, the heuristic begins by assigning a priority value to all

unallocated FAs, based on a continuous-space approximation of the space required by this

FA. Once the order is determined, an iterative procedure is used to arrange the occupied

space for the functional area with the highest priority. This is repeated until all FAs are

allocated. Second, as described in Section 2.4.2, a linear programming (LP) model is solved

to estimate the amount of space required for the entire layout, based on the continuous-space

relaxation of the area required for each FA. This provides guidance to allocate machines to

a specific row in the case where a single FA appears in multiple rows. The estimation in-

cludes the space occupied by the allocated FAs and continuous relaxation of FAs that are

currently un-allocated, both of which are considered as parameters for the following step.

Next, as presented in Section 2.4.3, two integer programs are solved to determine the tool

layout for each FA. Note that FA interlocking is not considered in the sub-problems, but

is instead considered in the procedure described in Section 2.4.4, where FA interlocking is

performed for I. Then, as introduced in Section 2.4.5, a procedure incorporating machine

interlocking is applied for better space utilization. The above procedures solve the MRMIC

when the relative location of FAs is pre-determined because, in practice, some semiconduc-

tor manufacturers may have their own production process and their own way to manage

contamination. Therefore, for the situation that the relative location of FAs is flexible, we

propose a neighborhood search procedure in Section 2.4.6 to determine whether the solution
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could be improved by relaxing the given relative location. Note that the proposed heuristic

can be used to solve the MRMIC under either fixed or flexible relative locations of FAs by

incorporating the neighborhood search procedure.

Pseudocode of the proposed heuristic is provided in Algorithm 1.

Algorithm 1 Main procedure

1: Initialize U ; % Section 2.4.1
2: A = {∅}
3: for all u ∈ U do
4: A ← A∪ u; % A represents the list of FAs to be allocated
5: [wEf ′′,r]=L1(AOf ′,r); % lines 2-5 in Section 2.4.2

6: [xGg,k,r,w
K,upper
k,r ]=S1(AOf ′,r,H

K,left
u,r , HK,right

u,r ,wEf ′′,r,W
K,left
u,r , and WK,right

u,r )
7: if At least one of the adjacent FAs has not been allocated then
8: [xGg,k,r]=S2(hKkB,r,x

G
g,k,r,w

K,upper
k,r )

9: end if
10: % Lines 6-10 in Section 2.4.3
11: [Zφ

r ]=FAI(u,xGg,k,r,Z
φ
r ) % Section 2.4.4

12: [AOf ′,r, H
K,left
f,r ,HK,right

f,r ,WK,left
f,r ,WK,left

f,r ,Zφ
r ]=PA(HK,left

f,r ,HK,right
f,r ,u,WK,left

f,r ,WK,left
f,r ,Zφ

r )
13: % Section 2.4.5
14: end for
15: [AOf ′,r,Z

φ
r ]=NS(AOf ′,r, H

K,left
f,r ,HK,right

f,r ,U ,WK,left
f,r ,WK,left

f,r ,Zφ
r ) % Section 2.4.6

2.4.1 Determine the priority order of all un-allocated functional areas

Recall that the MRMIC model is designed to minimize the total amount of required

space in terms of minimizing the maximum width of all rows. Further, recall that some FAs

may appear in multiple rows (as determined a priori). To avoid over-allocating machines to

rows that already have long width requirements, FAs that appear in more than one row are

assigned a lower priority. The size of the continuous space approximation is used to break

ties (a smaller size corresponds to a higher priority). The motivation behind this priority-

ranking scheme is that FAs that appear in multiple rows have greater flexibility and should

thus be assigned later in the process. The continuous approximation of required space for

functional area f , denoted as BFf , is calculated as
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BFf =
∑
∀m∈Mf

(HM
m + CM,S

m )[WM
m + 0.5(CM,B

m +W P )], ∀ f ∈ F .

This expression determines a minimum estimate of the required amount of space based

on the sum of machine space, one side clearance, and one-half back clearance. In addi-

tion, the estimate also includes space for a connected walkway based on the sum of the

machine space, one side clearance, one-half back clearance, and the space requirement for

the connected walkway. An example for determining the priority order is provided be-

low. Suppose the relative locations of FAs for a two row MRMIC problem with three

FAs is such that Films → Photolithography for the first row and Diffusion → Films for

the second row. Given BFDiffusion < BFPhotolithography, the priority order is determined as

U = {Diffusion,Photolithography,Films}, which means Films will be the last one to be

allocated since it appears twice in the given relative locations. Diffusion will be allocated

before Photolithography since BFDiffusion < BFPhotolithography.

2.4.2 Estimate the space consumption of un-allocated FAs

Once a FA has been selected for insertion into the layout, the next step of the heuristic

is to estimate the space that will be consumed by the remaining un-allocated FAs. This

estimate will be used to guide the the machine allocation of FA u in which rows if u appears

in multiple rows in the next stage of the heuristic. Obviously it is impossible to know the

exact area that will be consumed by these functional areas at this stage in the heuristic, as

the allocation of machines to particular locations is performed later. Instead, the following

LP model, named “Model L1”, is utilized to provide the estimate. This LP model requires

some new notations. Specifically, let AOf ′,r represent the occupied space of the allocated FA

f ′ ∈ A\u in row r, and decision variable wEf ′′,r represent the estimated required width of
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un-allocated FA f ′′ ∈ (F\A) ∪ u in row r.

(Model L1): Min wF (2.32)

s.t.
∑

f ′∈{A\u:Φf ′,r>0}

AOf ′,r/H
R
r +

∑
f ′′∈{(F\A)∪u:Φf ′′,r>0}

wEf ′′,r ≤ wF ,

∀ r ∈ R, (2.33)∑
r∈R

HR
r w

E
f ′′,r = BFf ′′ , ∀ f ′′ ∈ {(F\A) ∪ u : Φf ′′,r > 0}, (2.34)

HR
r w

E
f ′′,r ≥ min

∀m∈Mf ′′
{(HM

m + CM,S
m )[WM

m + 0.5(CM,B
m +W P )]},

∀ f ′′ ∈ {(F\A) ∪ u : Φf ′′,r > 0}, r ∈ R, (2.35)

wEf ′′,r, w
F ≥ 0, ∀ f ′′ ∈ (F\A) ∪ u, r ∈ {R : Φf ′′,r > 0}. (2.36)

The objective function (2.32) seeks to minimize the required floor width. Corresponding

to the objective function, Constraint (2.33) determines the maximum occupied width of all

rows. Constraint (2.34) determines the estimated required width of un-allocated FAs based

on the continuous approximation. Constraint (2.35) ensures the estimated width of FA f ′′

in row r at least equal to the size of the smallest machine from f ′′ if f ′′ appears in row r.

Constraint (2.36) defines the decision variables. After solving Model L1, we now use the

values of wEf ′′,r to estimate the required width of un-allocated FAs while allocating machines

from u.

2.4.3 Establish the machine allocation within FA u

Due to the NP-hardness of solving the MRMIC problem, it is impractical to solve the

problem with even only one FA directly by integer programming solvers. Even when isolating

a single FA, it is still impractical to employ integer programming solvers to determine the

exact tool locations for this FA. One way to simplify the problem is to ignore the tool

interlocking possibility. Thus, assuming machine interlocking is not allowed, with only one

FA, the MRMIC problem can be considered as a collection of sub-problems, which assign
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machines to independent machine columns on the floor. Therefore, Models S1 and S2 are

proposed for solving the sub-problems with the notations described and illustrated in Tables

2.4 and 2.5, and Figure 2.4, respectively.

S1 presents the layout of u with an objective to minimize total required floor width, but

may result in alternative solutions with shorter columns. These alternative solutions have

less available space on boundary columns, the columns next to or shared with the adjacent

FAs, for adjacent un-arranged FAs within the same rows. Therefore, S2 is presented to

minimize the height of the boundary columns for u after solving S1. Note that, because of

the non-linearity of minimized required space by the multiplication of occupied widths and

heights for machine columns, S1 and S2 are solved sequentially.

Parameters of the sub-problems are introduced. In order to reduce computational ef-

forts, we categorize same size machines with the same clearance requirements from u as

a group, G. Moreover, we define HG
g as the height of machines from group g, NG

g as the

number of machines from equipment group g, and WG
g as the width of machines from group

g, where g ∈ G. Additionally, let Kr represents the set of machine columns in row r, where

Kr = {1, 2, . . . , |Kr|}, and |Kr| ≤ [
∑
g

(CG,S
g + HG

g )]/(HR
r − max{CG,S

g , ∀ g ∈ G}), where

g ∈ G, r ∈ R. Note that Kr = 0 if Φu,r = 0. Besides, let CG,B
g (CG,S

g ) represent the

required back (side) clearance of machines from group g, where g ∈ G. Furthermore, let

Gmax
g,k,r represents the upper bound of the machine amount from group g in column k of row r.

Gmax
g,k,r =min{NG

g , H
R
r /(H

G
g + CG,S

g )}, where g ∈ G, k ∈ Kr, and r ∈ {R : Φu,r > 0}. We will

introduce how to use the upper bound later in introducing variables of the sub-problems.

For variables in the sub-problems, let xGg,k,r represent the number of machines from the

group g assigned to column k of row r, and xGg,k,r ≤ Gmax
g,k,r, where g ∈ G, k ∈ Kr, and

r ∈ {R : Φu,r > 0}. In order to determine the size of a machine column in the sub-problems,

we set hKk,r (wKk,r) as the occupied height (width) of the column k in row r, where k ∈ Kr,

and r ∈ {R : Φu,r > 0}. And also, as introduced, S1 and S2 are solved sequentially, so we

have wK,upper
k,r as the used width upper bound of column k in row r solved by Model S1 and
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applied as a constant in Model S2, where k ∈ Kr, and r ∈ {R : Φu,r > 0}. Next, let cK,max
k,r

represent the maximum clearance of all machines in column k of row r, where k ∈ Kr, and

r ∈ {R : Φu,r > 0}. In the sub-problems, if a property of total side clearance requirements

between machines in a column for a set of machines is provided, S1 and S2 determine only

the number of machines from which group in which row. Thus, the property is proved later

in this section, which demonstrates that the minimum total side clearance in a column is

the sum of the CG,S
g for all machines in the column and the maximum one side clearance

cK,max
k,r . Hence, we set bg,k,r = 1 if machines from the group g have the greatest clearance

requirement in column k of row r, where g ∈ G, k ∈ Kr, and r ∈ {R : Φu,r > 0}. Finally, we

set wPr to represent the required amount of walkways in row r, r ∈ {R : Φu,r > 0}.

While the heuristic progresses, if adjacent FAs of u have been allocated, the size infor-

mation of the boundary columns in the adjacent FAs is set as bounds for adjacent columns of

u when solving the sub-problems for functional area interlocking. Let HK,left
u,r (HK,right

u,r ) and

WK,left
u,r (WK,right

u,r ) be the occupied heights and widths of boundary columns of the adjacent

allocated FA on the left (right) side of u in row r, respectively. These heights and widths

are determined in Section 2.4.5 once a functional area has been allocated. For example, if

the boundary column on the right side of the adjacent FA in row r is just half-used, then

the first column of u in row r is bounded by the other half available space with a height

as (HR
r − HK,left

u,r ) and width as WK,left
u,r when solving the sub-problems for functional area

interlocking.

S1 is described below:

(Model S1): Min wF (2.37)

s.t.
∑

f ′∈A\u,Φf ′,r>0

AOf ′,r/H
R
r +

∑
f ′′∈(F\A),Φf ′′,r>0

wEf ′′,r +
∑
k∈Kr

wKk,r +W PwPr ≤ wF ,
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Table 2.4: Parameters of the sub-problems

G Set of equipment groups from functional area u, where G = {1, 2, . . .}.
Kr Set of columns in row r, where Kr = {1, 2, . . . , |Kr|}, and

|Kr| ≤ [
∑
g

(CG,Sg + HG
g )]/(HR

r −max{CG,Sg , ∀ g ∈ G}), where g ∈ G, r ∈ R. Note

that Kr = 0 if Φu,r = 0.

CG,Bg The required clearance on back sides of machines from group g, where g ∈ G.

CG,Sg The required side clearance of machines from group g, where g ∈ G.

Gmax
g,k,r The upper bound of the machine amount from group g in column k of row r.

Gmax
g,k,r =min{NG

g , H
R
r /(H

G
g + CG,Sg )}, where g ∈ G, k ∈ Kr, and r ∈ {R : Φu,r > 0}.

HG
g The height of machines from group g, where g ∈ G.

NG
g Number of machines from equipment group g, where g ∈ G.

WG
g The width of machines from group g, where g ∈ G.

Table 2.5: Decision variables of the sub-problems

bKg,k,r ∈ {0, 1} bg,k,r = 1 if machines from the group g have the greatest clearance require-
ment in column k of row r, where g ∈ G, k ∈ Kr, and r ∈ {R : Φu,r > 0}.

cK,max
k,r The maximum clearance of all machines in column k of row r, where k ∈ Kr,

and r ∈ {R : Φu,r > 0}.
hKk,r The occupied height of the column k in row r, where k ∈ Kr, and r ∈ {R :

Φu,r > 0}.
xGg,k,r The amount of machines from the group g is assigned into column k of row

r, and xGg,k,r ≤ Gmax
g,k,r, where g ∈ G, k ∈ Kr, and r ∈ {R : Φu,r > 0}.

wKk,r The used width of column k in row r, where k ∈ Kr, and r ∈ {R : Φu,r > 0}.
wK,upper
k,r The used width upper bound of column k in row r for Model S2 (solved by

Model S1), where k ∈ Kr, and r ∈ {R : Φu,r > 0}.
wPr The required amount of walkways in row r, r ∈ {R : Φu,r > 0}.

Figure 2.4: Illustration of size notations in the sub-problems
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∀r ∈ {R : Φu,r > 0}, (2.38)∑
r∈{R:Φu,r>0}

∑
k∈Kr

xGg,k,r = NG
g , ∀ g ∈ G, (2.39)

Gmax
g,k,rb

K
g,k,r ≥ xGg,k,r, ∀ g ∈ G, k ∈ Kr, r ∈ {R : Φu,r > 0}, (2.40)

CG,S
g bKg,k,r ≤ cK,max

k,r , ∀ g ∈ G, k ∈ Kr, r ∈ {R : Φu,r > 0}, (2.41)∑
g∈G

(HG
g + CG,S

g )xGg,k,r + cK,max
k,r ≤ hKk,r,

∀ k ∈ Kr, r ∈ {R : Φu,r > 0}, (2.42)

hKk,r ≤ HR
r , ∀ k ∈ Kr, r ∈ {R : Φu,r > 0}, (2.43)

(WG
g + CG,B

g )bGg,k,r ≤ wKk,r,

∀ g ∈ G, k ∈ Kr, r ∈ {R : Φu,r > 0}, (2.44)∑
g∈G

∑
k∈Kr

xGg,k,r ≥ 1, ∀ r ∈ {R : Φu,r > 0}, (2.45)

wKk,r = wK,upper
k,r , ∀ k ∈ Kr, r ∈ {R : Φu,r > 0}, (2.46)

wPr >= 0.5
∑
g∈G

∑
k∈Kr

bKg,k,r, r ∈ {R : Φu,r > 0}, (2.47)

hK1,r ≤ HR
r −HK,left

u,r , ∀ k ∈ Kr, r ∈ {R : Φu,r > 0}, (2.48)

hK|Kr|,r ≤ HR
r −HK,right

u,r , ∀ k ∈ Kr, r ∈ {R : Φu,r > 0}, (2.49)

wKk,r ≥ WK,left
u,r , ∀ k ∈ Kr, r ∈ {R : Φu,r > 0}, (2.50)

wK|Kr|,r ≥ WK,right
u,r , ∀ k ∈ Kr, r ∈ {R : Φu,r > 0}, (2.51)

bKg,k,r ∈ {0, 1}, ∀ g ∈ G, k ∈ Kr, r ∈ {R : Φu,r > 0}, (2.52)

Gmax
g,k,r ≥ xGg,k,r ≥ 0, wPr ≥ 0,

and ∈ integer,∀ g ∈ G, k ∈ Kr, r ∈ {R : Φu,r > 0}, (2.53)

cK,max
k,r , hKk,r, w

F , wKk,r, w
K,upper
k,r ≥ 0,

∀ k ∈ Kr, r ∈ {R : Φu,r > 0}. (2.54)
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The objective function (2.37) seeks to minimize the total required width of the floor

area, and the corresponding Constraint (2.38) determines the maximum used width of all

rows. Constraint (2.39) ensures that every machine is allocated space on the floor. Next,

Constraints (2.40) and (2.41) determine the maximum clearance requirement among all

machines in every row for Constraint (2.42) to determine the occupied height of each used

column. Therefore, Constraint (2.43) ensures the height of each column is less than the

corresponding row height. Then, Constraint (2.44) determines the width occupied by each

column in each row. Furthermore, Constraint (2.46) sets the found column widths as upper

bounds for S2. Moreover, Constraint (2.47) determines the number of walkways required in

row r. Additionally, Constraint (2.45) ensures at least one machine is allocated to row r if

Φu,r > 0. Constraints (2.48) – (2.51) set the size bounds for boundary columns if adjacent

FAs of u have been allocated. Finally, Constraints (2.52) – (2.54) describe the decision

variable definitions.

The purpose of S2 is to minimize the space occupied by the boundary columns, kBr , in

row r ∈ {Φu,r > 0} after S1 has minimized the floor width. Note that kBr only represents

the boundary columns between u and the un-allocated adjacent FAs. If both sides of the

adjacent FAs in row r have not been allocated , kBr is the boundary column on the right side

of u. That is, S2 not only has all the constraints of S1 except for Constraint (2.46), but also

Constraint (2.56) to set upper bounds for the widths of each used column:

(Model S2): Min
∑

r∈{R:Φu,r>0,Φu,r±1∈Φf ′′,r,f
′′∈(F\A)}

wK,upper
kBr ,r

hKkBr ,r (2.55)

s.t. Constraints (2.38) to (2.54)

wKk,r = wK,upper
k,r , ∀ k ∈ Kr, r ∈ {R : Φu,r > 0}. (2.56)

Note that, in practice, based on the product demands, it is possible for specific man-

ufacturers to have a lower (upper) bound on how many machines from a FA appearing in
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multiple rows that should be allocated to each individual row. In such case, the bounds can

be simply incorporated in the sub-problems as:

The lower bound ≤
∑
G

∑
KxGg,k,r ≤ The upper bound for particular row r.

In S1 and S2, machines are allocated by order of descending clearance requirements to

ensure minimum total side clearance consumption within columns. This property is proven

below.

Property: The total clearance consumption for a certain set of machines in a column is

minimized if the machines are arranged in the order of descending clearance requirement, and

the minimum total side clearance requirements are equal to the summation of the clearance

requirements on one side of all the machines in the column and the maximum the clearance

on one side of these machines.

Proof. Without loss of generality, suppose there are N machines in a column, and all

of the machines are numbered such that the clearance requirement CM,S
m,o > CM,S

n,o , ∀ m < n,

and m,n ∈ N . Then the total clearance requirement δ for the set is:

δ = CM,S
1,o + max{CM,S

1,o , CM,S
2,o }+ max{CM,S

2,o , CM,S
3,o }+ ...+ max{CM,S

N−1,o, C
M,S
N,o }+ CM,S

N,o

= 2CM,S
1,o + CM,S

2,o + CM,S
3,o + ...+ CM,S

N−1,o + CM,S
N,o

By contradiction, assume machines j and i are pairwise interchanged, j < i; then δ and the

new total clearance requirement δ′ are:

δ =CM,S
1,o + max{CM,S

1,o , CM,S
2,o }+ ...+ max{CM,S

j−1,o, C
M,S
j,o }+ max{CM,S

j,o , CM,S
j+1,o}+ max{CM,S

j+1,o, C
M,S
j+2,o}

+ ...+ max{CM,S
i−1,o, C

M,S
i,o }+ max{CM,S

i,o , CM,S
i+1,o}+ ...+ max{CM,S

N−1,o, C
M,S
N,o }+ CM,S

N,o

=2CM,S
1,o + CM,S

2,o + ...+ CM,S
j−1,o + CM,S

j,o + CM,S
j+1,o + CM,S

j+2,o + ...+ CM,S
i−2,o + CM,S

i−1,o + CM,S
i,o + CM,S

i+1,o

+ ...+ CM,S
N−1,o + CM,S

N,o
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δ′ =CM,S
1,o + max{CM,S

1,o , CM,S
2,o }+ ...+ max{CM,S

j−1,o, C
M,S
i,o }+ max{CM,S

i,o , CM,S
j+1,o}+ max{CM,S

j+1,o, C
M,S
j+2,o}

+ ...+ max{CM,S
i−1,o, C

M,S
j,o }+ max{CM,S

j,o , CM,S
i+1,o}+ ...+ max{CM,S

N−1,o, C
M,S
N,o }+ CM,S

N,o

=2CM,S
1,o + CM,S

2,o + ...+ CM,S
j−1,o + 2CM,S

j+1,o + CM,S
j+2,o + ...+ CM,S

i−2,o + 2CM,S
j,o + CM,S

i+1,o + ...+ CM,S
N−1,o

+ CM,S
N,o

Moreover, the difference between δ′ and δ is:

δ′ − δ = (CM,S
j+1,o + 2CM,S

j,o )− (CM,S
j,o + CM,S

i−1,o + CM,S
i,o )

= (CM,S
j+1,o + CM,S

j,o )− (CM,S
i−1,o + CM,S

i,o )

It is clear that CM,S
j+1,o > CM,S

k−1,o and CM,S
j,o > CM,S

k,o , so δ′−δ > 0. Therefore δ′ > δ. This contra-

dicts the total clearance requirement and is minimized by sorting in an ascending/descending

order of the clearance requirements in a column, thereby completing the proof of the prop-

erty. Additionally, in this sorting procedure, the minimum total side clearance requirement

of δ is equal to the summation of the one-side clearance requirements of all machines in the

column and the maximum one-side clearance of these machines.

2.4.4 Functional area interlocking

At this stage of the procedure, FA interlocking is performed by combining the boundary

columns of u and the allocated adjacent FAs. We begin by defining the notation required

in column integration for functional area interlocking. Let Zφ
r represent the set of allocated

machine columns in row r, and let zφk,r,l ⊆ Zφ
r represent the lth machine (l= 1,...,|zφk,r|) that

has been assigned to column k of row r in the constructed layout, ∀ k ∈ Kr, r ∈ {R : Φf,r >

0}, and f ∈ A. zφk,r,l cumulatively takes over the solutions of xGg,k,r from each iteration until

all FAs are allocated. Moreover, K ′r (K ′′r ) represents the number of assigned columns in row

r ∈ {R : Φu,r > Φf ′,r > 0} (r ∈ {R : Φf ′,r > Φu,r > 0}) for all f ′ ∈ A\u, and K ′′′r represents

the number of columns for u in r ∈ {R : Φu,r > 0}.
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For functional area interlocking, if the adjacent FAs of u have been allocated (Φu,r−1 ∈

Φf ′,r or Φu,r + 1 ∈ Φf ′,r), boundary columns of u and the adjacent FAs are pieced together

(lines 3–26 in Algorithm 2). Additionally, if u is the last FA in row r (Φu,j =max{Φf,j, ∀ f ∈

F}) and the adjacent FA has not been allocated (Φu,r − 1 /∈ Φf ′,r), the last column of u

in row r is relocated to the place right before the first column of u in row r for subsequent

functional area interlocking. As the last column usually takes up the least space according to

S2, the remaining space within the column could be used for FA interlocking by relocation.

Then, based on the proven Property, the machines in each column are sorted in descending

order in CG,S
g , but breaks tie by selecting machines with longer WG

g . This means that the

same side clearance machines with longer widths are allocated at the front in a column, and

later on in the beginning of Algorithm 3, even machine columns will be sorted in reverse

order, which makes it possible to match two adjacent reverse up-side-down ladder-shaped

columns for optimal space saving by machine interlocking.

2.4.5 Physical arrangement for machine interlocking

Algorithm 3 is implemented to ascertain the physical locations of machines with the

considerations of machine interlocking. First, machines within each zφk,q are sorted in reverse

order for all even numbers of k. As mentioned, this sorting procedure makes it possible to

match two adjacent reverse up-side-down ladder-shaped columns for optimal space saving by

machine interlocking. Second, based on Zφ
r , the x and y coordinates on the bottom corner of

the lth machine in column k of row r, xφk,r,l and yφk,r,l, are determined. Next, machines in even

columns are moved in the upward direction first, then all machines are moved toward the left

as much as possible without violating the physical constraints of the MRMIC problems. This

improves space utilization by machine interlocking as well. Then the shape of the boundary

columns within u is set as bounds for boundary columns of un-allocated adjacent FAs. In

the last part of Algorithm 3, the space occupied by u, denoted by AOu,r, is determined by
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Algorithm 2 Functional area interlocking

1: function FAI(u,xGg,k,r,Z
φ
r )

2: Find k′r, k
′′
r , and k′′′r

3: Zφ
r ← {z

φ
1,r, ..., z

φ
k′r,r

, zφk′r+1,r = ∅, ..., zφk′r+k′′′r ,r = ∅, zφk′r+k′′′r +1,r, ..., z
φ
k′r+k

′′
r+k′′′r ,r

},
4: ∀r ∈ {R : k′′′r > 0}
5: for j ∈ {R : Φu,r > 0} do
6: for i = 1 to k′′′j do

7: if xGg,i,j > 0 then

8: for l = 1 to xGg,i,j do
9: if k′j > 0 then

10: zφ
k′j+i−1,j,|zφk,r|+1

← g

11: else
12: zφ

i,j,|zφk,r|+1
← g

13: end if
14: end for
15: end if
16: end for
17: if (Φu,r − 1 ∈ Φf ′,r) then

18: zφk′j ,j
← zφk′j ,j

∪ zφk′j+1,j; Zφ
j ← Zφ

j \z
φ
k′j+1,j

19: end if
20: if (Φu,r + 1 ∈ Φf ′,r) then

21: zφk′j+k′′′j ,j
← zφk′j+k′′′j ,j

∪ zφk′j+k′′′j +1,j; Zφ
j ← Zφ

j \z
φ
k′j+k

′′′
j +1,j

22: end if
23: if (Φu,j =max{Φf,j, ∀ f ∈ F}) & (Φu,j − 1 /∈ Φf ′,j) then

24: Move zφk′j+k′′′j ,j
into the position right after zφk′j ,j

in Zφ
j

25: end if
26: end for
27: Sort machine order within each zφk,r by descending order of CG,S

g

28: (breaking tie by WG
g )

29: return Zφ
r

30: end function
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the summation of all non-boundary occupied column space, walkway space, machine and

clearance requirement space in the boundary columns of u.

Although space saving by machine interlocking depends on the shapes of every two

adjacent columns, limited improvements were observed in our preliminary tests of local

search methods for different column pairing. This indicates that the proposed heuristic does

not include a mechanism for finding better combinations of column pairing within the same

rows.

2.4.6 Neighborhood search with relaxing pre-determined relative locations of

FAs

In lines 1–14 in Algorithm 1, we introduced the procedure to generate a layout plan

when the relative location of FAs is pre-determined. This is because in practice, semicon-

ductor manufacturing plants have pre-determined relative locations for their equipment in

correspondence with their production process. However, the proposed heuristic could be

implemented in the case of flexible relative locations. In this case, an initial relative location

of FAs is required to determine the facility layout plan by executing lines 1–14 in Algorithm

1. Subsequently, an iterative neighborhood search procedure is proposed in Algorithm 4 to

improve the layout plan by relaxing the given initial relative location.

The neighborhood search procedure only modifies the layouts of the longest row and

the shortest row in the layout plan iteratively, starting with an initially empty facility for

these two rows. The idea is to balance the row widths by moving the column with the most

white space from the longest row to the shortest row. Let K′ represent the column set from

a FA in the longest row, and let K′ be sorted from the column with the most white space to

that with the least white space. The white space represents the space that is wasted when

calculating the total space consumption of a column (if there is no adjacent column) or of

two adjacent columns minus the continuous space approximation of the machines within

the column(s). The white space of each one of the two adjacent interlocking column is
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Algorithm 3 Physical Arrangement for machine interlocking

1: function PA(HK,left
f,r ,HK,right

f,r ,u,WK,left
f,r ,WK,left

f,r ,Zφ
r )

2: Sort zφk,q backwards for all k ∈ the columns on the right edge of a walkway
3: for j ∈ R do
4: for i ∈ Kj do

5: if zφi,j 6= ∅ then

6: for l = 1 to |zφi,j| do
7: if l 6= 1 then
8: yφi,j,l ← yφi,j,(l−1) +WG

zφ
i,j,(l−1)

+ max{CG,S

zφi,j,l
, CG,S

zφ
i,j,(l−1)

}
9: else

10: yφi,j,l ← CG,S

zφi,j,l

11: end if
12: if i ∈ even numbers then
13: xφi,j,l ← max

{
xφi−1,j,n +WG

zφi−1,j,n

, ∀ n ∈ {1, ..., |zφi−1,j|}
}

+W P

14: else
15: if i = 1 then
16: xφi,j,l ←max

{
CG,B

zφi,j,n
+WG

zφi,j,n
, ∀ n ∈ {1, ..., |zφi,j|}

}
−WG

zφi,j,l

17: else
18: xφi,j,l ←max

{
xφi−1,j,n +WG

zφi−1,j,n

+ CG,B

zφi−1,j,n

, ∀ n ∈ {1, ..., |zφi−1,j|}
}

19: +max
{
WG

zφi,j,n
, ∀ n ∈ {1, ..., |zφi,j|}

}
−WG

zφi,j,l

20: end if
21: end if
22: end for
23: end if
24: Pull machines in even columns toward upward as much as possible
25: Pull all machines toward left as much as possible
26: end for
27: if (Φu,j =max{Φf,j, ∀ f ∈ F}) & (Φu,j − 1 /∈ Φf ′,j) then
28: i′ ← the first column of I in row j
29: HK,right

Φu,j−1,j ← (yφ
i′,j,|zφ

i′,j |
+ CG,S

zφ

i′,j,|zφ
i′,j
|

)

30: WK,right
Φu,j−1,j ←max

{
CG,B

zφ
i′,j,n

+WG

zφ
i′,j,n

, ∀ n ∈ {1, ..., |zφi′,j|}
}

31: else
32: i′ ← the last column of u in row j
33: HK,left

Φu,j+1,j ← (yφ
i′,j,|zφ

i′,j |
+ CG,S

zφ

i′,j,|zφ
i′,j
|

)

34: WK,left
Φu,j+1,j ←max{CG,B

zφ
i′,j,n

+WG

zφ
i′,j,n

, ∀ n ∈ {1, ..., |zφi′,j|}
}

35: end if
36: Find AOf ′,r and AOu,r; A

O
f ′,r ← AOf ′,r ∪ AOu,r

37: end for
38: return AOf ′,r,
39: end function
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Algorithm 4 Neighborhood search with relaxing pre-determined relative locations of FAs

1: function NS(AOf ′,r, H
K,left
f,r ,HK,right

f,r ,U ,WK,left
f,r ,WK,left

f,r ,Zφ
r )

2: repeat
3: Initialize the machine column list K′ in the longest row r of the whole layout
4: Initialize U ′, A = {FA which the column is from}, and i=1
5: while i≤ |K′| or no any better solution is found do
6: Move the ith machine column in K′ into the shortest row
7: u ← A
8: r ← The longest row; Then execute lines 5-12 in Algorithm 1
9: if the ith column in K′ from the FA appearing in the shortest row then

10: r ← The shortest row then execute lines 5-12 in Algorithm 1
11: for all u ∈ U ′ do
12: Execute lines 4-13 in Algorithm 1
13: end for
14: else
15: for j=1 to # of FAs in the shortest row +1 do
16: Update U ′ by setting the ith column as the jth FA in the shortest row
17: r ← The shortest row; Then execute lines 5-12 in Algorithm 1
18: for all u ∈ U ′ do
19: Execute lines 4-13 in Algorithm 1
20: end for
21: end for
22: end if
23: i←i+1
24: end while
25: until (Stop)
26: return Best found AOf ′,r,Z

φ
r

27: end function
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measured by proportionally dividing the total white space of these two columns based on

the continuous space approximation of these two. The same rule applies when determining

the white space of a column with machines from two FAs (the boundary column between

two FAs).

An example in which K′ is determined is provided below. Suppose there are only three

columns in the longest row, K′1 with white space of five ft2, K′2, and K′3, where K′2, and

K′3 share white space of 20 ft2. K′2 only contains machines from the Films FA with a

continuous space approximation of 100 ft2. K′3 contains machines from the Films FA with a

continuous space approximation of 60 ft2 and from the Diffusion FA with a continuous space

approximation of 40 ft2. Then K′ = {K′2,K′3 from Films ,K′1,K′3 from Diffusion }.

As described, once K′ is determined, we verify whether there is any improvement by

moving the column from K′ to the shortest row one at a time until either a better solution

is found or the whole K′ is tested. If the column is from an FA that appears in the shortest

row, the column is assigned into the FA and we initialize the relative location of FA, U ′,

which includes the FAs and the machines from only the longest and the shortest rows. We

re-determine the layout of these two rows to establish whether there is any improvement by

relocating the column to the shortest row. If the column is not from the FA that appears in

the shortest row, we re-determine the layout of these two rows with different U ′ generated by

inserting the column into different positions of the relative location in the shortest row. For

example, assuming the column is from the Films FA, and the relative location of the FA in

the shortest row is {Etch,Diffusion}, we re-determine the layout with the different relative

location of FAs in the shortest row as {Films,Etch,Diffusion}, {Etch,Films,Diffusion}, and

{Etch,Diffusion,Films} to establish which relative location is associated with the best re-

layout plan. Then the neighborhood search procedure iteratively executes lines 4–13 in

Algorithm 1 to determine whether there are better solutions.
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2.5 Numerical analysis

A numerical analysis was conducted to evaluate the performance of our heuristic. To

the best of our knowledge, past approaches to solve bin-packing problems cannot be used

to solve the same problem because they assumed the sizes of bins were given. This differs

from our problem in which the sizes of columns are decision variables. Furthermore, there is

a lack of applicable methodologies for the FLP. Thus, a lower bound is provided in Section

2.5.1 to evaluate the performance of the proposed heuristic.

Next, problems of a practical size were generated as test beds for our approach in Section

2.5.2. As explained, the proposed heuristic can solve the MRMIC for either fixed relative

locations or for flexible relative locations of FAs by incorporating the neighborhood search

procedure. Hence, the computational experiment in this section consists of two phases.

The first phase illustrates the performance of the proposed heuristic in solving the test

problems when the relative location of FAs is pre-determined. Then, the second phase, the

neighborhood search procedure, relaxes the relative location of FAs to determine whether a

more optimal solution could be found based on the solution provided in the first phase.

All experiments were conducted on a PC with a core Intel i5-2410m processor running

Microsoft Windows 7 in 64-bit mode. The heuristic was programmed in MATLAB, and the

sub-problems were solved by using the Gurobi Optimizer version 5.6.3.

2.5.1 The proposed lower bound

Considering a continuous lower bound for MRMIC,

B =
∑

m∈Mf , f∈F

(HM
m + CM,S

m )[WM
m + 0.5(CM,B

m +W P )]

is the sum of Af , ∀ f ∈ F . Let w′ =min{WM
m , ∀ m ∈ Mf , f ∈ F} be the shortest width

of all machines. Then a simple version of the MRMIC layout problem, BP1, which could be

considered as a variant of the 1-D bin packing problem, is to cut the width of every machine
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down to w′, while retaining the original heights and clearances of the MRMIC. Thus, the

cut-off continuous space is represented as:

Bcutoff = B −
∑

∀m∈Mf , f∈F

(HM
m + CM,S

m )[w′ + 0.5(CM,B
m +W P )] =

∑
∀m∈Mf , f∈F

(HM
m + CM,S

m )(WM
m − w′)

Suppose the optimal space of the MRMIC is OMRMIC, and the optimal space of the corre-

sponding BP1 is OBP1. Thus, a better lower bound is proposed as OBP1 + Bcutoff.

Theorem: OMRMIC ≥ OBP1 + Bcutoff

Proof. Without loss of generality, suppose the optimal occupied space of a column k in row

r in MRMIC is

OMRMIC
k,r ≥ Bk + Sm1,k + Swaste

k ,

where

Bk =
∑
∀m∈Mk

(HM
m + CM,S

m )[WM
m + 0.5(CM,B

m +W P )]

represents the continuous required space for all m ∈Mk. Mk ∈Mf indicates all machines in

column k, where f ∈ F . Sm1,k = CM,S
m1

[WM
m1

+0.5(CM,B
m1

+W P )] represents one side clearance

and its connected walkway space of machine m1 ∈ Mk (similar to the proven property, the

total amount of required space in a column is at least the sum of Bk and a side clearance of

a machine, which is determined by the MRMIC model). Swaste
k is the minimum white space

besides the space occupied by machines and clearances within column k. Note that

Swaste
k ≥ (HR

r − hKk,r) min{WM
m , ∀ m ∈Mk}.
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Then the optimal occupied space of column k in row r for problem BP1 is

OBP1
k,r = BBP1k + S ′m′1,k + S ′waste

k ,

where

BBP1k =
∑
∀m′∈M ′k

(HM
m′ + CM,S

m′ )[w′k + 0.5(CM,B
m′ +W P )]

represents the continuous lower bound of the required space for all m′ ∈ M ′
k. M ′

k rep-

resents all the corresponding machines from Mk, but only cuts off their width down to

w′k =min{WM
m , ∀ m ∈ Mk}. In such a case,HM

m′ , C
M,S
m′ , and CM,B

m′ are still equal to HM
m ,

CM,S
m , and CM,B

m for all m′ ∈M ′
k, and m ∈Mk, respectively. Moreover,

S ′m′1,k = CM,S
m1

[w′ + 0.5(CM,B
m1

+W P )] ≤ Sm1,k, m1 ∈Mk,m
′
1 ∈M ′

k,

and

S ′waste
k = (HR

r − hKk,r)w′ ≤ Swaste
k .

Additionally, the cut-off continuous space is represented as

Bcutoff
k = Bk − BBP1k =

∑
∀m∈Mk

(HM
m + CM,S

m )(WM
m − w′k) ≥ 0.

Therefore,

OMRMIC
k,r −OBP1

k,r = Bk + Sm1,k + Swaste
k − (BBP1k + S ′m′1,k + S ′waste

k )

= (Bk − BBP1k ) + (Sm1,k − S ′m′1,k) + (Swaste
k − S ′waste

k ) ≥ 0,

so OMRMIC
k,r −OBP1

k,r − (Bk − BBP1k ) = (Sm1,k − S ′m′1,k) + (Swaste
k − S ′waste

k ) ≥ 0.
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We find OMRMIC
k,r ≥ OBP1

k,r +Bcutoff
k for any column k in any row r. Hence, OMRMIC ≥ OBP1 +Bcutoff.

This lower bound could be found in polynomial time, and is approximately 2% better than

simple LP relaxation of the MRMIC based on our preliminary results by considering S ′m′1,k

and S ′waste
k for machine m′1 in column k.

2.5.2 Computational results

In the absence of applicable benchmark problems in the literature, test problems were

created to evaluate the performance of the proposed approach for a variety of layout design

parameters. The manufacturing process with associated FAs may be briefly introduced as

follows. Initially, the films process (FIL) involves coating materials onto the wafer, and then

the lithography process (LIT) patterns the un-coated parts of the wafer. The chemical-

mechanical planarization process (CMP), wet-etch process (WET), and etch process (ETC)

remove coated materials to obtain the desired electrical properties by the diffusion pro-

cess (DIF) and the implant process (IMP) with dopants. Finally, the metrology process

(METRO) is frequently used between the various processing steps to verify any damage that

has occurred. In Table 2.6, we generated the machine data for each FA based on uniform

distributions, although the range of each distribution is assumed based on practical data.

Additionally, we specified 30 inches, which is adjusted based on the information from our

industrial partner, for back clearances of all machines.

Table 2.7 lists four parameters, including the physical structure of the floor, the size

of walkways, and the relative locations of FAs. Two of the relative locations of FAs were

adjusted by using practical information and data from previous studies, respectively. The

first relative location is DIF → IMP → FIL → ETC for odd rows but CMP → WET →

FIL → LIT for even rows. The second type is FIL → LIT → ETC → METRO for odd

rows from Susto et al. [24] but FIL → LIT → ETC → IMP→ CMP for even rows, from

Khan et al. [15]. The proposed approach was tested for a variety of layout structures by

conducting experiments by varying the number of rows, which were mixed with different row
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Table 2.6: Problem generation

Functional
Area

# of
Machines in
Each Group

# of
Machine
Groups

Machine
Width
(inches)

Machine
Height
(inches)

Side
Clearance
(inches)

CMP U(100,120) U(1,3) U(20,100) U(70,120) 30
DIF U(20,30) U(8,12) U(5,60) U(40,150) 3,30
ETC U(15,25) U(8,10) U(18,22) U(60,150) 30
FIL U(40,50) U(8,12) U(10,100) U(60,150) 30
IMP U(50,80) U(2,4) U(5,50) U(100,150) 30
LIT U(80,100) U(2,4) U(50,100) U(80,100) 30
METRO U(25,75) U(1,3) U(50,100) U(80,100) 30
WET U(20,30) U(12,14) U(2,50) U(80,100) 30

heights. For example, in the experiments we enumerated four combinations of a two-row

layout mixed with row heights, including layouts with two long-height rows, two short-

height rows, and a combination of both short- and long-height rows. Thus, there were four

types of two-row layouts, six types of three-row layouts, and nine types of four-row layouts

for all the combinations of row heights and row numbers. Each combination was tested

with two types of walkway widths and two relative locations; hence, 76 test problems were

provided in total for the experiments. Due to the required computational time of solving S1

varies from the context of each problem, a cut-off time could be set as tcutoff
u to run S1 by

the amount of machines in all f ∈ U , where u ∈ U . Because of the found wK,upper
k,r by S1,

computational time of S2 is ignorable. Let T limit be the computational time limit for solving

the whole MRMIC problem, and NF
g,f represents NG

g in functional area f , for all f ∈ U .

Then tcutoff
u = T limit

∏
g∈G N

F
g,u∑

f∈U
∏

g∈G N
F
g,f

.

The computational result of the first phase is shown in Figure 2.5, which provides box

plots that summarize the spread of the gaps, as measured by the percentage difference be-

tween our solution and the proposed lower bound. As shown in the figure, the results indicate

that the proposed approach provides layout solutions with single percentage gaps in a reason-

able runtime for all structure parameters. Not surprisingly, the layout solutions with fewer
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Table 2.7: Parameters of layout configuration

Parameter Values
# of rows 2, 3, 4
Row height (inches) Short:U(800,1200), Long:U(2800,3200)
Width of Walkway (inches) 80, 90
Relative Location of FA 1: 2:

Odd Rows:D→I→F→E Odd Rows:F→L→E→M [24]
Even Rows:C→W→F→L Even Rows:F→L→E→I→C [15]

rows yielded better results than the layouts with more rows within a short runtime, because

the complexity of the proposed IP models grows when solving problems with additional rows.

Thus, the gaps that were found for solving the problem with more rows take a longer time to

converge because of the increasing number of decision variables in the IP models. As shown

in the figure, the gaps converge within a runtime of 60 minutes on average.

Figure 2.6 shows the result of the second phase experiment, which represents the per-

centage gaps between the proposed lower bound and our solutions obtained by incorporating

the neighborhood search procedure. In this phase, we applied the procedure to determine

whether we could improve the solution obtained after a 60-minute runtime in the first phase

by relaxing the relative location of FAs. We also set the additional runtime for the second

phase as 60 minutes. This is because solving the IP models with the upper bound obtained

in the first phase during the neighborhood search procedure actually reduces the runtime in

the second phase . Spending more time to determine a better upper bound in the first phase

accelerates solution of the IP models in the second phase. Hence, we extended the runtime

from 60 minutes to 120 minutes for the neighborhood search procedure instead of applying

the neighborhood search procedure to improve the solution of the first phase obtained after

10 minutes runtime in the first phase. As shown in the figure, the additional 10 minutes

required by relaxing the relative locations of FAs only led to a slight improvement in some

of the layouts with three- and four-row structures. The common property of these layouts is

that they have a last column in the longest row that does not use the space effectively before
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Figure 2.5: Convergence of computational results in the first phase

relaxing the relative location, and the neighborhood search procedure is able to obtain a

better layout by moving the column with the most white space from the longest row to the

shortest row if the relative location is relaxed. The results confirm the performance of the

proposed heuristic in the first phase under the relative location constraint, and demonstrate

the second phase neighborhood search is able to improve the solution in a reasonable time.

As a result, both better lower bound and near-optimal layout solutions could be found in

a limited time, indicating that the feasibility of fitting all required machines into a constrained

facility could be determined by the proposed approach. The proposed approach helps to

provide realistic information for future production planning while building or re-modeling a
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Figure 2.6: Convergence of computational results in the second phase

fab. Furthermore, given machine sets generated by possible future demands, the feasibility

analysis supports business decision-making in terms of long-term supply commitments to

the customers.

2.6 Conclusions and future research

This paper defines an MRMIC FLP for semiconductor manufacturing, and presents a

heuristic approach together with corresponding mathematical programming models for the

problem. Unlike previous research, both machines and FAs were considered for the layout

arrangement. In this research, the MRMIC layout structure was implemented. Moreover,
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space utilization, which is more important for semiconductor manufacturing, is considered

as the objective. As a result, measured by the proposed lower bound, high-quality solutions

could be found by the proposed approach in a limited time.

Although we focused on a feasibility analysis to locate all required machines within a

constrained facility given the relative locations of FAs, interesting practical applications of

the proposed solution exist for future study. This research considers space utilization as

the objective for the facility layout plan on both FA and machine levels, but other objective

functions, such as minimizing material handling flows, could be considered in future research.

Another interesting future research objective would be to analyze the feasibility when the

required machine sets are changed as a function of time, thus considering the trade-off

between space utilization and re-layout costs for the proposed solution.
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Chapter 3

Robotics in order picking: Evaluating warehouse layout for pick, place, and

transport-vehicle routing systems

3.1 Introduction

It is estimated that order-picking operations can account for roughly 65% of the total

operating cost, and 60% of all labor activities, in a warehouse [54]. Recent technological

advances in mobile robotics promise to reduce these costs. For example, the recently-unveiled

“Fetch” and “Freight” robots from Fetch Robotics, Inc., pictured in Figure 3.1 and detailed

in Wise et al. [80], have been marketed to the warehousing industry to improve order picking

operations. Both robots are mobile and feature onboard laser scanners to detect and avoid

obstacles. The Fetch robot is equipped with a camera system to identify the items to be

picked and a gripper attachment for retrieving items from a storage rack. The smaller Freight

robot is designed to transport items placed within a removable tote to a packing station where

the items are prepared for shipping. Freight may be used in conjunction with Fetch, with

Fetch placing items into Freight for transport in a pick-and-place process. Alternatively,

Freight may be programmed to follow a human picker in a follow-pick system.

This paper discusses the potential timesavings that new robotics technologies may offer

in order-picking operations. In particular, we consider the problem of collecting a pick list

of items. Each item on the list occupies a particular space in the warehouse (a picking

location), defined by specific two-dimensional coordinates and a height on the storage rack.

A “picker” robot (e.g., Fetch) must retrieve these items individually from the storage area,

and a “transport” robot (e.g., Freight) must transport them to a single packing station

located within the warehouse. The objective is to minimize the time required to transport

all items on the pick list from the warehouse to the packing station. We term this problem
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(a) Fetch and Freight (b) Fetch’s robot hand for order retrieval

Figure 3.1: Fetch and Freight (source: fetchrobotics.com).

the pick, place, and transport vehicle routing problem (PPT-VRP). While this problem was

inspired by Fetch and Freight, it is not specific to these particular robots.

The availability of mobile picker and transport robots prompts a number of interesting

research questions in the context of this order-picking problem. For example, what combina-

tion of picker and transport robots is required to obtain performance exceeding human-based

picking operations, where human workers pick items and return all items described in the

pick list to the packing station manually? Furthermore, how does this answer change if the

robots have a constrained payload capacity (i.e., less than the size of the pick list)? To

help answer these questions, a mixed integer linear programming (MILP) formulation of the

PPT-VRP is proposed. Solutions to this problem describe the sequence of items to be col-

lected by picker robots and establish the timing coordination between picker and transport

robots.

This research also explores the benefits of a hybrid system in which humans are tasked to

retrieve (pick) items while mobile robots are employed to transport these items to the packing

station. Such a “follow-pick” system acknowledges that humans are (at least presently) more

adept at identifying and grasping items from a storage shelf. It also leverages the faster travel

speeds for the robotic transport unit. In particular, the maximum speed for Freight is 2.0

m/s [80]. By comparison, Roodbergen and de Koster [69] note that human pickers pushing
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a cart travel at about 0.6 m/s. Without a cart, a human picker may travel at 1.0 m/s [81],

which is the same travel speed as the Fetch robot. The proposed PPT-VRP formulation

may be employed to determine the optimal number of transport robots to pair with a given

number of human pickers.

Finally, this research examines the relationships between warehouse design and mo-

bile robot picking operations. We explore the impacts of various warehouse aspect ratios

(the width of the warehouse divided by its height), the number of cross aisles within the

warehouse, and the location of packing stations within the warehouse. This paper also

investigates the relative impacts of altering the mix and functionality of a fleet of pick-and-

transport robots. This analysis provides insight into whether it is more beneficial to add

an extra picker, add another transporter, increase the carrying capacity of a transporter, or

increase the retrieval speed of a picker.

The remainder of this paper is organized as follows. Related literature – including ware-

house layout design and evaluation, order batching and picking, automated guided vehicle

(AGV) based warehouse operations, and related vehicle routing problems – is discussed in

Section 3.2. This is followed in Section 3.3 by a formal mathematical programming model

of the problem. This model is extended to consider combinations of robots and human

pickers, as well as an environment in which only human pickers are available. We demon-

strate empirically, via an extensive numerical analysis in Section 3.4, the impacts of various

warehouse layouts and highlight the relative benefits associated with modifying the robot

fleet’s composition and capabilities. Finally, a summary and an overview of future research

opportunities are provided in Section 3.5.

3.2 Related literature

There is a vast body of warehouse operation and layout design research, recent reviews

of which may be found in de Koster et al. [41], and Gu et al. [49, 50]. One category

of layout research involves unit-load warehousing, where large unit sizes (e.g., pallets) limit
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each picker to transporting only one item at a time. Pohl et al. [66] investigated optimization

of warehouse layout structures with perpendicular aisles under a dual-command operation,

where workers re-stock one item and retrieve another item in a route. Gue and Meller

[51] introduced novel non-traditional warehouse designs with diagonal cross aisles and non-

parallel picking aisles to reduce expected traveling distances for order retrieval. Ozturkoglu

et al. [60] proved that the non-traditional single cross aisle Chevron design outperforms others

with more cross aisles. Other considerations of non-traditional layouts include turnover-

based storage policies [67], and multiple depots [52, 61]. The common goal among these

works is the minimization of the expected traveling distance (or time) by changing warehouse

layouts or storage policies. Order batching and detailed picker routing were not considered

in these works, as they focused on unit-loads.

Another categorization of the layout research involves batch picking, in which each picker

may retrieve several items in a route. Roodbergen and Vis [71] investigated the impact of

warehouse layout parameters (depot locations, number and length of aisles) and two routing

policies (S-shape and largest gap) on the expected traveling distances of picking tours. Parikh

and Meller [64] developed a throughput model that incorporates the vertical travel dimension

for warehouses with varying lengths and heights of storage aisles. Thomas and Meller [79]

discussed the effects of various layout aspects – including the size and configuration of the

forward area for fast-moving-item storage, depot configuration, pallet area shape, and pallet

rack height for manual case-picking warehouses – upon labor hours. Roodbergen et al. [72]

provided case studies for the determination of the layout parameters that reduce the average

travel distance for order picking. These layout parameters included storage unit assignments,

the number of cross aisles, warehouse shape, and aisle lengths. Similarly, a simulation-based

statistical analysis of certain warehouse layout parameters was conducted by Shqair et al.

[77].

As stated in Gu et al. [49], proper order batching can also improve the efficiency of order

retrieval. Warehouse order batching research focuses on splitting a set of orders (a pick list)
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into batches to ensure that all batches can be retrieved within a time window. Thus, in

practice, the batch size is determined based on the distribution of the required completion

time for a whole batch [65, 41]. Assuming given routing, heuristics for order batching

problems have been studied under deterministic (c.f., Chen and Wu [38], Gademann and

Velde [47, 48], Hsu et al. [56], Henn [53], Pan et al. [63]) and stochastic demands (c.f., Chew

and Tang [39], Le-Duc and de Koster [59], Nieuwenhuyse and de Koster [103], Henn [53]).

While these research works have provided efficient methodologies for order batching, they

require known routing information and consider given layout configurations.

Routing methodologies for order picking also play an important role in improving ware-

house efficiency. The first model for optimal picker routing was proposed by Ratliff and

Rosenthal [68], which employed a traveling salesman problem to minimize order retrieval

time. Improved routing models were proposed by Scholz et al. [76]. Due to the computa-

tional complexity of this problem, a number of routing heuristics for order picking – such as

S-shape, largest gap, aisle-by-aisle, and combined heuristics – have been studied for prob-

lems of practical size (c.f., de Koster and Poort [40], Chew and Tang [39], Roodbergen and

de Koster [69, 70], Hwang et al. [57], Theys et al. [78]).

AGV-based warehousing systems, such as implementations of autonomous vehicle based

storage and retrieval system (AVS/RS) for high-density storage warehouses, have received

increasing interest. For example, Ferrara et al. [45] studied warehouses with pallet shuttles

and laser guided vehicles which coordinate with each other for item passing at the inter-

sections of aisles. Queueing models were applied to estimate the order retrieval time when

adjusting batch sizes of fleets. Other queueing analytic studies have addressed dwell-points

(c.f., Kuo et al. [58], Roy et al. [73, 74]), aisle locations (c.f., Roy et al. [73, 74]), and batch

sizes of fleets (c.f., Fukunari and Malmborg [46]). Simulation models were presented by

Ekren et al. [44] to analyze the effects of system operating policies and depot locations for

AVS/RS. Saidi-Mehrabad et al. [75] proposed a congestion free vehicle routing problem as-

sociated with job shop scheduling problems for AGVs transporting items from a warehouse
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to the manufacturing system via grid-based paths. Unlike human-based warehousing or the

proposed PPT-VRP, AGV-based warehousing research assumes autonomous vehicles travel-

ing along only designated rail guide-paths, which results in either limited warehouse zoning

strategies or constrained routing policies.

In a more general context, variants of the vehicle routing problem (VRP) are also

closely related to the problem at hand. Of particular relevance is the VRP with multiple

synchronization constraints (VRPMS), a recent review of which is provided by Drexl [42]

and efficient branch-and-cut algorithms were proposed by Drexl [43]. The VRPMS considers

heterogeneous vehicles that must be coordinated to perform tasks such as load transfers or

moving of truck trailers. The PPT-VRP extends the VRPMS to include queueing of delivery

activities and vehicle recharging.

This paper aims to contribute to the literature in two key areas. First, the PPT-VRP

represents a novel optimization problem for the coordinated routing of two types of heteroge-

neous vehicles (e.g., Fetches and Freights). This differs from existing routing methodologies

for warehouse order retrieval, which consider routing for only individual pickers. It also

removes restrictions found in AVS/RS problems in which vehicles are constrained to rail

guide-paths or to particular aisles. Second, this paper explores layout design guidelines

for warehouses employing picker robots or combinations of human pickers and robot trans-

porters. The impacts of warehouse layout parameters (e.g., the number of cross aisles, the

number of picking aisles, and depot locations) are examined for different vehicle parameters

(e.g., vehicle quantities, speeds, and capacities).

3.3 Problem definition and formulations

The PPT-VRP may be defined as follows. A pick list (collection) of items, denoted by

the set I = {1, . . . , |I|}, must be retrieved from the warehouse and delivered to a packing

station (depot). The pick list, which has been pre-defined, may contain items from multiple

customer orders. The objective of the PPT-VRP is to determine routes for all available
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picker and transporter vehicles such that the latest time at which all items from the pick list

I are dropped off at the packing station; that is, to minimize the makespan.

Two types of specialized vehicles (mobile robots) are available, where P represents the

set of “picker” robots (e.g., Fetch) and D represents the set of “delivery” or “transport”

robots (e.g., Freight). The entire fleet of vehicles is thus given by the set V = P ∪ D.

Note that vehicle “blocking” in aisles is ignored (i.e., traffic congestion is not considered).

According to Zhang et al. [82], although there is no formal way to determine the congestion

factor based on the configurations of the aisles and pickers, we checked warehouse aisle

congestion studies that only considered the ratio of aisle width to picker width as from 1 [37]

to 2 [55]. The ratio of aisle width to picker width in our studied warehouses is greater than

3, so we do not consider aisle congestion in this research. The configuration details of this

research can be found in Section 3.4.1

Each robot v ∈ V may have a unique payload capacity, given by ŵv. The initial payload

carried by a given robot is denoted by w′v, while the weight of item i ∈ I is given by w̄i.

Each battery-powered vehicle v ∈ V has an initial charge of 0 ≤ c′v ≤ 1, which represents

the remaining percentage of battery life. Batteries are discharged at the rate of 0 ≤ dv ≤ 1

percent per unit time, which is assumed to be independent of payload. When a vehicle visits

the depot, charging stations will re-charge batteries at a rate of 0 ≤ rv ≤ 1 percent per unit

time. It is assumed that a sufficient number of charging stations are available, such that

vehicles do not wait for charging access. Travel time from the packing station to the chargers

is assumed to be negligible.

Three types of service time are separately identified. First, the time required for picker

robot v ∈ P to grasp item i ∈ I from its location on the stocking shelf is denoted by spick
v,i .

This accounts for differences in robot capabilities as well as additional time required to grasp

items located far (vertically) from the robot’s default pose. Similarly, let splace
v,i represent the

time required for picker robot v ∈ P to place item i ∈ I into a delivery robot. Finally, the

time required for all items transported by delivery robot v ∈ D to be offloaded from the
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robot at the depot is given by sdrop
v . We assume that this time is independent of the number

of items held by the robot, as the person collecting these items at the depot is expected to

simply replace the used tote with an empty one. As delivery vehicles arrive at the depot

they form a queue while waiting for their totes to be replaced.

3.3.1 Representing the network structure

An underlying network structure facilitates the characterization of vehicle movement.

This network includes three types of nodes that represent (1) the initial location of each

vehicle, (2) the locations of items to be retrieved from the warehouse, and (3) the location

of the depot. We let ∆0
v = 0 represent the initial location of vehicle v ∈ V . Although this

node’s label equals zero for all vehicles, it is not a requirement that each vehicle actually

begin service at the same physical location; this labeling convention simply serves to reduce

the number of node numbers. Next, each item i ∈ I defines a node representing the location

of the item. Finally, multiple nodes are utilized to represent the single packing station

(depot). Although there is one physical packing station, our network representation requires

the creation of multiple replicas (copies) of this station. Each replica is given a unique

number, and is associated with exactly one robot. These replicas are required because each

individual robot may visit the packing station multiple times; delivery (Freight) robots may

visit multiple times to deliver items or to recharge, while picker (Fetch) robots will only

visit the packing station to recharge. Each time a robot visits the packing station it will

be assigned to a different replica of the station. Specifically, we define ∆∗v to be the set of

packing station replicas for vehicle v ∈ V . Note that ∆∗v1 ∩ ∆∗v2 = ∅ for all v1 6= v2 (i.e.,

all of these nodes are unique). A pre-processing step is required to determine the number

of replicas that should be created for each robot. Thus, the entire set of nodes is given by:

N = {0} ∪ {1, . . . , |I|} ∪v∈V ∆∗v.

Additional notation characterizes the permissable travel movements of the robots. We

define ∆+
v to be the set of nodes to which vehicle v ∈ V may travel, such that ∆+

v ⊆ {I∪∆∗v}.
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Note that ∆0
v /∈ ∆+

v because a vehicle can never return to its initial location (vehicles may

only leave the initial location). Furthermore, if an item associated with node i ∈ I is too

heavy for vehicle v, then i /∈ ∆+
v . Next, given some node j ∈ ∆+

v for a particular vehicle

v ∈ V , ∆−v,j represents the set of nodes that could be visited immediately prior to node j.

Thus, a vehicle may travel directly from node i ∈ ∆−v,j to node j ∈ ∆+
v . If j ∈ I (i.e., if j

represents the location of an item), then ∆−v,j contains ∆0
v (the vehicle’s initial location), I \j

(all other item locations), and ∆∗v (all packing station replicas). However, if j ∈ ∆∗v (i.e., if

j is one of the packing station replicas), then ∆−v,j contains ∆0
v (this would mean that the

vehicle travels directly from its initial location to a packing station), I (all item locations),

and max{∆∗v < j} (the largest replica node for vehicle v that is smaller than replica node

j). Under this construction, a robot may move from one of its replica packing stations to

another. However, it may only move to the next larger replica node. If a vehicle moves from

replica to replica in an optimal solution, this is indicative of excess replicas being defined for

this vehicle.

Using this notation, we define τv,i,j to be the time required for vehicle v ∈ V to travel

to node j ∈ ∆+
v from node i ∈ ∆−v,j. This parameter may include any additional travel time

required by vehicles when turning corners. Note that ∆0
v = 0 for all v ∈ V , but the travel

time from ∆0
v to any location j, τv,0,j, will incorporate the actual (potentially unique) initial

location of vehicle v. Thus, τv1,0,j does not necessarily equal τv2,0,j for all v1, v2 ∈ V .

3.3.2 Decision variables

A variety of decision variables are employed in this coordinated vehicle routing problem.

First, binary decision variable xv,i,j equals one if picker vehicle v ∈ P travels from node

i ∈ ∆−v,j to node j ∈ ∆+
v . For delivery vehicle v ∈ D, binary decision variable yv,i,j is

similarly defined.

Coordination among the vehicles is a key component of this problem. It is assumed that

items retrieved by a picker robot must be placed into a transport robot before the picker
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can proceed to the next item. Continuous decision variable tv,j ≥ 0 determines the time at

which vehicle v ∈ V arrives at node j ∈ ∆+
v and is ready to conduct an activity at that node.

For picker vehicles (v ∈ P ), this time represents the earliest possible arrival to node j. For

delivery vehicles (v ∈ D) receiving an item from a picker, the definition is nuanced. Here,

tv,j represents the time at which the delivery vehicle may begin to receive item j. That is,

the delivery vehicle is assumed to arrive at node j ∈ I no earlier than the time at which the

picker has actually retrieved the item. The binary decision variable av1,v2,j establishes the

pairing between a picker robot and a delivery robot at a particular item location, such that

av1,v2,j = 1 if v1 ∈ P and v2 ∈ D are assigned to retrieve item j ∈ I.

Although picker and delivery vehicles are capacity constrained, only delivery vehicles

may move while carrying an item. Continuous decision variable wv,i,j ≥ 0 represents the

total weight of items carried by delivery vehicle v ∈ D after leaving node j, having traveled

from node i. Thus, if v travels from i to j, wv,i,j will include all weight loaded through

location i plus the weight added at location j. Note that payload capacity limitations for

picker vehicles are addressed in the definition of ∆+
v , which prohibits a picker from visiting

a location associated with an item that exceeds its capacity.

Three types of decision variables are associated with activities that occur at the depot.

First, delivery vehicles form a queue when arriving at the packing station as they wait for

their totes to be emptied. To monitor the order in which these vehicles arrive at the depot,

binary decision variable qj1,j2 = 1 if vehicle v1 ∈ D arrives at its depot replica j1 ∈ ∆∗v1

before v2 arrives at its depot replica j2 ∈ ∆∗v2 . The battery-powered vehicles require periodic

re-charging, which is performed at stations adjacent to the depot. The charge remaining on

vehicle v ∈ V when it arrives at depot replica j ∈ ∆∗v ∪∆0
v is given by continuous decision

variable 0 ≤ cv,j ≤ 1. Note that the value of cv,∆0
v

is hard-coded to equal c′v at the initial

location. Third, gv,j ≥ 0 represents the duration that vehicle v ∈ V spends charging at

depot replica j ∈ ∆∗v ∪∆0
v.

58



Finally, the makespan, which is to be minimized, is represented by continuous decision

variable m ≥ 0.

3.3.3 MILP formulation

The MILP formulation for the PPT-VRP is as follows.

Min m (3.1)

s.t. m ≥ tv,j ∀ v ∈ D, j ∈ ∆∗v, (3.2)∑
v∈P

∑
i∈∆−v,j

xv,i,j = 1 ∀ j ∈ I, (3.3)

∑
v∈D

∑
i∈∆−v,j

yv,i,j = 1 ∀ j ∈ I, (3.4)

2av1,v2,j ≤
∑

i∈∆−v1,j

xv1,i,j +
∑

i∈∆−v2,j

yv2,i,j ∀ j ∈ I, v1 ∈ P, v2 ∈ D, (3.5)

av1,v2,j + 1 ≥
∑

i∈∆−v1,j

xv1,i,j +
∑

i∈∆−v2,j

yv2,i,j ∀ j ∈ I, v1 ∈ P, v2 ∈ D, (3.6)

∑
v1∈P

∑
v2∈D

av1,v2,j = 1 ∀ j ∈ I, (3.7)

tv2,j ≥ tv1,j + spick
v1,j
−M(1− av1,v2,j) ∀ v1 ∈ P, v2 ∈ D, j ∈ I, (3.8)

tv1,j ≥ tv2,i + splace
v1,i

+ τv1,i,j −M(2− av1,v2,i − xv1,i,j)

∀ v1 ∈ P, v2 ∈ D, i ∈ I, j ∈ {∆+
v1

: i ∈ ∆−v1,j}, (3.9)∑
j∈{∆+

v :∆0
v∈∆−v,j}

xv,∆0
v ,j

= 1 ∀ v ∈ P, (3.10)

∑
i∈∆−v,j

xv,i,j = 1 ∀ v ∈ P, j ∈ ∆∗v, (3.11)

∑
i∈∆−v,j

xv,i,j =
∑

k∈{∆+
v :j∈∆−v,k}

xv,j,k ∀ v ∈ P, j ∈ ∆+
v , (3.12)
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∑
i∈∆−v,j

xv,i,j ≤ 1 ∀ v ∈ P, j ∈ ∆+
v , (3.13)

∑
j∈{∆+

v :i∈∆−v,j}

xv,i,j ≤ 1 ∀ v ∈ P, i ∈ {∆+
v ∪∆0

v}, (3.14)

∑
j∈{∆+

v :∆0
v∈∆−v,j}

yv,∆0
v ,j

= 1 ∀ v ∈ D, (3.15)

∑
i∈∆−v,j

yv,i,j = 1 ∀ v ∈ D, j ∈ ∆∗v, (3.16)

∑
i∈∆−v,j

yv,i,j =
∑

k∈{∆+
v :j∈∆−v,k}

yv,j,k ∀ v ∈ D, j ∈ ∆+
v , (3.17)

∑
i∈∆−v,j

yv,i,j ≤ 1 ∀ v ∈ D, j ∈ ∆+
v , (3.18)

∑
j∈{∆+

v :i∈∆−v,j}

yv,i,j ≤ 1 ∀ v ∈ D, i ∈ {∆+
v ∪∆0

v}, (3.19)

tv,0 = 0 ∀ v ∈ V, (3.20)

tv,j ≥ tv,i +
(
spick
v,i + splace

v,i + τv,i,j

)
xv,i,j −M(1− xv,i,j)

∀ v ∈ P, j ∈ ∆+
v , i ∈ {∆−v,j ∩ I}, (3.21)

tv,j ≥ tv,i +
∑
v′∈P

splace
v′,i av′,v,i + τv,i,j −M(1− yv,i,j) ∀ v ∈ D, j ∈ ∆+

v , i ∈ {∆−v,j ∩ I},

(3.22)

tv,j ≥ tv,i + gv,i + τv,i,jxv,i,j −M(1− xv,i,j)

∀ v ∈ P, j ∈ ∆+
v , i ∈ {∆∗v ∪ 0 : i ∈ ∆−v,j}, (3.23)

tv,j ≥ tv,i + gv,i + τv,i,jyv,i,j −M(1− yv,i,j)

∀ v ∈ D, j ∈ ∆+
v , i ∈ {∆∗v ∪ 0 : i ∈ ∆−v,j}, (3.24)

tv,j2 ≥ tv,j1 + sdrop
v

 ∑
i∈{∆−v,j1\(∆

∗
v∩j2)}

yv,i,j1

+ τv,j1,j2yv,j1,j2 −M(1− yv,j1,j2)

∀ v ∈ D, j1 ∈ {∆∗v \max{∆∗v}}, j2 ∈ {∆+
v \ j1}, (3.25)

wv,i,j ≤ ŵvyv,i,j ∀ v ∈ D, j ∈ ∆+
v , i ∈ ∆−v,j, (3.26)
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wv,∆0
v ,j

= (w′v + w̄j)yv,∆0
v ,j
∀ v ∈ D, j ∈ {I ∩∆+

v }, (3.27)

wv,i,j = w̄jyv,i,j ∀ v ∈ D, j ∈ I, i ∈ {∆−v,j ∩∆∗v}, (3.28)

wv,j,k ≥
∑
i∈∆−v,j
i 6=k

wv,i,j + w̄kyv,j,k − ŵv(1− yv,j,k) ∀ v ∈ D, k ∈ I, j ∈ {I : k 6= j},

(3.29)

gv,0 = 0 ∀ v ∈ V, (3.30)

cv,∆0
v

= c′v ∀ v ∈ V, (3.31)

cv,j ≤ cv,i + rvgv,i − dv (tv,j − (tv,i + gv,i))

∀ v ∈ V, j ∈ ∆∗v, i = {∆∗v ∪∆0
v : i ∈ ∆−v,j}, (3.32)

tv2,j2 ≥ tv1,j1 + sdrop
v1

 ∑
i∈{∆−v1,j1\∆

∗
v1
}

yv1,i,j1

−M(1− qj1,j2)

∀ v1 ∈ D, v2 ∈ {D \ v1}, j1 ∈ ∆∗v1 , j2 ∈ ∆∗v2 , (3.33)

qj1,j2 + qj2,j1 = 1 ∀ v1 ∈ D, v2 ∈ {D : v2 > v1}, j1 ∈ ∆∗v1 , j2 ∈ ∆∗v2 , (3.34)

qj1,j2 = 1 ∀ v ∈ D, j1 ∈ ∆∗v, j2 ∈ {∆∗v : j2 > j1}, (3.35)

m ≥ 0, (3.36)

qj1,j2 ∈ {0, 1} ∀ v1 ∈ D, v2 ∈ {D \ v1}, j1 ∈ ∆∗v1 , j2 ∈ ∆∗v2 , (3.37)

tv,j ≥ 0 ∀ v ∈ V, j ∈ ∆+
v , (3.38)

wv,i,j ≥ 0 ∀ v ∈ D, j ∈ ∆+
v , i ∈ ∆−v,j, (3.39)

yv,i,j ∈ {0, 1} ∀ v ∈ D, j ∈ ∆+
v , i ∈ ∆−v,j, (3.40)

xv,i,j ∈ {0, 1} ∀ v ∈ P, j ∈ ∆+
v , i ∈ ∆−v,j, (3.41)

av1,v2,j ∈ {0, 1} ∀ v1 ∈ P, v2 ∈ D, j ∈ I, (3.42)

0 ≤ cv,j ≤ 1 ∀ v ∈ V, j ∈ {∆∗v ∪∆0
v}, (3.43)

0 ≤ gv,j ∀ v ∈ V, j ∈ ∆∗v. (3.44)
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The objective function (3.1) seeks to minimize the latest time at which all items are

delivered to the packing station (depot), as limited by Constraint (3.2). Constraints (3.3)

and (3.4) ensure that each item is retrieved by a picker vehicle and placed into a delivery

vehicle. Each item location must be visited by both a picker and a transporter.

Constraints (3.5)–(3.9) coordinate the picker and delivery vehicles at each item location,

where Constraints (3.5), (3.6), and (3.7) set the appropriate value of av1,v2,j to pair a picker

with a transporter, while Constraints (3.8) and (3.9) establish the timing of this coordination.

Conversely, Constraint (3.6) sets av1,v2,j = 1 if v1 and v2 meet at j. Constraint (3.7) ensures

that each item is associated with exactly one picker/transporter pair. Next, Constraint (3.8)

specifies that a picker may retrieve an item before a transporter arrives, but the transporter

is not deemed to arrive at this location until the picker has completed the picking operation.

Constraint (3.9) prohibits a picker vehicle from moving to the next location, j, until the

placement of an item at i is completed.

The value of M , which represents a sufficiently large number, corresponds to an upper

bound on the makespan. One valid bound may be calculated as the maximum cumulative

time required to visit all nodes by a single vehicle, such that

M = max{τupper
v + τ charging

v }, (3.45)

where

τupper
v = τv,∆0

v ,depot +
∑
j∈I

2τv,depot,j + max

{∑
j∈I

(
spick
v′,j + splace

v′,j

)}
+ |I|max

{
sdrop
v′′

}

for all v ∈ V, v′ ∈ P, and v′′ ∈ D. Here, τupper
v represents the time for vehicle v ∈ V to travel

from its initial location to the depot, then to make round-trip visits from the depot to each

picking location, plus the maximum service time for the pick, place, and drop activities. The

value of τ charging
v , which represents the required charging time for vehicle v to travel a route
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of duration τupper
v , is given by

τ charging
v =

max {0, (dvτupper
v − c′v)}
rv

.

Valid vehicle routes are established by Constraints (3.10)–(3.14). Constraint (3.10) re-

quires each picker to depart from its initial location, while Constraint (3.11) ensures that

each picker tour ends at a depot replica. Conservation of flow for picker vehicles is guar-

anteed by Constraint (3.12). Constraints (3.13) and (3.14) prohibit pickers from visiting or

leaving any node more than once, respectively. Constraints (3.15)–(3.19) are analogous to

Constraints (3.10)–(3.14) for delivery vehicles.

Constraints (3.20)–(3.25) incorporate travel time into the routing process, where Con-

straint (3.20) initializes the start time for all vehicles to be zero. Constraint (3.21) states

that, if a picker travels from i to j (where i is associated with picking up an item), then

the arrival time to j cannot be before the arrival time to i plus the total service time at i

plus the travel time from i to j. Similarly for delivery vehicles, Constraint (3.22) guarantees

that transporter’s arrival time to j cannot be earlier than the summation of the arrival time

to i, the placement service time performed by the partnering picker at i, and the travel

time from i to j. Constraints (3.23) and (3.24) ensure valid start times when a picker or

transporter leave a depot replica, respectively, while Constraint (3.25) captures the drop-off

time required before visiting subsequent locations.

Payload limitations associated with delivery vehicles are addressed by Constraints (3.26)–

(3.29). Constraint (3.26) states that the total weight carried by delivery vehicle v ∈ D after

visiting node j cannot exceed the capacity limit. When a transporter leaves its initial loca-

tion (∆0
v) and travels to some location j, the total carried weight equals the summation of the

initial weight and the quantity picked up at location j, as in Constraint (3.27). Constraint

(3.28) determines the payload weight carried by transporter v when picking up the first item
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after leaving a depot replica. Constraint (3.29) forces the payload weight to be at least as

large as the summation of weight when v leaves j, and the weight loaded at k.

Constraint (3.30) initializes the charging time at each vehicle’s initial location to be

zero. Similarly, Constraint (3.31) establishes the initial charge of vehicle v when leaving ∆0
v.

The left-hand side of Constraint (3.32) represents the charge of vehicle v when arriving at

depot j. This charge cannot exceed the charge when it arrived at depot i (note that depot

replicas are ordered such that i precedes j) plus the additional charge acquired while at

station i minus the discharge that occurs between i and j.

Constraints (3.33), (3.34), and (3.35) address queueing of transport vehicles at the

depot. Constraint (3.33) establishes the effective arrival time of a transporter at the depot,

taking into account the arrival order of all transport vehicles. Decision variable qj1,j2 = 1 if

v1 arrives before v2, where j1 is the depot replica associated with v1. The time that v2 may

begin service at the depot must not be before v1 has completed. Constraint (3.34) considers

two depot replica nodes that are used by different transport vehicles, ensuring that exactly

one of the replica nodes is used before the other. Similarly, Constraint (3.35) hard-codes

the values of qj1,j2 for a particular transport vehicle to force a given vehicle to utilize its

replica nodes in order. The model concludes with decision variable definitions in Constraints

(3.36)–(3.44).

3.3.4 Modifying the model to account for humans

While the above PPT-VRP model was formulated specifically for picker and transport

robots, it is straightforward to modify the formulation to address combinations of human

pickers and robotic delivery vehicles. For these mixed modes, we consider only the case of

a human performing picking operations and a delivery robot transporting picked items to

the depot. Given that humans are (at least presently) more adept at identifying and picking

items from a shelf, and that delivery robots are likely faster at moving material, it would

seem impractical to replace the delivery robot with a human. Thus, to replace the picker
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robot with a human (i.e., to model a follow-pick system), we consider the set P to represent

all human pickers (rather than picker robots). It is then sufficient to modify the parameter

values describing travel time (τv,i,j), payload capacity (ŵv), picking time (spick
v,i ), and placing

time (splace
v,i ) for all v ∈ P . Constraints (3.30) – (3.32), which govern battery consumption,

may be safely ignored for all v ∈ P .

For the purposes of comparing the robot-only and hybrid human-robot systems, it is also

beneficial to determine the optimal routing assignments associated with traditional human-

based order picking. In this scheme, each human worker moves through the warehouse with

a cart and performs both picking and transporting operations. As in the PPT-VRP, the

routing constraints prohibit any item location from being visited by more than one picker.

Additionally, we assume that a queue may still be formed at the packing station. However,

no charging time is required for the human. To re-use the framework of the PPT-VRP

model, we let V = P = D be redefined as the set of human pickers, and let decision variable

yv,i,j = 1 be redefined to indicate that human v ∈ V should travel from location i ∈ ∆−v,j to

location j ∈ ∆+
v . The human routing model presented below incorporates Constraint (3.47),

which is modified from Constraint (3.22) to ensure that every human picker only leaves a

picking location after performing both item picking and placing.

Min m (3.46)

s.t. tv,j ≥ tv,i +
(
spick
v,i + splace

v,i + τv,i,j

)
yv,i,j −M(1− yv,i,j)

∀ v ∈ D, j ∈ ∆+
v , i ∈ {∆−v,j ∩ I}, (3.47)

Constraints (3.2), (3.4), (3.15)− (3.20), (3.25)− (3.29), (3.33)− (3.40).

3.4 Numerical analysis

A series of numerical studies was conducted to (1) assess the impact of warehouse lay-

out configurations on the performance of PPT-VRP systems, and (2) quantify the relative
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impacts of adding picker or transporter robots, increasing picker speeds, or increasing trans-

porter capacities. All computational work was conducted on a PC with a core Intel i5-2410m

processor running Microsoft Windows 8 in 64-bit mode. The PPT-VRP models were solved

by Gurobi 6.0.3.

3.4.1 The impacts of layout designs on PPT-VRP

To determine the degree to which warehouse layouts impact the relative performance of

robotic-based picker systems against traditional human-based picking operations, 18 different

warehouse layouts were generated. Each layout is characterized by the number of vertical

picking aisles (PAs), the number of horizontal cross aisles (CAs), and the location of the

depot. Specifically, these test layouts feature either 2, 6, or 10 PAs; 2, 3, or 4 CAs; and

either traditional or centrally-located depots. Traditional depots (TDs) are typically located

at the horizontal midpoint along the lower boundary of the warehouse, while less-common

central depots (CDs) are located in the middle of the warehouse.

Consistent with Pan et al. [62] and Parikh and Meller [64], CAs have a width of 10

feet, PAs a width of 6 feet, and storage racks have footprints of 1-foot wide by 5-feet deep.

According to the specifications of [80], both the Fetch and Freight robots have bases of 22-

inches in diameter. Thus, in these layouts, three robots can occupy a PA side-by-side with

room to spare. For this reason, aisle blocking is not considered in this study.

Each layout contains 460 ± 20 picking locations, with slight variations owing to the

loss of picking locations surrounding CDs. Furthermore, changes in the numbers of PAs and

CAs affect the quantity of storage locations. For example, as noted by [70], adding CAs

increases the space requirements of a warehouse. Two of the generated warehouse layouts

are illustrated in Figure 3.2.

Three metrics are employed to quantify the differences among the generated layouts.

These include the aspect ratio (α), the average distance from the depot to each picking lo-

cation (ADFD), and the average distance between picking locations (ADBPL). These values
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(a) A warehouse with a traditional depot, 10 PAs, and 2 CAs. There are 440 storage locations in this
595-square-meter facility, identified as Layout 7 in Table 3.1.

(b) A warehouse with a central depot, 6 PAs and 4 CAs. There
are 454 storage locations in this 651-square-meter facility, identi-
fied as Layout 15 in Table 3.1.

Figure 3.2: Illustrations of two generated layouts
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Table 3.1: A summary of warehouse designs generated for the numerical analysis

Layout Parameters Layout Attributes
Depot # of # of ADFD ADBPL # of Storage Space

Layout Type PAs CAs α (m) (m) Locations Req. (m2)
1

TD

2 2 0.26 22.82 19.90 456 368.64
2 2 3 0.25 23.74 16.65 460 386.48
3 2 4 0.24 24.66 16.53 464 404.31
4 6 2 1.78 17.48 18.50 448 481.61
5 6 3 1.52 19.10 17.09 456 561.88
6 6 4 1.32 20.71 17.62 464 642.15
7 10 2 4 20.67 23.40 440 594.58
8 10 3 3.2 22.58 22.89 460 743.22
9 10 4 2.67 22.89 23.84 480 891.87
10

CD

2 2 0.25 12.07 20.82 456 386.48
11 2 3 0.24 12.19 16.89 458 389.45
12 2 4 0.23 13.32 17.50 464 422.15
13 6 2 1.71 16.70 19.01 448 499.45
14 6 3 1.52 12.22 17.18 450 561.88
15 6 4 1.32 14.37 18.04 454 651.06
16 10 2 3.81 20.49 24.08 456 624.31
17 10 3 3.2 16.77 22.98 456 743.22
18 10 4 2.67 19.00 24.14 466 891.87

are summarized in Table 3.1, along with the total space requirements and the number of

storage locations. The ADFD and ADBPL metrics have been widely used to estimate the

travel distances of different warehouse picker routing policies (c.f., Hwang et al. [57], Rood-

bergen and Vis [71], Gue and Meller [51], Ozturkoglu et al. [60]). Note that layouts with

traditional depots have a higher ADFD, but a slightly lower ADBPL, than layouts with

centrally-located depots.

For each layout, 300 randomly-generated 5-item pick lists were created, resulting in

5,400 test instances. A uniform storage policy is applied, as per previous batch order picking

research (c.f., Ho et al. [54], Nieuwenhuyse and de Koster [103], Parikh and Meller [64], Yu and

de Koster [81], Henn [53], Shqair et al. [77], Thomas and Meller [79], Roodbergen et al. [72]).

The use of fixed pick list sizes is common in the order picking literature (c.f., Roodbergen

and de Koster [70], Hwang et al. [57], Roodbergen and Vis [71], Pan et al. [62], Shqair et al.
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[77]). However, while these studies considered pick list sizes ranging from 4 to 80 items, the

complexity of the PPT-VRP would require excessive computational time to obtain optimal

solutions for larger-sized pick lists via Gurobi. Of course employing heuristic methods would

provide solutions to solve larger-scale problems, but these would not be provably optimal.

As such, any analysis regarding the impacts of layout configurations would be complicated

by an uncertain optimality gap.

Three order-picking systems are evaluated. The first is based on the Fetch and Freight

picker and transporter robots, denoted below as F&F. The second combines human pickers

with robotic transports, denoted as H&F (or human and Freight). In this follow-pick collabo-

ration, humans perform the tasks of picking and placing items, while the robotic transporter

performs delivery operations. The H&F approach leverages the shorter item retrieval times

for humans versus picker robots and the faster travel speeds for transporter vehicles versus

humans. Finally, the third system considers traditional human-based picking.

Nine combinations of pickers and transporters are considered – from one picker and

one transporter (1/1), to three pickers and three transporters (3/3) – in the F&F and H&F

systems. A single human is considered in the human-only system.

Picker robots travel at a speed of 1.0 m/s, while transport robots travel at 2.0 m/s [80].

Each picker robot is assumed to require 5-seconds to pick up or place an item into a tote.

Humans are assumed to travel at 0.6 m/s with a cart, and 1 m/s without; humans require

1.5 seconds to pick up and place an item into a cart [81].

The tote drop-off time is assumed to be 5 seconds for either transport robots or humans.

The capacity of each transporter is varied, such that each may hold 1, 3 or 5 items in a tote.

This allows cases where a transporter with relatively low capacity must revisit the depot to

fulfill a pick list. No capacity limitations are placed on human-based operations.

In the following analysis, “percentage improvement” refers to the improvement in ef-

ficiency relative to that of a human-based system with a single human worker. We first
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investigate the impacts associated with changing the number of CAs, as summarized in Fig-

ure 3.3. Each individual boxplot was obtained by using either an F&F or H&F system and

either a TD or CD. According to the results, adding CAs does not improve the performance

substantially. In the cases in which single one-unit-capacity transporters were used in ware-

houses with TDs, the efficiency improvement decreases by an average of 0.4% per additional

CA, because inserting more CAs pushes the picking locations farther away from the TD (i.e.,

increases the ADFD). Consequently, narrow layouts are not suitable for use in combination

with low-capacity mobile systems. This finding is consistent with those of Roodbergen and

de Koster [70], who noted that increasing the number of CAs might not improve the perfor-

mance of human-based systems despite creating more picking route options. Thus, although

adding CAs decreases the ADBPL, it also increases the ADFD. Nevertheless, this impact is

reduced when a CD is adopted; CDs outperform TDs by 4.8% overall and by 7.87% when

low-capacity transporters are employed.

Moreover, neither the layout parameters nor the picker type (humans or robots) notice-

ably impact the efficiency in the 3/3 allocation, even if low-capacity transporters are used.

This result implies that if the numbers of pickers and transporters are sufficient (compared

to the length of the pick list), the efficiency improvement realized by using robots becomes

“robust” against changes in the layouts and type of pickers. Additionally, it is evident that

the human-only picking system is more efficient (on average) than the robotic systems in-

volving single transporter robots with one-unit capacities (e.g., the human-only system is

5.2%, 4.3%, and 7.6% more efficient than the 1/1, 2/1, and 3/1 robotic systems, respec-

tively). The negative efficiency improvement percentages in Figure 3.3 provide evidence of

this characteristic. However, a closer analysis reveals that, in situations with large ADFDs,

the robotic-based systems are more efficient since transport robots can travel faster than

humans.

Figure 3.4 illustrates the performance efficiency impacts associated with changing the

number of PAs. Each additional PA increases the efficiency by 3.3% on average in both the
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Figure 3.3: Impacts of CAs on robotic picking efficiency
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situations with TDs and those with CDs. This improvement results from the fact that adding

PAs increases the ADBPL, which causes the distances that must be traveled to visit the

random picking locations to increase. Thus, the high speed of transporter robots becomes

more advantageous as the number of PAs increases. The improvements are reduced for

systems with single low-capacity transporters when the ADFD increases, but are greater in

warehouses with higher ADBPLs, in which cases humans must travel for significantly greater

times than robots to visit the picking locations in a route. Moreover, although implementing

a CD reduces the impact of adding CAs, ADBPL is not significantly impacted by adding

PAs when a CD is used. The analysis also indicates that there is no benefit associated with

having more transporters than pickers when the transporter capacity is high. This finding

is not surprising, because in these cases each transporter simply follows a picker during the

item retrieval process, given that transporters are faster than pickers and have capacities

sufficient to hold all of the items on the pick list in a route.

Due to the randomness of the generated pick lists, the ranges of the boxplots obtained

using certain combinations of layout parameters appear to be rather wide. For example, in a

certain warehouse, the efficiency improvement could be negative if all the items from the pick

list were located close to the depot but positive if the items were located far away from each

other or from the depot. Thus, we investigated the effects of the ADFD and ADBFL on the

efficiency, regardless of the layout parameters. Figure 3.5 depicts the relationships among

the makespan, ADFD, and ADBPL for each generated pick list. The vehicle combination

used to obtain each three-dimensional plot is indicated above the plot, and the differently

colored surfaces correspond to F&F and H&F systems with different capacities. Some of the

three-dimensional plots have only four surfaces because the same results were obtained by

using three- and five-unit-capacity transporters, in both the H&F and F&F cases.

As shown in Figure 3.5, the impact of the ADBPL is relatively small compared to that

of the ADFD, but interactions between the ADFD and ADBPL exist for some combinations.

The interactions appear in the plots corresponding to H&F systems in which the transporters
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Figure 3.4: Impacts of PAs on robotic picking efficiency
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have low capacities and F&F systems in which transporters have high capacities (e.g., the

H&F system in which the transporters have three-unit capacities and in F&F systems with

five-unit capacities). When there is only one picker and one transporter (the top left plot

in Figure 3.5), the F&F system in which the transporters have five-unit capacities is more

efficient than the H&F system in which they have three-unit capacities for retrieving pick

lists with ADFDs greater than 23 m and ADBPLs less than 25 m. Furthermore, when there

is one picker but two (three) transporters, the F&F system is more appropriate for retrieving

pick lists with ADFDs greater than 15 m (12 m) and ADBPLs less than 28 m (30 m). Thus,

increasing the transporters’ capacities yields more substantial efficiency improvements than

increasing the item picking and placing speeds does when the ADFD is relatively high.

However, the improvement achieved by increasing the transporters’ capacities is diminished

when the ADBPL is high. The same characteristics are observable between the H&F system

in which the transporters have one-unit capacities and the F&F system in which they have

three-unit capacities, as shown in the plots labeled 1P/2T, 2P/3T, and 3P/3T. The trade-

off of increasing the transporters’ capacities is that the amount of travel among the picking

locations increases, even though the frequency of travel to and from the depot decreases.

Furthermore, having more pickers reduces the difference between the improvements realized

by using the F&F and H&F systems (i.e., the impacts of the item picking/placing speeds),

and having more transporters lessens the impacts of the transporters’ capacities.

Additionally, the 2/2 systems always outperform the 3/1 systems (yielding 16.5% greater

efficiency improvements, on average), which indicates the importance of balancing the num-

bers of pickers and transporters. For example, adding a transporter is more beneficial than

adding a picker in a 2/1 system. The results also indicate that systems with fewer pickers

and transporters, such as those with only one of each, are less efficient than the low-capacity

F&F systems with 3/3 allocations, even if a high-capacity H&F system is employed.
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Figure 3.5: Makespans of systems with different layout attributes
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3.4.2 System efficiency improvement

While the above analysis explored the impacts of layouts on a fixed assortment of order

pickers (be they robots, humans, or a combination), we now turn our attention to the

question of how to modify the order picker assortment. In particular, we consider four types

of modifications. The first option is to add an additional picker, denoted as “+1P”. Second,

there is an option of adding a transporter, “+1T”. Next, it may be possible to increase

the capacity of a transporter. In our analysis we consider transporters that may carry one,

three, or five units at a time. Thus, we denote an increase of capacity as “+2C”. Finally, as

technology continues to improve, it may be possible to replace the current picker robots with

new models that are able to grasp and place items faster. In this analysis we consider the

particular upgrade that is equivalent to replacing Fetch robots with a human picker, denoted

as “F-to-H”.

Consistent with the previous analysis, we limit the number of pickers and transporters

to 3 or less, and the capacity of transporters to 5 or less. Thus, +1P (+1T) is not an option if

3 pickers (transporters) are already in the system and +2C is not an option for transporters

that already have a capacity of 5 units. Hereafter we refer to transporters with a capacity

of 1, 3, or 5 items as low (L), medium (M), or high (H), respectively. All transporters in

a given system are assumed to have the same capacity. Vehicle quantities are represented

as the number of pickers / number of transporters / capacity of transporters. For example,

2/1/M represents a system with 2 pickers and 1 transporter with a 3-item (medium) capacity.

The details of the test problems in this numerical analysis are the same as in the previous

section.

Figure 3.6 illustrates the ADFD and ADBPL combinations yielding the greatest ef-

ficiency improvements when the designated modifications were applied in situations with

different transporter capacities for each pick list (regardless of the layout). The vehicle com-

binations used to generate the individual two-dimensional plots are provided above the plots,

and colors in the plots designate the actions producing the greatest efficiency improvement
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percentages among all of the possible modifications and capacity levels. For example, the

green area in the 1P/1T plot indicates that the efficiency improvement percentage achieved

by performing +1T in the 1/1/L situation is not only greater than the improvements realized

by executing any of the other three actions in the 1/1/L scenario, but also greater than those

resulting from implementing any of the four modifications in the 1/1/M and 1/1/H systems.

Figure 3.6: Most beneficial actions in situations with different transporter capacities and
picker/transporter combinations

We categorize the vehicle combinations into four groups for further analysis. The com-

bination in the first group, 1P/1T, has insufficient numbers of both types of vehicles (i.e.,

fewer vehicles than were present in the other investigated combinations). In such situations,

the optimal actions depend upon the ADFD, the ADBPL, and their interaction. Note that
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the picker can visit all five of the picking locations in one trip but that the transporter with

one-unit capacity can visit only one picking location in each trip. Thus, if the ADBPL is

high, the picker must spend more time traveling among the picking locations, while if the

ADFD is high, the low-capacity transporter must spend more time traveling between the

depot and the picking locations. As a result, when the ADBPL is high but the ADFD is

low, +1P is the optimal action in the 1P/1T scenario since the transporter can arrive at

the picking locations before the picker. When the ADFD is high but the ADBPL is low,

+1T is preferable. When the ADFD and ADBPL are both low, F-to-H yields the greatest

improvement because not much improvement could be achieved by using robots, even though

they can travel faster than humans. When the ADFD and ADBPL are both high, the trans-

porter reaches the picking locations after the picker, since the influence of the ADFD on the

transporters is greater than that of the ADBPL on the pickers.

The combinations in the second group, 1P/2T and 1P/3T, represent systems with in-

sufficient numbers of pickers. Thus, improving the picking capabilities (by performing +1P

or F-to-H) is more important than increasing the transporting capabilities (by implementing

+1T or +2C). The results indicate that applying +1P yields greater efficiency improvement

when the ADBPL is high since this modification reduces the distance traveled by each picker

among the picking locations by dividing the route into two (by using each of two pickers to

visit two or three locations rather than employing one picker to visit all five of the locations).

However, F-to-H produces the greatest efficiency improvement when the ADBPL is low (in

which case less improvement could be realized by applying +1P to divide the travel load).

The combinations in the third group, 2P/1T and 3P/1T, represent systems with insuf-

ficient numbers of transporters. In these cases, +2C yields the most significant efficiency

improvement by reducing the frequency with which the transporters must travel between

the depot and the picking locations when the ADFD is relatively high, but +1T (when using

low-capacity transporters) results in greater improvement when the ADFD is low.

78



The combinations in the fourth group, 2P/2T, 2P/3T, 3P/2T, and 3P/3T, correspond

to systems with relatively sufficient numbers of both vehicle types (i.e., more vehicles than

were present in the other investigated combinations). F-to-H becomes more important than

+1T when the ADFD is low, and the corresponding blue area in Figure 6 becomes larger

as the number of transporters in the system increases. In addition, for the systems with

low-capacity transporters, +2C only yields greater improvement than F-to-H does when

the ADFD is high, but the corresponding gray area in Figure 6 shrinks as the number of

transporters increases. Thus, having more transporters lessens the impact of +2C.

3.5 Conclusions and future research opportunities

This paper was motivated by the availability of specialized “picker” robots that can

retrieve items from storage locations and “transport” robots that can bring these items to a

packing station. Based on these capabilities, a new problem, the PPT-VRP, was defined to

route these mobile robots in an effort to minimize the time required to retrieve a collection of

items from within a warehouse. An MILP formulation of this problem was presented and was

utilized to examine the interactions between warehouse configurations and the composition

of the fleet of order-picking robots.

The numerical analysis provided several key insights. From a warehouse layout per-

spective, inserting more CAs pushes the picking locations farther away from the TD (i.e.,

increasing the ADFD that low-capacity transporters must travel to deliver each item). While

employing a CD reduces the impact of adding CAs, the ADBPL is not significantly affected

by adding PAs when a CD is used. From the perspective of configuring the robot fleet, in

general, F-to-H is more effective when the ADFD and ADBPL are both low or there are

sufficient numbers of pickers and high-capacity transporters.

When there are numerous low-capacity transporters but relatively few pickers, +1P

(F-to-H) is preferable if the ADBPL is high (low). If there are numerous pickers but few

low-capacity transporters, +1T (+2C) is more effective when the ADFD is low (high). When
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the numbers of pickers and low-capacity transporters are both sufficient, +2C (F-to-H) is

preferable if the ADFD is high (low). Additionally, the impacts of the item picking and

placing speeds decrease as the number of pickers increases, and the impact of the transporters’

capacities decreases as the number of transporters increases. If the numbers of pickers and

transporters are both sufficient, the efficiency of the system is robust against changes in the

warehouse layout.

This work provides a foundation for a variety of future research opportunities. Due to

the NP-hard nature of the PPT-VRP, large-scale pick lists were not considered in the analysis

of optimal solutions in this study. Therefore, efficient heuristics for large-scale problems are

desirable. From a warehouse operations perspective, an analysis of different storage policies

would be valuable. The determination of suitable order-batching methodologies is another

open topic in the context of robot-based warehousing. Another related problem of interest

is the use of these robots for re-stocking activities, where transporter robots deliver items

from the depot back into the warehouse and picker robots return items to the shelves.
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Chapter 4

Advanced pick, place, and transport-vehicle routing problems for robotics in order picking

4.1 Introduction

Recent robotics advancements promise to improve the effectiveness of order fulfillment

for warehouses. In addition to autonomous warehousing, which requires operation under

specific warehouse structures or configurations with rails or conveyors, a new breed of robots

that are suitable to operate in normal human work environments recently became available

from companies such as FetchRobotics [91], IAM Robotics [98], and Locus Robotics [101].

These robots provide not only the robustness which is able to replace (or work with) humans,

but also better performance and low-cost. The operation of these solutions rely on the

coordination between two types of units, pickers and transporters. A picker grasps items

from a shelf and places them on a transporter. A transporter travels within a warehouse,

collects items from pickers, and then quickly delivers the items to a packing station (depot)

to satisfy individual customer orders.

From the operational prospective of these warehousing solutions, only Lee and Murray

[100] have modeled the routing behavior for order picking as a vehicle routing problem:

the pick, place, and transport- vehicle routing problem (PPT-VRP). The problem seeks to

minimize the makespan, which is the time required to deliver all items from a pick list

to the packing station. In that study, the performance of the warehousing solutions were

demonstrated to be better than traditional human-based warehousing, and the impacts of

warehouse layout designs was evaluated when coordinated mobile robots are deployed.

However, Lee and Murray [100] assumed that pickers cannot move while holding an item,

which meant that every storage location in the pick list has to be visited by a transporter.

Subsequently, we extend the study by relaxing the assumption. If a picker can move toward
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the transporter while holding an item picked from the storage rack, the travel distances of

transporters could then be reduced by collecting items at some point between the depot and

the storage rack. Thus, an advanced PPT-VRP model (APPT-VRP) that considers this

functionality is proposed in this work. As illustrated in Figure 4.1, although there are two

pickers and one transporter in both of these warehouses, the transporter actually travels less

to retrieve two items stored in the same locations when using the APPT-VRP model.

Figure 4.1: Comparison between PPT-VRP and the advanced PPT-VRP

As the PPT-VRP model, the objective of the APPT-VRP is to minimize the makespan.

In Lee and Murray [100], the NP-hard nature of the PPT-VRP, the uniqueness of the PPT-

VRP in the literature. And also, a typical warehouse receives thousands of orders in a day,

and these orders need to be fulfilled as soon as possible for better service level. In our

preliminary experimental results, a 10-item pick list problems can not be solved optimally

within 24 hours. Thus, there is a need of efficient heuristics for the large-scale problems.

Moreover, because of the nature of the industry, which is characterized by frequent orders

from different customers that need to be satisfied as soon as possible, optimal or near-

optimal routing is essential to minimize the delivery time. Therefore, this paper focuses on

the development of heuristics and the demonstration of their effectiveness.
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The remainder of this paper is organized as follows. A review of the literature related to

autonomous vehicle routing is presented in Section 4.2. A formal problem definition of the

APPT-VRP and mathematical programming model are provided in Section 4.3. As a result

of the NP-hard nature of this problem, an efficient heuristic is proposed in Section 4.4 to

solve large-scale APPT-VRP instances for practical use. We demonstrate the effectiveness

of the proposed heuristic, and highlight the benefits associated with the APPT-VRP model

via an extensive numerical analysis in Section 4.5. Finally, a summary and an overview of

related future research opportunities are given in Section 4.6.

4.2 Related literature

As explained in Lee and Murray [100], the PPT-VRP model addresses the situation in

which multiple heterogeneous vehicles operate collaboratively and simultaneously for ware-

housing. We also discussed the uniqueness of our previous study considering the collabora-

tion between heterogeneous vehicles. Therefore, the APPT-VRP is novel and can contribute

to the warehouse order picking literature. In addition to our previous survey, this section

focuses on related routing problems and the literature of autonomous vehicle applications.

From the routing prospective, the first modified traveling salesperson problem (TSP)

routing model, which considered the routing for single human picker warehousing, was pro-

posed by [68], and subsequently improved by [76]. Another recently raised categorization

of a related problem involves VRP with coordination constraints. Drexl [87] provides a

survey article of VRP with multiple synchronization constraints (VRPMSs), and Drexl [88]

proposed a branch-and-cut algorithm for VRPMSs based on a new network representation.

Although VRPMS considers that autonomous fleets have to arrive at certain locations to

drag compatible non-autonomous fleets with loads in order to fulfill tasks such as visiting

customers and transshipment locations, routing for the non-autonomous fleets and collab-

oration between autonomous fleets are not considered. Other variants of VRPMS have

been applied in health care services. Bredstrom and Ronnqvist [83] considered a combined
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vehicle routing and scheduling problem with time windows and simultaneous (several ve-

hicles required by one customer) and precedence (multiple ordered visits required by one

customer) synchronization constraints in separate models for home care service. Rousseau

et al. [111] considered dispatching problems under the dynamic VRPMS. Redjem and Mar-

con [106], Haddadene et al. [93] proposed heuristic approaches for variants of the caregiver

routing problem.

As regards VRP applications in autonomous vehicles, Murray and Chu [102] discussed

a flying sidekick traveling salesman problem for drone-assisted parcel delivery. Hu et al. [96]

considered the optimal routing for a multi-capacity rail guided vehicle working on a linear

track in an automated freight handling system to minimize under conflict-avoidance. Davis

[85] investigated the optimal manner of the dynamic routing by simulation to avoid conges-

tion of autonomous vehicles traveling on a square lattice of roads for better vehicle safety and

traffic flow. For the applications of autonomous vehicle based storage and retrieval system

(AVS/RS), which are applied in high-density storage warehouses, queuing and simulation

models have been proposed to analyze the effects of different operation policies (Kuo et al.

[99], Fukunari and Malmborg [92], Ekren et al. [89], Roy et al. [112], Ferrara et al. [90], Roy

et al. [113]). Most of these AVS/RS studies considered autonomous vehicles only traveling

along rail guide-paths, with vehicles designated to particular aisles. Saidi-Mehrabad et al.

[114] studied a vehicle routing problem with considering job shop scheduling for AGVs trans-

porting for the transportation with grid-based paths between the manufacturing system and

the warehouse.

Our present contribution to the literature is, as an extension of our previous study, a new

PPT-VRP optimization model as an application of VRPMS in robotics warehousing. Both

our present and previous studies [100] not only differ from existing routing methodologies for

warehouse order retrieval, which consider routing for only individual pickers, but also remove

restrictions found in AVS/RS problems in which vehicles are constrained to rail guide-paths

or to particular aisles. Unlike Lee and Murray [100], the APPT-VRP enables collaboration
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between heterogeneous vehicles to happen anywhere in the warehouses for potential travel

distance minimization by the transporting vehicles. Thus, the APPT-VRP determines the

visited locations for the collaborations as well as the visiting orders for vehicles. Therefore,

the APPT-VRP is novel and can contribute to the industry.

4.3 Problem definition and mathematical programming formulations

As described in [100], we set I = {1, . . . , |I|} as a pick list (collection) of items required

to be retrieved from the warehouse and delivered to a packing station (depot). A pick list can

contain only one or multiple customer orders required to be fulfilled by the vehicles. Next,

let P represent the set of “picker” vehicle, and D represent the set of “delivery transporter”

vehicle. Thus, the entire fleet of vehicles can be denoted by the set V = P ∪ D, where

P ∩ D = ∅. Moreover, we ignore the vehicle blocking in aisles (aisle congestion) in this

problem because of the size of the vehicles in practice. Additionally, pickers can not deliver

the items to the depot directly without a transporter. Furthermore, robot v ∈ V can have

different initial payload capacities, denoted by w′v, and overall payload capacities, given by

ŵv, while the weight of item i ∈ I is denoted by w̄i. As the PPT-VRP, we let spick
v,i represent

the time required for picker v ∈ P to grasp item i ∈ I from its location on the stocking shelf,

and the time required for picker v ∈ P to place item i ∈ I into a transporter is denoted by

splace
v,i . Finally, the time required for transporter v ∈ D to drop off (offload) a tote of items

at the depot is given by sdrop
v .

In addition to the parameters in the PPT-VRP, we define the set of transshipment

locations (item hand-off location) as IS = {|I| + 1, . . . , |I| + |I|}. Each element (hand-off

location) in IS corresponds to each element in I. For example, |I| + 1 in IS represents

the item hand-off location for item 1 in I, and so as |I| + 1, . . . , |I| + |I| to item 2, . . . , |I|,

respectively. In order to address the physical coordinates of IS in continuous space in the

model, we partition the warehouses with perpendicular aisles into columns and rows as a

grid-based structure. Figure 4.1 illustrates the rows and columns in a warehouse on its left
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side. Let c represent the cth column from left to right, where c ∈ C = {1, . . . , |C|}, and r

represent the rth row from top to bottom, where r ∈ R = {1, . . . , |R|}. Then C ′ represents

the set of rack columns in even numbers of c ∈ C ′ = {2, 4, . . . }, and R′ represents the set

of cross aisle rows for all odd numbers of r ∈ R′ = {1, 3, . . . , |R|}. Thus, for a warehouse

with the size of H on height and W on width, HRr represents the height of row r, and W C
c

represents the width of column c. With the x coordinate of the middle point of column c,

XC,Mc , and the y coordinate of the middle point of row r, Y R,Mr , we can ensure item hand-off

locations can only happen in aisles.

Although the distance between two known locations i and j ∈ N\IS can be pre-

determined, some notations are required to ascertain the shortest distance between two

item hand-off locations or one known location (either the depot or item storage locations)

and a hand-off location. Let XKi (Y Ki ) represent x (y) coordinates of a known location, then

shortest distance between two locations could be determined as the sum of the absolute dif-

ferences of the coordinates if the two locations are not in the same rack column (row). Thus,

additional notations are required to identify if the two locations are whether in the same

rack column (row). Let BCc,i = 1 if location i is in column c, where c ∈ C and i ∈ N\IS , and

BRr,i = 1 if location i is in row r, where r ∈ R and i ∈ N\IS . These help to identify whether

two locations are in the same row (column) in order to determine the shortest distance be-

tween these two. For example, if two locations are in the same row (not cross aisles) but not

in the same column, then the distance between these two locations is determined by adding

a detour distance, which will be introduced later. In addition, let Fv represent the speed of

vehicle v, then the required traveling time between two locations can be represented as the

distance between them divided by the speed. Unlike the previous research, depot queuing

is not considered in the model, which means multiple transporters can drop off items at the

depot simultaneously.
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4.3.1 Representing the network structure

To facilitate the characterization of vehicle movement, we extend the network structure

from the PPT-VRP by incorporating four types of nodes to represent (1) the initial location

of each vehicle, (2) the location of the depot, (3) the storage locations (picking locations) of

items to be retrieved from the warehouse, and (4) the transshipment locations where each

item is passed from a picker to a transporter in the warehouse. Note that the PPT-VRP

only has (1)–(3).

In Lee and Murray [100], the initial location of vehicle v ∈ V is denoted by ∆0
v = 0,

which allows each vehicle to begin service at different physical locations although the label of

the initial location for all vehicles equals zero. Also, multiple nodes are utilized to represent

the replicas of the depot for transporters, and each replica is encoded with a unique number

to be associated with only one transporter. This is because each transporter may visit the

depot more than one time to deliver items, so a transporter will visit a different replica

each time the transporter visits the depot. The set of depot replicas for vehicle v ∈ D is

denoted by ∆∗v, where ∆∗v1 ∩ ∆∗v2 = ∅ for all v1 6= v2, and the set of nodes is denoted by

N = {0} ∪ I ∪ IS ∪v∈V ∆∗v.

Next, item i ∈ I (i ∈ IS) represents the node of the item storage (hand-off) location.

Similar to [100], additional notations are employed to characterize the movement of robots.

Let ∆+
v be the set of nodes to which vehicle v ∈ V may travel, such that ∆+

v ⊆ {I∪IS} ∀ v ∈

P and ∆+
v ⊆ {IS ∪∆∗v} ∀ v ∈ D, where ∆0

v /∈ ∆+
v because a vehicle will never return to its

initial location (vehicles only leave the initial location).

We let ∆−v,j represent the set of nodes that could be visited right after visiting node j.

Thus, a vehicle can only travel directly from node i ∈ ∆−v,j to node j ∈ ∆+
v . If j ∈ I (i.e., if

j represents the location of an item), then ∆−v,j contains ∆0
v (the vehicle’s initial location),

IS\{j + |I|} (all item hand-off locations except the corresponding hand-off location of j),

and ∆∗v (all of the depot replicas) for all v ∈ P . For a transporter, if j ∈ ∆∗v (depot replicas),

then ∆−v,j contains ∆0
v (the transporter travels directly from the initial location to depot), IS
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(all of the item hand-off locations), and max{∆∗v < j} (the largest replica node for vehicle v

that is smaller than replica node j). If j ∈ IS , ∆−v,j contains ∆0
v, I

S\j, and ∆∗v\max{∆∗v}.

Under this construction, a transporter may move from one of its depot replicas to another

larger replica node. Finally, we also define τv,i,j to be the required time for vehicle v ∈ V to

travel to node j ∈ ∆+
v from node i ∈ ∆−v,j if i, j ∈ N\IS .

Unlike Lee and Murray [100], pickers do not visit the depot, and battery charging is not

considered in this paper due to the recently released specification [117] which has indicated

the battery power is sufficient for the vehicles to work an 8-hour day. In such case, pickers

do not have to go back to the depot after a pick list is retrieved for the purpose of continuous

warehouse operation. Also, transporters can not visit any i ∈ I, although node i ∈ I and

j ∈ IS can be representing the same physical location. Note that [100] assumes the hand-offs

have to happen at the very item storage locations. Moreover, a picker can travel from an

j ∈ I to only the corresponding j ∈ IS (an item must be passed once it is picked by a picker)

but can travel from a i ∈ IS to either a j ∈ I\{i− |I|} or to the depot.

Table 4.1 summarizes the parameter notations of APPT-VRP.

4.3.2 Decision variables

Decision variables are defined to model the APPT-VRP. As in [100], we define binary

decision variable xv,i,j = 1 (yv,i,j = 1) if picker v ∈ P (transporter v ∈ D) travels from

node i ∈ ∆−v,j to node j ∈ ∆+
v . Decision variable tv,j ≥ 0 determines the arrival time at

node j ∈ ∆+
v (ready to conduct an activity at the node) for which vehicle v ∈ V . Note

that if an item hand-off location is the same as the item storage location, a transporter may

physically arrive at the hand-off location earlier than tv,j but needs to wait if the picker

has not completed the picking activity. In such case, tv,j represents the time when the

transporter begins to receive the item. Moreover, av1,v2,i = 1 if picker v1 ∈ P passes item

i ∈ I to transporter v2 ∈ D at a particular location j = i+ |I| ∈ IS after the item is picked
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Table 4.1: Summary of parameter notations

I = {1, . . . , |I|} The pick list of items required to be retrieved.

IS = {|I|+ 1, . . . , |I|+ |I|} The set of item hand-off locations.
P The set of pickers.
D The set of transporters, where P ∩D = ∅.
V = P ∪D The set of all fleets.
C = {1, . . . , |C|} The set of columns in the warehouse structure, and C ′ = {2, 4, . . . }

represents the set of rack columns in even numbers.
R = {1, . . . , |R|} The set of rows in the warehouse structure, and R′ = {1, 3, . . . , |R|}

represents the set of cross aisle rows (odd number of rows).
H (W ) The height (width) of the warehouse.

HRr The height of row r.

W Cc The width of column c.

BCc,i = 1 If location i is in column c, where c ∈ C and i ∈ N\IS . Otherwise,
BCc,i = 0.

BRr,i = 1 If location i is in row r, where r ∈ R and i ∈ N\IS . Otherwise,
BRr,i = 0.

XC,Mc The x coordinate of the middle point of column c ∈ C.
Y R,Mr The y coordinate of the middle point of row r ∈ R.

XKi (Y Ki ) The x (y) coordinate of a known location (the depot or an item
storage location).

∆0
v = 0 The initial location of vehicle v ∈ V .

∆∗v The set of depot replicas for vehicle v ∈ D, where ∆∗v1 ∩∆∗v2 = ∅ for
all v1 6= v2.

∆+
v The set of nodes to which vehicle v ∈ V may travel, such that ∆+

v ⊆
{I ∪ IS} ∀ v ∈ P and ∆+

v ⊆ {IS ∪∆∗v} ∀ v ∈ D, where ∆0
v /∈ ∆+

v .
∆−v,j The set of nodes that could be visited right after visiting node j,

where ∆−v,j∈I ⊆ {∆
0
v ∪ IS\{j+ |I|} ∪∆∗v} ∀ v ∈ P , ∆−v,j∈∆∗v

⊆ {∆0
v ∪

IS∪max{∆∗v < j}} , and ∆−
v,j∈IS ⊆ {∆

0
v∪IS\j∪∆∗v\max{∆∗v}} ∀ v ∈

D.

N = {0} ∪ I ∪ IS ∪v∈V ∆∗v The set of nodes in the network structure.
Fv The speed of vehicle v ∈ V .

spick
v,i The time required for picker v ∈ P to grasp item i ∈ I from its

storage location.

splace
v,i The time required for picker v ∈ P to place item i ∈ I into a trans-

porter.

sdrop
v The time required for transporter v ∈ D to drop off a tote of items

at
the depot.

τv,i,j The required time for vehicle v ∈ V to travel to node j ∈ ∆+
v from

node i ∈ ∆−v,j if i, j ∈ N\IS .

w′v Initial payload capacity of vehicle v ∈ V .
ŵv Overall payload capacity of vehicle v ∈ V .
w̄i The weight of item i ∈ I.
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up at location i by v1. Additionally, continuous decision variable wv,i,j ≥ 0 represents the

total weight of items carried by transporter v ∈ D after leaving node j, having traveled from

node i.

In addition to Lee and Murray [100], several types of item hand-off location associated

decision variables are required. First, let xSi (ySi ) represent the x (y) coordinate of the item

hand-off location for item i, where i ∈ IS , and let dXi,j (dYi,j) represent the x (y) distance from

i to j, where i ∈ N , j ∈ {N : i ∈ IS |IS : i ∈ N\IS}, and i 6= j. Note that this research

considers the routing problem within the warehouses with perpendicular aisles, where the

shortest distance between two locations may be longer than the difference between the x

coordinates plus the difference between the y coordinates if these two locations are in the

same rack column/row but not in the same row (column). In order to ascertain the shortest

distance, dXi,j and dYi,j, additional variables are required to check if two locations are in the

same rack column (row). Let bCc,i = 1 if item i− |I| is passed within column c, where c ∈ C

and i ∈ IS , and bRr,i = 1 if item i − |I| is passed within row r, where i ∈ IS and r ∈ R.

Then bC,Same
i,j = 1 (bR,Same

i,j = 1) can be determined if node i and node j are located in the

same column c ∈ C ′ or row r ∈ R\R′. Thus, let bdetour,X
i,j = 1 (bdetour,Y

i,j = 1) if the distance

between node i and node j is longer than the the difference between the x (y) coordinates

. In other words, a horizontal (vertical) detour is required traveling from one location to

the other when rack column (row) is on the way as obstacles. For horizontal detours, which

mean two possible routes, the left one and the right one, on detour, let aLi,j = 1 (aRi,j = 1)

if vehicle travels through the left (right) route from i to j when bdetour,X
i,j = 1, where i ∈ N ,

j ∈ {N : i ∈ IS |IS : i ∈ N\IS}, and i 6= j. For vertical detours, let aUi,j = 1 (aDi,j = 1) if

vehicles travel through up/down route on detour from i to j when bdetour,Y
i,j = 1, where i ∈ N ,

j ∈ {N : i ∈ IS |IS : i ∈ N\IS}, and i 6= j. Detour routes are illustrated in Figure 4.2.

Moreover, the formulations for determining the distance between two item hand-off

locations are not linear. Therefore, variables to linearize the formulations are introduced.

Let lP,Li,j = aUi,j
∑
c∈C′

bCc,jX
C,M
c−1 and lP,Ri,j = aDi,j

∑
c∈C′

bCc,jX
C,M
c+1 , where i, j ∈ IS , and i 6= j. Next,
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Figure 4.2: Examples of a vertical (horizontal) detour

let lP,Ui,j = aUi,j
∑

r∈R\R′
bRr,jY

R,M
r−1 and lP,Di,j = aDi,j

∑
r∈R\R′

bRr,jY
R,M
r+1 , where i, j ∈ IS , and i 6= j.

Then let lS,Li,j = aLi,jx
S
j and lS,Ri,j = aRi,jx

S
j , where i, j ∈ IS , and i 6= j. Finally, lS,Ui,j = aUi,jy

S
j

and lS,Di,j = aDi,jy
S
j , where i, j ∈ IS , and i 6= j. Later on details in the formulations will be

explained.

Table 4.2 summarizes the decision variable notations of APPT-VRP.

4.3.3 MILP formulation

Due to the length of the MILP formulation for APPT-VRP, we break the formulation

into two parts. The first part, the routing behavior formulations, contains the objective func-

tion, timing established constraints, coordination constraints, tour constraints, and payload

constraints. The second part, the hand-off location formulations, contains the constraints re-

lated to item hand-off location determination, the distance determination, and linearization

related constraints.
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Table 4.2: Summary of decision variable notations

av1,v2,i ∈ {0, 1} av1,v2,i = 1 if picker v1 ∈ P passes item i ∈ I transporter v2 ∈ D at
a particular location j = i + |I| ∈ IS after the item is picked up at
location i by v1.

aLi,j , a
R
i,j ∈ {0, 1}) aLi,j = 1 (aRi,j = 1) if vehicle travels through the left (right) route on

detour from i to j when bdetour,X
i,j = 1, where i ∈ N , j ∈ {N : i ∈

IS |IS : i ∈ N\IS}, and i 6= j.

aUi,j , a
D
i,j ∈ {0, 1} aUi,j = 1 (aDi,j = 1) if vehicles travel through the up (down) route on

detour from i to j when bdetour,Y
i,j = 1, where i ∈ N , j ∈ {N : i ∈

IS |IS : i ∈ N\IS}, and i 6= j.

bCc,i ∈ {0, 1} bCc,i = 1 if item i − |I| is passed within column c, where c ∈ C and

i ∈ IS .

bC,Same
i,j ∈ {0, 1} bC,Same

i,j if node i and node j are located in the same column c ∈ C ′.
bdetour,X
i,j , bdetour,Y

i,j ∈ {0, 1} bdetour,X
i,j = 1 (bdetour,Y

i,j = 1) if the distance between node i and node
j is longer than the difference between the x (y) coordinates.

bRr,i ∈ {0, 1} bRr,i = 1 if item i−|I| is passed within row r, where i ∈ IS and r ∈ R.

bR,Same
i,j ∈ {0, 1} bR,Same

i,j = 1 if node i and node j are located in the same row r ∈
R\R′.

dXi,j , d
Y
i,j ≥ 0 The x (y) distance from i to j, where i ∈ N , j ∈ {N : i ∈ IS |IS : i ∈

N\IS}, and i 6= j.

lP,Li,j , lP,Ri,j ≥ 0 lP,Li,j = aUi,j
∑
c∈C′

bCc,jX
C,M
c−1 and lP,Ri,j = aDi,j

∑
c∈C′

bCc,jX
C,M
c+1 to linearize

Constraints (4.43) – (4.46), where i, j ∈ IS , and i 6= j.

lP,Ui,j , lP,Di,j ≥ 0 lP,Ui,j = aUi,j
∑

r∈R\R′
bRr,jY

R,M
r−1 and lP,Di,j = aDi,j

∑
r∈R\R′

bRr,jY
R,M
r+1 to lin-

earize Constraints (4.43) – (4.46), where i, j ∈ IS , and i 6= j.

lS,Li,j , lS,Ri,j ≥ 0 lS,Li,j = aLi,jx
S
j and lS,Ri,j = aRi,jx

S
j to linearize Constraints (4.43) –

(4.46), where i, j ∈ IS , and i 6= j.

lS,Ui,j , lS,Di,j ≥ 0 lS,Ui,j = aUi,jy
S
j and lS,Di,j = aDi,jy

S
j to linearize Constraints (4.43) –

(4.46), where i, j ∈ IS , and i 6= j.
tv,j ≥ 0 The arrival time at node j ∈ ∆+

v for vehicle v ∈ V .
wv,i,j ≥ 0 The total weight of items carried by transporter v ∈ D after leaving

node j, having traveled from node i.
xv,i,j , yv,i,j ∈ {0, 1} xv,i,j = 1 (yv,i,j = 1) if picker v ∈ P (transporter v ∈ D) travels from

node i ∈ ∆−v,j to node j ∈ ∆+
v .

xSi , ySi ≥ 0 The x (y) coordinate of the item hand-off location for item i, where
i ∈ IS , and dXi,j (dYi,j) represents the x (y) distance from i to j, where

i ∈ N , j ∈ {N : i ∈ IS |IS : i ∈ N\IS}, and i 6= j.

The routing behavior formulations

According to [41], optimizing the warehouse service level in terms of order retrieval

times is a need for any order picking systems. The sooner an order can be retrieved, the
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earlier the order can be shipped to the customer with less chances to miss the shipping

due time. Moreover, shorter retrieval times imply better flexibility in handling late order

changes. Therefore, the objective of the problem is to minimize the makespan, which is the

latest time at which all items from the pick list I are dropped off at the packing station.

The makespan is represented by continuous decision variable m ≥ 0.

The first part of the MILP formulation is as follows.

Min m (4.1)

s.t. m ≥ tv,j ∀ v ∈ D, j ∈ ∆∗v, (4.2)∑
v∈P

∑
i∈∆−v,j

xv,i,j = 1 ∀ j ∈ I ∪ IS , (4.3)

∑
v∈D

∑
i∈∆−v,j

yv,i,j = 1 ∀ j ∈ IS , (4.4)

2av1,v2,i ≤
∑

i∈∆−
v1,i+|I|

xv1,i,i+|I| +
∑

k∈∆−
v2,i+|I|

yv2,k,i+|I| ∀ i ∈ I, v1 ∈ P, v2 ∈ D, (4.5)

av1,v2,i + 1 ≥
∑

i∈∆−
v1,i+|I|

xv1,i,i+|I| +
∑

k∈∆−
v2,i+|I|

yv2,k,i+|I| ∀ i ∈ I, v1 ∈ P, v2 ∈ D, (4.6)

∑
v1∈P

∑
v2∈D

av1,v2,j = 1 ∀ j ∈ I, (4.7)

tv2,i+|I| ≥ tv1,i + spick
v1,i

+ (dXi,i+|I| + dYi,i+|I|)/Fv1 −M(1− av1,v2,i)

∀ v1 ∈ P, v2 ∈ D, i ∈ I, (4.8)

tv1,k ≥ tv2,j=i+|I| + splace
v1,i+|I| + (dXi+|I|,k + dYi+|I|,k)/Fv1 −M(2− av1,v2,i − xv1,i+|I|,k)

∀ v1 ∈ P, v2 ∈ D, i ∈ I, k ∈
{

∆+
v1

: {i+ |I|} ∈ ∆−v1,i+|I|

}
, (4.9)∑

j∈{∆+
v :∆0

v∈∆−v,j}

xv,∆0
v ,j
≤ 1 ∀ v ∈ P, (4.10)

∑
i∈∆−v,j

xv,i,j = xv,j,j+|I| ∀ v ∈ P, j ∈ I, (4.11)

|I|
∑

j∈{∆+
v :∆0

v∈∆−v,j}

xv,∆0
v ,j
≥

∑
k∈{∆+

v :j∈∆−v,k}

xv,j,k ∀ v ∈ P, j ∈ I, (4.12)
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xv,i,i+|I| ≥
∑

k∈{∆+
v :i+|I|∈∆−v,k}

xv,i+|I|,k ∀ v ∈ P, i ∈ I, (4.13)

∑
i∈∆−v,j

xv,i,j ≤ 1 ∀ v ∈ P, j ∈ ∆+
v , (4.14)

∑
j∈{∆+

v :i∈∆−v,j}

xv,i,j ≤ 1 ∀ v ∈ P, i ∈ {∆+
v ∪∆0

v}, (4.15)

∑
j∈{∆+

v :∆0
v∈∆−v,j}

yv,∆0
v ,j

= 1 ∀ v ∈ D, (4.16)

∑
i∈∆−v,j

yv,i,j = 1 ∀ v ∈ D, j ∈ ∆∗v, (4.17)

∑
i∈∆−v,j

yv,i,j =
∑

k∈{∆+
v :j∈∆−v,k}

yv,j,k ∀ v ∈ D, j ∈ ∆+
v , (4.18)

∑
i∈∆−v,j

yv,i,j ≤ 1 ∀ v ∈ D, j ∈ ∆+
v , (4.19)

∑
j∈{∆+

v :i∈∆−v,j}

yv,i,j ≤ 1 ∀ v ∈ D, i ∈ {∆+
v ∪∆0

v}, (4.20)

tv,0 = 0 ∀ v ∈ V, (4.21)

tv,i ≥ tv,∆0
v

+ (dX∆0
v ,i

+ dY∆0
v ,i

)/Fv −M(1− xv,∆0
v ,i

) ∀ v ∈ P, i ∈ I, (4.22)

tv,j ≥ tv,i + spick
v,i + (dXi,j + dYi,j)/Fv1 −M(1− xv,i,j)

∀ v ∈ P, j ∈ ∆+
v , i ∈ {∆−v,j ∩ I}, (4.23)

tv,k ≥ tv,j=i+|I| + splace
v,i+|I| + (dXi+|I|,k + dYi+|I|,k)/Fv −M(1− xv,i+|I|,k)

∀ v ∈ P, i ∈ I, k ∈
{

∆+
v1

: {i+ |I|} ∈ ∆−v1,i+|I|

}
, (4.24)

tv,k ≥ tv,i+|I| +
∑
v′∈P

splace
v′,i av′,v,i + (dXi+|I|,k + dYi+|I|,k)/Fv −M(1− yv,j,k)

∀ v ∈ D, k ∈ ∆+
v \{i+ |I|}, i ∈ I, (4.25)

tv,j ≥ tv,i + (dXi,j + dYi,j)/Fv −M(1− yv,i,j)

∀ v ∈ D, j ∈ ∆+
v , i ∈ {∆∗v ∪ 0 : i ∈ ∆−v,j}, (4.26)
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tv,j2 ≥ tv,j1 + sdrop
v

 ∑
i∈{∆−v,j1\(∆

∗
v∩j2)}

yv,i,j1

+ (dXj1,j2 + dYj1,j2)/Fv −M(1− yv,j1,j2)

∀ v ∈ D, j1 ∈ {∆∗v \max{∆∗v}}, j2 ∈ {∆+
v \ j1}, (4.27)

wv,i,j ≤ ŵvyv,i,j ∀ v ∈ D, j ∈ ∆+
v , i ∈ ∆−v,j, (4.28)

wv,∆0
v ,i+|I| = (w′v + w̄i+|I|)yv,∆0

v ,i+|I| ∀ v ∈ D, j ∈ {I
S ∩∆+

v }, (4.29)

wv,i,j = w̄jyv,i,j ∀ v ∈ D, j ∈ IS , i ∈ {∆−v,j ∩∆∗v}, (4.30)

wv,j,k ≥
∑
i∈∆−v,j
i 6=k

wv,i,j + w̄kyv,j,k − ŵv(1− yv,j,k) ∀ v ∈ D, k ∈ IS , j ∈ {IS : k 6= j},

(4.31)

The objective function (4.1) seeks to minimize the makespan. Constraint (4.2) serves

to establish the makespan. Constraints (4.3) and (4.4) ensure that each item is retrieved by

a picker and a transporter. This requires each item storage location and each item hand-off

location to be visited by a picker, and each item hand-off location to be visited by a trans-

porter. Constraints (4.5)–(4.9) coordinate the picker and transporter at location j, where

Constraints (4.5), (4.6), and (4.7) ensure av1,v2,i = 1 to pair picker v1 with transporter v2 to

retrieve item i, while Constraints (4.8) and (4.9) establish the timing of this coordination.

In particular, Constraint (4.5) forces av1,v2,i = 0 unless picker v1 and transporter v2 meet at

the location i+ |I| to pass an item after v1 picked up the item at i. Conversely, Constraint

(4.6) sets av1,v2,i = 1 if v1 picks item i and then meets v2 at i+ |I|. Constraint (4.7) ensures

that each item is associated with exactly one picker/transporter pair. Next, Constraint (4.8)

specifies that a transporter may retrieve an item after a picker has completed the picking

operation and moved to the hand-off location. Constraint (4.9) prohibits a picker from mov-

ing to the next location, k, until the placement of an item at i+ |I| is completed. The value

of M represents a sufficiently large number (an upper bound on the makespan).

Valid vehicle routes are established by Constraints (4.10)–(4.15). Constraint (4.10)

ensures at most one picker to start its tour by departing from its initial location. Constraint
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(4.11) conserves the flow of pickers. Constraint (4.12) ensures a picker must visit the hand-

off location if it leaves the picking location. Constraint (4.13) ensures a picker must go

out of the depot if it is used. Constraints (4.14) and (4.15) ensure picker from visiting or

leaving any node no more than once, respectively. Constraints (4.16)–(4.20) are analogous

to Constraints (4.10)–(4.15) for the case of transporters.

Constraints (4.21)–(4.24) establish travel time into the routing process, where Constraint

(4.22) initializes all vehicles starting at time zero. Constraint (4.21) establishes the arrival

time for pickers from the depot to a picking location. Constraint (4.23) ensures if a picker

travels from i ∈ I to j = i+ |I|, then the arrival time to j cannot be before the arrival time

to i plus the pick up time at i plus the travel time from i to j. Constraint (4.24) establishes

the arrival time for pickers from a hand-off location to a picking location. Similarly for

transporters, Constraint (4.25) guarantees that transporter’s arrival time to k cannot be

earlier than the summation of the arrival time to j, the placement service time performed by

the partnering picker at j, and the travel time from j to k. Constraint (4.26) ensures valid

start times when a transporter leaves a depot replica, while Constraint (4.27) establishes the

drop-off time required before visiting subsequent locations.

Payload limitations for transporters are addressed by Constraints (4.28)–(4.31). As in

Lee and Murray [100], wv,j,k = 0 unless v travels directly from j to k, and pickers do not

have explicit payload capacity constraints, since they may only retrieve one item at a time; if

item i ∈ I is too heavy for picker v ∈ P , then i /∈ ∆+
v and i /∈ ∆−v,j. Constraint (4.28) ensures

that the transporter v ∈ D not going to be overloaded after visiting node j. Constraint

(4.29) addresses the situation that when transporter leaves its initial location and travels

to some location j, the total weight carried by transporter equals the summation of the

initial weight w′v and the quantity picked up at location j. Constraint (4.30) makes sure the

payload weight carried by transporter v when picking up the first item after unloaded at a

depot replica. Constraint (4.31) forces the payload weight to be not less than the summation

of item weight when v ∈ D leaves j, and the weight loaded at k (when v leaves k from j).
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The hand-off location formulations

The second part of the MILP formulation is as follows.

∑
c∈C

bCc,i = 1 ∀ i ∈ IS , (4.32)

∑
r∈R

bRr,i = 1 ∀ i ∈ IS , (4.33)

∑
r∈R′

bRr,i ≥
∑
c∈C′

bCc,i ∀ i ∈ IS , (4.34)

xSi −
∑
c∈C′

0.5WC
c b
C
c,i ≤

∑
c∈C

bCc,iX
C,M
c ≤ xSi +

∑
c∈C′

0.5WC
c b
C
c,i ∀ i ∈ IS , (4.35)

ySi −
∑

r∈{R\R′}

0.5HR
r b
R
r,i ≤

∑
r∈R

bRr,iY
R,M
r ≤ ySi +

∑
r∈{R\R′}

0.5HR
r b
R
r,i ∀ i ∈ IS , (4.36)

aLi,j + aRi,j = bdetour,X
i,j ∀ i ∈ N, j ∈ {N\IS : i ∈ IS |IS : i ∈ N\IS}, i 6= j, (4.37)

aUi,j + aDi,j = bdetour,Y
i,j ∀ i ∈ N, j ∈ {N\IS : i ∈ IS |IS : i ∈ N\IS}, i 6= j, (4.38)

dXi,j ≥ xSi −XKj + 2aLi,j(X
K
j −

∑
c∈C′

BC
c,jX

C,M
c−1 ) ∀ i ∈ N, j ∈ {N\IS : i ∈ IS |IS : i ∈ N\IS},

(4.39)

dXi,j ≥ XKj − xSi + 2aRi,j(
∑
c∈C′

BC
c,jX

C,M
c+1 −XKj ) ∀ i ∈ N, j ∈ {N\IS : i ∈ IS |IS : i ∈ N\IS},

(4.40)

dYi,j ≥ ySi − Y Kj + 2aDi,j(Y
K
j −

∑
r∈R\R′

BR
r,jY

R,M
r+1 )

∀ i ∈ N, j ∈ {N\IS : i ∈ IS |IS : i ∈ N\IS}, (4.41)

dYi,j ≥ Y Kj − ySi + 2aUi,j(
∑

r∈R\R′
BR
r,jY

R,M
r−1 − Y Kj )

∀ i ∈ N, j ∈ {N\IS : i ∈ IS |IS : i ∈ N\IS}, (4.42)

dXi,j ≥ xSi − xSj + 2aLi,j(x
S
j −

∑
c∈C′

bCc,jX
C,M
c+1 ) ∀ i, j ∈ IS , i 6= j, (4.43)
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dXi,j ≥ xSj − xSi + 2aRi,j(
∑
c∈C′

bCc,jX
C,M
c−1 − xSj ) ∀ i, j ∈ IS , i 6= j, (4.44)

dYi,j ≥ ySi − ySj + 2aDi,j(y
S
j −

∑
r∈R\R′

bRr,jY
R,M
r+1 ) ∀ i, j ∈ IS , i 6= j, (4.45)

dYi,j ≥ ySj − ySi + 2aUi,j(
∑

r∈R\R′
bRr,jY

R,M
r−1 − ySj ) ∀ i, j ∈ IS , i 6= j, (4.46)

2bC,Same
i,j ≤ bCc,i +BC

c,j ≤ 1 + bC,Same
i,j ∀ c ∈ C ′, i ∈ N, j ∈ {N\IS : i ∈ IS |IS : i ∈ N\IS},

(4.47)

2bR,Same
i,j ≤ bRr,i +BR

r,j ≤ 1 + bR,Same
i,j ∀ r ∈ R\R′, i ∈ N, j ∈ {N\IS : i ∈ IS |IS : i ∈ N\IS},

(4.48)

2bC,Same
i,j ≤ bCc,i + bCc,j ≤ 1 + bC,Same

i,j ∀ c ∈ C ′, i, j ∈ IS , i 6= j, (4.49)

2bR,Same
i,j ≤ bRr,i + bRr,j ≤ 1 + bR,Same

i,j ∀ r ∈ R\R′, i, j ∈ IS , i 6= j, (4.50)

2bdetour,X
i,j ≤ (1− bR,Same

i,j ) + bC,Same
i,j ≤ 1 + bdetour,X

i,j

∀ i ∈ N, j ∈ {N\IS : i ∈ IS |IS : i ∈ N\IS}, (4.51)

2bdetour,Y
i,j ≤ bR,Same

i,j + (1− bC,Same
i,j ) ≤ 1 + bdetour,Y

i,j

∀ i ∈ N, j ∈ {N\IS : i ∈ IS |IS : i ∈ N\IS}, (4.52)

2bdetour,X
i,j ≤ (1− bR,Same

i,j ) + bC,Same
i,j ≤ 1 + bdetour,X

i,j ∀ i, j ∈ IS , i 6= j, (4.53)

2bdetour,Y
i,j ≤ bR,Same

i,j + (1− bC,Same
i,j ) ≤ 1 + bdetour,Y

i,j ∀ i, j ∈ IS , i 6= j, (4.54)

Constraints (4.32)–(4.35) ensure item hand-off locations can only happen in aisles. Con-

straint (4.32) ensures all hand-off locations located in a column and a row. Constraints (4.33)

and (4.34) make sure that item hand-off is only allowed on aisles. Constraints (4.35) ensures

the x coordinate of the hand-off location of item i equal to the x coordinate of the middle

point in column c if the hand-off location is in the column. Constraints (4.36) is analogous

to Constraints (4.35) for the case of rows.

Detour constraints are introduced in Constraints (4.37)–(4.41). Constraint (4.37) makes

sure only traveling from location i to location j either along the left or the right route on
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detour when bdetour,X
i,j = 1. Constraint (4.38) is analogous to Constraint (4.37) for traveling

along either the up or the down route when bdetour,Y
i,j = 1. Constraints (4.39) determines

the absolute horizontal distance between the hand-off location of item i and known location

j. Note that W and H are functioning as big-M values in the model. Constraint (4.41)

determines the vertical traveling distance between the hand-off location of item i and the

known location j.

Constraints (4.43) – (4.46) determine the shortest distance between two locations, where

only one of these two is an item hand-off location. Constraints (4.43) – (4.46) are analogous

to Constraints (4.39) – (4.41) for determining the traveling distances between two item

hand-off locations. Constraints (4.43) and (4.44) determine the absolute horizontal distance

between two item hand-off locations. Constraints (4.45) and (4.46) determine the vertical

traveling distance between the hand-off locations of items i and j.

Constraints (4.47) – (4.52) determine if any two locations are on the same row/column.

Constraints (4.47) – (4.50) determine if any two locations are located in the same row/column

in order to determine a detour is required for vehicles to travel from one to another. Then

Constraints (4.51) – (4.54) determine if the distance between nodes i and j is longer than

horizontal or vertical Manhattan distance. In Constraint (4.51), bdetour,X
i,j = 1 if a known

location i and item hand-off location j are located in the same row but different columns.

In Constraint (4.52), bdetour,Y
i,j = 1 if a known location i and item hand-off location j are

located in the same even column c ∈ C ′ but different rows. Constraints (4.53) – (4.54) are

analogous to Constraints (4.51) – (4.52) for determining if the distance between two item

hand-off locations is longer than horizontal or vertical Manhattan distance.

Note that Constraints (4.43) – (4.46) are nonlinear because the coordinates of item hand-

off locations are decision variables. Thus, by introducing lS,Li,j , l
S,R
i,j , l

P,L
i,j , l

P,R
i,j , l

S,U
i,j , l

S,D
i,j , l

P,U
i,j ,

and lP,Di,j , Constraints (4.43) – (4.46) could be linearized as Constraints (4.55) – (4.74) shown

below. Constraints (4.55) – (4.63) determine the values of the new introduced variables, and

then Constraints (4.43) – (4.46) could be reformulated as Constraints (4.71) – (4.74).
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lS,Li,j ≤ WaLi,j ∀ i, j ∈ IS , i 6= j, (4.55)

xSj −W (1− aLi,j) ≤ lS,Li,j ≤ xSj ∀ i, j ∈ IS , i 6= j, (4.56)

lS,Ri,j ≤ WaRi,j ∀ i, j ∈ IS , i 6= j, (4.57)

xSj −W (1− aRi,j) ≤ lS,Ri,j ≤ xSj ∀ i, j ∈ IS , i 6= j, (4.58)

lS,Ui,j ≤ HaUi,j ∀ i, j ∈ IS , i 6= j, (4.59)

ySj −H(1− aUi,j) ≤ lS,Ui,j ≤ ySj ∀ i, j ∈ IS , i 6= j, (4.60)

lS,Di,j ≤ HaDi,j ∀ i, j ∈ IS , i 6= j, (4.61)

ySj −H(1− aDi,j) ≤ lS,Di,j ≤ ySj ∀ i, j ∈ IS , i 6= j, (4.62)

lP,Li,j ≤ WaLi,j ∀ i, j ∈ IS , i 6= j, (4.63)∑
c∈C′

bCc,jX
C,M
c+1 −W (1− aLi,j) ≤ lP,Li,j ≤

∑
c∈C′

bCc,jX
C,M
c+1 ∀ i, j ∈ IS , i 6= j, (4.64)

lP,Ri,j ≤ WaRi,j ∀ i, j ∈ IS , i 6= j, (4.65)∑
c∈C′

bCc,jX
C,M
c−1 −W (1− aRi,j) ≤ lP,Ri,j ≤

∑
c∈C′

bCc,jX
C,M
c−1 ∀ i, j ∈ IS , i 6= j, (4.66)

lP,Ui,j ≤ HaUi,j ∀ i, j ∈ IS , i 6= j, (4.67)∑
r∈R\R′

bRr,jY
R,M
r−1 −H(1− aUi,j) ≤ lP,Ui,j ≤

∑
r∈R\R′

bRr,jY
R,M
r−1 ∀ i, j ∈ IS , i 6= j, (4.68)

lP,Di,j ≤ HaDi,j ∀ i, j ∈ IS , i 6= j, (4.69)∑
r∈R\R′

bRr,jY
R,M
r+1 −H(1− aDi,j) ≤ lP,Di,j ≤

∑
r∈R\R′

bRr,jY
R,M
r+1 ∀ i, j ∈ IS , i 6= j, (4.70)

dXi,j ≥ xSi − xSj + 2(lS,Li,j − l
P,L
i,j ) ∀ i, j ∈ IS , i 6= j, (4.71)

dXi,j ≥ xSj − xSi + 2(lP,Ri,j − l
S,R
i,j ) ∀ i, j ∈ IS , i 6= j, (4.72)

dYi,j ≥ ySi − ySj + 2(lS,Di,j − l
P,D
i,j ) ∀ i, j ∈ IS , i 6= j, (4.73)

dYi,j ≥ ySj − ySi + 2(lP,Ui,j − l
S,U
i,j ) ∀ i, j ∈ IS , i 6= j, (4.74)
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4.4 The proposed APPT-VRP heuristic

As discussed in Lee and Murray [100], efficient heuristics for larger-scale problems are

desirable. Moreover, in our preliminary test, the APPT-VRP with 10 items took longer than

24 hours to solve the problem optimally using mixed integer linear programming (MILP)

solvers owing to the determination of the transshipment nodes. Thus, an iterative heuristic

is proposed, and the pseudo-code of the main function is provided in Algorithm 5. The

proposed heuristic begins with the construction phase (lines 2–5 in Algorithm 5), which

provides initial routing solutions, and then local search procedure (lines 6–22 in Algorithm

5) is applied to improve the quality of the solution by exploring neighboring solutions. In the

initialization phase, first, the hand-off locations are set as item storage locations (xSi ← XKi

and ySi ← Y Ki ), then the visiting order of locations (xv,i,j) for each picker is determined,

and finally the corresponding transporters’ visiting orders (yv,i,j) are determined based on

the found pickers’ orders. Note that once these variables are determined, every variables

in the MILP model could be ascertained except tv,j. Thus, after the initial routing plan is

determined, a linear programming (LP) relaxation of the APPT-VRP model, which we only

solve using the linear variables of arrival times (tv,j) by feeding all other ascertained variables

into the APPT-VRP model, is applied to determine the visiting time at every location for

every vehicle before the improvement phase.

In the improvement phase, first, we apply function RouteLocalSearch(), incorporating

insertion and exchange neighborhood search procedures to explore if there is any improve-

ment for the neighborhood visiting orders. We search the neighborhood order for pickers

first, and then explore the best corresponding neighborhood order of transporters. Once

the new neighborhood visiting order is conducted, the new visiting time is determined by

the LP relaxation model, and a search procedure is applied to update the corresponding

item hand-off locations based on the new visiting order. If there is no improvement by the

proposed neighborhood search procedure, the proposed iterative heuristic re-initializes the
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Algorithm 5 Pseudocode for the main APPT-VRP heuristic.

1: Initialize:
2: HandOffLocation = ItemStorageLocation
3: [PickerRoute]=NearestNeighbor(HandOffLocation)
4: [TransporterRoute]=NearestNeighbor(PickerRoute, HandOffLocation)
5: [ArrivalTime]=LPRelaxation(HandOffLocation, PickerRoute, TransporterRoute)
6: repeat
7: MaxSaving=0
8: [ArrivalTime’, HandOffLocation’, PickerRoute’, TransporterRoute’]=
9: RouteLocalSearch(ArrivalTime, HandOffLocation, PickerRoute,

10: TransporterRoute)
11: % Algorithm 6
12: if max(ArrivalTime)-max(ArrivalTime’)=0 then
13: Re-initialize ArrivalTime, HandOffLocation, PickerRoute, and TransporterRoute.
14: else
15: if max(BestArrivalTime)-max(ArrivalTime’)≥0 then
16: BestArrivalTime=ArrivalTime’; BestHandOffLocation=HandOffLocation’;
17: BestPickerRoute=PickerRoute’; BestTransporterRoute=TransporterRoute’;
18: end if
19: ArrivalTime=ArrivalTime’; HandOffLocation=HandOffLocation’;
20: PickerRoute=PickerRoute’; TransporterRoute=TransporterRoute’;
21: end if
22: until (Stop)
23: return BestArrivalTime, BestHandOffLocation, BestPickerRoute,
24: BestTransporterRoute
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visiting order and repeats the neighborhood search to ascertain if better solutions could be

found until the stopping criteria are met.

Details of the construction method is presented in Sections 4.4.1. Then the local search

procedure is introduced in Section 4.4.2. Within the local search procedure, the search

heuristic to optimize the item hand-off locations for vehicles is described in Section 4.4.2.

4.4.1 Construction method for initial solutions

The initial solutions are obtained as follows: first, we initialize the item hand-off lo-

cations as the item storage locations. Later on the hand-off locations will be updated to

optimize the makespan. Next, the nearest neighbor heuristic, whereby a vehicle route is

constructed by starting at the depot and choosing the item storage in the pick list closest to

the current location, is applied. Then, based on the solution found for the pickers’ routes,

transporters’ routes are determined. Note that the transporters’ routes would be infeasible

if a transporter visits location j before location i but a picker visits i before j. In order to

generate a feasible solution for the corresponding transporters’ routes, the list of available

unvisited nodes changes via the nearest neighbor heuristic process.

In the beginning of the nearest neighbor heuristic process for transporters, the list

contains only the first visited location of each picker. Then, more locations are released into

the list only if the previous location in the visiting order of each picker’s route is visited by

a transporter. In order to balance the workload for each vehicle in the initial solution, each

vehicle can only visit d|I|/|P |e storage locations for pickers and d|I|/|D|e for transporters. If

the remaining payload capacity for the transporter is insufficient to accommodate the item

at the next hand-off location, the transporter will go to the depot (assigning a depot replica)

to unload the batch before visiting the next hand-off location in the route. Once a valid

feasible solution of visiting orders for vehicles is conducted, the LP relaxation is applied to

determine the arrival time of each location for each vehicle. The LP relaxation only solves tv,j

and m in the proposed MILP because by feeding other variables, which can be ascertained
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based on the visiting orders and the current item hand-off locations, as constants into the

MILP.

4.4.2 Improvement phase

In the improvement phase, insertion (lines 3–21 in Algorithm 6) and exchange (lines

22–33 in Algorithm 6) procedures are applied to explore neighborhood routes. Insertion

removes one visiting location from the current visiting order of all pickers/transporters, and

then the visiting location is inserted into another place in the visiting order. The exchange

procedure explores all pairwise exchanges of two visiting locations in the visiting order. Both

procedures can be used within either the visiting order of one vehicle or all vehicles of the

same type (pickers or transporters).

Explore neighborhood routes

The heuristic searches the neighborhood solutions of visiting order for pickers by in-

sertion and exchange procedures in accordance with Algorithm 6, and then searches the

corresponding order for transporters based on the neighborhood solutions for pickers in ac-

cordance with function TransporterRouteSearch() described in Algorithm 7. As in the con-

struction method, when the number of pickers is equivalent to the number of transporters,

the transporters’ routes are determined by assigning each transporter to follow a specific

picker, in a one-to-one correspondence. Once a feasible neighborhood solution of visiting

orders is established, the arrival times are solved via the mentioned LP relaxation. Next, the

hand-off locations are updated for the neighborhood solution by function UpdateHandOffLo-

cations() described in Algorithm 8. If there is an improvement made by the neighborhood

solution, the heuristic explores the new neighborhood solution of the improved neighborhood

solution.
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Algorithm 6 Pseudocode for the RoutLocalSearch().

Require: ArrivalTime, HandOffLocation, PickerRoute, TransporterRoute
1: ArrivalTime*=ArrivalTime; PickerRoute*=PickerRoute;
2: TransporterRoute*=TransporterRoute
3: for All task i ∈ I in PickerRoute do % Insertion procedure for pickers’ routes
4: TargetPicker=The Picker which retrieves item i
5: for v ∈ P do
6: for j= 1: 1 + # of items picked by v do
7: if (i is picked by v) and (i!=j or j − 1) then
8: PickerRoute’= Move task i prior to j (retrieved by v) in PickerRoute
9: [ArrivalTime’, HandOffLocation’, TransporterRoute’]=

10: TransporterRouteSearch(HandOffLocation,PickerRoute’,
11: TransporterRoute) % Algorithm 7
12: if max(ArrivalTime’)<max(ArrivalTime*) % Better Mkspn then
13: ArrivalTime*=ArrivalTime’; HandOffLocation=HandOffLocation’;
14: PickerRoute*=PickerRoute’; TransporterRoute*=TransporterRoute’;
15: end if
16: end if
17: end for
18: end for
19: end for
20: ArrivalTime=ArrivalTime*; PickerRoute=PickerRoute*;
21: TransporterRoute=TransporterRoute*
22: for All task i ∈ I in PickerRoute do % Exchange procedure for pickers’ routes
23: for All task j ∈ I, j 6= i in PickerRoute do
24: PickerRoute’=Swap i and j in PickerRoute
25: [ArrivalTime’, HandOffLocation’, TransporterRoute’]=
26: TransporterRouteSearch(HandOffLocation, PickerRoute’,
27: TransporterRoute) % Algorithm 7
28: if max(ArrivalTime’)<max(ArrivalTime*) % Better Mkspn then
29: ArrivalTime*=ArrivalTime’; HandOffLocation=HandOffLocation’;
30: PickerRoute*=PickerRoute’; TransporterRoute*=TransporterRoute’;
31: end if
32: end for
33: end for
34: return ArrivalTime*, PickerRoute*, TransporterRoute*, HandOffLocation*
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Algorithm 7 Pseudocode for the TransporterRouteSearch() function.

Require: HandOffLocation, PickerRoute, TransporterRoute
1: if # of pickers = # of transporters then
2: HandOffLocation*= ItemStorageLocation
3: TransporterRoute* = a transporter follows a picker respectively
4: [ArrivalTime*]=LPRelaxation(HandOffLocation*, PickerRoute, TransporterRoute*)
5: else
6: HandOffLocation*=HandOffLocation; TransporterRoute*=TransporterRoute;
7: for All task i ∈ IS in TransporterRoute do % Insertion procedure for transporters
8: TargetTransporter=The transporter which retrieves item i
9: for v ∈ D do

10: for j= 1: 1 + # of items retrieved by v do
11: if (i is retrieved by v) and (i!=j or j − 1) then
12: TransporterRoute’= Move i prior to j (retrieved by v)
13: in TransporterRoute
14: if TransporterRoute’ is feasible to PickerRoute then
15: [ArrivalTime’, HandOffLocation’]=
16: UpdateHandOffLocations(HandOffLocation, PickerRoute,
17: TransporterRoute’) % Algorithm 8
18: if max(ArrivalTime’)<max(ArrivalTime*) then
19: ArrivalTime*=ArrivalTime’;
20: HandOffLocation*=HandOffLocation’;
21: TransporterRoute*=TransporterRoute’;
22: end if
23: end if
24: end if
25: end for
26: end for
27: end for
28: ArrivalTime=ArrivalTime*; TransporterRoute=TransporterRoute*
29: for All task i ∈ IS in TransporterRoute do % Exchange procedure for transporters
30: for All task j ∈ IS , j 6= i in TransporterRoute do
31: TransporterRoute’=Swap i and j in TransporterRoute
32: if TransporterRoute’ is feasible to PickerRoute then
33: [ArrivalTime’, HandOffLocation’]=
34: UpdateHandOffLocations(PickerRoute, TransporterRoute’,
35: HandOffLocation) % Algorithm 8
36: if max(ArrivalTime’)<max(ArrivalTime*) then
37: ArrivalTime*=ArrivalTime’; HandOffLocation=HandOffLocation’;
38: TransporterRoute*=TransporterRoute’;
39: end if
40: end if
41: end for
42: end for
43: end if
44: return ArrivalTime*, HandOffLocation*, TransporterRoute*
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Update item hand-off locations

Once a valid neighborhood solution of visiting orders with arrival times is established,

the procedure described by Algorithm 8 is proposed to update the hand-off locations one at

a time chronologically based on arrival times solved by the mentioned LP relaxation. Recall

that unlike our previous work, this approach allows pickers to move toward a transporter to

pass the item in order to reduce the traveling routes for transporters.

For this purpose, we need to determine a better item hand-off location i if picker v1

arrives at i earlier than transporter v2 when tv1,i < tv2,i, where tv,i represents the arrival time

of location i for vehicle v. In such a case, the transporter has to travel (tv2,i−tv1,i)Fv2 while the

picker is waiting, where Fv represents the speed of vehicle v. Let AdditionalTravelDistanceForv1

(ReducedTravelDistanceForv2) represent the additional (reduced) travel distance for v1 (v2)

to meet without either vehicle to wait, respectively. Thus,

AdditionalTravelDistanceForv1 + ReducedTravelDistanceForv2 = (tv2,i − tv1,i)Fv2 ,

and we know that

(AdditionalTravelDistanceForv1)Fv1 = (ReducedTravelDistanceForv2)Fv2 .

Therefore,

AdditionalTravelDistanceForv1 = (tv2,i − tv1,i)Fv2 (Fv1/(Fv1 + Fv2)) .

This identifies a better item hand-off location where picker v1 meets the transporter by

traveling toward the transporter for AdditionalTravelDistanceForv1. Then, the new arrival

times for the vehicles are updated via LP relaxation.

112



Algorithm 8 Pseudocode for the UpdateHandOffLocations() function.

Require: HandOffLocation, PickerRoute, TransporterRoute
1: [ArrivalTime]=LPRelaxation(HandOffLocation,PickerRoute,TransporterRoute)
2: ArrivalTime*=ArrivalTime; HandOffLocation*=HandOffLocation
3: % Determine the hand-off locations one at a time chronologically based on arrival times
4: for All task i ∈ IS in chronological order do
5: if The arrival time tv1,i of picker v1 at i is earlier than transporter v2 then
6: AdditionalTravelDistance=(tv2,i − tv1,i)Fv2 (Fv1/(Fv1 + Fv2))
7: Origin=Item storage location i− |I|
8: Destination1=The location where v2 visited prior to i
9: HandOffLocation’=Updated item hand-off location i in HandOffLocation by

10: moving i from Origin to Destination1 for AdditionalTravelDistance far
11: [ArrivalTime]=LPRelaxation(HandOffLocation’,PickerRoute,TransporterRoute)
12: if max(ArrivalTime’)<max(ArrivalTime*) then
13: ArrivalTime*=ArrivalTime’; HandOffLocation*=HandOffLocation’;
14: end if
15: end if
16: end for
17: return ArrivalTime*,HandOffLocation*

Note that in the construction phase of the proposed heuristic, we set the initial item

hand-off locations as the item storage locations. Therefore, the proposed heuristic can be

implemented to solve the PPT-VRP by skipping the lines 3–16 in Algorithm 8.

4.5 Numerical analysis

A series of numerical analyses was conducted to (1) assess the efficacy of the proposed

heuristic, and (2) quantify the impacts of the APPT-VRP model on order retrieval response

time and service level. All computational work was conducted on a PC with a Core In-

tel i5-2410m processor and 12 GB memory running Microsoft Windows 8 in 64-bit mode.

The APPT-VRP models were solved using Gurobi 7.0.2, a popular solver software package.

Heuristics were coded in MATLAB, a numerical computing programming package.
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4.5.1 Analysis of the APPT-VRP heuristic

Owing to the uniqueness of the APPT-VRP, which we explained in Section 4.2, we

had to generate our own test problems as a test-bed to evaluate the effectiveness of the

proposed heuristic, and our basis for comparison is to solve the PPT-VRP and APPT-VRP

via the MILP solver, which is possible only for small- and mid-scale problem instances. We

created 100 randomly generated pick lists with five and ten items, respectively, under a

common warehouse layout with six vertical picking aisles and three horizontal cross aisles,

as illustrated in Figure 4.1. A uniform storage policy was applied as in previous batch

order picking studies (c.f., de Koster and Poort [86], Chew and Tang [84], Roodbergen and

de Koster [107, 108], Roodbergen and Vis [109], Ho et al. [95], Nieuwenhuyse and de Koster

[103], Parikh and Meller [105], Yu and de Koster [118], Henn [94], Shqair et al. [115], Thomas

and Meller [116], Roodbergen et al. [110]). The use of fixed pick list sizes is according

to the order picking literature (c.f., de Koster and Poort [86], Roodbergen and de Koster

[107, 108], Hwang et al. [97], Roodbergen and Vis [109], Pan et al. [104], Shqair et al. [115]).

Consistent with Parikh and Meller [105], Pan et al. [104], the widths of cross aisles and

picking aisles are 10 feet and 6 feet, respectively, and the size of storage racks is 1-foot wide

by 5-feet deep. According to the specifications by [117], both picker robot and transporter

robot have a base 22-inches in diameter. Thus, at least three robots can occupy an aisle

side-by-side with room to spare. This is why we do not consider aisle blocking in this paper.

Seven combinations of pickers and transporters are considered, from one picker and one

transporter (1/1), to five pickers and two transporters (5/2). Thus, 1,400 test instances (100

pick lists × two types of pick list sizes × seven combinations) are created for the numerical

analysis.

Three routing methodologies are evaluated. In the first methodology, the PPT-VRP

model from Lee and Murray [100], in which pickers can only hand-off the items to the

transporters at the precise item storage location, is applied. In the second, the APPT-

VRP model proposed in this paper, which allows the hand-off to happen anywhere in the
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warehouse, is applied. For five-item problems, Gurobi is able to obtain optimal solutions

for the APPT-VRP model within 60 minutes; therefore, we compare the performance of

the proposed heuristic and the PPT-VRP model in terms of optimal solutions. For 10-item

problems, we set a cut-off time of 30 minutes to obtain the solutions for PPT-VRP and

APPT-VRP via Gurobi. The third methodology is the proposed heuristic, and we set a

20-second cut-off time for the proposed heuristic to solve both the five-item and 10-item

problems.

Consistent with Wise et al. [117], pickers traveled at a speed up to 1.0 m/s, while

transporters traveled up to 2.0 m/s. Each picker was assumed to require three seconds

to pick up or place an item into a tote. We assume the additional travel time required

for turning corners is negligible. The tote drop-off time was assumed to be five seconds for

transporters. This study focused on warehouse order picking for small items, in which robots

are able to operate for hours and each transporter is able to carry more than 10 items on a

route. Thus, the capacity of each transporter was set as the pick list size, and we did not

consider battery charging related assumptions in the experiment.

Figure 4.3 provides a summary of the APPT-VRP heuristic’s performance, where the

“gap” reported is the percentage difference from the solutions obtained by the routing

methodology to the optimal or best found solutions. For the 10-item problems, using Gurobi

with the time limit, none of the APPT-VRP problems could be solved optimally, and the

solver even failed to obtain a feasible solution in 86 (out of 700) problems. Additional

performance details are provided in Table 4.3.

As stated above, the PPT-VRP formulation assumes items hand-off only at the precise

item storage locations, but the optimal solutions of the PPT-VRP are equivalent to the

APPT-VRP’s when the numbers of pickers and transporters are equivalent. In such a case,

transporters follow pickers respectively until no more items need to be placed onto trans-

porters. However, PPT-VRP is a more restrictive VRP than the APPT-VRP. Thus, this
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Figure 4.3: Comparison of the proposed heuristic’s effectiveness.

Table 4.3: Details of heuristic performance.

Pick Opt./Best Opt./Best Runtime (s) Makespan
List Found Gap Found Sol. + Runtime

Solution Approach Size in Avg. (%) Obtained (%) Avg Max in Avg. (s)
Proposed heuristic 5 4.7 36.7 20 20 79.4
PPT-VRP IP 28.5 28.6 1.1 4.4 71.1
APPT-VRP IP (20s) 10.6 9.6 19.4 20.0 83.6
APPT-VRP IP (Opt.) 0.0 100.0 233.6 3020.0 292.2
Proposed heuristic 10 0.8 87.0 20.0 20.0 107.7
PPT-VRP IP (30min) 13.2 29.1 1143.9 1800.0 1239.8
APPT-VRP IP (30min) 36.9 2.7 1800.0 1800.0 1909.2
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analysis compares the solution of these two problems to demonstrate how much improve-

ment on makespan by relaxing the assumption of PPT-VRP, which is the picker can only do

the hand-off at the very item storage locations. Although the PPT-VRP with 5 items only

took Gurobi a second on average to solve optimally, negative gaps, which mean the proposed

heuristic is able to obtain better solutions than PPT-VRP’s optimal solutions, were reported

for the problems with more pickers than transporters. In the 10-item problems, the average

gaps for all the vehicle combinations do not change significantly, but it took approximately 20

minutes to solve. Thus, for the problems with more pickers than transporters, the proposed

heuristic is superior to the solutions of the PPT-VRP model obtained by Gurobi.

The proposed APPT-VRP heuristic is able to obtain near-optimal solutions with less

than 10% gap in 20 seconds for most of the test problems, which took Gurobi four minutes

on average. Moreover, the solutions obtained by Gurobi in 20 seconds are not sufficiently

competitive. Thus, considering that the optimal makespan for most of the five-item test

problems is less than four minutes, the proposed heuristic demonstrates its own value in

practice. Moreover, the proposed heuristic is able to solve more than 30% of the test problems

optimally in 20 seconds, whereas PPT-VRP is only able to obtain optimal solutions when

the number of pickers is equal to that of transporters in the system.

We also provide the average total required time to fulfill a pick list by using the three

methodologies, including the computational time to obtain a routing plan plus the actual

required time for the robots to retrieve all items from the pick list. This is because in

practice, the customers need to wait on not only the time to retrieve the orders but also

the computational times to obtain the routing plans since their orders have been placed.

Thus, a reasonable computational time becomes more important in terms of optimizing the

overall service level. In our experiment, the solutions obtained by the proposed heuristic

dominates the solutions of the two formulation models obtained by Gurobi in the average

total required time for both 5-item and 10-item problems, except the PPT-VRP in 5-item

problems. That is because although better solutions could be obtained by the proposed
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Table 4.4: Details of heuristic performance:5 item problems from a 10 times larger warehouse.

Opt./Best Opt./Best Runtime (s) Makespan
Found Gap Found Sol. + Runtime

Solution Approach in Avg. (%) Obtained (%) Avg Max in Avg. (s)
Proposed heuristic 4.7 36.7 20.0 20.0 470.7
PPT-VRP IP 28.5 28.6 1.7 16.1 562.6

heuristic with identifying better item hand-off locations for 5-item problems, the saving is not

significant enough than the solutions of the PPT-VRP due to the size of the warehouse from

the literature. Although the warehouse configuration is from the literature, it is relatively

small compared to the warehouses in real world. For this reason, we compare the proposed

heuristic and the PPT-VRP model in solving the same 5-item problems under a same shape,

but ten times large, more practical size warehouse. The information of the comparison is

provided in Table 4.4, which shows that the required makespan increases approximately ten

times longer under the warehouse, but the required computational times do not change much

for both methodologies. Therefore, our heuristic dominates the PPT-VRP model in total

required time under practical size warehouses.

A warehouse receives orders continuously from different customers and needs to fulfill

orders as soon as possible. Thus, the runtime for computing the routes should be considered

in the total completion time, which is from the time a pick list order is received until the

time that the pick list is fulfilled. Therefore, we provide the average total completion time,

which includes the average runtime plus the average makespan, between receiving a pick

list and fulfillment of that list. This signifies the importance of having an efficient heuristic

that is able to provide optimal or near-optimal solutions in a short time. Instead of running

Gurobi until all the optimal solutions are obtained, it is more practical to use the proposed

heuristic considering that most of the pick lists can be fulfilled within the runtime required

to solve APPT-VRP optimally. Although the PPT-VRP formulation is able to obtain a

slightly shorter total average completion time for five-item problems, it is not comparable

for mid- or larger-scale problems.
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As demonstrated in this section, the numerical analysis shows that high-quality (i.e.,

near-optimal) solutions can be obtained via the proposed heuristic. In the next section,

owing to the randomness of the orders under uniform storage policy, we investigate the

difference between the two formulations and among different vehicle combinations in terms

of overall makespan and service level.

4.5.2 PPT-VRP versus APPT-VRP

The above analysis explored the effectiveness of the proposed heuristic. In this section,

we identify the overall response time and service level of the two problem classes. In other

words, we are interested in the overall performance of the two formulations in terms of

the makespan for random orders under a uniform storage policy. Instead of focusing on the

average response time, we are interested in the variance and the distribution of the makespan

among the formulations and the vehicle combinations.

We analyzed the five-item optimal results of the two formulations obtained by Gurobi

from the previous experiment. Thus, the experimental details in this numerical analysis are

the same as in the previous section. Figure 4.4 illustrates the estimated distributions of the

makespan for both models with different combinations. The probability density functions

(PDFs) represent the estimated probability of the required makespan to retrieve the entire

pick list, and the cumulative distribution functions represent the cumulative probability. For

example, in the PDF plots, it is clear that there is a 3% probability that the makespan is

105 seconds for one picker and one transporter, and in the CDF plots, 90% of the orders

can be retrieved in 40 (58) seconds for the APPT-VRP (PPT-VRP) model when there are

five pickers and two transporters. This analysis provides a more comprehensive means of

comparing different warehousing systems in terms of the overall service level. Note that both

models have the same optimal solutions when the number of pickers is the same as that of

transporters, as explained above.
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Figure 4.4: Improvement of makespan / service level by obtained using the APPT-VRP
model.

As shown in the figure, there was a marked difference between the PPT-VRP and

the APPT-VRP in the distributions. In particular, when there are more pickers than trans-

porters, distributions in the PPT-VRP model are relatively flatter and wider than the APPT-

VRP’s. Consistent with our previous study, which indicated the importance of balancing

the numbers of pickers and transporters for the PPT-VRP model, having more pickers than

transporters does not significantly improve the results. However, having either a ratio of

three (pickers):one (transporter) or 5:1 dominates 2:2 not only in terms of average makespan

but also in terms of variances for the APPT-VRP model.
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Table 4.5: Statistical comparison of APPT-VRP and PPT-VRP in makespan (s).

Descriptive Vehicle Combination (Picker/Transporter)
Formulation Statistics 1/1 2/1 3/1 5/1 2/2 3/2 5/2
APPT-VRP Avg 102.0 62.4 52.0 45.9 59.0 47.6 41.1

Var 191.8 41.7 22.8 18.9 45.9 23.1 19.7
Range 68.2 33.0 26.8 20.0 32.2 32.40 18.5
95% CI width 1.9 0.9 0.6 0.6 0.9 0.7 0.6

PPT-VRP Avg 102.0 76.9 70.8 69.3 59.0 57.5 55.0
Var 191.8 57.3 49.3 43.3 45.9 26.6 30.1
Range 68.2 33.5 31.5 28.5 32.2 23.0 24.0
95% CI width 1.9 1.0 1.0 0.9 0.9 0.7 0.7

An interesting observation is that a small portion of the orders could be fulfilled faster

with a ratio of 3:2 than 5:1. These orders are stored relatively close to the depot, therefore

having more transporters enables the system to take advantage of the shorter required trav-

eling distance and do the hand-offs simultaneously. Otherwise, a ratio of 5:1 is better than

3:2 for most of the random orders in this case. Table 4.5 shows that the variance of makespan

for the PPT-VRP model is larger than the corresponding APPT-VRP model with the same

vehicle combinations when there are more pickers than transporters. This means that with

the APPT-VRP model, the possibility of missing the shipping deadline is less in practice.

Moreover, statistically, we are confident of our experiment’s accuracy because the 95% con-

fidence intervals (CIs) are relatively narrow. The analysis demonstrates the practical value

of APPT-VRP. An attractive future research topic would be to explore the performance of

the APPT-VRP formulation under different storage policies.

4.6 Conclusions and future research opportunities

As an extension of [100], the APPT-VRP was proposed to improve the overall service

level by relaxing the assumptions of item hand-off locations. An MILP formulation of this

problem was presented to verify the improvements obtained via the relaxation. Owing to

the problem being NP-hard, only small-scale problems may be solved optimally via MILP
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solvers. Moreover, even for small-scale problems, the excessive computation time required

by the existing MILP solver is longer than the actual order retrieval time. Therefore, an

efficient heuristic was proposed to solve the problem in a reasonable time for practice. The

solution quality of the proposed heuristic was validated via numerical analysis for small- and

mid-scale problems.

Several future research opportunities are listed. First of all, although this work con-

sidered the order retrieval for given fixed size pick lists, random size customer orders are

received over time in real-world continuous warehouse operation. Thus, the dynamic routing

problem for the continuous environment is attractive. In such a case, another interesting

topic would be to determine suitable order-batching methodologies for robot-based ware-

housing. Additionally, the re-stocking activities by the warehousing robotics, in which items

flow from the depot to storage shelves by the robotics, could be an interesting research topic.
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Chapter 5

Conclusions

This research explores the intersection of facility layout and vehicle routing problems.

The facility problem, described in Chapter 2, focused on the FLP with space utilization

concerns for semiconductor manufacturing fabs to conduct the facility layout alternatives to

satisfy future demand. The space utilization, which is more important for semiconductor

manufacturing, is considered as the objective. The novel FLP, which considers facility layout

planning in both FA and machine level arrangements, is defined and formulated with practical

constraints. Due to the scale of the practical size problems, an efficient heuristic is proposed.

In order to demonstrate the quality of the solutions obtained by the proposed heuristic,

a better lower bound, which is also computationally accessible, is proposed as well. The

numerical analysis demonstrates the proposed heuristic is able to obtain solutions with single-

percentage gaps to the proposed lower bound, meaning the optimality gaps are smaller.

This indicates the feasibility of fitting all required machines into a constrained facility can

be determined by the proposed approach. As a result, the proposed approach helps to

provide realistic information for future production planning while building or re-modeling

a fab. Furthermore, given machine sets generated based on possible future demands, the

facility layout solutions can support business decision-making in terms of long-term supply

commitments to the customers.

Served as a bridge between the FLP and the VRP, Chapter 3 proposed a novel VRP

for autonomous warehousing systems and studied the warehouse layout alternative analysis

when the proposed routing system is employed. A novel depot type, CDs, for warehouses

is presented. Several managerial insights have been presented based on the results of the

numerical analysis. First, from the perspective of layout planning, CDs outperform TDs
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because ADBPL will be shorter when CDs are adopted. Applying CDs in the warehouses

also eases the negative impact of adding CAs. Second, from the perspective of vehicle

capability and combinations, increasing the number (pick-up speed) of pickers helps better

when having more transporters than pickers and under warehouses with high (low) ADBPL.

Increasing the number (payload capacity) of transporters is preferable when having more

pickers than transporters and under the warehouses with low (high) ADFD. Increasing the

capability of transporters (pick-up speed of pickers) is more effective when having sufficient

numbers of pickers and transporters, and under the warehouses with high (low) ADFD.

Last but not least, increasing the pick-up speed is preferable when having sufficient numbers

of pickers and high-capacity transporters or under the warehouses with low ADFD and

ADBPLS, since there is no much room for the improvement by adding more vehicles to

share the travel workloads. This work provides a foundation for a variety of future research

opportunities. Due to the NP-hardness of the PPT-VRP, large-scale pick lists were not

considered in the analysis of optimal solutions in this study. Therefore, efficient heuristics

for solving the large-scale problems are desirable. The analysis also provides a guideline for

the future development of the warehousing robotics.

As an extension of Chapter 3, Chapter 4 presented the APPT-VRP with relaxing the

assumptions of item hand-off locations in the PPT-VRP. Due to the excessive computational

time required to solve the routing problem via commercial MILP solver in our preliminary

results, an efficient heuristic is proposed to solve the routing problems for the warehousing

robotics. We demonstrated not only the quality of the solutions obtained by the proposed

heuristic, but also the improvement of overall warehouse service level by the relaxation.

Future research efforts might be directed in two areas: (1) extending the FLP and the

VRPs with considering material handling flow assignment problems, and (2) the studies of

the autonomous warehousing systems under continuous operation. As introduced in Chen

et al. [6], the capacity planning process in semiconductor manufacturing determines the

number of required machines based on the estimates of the material handling distances
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among FAs when functional area layouts are adopted. However, the actual distances of

the material handling flows are depended on the results of the facility layout planning.

Moreover, it’s possible to have more than one process flows within a FA to produce a type

of products in practice. Therefore, to optimize the FLPs with considering material handling

flow assignment problems can be beneficial in terms of not only shortening the material

handling distances but also reducing the errors caused by the estimation in the current

capacity planning process.

This research introduced the warehouse layout alternative analysis for the warehousing

robotics in Chapter 3 under the uniform storage policy as in the literature. However, different

storage policies are applied in practice, depending on the warehouse storage capacities and

the customer demands. Adopting different storage policies results in the changes of ADFDs

and ADBPLs, which directly impact the performance of the warehousing systems. Therefore,

it would be interesting to optimize the warehouse layout designs with the consideration of

where items should be stored when the autonomous systems are implemented.

Although the majority of our focus is on the deterministic VRPs for the warehousing

robotics, the dynamic routing problems and methodologies for continuous warehouse oper-

ation when orders are received over time could be interesting. In such case, if the turnover

rates are high, the potential objective functions of the dynamic problems could be minimizing

the number of delayed orders given different shipping due time for each order or maximizing

the number of fulfilled orders in a given time period. Thus, performance evaluation models

for the warehousing systems under different operational strategies are also attractive. More-

over, the available computational times for solving the dynamic routing problems can be

more restricted. Additionally, if the turnover rates are relatively low, where the idle robots

should stand-by may impact the warehouse service level. Therefore, the studies of evaluating

different zoning strategies for the robots are desirable.
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