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Abstract

Inverse limit spaces have been a topic studied in various fields of mathematics such as

Algebra, Measure Theory, and Topology. Here, we present a theorem that can be summarized

as a game in which a given compact metric space X is expressed as an inverse limit built

step-by-step by two players. In the i-th step of the game, the first player gives an εi > 0 and

the second player gives a complete space Yi and two maps, fi : X → Yi and gi−1 : Yi → Yi−1

with the conditions that dist(fi−1, gi−1 ◦ fi) < εi, and fi does not mend any two points of

X with distance greater than some ηi where lim
i→∞

ηi = 0. We prove that the first player can

cause the sequence (gi ◦ · · ·◦gj−1 ◦fj)∞j=i to converge uniformly to a map f̃i : X → Yi for each

i, and that the map f̃ induced by f̃0, f̃1, . . . is a homeomorphism of X onto lim←−{f̃i(X), gi}∞i=0.

Classic theorems by Anderson-Choquet, Mardešić-Segal, and Morton Brown can be reproved

by using elements of this game.

ii



Acknowledgments

I would first like to thank my advisor, Dr. Piotr Minc, for all of his kind help, patience,

Diet Coke, and apples in all of our meetings. I would also like to thank my parents for over

a quarter-century of love, support and faith in all of my endeavors. I want to thank my

friends for all of their help, support, encouragement, and fun times. I would like to thank

God for guiding me to the wonders of Mathematics. Finally, I want to thank the love of my

life, Melani, for her daily outpouring of love and encouragement, especially in times that I

need it the most.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Preliminary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Inverse Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 A Common Approach to Anderson-Choquet, Morton Brown, and Mardešić-Segal 30
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Chapter 1

Preliminary Material

In this chapter, we provide the relevant definitions, propositions, theorems, etc. for the

topic at hand. The author will assume that any reader of this paper is familiar with basic

definitions and concepts related to sets, number systems, relations, orderings, functions,

sequences, and basic definitions and theorems from general topology. Any statements given

without proof will have references beside them for the curious reader.

We will use N = {1, 2, 3, . . .} to denote the positive integers and let ω = {0, 1, 2, 3, . . .},

giving respect to the usual linear ordering on both sets. By sequences, we mean infinite

sequences. We will often index sequences starting with 0 or 1, depending on which is more

appropriate in a given situation.

The first section of this chapter starts with basic definitions and theorems about metric

spaces, equivalent metrics, convergent sequences, product spaces, compacta, continua, and

more. In the second section, we define inverse sequences and inverse limit spaces, and we

provide some examples, important properties, and notable theorems regarding inverse limits.

1.1 Metric Spaces

Definition 1.1. Let X be a set. We call the function d : X ×X → [0,∞) a metric on X

if for any x, y, z ∈ X, the following hold:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) (Symmetry);

3. d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality).
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An ordered pair (X, d) is called a metric space whenever X is a set and d is a metric on

X.

The above definition gives three properties that are shared by the notion of distance

between points in a set. Thus, if c ≥ 0 and x and y are two (possibly equal) points in a

metric space (X, d) such that d(x, y) = c, we may say that x and y are a distance of c away

from each other in X. A metric space is a type of topological space, and we may simply say

“X is a space” to mean that X is a topological space which may or may not be a metric

space. When the use of a metric is not needed in the statement of a theorem, proposition,

or lemma, we may simply say “space” rather than “metric space.”

Example 1.2. Arguably the most commonly used metric space is (Rn, d), where n ∈ N and

where d : Rn × Rn → [0,∞), is defined by

d(x, y) =

(
n∑
i=1

(xi − yi)2

)1/2

for every x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, called the usual metric or Euclidean

metric.

That the function given in Example 1.2 is a metric relies on the Cauchy-Schwarz in-

equality, (
n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
(1.1)

for every (x1, . . . , xn), (y1, . . . , yn) ∈ Rn, which gives us the triangle inequality. For a proof of

Equation 1.1 and that d in Example 1.2 satisfies the triangle inequality, see Theorem 1.1.4

and Corollary 1.1.5 in [10]. When n = 1, then Rn = R, and it is common to use the absolute

value of the difference between two real numbers, |x− y|, to denote the distance between x

and y in R.
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Example 1.3. Let X be a set, and for all x, y ∈ X, define d : X ×X → {0, 1} by

d(x, y) =

 0 if x = y

1 if x 6= y

Then one can easily show that d is a metric, called the discrete metric, and (X, d) is called

a discrete metric space.

Definition 1.4. Let (X, d) be a metric space and let A ⊂ X. The diameter of A in X,

denoted diam(A), is defined by

diam(A) = sup{d(x, y) | x, y ∈ A}.

We say A is bounded if diam(A) <∞.

Definition 1.5. Let (X, d) be a metric space and let S be a collection of subsets of X. Then

the mesh of S is defined as

mesh(S) = sup{diam(S) | S ∈ S}.

Definition 1.6. Let X and Y be metric spaces. If a function f : X → Y has the property

that diam
(
f(X)

)
<∞ in Y , then f is called a bounded function.

Definition 1.7. Let X and Y be metric spaces and let f and g be bounded functions from

X to Y . The distance between f and g, denoted dist(f, g), is given by

dist(f, g) = sup{d(f(x), g(x)) | x ∈ X},

where d is the metric on Y .

In the previous definition, most authors use the notation ‖f − g‖ to denote the distance

between two functions. This is often referred to as the “supremum norm.”
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Proposition 1.8. Let X and Y be metric spaces and let B(X, Y ) be the set of bounded

functions from X to Y . Then dist is a metric on B(X, Y ).

Proof. Let d be the metric on Y . Since 0 ≤ d(x, y) < ∞ for all x, y ∈ X, then 0 ≤

d(f(x), g(x)) < ∞ for all f, g ∈ B(X, Y ) and x ∈ X. Thus, 0 ≤ dist(f, g) < ∞ for all

f, g ∈ B(X, Y ), meaning dist is a function from B(X, Y )×B(X, Y ) to [0,∞).

Let f, g, h ∈ B(X, Y ). If dist(f, g) = 0, then sup{d(f(x), g(x)) | x ∈ X} = 0, which

happens if and only if f = g; this satisfies the first condition. Since d(f(x), g(x)) =

d(g(x), f(x)) for all x ∈ X, we have dist(f, g) = dist(g, f), satisfying symmetry. Fi-

nally, since d(f(x), h(x)) ≤ d(f(x), g(x)) + d(g(x), h(x)) for all x ∈ X, it follows that

dist(f, h) ≤ dist(f, g) + dist(g, h), giving us the triangle inequality. Therefore, dist is a

metric on B(X, Y ).

Definition 1.9. Let (X, d) be a metric space, let x ∈ X, and let ε > 0. An open ball of

radius ε centered at x, denoted Bd(x, ε), is defined by

Bd(x, ε) = {y ∈ X | d(x, y) < ε},

i.e., it is the set of all points of distance less than ε away from x.

Lemma 1.10. Let (X, d) be a metric space, x ∈ X, ε > 0, and y ∈ Bd(x, ε). Then there is

a δ > 0 such that Bd(y, δ) ⊂ Bd(x, ε).

Proof. Since y ∈ Bd(x, ε), d(x, y) < ε, implying that ε− d(x, y) > 0. Let δ = ε− d(x, y). If

z ∈ Bd(y, δ), then d(x, z) ≤ d(x, y)+d(y, z) < d(x, y)+δ = d(x, y)+ ε−d(x, y) = ε, meaning

z ∈ Bd(x, ε). Therefore, Bd(y, δ) ⊂ Bd(x, ε).

Definition 1.11. Let (X, d) be a metric space. The metric topology on X, or, the

topology on X generated by the metric d (or simply, the metric topology), is defined

as the collection of all unions of collections of open balls contained in X. We call the members

of this topology open subsets of X, or we simply say that are open in X. That is, any
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open subset of X is either X, ∅, or
⋃

B where B is any nonempty collection of open balls

contained in X.

Lemma 1.12. Let (X, d) be a metric space. Then the set B = {Bd(x, ε) | x ∈ X, ε > 0} is

a base for the metric topology on X.

Proof. There are two conditions for a collection of sets to be a base for a topology:

1. B covers X; i.e., for every x ∈ X, there is a B ∈ B such that x ∈ B.

2. If B1, B2 ∈ B are such that that B1 ∩B2 6= ∅, then for every x ∈ B1 ∩B2, there exists

a B ∈ B such that x ∈ B ⊂ B1 ∩B2.

Let x ∈ X. Clearly, there is a B ∈ B such that x ∈ B. This satisfies the first condition.

Let x ∈ B1∩B2 where B1, B2 ∈ B. By Lemma 1.10, there exists δ1 > 0 and δ2 > 0 such

that Bd(x, δ1) ⊂ B1 and Bd(x, δ2) ⊂ B2. Let δ = min{δ1, δ2}. Then Bd(x, δ) ∈ B is such

that x ∈ Bd(x, δ) ⊂ B1 ∩B2, satisfying the second condition.

Lemma 1.13. Let (X, d) be a metric space. A subset U of X is open in X if and only if

for every x ∈ U there is an ε > 0 such that Bd(x, ε) ⊂ U .

Proof. Let U be open in X. Since B = {Bd(x, ε) | x ∈ X ε > 0} is a base for the topology

on X, then there are sets {xα | α ∈ Λ} ⊂ U and {εα | εα > 0 ∀α ∈ Λ} such that

U =
⋃
α∈ΛBd(xα, εα). Let x ∈ U . Then x ∈ Bd(xα, εα) for some α ∈ Λ. By Lemma 1.10,

there is some ε > 0 such that Bd(x, ε) ⊂ Bd(xα, εα) ⊂ U .

Let U ⊂ X be such that for every x ∈ U there is an ε > 0 such that Bd(x, ε) ⊂ U . Then

since U is the union of all such open balls, U is also open.

Definition 1.14. If d and d′ are two metrics on the same set X which generate the same

topology on X, then they are called equivalent metrics.

Lemma 1.15 ([32] Theorem 20.1). Let (X, d) be a metric space and let d′ : X×X → [0,∞)

be defined by

d′(x, y) = min{d(x, y), 1}.
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Then d′ is an equivalent metric on X.

Lemma 1.16. Let (X, d) be a metric space, let A ⊂ X, and let dA be the metric restricted

to A× A. Then (A, dA) is a metric space.

Proof. Because 0 ≤ d(x, y) <∞ for all x, y ∈ X, it is also true that 0 ≤ d(x, y) <∞ for all

x, y ∈ A, whence dA maps A × A into [0,∞). Symmetry and the triangle inequality follow

immediately by the fact that dA inherits these properties from d.

Given a function f from a set X to a set Y , we say f is one-to-one, is an injection, or is

injective, to mean that whenever x1, x2 ∈ X are such that x1 6= x2, we have f(x1) 6= f(x2).

We say that f is onto, is a surjection, or is surjective to mean that for each y ∈ Y there is an

x ∈ X such that f(x) = y. We say that f maps X into Y if f(X) ⊂ Y , and we say that f

maps onto Y if f(X) = Y . A function that is both one-to-one and onto is called a bijection.

Definition 1.17. Let X and Y be metric spaces. If the function f : X → Y is a continuous

bijection such that f−1 : Y → X is also continuous, then f is called a homeomorphism,

and X and Y are said the be homeomorphic.

Definition 1.18. Let X and Y be spaces, and let f : X → Y be a continuous injection.

We say that f is an embedding into Y if f(X) is homeomorphic to X, i.e., f is a homeo-

morphism between X and f(X). If f is also a surjection, we say f is a homeomorphism

onto Y , or simply, an onto homeomorphism.

From a topological point of view, we are only concerned with equivalent metrics on a

given space. In this regard, one may view a metric d on a set X as an equivalence class [d] of

metrics on X where d′ ∼ d′′ if and only if d′ ∈ [d] and d′′ ∈ [d], but usually (X, d) means that

the metric d is fixed. The range of values two equivalent metrics have is not a topological

invariant, so it is not important topologically. For example, the interval (0, 1) with the

euclidean metric on R restricted to (0, 1) is homeomorphic to R with the Euclidean metric,

but the two have metrics with different ranges. However, the preservation of the values of
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a metric is important with respect to geometric properties. Another way to characterize

equivalent metrics is that they define the same convergent sequences.

Definition 1.19. Let (X, d) be a metric space. We say that a sequence of points (xn)∞n=0 in

X converge to a point x ∈ X , denoted xn → x, if for every ε > 0, there exists an N ∈ ω

such that d(xn, x) < ε for every n ≥ N . In this case, we say that our sequence converges

or is convergent.

Definition 1.20. Let X be a metric space with metric d. We say that a sequence of points

(xi)
∞
i=0 in X is a Cauchy sequence (or is Cauchy) if for every ε > 0 there exists an

N ∈ ω such that d(xm, xn) < ε whenever m,n ≥ N .

Proposition 1.21. Let X be a metric space. If a sequence (xn)∞n=0 converges to a point

x ∈ X, then (xn)∞n=0 is a Cauchy sequence.

Proof. Let (xn)∞n=0 converge to a point x ∈ X, and let ε > 0. Then there exists an N ∈ ω

such that d(xn, x) < ε/2 for every n ≥ N . Let m,n ≥ N . Then

d(xm, xn) ≤ d(xn, x) + d(x, xm) < ε/2 + ε/2 = ε,

meaning (xn)∞n=0 is a Cauchy sequence.

Definition 1.22. A metric space X is called complete if every Cauchy sequence in X

converges to a point in X.

Not all metric spaces are complete. For example, let Q be the subspace of rational

numbers contained in the real numbers endowed the the Euclidean metric restricted to Q.

Let (xn)∞n=1 be a sequence in Q where xn = (1 + 1/n)n for every n ∈ N. Then (xn)∞n=1 is

a Cauchy sequence in Q, but it is well-known that this sequence converges to the irrational

number, e. Therefore, Q is not a complete space. In fact, a consequence of the Baire

Category Theorem ([10], Theorem 1.6.1) is that Q cannot be a complete metric space under

any metric.
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Definition 1.23. Let X be a set. A collection U of subsets of X is said to cover X (or

U is a cover of X) if
⋃
U = X. If X is a metric space and U is a collection of open sets

that cover X, then U is called an open cover of X. A subcover of U is a set V ⊂ U that

covers X. A refinement of U is a cover W such that each member of W is contained in

some member of U .

Definition 1.24. A metric space X is called compact if every open cover of X has a finite

subcover.

Definition 1.25. A metric space X is called sequentially compact if every sequence in

X has a convergent subsequence.

Theorem 1.26 ([18], Proposition 3., pg. 84). A metric space is compact if and only if it is

sequentially compact.

Theorem 1.27. Let X and Y be spaces where X is compact. If f : X → Y is continuous,

then f(X) is a compact subspace of Y . That is, continuous images of compact spaces are

compact.

Proof. Let U be an open cover of f(X). Since f is continuous, f−1(U) is open in X for

every U ∈ U . Let V = {f−1(U) | U ∈ U}. Then V is a cover of X having a finite subcover

V ′ = {f−1(Uk) | 0 ≤ k ≤ n} since X is compact. Therefore, U ′ = {Uk | 0 ≤ k ≤ n} is a

finite subcover of U , whence f(X) is compact.

Definition 1.28. Let (X, d) and (Y, ρ) be metric spaces. We say that the function f : X → Y

is uniformly continuous if for every ε > 0 there exists a δ > 0 such that ρ(f(x), f(y)) < ε

whenever d(x, y) < δ.

One may clearly see that a uniformly continuous function is also continuous.

Theorem 1.29 ([10], Theorem 1.4.10). Let X and Y be metric spaces where X is compact.

If f : X → Y is a continuous function, then f is uniformly continuous.
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Theorem 1.30. A closed subset of a compact space is compact.

Proof. Let X be compact and let K be a closed subset of X. Let V be a collection of open

subsets of X such that K ⊂
⋃
V , and let U = {X\K} ∪ V . Then U is an open cover of X

and therefore has a finite subcover U ′. It follows that V ′ = U ′ ∩ V is is a finite collection of

open sets such that K ⊂
⋃
V ′. Let W = {V ∩K | V ∈ V}, and let W ′ = {V ∩K | V ∈ V ′}.

Then every member of W is open in K, making it an open cover of K. Furthermore, W ′ is

a finite subcover of W , whence K is compact.

Theorem 1.31. Every compact metric space is complete.

Proof. Let (X, d) be a compact metric space and let (xn)∞n=0 be a Cauchy sequence in X.

Since X is compact, Theorem 1.26 says that there is a subsequence, (xnj)
∞
j=0, of (xn)∞n=0

which converges to some point, x. Let ε > 0. Since (xn)∞n=0 is Cauchy, there exists an

N ∈ ω such that d(xm, xn) < ε/2 whenever m,n ≥ N . Let j ∈ ω be such that nj ≥ N

and d(xnj , x) < ε/2. Then for any n ≥ N , d(xn, x) ≤ d(xn, xnj) + d(xnj , x) < ε. Therefore,

(xn)∞n=0 converges to x.

Theorem 1.32. If X and Y are metric spaces where X is compact and if f : X → Y is a

continuous bijection, then f is a homeomorphism.

The previous theorem is more a corollary that follows from a similar statement that

does not require the spaces X and Y be metric but that X is compact and Y is Hausdorff.

Since all metric spaces are Hausdorff spaces, Theorem 1.32 follows. We stated this theorem

with the added assumption that they are metric since this paper emphasizes metric spaces

and not general topological spaces.

Definition 1.33. Let (X, d) be a metric space and let A ⊂ X. The ε-neighborhood

containing A, denoted Nε(A), is defined by

Nε(A) = {y ∈ Y | ∃a ∈ A such that d(a, y) ≤ ε}.

9



Proposition 1.34. Given a metric space X and a subset A of X, the following are true.

1.
⋂
ε>0Nε (A) = A, and

2. Nε (A) is closed if A is compact.

Proof. To prove the first claim, we observe that if x ∈
⋂
ε>0Nε (A), then x ∈ Nε (A) for

every ε > 0, which implies x ∈ Nε (A) for every ε > 0, giving us x ∈ A. If x ∈ A, then

x is in every closed set containing A, meaning x ∈ Nε(A) for every ε > 0. Therefore,

x ∈ N1/(n+1)(A) ⊂ N1/n(A) for every n ∈ N, so that x ∈
⋂
ε>0Nε(A).

Suppose A is compact. Let ε > 0, and let x ∈ Nε(A). We want to show x ∈ Nε(A). Let

f : A→ R be defined by f(a) = d(a, x) for every a ∈ A. Since x ∈ Nε(A), we know that for

every n ∈ N, there is a yn ∈ Nε(A) such that d(yn, x) ≤ 1/n. Also, there exists an ∈ A such

that d(an, yn) ≤ ε. Since A is compact, the sequence (an)∞n=1 has a convergent subsequence.

Without loss of generality, we will assume an → a where a ∈ A. Since f is continuous, we

have f(an)→ f(a), meaning

d(a, x) = f(a) = lim
n→∞

f(an) = lim
n→∞

d(an, x) ≤ lim
n→∞

(
d(an, yn)+d(yn, x)

)
≤ lim

n→∞
(ε+1/n) = ε,

implying x ∈ Nε(A), whence Nε(A) is closed.

Proposition 1.35 ([10], Proposition 3.1.4 & Exercise 2, pg.78). Let (hj)
∞
j=0 be a sequence

of mappings of a compact metric space (X, ρ) into a complete metric space (Y, d) such that∑∞
j=0 dist (hj, hj+1) < ∞. Then, the sequence (hj)

∞
j=0 converges uniformly to a mapping

h̃ : X → Y , and

dist
(
hk, h̃

)
≤

∞∑
j=k

dist (hj, hj+1)

for each positive integer k

Proof. Let ε > 0. Since
∑∞

j=0 dist(hj, hj+1) converges, the sequence of tail ends

( ∞∑
j=k

dist(hj, hj+1)
)∞
k=0

10



converges to 0. Thus, for all x ∈ X there exists Nε ∈ ω depending only on ε such that for

every n ≥ Nε,
∑∞

j=n dist(hj, hj+1) < ε. Thus, for all x ∈ X and for all m,n ∈ N such that

m ≥ n ≥ Nε, we have

d(hn(x), hm(x)) ≤
m−1∑
j=n

d(hj(x), hj+1(x)) ≤
∞∑
j=n

d(hj(x), hj+1(x)) < ε.

This implies that for all x ∈ X, (hj(x))∞j=0 is Cauchy. Since Y is complete, there exists a

function h̃ : X → Y such that for all x ∈ X, the sequence (hj(x))∞j=0 converges to h̃(x),

meaning that (hj)
∞
j=0 converges uniformly to h̃. Also, for every positive integer k and for all

x ∈ X, we have

d(hk(x), h̃(x)) ≤
∞∑
j=k

d(hj(x), hj+1(x)),

giving us

dist
(
hk, h̃

)
≤

∞∑
j=k

dist (hj, hj+1) .

Since X is compact, each hj is uniformly continuous by Theorem 1.29. We now show

that h̃ is continuous by showing it is uniformly continuous. Let ε > 0. Then there is a j ∈ ω

such that dist(hj, h̃) < ε/3. Also, there is a δ > 0 such that whenever x, y ∈ X are such

that ρ(x, y) < δ, we have d(hj(x), hj(y)) < ε/3. Therefore, whenever x, y ∈ X are such that

ρ(x, y) < δ, we have

d
(
h̃(x), h̃(y)

)
≤ d
(
h̃(x), hj(x)

)
+ d
(
hj(x), hj(y)

)
+ d
(
hj(y), h̃(y)

)
<
ε

3
+
ε

3
+
ε

3
= ε,

whence h̃ is continuous.

Definition 1.36. Let {Xi | i ∈ ω} be a set of metric spaces. The product space,
∏∞

i=0Xi,

is the metric space consisting of sequences (xi)
∞
i=0 where xi ∈ Xi for every i ∈ ω, and whose

metric is defined in Proposition 1.37.
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The general definition of a product space considers any arbitrary collection {Xα | α ∈ Λ}

of topological spaces where Λ is some indexing set of any cardinality. The product of a

countable collection of metric spaces is a metric space, but this is never the case for the

product of an uncountable collection of nondegenerate metric spaces. For the purpose of

this paper, we focus specifically on countably infinite products of metric spaces with ω as

our indexing set.

Proposition 1.37. Let {(Xi, di) | i ∈ ω} be a countably infinite collection of metric spaces

and let X =
∏

i∈ωXi. Then the function d : X ×X → [0,∞) defined by

d(x, y) =
∞∑
i=0

1

2i+1
d′i(xi, yi)

for every x = (x0, x1, . . .) and y = (y0, y1, . . .) in X, where d′i is the equivalent metric on Xi

as given by Lemma 1.15. Furthermore, d(x, y) ≤ 1 for any x, y ∈ X.

Proof. That d maps X × X into [0,∞) is clear. Let x = (x0, x1, . . .), y = (y0, y1, . . .), and

z = (z0, z1, . . .) be points in X. Then d(x, y) = 0 if and only if d′i(xi, yi) = 0 for all i ∈ ω

if and only if xi = yi for all i ∈ ω if and only if x = y. Also, since d′i(xi, yi) = d′i(yi, xi) for

every i ∈ ω, we have that d(x, y) = d(y, x), giving us symmetry of d. Since

d(x, z) =
∞∑
i=0

1

2i+1
d′i(xi, zi) ≤

∞∑
i=0

1

2i+1

(
d′i(xi, yi) + d′i(yi, zi)

)
=
∞∑
i=0

1

2i+1
d′i(xi, yi) +

∞∑
i=0

1

2i+1
d′i(yi, zi) = d(x, y) + d(y, z),

we have that d satisfies the triangle inequality.

Since
∑∞

i=0
1

2i+1 = 1 and, for every i ∈ ω, d′i(a, b) ≤ 1 for every a, b ∈ Xi, we have

d(x, y) ≤ 1 for every x, y ∈ X.

From this point on, whenever we work with a product of a countably infinite collection of

metric spaces (Xi, di), we may assume that di ≤ 1 for every i ∈ ω. Also, for convenience, we

12



may use the symbol d to denote a metric in different spaces when there may be no confusion

which space is referenced in a given situation.

Given a product space X =
∏∞

i=0 Xi of metric spaces Xi with metrics di ≤ 1, the

topology on X, called the product topology, is defined as the set of all unions of collections

of its basic open sets which are of the form U =
∏∞

i=0 Ui where Ui is open in Xi for every

i ∈ ω, and Ui = Xi for all by finitely many i ∈ ω, meaning that the set of all basic open sets

in X form a base for the product topology on X. To see that such sets are open, let F be

a finite subset of ω and let U =
∏

i∈ω Ui where Ui is an open subset of Xi for every i ∈ F ,

and where Ui = Xi for every i /∈ F . Let x = (x0, x1, . . .) ∈ U . Then for each i ∈ F , there is

an εi > 0 such that Bdi(xi, εi) ⊂ Ui. Take ε = min{ εi
2i+1 | i ∈ F}. If y = (y0, y1, . . .) is such

that d(x, y) < ε, then yi ∈ Ui for every i ∈ F and yi ∈ Xi for every i /∈ F , whence y ∈ U ,

giving us Bd(x, ε) ⊂ U . Likewise, we can show that any open ball B can be expressed as a

union of basic open sets, which is equivalent to showing that for any y ∈ B, there is a basic

open set U such that y ∈ U ⊂ B. To do this, let ε > 0, let x ∈ X, and let y ∈ Bd(x, ε).

Take δ = ε−d(x, y). We know there exists some n ∈ ω such that
∑

i≥n
1

2i+1 = 1
2n
< δ

2
. Thus,

for each i ∈ {0, 1, . . . , n − 1}, let Ui = Bdi(yi,
δ
2
), and let U =

∏n−1
i=0 Ui ×

∏∞
i=nXi. Then if

z ∈ U , we have d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + δ = ε. Therefore, basic open sets and

open balls in
∏∞

i=0Xi generate the same topology.

Definition 1.38. Given a product space X =
∏∞

i=0Xi, we define for each i ∈ ω the pro-

jection map, πi : X → Xi, by πi(x) = xi for every x = (x0, x1, x2, . . .) ∈ X.

Every projection map from a product space to its corresponding factor space is an open

and continuous surjection ([10], Proposition 2.6.5). One can easily check that a product

space
∏∞

i=0Xi has as a subbase the collection of all subsets of the form π−1
k (Uk), where

Uk is an open subset of Xk. Thus, basic open sets in the product space are of the form

U =
⋂n
j=1 π

−1
ij

(Uij) where {i1, . . . , in} is some finite subset in ω and for each j ∈ {1, . . . , n},

Uij is open in Xij . Clearly, this collection is contained in the collection of basic open sets

given in the previous paragraph. However, it is itself not a base for
∏∞

i=0Xi.
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Theorem 1.39 ([32], Theorem 19.6). Let X =
∏∞

i=0 Xi be a product space, A a space, and

let s : A→ X be a function given by the equation, s(a) = (si(a))∞i=0 where for each i ∈ ω, si

is a function from A into Xi. Then s is continuous if and only if si is continuous for every

i ∈ ω.

Proof. Suppose s is continuous and let i ∈ ω. Since the projection map πi is continuous,

and because si = πi ◦ s, it follows that si is continuous.

Assume now that si is continuous for every i ∈ ω. Chose a member from the subbase of

X, π−1
k (Uk), where Uk is open in Xk. Then s−1(π−1(Uk)) = (πk ◦ s)−1(Uk) = s−1

k (Uk) which

is open in A since sk is continuous. Therefore, s is continuous.

Theorem 1.40 ([10] Theorem 2.6.7). The product of any set of compact spaces is compact.

Definition 1.41 ([36], pg. 201). Let (X, d) be a metric space and let {Uα | α ∈ A} be an

open cover of X. If λ > 0 is such that for each x ∈ X, there is some β ∈ A such that

Bd(x, λ) ⊂ Uβ, then we say that λ is a Lebesgue number for the cover {Uα | α ∈ A}.

The next lemma is known as The Lebesgue Covering Lemma, and it says that any open

cover a compact metric space will have a Lebesgue number.

Lemma 1.42 ([36], pg. 201-202). Let (X, d) be a compact metric space and let U = {Uα |

α ∈ A} be an open cover of X. Then {Uα | α ∈ A} has a Lebesgue number, λ > 0.

Proof. Suppose that U has no Lebesgue number. Then for any λ > 0, there is an x ∈ X

such that Bd(x, λ) is not contained in any member of U . Thus, for every n ∈ N, there

is a point xn ∈ X, such that Bd(xn, 1/n) is not contained in any member of U . Since

X is compact, it is sequentially compact, meaning (xn)∞n=1 has a convergent subsequence.

Without loss of generality, assume (xn)∞n=1 converges to some x ∈ X. Since U is a cover,

there is some β ∈ A such that x ∈ Uβ. Since Uβ is open, then there is some ε > 0 such

that Bd(x, ε) ⊂ Uβ. Let N ∈ N be such that d(x, xN) < ε/2 and 1/N < ε/2. Then

if y ∈ Bd(xN , 1/N), then d(x, y) ≤ d(x, xN) + d(xN , y) < ε/2 + 1/N < ε/2 + ε/2 = ε.

Therefore, Bd(xN , 1/N) ⊂ Bd(x, ε) ⊂ Uβ, a contradiction.
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Definition 1.43. A space X is called connected if it is not the union of two nonempty

disjoint open subsets of X. Equivalently, X is connected if it has no nonempty proper subsets

which are both closed and open in X.

Theorem 1.44. Let X and Y be metric spaces where X is connected. If f : X → Y is

continuous, then f(X) is a connected subspace of Y . That is, continuous images of connected

spaces are connected.

Proof. With out loss of generality, assume f is a continuous surjection. Then f(X) = Y ,

leaving us to show Y is connected. Suppose Y is not connected. Then there exists nonempty,

disjoint open subsets U and V of Y such that Y = U ∪ V . Then f−1(U) and f−1(V ) are

nonempty, disjoint open subsets of X such that X = f−1(U) ∪ f−1(V ), implying X is not

connected.

Theorem 1.45 ([10] Theorem 2.6.10). The product of any set of connected spaces is con-

nected.

Definition 1.46. A compactum (plural: compacta) is a nonempty compact metric space.

A continuum (plural: continua) is a connected compactum.

1.2 Inverse Limits

Definition 1.47. A sequence {Xi, fi}∞i=0 where for each i ∈ ω, Xi is a topological space and

fi : Xi+1 → Xi is continuous, is called an inverse sequence. The mappings fi are called

bonding maps, and the spaces Xi are called factor spaces (or component spaces or

coordinate spaces). The inverse limit of {Xi, fi}∞i=0, denoted lim←−{Xi, fi}∞i=0, is defined

by

lim←−{Xi, fi}∞i=0 =
{

(x0, x1, . . .) ∈
∞∏
i=0

Xi

∣∣∣ xi = fi(xi+1) for all i ∈ ω
}
.

The elements of an inverse limit are sequences which we may call threads.
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We can represent an inverse sequence {Xi, fi}∞i=0 by the infinite diagram

X0 X1f0
oo X2f1

oo · · ·
f2
oo Xifi−1

oo Xi+1fi
oo · · ·

fi+1

oo

Let {Xi, fi}∞i=0 be any inverse sequence. Given j, k ∈ ω such that j ≤ k, the function fj,k is

given by

fj,k =

 fj ◦ · · · ◦ fk−1 j < k

idXj j = k

where idXj is the identity map of Xj onto itself. At times, the comma between the indices

j and k will be omitted, yielding fjk, although the comma will often be used to avoid

confusion, such as fj,j+1 instead of fjj+1. Note also that if k = j + 1, then we simply have

fj,k = fj,j+1 = fj.

Definition 1.48. A directed set is a nonempty set, D, together with an ordering, �, such

that for every x, y, and z in D,

1. x � x,

2. if x � y and y � z, then x � z, and

3. there exists a w ∈ D such that x � w and y � w.

That is, � is a preoder on D with the property that any two members x and y of D have an

upper bound in D. If, in addition, � has the properties that for every x, y ∈ D,

4. x � y and y � x implies x = y, and

5. either x � y or y � x,

then � is called a total ordering (or linear ordering), and D together with � is a totally

ordered set (or linearly ordered set).

A generalization of an inverse sequence, which we will call an inverse limit system, is

a triple {Xα, fαβ, D} where D is a directed set with ordering �, Xα is a topological space
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for every α ∈ D, and fαβ : Xβ → Xα is a bonding map from for every α, β ∈ D such that

α � β, ([16], pg. 75).

In fact, there is research interest in when fαβ : Xβ → Xα is a set valued function from

Xβ to the set 2Xα = {K ⊂ Xα | K is closed in Xα and K 6= ∅} such that for every x ∈ Xβ

and every open set V ⊂ Xα containing fαβ(x), there is an open set U contained in Xβ with

x ∈ U such that for any u ∈ U , fαβ(u) ⊂ V . This kind of function is what is known as an

upper semi-continuous set-valued function. More on this notion can be found in [14]. This

generalized approach with upper semi-continuous set-valued functions has become a newer

branch in the study of inverse systems and is said to originate from William Mahavier in

[21]. A recent paper on this topic by Scott Varagona can be found in [37], and an even

further generalization can be found in [8]. Though this general definition is not pertinent to

the main results in the second chapter of this paper, we will demonstrate some differences

between usual inverse limits given in Definition 1.47 and inverse limits in the general setting.

In the context of the general definition of inverse sequences, we will always take our directed

set to be ω or N with the usual total ordering, ≤, our spaces Xi will be nonempty metric

spaces, and our bonding maps will be usual continuous functions.

Example 1.49 ([33], Exercise 2.14). Consider a sequence (Xi)
∞
i=0 of spaces such that Xi+1 ⊂

Xi for every i ∈ ω (a nested sequence of spaces). If for each i ∈ ω we take fi : Xi+1 → Xi

to be the inclusion mapping of Xi+1 into Xi, then fi is continuous and fi(Xi+1) = Xi+1 =

Xi ∩ Xi+1. If x ∈
⋂∞
i=0 Xi, then x = f0(x) = f1(x) = f2(x) = . . ., so that we may identify

x with (x, x, x, . . .). Therefore, x ∈
⋂∞
i=0Xi ⇔ x = f0(x) = f1(x) = f2(x) = . . . ⇔ x ≡

(x, x, x, . . .)⇔ x ∈ lim←−{Xi, fi}∞i=0, giving us

∞⋂
i=0

Xi = lim←−{Xi, fi}∞i=0.

That is, the intersection of a nested sequence of spaces can be interpreted as an inverse limit.
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Figure 1.1: A partial geometric representation of the inverse limit defined in Example 1.51,
taken from [16], Fig. 1.5.

Example 1.50 ([33], Proposition 2.3). In fact, an inverse limit can be interpreted as a

nested intersection of spaces. For example, take any inverse sequence, {Xi, fi}∞i=0, and for

every n ∈ ω, define

An =
{

(xi)
∞
i=0 ∈

∞∏
i=0

Xi

∣∣∣ xi = fi(xi+1) whenever 0 ≤ i ≤ n
}
. (1.2)

Then it is easy to show that An+1 ⊂ An for all n ∈ ω and that lim←−{Xi, fi}∞i=0 =
⋂∞
n=0An.

Example 1.51. Let {Xi, fi}∞i=0 be the inverse sequence where for each i ∈ ω, Xi = [0, 1]

(the unit interval) and fi = f be defined by

f(t) =

 2t 0 ≤ t ≤ 1
2

−2t+ 2 1
2
< t ≤ 1

called the tent map. Then the space X = lim←−{Xi, fi}∞i=0 is called the Knaster Continuum,

otherwise known as the Bucket Handle Continuum. Geometrically, this is a space embeddable

in the plane R2, a partial drawing of which can be found in Figure 1.1.

Example 1.52. Let S1 = {z ∈ C | z = eiθ, 0 ≤ θ < 2π} be the unit circle in the

complex plane and let the inverse sequence {Xi, fi}∞i=0 be such that for all i ∈ ω, Xi = S1

and fi(z) = zp where p ∈ N\{1}. Then the space Σp = lim←−{Xi, fi}∞i=0 is called the p-adic
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Figure 1.2: T0, T1 embedded in the interior of T0, and Σ2. (These figures are from James
Keesling. [19])

solenoid. Geometrically, this is the space obtained as follows: Start with a solid torus T0, say

with cross diameter equal to 1, and embed in its interior another solid torus T1 with cross

diameter less than 1/2 that wraps around p-many times inside the interior of T0 without

crossing itself. Inductively define Ti for i > 1 to be the solid torus with cross diameter less

that 1
i+1

such that it is embedded in the interior of Ti−1, wrapping around p-times inside of

the interior of Ti−1 without crossing itself. One can then show that Σp is homeomorphic to⋂∞
i=0 Ti. See Figure 1.2 for a geometric representation of the dyadic solenoid, Σ2.

David van Dantzig first introduced solenoids in [11]. Generally, one can consider a

solenoid ΣP , where P = (p0, p1, . . .) is a sequence of positive integers, infinitely many of

which are greater than 1 (to avoid triviality), and where for each i ∈ ω, the bonding map

fi : S1 → S1 is defined by fi(z) = zpi . Even more, we may simply let P be a sequence of

prime numbers since if there is a pi ∈ P which is the multiple of n prime factors, qi,1, . . . , qi,n,

then zpi = zqi,1···qi,n , which is the composition fqi,1 ◦ · · · ◦ fqi,n : S1 → S1 of functions defined

by fqi,j = zqi,j for every j ∈ {1, . . . , n}. (See Theorem 1.63.) Again, this is the same space

obtained by embedding a solid torus Ti+1 into the interior of a solid torus Ti by wrapping

Ti+1 around pi times in the interior of Ti without crossing itself for each i ∈ ω with the cross

diameters converging to 0 as described previously, and taking the nested intersection of the

images of these embeddings. All solenoids are topological groups and are inverse limits of

of an inverse sequence of factors spaces, S1, which is also a topological group. It has been

proved by Bing in [4] that P -adic solenoids cannot be embedded in the plane.
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The previous two examples yield spaces that have a variety of exotic properties (in

particular, indecomposability) that we will not get into here. This demonstrates that inverse

limits have the advantage of describing complicated topological spaces in terms of simpler

ones.

Theorem 1.53. The inverse limit of an inverse sequence of nonempty compact metric spaces

is a nonempty compact metric space.

Proof. It is well-known that if Y =
⋂∞
n=0An where An+1 ⊂ An and An is a nonempty compact

metric space for all n ∈ ω, then Y is a nonempty compact metric space. Let {Xi, fi}∞i=0 be

an inverse sequence where each Xi is a nonempty compact metric space and for each n ∈ ω,

let An be as in Equation 1.2. Then for each n ∈ ω, An is a nonempty and also compact since

it is the product of compact spaces; also, An+1 ⊂ An. Therefore, lim←−{Xi, fi}∞i=0 =
⋂∞
n=0An

is a nonempty compact metric space.

The following is an example of an inverse sequence of metric spaces which are all

nonempty and non-compact whose inverse limit is empty.

Example 1.54. For each i ∈ N, let Xi be the open interval (0, 1
i
) which is nonempty and

non-compact. Let fi be the inclusion mapping of (0, 1
i+1

) into (0, 1
i
). Then it is clear that

lim←−{Xi, fi}∞i=1 =
∞⋂
i=1

(
0,

1

i

)
= ∅.

In the next example, we show how an inverse limit space indexed by a directed set

that is not totally ordered can be empty even though each of its factor spaces are nonempty

compact metric spaces.

Example 1.55 ([16], Example 106). Let D = N ∪ {a, b} be such that i � j if and only if

i ≤ j, a � j if and only if j ≥ 2, b � j if and only if j ≥ 3, 1 � b, and a � b. (That is,

a and 1 do not compare while b and 2 do not compare.) For each α ∈ D, let Xα = {0, 1}.
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Let fij be the identity function Id = id{0,1} when 3 ≤ i ≤ j. Also let f1,2 = Id, fa2 = Id,

fab = Id, and f1b = 1− Id. Then lim←−{Xα, fαβ, D} = ∅.

Proof. Suppose there exists some x ∈ lim←−{Xα, fαβ, D}. If x1 = 0, then x2 = 0, meaning

that xa = 0 and xb = 1 which is a contradiction. Similarly, if x1 = 1, then x2 = 1, meaning

xa = 1 and xb = 0 which is also a contradiction.

Example 1.56. Let X = {0} ∪ { 1
n
| n ∈ N} be the metric spaces with the Euclidean metric

restricted to X. For every i ∈ N, let Xi = {1, . . . , i} with the discrete metric, and let

fi : Xi+1 → Xi be defined by

fi(j) =

 j 1 ≤ j ≤ i

i j = i+ 1

Then X is homeomorphic to lim←−{Xi, fi}∞i=1.

Proof. Let Y = lim←−{Xi, fi}∞i=1, which is compact since each Xi is compact, and let h : X → Y

be defined by

h(x) =

 (1, 2, 3, . . .) x = 0

(1, . . . , n− 1, n, n, n, . . .) x = 1
n

Since every member of Y is of one of the two forms provided in the definition of h, it

follows that h is a surjection. If m and n are positive integers such that m 6= n, then

h(1/m) = (1, . . . ,m − 1,m,m,m, . . .) 6= (1, . . . , n − 1, n, n, n, . . .) = h(1/n), whence h is

injective. Thus, we are left to show that h is continuous. Let ε > 0, and let N ∈ N be such

that for every n ≥ N , we have
∑

i≥n+1
1

2i+1 = 1
2n
< ε. Let δ = 1

N(N+1)
. Then if |x − y| < δ,

we have

d
(
h(x), h(y)

)
=
∞∑
i=1

1

2i
di

(
πi
(
h(x)

)
, πi
(
h(y)

))
< ε.

Proposition 1.57 ([33, Proposition 1.7]). Let (An)∞n=0 be a sequence of compact metric

spaces such that An+1 ⊂ An for every n ∈ ω, and let X =
⋂∞
n=0An. If U is an open subset
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of A0 such that X ⊂ U , then there exists an N ∈ ω such that An ⊂ U for all n ≥ N . In

particular, if An 6= ∅ for all n ∈ ω, then X 6= ∅.

The proof of the next theorem applies Proposition 1.57 and follows the proof of [33],

Theorem 1.8, which states that the intersection of a nested sequence of continua is a contin-

uum.

Theorem 1.58 ([33], Theorem 2.4). The inverse limit of an inverse sequence of continua is

a continuum.

Proof. Let {Xi, fi}∞i=0 be an inverse sequence where each space is a continuum and let X =

lim←−{Xi, fi}∞i=0 =
⋂∞
n=0 An where An is as in Equation 1.2 for each n ∈ ω. Note that for

each n ∈ ω, An is the product of a collection of connected spaces and is therefore connected.

Since continua are nonempty and compact, we know by Theorem 1.53 that X is a nonempty

compact metric space. We must only show that X is connected. Suppose X is not connected.

Then X = H ∪ K where H and K are nonempty, disjoint, and closed subsets of X and

therefore of A0. Since A0 is also a normal space, there exist nonempty, disjoint open subsets

of A0, O and V , such that H ⊂ O and K ⊂ V . Let U = O ∪ V . Then by Proposition 1.57,

we have that for some N ∈ ω, AN ⊂ U and AN = (AN ∩O)∪ (AN ∩ V ), where AN ∩O and

AN ∩ V are nonempty, disjoint open subsets of AN . Therefore, AN is not connected, giving

us a contradiction.

Lemma 1.59 ([33], Lemma 2.6). Let {Xi, fi}∞i=0 be an inverse sequence of metric spaces

with inverse limit X, and let A be a compact subset of X. Then {πi(A), fi � πi+1(A)}∞i=0 is

an inverse sequence with onto bonding maps, and

lim←−{πi(A), fi � πi+1(A)}∞i=0 = A =
[ ∞∏
i=0

πi(A)
]
∩X. (1.3)

The subject of this paper is on inverse limits of inverse sequences with factor spaces

being metric, usually compact, and sometimes connected as well. That is, we study inverse
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limits of compacta and continua. When we use the projection mapping πi, we will always

assume it is restricted to the inverse limit. That is, when we say that πi : lim←−{Xi, fi}∞i=0 → Xi

is the projection map, we mean that it is the projection map restricted the inverse limit.

Although any projection map from an entire product space to its corresponding factor space

is surjective, this is not necessarily the case when the projection maps are restricted to the

inverse limit. However, given an inverse sequence, all of the projection maps restricted to

its inverse limit are surjections if and only if all of the bonding maps are surjections ([20],

Remark 2.1.6).

Lemma 1.60. Given an inverse limit X = lim←−{Xi, fi}∞i=0, if i, j ∈ ω are such that i ≤ j,

then πi = fij ◦ πj.

Proof. Given x = (x0, x1, x2, . . .) ∈ X, we have πi(x) = xi = fij(xj) = fij(πj(xj)) =

fij ◦ πj(x).

Theorem 1.61 ([20], Proposition 2.1.9.). Given an inverse limit X = lim←−{Xi, fi}∞i=0, the

collection S = {π−1
i (Ui) | Ui is an open subset of Xi} is a base for X.

Proof. It is easy to see that S is a subbase for X. Since X is a subspace of
∏∞

i=0 Xi, we may

take a basic open set in X to be of the form U =
⋂n
j=1 π

−1
ij

(Uij), where i1 < . . . < in. Since

each fijim is continuous whenever 1 ≤ j < m ≤ n, we have that f−1
ijin

(Uij) is open in Xin ,

and thus, so is Vin =
⋂n
j=1 f

−1
ijin

(Uij). Therefore,

π−1
in

(Vin) = π−1
in

(
n⋂
j=1

f−1
ijin

(Uij)

)
=

n⋂
j=1

π−1
in
f−1
ijin

(Uij) =
n⋂
j=1

π−1
ij

(Uij) = U,

meaning that a basic open set in X can be expressed as a member of S. Therefore, S is a

base for X.

There is a considerable body of research regarding inverse limits where the factor spaces

are always the unit interval, I = [0, 1], and the same bonding map f : I → I is always

applied. Example 1.51 is such an inverse limit. In this case, we may use {I, f} to denote
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the inverse sequence and lim←−{I, f} its inverse limit. Another example would be the sin( 1
x
)-

continuum, C = {(x, sin( 1
x
)) | 0 < x ≤ 1} ∪ {(0, y) | −1 ≤ y ≤ 1}, which can be expressed

as the inverse limit of the inverse sequence {I, f}, where

f(t) =

 2t 0 ≤ t ≤ 1
2

−t+ 3
2

1
2
< t ≤ 1

The mapping in Example 1.51 is a type of tent map. In general, a tent map is a map

Ts : I → I defined by

Ts(t) =

 st 0 ≤ t ≤ 1
2

s(1− t) 1
2
< t ≤ 1

where s ∈ [1, 2] is called the slope of the tent map. A famous conjecture dealing with tent

maps, known as Ingram’s conjecture, states that if 1 ≤ s1 < s2 ≤ 2, then lim←−{I, Ts1} is not

homeomorphic to lim←−{I, Ts2}. This conjecture was proved by M. Barge, H. Bruin, and S.

Štimac in [3].

More examples and theorems regarding inverse limits of the unit interval with the same

bonding map can be found in [15] and [16]. In general, if the same factor space X and

bonding map f : X → X is used in an inverse sequence, the inverse sequence can be denoted

by {X, f} and its inverse limit by lim←−{X, f}. If the factor spaces are a fixed metric space X

and the bonding maps fi can vary for any i ∈ ω, then we can denote the inverse sequence

by {X, fi}∞i=0 and its inverse limit by lim←−{X, fi}
∞
i=0.

Theorem 1.62. Let {Xi, fi} be an inverse sequence of metric spaces where for each i ∈ ω,

fi is a homeomorphism of Xi+1 onto Xi, and let X = lim←−{Xi, fi}∞i=0. Then for each i ∈ ω,

the projection map πi : X → Xi is a homeomorphism.

Proof. Since fi is a homeomorphism and thus a bijection for each i ∈ ω, then for any i ∈ ω

and any xi ∈ Xi, there exists a unique x ∈ lim←−{X, fi}
∞
i=0 such that πi(x) = xi. Therefore, by
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Theorem 1.32 and Theorem 1.53, since each πi is a continuous bijection from the compact

space lim←−{X, fi}
∞
i=0 to a metric space Xi, it is a homeomorphism.

Theorem 1.63 ([20], Theorem 2.1.38.). Let {Xi, fi}∞i=0 be an inverse sequence, let (in)∞n=0

be an increasing subsequence in ω, let gn = fin,in+1, and let Yn = Xin. Then lim←−{Xi, fi}∞i=0

is homeomorphic to lim←−{Yn, gn}
∞
n=0.

Proof. Let h : X → Y be such that for every x = (x0, x1, x2, . . .) ∈ X, h(x) = (xi0 , xi1 , xi2 , . . .).

Note that for each j ∈ ω, xij = fij ,ij+1
(xij+1

) = gj(xij+1
), meaning that h is well-defined. For

each j ∈ ω, let k(j) be the least integer such that j ≤ ik(j). For every y = (y0, y1, y2, . . .) ∈ Y ,

let sj(y) = fj,ik(j)(yk(j)) and let s(y) = (s0(y), s1(y), s2(y), . . .). Let j ∈ ω and suppose

k(j) = k(j + 1). Then sj(y) = fj,ik(j)(yk(j)) = fj ◦ fj+1,ik(j)(yk(j)) = fj ◦ fj+1,ik(j+1)
(yk(j+1)) =

fj(sj+1(y)). If k(j) < k(j + 1), then j = ik(j), and one can observe that ik(j+1) = ik(j)+1.

Thus, sj(y) = fj,ik(j)(yk(j)) = fik(j),ik(j)(yk(j)) = yk(j) = gk(j)(yk(j)+1) = fik(j),ik(j)+1
(yk(j)+1) =

fj,ik(j+1)
(yk(j+1)) = fj ◦ fj+1,ik(j+1)

(yk(j+1)) = fj(sj+1(y)), implying s(y) ∈ X for every y ∈ Y ,

meaning s is well-defined. One can see that both h and s are continuous by Theorem 1.39.

Also, one can observe that h ◦ s is the identity on Y and that s ◦ h is the identity on X,

making h and s inverses of each other. Therefore, X is homeomorphic to Y .

Theorem 1.63 is called The Subsequence Theorem by some authors, and it is not always

true for generalized inverse limits of inverse systems whose bonding maps are upper semi-

continuous set-valued functions.

Corollary 1.64. If {Xi, fi}∞i=0 is an inverse sequence of compact metrics spaces with surjec-

tive bonding maps, then lim←−{Xi, fi}∞i=0 is homeomorphic to lim←−{Xi, fi}∞i=n for every n ∈ ω.

Corollary 1.65 ([16], Theorem 20). Let f be a continuous function of a space X into itself,

and let Y = lim←−{X, f}. Then the function h : Y → Y defined by h(x) = (f(x0), x0, x1, . . .),

called the shift map, is a homeomorphism of Y onto Y .

Corollary 1.65 also follows as a result of Corollary 1.64, as one can see it is the result of

taking away the first space and bonding map in the sequence.
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Constructions of continua (in particular, indecomposable continua) as inverse limits of

inverse sequences were first introduced by P.S. Alexandroff, S. Lefschetz, and Hans Freuden-

thal in the 1920’s and 1930’s [7]. Inverse limits were discussed more extensively by Eilenberg

and Steenrod in the 1950’s in Chapter VIII of [12]. An often referenced theorem by Freuden-

thal is the following.

Theorem 1.66 ([13], Satz 1, pg. 229). Every compact metric space X is homeomorphic

to an inverse limit of an inverse sequence of compact polyhedra, each of whose covering

dimension is less than or equal to the covering dimension of X.

The original proof of this theorem, written in German, can be found in [13]. For a proof

written in English, the reader can refer to [34]. Mardešić showed in [23] that Theorem 1.66

for general compact Hausdorff spaces is not always true, with compact Hausdorff spaces of

covering dimension equal to 1 and small inductive dimension greater than 1 not having this

property. Because of this, Mardešić and Leonard Rubin introduced the notion of approximate

inverse systems in [25], in which they show that any compact Hausdorff space with covering

dimension less than or equal to n coincides with the limit of some approximate inverse system

of compact polyhedra each with dimension less than or equal to n. Watanabe extended this

result in [38] by showing that a compact Hausdorff space has covering dimension less than

or equal to n if and only if it is the limit of some approximate inverse system of compact

polyhedra each with dimension less than or equal to n.

A consequence of Theorem 1.66 worth noting is the following.

Corollary 1.67. Every 0-dimensional compact metric space is the inverse limit of an inverse

sequence of nonempty finite discrete spaces.

In fact, Example 1.56 follows from Corollary 1.67. The converse of Corollary 1.67 is also

true, in that any inverse limit of an inverse sequence of nonempty finite discrete spaces is

a 0-dimensional compact metric space. Indeed, since every finite discrete space is compact

and metric, any inverse limit of an inverse sequence of finite discrete spaces is also compact
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and metric. That such an inverse limit would be 0-dimensional follows from the fact that

its topology would have a base of closed and open sets inherited from the fact that the set

of singletons in each finite discrete spaces is a base of closed and open sets in that space. A

nice proof of Corollary 1.67, which can be seen as a theorem of its own, can be found in [9],

Theorem 6.C.5. Here, we provide a proof of our own, but we must first state and prove the

following proposition and lemma.

Proposition 1.68. Let X be a space that has a finite covering, U , of closed and open sets.

Then there is a refinement V of U , all of whose members are pairwise disjoint.

Proof. Let U = {U1, . . . , Un}, and for each j ∈ {1, . . . , n}, define Vj = Uj\
⋃n
i=j+1 Ui, and let

V = {V1, . . . , Vn}. Then V refines U and each of its members are pairwise disjoint.

Lemma 1.69. Let (X, d) be a 0-dimensional compact metric space. Then there is a sequence

(V0,V1,V2, . . .) of finite closed and open coverings of X such that for every i ∈ ω, all of the

members in V i are pairwise disjoint, V i+1 refines V i, and mesh(V i)→ 0.

Proof. Since X has a base of closed and open sets, we can take a cover U0 of closed and

open subsets of X. Without loss of generality, since X is compact, we may assume assume

U0 is a finite collection, {U0
1 , . . . , U

0
n(0)}. Let V0 = {V 0

1 , . . . , V
0
n(0)}, each of whose members

is defined by

V 0
j = U0

j \
n(0)⋃
i=j+1

U0
i for every j ∈ {1, . . . , n(0)}.

Since each member of U0 is closed and open and because U0 is finite, every member of V0

is also closed and open. Moreover, V0 covers X and all of its members are pairwise disjoint.

We may now refine V0; indeed, since it is a cover of X, it has a Lebesgue number, λ0 > 0

by Lemma 1.42. That is, for any A ⊂ X such that diam(A) < λ0, there is a member of V0

containing A. Let γ1 = min{λ0, 1}. Let U1 = {U1
1 , . . . , U

1
n(1)} be a closed and open cover of

X such that,

mesh(U1) := sup{diam(S) | S ∈ U1} < γ1.
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Let V1 = {V 1
1 , . . . , V

1
n(1)}, each of whose members is defined by

V 1
j = U1

j \
n(1)⋃
i=j+1

U1
i for every j ∈ {1, . . . , n(1)}.

Then V1 is a closed and open cover of X whose members are pairwise disjoint, and each of

which is contained in some member of V0.

Inductively, for any positive integer i, suppose an open covers, V0, . . . ,V i−1, each whose

members are pairwise disjoint, have been constructed. Let λi−1 > 0 be the Lebesgue number

for V i−1, let γi = min{λi−1,
1

2i−1}, and let U i = {U i
1, . . . U

i
n(i)} be an open cover of X such

that

mesh(U i) := sup{diam(S) | S ∈ U i} < γi.

Let V i = {V i
1 , . . . , V

i
n(i)}, each of whose members is defined by

V i
j = U i

j\
n(i)⋃
i=j+1

U i
j for every j ∈ {1, . . . , n(i)}.

Then V i is a closed and open cover of X whose members are pairwise disjoint, each of which

is contained in some member of V i−1.

Proof of Corollary 1.67. Let X be a 0-dimensional compact metric space with metric, d. For

every i ∈ ω, let V i be the finite closed and open covering of X with pairwise disjoint members

such that V i+1 refines V i as guaranteed by Lemma 1.69, and let γi be as defined in its proof.

We will assume the members of V i are nonempty for every i ∈ ω. Let gi : V i+1 → V i be such

that for every V ∈ V i+1, gi(V ) is the unique member of V i such that V ⊂ gi(V ).

For each x ∈ X and each i ∈ ω, define fi(x) to be the unique element of V i such

that x ∈ fi(x) ∈ V i. We claim that the function h : X → lim←−{V
i, gi}∞i=0 defined by

h(x) = (f0(x), f1(x), f2(x), . . .) is a homeomorphism. SinceX is compact and lim←−{V
i, gi}∞i=0 is

a (compact) metric space, we must show only that h is a continuous bijection. To show that h
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is injective, let x, y ∈ X be such that x 6= y. Then d(x, y) > 0. Thus, there exists some N ∈ ω

such that γj < d(x, y) for every j ≥ N , meaning fj(x) 6= fj(y) for every j ≥ N , implying

h(x) 6= h(y), whence h is injective. Take any sequence (V0, V1, V2, . . .) ∈ lim←−{V
i, gi}∞i=0.

Since (Vi)
∞
i=0 is a nested sequence of nonempty closed, and thus, compact subsets of X,⋂∞

i=0 Vi 6= ∅. Therefore, there is an x ∈ X such that h(x) = (V0, V1, V2, . . .), giving us that

h is a surjection. We must now show that h is continuous, which we do by showing that it

is uniformly continuous. Let ε > 0. Then there is an N ∈ ω such that
∑∞

i=N
1

2i+1 = 1
2N

< ε.

Then if x, y ∈ X are such that d(x, y) < γN , the distance between h(x) and h(y) is less than

ε.

Notable textbooks in recent decades that provide important theorems from the literature

for inverse limits of metric spaces include those of Ingram and Mahavier, Maćıas, and Nadler

in [16], [20], and [33], respectively. Another good discussion on inverse limits comes from

Ingram in [15]. Several other authors, including the primary three this paper focuses on, are

also mentioned in the next chapter.

29



Chapter 2

A Common Approach to Anderson-Choquet, Morton Brown, and Mardešić-Segal

Here, we state and prove a theorem that gives a common approach to three other

theorems from the literature involving inverse limits of compacta. We begin first by providing

several propositions, definitions, and a construction that will lead us to our theorem. After

this, we show how we can restate and reprove three classic theorems on inverse limits of

compact metric spaces: The Anderson-Choquet Embedding Theorem, Mardešić and Segal’s

theorem regarding inverse limits of polyhedra, and Morton Brown’s Approximation Theorem.

Finally, we will show how the construction of the theorem can be restated as a game between

two players, allowing us to restate our theorem in the context of a winning strategy for one

of these players.

The subsequent material comes from continued joint work done by the author and his

advisor, Dr. Piotr Minc. Similar approaches and concepts in this work are present in work

by authors such as Isbell, Mioduszewski, McAuley and Robinson, and Marsh and Prajs,

which can be found in [17], [31], [29], and [28], respectively. Nonetheless, we believe it sheds

new light on these three classic theorems and their proofs.

2.1 The Theorem

Definition 2.1. Consider the following (not necessarily commutative) infinite diagram,

(D∞),

X

f0

ww

f1
~~

f2
��   

fi

((

fi+1

** ++Y0 Y1g0
oo Y2g1

oo · · ·oo Yioo Yi+1gi
oo · · ·oo

(D∞)
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where X is compact, all Yi’s are complete and all fi’s and gi’s are continuous. We say

that the diagram (D∞) converges if, for each i ∈ ω, the sequence (gij ◦ fj)∞j=i converges

uniformly to a function f̃i : X → Yi.

Proposition 2.2. If the diagram (D∞) converges, then the diagram

X

f̃0

ww

f̃1
~~

f̃2
��   

f̃i

((

f̃i+1

** ++Y0 Y1g0
oo Y2g1

oo · · ·oo Yioo Yi+1gi
oo · · ·oo

(2.1)

is commutative. In particular, gi

(
f̃i+1 (X)

)
= f̃i (X) for each i ∈ ω.

Proof. Since (D∞) converges, we know that for every i ∈ ω and every x ∈ X that

gi ◦ f̃i+1(x) = gi

(
lim
j→∞

gi+1,j ◦ fj(x)
)

= lim
j→∞

gij ◦ fj(x) = f̃i(x).

Therefore, diagram 2.1 is commutative and gi

(
f̃i+1(X)

)
= f̃i(X).

Definition 2.3. Suppose the diagram (D∞) converges. In this context, we denote f̃i (X) by

Ỹi, and gi restricted to Ỹi+1 = f̃i+1 (X) by g̃i. By Proposition 2.2, the diagram below, (D̃∞),

X

f̃0

ww

f̃1
��

f̃2
��

  
f̃i

''

f̃i+1

** ++Ỹ0 Ỹ1g̃0
oo Ỹ2g̃1

oo · · ·oo Ỹioo Ỹi+1g̃i
oo · · ·oo

(D̃∞)

is commutative and all mappings in it are surjective. In this context we say that the diagram

(D∞) converges to the diagram (D̃∞), or (D̃∞) is the limit of (D∞). Let Ỹ denote

the inverse limit lim←−{Ỹi, g̃i}
∞
i=0. Let f̃ denote the mapping of X onto Ỹ induced by (D̃∞).

That is, the mapping f̃ such that for every x ∈ X, we have f̃(x) = (f̃0(x), f̃1(x), f̃2(x), . . .),

is a mapping of X onto Ỹ .
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Definition 2.4. Suppose that η > 0 and f is a function defined on a metric space X. We

say that the resolution of f is better than η if f(a) 6= f(b) for all a, b ∈ X such that

d(a, b) ≥ η.

Proposition 2.5. Suppose η > 0, X is compact and f is a mapping of X into a metric space

Y . If the resolution of f is better than η, then there is δ > 0 such that d (f (a) , f (b)) > δ

for all a, b ∈ X such that d(a, b) ≥ η.

Proof. Suppose the resolution of f is better than η, but that for every δ > 0 there exists a pair

of points a, b ∈ X such that d(a, b) ≥ η and d(f(a), f(b)) ≤ δ. Then for every n ∈ N, there

exists a pair of points an, bn ∈ X such that d(an, bn) ≥ η and d(f(an), f(bn)) ≤ 1/n. Since

X is compact, the sequences (an)∞n=1 and (bn)∞n=1 have convergent subsequences. Without

loss of generality, suppose both of these sequences converge to a and b in X, respectively.

Since f is continuous, f(a) = f(b). However, this is a contradiction to the assumption that

d(a, b) ≥ η implies f(a) 6= f(b).

Proposition 2.6. Suppose δ > 0, g : Y → Y ′ is a mapping between metric spaces and Z

is a compact subset of Y . Then, there is ε > 0 with the property that d (g (z) , g (y)) < δ for

each z ∈ Z and each y ∈ Y such that d (z, y) < ε.

Proof. Suppose that for each n ∈ N there exists a zn ∈ Z and a yn ∈ Y such that d(zn, yn) <

1/n and d(g(zn), g(yn)) ≥ δ. Since Z is a compact subset of Y , (zn)∞n=1 has a convergent

subsequence. Without loss of generality, we will assume (zn)∞n=1 converges to some z ∈ Z.

Since d(zn, yn) < 1/n for every n ∈ N, (yn)∞n=1 also converges to z. Thus, since g is continuous,

both g(zn) and g(yn) converge to g(z). However, this contradicts that d(g(zn), g(yn)) ≥ δ

for every n ∈ N.

Construction 2.7. Let X be a compact space and let η0, η1, . . . be a sequence of positive

numbers converging to 0. We construct the diagram (D∞) in the following ω steps:

Step 0. A complete space Y0 and a mapping f0 : X → Y0 are chosen subject only to the

condition that the resolution of f0 is better than η0.
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Step i > 0. First, a positive number εi is selected depending on the construction in the

previous steps. Then, a complete space Yi and mappings fi : X → Yi and gi−1 : Yi → Yi−1

are chosen subject only to the following conditions:

(a)i the resolution of fi is better than ηi, and

(b)i dist (fi−1, gi−1 ◦ fi) < εi.

Theorem 2.8. By choosing a sufficiently small number εi in each step of Construction 2.7,

it is possible to make the diagram (D∞) converge to the diagram (D̃∞) such that f̃ described

in Definition 2.3 is a homeomorphism of X onto Ỹ .

Proof. For each k ∈ ω, fk : X → Yk has resolution better than ηk. It follows from Proposition

2.5 that there is δk > 0 such that

d (fk (a) , fk (b)) > δk for all a, b ∈ X such that d(a, b) ≥ ηk. (2.2)

Let i be an arbitrary positive integer. Observe that Y0, . . . , Yi−1 and f0, . . . , fi−1 have

been constructed before the i-th step of the construction. If i > 1, then g0, . . . , gi−2 also have

been constructed. Thus, δ0, . . . , δi−1 and g0,i−1, . . . , gi−1,i−1 can be used when selecting εi.

For each k ∈ {0, . . . , i−1}, let ε
(k)
i be equal to the ε obtained from Proposition 2.6 used with

δ = 2k−i−1δk, Y = Yi−1, Y ′ = Yk, g = gk,i−1 and Z = fi−1 (X). Set εi = min
{
ε

(0)
i , . . . , ε

(i−1)
i

}
.

It follows from (b)i of Construction 2.7 that

dist (gk,i−1 ◦ fi−1, gk,i ◦ fi) < 2k−i−1δk for each k ∈ ω and each i > k. (2.3)

It follows from Proposition 1.35 that the sequence (gk,j ◦ fj)∞j=k converges uniformly to a

mapping f̃k : X → Yk. Moreover, since gk,k is the identity on Yk, 2.3 implies that

dist
(
fk, f̃k

)
<
∞∑
j=k

2k−j−2δk = 2−1δk (2.4)
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By Proposition 2.2, the diagram (D∞) converges to the diagram (D̃∞) and f̃ , the map-

ping of X onto Ỹ induced by (D̃∞), is a continuous surjection onto Ỹ = lim←−{Ỹi, g̃i}
∞
i=0.

Thus, to complete the proof, it is enough to observe that f̃ is an injection. For that purpose,

take any two points a 6= b ∈ X. Since lim
i→∞

ηi = 0, there is a positive integer k such that

d (a, b) > ηk. Since the resolution of fk is better than ηk (by condition (a)k of Construction

2.7), it follows from 2.2 that

d (fk (a) , fk (b)) > δk (2.5)

Since d
(
fk (a) , f̃k (a)

)
< 2−1δk and d

(
fk (b) , f̃k (b)

)
< 2−1δk by 2.4, it follows from 2.5 that

f̃k (a) 6= f̃k (b). Consequently, f̃ is an injection.

Remark 2.9. The conditions on the sequence (εi)
∞
i=0 in the proof of the previous theorem

are similar to those established in the theorems by the authors in the following section.

Remark 2.10. In context of Construction 2.7, suppose that S = (si)
∞
i=1 is a sequence of pos-

itive functions (understood as procedures producing positive numbers) such that s1 is a func-

tion of Y0, f0 and η1, and for each integer i > 1, si is a function of Y0, . . . , Yi−1, f0, . . . , fi−1,

g0, . . . , gi−2, and ηi. We call S a strategy for Theorem 2.8 if setting ε1 = s1 (Y0, f0, η1) and

εi = si (Y0, . . . , Yi−1, f0, . . . , fi−1, g0, . . . , gi−2, ηi) for i > 1 produces a construction satisfying

Theorem 2.8. Our proof of the theorem describes such a strategy. Observe if S is a strat-

egy for Theorem 2.8, then selecting in the i-th step of the construction any positive number

εi ≤ si also leads to a construction satisfying Theorem 2.8. Thus, the theorem can be restated

as follows.

Restatement of Theorem 2.8. For each positive integer i, it is possible to find before the

i-th step of Construction 2.7 a positive number si such that

1. si depends only on the previously defined elements of the construction.

2. if any positive εi ≤ si is selected and the construction continues as described in 2.7,

then so constructed diagram (D∞) converges to the diagram (D̃∞) such that f̃ described

in Definition 2.3 is a homeomorphism of X onto Ỹ .
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2.2 Applications of Theorem 2.8

We now demonstrate the usefulness of Theorem 2.8 by showing how it can restate and

reprove three others involving inverse limits of metric spaces. To prove these using our

theorem in the previous section, we need to interpret each one in terms of Construction 2.7.

2.2.1 The Anderson-Choquet Embedding Theorem

The Anderson-Choquet Embedding Theorem is one providing sufficient conditions for

when an inverse limit of compact metric spaces can be embedded in a complete metric space

(such as the plane, R2). We first give the statement of the theorem as it appears Sam B.

Nadler Jr.’s book on Continuum Theory, though some notation is changed.

Theorem 2.11 (The Anderson-Choquet Embedding Theorem [33, Theorem 2.10]). Let Y

be a compact metric space and let {Xi, ϕi}∞i=0 be an inverse sequence where each Xi is a

nonempty compact subset of Y and each ϕi maps onto Xi. Assume (1) and (2) below:

(1) For each ε > 0, there exists k such that for all p ∈ Xk, diam
(⋃

j>k ϕ
−1
k,j(p)

)
< ε;

(2) For each δ > 0, there exists δ′ > 0 such that whenever j > 0 and p, q ∈ Xj such that

di
(
ϕi,j(p), ϕi,j(q)

)
> δ, then dj(p, q) > δ′.

Then lim←−{Xi, ϕi}∞i=0 is homeomorphic to
⋂∞
n=0

(⋃
i≥nXi

)
. In particular, if Xi ⊂ Xi+1 for

each i ∈ ω, then lim←−{Xi, ϕi}∞i=0 is homeomorphic to
⋃∞
i=0Xi.

A version of this theorem in the context of generalized inverse limits with upper semi-

continuous set-valued bonding maps has been given by Banič et al. in [2].

We can also state the theorem more in the context of Construction 2.7, with the as-

sumption that Y need not be a compact and that the bonding maps ϕi need not be onto.

First, we provide the following statements.

35



Proposition 2.12. Let X = lim←−{Xi, ϕi}∞i=0 where Xi is compact. Let πi denote the projec-

tion of X into Xi. Then there is a sequence η0, η1, η2, . . . of positive numbers converging to

0 such that the resolution of πi is better than ηi for each i ∈ ω.

Proof. Let d denote the metric on X defined by

d(a, b) =
∞∑
j=0

1

2j+1
dj(aj, bj)

for every a = (a0, a1, a2, . . .) and b = (b0, b1, b2, . . .) in X where dj is the metric on Xj and,

without loss of generality, dj ≤ 1 for every j ∈ ω. We claim that ηi = 1/2i for every i ∈ ω.

Indeed, suppose a, b ∈ X are such that d(a, b) ≥ 1/2i and πi(a) = πi(b), that is, ai = bi. Then

ak = bk for every k = 0, . . . , i−1 as well. Therefore, d(a, b) =
∑∞

j=i+1
1

2j+1dj(aj, bj) ≤ 1/2i+1,

a contradiction to the assumption that d(a, b) ≥ 1/2i.

Proposition 2.13. Let X be a compact space and let Y be a complete space. Consider a

special case of the diagram (D∞) where each Yi is a copy of Y and each gi is the identity on

Y . Suppose also f0, f1, f2, . . . are such that the diagram (D∞) converges to the diagram (D̃∞)

described in Definition 2.3. Then the sequence (fi)
∞
i=0 converges uniformly to a mapping f ,

f̃i = f , Ỹi = f(X) and g̃i is the identity on f(X) for each i ∈ ω. Consequently, Ỹ is

homeomorphic to f(X). Moreover,
⋂∞
i=0

(⋃
m≥i fm(X)

)
= f(X).

Proof. We will prove only that
⋂∞
i=0

(⋃
m≥i fm(X)

)
= f(X) and leave the rest of the proof

to the reader.

Since (fi)
∞
i=0 converges uniformly to f , we have that for each ε > 0, there exists an i ∈ ω

such that
⋃
m≥i fm(X) ⊂ Nε(f(X)). (See Definition 1.33.) Since X is compact and f is

continuous, f(X) is compact, implying that Nε(f(X)) is closed by Proposition 1.34. Thus,⋃
m≥i fm(X) ⊂ Nε(f(X)), yielding

⋂∞
i=0

(⋃
m≥i fm(X)

)
⊂
⋂
ε>0Nε(f(X)) = f(X) = f(X).

Let x ∈ X. Since lim
m→∞

fm(x) = f(x), we have f(x) ∈
⋃
m≥i fm(X) for every i ∈ ω.

Thus, f(x) ∈
⋂∞
i=0

(⋃
m≥i fm(X)

)
, whence f(X) ⊂

⋂∞
i=0

(⋃
m≥i fm(X)

)
.
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One can summarize this very useful, but a bit technical theorem by the following more

intuitive statement.

Theorem 2.14 (A constructive version of Anderson-Choquet Embedding Theorem). Let

X = lim←−{Xi, ϕi}∞i=0 where Xi is compact and let h0 be an embedding of X0 into a complete

space Y . Suppose that a sequence of embeddings h1 : X1 → Y, h2 : X2 → Y, . . . is constructed

one by one such that, for each positive integer i, some positive number εi is selected depending

on already constructed h0, . . . , hi−1 and then an arbitrary embedding hi of Xi into Y is taken

subject only to the condition dist (hi−1 ◦ ϕi−1, hi) < εi.

Then by choosing a sufficiently small number εi in each step of the above construction,

it is possible to make
⋂∞
i=0

(⋃
m≥i hm(Xm)

)
homeomorphic to X.

Proof. Let πi denote the projection of X into Xi. Let η0, η1, η2, . . . be the sequence promised

by Proposition 2.12. We will now convert the construction described in the theorem to a

construction of the diagram (D∞) in the following way. For each i ∈ ω, set Yi = Y , fi = hi◦πi

and observe that the resolution of fi is better than ηi. If i > 0, let gi : Yi → Yi−1 be the

identity on Y .

Observe that πi−1 = ϕi−1◦πi, fi−1 = hi−1◦πi−1 = hi−1◦ϕi−1◦πi and gi−1◦fi = fi = hi◦πi.

It follows that

dist (fi−1, gi−1 ◦ fi) = dist (hi−1 ◦ ϕi−1 ◦ πi, hi ◦ πi) ≤ dist (hi−1 ◦ ϕi−1, hi) < εi.

Hence, our construction of (D∞) is as described in Construction 2.7. By Theorem 2.8, it

is possible to choose εi in each step such that the diagram (D∞) converges to the diagram

(D̃∞) such that f̃ described in Definition 2.3 is a homeomorphism of X onto Ỹ . Now, the

theorem follows from 2.13.
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2.2.2 Morton Brown’s Approximation Theorem

In his paper, Some Applications of an Approximation Theorem for Inverse Limits, Mor-

ton Brown provides a theorem ([5], Theorem 3) that gives sufficient conditions for two inverse

limits, with the same sequence of factor spaces but different sequences of bonding maps, to

be homeomorphic. Though stated differently in his paper, we can state it in the following

equivalent way.

Theorem 2.15 (Morton Brown [5], Theorem 3). Let X = lim←−{Xi, ϕi}∞i=0 where, for each

i ∈ ω, Xi is a compact metric space. For each i ∈ ω, let Ki be a collection of maps from

Xi+1 into Xi such that ϕi ∈ Ki. Then there is a sequence g0, g1, g2, . . . such that gi ∈ Ki and

lim←−{Xi, gi}∞i=0 is homeomorphic to X.

Proof. Let πi denote the projection of X into Xi. Let η0, η1, . . . be a sequence as promised by

Proposition 2.12. We will build the diagram (D∞) prescribing before the construction begins

Yi to be always Xi and fi to be always πi. Recall that the resolution of fi = πi is better

than ηi by Proposition 2.12. We will now select a sequence of functions g0 ∈ K0, g1 ∈ K1, . . .

one by one. In the i-th step of our construction (where i ≥ 1) we will select gi−1 in the

following way. First we select εi > 0 depending on previously constructed g0, . . . , gi−2 and

take an arbitrary gi−1 ∈ Ki−1 subject only to the condition dist (gi−1, ϕi−1) < εi. Since

fi−1 = πi−1 = ϕi−1 ◦ πi = ϕi−1 ◦ fi, it follows that dist (fi−1, gi−1 ◦ fi) < εi. Thus, our

construction is as described in 2.7. Before the i-th step of the construction, for each i ≥ 1,

we find a number si satisfying the conclusion of the Restatement of Theorem 2.8. We set

ε1 = s1 and ε2 = s2. For each i ≥ 3, let Pi denote the set of those pairs of integers (j, k)

such that 0 ≤ j < k < i. For each (j, k) ∈ Pi, we will construct a certain positive number

s
(j,k)
i and then we will set εi to be the minimum of si and all numbers s

(j,k)
i where (j, k) ∈ Pi.

The number s
(j,k)
i will be constructed in such a way that it depends only on g0, . . . , gi−2, it

does not depend on any gn with n ≥ i− 1 and is such that

dist (gji, gjk ◦ ϕki) < 2−k (2.6)
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We construct s
(j,k)
i for all i > k by induction with respect to i − k. Let s

(j,k)
k+1 be a

small positive number with the property d (gjk(a), gjk(b)) < 2−k for all a, b ∈ Xk such that

d (a, b) ≤ s
(j,k)
k+1 . Observe that (2.6) for i = k+1 is satisfied since gj,k+1 = gjk ◦gk, ϕk,k+1 = ϕk

and dist (gk, ϕk) ≤ s
(j,k)
k+1 . Now, suppose that i > k+1 and gj,i−1 have been constructed in such

a way that dist (gj,i−1, gjk ◦ ϕk,i−1) < 2−k. Set α = 2−k−dist (gj,i−1, gjk ◦ ϕk,i−1) and let s
(j,k)
i

be a small positive number with the property d (gj,i−1(a), gj,i−1(b)) < α for all a, b ∈ Xi−1

such that d (a, b) ≤ s
(j,k)
i . Observe that dist (gji, gj,i−1 ◦ ϕi−1) < α since gji = gj,i−1 ◦ gi−1, Xi

is compact, and dist (gi−1, ϕi−1) ≤ s
(j,k)
i . It follows that (2.6) holds because

dist (gj,i−1 ◦ ϕi−1, gjk ◦ ϕki) = dist (gj,i−1 ◦ ϕi−1, gjk ◦ ϕk,i−1 ◦ ϕi−1)

≤ dist (gj,i−1, gjk ◦ ϕk,i−1) = 2−k − α.

Thus, the construction of s
(j,k)
i is complete, and, consequently, the construction of g0, g1, g2, . . .

is also complete.

Since εi ≤ si for each positive i, and because the si’s were selected to satisfy the

conclusion of the Restatement of Theorem 2.8, the diagram (D∞) converges to the diagram

(D̃∞) such that f̃ is a homeomorphism of X onto lim←−{Ỹi, g̃i}
∞
i=0 where the notation is as

described in Definition 2.1. Observe that lim←−{Ỹi, g̃i}
∞
i=0 = lim←−{f̃i(X), g̃i}∞i=0 is contained in

lim←−{Xi, gi}∞i=0.

To complete the proof we must show that lim←−{f̃i(X), g̃i}∞i=0 = lim←−{Xi, gi}∞i=0. To that

end, it is enough to prove the following claim.

Claim 2.1. For each integer j ≥ 0 and each neighborhood U of f̃j(X) in Xj there is an

integer i > j such that gji(Xi) ⊂ U .

Let j ≥ 0 and let U be a neighborhood of f̃j(X) in Xj. Since f̃j(X) is compact,

there is a number δ such that the δ-neighborhood of f̃j(X) in Xj is contained in U . Since

the sequence (gjl ◦ πl)∞l=j converges uniformly to f̃j, there is a an integer L > j such that
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dist
(
f̃j, gjl ◦ πl

)
< δ/3 for each l ≥ L. Take an integer k ≥ L such that 2−k < δ/3. Let

V be a neighborhood of πk(X) in Xk such that gjk (V ) is contained in δ/3-neighborhood of

gjk ◦ πk(X) in Xj. Since X = lim←−{Xl, ϕl}∞l=0 and Xl is a compact for each integer l ≥ 0,

there is an integer i > k such that ϕki (Xi) ⊂ V .

Take an arbitrary point xi ∈ Xi. It follows from (2.6) that

d (gji (xi) , gjk ◦ ϕki (xi)) < 2−k < δ/3 (2.7)

By the choice of i, ϕki (xi) ∈ V . It follows from the choice of V that there is x ∈ X

such that

d (gjk ◦ ϕki (xi) , gjk ◦ πk(x)) < δ/3 (2.8)

Since k ≥ L, we get the result

d
(
gjk ◦ πk(x), f̃j(x)

)
< δ/3 (2.9)

Combining (2.7), (2.8) and (2.9) we infer that for each xi ∈ Xi there is x ∈ X such that

d
(
gji (xi) , f̃j(x)

)
< δ

The last inequality and the choice of δ proves the claim and completes the proof of the

theorem.

2.2.3 The Theorem of Mardesic and Segal

Definition 2.16. Let X and Y be metric spaces, let f : X → Y be a mapping onto Y , and

let ε > 0. We say that f is an ε-mapping (or ε-map) if for every y ∈ Y , diam
(
f−1(y)

)
< ε.
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Definition 2.17. Let Ω = {Xα | α ∈ Λ} be a class of metric spaces. We say that a metric

space X is Ω-like if for each ε > 0 there exists a space Xα ∈ Ω and an ε-mapping f : X → Xα

onto Xα.

Theorem 2.18 (Mardešić and Segal [27, Lemma 4]). Let X be a continuum, let ψ be a

mapping of X onto a polyhedron P , and let ε > 0 be an arbitrary positive number. Then

there is an δ > 0 such that, for any polyhedron Q and δ-mapping ϕ of X onto Q, there exists

a mapping g of Q onto P , such that the distance dist(ψ, g ◦ ϕ) ≤ ε.

For clarity of our subsequent proof, the notation in the above statement differs from

the original notation in [27, Lemma 4]. Also, notice that in the original statement of [27,

Lemma 4], it is not necessary to assume that f1 : X → P1 is an ε1-mapping.

Theorem 2.19 (Mardešić and Segal [27, Theorem 1]). For an arbitrary collection P of

polyhedra, every P-like continuum X is the inverse limit of an inverse sequence {Yi, gi}∞i=0

with bonding maps gi onto and with polyhedra Yi ∈ P for every i ∈ ω.

Proof of 2.19 from Mardešić - Segal Theorem 2.18 and Theorem 2.8. Set ηi = 2−i. We will

construct the elements of Construction 2.7 in in such a way that all Yi’s are polyhedra from

P and all fi’s and gi’s are surjective. Let f0 be an η0-mapping of X onto some polyhedron

Y0 ∈ P . Now, suppose that steps 0, . . . , i − 1 of the construction have been completed for

some i > 0. Chose a positive εi small enough to satisfy Theorem 2.8. Use 2.18 with P = Yi−1,

ψ = fi−1 and ε = εi to get a δ promised by the theorem. Set σ = min{δ, ηi}. Let fi be a

σ-mapping of X onto a polyhedron Yi ∈ P . It follows from the choice of δ that there is a

surjection gi−1 : Yi → Yi−1 such that dist(fi−i, gi−1 ◦ fi) < εi. Observe that the resolution of

fi is better than ηi since fi is a σ mapping and σ ≤ ηi. So, Construction 2.7 is completed,

By Theorem 2.8, the diagram (D∞) converges to the diagram (D̃∞) such that f̃ described

in Definition 2.3 is a homeomorphism of X onto lim←−{Ỹi, g̃i}
∞
i=0. Since all fi’s and gi’s are

surjective, it follows that Ỹi = Yi and g̃i is surjective for each i ∈ ω.
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Theorem 2.19 has been referenced by numerous authors, thus proving itself to have

many applications in Topology. One paper in particular comes from Michael C. McCord

in [30] in which he provides theorems stating classes P of polyhedra for which a universal

P-like compactum will exist and classes for when no such universal compactum will exist.

The proofs of some of these theorems in the previously mentioned paper use the theorem

from Mardešić and Segal as well as Morton Brown’s approximation theorem. Mardešić also

introduced the notion of approximate resolutions in [22] and generalized results of [27] with

Segal in [26] and Matijević in [24].

2.2.4 Another Look at the Proof of Corollary 1.67

We observe here that the proof of Corollary 1.67 contained elements of Construction 2.7

and therefore can be inferred from Theorem 2.8.

Recall that in Corollary 1.67, we expressed a compact 0-dimensional metric space X

as the inverse limit of an inverse sequence of finite sets using the following construction.

We took a sequence V0,V1,V2, . . . of coverings of X such that mesh(V i) → 0, and for each

i ∈ ω, V i consists of finitely many mutually disjoint, nonempty closed and open sets, and

V i+1 refines V i. We then defined gi : V i+1 → V i by setting, for every V ∈ V i+1, gi(V )

to be the unique element of V i containing V . Observe that the resolution of fi is better

than 2mesh(V i). Also observe that fi and gi are surjections, and that fi = gi ◦ fi+1. Thus,

dist(fi−1, gi−1 ◦ fi) = 0 which is less than any positive number εi. It follows from Theorem

2.8 that f = (f0, f1, f2, . . .) is homeomorphism of X onto lim←−{V
i, gi}.

2.3 The Construction of Theorem 2.8 as a Game

We now demonstrate how Construction 2.7 of Theorem 2.8 can be viewed as a game

between two players who we will call Player-ε and Player-g. In this game, Player-ε provides a

sequence (εi)
∞
i=1 of positive numbers that will converge to 0, while Player-g wants to produce

a sequence (gi)
∞
i=0 of bonding maps between members of a sequence of (Yi)

∞
i=0 of complete
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spaces, where each gi satisfies certain restrictions depending on the previously constructed

εi’s that will become apparent shortly. Each player produces their elements step-by-step, or

rather, round-by-round, in this infinite game, all depending on the previously constructed

elements of the game. The players are initially provided a “playing field” (which can be

thought of as Round 0) before the game begins, which consists of a compactum, X, and a

sequence (ηi)
∞
i=0 of positive numbers converging to 0. Player-g will also have to make use of

each ηi in the corresponding round, constructing a mapping fi : X → Yi such that gi−1◦fi will

εi-commutes with fi−1. In each round, Player-ε will go first with their choice with Player-g

following depending on the previous choices of Player-ε and the aforementioned restrictions.

The goal of Player-ε is to force Player-g to build an inverse sequence whose inverse limit is

homeomorphic to X by providing sufficiently small εi’s in each round while Player-g wants

to make choices which prevent such a homeomorphism from occurring.

Here, we exhibit how the game ensues in each round. One may then see how this gives

rise to the same as Construction 2.7, albeit in a different and (arguably) more approachable

context. We conclude with a restatement of Theorem 2.8 as one in which Player-ε has a

winning strategy. The interested reader may refer to the paper by Miklós Pintér in [35] for

another use of game theory in inverse limits; although, it focuses on inverse limits of measure

spaces instead of topological spaces, and the content there does not resemble the methods

or ideas here.

The Playing Field: Round 0

The “playing field” in which this game takes place can be thought of the given elements

in Step 0 of Construction 2.7, which we would rather call “Round 0.” That is, both players

are provided a compactum X, a sequence of positive numbers η0, η1, . . . converging to 0,

and a complete space Y0 and mapping f0 : X → Y0 subject only to the condition that the

resolution of f0 is better than η0.

Round i > 0
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In this round, ε1 through εi−1 have been provided by Player-ε, and the complete spaces

Y1 through Yi−1, maps f1 through fi−1, and bonding maps g0 through gi−2 have been provided

by Player-g. Player-ε goes first, choosing an εi > 0 depending on Y0, . . . , Yi−1, f0, . . . , fi−1,

g0, . . . , gi−2, and ηi as described in Remark 2.10.

Player-g follows, choosing a complete space Yi, a mapping fi : X → Yi with resolution

better than ηi, and a mapping gi−1 : Yi → Yi−1 subject to the condition that dist(fi−1, gi−1 ◦

fi) < εi.

After ω-many Rounds

After ω-many rounds have been completed, Player-g will have built the diagram (D∞)

and therefore the diagram (D̃∞). From here, we provide the following restatement of Theo-

rem 2.8. The proof of this restatement need not be provided since it would require the same

proof as that of Theorem 2.8, possibly with some different wording.

Restatement of Theorem 2.8. With regard the interpretation of Construction 2.7 as a

game between Player-ε and Player-g, it is possible for Player-ε to choose a sufficiently small

positive εi in each i-th round of the game forcing Player-g to build the diagram (D∞) so that

it converges to the diagram (D̃∞) and making X homeomorphic to Ỹ = lim←−{Ỹi, g̃i}
∞
i=0 under

the map f̃ induced by f̃0, f̃1, f̃2, . . ..

One may argue that this game is rather “unfair” for Player-g, given the numerous

choices and restrictions by which this player must abide, while Player-ε must simply make a

smart enough choice for each positive εi so that a homeomorphism is forced by the sequence

(f̃i)
∞
i=0, where again, f̃i is the uniform limit of (gi ◦ · · · ◦ gj−1 ◦ fj)∞j=i. Regardless, viewing

the construction of Theorem 2.8 and its proof as a game sheds light on a the common char-

acteristics of these three three main theorems from the literature and their proofs. Though

more inquiry would be needed, this construction may provide sufficient conditions for when

a given compactum and an inverse limit space are homeomorphic.
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