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Abstract

This dissertation focuses on extending certain notions from Abelian group theory and
module theory over integral domains to modules over non-commutative rings. In particular,
we investigate generalizations of torsion-freeness and characterize rings for which torsion-
freeness and non-singularity coincide under a Morita-equivalence. Here, a right R-module
M is non-singular if xI is nonzero for every nonzero x € M and every essential right ideal
I of R, and a right R-module M is torsion-free if Tor®(M, R/Rr) = 0 for every r € R.
Incidentally, we find that this is related to characterizing rings for which the n x n matrix
ring Mat,(R) is a Baer-ring. A ring is Baer if every right (or left) annihilator is generated
by an idempotent. Strongly non-singular and semi-hereditary rings play a vital role, and we
consider relevant examples and related results.

This leads to a discussion of divisible modules and two-sided submodules of the maximal
ring of quotients (). As with torsion-freeness, there are various notions of divisibility in
the general setting, and we consider rings for which these various notions coincide. More
specifically, we consider the structure of )/ R in the case that its projective dimension is < 1
and R is a right and left duo domain. A ring R is a right (left) duo ring if Ra C aR (aR C
Ra) for every a € R. In this setting, we find that h-divisibility and classical divisibility
coincide, and @)/R can be decomposed into a direct sum of countably-generated two-sided

R-submodules. We consider related results, as well as examples of such rings.

i



Acknowledgments

First, I would like to thank my adviser, Ulrich Albrecht. His guidance and teachings
have molded me into the mathematician and teacher I am today, and his encouragement
and patience have enabled me to continuously push forward to reach this point. I could
not have asked for a better adviser and mentor. I would also like to thank my advisory
committee consisting of Georg Hetzer, Luke Oeding, and Hans-Werner van Wyk, as well as
Gary Martin, for their support and contributions. I want to also extend thanks to all of my
colleagues and professors in the Auburn University Mathematics Department.

To my parents, Winston and Cindy, and to my brother, Jeff, I want to express the
deepest of gratitude for putting up with me all these years and for the immense support and
love they’ve given time and time again. I certainly would not be here without them. Finally,

I want to extend thanks to all of my friends and family for their support.

il



Table of Contents

Abstract . . . . . . e
Acknowledgments . . . . . . ..
1 Introduction . . . . . . ...
2 Semi-hereditary Rings and p.p.-rings . . . . . . . . .. ... ...
3 Homological Algebra . . . . . . . . . ...
3.1 Tensor Products . . . . . . . .. ..
3.2 Bimodules and the Hom and Tensor Functors . . . . . ... ... ... ...
3.3 The Tor and Ext Functors . . . . . . . . . ... ... .. ... ... ...
4 Torsion-freeness . . . . . . ...
) Non-singularity . . . . . . . . . . .
5.1 Essential Submodules and the Singular Submodule . . . . .. .. ... ...

5.2 The Maximal Ring of Quotients and Right Strongly Non-singular Rings . . .

5.3 Coincidence of Torsion-freeness and Non-singularity . . . . . . .. ... ...
6 Morita Equivalence . . . . . . . . ...
7 The Baer-Splitting Property . . . . . . . . . ... oL
8 Divisible Modules . . . . . . . . ..
9 DuoRings . . . . . .
9.1 Localizations and Duo Rings . . . . . . . . . . ... ... ... ...
9.2 Projective Dimension . . . . . . . . ... Lo
10 Generalizations of Matlis Domains . . . . . . . . .. ... ... .. .. ... ..
10.1 Tight Systems and G(Rg) Families . . . . . .. ... ... ... ... ...
10.2 Pre-Matlis Duo Domains . . . . . . . . . ... .. . L
Bibliography . . . . . . .

v

ii

il

16
16
22



Chapter 1

Introduction

The structure of modules over integral domains has been widely researched and has
seen several advancements in recent years. This dates back to the 1930s with R. Baer’s
work in Abelian group theory, and since then several familiar notions from Abelian group
theory have been extended to modules over integral domains. However, the degree to which
this theory can be extended to general associative rings is not known. For instance, the
classical notions of torsion-freeness and divisibility can be defined in several ways which are
equivalent for modules over integral domains but not for modules over arbitrary rings. In
this dissertation, we look to classify the rings for which some of these notions and results
can be extended to non-commutative rings.

Throughout our discussions, the maximal ring of quotients will play a pivotal role. The
theory of quotient rings has become an integral part of non-commutative ring theory. It has
its origins in the 1930s with the development of the classical ring of fractions by @. Ore
and K. Asano. The general theory, however, began seeing development in the 1950s through
the work of Y. Utumi, A.W. Goldie, and several others. K.R. Goodearl and B. Stenstrom
consolidated and expanded many of these results in the 1970s, and use of the maximal ring
of quotients remains extensive in non-commutative ring theory to this day.

For an integral domain R, there exists a commutative ring ()" containing R as a subring
such that every non-zero element of R is a unit in )". Moreover, every non-zero element in

Q" is of the form rs~! for some r,s € R. Here, rs™!

represents an equivalence class (r, s),
where (r,s) ~ (a,b) if and only if b = sa (see Chapter 9). The ring Q" is unique and we will
refer to it as the classical right ring of quotients of R. The classical left ring of quotients Q'

is similarly defined, and Q" = @' for an integral domain. A more general construction will



be defined in Chapter 9, with units in ) being taken from a multiplicatively closed subset
S C R of non-zero divisors.

The formal construction of the classical ring of quotients can fail in the case that R
is non-commutative, and such an over-ring may not exist, even in the case that R is a
non-commutative domain. Moreover, the right and left ring of quotients of an arbitrary
associative ring do not necessary coincide. It is well-known that a ring R has a classical
right ring of quotients if it satisfies the right Ore condition: given a,s € R with s regular,
there exists b,t € R with t regular such that at = sb. In Section 5.2, we consider a more
general construction of the mazimal right ring of quotients, which depends on finding an
essential extension of R, as opposed to the classical construction of forming fractions. This
construction results in a ring ) which coincides with the classical ring of quotients in the
case that R is an integral domain.

The first part of the dissertation deals with extending the classical notion of torsion-
freeness to the general setting. If R is an integral domain and M is an R-module, we define the
torsion submodule of M to be tM = {x € M | ann,(x) contains some regular element of R},
where ann,(x) = {r € R | ar = 0} is the right annihilator of R and r € R is regular if
it is not a right or left zero-divisor. We say that M is torsion-free in the classical sense if
tM = {0} and torsion if tM = M. Unfortunately, problems arise in the non-commutative
setting since tM is not necessarily a submodule of M. There are various ways to extend
the notion of torsion-freeness to the general setting. Following Hattori [18], we say that a
right R-module M over a ring R is torsion-free if Tor’ (M, R/Rr) = 0 for every r € R. This
is based on homological properties of modules and coincides with the classical definition in
the case R is commutative. Goodearl takes a different approach in [17] by considering the

singular submodule

Z(M)={x e M |zl =0 for some essential right ideal I of R}



of M. The module M is singular if Z(M) = M and non-singular if Z(M) = 0. A ring
R is right non-singular if it is non-singular as a right R-module. Determining when these
two notions coincide is of great interest, and we look at relevant background information on
torsion-freeness and non-singularity in Chapters 4 and 5.

In 2005, Professors U. Albrecht, J. Dauns, and L. Fuchs were able to classify the non-
commutative rings for which torsion-freeness and non-singularity coincide. This significant
development in module theory was published in the Journal of Algebra [3] along with related
results and applications, and has led to several follow-up results. However, at the time, they
were unable to classify the rings R for which the classes of torsion-free and non-singular
right S-modules coincide for every ring S Morita-equivalent to R. Two rings are Morita-
equivalent if their module categories are equivalent. One complication that arises is the fact
that torsion-freeness is not preserved under a Morita-equivalence, whereas non-singularity is
in fact a Morita-invariant property [13, Example 5.4].

It turns out that the question regarding coincidence of torsion-freeness and non-singularity
under a Morita-equivalence is closely related to the problem of classifying the rings for which
the n x n matrix ring Mat,(R) is a Baer-ring. A ring is a Baer-ring if every right (or left)
annihilator ideal is generated by an idempotent. We are able to find necessary and sufficient
conditions for a ring R so that Mat,(R) is a Baer-ring. Incidentally, these conditions also
provide us with rings for which the classes of torsion-free and non-singular modules coincide
under a Morita-equivalence. The characterization of these rings is provided in Theorem 6.5,
which states that the classes of torsion-free and non-singular S-modules coincide for every
ring S Morita equivalent to a ring R if and only if R is a right strongly non-singular, right
semi-hereditary, right Utumi ring not containing an infinite set of orthogonal idempotents.

A ring is right strongly non-singular if its maximal right ring of quotients is a perfect left
localization. These rings will play a pivotal role throughout all of our discussions and will
be explored in Section 5.2. Semi-hereditary rings will be defined and explored in Chapter 2,

and we define Utumi rings in Section 5.3. In determining these conditions, we make use of



the existence of a Morita-equivalence between R and Mat,(R) (Proposition 6.2), as well as
the fact that Mat, (R) is isomorphic to the endomorphism ring of any free right R-module
with basis {z;}?_; (Lemma 2.6). The endomorphism ring Endg(M) of a right R-module M
is the set of all R-homomorphisms f : M — M, which is a ring under point-wise addition
and composition of functions.

After classifying the rings for which torsion-freeness and non-singularity coincide under
a Morita-equivalence, we continue our discussion of strongly non-singular, semi-hereditary
rings. In particular, we consider how these rings are related to two-sided essential submodules
of @Q". In the case that R is right strongly non-singular, right semi-hereditary with finite
Goldie-dimension, [2] provides some information about direct summands of A" whenever
A is a two-sided essential submodule of Q)". Moreover, we show that in this case every
epimorphism A" — A — 0 splits. This leads to a discussion of direct summands of Q/R,
which is in part motivated by the integral domain case.

An integral domain R is called a Matlis domain if the projective dimension of its maximal
ring of quotients () is at most 1. For a Matlis domain, we can find a direct sum decomposition
of (Q/R)gr into countably generated summands [15]. We extend this result to the general
setting and find that several complications arise. One of the primary obstacles relates to
the set R* of regular elements of R. In the general setting, we find that the localization
Rs /Ry over two submonoids 7' C S is not necessarily countably generated even in the case
that S is countably generated over T'. To overcome this difficulty, we introduce a filtration
on R* similar to the third axiom of countability developed by P. Griffith and P. Hill [19].
Furthermore, we extend the notion of a normal series of subgroups to provide a normal series
of submonoids in our filtration. We discuss duo rings and localizations in Chapter 9, and
our filtration is discussed in Chapter 10.

In constructing our filtration, we have to be careful in ensuring that we have suitable
chains of direct summands. In particular, we must make sure that the projective dimension

of the summands does not surpass that of (), and we must ensure that each summand is



countably generated. Several examples are provided. In particular, we provide a ring for
which /R cannot be decomposed into a direct sum with countably generated factors even
though it has projective dimension < 1. This particular ring does not have our desired
filtration. We discuss projective dimension, and resolve some general issues regarding pro-
jectivity of certain submodules of ) in Section 9.2. Divisible modules will also play a role in
our discussion and main theorem, and we find that these modules have a nice connection to
torsion-free modules (see Chapter 8). There are several notions of divisibility in the general
setting, one of which is dual to Hattori’s definition of torsion-freeness. Moreover, as with
torsion-freeness, we are interested in determining when the various notions of divisibility
coincide. We find that this is closely related to our generalization of Matlis domains (see
Theorem 10.12).

Unless noted otherwise, all rings are assumed to be associative with unit and are not
necessarily commutative. The term domain will refer to a ring that does not contain zero
divisors and is not necessarily commutative, while integral domain will be used for commu-

tative domains.



Chapter 2

Semi-hereditary Rings and p.p.-rings

We begin by looking at projective modules. A right R-module P is projective if given
right R-modules A and B, an epimorphism 7 : A — B, and a homomorphism ¢ : P — B,
there exists a homomorphism ¢ : P — A such that 7 = . In other words, the following
diagram commutes:

/|
©
A—=B—0

In particular, every free right R-module is projective [26, Theorem 3.1]. We make use of the

following well-known characterization of projective modules:
Theorem 2.1. [26] Let R be a ring. The following are equivalent for a right R-module P:
(a) P is projective

(b) P is isomorphic to a direct summand of a free right R-module. In other words, there is

a free right R-module F = Q@ N, where N is a right R-module and QQ = P.
(¢) For any right R-module M and epimorphism ¢ : M — P, M = ker (¢) P N.

Let Modg be the category of all right R-modules for a ring R. A complex in Mody is a
sequence of right R-modules and R-homomorphisms in M odg,
o Ay 2 A S A s

such that ag, 10y = 0 for every k € Z. Observe a0y = 0 implies that im(ag.1) C ker (ag).

The sequence is called ezact if im(ayy1) = ker (ay) for every k € Z. An exact sequence

0=ASBES C5o0of right R-modules is referred to as a short exact sequence. Such



an exact sequence is said to split if there exists an R-homomorphism v : C' — B such that

By = 1¢, where 1¢ is the identity map on C.

Lemma 2.2. [26] Let 0 - A % B 5 C S5 0bea sequence of right R-modules. If this

sequence is split exact, then B = A C.

Proof. If the exact sequence 0 — A 5 B S0 5 0of right R-modules splits, then there
exists an R-homomorphism v : C' — B such that v = 1. Observe that since « is a
monomorphism, im(«) = A. Moreover, if x € ker(v), then v(x) = 0. However, 5(0) =
Bvy(x) = x since fy = 1. Thus, x = 0 and + is also a monomorphism. Hence, im(f5) = C.
Therefore, to show that B = A C, it suffices to show that B = im(«) @ im(7).

Let b € B. Then (b) € C and v5(b) € im(y). Furthermore, b—~3(b) € ker(5) = im(«)
since B(b — 7B(B)) = B(b) — BYB(b) = B(B) — A(b) = 0. Hence, b — [b— B(b)] + ¥8(b) €
im(a) + im(y). Suppose, x € im(«) Nim(y). Then, there exists some a € A such that
a(a) = x, and there exists some ¢ € C such that v(c) = x. Now, a(a) € im(«a) = ker(f),
which implies f(x) = Ba(a) = 0. However, it is also the case that 3(z) = $v(c) = c¢. Hence,
¢ = 0 and it follows that x = v(¢) = v(0) = 0. Thus, im(a) Nim(y) = 0. Therefore,
B =im(a) @im(y) = ADC. O

Proposition 2.3. [26] The following are equivalent for a right R-module P:

(a) P is projective.

HOmR(P,QD) HomR(Pﬂl))

(b) The sequence 0 — Hompg(P, A) Hompg (P, B) Hompg(P,C) — 0 is

exact whenever 0 — A % B % C — 0 is a an ezact sequence of right R-modules.

Proof. (a) = (b): Suppose P is projective. Observe that the functor Hompg(P, ) is left

exact [26, Theorem 2.38]. Thus, if 0 - A 5 B 50 50is exact, then

HOIHR(P,QO) HOIHR(P,'LZJ)
T T

0 — Hompg(P, A)

Hompg(P, B) Hompg(P, C)



is exact. Therefore, it remains to be shown that Hompg(P, 1) is an epimorphism. Let
a € Hompg(P,C). Since P is projective, there exists a homomorphism 3 : P — B such that
a =Y. Hence, Homg(P,1)(8) = ¥ = a. Therefore, Homg(P, 1) is an epimorphism.

(b) = (a): Let P be a right R-module and assume exactness of 0 = A 5 B 5Ho=0

HomR(P,t,o) HomR(Pﬂ/J)

implies exactness of 0 — Hompg(P, A) Hompg (P, B) Hompg(P,C) — 0.
This implies Homg(P, %) is an epimorphism. Thus, if & € Homg(P, 1), then there exists
some 3 € Hompg(P, B) such that Homg(P,1)(5) = ¥ = a. That is, given an epimorphism
1 : B — C and a homomorphism « : P — (', there exists a homomorphism 3 : P — B such

that a = 8. Therefore, P is projective. m

A ring R is a right p.p.-ring if every principal right ideal is projective as a right R-
module. A ring R is right semi-hereditary if every finitely generated right ideal is projective
as a right R-module. For a right R-module M and any subset S C M, define the right
annihilator of S'in R as ann,.(S) = {r € R | xr = 0 for every x € S}. The right annihilator
of S is a right ideal of R. Similarly, the left annihilator of S in R can be defined for a left
R-module M as ann,(S) = {r € R | rx =0 for every x € S}. The left annihilator of S is a
left ideal of R. The following proposition shows that right p.p.-rings can be defined in terms
of annihilators of elements and idempotents, where an idempotent is an element e € R such

that e? = e.

Proposition 2.4. A ring R is a right p.p.-ring if and only if for every x € R there exists

some idempotent e € R such that ann,(x) = eR.

Proof. For x € R, consider the function f, : R — xR given by r — xr. This is a well-
defined epimorphism. Then R is a right p.p.-ring if and only if the principal right ideal xR
is projective for for every x € R if and only if ker (f,) is a direct summand of R for every
x € R. Observe that for each z € R, ker (f,) = ann,(z). Hence, R is a right p.p.-ring if and
only if ann,.(z) is a direct summand of R. Note that every direct summand of R is generated

by an idempotent since R = eR@(1 — e)R for any idempotent e € R. Thus, as a direct



summand, ann,(z) = eR for some idempotent e € R. Therefore, R is a right p.p.-ring if and

only if for every = € R there is some idempotent e € R such that ann,(z) = eR. [

Let Mat,(R) denote the set of all n x n matrices with entries in R. Under standard
matrix addition and multiplication, Mat,(R) is a ring. A useful characterization of semi-
hereditary rings is that such rings are precisely those for which Mat,,(R) is a right p.p.-ring

for every 0 < n < w. To show this, the following two lemmas will be needed:

Lemma 2.5. [26] A ring R is right semi-hereditary if and only if every finitely generated

submodule U of a projective right R-module P is projective.

Proof. Suppose R is right semi-hereditary and let U be a submodule of a projective right
R-module P. By Theorem 2.1, P@ N is free for some right R-module N. Hence, P is a
submodule of a free module, and it follows that any submodule of P is also a submodule
of a free module. Thus, without loss of generality, it can be assumed that P is a free right
R-module. Moreover, since U is finitely generated, it can be assumed that P is finitely
generated with basis X = {1, xs, ..., 2, } for some 0 < n < w.

Inductively, it will be shown that U is a finite direct sum of finitely generated right
ideals. If n = 1, then P = 1R = R. Since submodules of the right R-module R are right
ideals, U is a finitely generated right ideal. Suppose n > 1 and assume U is a finite direct
sum of finitely generated right ideals for k < n. Let V = UN(x;R+x2R+...4+x,_1R). Then,
V is a finitely generated submodule of a free right R-module with basis {x1, xs, ..., 2, _1}. By
assumption, V' is a finite direct sum of finitely generated right ideals. Note that if u € U,
then w = v+ z,r with v € V and r € R. This expression for u is unique since X is a linearly
independent spanning set. Thus, the map ¢ : U — R defined by ¢(u) = p(v 4+ x,7r) =1 is a
well-defined homomorphism.

Now, im(p) is a finitely generated right ideal of R since it is the epimorphic image
of the finitely generated right R-module U. Hence, im(y) is projective since R is right

semi-hereditary. Consider the short exact sequence 0 — K = U 5 im(p) — 0, where



K = ker ¢ and ¢ is the inclusion map. This sequence splits since im(y) is projective, and
thus U =2 K @ im(p) by Lemma 2.2. Hence, U is a finite direct sum of finitely generated
right ideals since both K and im(p) are finitely generated right ideals. Since R is right
semi-hereditary, each of these right ideals is projective. Therefore, U is projective as the
direct sum of projective right ideals.

Conversely, suppose that if P is a projective right R-module, then every finitely gener-
ated submodule U of P is projective. Let I be a finitely generated right ideal of R. Note that
R is a free right R-module and thus projective. Hence, [ is a finitely generated submodule

of R, and by assumption [ is projective. Therefore, R is right semi-hereditary. O]

Lemma 2.6. Let R be a ring, and F a finitely generated free right R-module with basis
{z;}P_, for 0 <n <w. Then, Mat,(R) = Endg(F).

Proof. Let S = Endgr(F) and take f € S. Then, f(zy) € F for each k = 1,2, ...,n. Hence,
f(zg) is of the form ixiaik, where a;, € R for every ¢ and every k. Let A = {a;} be
the n x n matrix vvhois:e1 i-kth entry is a;;, and let ¢ : S — Mat,(R) be defined by f +— A.
If f,g € S are such that f = g, then f(:ck) = g(zy) for every k =1,2,..,n. Hence, @ is

well-defined. Furthermore, if f(xy) leazk and g(xy) ZJ: bir, for k =1,2,...,n, then

=1 =1

(f +9)(xk) = fak) + g(ag) le @i, + bi). Thus, if A = {a;} and B = {by} are the
n X n matrices with entries dete;nllined by f and g respectively, then A+ B = {a;x + by} is
the n x n matrix with entries determined by f + g. Hence, o(f +¢9) = A+ B = ¢of + ¢g.
To see that ¢ is a ring homomorphism, it remains to be seen that o(fg) = ¢(f)e(g) =
AB. In other words, it needs to be shown that the entries of the matrix AB are determined
by fg(x;) for j =1,2,...,n. Observe that if A = {a;;} and B = {b;;} are n xn matrices, then

under standard matrix multiplication AB is the n x n matrix whose i-jth entry is Z @it byj.

k=1
This is indeed the matrix determined by the endomorphism fg since the following holds:

= O arby) = Y flan)bey = > Y witawbe; = Y 1 Y awbij.
k=1 K1 =1 k=1

k=1 i=1

10



Finally, note that if A = {a;} € Mat,(R), then ixiaik € I and f LT ixiaik
is an R-homomorphism from {z;}!", into F. This Cairflbe extended to an endomi)zl“ll)hism
[ € F. It readily follows that ¢ : Mat,(R) — S defined by {ax} — f is a well-defined
ring homomorphism. Moreover, pu({aix}) = ©(f) = {au} and vp(f) = v({awx}) = f.

Thus, ¢ and ¢ are inverses, and therefore ¢ is an isomorphism between S = Endg(F') and

Mat,(R). 0

Theorem 2.7. [11] A ring R is right semi-hereditary if and only if Mat,(R) is a right

p.p.-ring for every 0 < n < w.

Proof. Suppose R is right semi-hereditary. For 0 < n < w, let F' be a finitely generated
free right R-module with basis {z;}! ;. By Lemma 2.6, Mat,(R) = Endgr(F). Therefore,
it suffices to show that S = Endgr(F) is a right p.p.-ring. Take s € S. Since F is finitely-
generated, sF' is a finitely generated submodule of F'. Free modules are projective, and
thus sF is projective by Lemma 2.5. Since sF' is an epimorphic image of F', Theorem 2.1
shows that F' = ker s@ N for some right R-module N. Thus, ker s = e[’ for some nonzero
idempotent e € S. Suppose r € ann,(s) = {t € S | st(f) = 0 for every f € F}. Then,
st =0 and r € kers = el C eS. On the other hand, suppose et € eS. Since sef = 0 for
every f € F| set(f) =0 for every f € F. Hence, et € ann,(s). Therefore, ann,(s) = eS and
S = Endgr(F) = Mat,(R) is a right p.p.-ring.

Suppose Mat, (R) is a right p.p.-ring for every 0 < n < w. Let I be a finitely generated
right ideal of R with generating set {ai, as, ..., ax}, and take F' to be a free right R-module
with basis {x1, Za, ..., 2 }. Note that there exists a submodule K of F' which is isomorphic to
I. Hence, K is also generated by k elements, say by, bs, ..., br. Let S = Maty(R) = Endg(F).
For any f € F, there exists r1,79,...,7, € R such that f = x1r1 + xor9 + ... + x37%. Let
s € S be the well-defined homomorphism defined by s(f) = s(z1r1 + xore + ... + T1y) =

biry + bora + ... + b1, Note that im(s) = K and thus s : F' — K is an epimorphism.

11



It will now be shown that ker (s) = ann,(s)F. Here, as before, ann,(s) refers to the
annihilator in S. If y = zn:tifi € ann,(s)F, then st;f; = 0 for every i = 1,2,....,n. Hence,
y € ker (s). On the othe;:ﬁand, let f € ker(s). Now, fR is a submodule of I, and so we
can find some ¢t € S such that ¢ : FF — fR is an epimorphism and tf = f. Then, for any
x € F, slt(x)] = s(fr) for some r € R. However, s(fr) = (sf)r = 0. Thus, t € ann,(s) and
f=tf € ann,(s)F. Therefore, ker (s) = ann,(s)F. Moreover, since Maty(R) = Endgr(F)
is a right p.p.-ring by assumption, ann,(s) = eS for some idempotent e € S. Observe that

SF = I since Zsifi € Ffors; € Sand f; € F, and f = 1p(f) € SF for any f € F.
i=1

Hence, ker (s) = ann,(s)F = eSF = eF. Thus, ker (s) is a direct summand of F. It then

follows from Theorem 2.1 that I = K is projective since s : FF — K is a an epimorphism.

Therefore, R is a right semi-hereditary ring. O]

Two idempotents e and f are called orthogonal if ef = 0 and fe = 0. If R contains
only finite sets of orthogonal idempotents, then being a p.p.-ring is right-left-symmetric.
Moreover, if R is a right (or left) p.p.-ring not containing an infinite set of orthogonal idem-
potents, then it satisfies both the ascending and descending chain conditions on annihilators
(Theorem 2.11). A ring R satisfies the ascending chain condition on annihilators if given
any ascending chain Iy € [; C ... C [, C ... of annihilators, there exists some k < w such
that I, = I for every n > k. Similarly, R satisfies the descending chain condition on anni-
hilators if every descending chain of annihilators terminates for some k& < w. Before proving

Theorem 2.11, we look at some basic results regarding annihilators and the chain conditions.

Lemma 2.8. Let S and T be subsets of a ring R such that S C T. Then, ann,.(T) C ann,(S)

and anny(T) C anny(S).

Proof. For r € ann,.(T) and t € T, tr = 0. Let s € S C T. Then, sr = 0 and hence
r € ann,(S). Thus, ann,.(T) C ann,(S). A similar computation shows the theorem holds

for left annihilators. O

12



Lemma 2.9. Let U be a subset of a ring R, and let A = ann,(U) = {r € R | ur =0 for

every w € U}. Then, ann,(ann(A)) = A.

Proof. Suppose r € ann,(ann;(A)), and let u € U. Then, ua = 0 for every a € A. Hence,
u € anny(A), and thus ur = 0. Therefore, ann,(ann;(A)) C A. Conversely, suppose
a € A. Then, ba = 0 for every b € ann(A). Hence, a € ann,(ann;(A)). Therefore,

A Cann,(ann(A)). O

Lemma 2.10. R satisfies the ascending chain condition on right annihilators if and only if

R satisfies the descending chain condition on left annihilators.

Proof. Suppose R satisfies the ascending chain condition on right annihilators. Let anny(U;)
D anny(Usz) D ... be a descending chain of left annihilators. Note that if ann,(U;) 2 anny(U;),
then ann,(ann;(Uy)) C ann,(ann;(Us)) C ... is an ascending chain of right annihilators by
Lemma 2.8. By the ascending chain condition on right annihilators, there is some k < w such
that ann,(ann,(U,)) = ann,(ann;(Uy)) for every n > k. Therefore, ann;(ann,(ann,(U,))) =
anny(ann,(ann,(Uy))) for every n > k, and by a symmetric version of Lemma 2.9 it follows
that anny(U,) = anny(U,) for every n > k. A similar argument shows that the descending
chain condition on left annihilators implies the ascending chain condition for right annihila-

tors. O

Theorem 2.11. [11] Let R be a right p.p.-ring which does not contain an infinite set of
orthogonal idempotents. Then R is also a left p.p.-ring, every right or left annihilator in
R is generated by an idempotent, and R satisfies both the ascending and descending chain

condition for right annihilators.

Proof. Let A = ann,(U) for some subset U of R and consider B = ann;(A). Suppose B
contains nonzero orthogonal idempotents ey, ..., e,, and let e = e; + ... + e,,. Note that e is
also an idempotent since €2 = (e;+...+e,)(e1+...+e,) = et +...+e2+ejea+ ...+ e, 16, =

e1+...+e, = e. Suppose B = Re. The claim is that A = (1—e)R, and hence A is generated
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by an idempotent. To see this, first note that ann,(B) = ann,(ann;(A)) = A by Lemma 2.9.
Thus, it needs to be shown that ann,(B) = (1 —e)R. If b € B = Re, then b = se for some
s € R. For all r € R, we obtain b(1 —e)r = se(l —e)r = (se — se?)r = (se —se)r = 0. Hence,
(1 —e)R C ann,(B). On the other hand, suppose r € ann,(B). Then, r =r —er + er =
(1 —e)r + er. Note that e € B = ann(A), and so er = 0 since r € ann,(B) = A. Thus,
r=(1—e)r € (1 —e)R, and hence ann,(B) C (1 — e)R. Therefore, if B = Re, then A is
generated by an idempotent.

If B # Re, then select b € B\ Re, and observe ba = 0 for every a € A since b # re for any
r € R. Therefore, B # Be, which implies B(1—e) # 0. Let 0 # y € B(1—e), say y = s(1—e)
for some s € B. Since R is a right p.p.-ring, ann,.(y) = (1 — f)R for some idempotent f € R.
Observe that f is nonzero. For otherwise, ann,(y) = R and y = 0, which is a contradiction.
If0+#a€ A, then ya = s(l —e)a=sa—sea =0—s-0=0. Thus, a € ann,.(y) = (1 — f)R,
and so A C (1 — f)R. Hence, fAC f(1— f)R =0 and f € ann;(A) = B. Observe that
e € ann,(y) = (1 — f)R since ye = s(1 —e)e = 0, and so e = (1 — f)t for some t € R. Thus,
1=fle=1—-fH1=flit=(1— fit =e,and so fe= f(1 — f)t = (f — f*)t = 0. Note also
that fe; =0 for ¢ = 1,...,n, since ye; = s(1 — e)e; = s(e; — ee;) = s(e; — e;) = 0 and hence
e; € ann,(y).

Let e,01 = (1 —e)f = f —ef. Note e,y is an idempotent since fe = 0 and thus
(f—ef)(f —ef) = f—fef —ef +efef = f—0—ef +0 = f—ef. Consider e; for
some i = 1,...,n. Then, e 116, = (1 —e)fe; = (1 —e€)-0=0, and e;ep,y1 = €;(1 —e)f =
(e;—ee)f =(e;—e;)f =0-f=0. Thus, e, is orthogonal to ey, ..., e,. Furthermore, e, 1
is nonzero, since otherwise we have f = ef. This would imply f = f2 =efef =e-0-f =0,
which is a contradiction. Note also that e, ; € B since both e and f are in B.

Then, ey, ..., e,, e,41 are nonzero orthogonal idempotents contained in B. As before, if
e=-e;+ ...+ e,y1 and B # Re, then there is a nonzero idempotent e, 5 € B orthogonal to
€1, ...,ent1. Oince R does not contain any infinite set of orthogonal idempotents, this process

must stop for ey, ...,ex. Thus, for e = e; + ... + e, B = Re and A = (1 — e)R. Therefore,
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each right and left annihilator is generated by an idempotent. From a symmetric version of
Proposition 2.4, it follows that R is a left p.p.-ring.

Finally, it needs to be shown that R satisfies the ascending and descending chain condi-
tions for right annihilators. Let C' C D be right annihilators. Then, there are idempotents
e and f such that ' = eR and D = fR. Hence, eR C fR, and it follows that e = fe.
Thus, g = f — ef is a nonzero idempotent. Furthermore, g and e are orthogonal, since
eg=ce(f—ef)=cf—e*f=ef—ef =0and ge = (f—ef)e = fe—efe = e—e? = 0. Note that
fR=eR+gR. For,if er+gs € eR+gR, thener+gs =er+(f—ef)s=er+ fs+efs € fR,
and conversely, if fr € fR, then fr = (f+ef—ef)r =efr+(f—ef)r =efr—gr € eR+gR.

Let Iy C I, C ... be a chain of right annihilators. Then, for I; C I5, there are idempotents
e and f such that I; = eR and I, = fR, and there is an idempotent g orthogonal to e such
that I, = I, + gR. It then follows that I3 = I} + gR + h R for some idempotent h orthogonal
to both e and g. Since R does not contain an infinite set of orthogonal idempotents, this
must terminate with some k < w so that I, = I} for every n > k. Therefore, R satisfies the
ascending chain condition on right annihilators. The descending chain condition on right

annihilators follows from Lemma 2.10. O
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Chapter 3

Homological Algebra

Before discussing torsion-freeness and non-singularity of modules, we need some basic

results in Homological Algebra regarding tensor products, flat modules, and functors.

3.1 Tensor Products

Let A be a right R-module, B a left R-module, and G any Abelian group. A function

f:Ax B — G is called R-biadditive, or R-bilinear, if the following conditions are satisfied:
(i) For each a,a’ € Aand b € B, f(a+d',b) = f(a,b) + f(d’,)),
(ii) For each a € A and b,V € B, f(a,b+V) = f(a,b) + f(a,V'),

(iii) For each a € A, b€ B, and r € R, f(ar,b) = f(a,rb).

Note that in general f(a + a’,b+ V') # f(a,b) + f(a',0'). The tensor product of A and B,
denoted AQp B, is an Abelian group and an R-biadditive function h: A x B - AQ B
having the universal property that whenever G is an Abelian group and g : A x B — G is

R-biadditive, there is a unique map f: AQy B — G such that g = fh.

Proposition 3.1. [26] Let R be a ring. Given a right R-module A and a left R-module B,

the tensor product AQp B exists.

Proof. Let F be a free Abelian group with basis A x B, and let U be a subgroup of F
generated by all elements of the form (a + a’,b) — (a,b) — (d',b), (a,b+ ') — (a,b) — (a,V),
or (ar,b) — (a,rb), where a,a’ € A, b,/ € B, and r € R. Define AQ B to be F)/U, and
denote (a,b) + U € F/U as a ® b. In addition, let h : A x B — AQ@x B be defined by
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(a,b) — a ®b. Observe that h is a well-defined R-biadditive map. For if a,a’ € A and
b € B, then h(a +a',b) = (a+d,b) +U = (a+d',b) — [(a+d',b) — (a,b) — (a/,b)] + U =
[(a,b) + U] + [(d/,b) + U] = h(a,b) + h(d’,b). Similarly, h(a,b+ b") = h(a,b) + h(a,V) for
b,V € B, and h(ar,b) = (ar,b) + U = (ar,b) — [(ar,b) — (a,rb)] + U = (a,rb) + U = h(a,rb)
for r € R.

Let G be any Abelian group and g : A x B — G any R-biadditive map. For F'/U to
be a tensor product, it needs to be shown that there is a function ¢ : AQ, B = F/U = G
such that ¢ = ph. Define f : A x B — G by (a,b) — g(a,b). Each element of F' is of the
form >, 5 (a,b)n(p), where np = 0 for all but finitely many (a,b) € A x B. Let f be
defined by > 4.5 (@, 0)n@p) = D 4xn f[(a,b)]n(a,b). This is clearly well-defined since f is
well-defined. Moreover, f[(a,b)] = f[(a,b)] for (a,b) € A x B, and thus f extends f to a
function on F'. Note that if k£ is another extension of f , then £ must equal f since they are
equal on the generating set A x B. Hence, f is a unique extension. Also observe that f is a
homomorphism since, given z,y € F, f(x +y) = f(Q_avp (@, D)@ + D avp (@, 0)m@p)
= Y axs F@ )]s + X axp FI@,0)]my = f(x) + f(y).

It readily follows from ¢ being R-biadditive that the homomorphism f : F' — G which
we have just constructed is also R-biadditive. To see this, observe that if a,a’ € A and
b€ B, then fl(a+d’,b)] = f(a, )] = f[(d', )] = gl(a+d',b)] — g[(a,b)] — g[(a’,b)] = 0. The
other two conditions are satisfied with similar computation. Thus, we have that f(U) = 0.
Define p : F/lU =AQryB - Gby p(x+U) = f(z). fo+U=2"4+U, thenz —2' €U
and hence f(x —2') € f(U) = 0. Thus, f(z) = f(2') and ¢ is well-defined. Furthermore,
oh(a,b) = ¢la ® b] = ¢[(a,b) + U] = f[(a,b)] = g[(a,b)]. Therefore AQ,B = F/U is a

tensor product. O

Proposition 3.2. Let R be a ring, A a right R-module, and B a left R-module. Then, the

tensor product A ®R B is unique up to isomorphism.

Proof. It has already been shown that A (), B exists. Suppose H and H’ are both tensor

products, and let h : Ax B — H and A/ : A x B — H' be the respective R-biadditive
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functions having the universal property. Then, there exists a function f : H — H’ such that
h' = fh and a function f’: H' — H such that h = f'h’. Hence, h = f'fh and h' = ff'h.

That is, f'f 2 1y and ff' = 1. Therefore, f : H — H' is an isomorphism. ]

Each element of A, B is a finite sum of the form Z(ai ® b;). These elements are

1
referred to as tensors. The elements a®b that generate A ), B are referred to as elementary

tensors. Given a,a’ € A, b,b' € B, and r € R, the following properties hold for tensors:
i) (a+d)@b=a®b+d D,

(i) a®@ (b+V)=a®@b+a®b,

(iii) ar ® b=a ® rb.

These properties can be proved in a method similar to that used in the proof of Proposi-

tion 3.1 to show that h: A x B — AQ)p B defined by (a,b) — a ® b is R-biadditive.

Proposition 3.3. [26, Prop. 2.46] Let R be a ring, A, A" € Modg, and B,B" € rpMod.
If f: A— A and g : B — B’ are R-homomorphisms, then there is an induced map

f®g:AQrB — A QprB such that (f ® g)(a®b) = f(a) @ g(b).

Proof. Let h: AxB - AQpBand ' : A’ x B" - A’ Q) B’ be the respective R-biadditive
maps with the universal tensor property. Define p : Ax B — A’x B’ by ¢(a,b) = (f(a), g(b)).
It then follows that h'¢ : Ax B — A’ Qp B’ is R-biadditive. For if a,a’ € A and b € B, then
Wola+a,b) = K(f(a+a),g(0) = KF(@) + F(@), g(0)] = HF(@),gB)] + W[F(@), g(b)] =
h'o(a,b)+h p(a’,b). Similarly, h'p(a, b+b") = h'o(a,b)+h ¢(a, V') and h'(ar,b) = h'¢(a, rb)
for ¥ € B and r € R. By the universal property of the R-biadditive map h, there exists
amap ¢ : AQrB — A @y B such that h'¢ = ¢h. Hence, ¢(a ® b) = ph(a,b) =
h'o(a,b) = W [f(a),g9(b)] = f(a) ® g(b). Therefore, f ® g = ¢ is an induced map satisfying

(f©@g)a®@b) = f(a) @ g(b). 0

The following lemmas will be needed in a later section:
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Lemma 3.4. [15, Ch. I, Lemma 6.1] Let R be a ring, A a right R-module, and B a left
R-module. If a ® b is a tensor in AQr B, then a ® b = 0 if and only if there exists
ai, s, ...,ay € A and ri,79,...,7, € R such that a = a;ry + agra + ... + agry, and ;0 = 0 for

i=1,2,... k.

Lemma 3.5. For a left R-module M, there is an R-module isomorphism
o : RQprM — M given by p(r ® m) = rm. Here, R is viewed as a right R-module.
Similarly, N@Q gz R = N for a right R-module N

Proof. First, observe that R x M M given by ¥((r,m)) = rm is R-biadditive. Thus, we
can define an R-module homomorphism R &, M % M that sends each r @ m € RQ, M
to rm. In other words, p(r ® m) = ¥ (r,m). Note that for every s € R, p(s(r ® m)) =
p(sr @m) = (sr)m = s(rm) = sp(r @ m).

Let o : M — R@y M be defined by a(m) = 1 ® m. Clearly « is a well-defined R-
module homomorphism since a(m +n) = 1@ (m+n) =1@m+1®n = a(m) + a(n),
and a(rm) =1®@rm = 1lr@ m = 1 ® m. It follows that ap(r @ m) = a(rm) =1®rm =
Ir®@m =r ®m, and pa(m) = (1 ® m) = Im = m. Thus, ¢ is a bijection and hence an

R-module isomorphism. O

Lemma 3.6. [26, Theorem 2.63] If A % BB C = 0is an ezact sequence of left R-
modules, then for any right R-module M, M @, A RN MQrB 1o, M@,C — 0 is an

exact sequence.

Proof. For M @p A LN M@yB A M@, C — 0 to be exact, it needs to be shown that
im(l®i) =ker (1®p) and 1 ® p is surjective. Since im(i) = ker (p) and hence pia = 0 for
every a € A, it readily follows that im(1 ® i) C ker (1 ® p). For if Y (m; ® a;) € M @z A,
then (1 p)(1 @ §)[(m; ® a;)] = (1@ p)[S(1 @ )m; @ a)] = (1 & PNy & i) =
> (1®p)(m;®ia;) = > (m;®@pia;) = > (m;®0) = 0. To see that im(1®i) = ker (1 ® p), first

note that since im(1 ® i) is contained in the kernel of 1 ® p, there is a unige homomorphism
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¢: M@pB/im(12i) = M @, C such that p[(m®b)+im(19i)] = (10p)(m@b) = mepb
21, Ch. IV, Theorem 1.7].

It can be shown that ¢ is an isomorphism, and from this it will follow that im(1 ® i) =
ker (1 ® p). Note that since the sequence A % B % ¢ — 0 s exact and hence p is
surjective, for every ¢ € C there exists an element b € B such that pb = c¢. Let the
function f : M x C — M@y B/im(1 ® i) be defined by (m,c) — p ® b. If there is
another element by € B such that pby = ¢, then p(b — by) = pb — pb0 = ¢ — ¢ = 0. Hence,
b—by € ker (p) = im(i). Thus, there is an a € A such that ia = b—by, and it then follows that
mb—m®by = m®(b—by) = m®ia € im(1®i). Hence, (m@b—m®by)+im(1®i) = 0, and
therefore f is well-defined. Furthermore, it is easily seen that f is an R-biadditive function.
Thus, if h : (m,c) = m ® c is the biadditive function of the tensor product, then there is
a homomorphism ¢ : M Q,C — M @y B/im(1 ® i) such that h = f. In other words,
Y(m®c)=(m®b)+im(l®1).

Observe that Yp[(m®b)+im(1®1i)] = Y(mpb) = P(m&c) = (MRb)+im(1®1) and
e(m®c) = p[(m®b)+im(1®i)] = m®pb = m®c. Thus, ¢ is an isomorphism with inverse
Y. Now, let m : M@rB — M@, B/im(1 ® i) be the canonical epimorphism given by
m®b— mb+im(1®i). Then, pr(m®b) = p[(MRb)+im(1®1i)] = m@pb = (1Qp)(MDb).
Hence, pom = 1 ® p. Therefore, since ¢ is an isomorphism, ker (1 ® p) = ker (p7) = ker (7) =
im(1+1).

Finally, it needs to be shown that 1 ® p is surjective. Let > (m; ® ¢;) € M Q,C.
Since p is surjective, for each j, there exists an element b; € B such that pb; = ¢;. Thus,
(1@p)[2o(m; @b;)] = 32(1@p)(m; @bj) = > _(m; @pb;) = >_(m; ®c;). Therefore, 1 ®p is
surjective and the sequence M @, A M X B NS @i C — 0 is exact. O

A right R-module M is flat if 0 = M @, A Lu B, MQrB BUELN M@rC — 0is an
exact sequence of Abelian groups whenever 0 — A 5 B Y 0 = 0 is an exact sequence of

left R-modules.
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Proposition 3.7. [26, Prop. 3.46] Let R be a ring and let {M;};cr be a collection of right
R-modules for some index set I. Then, the direct sum @, M; is flat if and only if M; is flat
for every i € I. Moreover, R is flat as a right R-module, and any projective right R-module

P is flat.

Proof. First note that if 0 - A 5 B Y € = 0is an exact sequence of left R-modules, then
M@,A S, M@,B RILIN M@,C — 0is exact by Lemma 3.6. Thus, M is flat if
and only if 1;; ® ¢ is a monomorphism whenever ¢ is a monomorphism.

Suppose A and B are left R-modules and let ¢ : A — B be a monomorphism. For
@D, M, to be flat, it needs to be shown that 1 ® ¢ : (B, M;) QrA = (B; M;)) Qp B is
a monomorphism. By [26, Theorem 2.65], there exist isomorphisms f : (; M;) Qr A —
(B, M;QrA) and g: (D, M;) QB — (B, M; Qx B) defined by f: (z;) ®a— (2; ® a)
and g : (x;)®b+— (z;®b). Furthermore, since 1,;,® is a homomorphism for each i € I, there
is a homomorphism ¢ : @;(M; Qr A) = B,;(M; @ B) such that (z; ® a) — (z; ® p(a)).
Observe that 1 is a monomorphism if and only if 1,;, ® ¢ is a monomorphism for each i € 1.
It then follows that ¢ f = g(1®¢p) since ¥ f[(x;)@a] = Y(x;®a) = ;Qp(a) = g[(x;)R¢(a)] =
9(1 ® ¢)[(z; ® a)]. Therefore, @, M; is flat if and only if 1 ® ¢ is a monomorphism if and
only if ¢ is a monomorphism if and only if 1y, ® ¢ is a monomorphism for each 7 if and only
if M; is flat for each 1.

To see that R is flat as a right R-module, note that Lemma 3.5 gives isomorphisms
f:A=>RQrAand g: B— Ry B defined by f(a) = 1p®@a and g(b) = 1p®b. Observe
that (1r®@¢)f(a) = (1r@¢)(lr®a) = 1g@¢(a) = gp(a). Hence, (1@ ¢p) = gpf~", which
is a monomorphism. Therefore, R is flat as a right R-module.

Let P be a projective right R-module. Then there is a free right R-module F' and an
R-module N such that F' = P N. As a free module, F' is a direct sum of copies of R,

which is flat. Hence, F' is also flat. Therefore, P is flat as a direct summand of F. n
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3.2 Bimodules and the Hom and Tensor Functors

Let A be a right R-module. Consider the functor T4 : gMod — Ab defined by T4(B) =
AQp B with induced map Ta(p) =14a®@¢ : AQr B = AQy B, where Ab is the category
of all Abelian groups and ¢ € Hompg(B, B’) for left R-modules B and B’. Observe that
Ta(p)(a®b) =a® @(b). Ty is sometimes denoted T4(_) = AQp__. Similarly, the functor
Tp(A) = AQp B with induced map ¢ ® 1p can be defined for a left R-module B and
1 € Hompg(A, A"). We also consider the functor Homg(A, ) : Modr — Ab with induced
map f, : Homg(A, B) — Hompg(A,C) defined by f.(h) = fh, where f : B — C is a
homomorphism for right R-modules B and C'.

Let R and S be rings and let M be an Abelian group which has both a left R-module
structure and a right S-module structure. Then, M is an (R, S)-bimodule if (rx)s = r(xs)
for every r € R, s € S, and x € M. This is sometimes denoted gpMs. In particular, if A is
a right R-module and F = Endgr(A), then M is an (E, R)-bimodule. Note that for z € M

and « € F, scalar multiplication ax is defined as a(z).

Proposition 3.8. Let R and S be rings. Suppose M is an (R, S)-bimodule and N is a right
S-module. Then, Homg(Mg, Ng) is a right R-module and Homg(Ng, Ms) is a left R-module.

Proof. First, observe that Homg (Mg, Ng) is an Abelian group. For if f, g € Homg(Mg, Ng),
then f(zr) = f(x)r and g(zr) = g(x)r for every r € R. Hence, f +¢ € Homg(Mg, Ng) since
(f+9)(xr) = f(xr)+g(zr) = f(x)r+g(x)r = (f+9g)(z)r. Moreover, if h € Homg(Mg, Ns),
then [f + (g + h)|(z) = f(z) + (g + h)(x) = f(x) + g(x) + h(z) = (f + g)(x) + h(z) =
[(f 4+ g) + h](z). Hence, Homg(Mg, Ng) is associative. Furthermore, the map « : a — 0 acts
as the zero element. Finally, note that if f € Homg(Mg, Ng), then g : M — N defined by
g(x) = —f(x) is such that (f+g)(z) = f(x)+g(x) = f(x)— f(z) = 0. Hence, every element
of Homg(Mg, Ng) has an inverse. Therefore, Homg(Mg, Ng) is an Abelian group.

Now, let ¢ € Homg(Mg, Ng), r,7" € R, and x € M. Define the right R-module

structure on Homg (Mg, Ng) by (¢r)(x) = @(rz). Then, (¢ + ) (r)(z) = (pr + ¢r)(z) =
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(or)(x) + (Ur)(x) = p(rz) + P(rz) = (¢ + ¢)(rz) for ¢ € Homg(Ms, Ng). Moreover,
[o(r +1))(x) = @l(r + )] = glre +r'a] = (re) + e(r'e) = (pr)(z) + (¢r')(z) for
r" € R. Finally, observe that [o(rr)](x) = ¢[(r1)(z)] = ¢[r(r"z)] = (pr)(r'z). Therefore,
Homg (Mg, Ng) satisfies the conditions of a right R-module. Similarly, Homg(Ng, Mg) is a
left R-module with (r7)(z) = ro(z) for any 7 € Homg(Ng, Mg). O

Proposition 3.9. [26] Let R be a subring of S. Suppose M is an (R, S)-bimodule and A is a
right R-module. Then, AQp M is a right S-module. In particular, S is an (R, S)-bimodule
and hence AQ S is a right S-module.

n

Proof. Let y = Z(ai ®uz;) € AQrM and let s € S. Define the right S-module structure

i=1
n n

on AQp M by (Z(ai ® x;))s = Z(ai ® x;5). To see that this does define a right S-module,
consider the Well—igtleﬁned map fis %1741 — M defined by ps(x) = zs. By the bimodule structure
of M, rus(z) = r(zs) = (ra)s = ps(rz) for r € R. Hence, ps € Homg(M, M). Consider
the functor Ta(_) = AQy_. By Proposition 3.3, there is a well-defined homomorphism
Talps) = 1a@ps : AQrM — AQx M such that (14 ® ps)(a ® ) = a @ ps(r) =

a ® xs. If the element ys is defined by ys = (14 ® ps)(y) = (1a ® us) Z a; @x;)) =

n n

Z(l A® us)(a; ®@x;) = Z(ai ® x;8), then the S-module structure is well-defined since

i=1 i=1
(14 ® ps) is a well-defined homomorphism and Z(ai ®@x;5) € AQr M. The remaining
right S-module conditions follow readily. 1\/101“601\7er7 it is easy to see that S satisfies the
conditions of an (R, S)-bimodule. Therefore, given any right R-module A, A, S is a right

S-module. O

Proposition 3.10. Let R < S be rings and let M be an (R, S)-bimodule. Then, the following
hold:

(a) The functor Tayr(_) = _Q@prM : Modr — Ab is actually a functor Modr — Mods.

(b) The functor Homg(M,_) : Mods — Ab is actually a functor Mods — Modg.
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Proof. (a): It has already been shown in Proposition 3.9 that Ty;(A) = A M is a right
S-module for any right R-module A. It needs to be shown that if ©» € Hompg(A, A’) for
A" € Modpg, then Ty (¢) =19 ® 1)y € Homg(AQp M, A @ M). In other words, it needs
to be shown that ¢ ® 1, is an S-homomorphism. Let s € S. Then, (¢ ® 1/)(a ® z)s =
(¥(@) ® 2)s = (@) ® w5 = (@ Ly)(a® 25) = (¥ ® Lay)l(a @ 2)s]. Thus, Ty () is a
morphism in Modg, and therefore T);(_) is a functor with values in Modg.

(b): Given any right S-module N, Homg(M, N) is a right R-module by Proposition 3.8.
It needs to be shown that if f: N — N’ is a homomorphism for N, N’ € Modg, then the
induced map f. = Homg(M, f) : Homg(M, N) — Homg(M, N') defined by f.(p) = feis an
R-homomorphism. Note that if ¢, 9 € Homg(M, N), then f(po+1v) = fo+ fib. Hence, f, is
a homomorphism since fi(p +v¢) = f(e+ ) = fo+ fi = fip + fub. Let r € R. Observe
that (¢r)(z) = ¢(rz) by Proposition 3.8. Moreover, since M has a left R-module structure
and fp is an element of the right R-module Homg (M, N'), Proposition 3.8 also shows that
[fe(@)lr = flerl(z) = fo(rz) for x € M. Thus, [f.(e(x))]r = [fe(z)lr = fe(rz) =
felo(rz)] = fil(¢r)(z)]. Hence, f, is an R-homomorphism, and therefore Homg(M, ) is a

functor with values in Modp. O

The following lemmas will be used later to show Modr = Modpa, (R). The proofs are
omitted and can be found in Rings and Categories of Modules by Frank Anderson and Kent
Fuller.

Lemma 3.11. /5, Proposition 20.10] Let R and S be rings, M a right R-module, N a
right S-module, and P an (S, R)-bimodule. If M is finitely generated and projective, then
p: NQgHomp(M, P) — Homp(M, N Qg P) defined by p(y® f)(x) = y® f(x) is a natural
isomorphism. Here, x € M,y € N, and f € Homg(M, P).

Lemma 3.12. /5, Proposition 20.11] Let R and S be rings, M a right R-module, N a
left S-module, and P an (S, R)-bimodule. If M is finitely generated and projective, then
v : Homg(P,M) Q¢ N — Homp(Homg (N, P), M) defined by v(f ® y)(9) = fg(y) is a

natural isomorphism. Here, f € Homg(P, M), g € Homg(N, P), and y € N.
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3.3 The Tor and Ext Functors

Consider the exact sequence P = .-+ —= P, LN P 4, Py 5 A — 0 of right R-modules,
where P; is projective for every j. Such an exact sequence is called a projective resolution
of the right R-module A. Note that a projective resolution can be formed for any projective
right R-module A since every right R-module is the epimorphic image of a projective right
R-module. Define the deleted projective resolution, denoted P4, by removing the morphism
e and the right R-module A. Note that the projective resolution is an exact sequence, and
hence im(d;;1) = ker (d;). Therefore, d;d;,1 = 0 for every i € Z*, and thus the projective
resolution P and the deleted projective resolution P4 are both complexes. However, P, is
not necessarily exact since im(d;) = ker (€), which may not equal the kernel of the morphism

Py — 0. Now, if T': Modr — Ab is an additive covariant functor then we can form the

T(dz T(dl

induced complex T'P4, which is defined as - - - — T'(Py) —— T(P)) —= T(F) — 0.

For n € Z, the n'™ homology is H,(C) = Z,(C)/B,(C), where C' is a complex,
Z,(C) = ker(d,), and B,(C) = im(d,+1). Hence, H,(C) = ker(d,)/im(d,+1). If we
consider the deleted projective resolution P4 as defined above, then - - = P, @, B LN
PQQ,B—— 485, P, @ B — 0 is the induced complex TP, of the functor T5(_) = _ QB

The Tor functor Torf(A, ) : gpMod — Ab is defined by
Torf(A, B) = H,(TgPs) = ker (d, ® 15)/im(dp1 ® 15).

Note that Tor?(A, B) does not depend on the choice of projective resolution [26]. The
functor Torf (A, _) is referred to as the left derived functor of A® r B since it makes up for
the loss of exactness from applying the tensor functor to an exact sequence. The following

two well-known propositions will be useful later:

Proposition 3.13. [26] If M € Modg and0 — A — B — C — 0 is an exact sequence of left
R-modules, then the induced sequence -+ — TorX, (M, C) — Torf (M, A) — Tork(M, B) —
Tor (M, C) — - -+ — Torf'(M,0) = M @rA = M®rB— ME;C — 0 is eract.
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Proposition 3.14. [26] A right R-module M is flat if and only if Tor®(M, X) = 0 for every

left R-module X and every n > 1.

Dual to the notion of the left derived functor Tor is the right derived functor Ext. Given
aright R-module B, we choose an injective resolution £ = 0 — B % E° i0—> E! i1—> E? f—) e
where each E’ is injective. As with Tor, we form the deleted injective resolution E® and apply
a functor T to this new complex to form the induced complex TEZ. Define the n'* homology
of TE® to be HY(TE®) = ker (T'd")/im(Td"'). If T = Homp(A,_) is the Hom functor,
we have 0 — Hompg(A, E°) LN Hompg (A, EY) LN Hompg (A, E?) LN -, and the Ext functor
Ext}(A, ) : Modr — Abis given by Ext’s(A, B) = H"(Hompg(A, EB)) = ker (d7?)/im(d?1).
The functor Ext(A,_) is referred to as the right derived functor of Hompg(A, B) since it

makes up for the loss of exactness from applying the Hom functor to an exact sequence:

Proposition 3.15. [26] If M € Modr and 0 - A — B — C — 0 is an ezxact sequence of

right R-modules, then the following induced sequences are exact:
a) 0— Hompg(C, M) — Homg(B, M) — Hompg(A, M) — Exty(C, M) — Exty(B, M)

— Extp(A, M) — Ext}(C, M) — Exty(B, M) — Exth(A, M) — -
b) 0 — Hompg(M,A) — Homg(M, B) — Homg(M, C) — Extp(M, A) — Extp(M, B)
— BExtp(M,C) — Exth(M, A) — Exth(M, B) — Ext%(M,C) — ---
Moreover, we have the following useful connection between the Tor and Ext functors:

Proposition 3.16. [14, Theorem 3.2.1] Let R and S be rings, M a left R-module and N

an (S, R)-bimodule. If E is an injective left S-module, then for every i < w,

Exts (M, Homg(N, E)) = Homg(Tor (N, M), E).
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Chapter 4

Torsion-freeness

In 1960, Hattori used the homological properties of classical torsion-free modules over
integral domains to give a more general definition of torsion-freeness. He defines a right
R-module M to be torsion-free if Tor['(M, R/Rr) = 0 for every r € R, and he defines a left
R-module N to be torsion-free if Torf(R/sR, N) = 0 for every s € R [18]. The following

equivalent definition of torsion-freeness is also given by Hattori in [18, Proposition 1]:
Proposition 4.1. [18] The following are equivalent for a right R-module M.
(a) M is torsion-free

(b) For each x € M and r € R, xr = 0 implies the existence of x1,2s,...,xx € M and
k

ri1,7To,...1x € R such that x = ijrj and rjr =0 for every j =1,2,..., k.
j=1

Proof. Consider the exact sequence 0 — Rr = R = R/Rr — 0 of left R-modules, where ¢ is
the inclusion map and 7 is the epimorphism r — r+ Rr. This induces a long exact sequence
X = ..o T (M,R/Rr) 55 M@, Rr 2% M@, R~ M % M ®, R/Rr — 0 [26,
Corollary 6.30]. Observe that condition (b) is equivalent to 1), ® ¢ being a monomorphism.
For if 1), ® ¢ : * ® r — xr is a monomorphism, then xr = 0 implies * ® » = 0. Hence,
there exists x1,x9,...,xp € M and ry,79,...,7x € R such that x = x17r; + xory + ... + 51
and r;7 = 0 for j = 1,2,...,k by Lemma 3.4. On the other hand, if zr = 0 implies
T = x11m + X212 + ... + gy and rjr = 0, then x @ r = @17 + X212 + . Ty @1 =
T1QrTr+To®ror+ ...+ @rpr = 0. Hence, ker (13 ® ¢) = 0 and 1,;®¢ is a monomorphism.

To complete the proof, it needs to be shown that M is torsion-free if and only if 1;,®¢ is a

monomorphism. If M is torsion-free, then Tor{(M, R/Rr) = 0. Thus, 0 — M @, Rr LN
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MQ,R=M UL M@y R/Rr — 0 is exact and so 1) ® ¢ is a monomorphism. Con-
versely, if 1, ®¢ is a monomorphism, then im(f) = ker (1); ® ¢) = 0 in the induced sequence

X. However, f is a monomorphism. Hence, 0 = im(f) = Torl(M, R/Rr). O

A ring R is torsion-free if every finitely generated right (or left) ideal is torsion-free as
a right (or left) R-module. Hattori shows in [18] that a ring R is torsion-free if and only if
every principal left ideal of R is flat. To see this, observe that if 0 — J “RY R/J —0is
an exact sequence of right R-modules with J finitely generated, then 0 — J Q) Rr “&lar,
Ry Rr LN o /J Qpr Rr — 0 is an exact sequence whenever Rr is flat. This is the case
if and only if Torf'(R/.J, Rr) = 0. Hattori gives a natural isomorphism in [18, Proposition 7]
showing that Tor’(R/J, Rr) = Torf(J, R/Rr). Hence, Tor’(J, R/Rr) = 0 if and only if Rr
is flat for every r € R. That is, every finitely generated right ideal is torsion-free if and only
if every principal left ideal is flat.

In 2004, John Dauns and Lazlo Fuchs provided the following useful characterization of

torsion-free rings:
Theorem 4.2. [13/The following are equivalent for a ring R:
(a) R is torsion-free.

(b) For every s,r € R, sr =0 if and only if s € s-anny(r). In other words, sr = 0 if and

only if s = su and ur =0 for some u € R.

Proof. (a) = (b): Suppose R is a torsion-free ring. For s € R, sR is torsion-free as a right
R-module. By Proposition 4.1, if a € sR and » € R with ar = 0, then there exists u € R
so that a = su and ur = 0. Hence, if sr = 0, we have s = su and ur = 0 for some u € R,
since s = s -1 € sR. Conversely, if there is some u € R such that s = su and ur = 0, then
sr = (su)r = s(ur) = s-0 = 0. Therefore, sr = 0 if and only if s = su and ur = 0 for some
u € R.

(b) = (a): Assume that sr = 0 for every s,r € R if and only if s = su and ur = 0

for some u € R. Let Rr be a finitely generated left ideal of R. Assume that the sequence
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0—J— R— R/J— 0is exact with J finitely generated. Then, R is a torsion-free ring
if0 = J@,Rr &> RQ,Rr SN R/JQpr Rr — 0 is exact. By Lemma 3.6, it follows that
JQpRr 5> R, Rr N R/J @y Rr — 0 is exact. In order for the entire sequence to be
exact, it needs to be shown that ¢ is a monomorphism.

Note that R Q) Rr = Rr by Lemma 3.5. Consider j ® sr € J @, Rr. Since j ® sr =
Jjs®r and js € J, tensors in J Q) Rr can be written as k @ r for some k € J. Thus, it
needs to be shown that JQp Rr % Rr given by ¢(k ® r) = kr is a monomorphism. Let
k®r € kery. Then p(k ® r) = kr = 0. By assumption, there exists some u € R such that
k= kuand ur = 0. Then, k@ r =ku®@r =k®@ur =k ®0 = 0. Thus, kerpo =0 and ¢
is a monomoprhism. Therefore, 0 — J @, Rr & R@ Rr LN R/J Qg Rr — 0 is an exact

sequence, and hence R is a torsion-free ring. O

Proposition 4.3. [18, Proposition 7] A ring R is torsion-free if and only if every submodule

of a torsion-free right R-module is torsion-free.

Proof. Suppose R is torsion-free and let N be a submodule of a torsion-free right R-module
M. Consider the exact sequence 0 — N = M = M/N — 0, where ¢ is the inclusion map and
7 is the canonical epimorphism. As noted above, if R is torsion-free, then the principal left
ideal Rr is flat for every r € R. Hence, 0 = NQp Rr - M QpRr — M/N @, Rr — 0
is exact and so Torf (M /N, Rr) = 0. Observe that Torf(M, R/Rr) = 0 since M is torsion-
free. If we consider the long exact sequence derived from the functor Tor’(_, R/Rr), then
0 = Torf(M/N, Rr) = Tor¥(M/N,R/Rr) — Torf(N,R/Rr) — Torl(M,R/Rr) = 0 is
exact. Therefore, Torf(N, R/Rr) = 0 and N is torsion-free. On the other hand, if every
submodule of a torsion-free right R-module is torsion-free, then every finitely generated right

ideal of R is torsion-free since R itself is torsion-free as a right R-module. [

Theorem 4.4. [13]A ring R is a right p.p.-ring if and only if R is torsion-free and, for each

x € R, ann,(x) is finitely generated.
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Proof. Suppose R is a right p.p.-ring. Then, for each r € R, ann,(r) = eR for some
idempotent e € R. Let s € R be such that 7s = 0. Then, s € ann,(r), and hence s = es’

/ /
’s = es = s. Furthermore, ¢ = €? € eR = ann,(r)

for some s € R. It follows that es = e
and hence re = 0. Note also that if s = es and re = 0, then s € eR = ann,(r) and hence
rs = 0. Thus, rs = 0 if and only if s = es and re = 0. Therefore, R is a torsion-free ring
by a symmetric version of Theorem 4.2. Moreover, since R is a right p.p.-ring, ann,(r) is
generated by an idempotent and thus finitely generated.

Conversely, suppose R is a torsion-free ring and the right annihilator of every element of
R is finitely generated. Let s € R and let {sq, ..., s, } be the finite set of generators for ann,.(s).
Note that each s; € ann,.(s), and so ss; = 0 for each i = 1,...,n. Let S = @ R be the direct
sum of n copies of R, and consider S as a left R-module. Let s = (sy,...s,) € S. Note that
S is a torsion-free left R-module since it is the direct sum of copies of R, which is torsion-free
as a left R-module. Thus, the submodule Rs’ of S is torsion-free by Proposition 4.3. Hence,
Proposition 4.1 gives some u € R such that s = us and su = 0, and thus v € ann,(s).
Note that s; = us; for each ¢ = 1,...,n. This implies that s; € uR for each i, and so
{s1,..-;8,} C uR. It follows that ann,(s) = s;R+ ... + s, R C uR. Suppose x € uR. Then,
x = ut for some t € R. Thus, sx = sut = 0-t = 0, and so z € ann,(s). Therefore,
ann,(s) = uR.

Now, since R is a torsion-free ring, u R is torsion-free as a finitely generated right ideal of
R. By a symmetric version of Theorem 4.2, since su = 0, there exists an e € uR = ann,.(s)
such that u = eu and se = 0. Let x € uR. Then, z = ut = eut € eR for some t € R. Hence,
uR C eR. On the other hand, suppose y € eR. Then, for some v € R, y = ev and sy =
sev = 0-v = 0. Thus, y € ann,(s) and eR C ann,(s) = uR. Hence, ann,(s) = uR = eR

2

and e = ur for some r € R. It then follows that e is an idempotent since e® = eur = uzr = e.

Therefore, ann,.(s) is generated by an idempotent and so R is a right p.p.-ring. O

Lemma 4.5. If R is a right p.p.-ring and e € R is a nonzero idempotent, then eR = ann,.(z)

for some x € R. In particular, eR = ann,(1 — e).
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Proof. If er € eR, then (1 —e)er = (e — €?)r = (e — e)r = 0. Hence, er € ann,(1 — e)
and eR C ann,(1 —e). On the other hand, if s € ann,(1 — ¢), then (1 —e)s = 0. Hence,

s —es =0, and so s = es € eR. Therefore, eR = ann,(1 — e). [

Proposition 4.6. [3] If R is a right and left p.p.-ring which does not contain an infinite set
of orthogonal idempotents and M is a torsion-free right R-module, then ann,(x) is generated

by an idempotent for every x € M.

Proof. Let R be a right and left p.p.-ring which does not contain an infinite set of orthogonal
idempotents. Take M to be a torsion-free right R-module and let A = ann,(z) for some
nonzero x € M. Suppose rg € R is such that zry = 0. Note that the cyclic submodule =R
is torsion-free since R is a right p.p.-ring. Moreover, ann;(ry) = Rey for some idempotent
eg € R since R is a left p.p.-ring. By Proposition 4.1, there exists xsy, xss,...,xs, € rR and
tieg, taep..., theg € Reg = anny(rg) such that @ = xsitieq + xsataey + ... + xs,tneq. Hence,
Tey = xsit1€l + xSataed + ... + xsptpes = x. Thus, 0 = x — zeg = z(1 — €g). Therefore, if
(1 —eg)r € (1 —ep)R, then z(1 —eg)r =0 and (1 —eg)R C A.

Now, if there exists some 1 € A\(1 — eg)R, then r; # (1 — eg)r; and hence egry # 0.
However, zegr; = axry = 0. Since R is a left p.p.-ring, ann;(epr;) = R(1 — f) for some
idempotent 1 — f. Note that as before it follows from Proposition 4.1 that © = z(1 — f) since
xegry = 0. Furthermore, 1 — e € anny(egr1) = R(1 — f) since (1 —eg)egry = egry — egry = 0.
Hence, there is some r € R such that (1 —eo)f =r(1—f)f =r(f — f) =0. Thus, eof = f.
Let e; = (1 — f)ep = eg— feg. Then, e = (eg— feg)(eo— feo) = eo —eofeo — feo+ feofeo =
eo — feo — feo + feg = eg — feg = e1. Thus, e is an idempotent. Moreover, e; is nonzero,
since otherwise ey = feg and hence ey = 0.

Now, ejeg = (1 — flepep = (1 — f)ep = ey, and Lemma 4.5 shows that (1 —eg)R =
ann,(eg) and (1 — e1)R = ann,(e1). Thus, if r € ann,(ey), then e;r = ejeor = 0. Hence,
r € ann,(e;) = (1 —e1)R, and so (1 —eg)R C (1 — e1)R. Moreover, ejegr; = e;rqy =
(1 — flepry = 0 since 1 — f € ann,(egr1). Thus, egry € ann,(e;) = (1 — e;)R. However,

eory is nonzero and hence egr; ¢ ann,(ey) = (1 — eg)R. Thus, (1 —eg)R C (1 —e1)R is a
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proper inclusion. By supposing there is some o € A\(1 — e;)R and repeating these steps,
and then supposing there is some 73 € A\ (1 —e2) R and so on, we can construct an ascending
chain (1 —eg)R C (1 —e1)R C (1 —eg)R C .... However, this chain must terminate at some
point since R only contains finite sets of orthogonal idempotents. Therefore, there is some

idempotent e € R such that A = (1 —e)R. O

Proposition 4.7. [3] If R is a right and left p.p.-ring not containing an infinite set of

orthogonal idempotents, then a cyclic submodule of a torsion-free right R-module is projective.

Proof. Let M be a torsion-free right R-module, and take N to be a cyclic submodule of
M. Then, N is of the form zR for some x € N < M. By Proposition 4.6, ann,.(z) = eR
for some idempotent e € R. If f: R — xR is the epimorphism defined by r — xr, then
xR = R/ker (f) = R/ann,(x) by the First Isomorphism Theorem. It then follows that
R = R/ann,(z) = [eR@P(1 — eR)|/ann,.(z) = [eREP(1 — e)R]/eR = (1 — e)R. Therefore,

N is a principal right ideal of R, and thus projective, since R is a right p.p.-ring. O

A ring R is a Baer-ring if ann,.(A) is generated by an idempotent for every subset A of
R. Note that if R is Baer, then ann,(ann;(A)) = eR for some idempotent e € R. Hence,
anni(A) = ann;(ann,(ann;(A))) = anny(eR) = R(1 — e) by Lemma 4.5. Thus, ann,.(A) is
generated by an idempotent if and only if ann;(A) is generated by an idempotent. Therefore,
the property that R is a Baer ring is right-left-symmetric. The following theorem from Dauns

and Fuchs [13] gives conditions for which a ring R is Baer:

Theorem 4.8. [13] If R is a torsion-free ring and right annihilators of elements are finitely

generated and satisfy the ascending chain condition, then R is a Baer-ring.

Proof. Tt follows from Theorem 4.4 that R is a right p.p.-ring since ann,(z) is finitely
generated for every x € R. Thus, for each x € R, there is some idempotent e € R such that
ann,.(z) = eR. Suppose R contains an infinite set F of orthogonal idempotents. Consider

two idempotents e; and ey in E, and let e;r € e; R. Note that since e; and e, are orthogonal
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idempotents, e;r = (e; + 0)r = (e} + eser)r = (e1 + ea)err € (e; + €2)R.  Therefore,
etR C (e1 + eg)R. Inductively, we can construct an ascending chain of principal ideals
generated by idempotents. For if ey, ..., e,,e,.1 are orthogonal idempotents in the infinite
set and (e + ... + €,)r € (€1 + ... + €,) R, then (e; + e+ ... +e,)r = (eF +€3... + 2 + 0)r =
(el +eiea+...e1e,)+ (€261 + €2+ ... +een) + ..+ (ener + ..+ €2) + (enp1€1+ ...+ enpren)|r =
(e14 ... +enr1)(er+...+ey)r € (e1+ ... + eny1)R.

Hence, e;R C (e1+e3)RC ... C(e1+...+e,)RC (614 ...+ €,41)R C ... is an ascending
chain of principal ideals generated by idempotents. Furthermore, this will be an infinite
chain since there are an infinite number of idempotents in . Note that by Lemma 4.5, for
eachn € Z%, (e; + ... + e,) R = ann,(z) for some z € R. Thus, an infinite ascending chain
of right annihilators has been constructed, contradicting the ascending chain condition on
right annihilators. Therefore, R does not contain an infinite set of orthogonal idempotents.
Since R is a right p.p.-ring which does not contain an infinite set of orthogonal idempotents,
by Theorem 2.11 every right annihilator in R is generated by an idempotent. Therefore, R

is a Baer-ring. 0
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Chapter 5

Non-singularity

5.1 Essential Submodules and the Singular Submodule

Let R be a ring and consider a submodule A of a right R-module M. If AN B is nonzero
for every nonzero submodule B of M, then A is said to be an essential submodule of M.
This is denoted A <, M. In other words, A <., M if and only if B = 0 whenever B < M is

such that AN B = 0. A monomorphism « : A — B is called essential if im(A) <. B.

Proposition 5.1. [5, Corollary 5.13] A monomorphism « : A — B is essential if and only
if, for every right R-module C' and every € Homg(B,C), B is a monomorphism whenever

Ba is a monomorphism.

The singular submodule of M is defined as Z(M) = {z € M | I = 0 for some essential
right ideal I of R}. Equivalently, Z(M) = {x € M | ann,.(z) <. R}. For if I <., R and
x € M is such that I = 0, then for any nonzero right ideal J of R, there is an element
a € INnJ. Since a € I, xza = 0. Hence, a € ann,(x) N J and so ann,(x) <. R. On
the other hand, note that ann,(x) is a right ideal of R such that x - ann,(x) = 0. A right
R-module M is called singular if Z(M) = M and non-singular if Z(M) = 0. If R is viewed
a right R-module, then the right singular ideal of R is Z.(R) = Z(Rg). The ring R is right

non-singular if it is non-singular as a right R-module.

Proposition 5.2. [17] A right R-module A is non-singular if and only if Homg(C, A) =0

for every singular right R-module C'.

Proof. Suppose A is a non-singular right R-module and C' is a singular right R-module.

Let f € Homg(C, A). If it can be shown that f(Z(C)) < Z(A), then the proof follows
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readily since f(C) = f(Z(C)) and Z(A) = 0. Suppose z € Z(C). Then, ann,(x) <. R.
Hence, if I is any nonzero right ideal of R, then there exists some y € I such that xy = 0.
Then, f(z)y = f(xy) = f(0) =0 and y € ann,(f(z)) N I. Thus, ann,.(f(z)) <. R and so
f(x) € Z(A). Therefore, f(Z(C)) < Z(A).

Conversely, suppose A is a right R-module and Hompg(C, A) = 0 for every singular right
R-module C. Then, Homg(Z(A), A) = 0 since the singular submodule Z(A) is singular.
Hence, the inclusion map ¢ : Z(A) — A given by «(z) = x is a zero map. Thus, Z(A) =
t(Z(A)) = 0. Therefore, A is a non-singular right R-module. O

Proposition 5.3. [17] The following are equivalent for a right R-module C':
(a) C is singular.
(b) There ezists an exact sequence 0 — A 5 B % € = 0 such that f is essential.

Proof. (a) = (b): Suppose C is a right R-module. Let 0 = A % B % C' — 0 be an exact
sequence of right R-modules such that B is free and ¢ is the inclusion map. Let {z,}ack
be a basis for B for some index K. Then, for each a € K, g(z,) € C = Z(C). Hence,
there exists an essential right ideal I, of R such that g(z,1,) = g(z4)I, = 0. Thus, for each
a € K and each i, € I, x4io € ker g = A. That is, x,1, < A for each a € K, and it follows
that @ volos < A. If 2,J is a nonzero right ideal of xR, then J is a nonzero right ideal of
R, and there is a nonzero element y € I, N J. Then it readily follows that x,y € vol, NxoJ
is nonzero. Hence, .1, <. zoR for each o € K. Thus, @y rola <c P zrR = B.
Therefore, A is also essential in B since @, xola < A. It then follows from the exactness
of the sequence that im(A) 2 A <, B.

(b) = (a): Assume 0 — A 5B % 0 = 0is an exact sequence of right R-modules such
that im(A) <. B. For each b € B, define hy : R — B by hy(r) = br, and let
I, ={r € R|br € im(A)}. Note that [, is a nonzero right ideal of R. Suppose I, is not
essential in R. Then there is a nonzero right ideal J of R such that I, N J = 0. Moreover,
if s € ker(hy), then hy(s) = bs = 0 € im(A) and it follows that ker (hy) C I,. Hence,
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ker (hy) N J = 0. Thus, hy|; is a monomorphism. This implies that hy(J) must be a nonzero
right ideal of B since J is a nonzero right ideal of R. Thus, hy(J) Nim(A) # 0 by the
assumption that im(A) <. B. Then for some nonzero j € J, bj = hy(j) € im(A). Hence,
j € I, N J, which is a contradiction. Therefore, I, is an essential right ideal of R. Note
that for every b € B, if bi € bl,, then bi € im(A). Then by exactness of the sequence,
bl, € im(A) = kerg. Hence, g(b)l, = ¢(bl,) = 0, which implies g(b) € Z(C). Since
this is the case for every b € B, g(B) C Z(C). Furthermore, since the sequence is exact,

C =g(B) C Z(C). Therefore, C = Z(C). O
Proposition 5.4. If R is a right p.p.-ring, then R is a right non-singular ring.

Proof. Let R be a right p.p.-ring and take any = € R. Suppose ann,(x) <., R. Since R is a
right p.p.-ring, ann,.(z) = eR for some idempotent e € R. Observe that R = eREP(1 —e)R.
Hence, ann,.(z)N (1 —e)R = 0. However, this implies that (1 —e)R = 0 since ann,(x) <. R.
Hence, 1 — e = 0, and so ann,(x) = 1R = R. Thus, zr = 0 for every r € R, which implies

x = 0. Therefore, R is right non-singular. [

5.2 The Maximal Ring of Quotients and Right Strongly Non-singular Rings

The maximal ring of quotients and strongly non-singular rings will play an important
role in determining which rings satisfy the condition that the classes of torsion-free and non-
singular modules coincides. We explore these concepts in this section. If R is a subring of a
ring @), then @) is a classical right ring of quotients of R if every regular element of R is a unit

in @ and every element of @ is of the form rs=!

, where 7, s € R with s regular [21]. We will
discuss this construction in more detail in Chapter 9 when we discuss general localizations.
For a ring which is not necessarily commutative, such a ) may not exist. Thus, we consider

a more general way to define the right ring of quotients which guarantees its existence for

any ring R.
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This general construction of the right ring of quotients is based on the property that
Rr <. Qr whenever R is a ring with classical right ring of quotients (). However, we
actually need a property slightly stronger than essentiality. Let A be a submodule of a right
R-module B. If Homg(M/A, B) = 0 for every right R-module M satisfying A < M < B,

then B is a rational extension of A. This is denoted A <, B.

Lemma 5.5. [17] Let B be a non-singular right R-module and take any submodule A of B.
Then, A <, B if and only if A <. B.

Proof. Suppose A <, B and let M < B be such that M N A = 0. Now, M@P A is a
right R-module satisfying A < M @ A < B. Hence, Homg([M @ A|/A, B) = 0. Consider
f: (M@ A)/A— M defined by (m+a)+ A+ mform € M and a € A. Iif m, mg € M and
a,ap € A are such that (m+a)+ A = (mg) +aog) + A, then (m —mg) + (a —ag) € A. Hence,
m—mg € A. However, MNA =0 and so m—mg = 0. Thus, f is well-defined. Moreover, f is
an isomorphism. For if m € M, then f[(m+a)+A] = mforany a € A, and f[(m+a)+A] =0
implies that (m 4+ a) + A =m + A = 0. Observe that f € Homg([M @ A|/A, B) = 0 since
M < B. Thus, M =im(f) = 0 and therefore A <. B. Note that this implication does not
require B to be right non-singular.

On the other hand, suppose A <. B and take M to be a right R-module such that
A < M < B. Then, any nonzero submodule N of B is such that AN N # 0. Hence, any
nonzero submodule K of M is such that A N K # 0 since any such submodule is also a
submodule of B. Thus, A <, M. Consider the exact sequence 0 — A = M 5= M/A — 0,
where ¢ is the inclusion map and 7 is the canonical epimorphism. Observe that im(t) =
A <. M. Hence, M/A is singular by Proposition 5.3. It then follows from Proposition 5.2
that Homp(M /A, B) = 0 since B is nonsingular. Therefore, B is a rational extension of

A. ]

Let R be a subring of a ring Q. If Rr <, Qg, then @ is a right ring of quotients of R.

Observe that R is a right ring of quotients of itself since Rg <, Rg. Similarly, if kR <, rQ,
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then @) is a left ring of quotients of R. Let @) be a right ring of quotients of R such that
given any other right ring of quotients P of R, the inclusion map p : R — @ extends to a
monomorphism v : P — ). Here, Q) is called a mazimal right ring of quotients of R. This is
denoted ()" when there is no confusion as to which ring the maximal quotient ring applies,
and Q"(R) otherwise. The mazimal left ring of quotients Q' is similarly defined. In general,
Q" # Q.

A right R-module E is called injective if, given any two right R-modules A and B, a
monomorphism « : A — B, and a homomorphism ¢ : A — E, there exists a homomorphism
¥ B — E such that ¢ = ¢a. If M is a right R-module and FE is an injective right R-module
such that Myr <. Eg, then FE is called an injective hull of M. Every right R-module M has

an injective hull, which is unique up to isomorphism [17, Theorems 1.10, 1.11].

Theorem 5.6. [17] For any ring R, the maximal right ring of quotients Q" (R) exists. In
particular, if E is the injective hull of Rg and T'= Endgr(E), then Q = N{kerd | 6 € T and

dR = 0} is a mazximal right ring of quotients.

Proof. 1f E is the injective hull of R, then 72 = 7(z) defines a left T-module structure
on E for 7 € T and o € E. Let Ty = Endr(F) and define w(z) = aw for w € T and
x € E. Consider the homomorphisms ¢ : T" — F and ¢ : Ty — FE defined by Y7 = 71
and pw = lw. It is easily seen that 1 is an epimorphism and ¢ is a monomorphism. Let
x € E and consider the homomorphism ¢ : R — zR defined by o(r) = ar. Since R is a
subring of E, o can be extended to a homomorphism 7 : £ — E. Thus, 7(1) = o(1) =«
and so ¥(7) = 7(1) = x. Therefore, 9 is an epimorphism. Now, suppose w € ker . Then
lw =¢(w) =0. If x € E, then 71 = x for some 7 € T since 1 is an epimorphism. Hence,
w(z) = 2w = (71)w = 7(lw) = 7(0) = 0. Therefore, w = 0 and ¢ is a monomorphism.

If 0 € T is such that R = 0, then §(lw) = (01)w = 0 for every w € Ty. Hence,
lw € @. Therefore,  can actually be defined as a map Ty, — ). It readily follows that
@ maps onto ) and hence ¢ : Ty — @ is an isomorphism. To see this, let z € @ and

consider v : F — E defined by (71)v = 7z. This can be defined for every 7 € T since
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@ is a well-defined epimorphism onto E. Thus, if 1z € T is the identity map on £, then
o(v) =1v = [1g(1)]v = 1g(x) = x. Therefore, ¢ is onto.

We now define multiplication on Q. For z,y € Q, let x -y = ¢[(¢  'z) (¢ y)] =
(¢~ tz) (¢~ y). Clearly z -y € Q and it is easily seen to be associative. Since ¢ is an
isomorphism, if r € R, then there exists some w € T} such that ¢p(w) = lw = r. Thus, if
r € Q, then z -7 = 1(p ') (¢ 1) = (ppl2)(w) = 2w = (z1)w = z(lw) = zr. It follows
from [17, Theorem 2.26] that this multiplication defines a unique ring structure on @) which
is consistent with the R-module structure..

To see that @) is a right ring of quotients, suppose R < M < (@) for some right R-module
M and let @ € Homg(M/R, Q). Consider the epimorphism 7 : M — M/R given by x
z+ R, and define v = ar : M — Q. Observe that YR = 0 since y(r) = an(r) = a(r+R) =0
for any r € R. Moreover, 7y can be extended to a map € T such that SR = 0. Since @ is the
intersection of the kernels of all homomorphisms ¢ € T satisfying 0R = 0, M C ) C ker 5.
Thus, yM = M = 0 and so a(z + R) = vy(z) = 0 for any x € M. Therefore, R <, ) and
@ is a right ring of Quotients.

To see that )" is a maximal right ring of quotients, let P be another right ring of
quotients. Then Rr <, Pr by definition, and hence Rr <. Pg by Lemma 5.5. If 1 : R — P
and i : R — F are the inclusion maps, then by injectivity of E, there exists a homomorphism
v : P — FE such that v. = u. Observe that R Nkerv = ker u = 0. This implies kerv = 0
since R is essential in P and kerv is a submodule of P. Therefore, the inclusion map
i : R — E can be extended to a monomorphism v : P — E. Moreover, [17, Theorem 2.26]
shows that vP is contained in @), and hence the inclusion map R — @ can be extended
to a monomorphism v : P — . Finally, note that since R < vP < @ and Rgr <, Qpg,
Hompg(vP/R,Q) = 0. Hence, given x € P, the homomorphism o : vP/R — () defined by
o(vy+ R) = v(xy) — (vx)(vy) is the zero map. Therefore, v is a ring homomorphism and @

is a maximal right ring of quotients of R. [
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Goodearl shows in [17, Corollary 2.31] that Q" is injective as a right R-module. There-
fore, Q"(R) is an injective hull of R since Rp <. Q% by Lemma 5.5. Moreover, since the
injective hull is unique up to isomorphism, we can refer to Q"(R) as the injective hull of
R. The following results about maximal quotient rings will be needed later. The proofs are

omitted.

Proposition 5.7. [3, Proposition 2.2] For a right non-singular ring R, R is a left p.p.-
ring such that Q"(R) is torsion-free as a right R-module if and only if all non-singular right

R-modules are torsion-free.

Theorem 5.8. [28, Ch. XII, Proposition 7.2] If R is a right non-singular ring and M is a
finitely generated non-singular right R-module, then there exists a monomorphism

©: M — ®,Q" for somen < w. In other words, M is isomorphic to a submodule of a free

Q" -module.

For a ring R, its maximal right ring of quotients Q)" is a perfect left localization of R
if Q" is flat as a right R-module and the multiplication map ¢ : Q" @, Q" — Q", defined
by ¢(a ® b) = ab, is an isomorphism. If R is a right non-singular ring for which Q" is a
perfect left localization, then R is called right strongly non-singular. Goodearl provides the

following useful characterization of right strongly non-singular rings:

Theorem 5.9. [17, Theorem 5.17] Let R be a right non-singular ring. Then, R is right
strongly non-singular if and only if every finitely generated non-singular right R-module s

isomorphic to a finitely generated submodule of a free right R-module.

Corollary 5.10. [17, Theorem 5.18] Let R be a right non-singular ring. Then, R is
right semi-hereditary, right strongly non-singular if and only if every finitely generated non-

singular right R-module is projective.

Proof. For a right non-singular ring R, suppose R is right semi-hereditary, right strongly

non-singular. Let M be a finitely generated non-singular right R-module. By Theorem 5.9,
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M is isomorphic to a finitely generated submodule of a free right R-module F. Therefore,
since R is right semi-hereditary, M is projective by Lemma 2.5.

Conversely, assume every finitely generated non-singular right R-module is projective.
Since R is right non-singular, every finitely generated right ideal of R is non-singular. Hence,
every finitely generated right ideal is projective and R is right semi-hereditary. Furthermore,
every finitely generated non-singular right R-module is a direct summand, and hence a
submodule, of a free right R-module. Therefore, R is right strongly non-singular by Theo-
rem 5.9. [

5.3 Coincidence of Torsion-freeness and Non-singularity

We know turn our attention to rings for which the classes of torsion-free and non-singular
right R-modules coincide, which is investigated in [3] by Albrecht, Dauns, and Fuchs. A few
definitions are needed before stating their theorems in full. A ring is right semi-simple if it
can be written as a direct sum of modules which have no proper nonzero submodules, and
a ring is right Artinian if it satisfies the descending chain condition on right ideals. Assume
semi-simple Artinian to mean right semi-simple, right Artinian. The following results from

Stenstrom consider rings with semi-simple right maximal ring of quotients.

Proposition 5.11. /28, Ch. XI, Proposition 5.4] Let R be a ring whose mazimal right ring

of quotients is semi-simple. Then, Q" = Q' if and only if Q" is flat as a right R-module.

Theorem 5.12. [28, Ch. XII, Corollaries 2.6,2.8] Let R be a ring and suppose Q" (R) is

semi-stmple. Then:

(a) Q" is a perfect right localization of R. In other words, if R is left non-singular, then it

is left strongly non-singular.
(b) If M is any non-singular right R-module, then M @), Q" is the injective hull of M.

A ring R is von Neumann regular if, given any r € R, there exists some s € R such that

r = rsr. These rings are of interest because R is von Neumann regular if and only if every
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right R-module is flat [26, Theorem 4.9]. The following lemmas will be needed in the next

chapter.
Lemma 5.13. [26] If R is a semi-simple Artinian ring, then R is von Neumann regular.

Proof. The Wedderburn-Artin Theorem states that R is semi-simple Artinian if and only
if it is isomorphic to a finite direct product of matrix rings over division rings. For any
division ring D, Mat,(D) = Endp(" D) is von Neumann regular [26]. Therefore, R is von

Neumann regular since direct products of regular rings are regular. O
Lemma 5.14. [28] A ring R is right non-singular if and only if Q" is von Neumann reqular.

Proof. Stenstrom shows in [28, Ch. XII] that if R is right non-singular, then Q" = Endg(E),
where F = Q" is the injective hull of R. In [28, Ch. V, Proposition 6.1}, it is shown that
such rings are regular.

Conversely, assume )" is von Neumann regular. Let I be an essential right ideal of R
and take r € R to be nonzero. Suppose xI = 0. Since Q" is regular, there exists some ¢ € )
such that xqx = x. Hence, gxR is a nonzero right ideal of R, and so I NgxR # 0. Thus,
0 # qxr € I for some nonzero r € R. However, zr = zqrr € xI = 0. This implies gzr = 0,

which is a contradiction. Therefore, I # 0 and R is right non-singular. O]

Let R be a ring and M a right R-module. A submodule U of M is S-closed if M/U
is non-singular. The following lemma shows that annihilators of elements are S-closed for

non-singular rings.
Lemma 5.15. If R is a right non-singular ring, then for any x € R, ann,.(z) is S-closed.

Proof. Let R be right non-singular. It needs to be shown that R/ann,(x) is non-singular
for any x € R. That is, for x € R, Z(R/ann,.(z)) = {r + ann,(x) | (r + ann,.(z))I = 0 for
some [ <. R} = 0. Let 0 # r + ann,(x) € R/ann,(x) and I be a nonzero essential right
ideal of R such that (r 4+ ann,(x))I = 0. Then, for any a € I, ra + ann,(x) = 0. Hence,

ra € ann,(x) and xzra = 0 for every a € I. In other words, (zr)I = 0. If zr # 0, then there
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is a contradiction since I <, R and Z(R) = 0. Thus, r = 0 and r € ann,(x). Therefore,

r 4+ ann,(x) = 0, and it follows readily that Z(R/ann,(x)) = 0. O

If R is a right non-singular ring and every S-closed right ideal of R is a right annihilator,
then R is referred to as a right Utumi ring. Similarly, R is a left Utumi ring if R is left non-
singular and every S-closed left ideal of R is a left annihilator. The following result from

Goodearl characterizes non-singular rings which are both right and left Utumi.

Theorem 5.16. [17, Theorem 2.38] If R is a right and left non-singular ring, then Q" = Q"

if and only if every R is both right and left Utuma.

For a ring R, if every direct sum of nonzero right ideals of R contains only finitely
many direct summands, then R is said to have finite right Goldie-dimension. Denote the
Goldie-dimension of R as G-dim Rg. If a ring R with finite right Goldie-dimension also
satisfies the ascending chain condition on right annihilators, then R is a right Goldie-ring.
The maximal right quotient ring Q)" is a semi-perfect left localization of R if (), is torsion-free
and the multiplication map Q" @, @" — Q" is an isomorphism. The following is a useful

characterization of rings with finite right Goldie-dimension:

Theorem 5.17. [28, Ch. XII, Theorem 2.5] If R is a right non-singular ring, then Q" is

semi-simple if and only if R has finite right Goldie-dimension.

We are now ready to state two key results from U. Albrecht, L. Fuchs, and J. Dauns,
which consider rings for which the classes of torsion-free and non-singular modules coincide.
These will be needed in the next chapter to prove the main theorem of this thesis. The proof

of Theorem 5.18 is omitted.
Theorem 5.18. /3, Theorem 3.7] The following are equivalent for a ring R:
(a) R is a right Goldie right p.p.-ring and Q" is a semi-perfect left localization of R.

(b) R is a right Utumi p.p.-ring which does not contain an infinite set of orthogonal idem-

potents.
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(¢) R is a right non-singular ring which does not contain an infinite set of orthogonal idem-

potents, and every finitely generated non-singular right R-module is torsion-free.
(d) A right R-module M is torsion-free if and only if M is non-singular.

Furthermore, if R satisfies any of the equivalent conditions, then R is a Baer-ring and Q" is

semi-simple Artinian.
Theorem 5.19. [3] The following are equivalent for a ring R:

(a) Ris aright and left non-singular ring which does not contain an infinite set of orthogonal

idempotents, and every S-closed left or right ideal is generated by an idempotent.
(b) R is a right or left p.p.-ring, and Q" = Q' is semi-simple Artinian.

(¢) R is a right strongly non-singular right p.p.-ring which does not contain an infinite set

of orthogonal idempotents.

(d) R is right strongly non-singular, and a right R-module is torsion-free if and only if it is

non-singular.
(e) For a right R-module M, the following are equivalent:

(i) M is torsion-free
(i) M is non-singular

(iii) If E(M) is the injective hull of M, then E(M) is flat.

Proof. (a) = (b): Assume R is right and left non-singular, contains no infinite set of orthog-
onal idempotents, and every S-closed right or left ideal is generated by an idempotent. Let
I be an S-closed right ideal of R. Then, I = eR for some idempotent e € R. As shown
in the proof of Lemma 4.5, eR = ann,(1 — e). Thus, I = eR is the right annihilator of
1 — e. Note that a symmetric argument shows that if J is an S-closed left ideal of R, then

J = Rf is a left annihilator of 1 — f for some idempotent f € R. Hence, R is both a
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right and left Utumi ring. By Lemma 5.15, since R is a right non-singular ring, ann,(x)
is S-closed for every x € R. This implies that ann,(z) is generated by an idempotent for
every x € R. Therefore, R is a right p.p-ring. A symmetric argument shows that R is also a
left p.p.-ring since condition (a) applies to both right and left ideals. Note that R satisfies
condition (b) of Theorem 5.18 since it is a right Utumi p.p.-ring which does not contain an
infinite set of orthogonal idempotents. Hence, ()" is semi-simple Artinian by Theorem 5.18.
Furthermore, since every right and left S-closed ideal is an annihilator, R is right and left
Utumi. Therefore, Q" = @' by Theorem 5.16.

(b) = (c): Suppose R is a right p.p.-ring and Q" = Q' is semi-simple Artinian. Since
R is a right p.p.-ring, it is also a right non-singular ring. Hence, R has finite right Goldie-
dimension by Theorem 5.17. Suppose R contains an infinite set of orthogonal idempotents.
Consider two orthogonal idempotents e and f, and let z € eR N fR. Then, x = er = fs for
some 7, s € r. This implies that = 0 since er = e?r = efs = 0. Thus, eR N fR = 0 for
any two orthogonal idempotents e and f in the infinite set, and eR€p fR is direct. Hence,
R contains an infinite direct sum of nonzero right submodules, which contradicts R having
finite right Goldie-dimension. Therefore, R does not contain an infinite set of orthogonal
idempotents.

By Theorem 5.12, since R is semi-simple Artinian, R is a left strongly non-singular
ring. Hence, the multiplication map ¢ : Q" @, Q" — @7, defined by ¢(¢ ® p) = ¢p, is
an isomorphism. Note that this also implies that Q)" is flat as a left R-module. However,
in order for R to be right strongly non-singular, it needs to be shown that Q" is flat as a
right R-module. By Proposition 5.11, Q" is indeed flat as a right R-module since Q" = Q' is
assumed to be semi-simple Artinian. Therefore, R is a right strongly non-singular ring which
does not contain an infinite set of orthogonal idempotents. Note that Theorem 2.11 shows
that R is also a left p.p.-ring. Thus, if we had instead assumed that R is a left p.p.-ring,
then a symmetric argument could be used to show that R is also a right p.p.-ring, and the

latter part of the proof would remain the same.
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(¢) = (d): Assume R is a right strongly non-singular right p.p.-ring which does not
contain an infinite set of orthogonal idempotents. Then, Q" is flat as a right R-module, which
follows from R being right strongly non-singular. Since flat R-modules are torsion-free, this
implies that Q)" is torsion-free. By Theorem 2.11, since R is a right p.p.-ring and does not
contain an infinite set of orthogonal idempotents, R is also a left p.p.-ring. Hence, every
non-singular right R-module is torsion-free by Proposition 5.7. Thus, R satisfies condition
(¢) of Theorem 5.18, which implies that a right R-module M is torsion-free if and only if M
is non-singular.

(d) = (e): Suppose R is right strongly non-singular, and a right R-module is torsion-free
if and only if it is non-singular. Then, conditions (z) and (i) of (e) are clearly equivalent,
and it suffices to show that a right R-module is non-singular if and only if its injective hull
is flat. Suppose M is a non-singular right R-module. Note that R satisfies condition (d)
of Theorem 5.18, and hence Q" is semi-simple Artinian. By Theorem 5.12, M @, Q" is an
injective hull of M. Thus, if £(M) denotes the injective hull of M, then E(M) = M Q,Q",
since an injective hull of a right R-module is unique up to isomorphism. This implies that
E(M) is a right Q"-module, since M @, Q" is a right @"-module by Proposition 3.9. Fur-
thermore, since Q" is semi-simple Artinian, every @"-module is projective. Hence, E(M)
is projective and thus isomorphic to a direct summand of a free Q"-module F'. Note that
Q" is flat as a right R-module since R is right strongly non-singular. Thus, Proposition 3.7

shows that any free Q"-module is flat since such modules can be written as €, _; M; for some

iel
index set I, where M; is isomorphic to Q" for every ¢ € I. This implies that £ (M) is flat by
Proposition 3.7 since it is a direct summand of the flat right R-module F' = &, ., M;.

On the other hand, assume that the injective hull E(M) of some right R-module M is
flat. Noting again that R satisfies condition (d) of Theorem 5.18, it follows that R is a right
p.p--ring. Thus, R is a torsion-free ring by Theorem 4.4. Since flat R-modules are torsion-

free, E(M) is torsion-free as a right R-module. Hence, M is a submodule of a torsion-free

right R-module. Thus, M is a torsion free right R-module by Proposition 4.3. Therefore,
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M is non-singular since a right R-module is torsion-free if and only if it is non-singular by
assumption.

(e) = (a): For a right R-module M, assume that M is torsion-free if and only if M is
non-singular if and only if the injective hull E(M) is flat. By Theorem 5.18, R is a right
p.p.-ring which does not contain an infinite set of orthogonal idempotents. It then follows
from Proposition 5.4 that R is a right non-singular ring. Hence, R is also a left p.p.-ring
by Proposition 5.7, since every non-singular right R-module is torsion-free, and a symmetric
argument for Proposition 5.4 shows that R is left non-singular.

The injective hull F(R) is flat as a right R-module since R is assumed to be right non-
singular. Hence, Q)" is flat as a right R-module, since Q" is the injective hull of R. We've
already shown that R satisfies the equivalent conditions of Theorem 5.18, which implies that
Q" is a semi-simple Artinian ring. Thus, it follows from Proposition 5.11 that Q" = @Q'. Since
R is both right and left non-singular, every S-closed right ideal of R is a right annihilator
and every S-closed left ideal of R is a left annihilator by Theorem 5.16. Furthermore, note
that Theorem 5.18 shows that R is a Baer-ring. Hence, every annihilator is generated by an
idempotent. Therefore, every S-closed right ideal and every S-closed left ideal is generated

by an idempotent. O
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Chapter 6

Morita Equivalence

Before proving the main theorem, we discuss Morita equivalences. In particular, we
show that there is a Morita equivalence between R and Mat, (R) for any 0 < n < w. This
is then used to show that the classes of torsion-free and non-singular Mat,,(R)-modules
coincide for certain conditions placed on R.

Let R and S be rings. The categories Modgr and Modg are equivalent (or isomorphic) if
there are functors F' : Modr — Modgs and G : Mods — Modpg such that F'G = 1,4, and
GF = 1p0d,- Note that these are natural isomorphisms. In other words, if n : GF — 104,
denotes the natural isomorphism, then for each M, N € Modg, there exist isomorphisms
nu : GF(M) — M and ny : GF(N) — N such that gny = nyGF () whenever § €
Hompg(M, N). Here, GF () denotes the induced homomorphism. The functors F' and G are
referred to as an equivalence of Modgr and Modg. If such an equivalence exists, then R and
S are said to be Morita-equivalent. In [28, Ch. IV, Corollary 10.2], Stenstrém shows that
R and S are Morita-equivalent if and only if there are bimodules ¢Pg and r(Q)s such that
PRrQ =S and QQ@q P = R. A property P is referred to as Morita-invariant if for every
ring R satisfying P, every ring S Morita-equivalent to R also satisfies P.

A generator of Modg is a right R-module P satisfying the condition that every right R-
module M is a quotient of @1 P . Note that R and any free right R-module are generators

of Modg. A progenerator of Modpg is a generator which is finitely generated and projective.

Lemma 6.1. [5] Let R be a ring, P a progenerator of Modg, and S = Endgr(P). Then,
there is an equivalence F' : Modr — Mods given by F(M) = Homg(P, M) with inverse
G : Mods — Modpg given by G(N) = N Qg P.
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Proof. As a projective generator of Modg, P is a right R-module. P also has a left S-module
structure with (f * g)(z) = f(g(x)) for f,g € S and z € P, where multiplication in the
endomorphism ring is defined as composition of functions. It then readily follows that P is
an (S, R)-bimodule since f(zr) = f(z)r for any f € S and r € R. Thus, F' = Homg(P,_) is
a functor Mods — Modg and G = _ Qp P is a functor Modr — Modg by Proposition 3.10.
It needs to be shown that GF = 1y, and FG = 1,4, are natural isomorphisms.
Since P is a progenerator of Modpg, it is finitely generated and projective as a right R-
module. Thus, it follows from Lemma 3.12 that if M is any right R-module, then GF (M) =
G(Hompg (P, M)) = Homp(P, M) Q¢ P = Homg(Homg(P, P), M) = Homg(Endg(P), M)
= Homp(R, M) = M. Similarly, given any right S-module N, FG(N) = F(N Q4 P) =
Hompg(P,N Q4 P) = N @sHomp(P,P) = N@4S = N by Lemma 3.11. Therefore, F'is

an equivalence with inverse G. O]
Proposition 6.2. Let R be a ring. For every 0 < n < w, R is Morita-equivalent to Mat, (R).

Proof. Let P be a finitely generated free right R-module with basis {z;}!, for 0 < n < w.
Then, P is a progenerator of Modgr and Mat,(R) = Endgr(P) by Lemma 2.6. Therefore,

the equivalence of Lemma 6.1 is a Morita-equivalence between R and Mat,(R). O

Lemma 6.3. /28, Ch. X, Proposition 3.2] If R and S are Morita-equivalent, then the

mazximal ring of quotients, Q"(R) and Q"(S), are also Morita equivalent.

Proposition 6.4. Let R and S be Morita-equivalent rings with equivalence

F:Modr — Mods and G : Mods — Modg.

(1) If U is an essential submodule of a right R-module M, then F(U) is an essential

submodule of the right S-module F(M).
(i1) If M is a non-singular right R-module, then F(M) is a non-singular right S-module.

In other words, essentiality and non-singularity are Morita-invariant properties.
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Proof. (i): Let U be an essential submodule of M € Modg. Then, the inclusion map
t: U — M is an essential monomorphism. Consider the induced homomorphism F'(¢) :
F(U) — F(M). Note that since ¢ is a monomorphism, F(¢) is a monomorphism 5,
Proposition 21.2]. Let W be any right S-module and take § € Homg(F (M), W) to be
such that SF(t) : F(U) — W is a monomorphism. There is a natural isomorphism
Syw : Homg(F(U), W) — Hompg(U,G(W)) defined by v + G(v)n;"', where ny denotes
the isomorphism GF'(U) — U [5, 21.1]. Hence, ®yw (SF(¢)) is a monomorphism. Moreover,
Cuw (BF() = GWE () = GGF(ng' = G(h)ny nuGF(ng' = @arw (B)enong' =
Qprw(B)e. Thus, ®prw(B)e is a monomorphism and it follows from Proposition 5.1 that
@y w(B) is a monomorphism since ¢ is essential. Furthermore, @,/ (5) is a monomor-
phism if and only if § is a monomorphism [5, Lemma 21.3]. Hence, F(¢) is an essential

~

monomoprhism by Proposition 5.1. Therefore, F(U) = im(F'(¢)) is an essential submodule
of F(M).

(17): Let M be a non-singular right R-module. It needs to be shown that F(M)
is a non-singular right S-module and in view of Proposition 5.2 it suffices to show that
Homg(C, F(M)) = 0 for any singular right S-module C. By Proposition 5.3, there is an exact
sequence 0 — A Sy F 0= 00f right S-modules such that f(A) <. F and F'is free. Then,
G(f(A)) <. G(B) by (i). Hence, 0 — G(A) <, G(B) — G(C) — 0 is an exact sequence
of right R-modules such that G(f(A)) <. G(B). Thus, G(C) is a singular right R-module
by Proposition 5.3. Since G(C) is singular and M is non-singular, Homgz(G(C), M) = 0
by Proposition 5.2. Therefore, Homg(C, F(M)) = Hompg(G(C), M) = 0. Observe that in

this proof, it is also shown that singularity is Morita-invariant since we show that G(C') is

singular for an arbitrary singular module C. O

We now prove the main theorem of this portion of the dissertation, which characterizes

rings for which torsion-freeness and non-singularity coincide under a Morita-equivalence.

Theorem 6.5. The following are equivalent for a ring R:
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(a) R is a right strongly non-singular, right semi-hereditary, right Utumi ring not containing

an infinite set of orthogonal idempotents.

(b) Whenever S is Morita-equivalent to R, then the classes of torsion-free right S-modules

and non-singular right S-modules coincide.

(c) For every 0 < n < w, Mat,(R) is a right and left Utumi Baer-ring not containing an

infinite set of orthogonal idempotents.
Moreover, if R is such a ring, then the corresponding left conditions are also satisfied.

Proof. (a) = (b): Assume R is a right strongly non-singular, right semi-hereditary, right
Utumi ring not containing an infinite set of orthogonal idempotents. Let R and S be Morita
equivalent, and let F' : Modr — Mods and G : Mods — Modg be an equivalence. Also,
take N to be a finitely generated non-singular right R-module. Since R is right strongly
non-singular, N is isomorphic to finitely generated submodule V' of a free right R-module
by Theorem 5.9. Furthermore, since R is right semi-hereditary and free R-modules are pro-
jective, V' = N is projective by Lemma 2.5. Thus, since projective modules are torsion-free,
it follows that finitely generated non-singular right R-modules are torsion-free. Therefore,
R satisfies condition (c¢) of Theorem 5.18; which implies that the maximal ring of quotients
Q" (R) is a semi-simple Artinian ring. Note that Q"(R) and Q"(S) are Morita-equivalent
by Lemma 6.3. Hence, Q"(S) is also semi-simple Artinian, since these properties are pre-
served under a Morita-equivalence [5]. Furthermore, Q"(S) is a regular ring by Lemma 5.13.
Therefore, Lemma 5.14 shows that S is right non-singular.

Let M be a finitely generated non-singular right S-module. Then, G(M) is a finitely
generated non-singular right R-module since non-singularity and being finitely generated
are both Morita-invariant properties [5]. Thus, since R is a right strongly non-singular
ring, G(M) is isomorphic to a finitely generated submodule of a free right R-module P by
Theorem 5.9. Note that as a free right R-module, P is projective, which is also a Morita-

invariant property [5]. Hence, F'(P) is a projective right S-module. Furthermore, since G(M)
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is isomorphic to a finitely generated submodule of P, FG(M) = M is isomorphic to a finitely
generated submodule U of F(P). Now, F(P) is projective and hence a submodule of a free
right S-module, which implies U = M is a submodule of a free right S-module. Therefore,
M is isomorphic to a finitely generated submodule of a free right S-module, and S' is right
strongly non-singular by Theorem 5.9.

It has been shown that S is a right non-singular ring with a semi-simple Artinian
maximal right ring of quotients. Thus, S has finite right Goldie-dimension by Theorem 5.17.
Hence, S cannot contain an infinite set of orthogonal idempotents. Moreover, S is a right
p.p--ring since R is right semi-hereditary. For if P is a principal right ideal of S, then G(P) is
a finitely generated right ideal of the right semi-hereditary ring R, which implies that G(P)
is projective. Hence, FFG(P) = P is projective, which again follows from projectivity being
Morita-invariant. Then, S is a right strongly non-singular right p.p.-ring which does not
contain an infinite set of orthogonal idempotents. Therefore, a right S-module is torsion-free
if and only if it is non-singular by Theorem 5.19.

(b) = (a): Assume that the classes of torsion-free and non-singular S-modules coincide
for every ring S Morita-equivalent to R. Thus, since Mat,(R) is Morita-equivalent to R
for every 0 < n < w, the classes of torsion-free right Mat, (R)-modules and non-singular
right Mat, (R)-modules coincide for every 0 < n < w. Hence, Mat,(R) is a right Utumi
p.p--ring which does not contain an infinite set of orthogonal idempotents by Theorem 5.18.
Thus, R is right semi-hereditary by Theorem 2.7. In particular, since these conditions are
satisfied for every 0 < n < w, they are satisfied for n = 1. Hence, R = Mat,(R) is a right
semi-hereditary right Utumi ring not containing an infinite set of orthogonal idempotents.

It needs to be shown that R is right strongly non-singular. Let M be a finitely generated
non-singular right R-module. By Corollary 5.10, R is right strongly non-singular if M
is projective. Let 0 — U — F = EBR — M — 0 be an exact sequence of right R-
modules. Since F' is a finitely generated free right R-module, it is a progenerator of Modg.

Hence, 0 — Homg(F,U) — Homg(F,F) = Endgr(F) — Homg(F,M) — 0 is exact by
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Proposition 2.3. Moreover, if S = Endg(F) = Mat,(R), then F : Modr — Modg given by
F(M) =Hompg(F,M) and G : Mods — Modpg given by G(N) = N @ F' is an equivalence
by Lemma 6.1. Thus, Hompg(F, M) is a non-singular right S-module by Proposition 6.4 (i7).
Furthermore, since S is Morita-equivalent to R, the S-module Hompg(F, M) is torsion-free by
assumption. Note that since the sequence is exact, Hompg(F, M) = S/Hompg(F,U). Thus,
Hompg(F, M) is cyclic as an S-module since Hompg(F, U) is a right ideal of the right S-module
S. Note also that S is a left p.p.-ring by Theorem 2.11 since S is a right p.p.-ring which
does not contain an infinite set of orthogonal idempotents. Thus, the cyclic torsion-free
right S-module Homg(F, M) is projective by Proposition 4.7. Therefore, M = GF(M) =
G(Hompg(F, M)) is a projective right R-module and R is right strongly non-singular.

(a) = (¢): Assume R is right strongly non-singular, right semi-hereditary, right Utumi,
and does not contain an infinite set of orthogonal idempotents. It has been shown that
any ring S Morita-equivalent to such a ring is right strongly non-singular and the classes of
torsion-free and non-singular right S-modules coincide. Thus, Mat,,(R) is right strongly non-
singular and a right Mat, (R)-module is torsion-free if and only if it is non-singular, which
follows from Mat, (R) being Morita-equivalent to R for any 0 < n < w. By Theorem 5.19,
Mat,(R) is a right strongly non-singular right p.p.-ring which does not contain an infinite
set of orthogonal idempotents. It then follows from Theorem 2.11 that Mat,,(R) satisfies the
ascending chain condition on right annihilators. Furthermore, Theorem 4.4 shows that since
Mat,(R) is a right p.p.-ring, Mat,(R) is a torsion-free ring such that right annihilators of
elements are finitely generated. Hence, Mat,(R) is a Baer-ring by Theorem 4.8. Moreover,
Theorem 5.19 shows that every S-closed one-sided ideal of Mat, (R) is generated by an
idempotent. Thus, every right ideal of Mat, (R) is a right annihilator and every left ideal of
Mat,(R) is a left annihilator. Hence, Mat,(R) is a right and left Utumi ring.

(¢) = (a): Suppose Mat,(R) is a right and left Utumi Baer-ring for every 0 < n < w
and does not contain an infinite set of orthogonal idempotents. Then, Mat,(R) is a right

p.p-ring, and so R is right semi-hereditary by Theorem 2.7. Furthermore, since Mat, (R)
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satisfies these conditions for every 0 < n < w, R = Mat;(R) is a right and left Utumi
Baer-ring not containing an infinite set of orthogonal idempotents. Thus, every S-closed
one-sided ideal of R is an annihilator and hence generated by an idempotent. Therefore,
since R is a right and left p.p.-ring and hence right and left non-singular, R is right strongly

non-singular by Theorem 5.19. O]

Corollary 6.6. The following are equivalent for a ring R which does not contain an infinite

set of orthogonal idempotents:
(a) R is a right and left Utumi, right semi-hereditary ring.

(b) For every 0 < n < w, Mat,(R) is a Baer-ring, and Q"(R) is torsion-free as a right

R-module.

Proof. (a) = (b): Suppose R is right and left Utumi and right semi-hereditary. Then, R is a
right p.p.-ring and hence right non-singular. Moreover, R is a left p.p.-ring by Theorem 2.11,
which implies that R is also a left non-singular ring. Since R is both right and left Utumi,
Q"(R) = Q'(R) by Theorem 5.16. Furthermore, since R is a right Utumi right p.p.-ring which
does not contain an infinite set of orthogonal idempotents, Q"(R) = Q'(R) is semi-simple
Artinian and torsion-free by Theorem 5.18. Therefore, R is right strongly non-singular by
Theorem 5.19.

Since R is a right strongly non-singular, right semi-hereditary, right Utumi ring not con-
taining an infinite set of orthogonal idempotents, the classes of torsion-free and non-singular
right Mat,(R)-modules coincide by Theorem 6.5. Moreover, the proof of Theorem 6.5 shows
that Mat, (R) is right strongly non-singular. Thus, Mat, (R) is a right strongly non-singular,
right p.p.-ring not contain an infinite set of orthogonal idempotents by Theorem 5.19. It
then follows from Theorem 2.11 that Mat, (R) satisfies the ascending chain condition on
right annihilators. Since Mat,(R) is a right p.p.-ring, Theorem 4.4 shows that Mat, (R)
is a torsion-free ring such that right annihilators of elements are finitely generated. Hence,

Mat,(R) is a Baer-ring by Theorem 4.8.
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(b) = (a): Assume Mat,(R) is a Baer-ring for every 0 < n < w, and Q"(R) is torsion-
free as a right R-module. Since Mat,(R) is a Baer-ring, it is both a right and left p.p.-ring.
Hence, R is both right and left semi-hereditary by Theorem 2.7. It then readily follows that
R is right and left non-singular. Note also that R = Mat;(R) is a Baer-ring since Mat, (R)
is Baer for every 0 < n < w. Let I be a proper S-closed right ideal of R. Then, R/I is
non-singular as a right R-module. Furthermore, R/I is cyclic and thus finitely generated.
Hence, R/I is isomorphic to a submodule of a free @Q"-module by Theorem 5.8. Since Q"
is assumed to be torsion-free as a right R-module, it follows from Proposition 4.6 that [ is
generated by an idempotent e € R. Hence, I = ann,.(1 — e) by Lemma 4.5 and R is right
Utumi. Observe that the argument works for S-closed left ideals as well, and so R is also

left Utumi. O]

The next example illustrates why it is necessary to consider right semi-hereditary rings

in Theorem 6.5.

Example 6.7. Let R = Z[x]. As an integral domain, R is a strongly non-singular p.p.-
ring not containing an infinite set of orthogonal idempotents [3, Corollary 3.10]. By Theo-
rem 5.19, the classes of torsion-free and non-singular right R-modules coincide, and by The-
orem 5.18 R is right Utumi. However, R is not semi-hereditary since the ideal v7Z[x] + 27|x]
of Z|x] is not projective. As seen in the proof of Theorem 2.7, this implies S = Maty(R) is
not a right or left p.p.-ring, and hence not a Baer ring. Therefore, Theorem 6.5 does not

hold if R is not assumed to be right semi-hereditary.

Moreover, this example shows that the classes of torsion-free and non-singular S-modules
do not necessarily coincide, even if R has this property and S is Morita-equivalent to R.

In [9, Theorem 4.3.5], Birkenmeier, Park, and Rizvi show that Mat, (R) is a Baer-ring
precisely when every finitely generated torsionless right R-module is projective. A right
R-module is torsionless if it is isomorphic to a submodule of R for some set I. In case
that R has finite right Goldie-dimension, this condition is equivalent to R being right semi-

hereditary:
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Corollary 6.8. The following are equivalent for a ring R with finite right Goldie-dimension:
a) R is right semi-hereditary.
b) Every finitely generated torsionless right R-module is projective.

Proof. In view of [9, Theorem 4.3.5], it needs to be shown that a ring R with finite right
Goldie-dimension is right semi-hereditary if and only if Mat,(R) is a Baer-ring for every
0 <n < w. Now, R is right semi-hereditary if and only if Mat,(R) is a right p.p.-ring for
every 0 < n < w [27]. Hence, R is right semi-hereditary whenever Mat, (R) is a Baer-ring.
On the other hand, note that Mat, (R) has finite right Goldie-dimension since every ring
Morita-equivalent to R also has finite dimension. Thus, Mat,,(R) does not contain an infinite
set of orthogonal idempotents. Therefore, if R is right semi-hereditary, Mat, (R) is a right
p.p-ring not containing an infinite set of orthogonal idempotents, and it follows from [27,

Theorem 1] that Mat,(R) is a Baer-ring. O

Clearly, the conditions in part a) of Theorem 6.5 imply that every finitely generated
torsionless module is projective since these conditions imply that Mat, (R) is a Baer-ring.
However, the condition on the torsionless modules in [9] is not enough to ensure that the
coincidence of torsion-freeness and non-singularity is preserved by Morita-equivalence. The
following examples provide rings for which the conditions of Theorem 6.5 fail, even though

every finitely generated torsionless module is projective.

Example 6.9. Let R = F! for some field F and an infinite index-set I. Then R is a
commutative semi-hereditary ring which is its own maximal ring of quotients. Thus, R is
strongly non-singular, and all finitely generated torsionless R-modules are projective. There-
fore, Mat,(R) is a Baer-ring for alln < w, but R does not satisfy Theorem 6.5 since it has

infinite Goldie-dimension.
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The next example provides a ring with finite right Goldie-dimension but infinite left
Goldie-dimension. In the context of this thesis, this example provides a right Utumi Baer-
ring which is not left Utumi. Hence, the conditions of Theorem 6.5 fail. However, it is easily

seen that every finitely generated torsionless module is projective.

Example 6.10. [11] Let K = F(y) for some field F' and consider the endomorphism f of K
determined by y — y?. The ring we consider is R = K|x] with coefficients written on the right
and multiplication defined according to kxz = xf(k) for any k € K. Observe that yxr = zy>.
It can be shown that Rx N Rxy = 0, and hence Rxy ® Rryxr © Rryx® @ ... ® Raya® @ ... is
an infinite direct sum of left ideals of R. Thus, R has infinite left Goldie-dimension. On the
other hand, every right ideal of R is a principal ideal [11], and thus R is right Noetherian.
It then follows from Theorem 5.18 that R is a right Utumi Baer ring and Q" is semi-simple
Artinian. However, R having infinite left Goldie-dimension but finite right Goldie-dimension
implies that Q" # Q' [3, Proposition 4.1]. Therefore, Theorem 5.16 shows that R cannot be
left Utumi.

Thus, we have a right Utumi Baer-ring which is not left Utumi, and so this ring fails
to satisfy the conditions of Theorem 6.5. However, since R is a Baer-ring and every right
ideal is principal, R is right semi-hereditary. Therefore, every finitely generated torsionless
right R-module is projective by Corollary 6.8. Observe that Example 6.10 also illustrates
why it is necessary in Theorem 6.5 to include the requirement Mat, (R) is both right and

left Utumi.
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Chapter 7

The Baer-Splitting Property

In the previous chapter, we saw that the strongly non-singular and semi-hereditary
properties ensure the preservation of coincidence of torsion-freeness and non-singularity un-
der a Morita-equivalence. In [2], U. Albrecht shows that these properties are also related to

two-sided essential submodules of Q)":

Proposition 7.1. [2] The following are equivalent for a ring R with finite right Goldie-

dimension:
i) R is right strongly non-singular, right semi-hereditary.

ii) If A is a two-sided R-submodule of Q" such that Ag is essential in Q", then every

S-closed submodule of A™ is a direct summand.

iir) If A is a two-sided R-submodule of Q" such that Ag is essential in Q" and n < w, then

every right non-singular epimorphic image of A™ is a direct summand.

This is dual to a property known as the finite Baer-splitting property. An R-module
A has the finite Baer-splitting property if every epimorphism A" — A — 0 splits. In other
words, a module A has this property when finite direct sums of copies of A behave like pro-
jectives. Furthermore, in [6], R. Baer shows that for a finite rank completely decomposable
Abelian group, every pure subgroup is a direct summand. A submodule N of an R-module M
is pure if R/I is projective with respect with the exact sequence 0 - N — M — M/N — 0
whenever [ is a finitely-generated right ideal of R.

Let R be a ring with finite right Goldie-dimension. We show that the submodules of

Proposition 7.1 have the finite Baer-splitting property. In Chapter 10, we will see that under
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similar conditions (()/R) g can be decomposed into a direct sum of countably-generated two-

sided submodules of the form A;/R, where each A; has the finite Baer-splitting property.

Proposition 7.2. Let R be a right strongly non-singular, right semi-hereditary ring with
finite right Goldie-dimension. If A is a two-sided R-submodule of QQ such that Ag is essential

in Q, then A has the finite Baer-splitting property.

Proof. Consider an exact sequence 0 — U 2 A" B A 50 of right R-modules, and apply
()* = Hompg(_, A) to get the induced sequence 0 — A* z, (A™)* — U* of left E-modules,
where E = Endgr(Ag). As shown in [2], E is a subring of Q" containing R precisely when
A is a two-sided essential submodule of Q)". Since R is a right strongly non-singular, right
semi-hereditary ring with finite right Goldie-dimension, the classes of torsion-free and non-
singular right R-modules coincide by Theorem 5.19. Hence, R is left strongly non-singular
by [3, Corollary 4.3]. Moreover, [3, Theorem 5.2] shows that R is left semi-hereditary and
Q" = @' is semi-simple Artinian.

Now, every intermediate ring S satisfying R C .S C Q" is also left strongly non-singular,
left semi-hereditary by [2, Theorem 3.2], and hence F = A* is a left strongly non-singular,
left semi-hereditary ring. Thus, coker * = (A™)*/im [(* is projective since it is a finitely
generated non-singular left £-module. Consequently, 5* splits, and applying the ()* functor
again leads to /™ splitting as well [22]. Thus, there exists v : A* — (A™)** such that
B**y = 14+-. Furthermore, there are natural homomorphisms A — A™ and A" — (A")**,

and the following diagram commutes:

/8**
(| 0

A diagram chase shows that there exists 6 : A — A" such that g6 = 14, and therefore 3

splits. O

29



Chapter 8
Divisible Modules

Related to the concept of torsion-freeness is the notion of divisibility. As with torsion-
freeness, issues arise when trying to extend the concept of divisibility from integral domains
to general non-commutative rings. As such, there are various definitions of divisibility in
the general setting. We refer to D € Modg as divisible in the classical sense if Dc = D
for every regular element ¢ € R. In other words, D is divisible in the classical sense if
right multiplication by ¢ on D is an epimorphism for every regular element ¢ € R. A
slightly stronger notion of divisibility, which was developed by E. Matlis in [24], is that of
h-divisibility. We say that a right R-module D is h-divisible if it is an epimorphic image of
a direct sum of copies of Q".

Finally, we say that a right R-module D is divisible if Extp(R/Rr, D) = 0 for every
r € R. Observe that this is similar to Hattori’s definition of torsion-freeness based on the
Tor functor, and it generalizes the notion of divisibility in the classical sense. As such, we
find that the notions of torsion-freeness and divisibility are related through their characters
modules. The character module of a right (left) R-module M is the left (right) R-module
M* = Homy(M,Q/Z).

Proposition 8.1. Let R be a ring. A right R-module M is torsion-free if and only if M* is

divisible.

Proof. Suppose M is torsion-free, and consider any r € R. Using Proposition 3.16, we
see that Extp(R/Rr,Homz(M,Q/Z)) = Homy(Tor( (M, R/Rr),Q/Z) since M is a (Z, R)-
bimodule and Q/Z is injective. Since M is torsion-free, Torf(M, R/Rr) = 0 and hence

Exty(R/Rr,Homz(M,Q/Z)) = 0. Therefore, M* is divisible. On the other hand, suppose
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M* is divisible. We again use Proposition 3.16 to find that Homg(Tor{'(M, R/Rr), Q/Z) = 0,
implying that Tor? (M, R/Rr) = 0. Therefore, M is torsion-free. O

Furthermore, [4, Section 2| shows that if R is a right p.p.-ring, then a right R-module
N is divisible if and only if N* is torsion-free.

As with torsion-freeness, it is of interest when the various notions of divisibility coincide.
It is always the case that h-divisibility implies classic divisibility. Moreover, divisibility and
classic divisibility coincide for domains. L. Fuchs and L. Salce show in [15] that all three
notions of divisibility coincide in the case that R is a countable integral domain. In the

general setting, we have the following from U. Albrecht in [1]:

Theorem 8.2. [1, Theorem 5.5] Let R be a semi-prime right and left Goldie-ring such that

Qr 1s countably generated.
a) An R-module is h-divisible if and only if it divisible in the classical sense.

b) If a right R-module D is divisible in the classical sense, then Z (D) is a direct summand

of D.
¢) R is a right p.p.-ring if and only if the classes of h-divisible and divisible modules coincide.

Thus, all three notions of divisibility coincide in the case that R is a semi-prime right and
left Goldie p.p.-ring for which @) is countably generated as a right R-module. In Chapter
10, we will characterize rings for which this holds without requiring ) to be countably
generated. Finally, if R is a semi-prime right Goldie-ring, then [1, Corollary 4.5] shows that
a non-singular module D is divisible if and only if it is divisible in the classical sense if and
only if it is injective.

A right R-module M is weakly cotorsion if Exty(Q", M) = 0. The proof of [1, Theo-
rem 5.5] shows that for a semi-prime right and left Goldie-ring for which Qg is countably
generated, every classically divisible module is weakly cotorsion. Furthermore, the following

theorem from [1] gives a nice characterization of weakly cotorsion modules:
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Proposition 8.3. [1, Theorem 4.3] If R is a right Utumi p.p.-ring not containing an infinite

set of orthogonal idempotents, then

i) A right R-module D is divisible if and only if the singular submodule Z (D) is divisible
and D/Z(D) is injective.

ii) A right R-module D is weakly cotorsion if and only if Z(D) is a direct summand when-

ever D is divisible.

Related to condition i) of Proposition 8.3, we have the following for a ring with finite

Goldie-dimension:
Theorem 8.4. The following are equivalent for a right non-singular ring R:

a) R has finite right Goldie dimension.
b) For any M € Modr, M ®r Q"/R =0 if and only if M/Z(M) is injective.

Proof. a) = b) Let M be a right R-module and assume M ®p Q"/R = 0. Note that
M/Z(M) ®r Q" /R = 0 as well. Since R has finite right Goldie dimension, £ = Ker
Torf(—,Q"/R) coincides with the class of non-singular right R-modules [4, Theorem 3.4].
We first show that if F is the injective hull of M/Z(M), then E/(M/Z(M)) € K. Observe
that M/Z(M) is non-singular, and hence E is non-singular since M/Z (M) <. E and non-
singularity is closed under essential extensions [17, Proposition 1.22]. Thus, £ € K and
Torf(E,Q"/R) = 0. By exactness of 0 — M/Z(M) — E — E/(M/Z(M)) — 0, we obtain

the exact sequence

0 = Tor(E,Q"/R) — Tory(E/(M/Z(M)),Q"/R) — M/Z(M) ®r Q"/R = 0,

implying that Tor{'(E/(M/Z(M)),Q"/R) = 0 and E/(M/Z(M)) € K. Thus, E/(M/Z(M))
is non-singular. However, this implies £ = M /Z (M) since E is non-singular and M /Z (M) <,
E [17, Proposition 1.21]. Therefore, M/Z(M) is injective.
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Conversely, assume M /Z (M) is injective. Observe that since R has finite right Goldie
dimension and Z(M) is singular, Z(M) ®g Q"/R = 0 by [4, Theorem 3.4]. Thus, if
M/Z(M) ®r Q"/R = 0, we obtain the exact sequence

0=2Z(M)®rQ"/R—-M®rQ"/R—M/Z(M)®rQ"/R =0.

So, it suffices to show that M ®xr Q"/R = 0 for any injective, non-singular right R-module
M. Let U be a finitely generated submodule of such an M. Since M is injective, there is a
direct summand V' of M which is the injective hull of U. Thus, we may assume that M is the
injective hull of the finitely generated non-singular right R-module U. Hence, U <, M and
the inclusion map 3 : U — M is an essential monomorphism. By [28, Ch. XII, Proposition
7.2], there exists a monomorphism « : U — @,Q" for some n < w. Moreover, since &,Q"
is injective and the inclusion map § : U — M is an essential monomophism, there exists
a monomorphism v : M — &,Q" with 75 = « [28, Ch. V, Lemma 2.2]. Therefore, the
injective module M is a direct summand of @,,Q" [26, Corollary 3.27]. We obtain the exact
sequence @,Q" ®r Q"/R - M ®r Q" /R — 0 from the canonical projection map, and thus
the result follows provided ®,Q" ®r Q"/R = 0.

Observe that if Q" ®zr Q" /R = 0, then ©,Q" ®r Q" /R = &,(Q" ®r Q"/R) = 0 since Q"
is an (R, R)-bimodule [26]. So it remains to be seen that Q)" ®z Q"/R = 0. We obtain the

following commutative diagram, where h and ¢ are multiplication maps:

Q@ R— Q" @ Q" — Q" @r Q" /R—0

3 |

Q" Q

1Q’r‘

Now, R has finite right Goldie dimension and thus Q" is a perfect left localization of R
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[28, Ch. XII, Corollary 2.6]. Hence, the multiplication map ¢ : Q" ®r Q" — Q" is an
isomorphism. It readily follows that f is an isomorphism, and therefore Q" @z Q" /R = 0.
b) = a) Assume that for any right R-module M, M @, Q" /R = 0if and only if M /Z (M)
is injective. We show that R has finite right Goldie dimension by showing that &;Q" is
injective for any set I [28, Ch. XIII, Proposition 3.3]. By assumption, if &;Q" @z Q" /R =0,
then @;Q"/Z(®;Q") is injective. Since R is right non-singular, Q" is right non-singular, and
hence ®;Q" is right non-singular [17, Propositions 1.22, 1.32]. Therefore, ®,;Q"/Z(®;Q") =
@;Q" is injective whenever ®;Q" ®r Q" /R = 0. However, Q" ®r Q"/R = 0 by assumption

since )" is right non-singular and injective, and it readily follows that ®;Q"®rQ" /R = 0. O
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Chapter 9

Duo Rings

9.1 Localizations and Duo Rings

We find that the problem concerning coincidence of the various notions of divisibility is
closely related to rings for the which the projective dimension of @) is at most 1. If R is an
integral domain and pdgr(Q) < 1, then R is called a Matlis domain. E. Matlis [24], S.B. Lee
(23], and L. Fuchs and L. Salce [15, Ch. VII, Theorem 2.8] characterize Matlis domains by
showing that an integral domain R is a Matlis domain if and only if divisible R-modules are
h-divisible if and only if Q/R is a direct sum of countably generated (divisible) submodules.
We look to extend this result to the non-commutative setting. In particular, we find that
several related results hold for semi-prime right and left Goldie-rings, an important class of
non-commutative rings. We begin with a discussion on general localizations, duo rings, and
projective dimension.

For a commutative ring R and multiplicatively closed subset T' C R, the localization of
R at T, denoted by Ry, is the set of equivalence classes of pairs (r,t), withr € Rand t € T,
under the equivalence relation (r,t) ~ (', ¢') if and only if s(rt’ — r't) = 0 for some s € R.
Typically, (r,t) is denoted as the fraction r/t, and Ry is a ring under fraction addition and
multiplication. For an integral domain, the classical ring of quotients @) is the localization
at the monoid of non-zero elements. As mentioned previously, R does not necessarily have
a right or left classical ring of quotients in the general setting. However, for semi-prime

Goldie-rings, we have the following:

Theorem 9.1. [17] A ring R has a classical right ring of quotients which is semi-simple if

and only if R is a semi-prime right Goldie-ring.
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Theorem 9.2. [17] If R is a semi-prime right and left Goldie-ring, then there exists a semi-
simple ring (Q which is both the classical right and left ring of quotients of R, as well as the

right and left mazimal ring of quotients of R.

Of special note is the localization of R at R\ P, where P is a prime ideal of R. This is
referred to as the localization at P and is denoted by Rp. In the general setting, R\ P is not
necessarily multiplicatively closed. However, it is multiplicatively closed in the case that R
is a duo ring. A ring R is a right duo ring if Ra C aR for every a € R, and it is a left duo ring
if aR C Ra for every a € R. We call R a duo ring if it is both a right and left duo ring. A
prime ideal P is completely prime if xy € P implies that z € P or y € P for every z,y € R.
It is clear that if P is completely prime, then R\ P is multiplicative since z,y € R\ P implies
xy ¢ P. The following shows that if R is a duo ring, then every prime ideal is completely

prime, from whence it follows that R\ P is multiplicative and the localization at P is defined.
Proposition 9.3. If R is a duo ring, then every prime ideal is completely prime.

Proof. Let P be a prime ideal of R, and let x,y € R with xy € P. Then, yR = Ry since
R is a duo ring, and hence (zR)(yR) = xyR C P. Since P is prime, xR C P or yR C P.

Therefore, x € P or y € P and P is completely prime. O]

In some cases, it is convenient for the localization Rp of a duo ring R at a prime ideal P
to again be a duo ring. The following give two instances when this occurs. As H.H. Brungs

shows in [10], Lemma 9.4 implies that Rp is duo in the case that R is a Noetherian duo ring.

Lemma 9.4. [10] Let R be a duo ring. If Rp satisfies the ascending chain condition for

principal right and left ideals, then Rp is a duo ring.

Lemma 9.5. Let R be a duo ring and consider any prime ideal P of R. If xtP = Px for

every x € R, then Rp 1s a duo ring.

Proof. Let P be a prime ideal of R, and let 0 # r € R and t € R\P. We show that

rt~'(Rp) = (Rp)rt~'. Take any as™! € Rp and consider (rt~')(as™') € rt7*(Rp). Since
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R is a duo ring, at = ta; for some a; € R, and hence t *a = a;¢t~!. Moreover, there exists
ay € R such that ra; = asr. Next, we show that t(R\P) = (R\P)t. Once this is shown, we
can find s; € R\P such that st = ts; and hence t~'s™! = s7't7!. Let tz € t(R\P). Since
R is duo, tx = x1t for some z1 € R. If 1 € P, then x1t = txy for some x5 € P since R is
strong duo. Thus, tx = x1t = txy and hence t(z — x5) = 0. However, this implies ¢ = 0 or
x = x9 € P, which is a contradiction since t is regular and x € R\ P. Therefore, z; € R\P
and t(R\P) C (R\P)t. The other inclusion is similar.

Finally, we use a similar process to show there exists sy € R\ P such that rs; = sor and
hence 7s;! = s;'r. From the duo condition on R, there exists s, € R such that rs; = syr.
Suppose s, € P. Since R is strong duo, there exists s3 € P such that r(s; — s3) = 0. If
r is regular, this leads to s; = s3 € P, which is a contradiction. If r is not regular, there
may exist 0 # y € R such that s; —s3 =y. If y € P, then s; = y + s3 € P, which is a
contradiction. However, if y € R\ P, then y = s; — s3 = 0 since elements of R\ P cannot be
zero divisors. This again leads to s; € P, which is a contradiction. Therefore, sy € R\ P.

Putting everything together, we have the following:

1

rttas™ = rajtTtsT = agrtTls T = agrsy T = agsy 't € (Rp)rt_l

Thus, 1t *(Rp) C (Rp)rt~*. The other inclusion is similar since we assume R to be both

right and left duo. Therefore, rt~!(Rp) = (Rp)rt~! and Rp is a duo ring. O

We also consider right and left duo rings which do not contain any zero-divisors. These
rings are of interest because they are right and left Ore domains with finite Goldie-dimension.
A domain R is a right Ore domain (left Ore domain) if aR N bR # 0 (Ra N Rb # 0) for all
non-zero a,b € R. A ring R satisfies the right Ore condition (left Ore condition) if given
a,s € R with s regular, there exists b,t € R with ¢ regular such that at = sb (ta = bs). A
ring R has a classical right (left) ring of quotients if and only if it satisfies the right (left)

Ore condition [17].

67



Lemma 9.6. If R is a right (left) duo ring, then it satisfies the right (left) Ore condition.

Proof. Let a,s € R with s regular. If R is a right duo ring then Rs C sR, and thus as = sb

for some b € R. The left condition is similar. OJ

Lemma 9.7. If R is a right and left duo ring not containing zero-divisors, then it is a right

and left Ore domain. In Particular, R has right and left Goldie-dimension 1.

Proof. Let 0 # a,b € R. Since R has no zero-divisors, ab # 0, and we can find 0 # ¢ € R
such that 0 # ab = bc using the duo property. Thus, 0 # ab € aR N bR, and therefore R is
a right Ore domain. Similarly, Ra NbR # 0. By [17, Theorem 3.30], R has finite right and
left Goldie-dimension. Now, R has a classical ring of quotients ) which is a division ring.
Hence, R is uniform as both a right and left R-module by [17, Corollary 3.25], and therefore

R has right and left Goldie-dimension 1. n

Lemma 9.8. If R is a right and left duo ring not containing zero-divisors, then it is a

semi-prime right and left Goldie-ring.

Proof. If R is a duo ring not containing zero-divisors, then it is a right and left Ore domain
with finite right and left Goldie-dimension by Lemma 9.6 and Lemma 9.7. Moreover, R
satisfies the ACC on right and left annihilator ideals since {0} and R are the only such
ideals in a domain [17]. Therefore, R is a right and left Goldie-ring. Finally, if R does not

contain any zero-divisors, then aRa = 0 implies a = 0, and thus R is semi-prime. O]

9.2 Projective Dimension

We now discuss the projective dimension of a module over a right and left duo domain.
For any ring R, we say that a right R-module A has projective dimension < n, denoted

pdr(A) < n, if there exists a finite projective resolution

0O—-FP,—---—>P—>F—>A—0.
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If the length of the shortest projective resolution is n then pdr(A) = n, and pdr(A) = oo if
every projective resolution of A has infinite length. The following two lemmas will be useful

in determining the projective dimension of a module:

Lemma 9.9. /26, Prop. 8.6] The following are equivalent for a right R-module A:
i) pdr(A) < n.
i) Exth (A, M) =0 for every right R-module M and every k > n + 1.

ii) ExttH (A, M) =0 for every right R-module M.

Lemma 9.10. Let R be a ring, and let 0 > A — B — C' — 0 be an exact sequence of right

R-modules.
i) If any two of pdr(A), pdr(B), or pdr(C) is finite, then so is the third.
ii) Only the following can occur:

a) de(A) < de(B) :de(C),
b) pdr(B) < pdr(A) = pdr(C) — 1;
¢) pdr(A) = pdr(B) = pdr(C) — 1.

Proof. 1f pdr(A) = pdr(B) = oo, then pdr(C) < oo = pdr(B) + 1 and we are in case c).
Suppose pdr(A) = pdr(C) = co. If pdr(B) < 0o = pdr(A), then pdr(C) = 0o = pdr(A)+1
and we are in case b). If pdr(B) = oo = pdg(A), then pdg(C) = oo < pdr(A) + 1 and
we are in case ¢). Finally, suppose pdgr(B) = pdr(C) = oco. If pdr(A) < oo = pdr(B),
then pdr(C) = oo = pdr(B) and we are in case a). If pdr(A) = oo = pdr(B), then
pdr(C) = 0o < pdr(A) + 1 and we are in case c).

Assume that neither A, B nor C' is projective. We will deal with those cases at the
end. Suppose that pdr(A) < pdr(B) = n for any 1 < n < w. Then, given any right
R-module M, we have Ext%(A, M) = 0 for every k > n and Ext}(B, M) = 0 for every
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m > n + 1. Hence, the sequence 0 = Ext’s(A, M) — Ext:t(C, M) — Ext"" (B, M) = 0 is
exact by Proposition 3.15, from whence it follows Ext’;™ (C, M) = 0. Therefore, pdr(C) < n.
Now, suppose pdr(C) < n. Then, Extp(C, M) = 0 for every right R-module M, and thus
0 = Exti(C, M) — Exth(B, M) — Exth(A, M) = 0 is exact. However, this implies that
Exty(B, M) =0 and pdr(B) < n — 1, which is a contradiction. Therefore, pdr(C) = n.

The other cases are similar. Assume pdg(B) < pdr(A) = n for any 1 < n < w. Then,
given any right R-module M, we have Ext% (A, M) = 0 for every k > n+1 and Ext’?(B, M) =
0 for every m > n. Hence, the sequence 0 = Ext};™ (A4, M) — Ext},™(C, M) — Ext?(B, M) =
0 is exact by Proposition 3.15, from whence it follows Exts™(C, M) = 0. Therefore,
pdr(C) < n + 1. Now, suppose pdr(C) < n + 1. Then, Ext;"'(C, M) = 0 for every
right R-module M, and thus 0 = Ext’(B, M) — Exth(A, M) — Ext};™(C, M) = 0 is exact.
However, this implies that Ext;(A, M) = 0 and pdr(A) < n — 1, which is a contradiction.
Therefore, pdr(C) =n + 1.

Finally, assume pdr(B) = pdr(A) = n for any 1 < n < w. Then, given any right R-
module M, we have Ext® (A, M) = Extk (B, M) = 0 for every k > n+1. Hence, the sequence
0 = Ext};™ (A, M) — Ext}™(C, M) — Ext%»"*(B, M) = 0 is exact by Proposition 3.15, from
whence it follows Ext%™(C, M) = 0. Therefore, pdr(C) < n + 1. In this case, there is no
contradiction in assuming pdr(C) < n + 1.

If C' is projective, then the sequence splits and B = A@® C. This implies that pdr(B) =
sup{pdr(A),pdr(C)} = pdr(A) [26], and we are in case ¢). Suppose B is projective. If
pdr(B) < pdg(A) = n for some n > 0, then pdr(C) = pdr(A)+ 1 using the same long exact
sequence used above to prove case b). If 0 = pdr(B) = pdr(A), then we have a projective
resolution of C' of length 1, and hence pdr(C) < 1 = pdr(A) + 1. Finally, suppose A is
projective. If pdr(A) < pdr(B) = n for some n > 0, then pdg(C) = pdg(B) using the same
long exact sequence used above to prove case a). If 0 = pdr(A) = pdgr(B), then we again

have a projective resolution of C' of length 1 and are in case c). [
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We are interested in the relationship between the projective dimensions over the rings R
and R/rR, where r € R is a non-zero divisor. In the case that R is commutative, Kaplansky
found that pdg/,r(M/rM) < pdr(M) whenever r € R is a non-zero divisor such that zr # 0
for every 0 # = € M [15, Lemma VI1.2.10]. This is one of Kaplansky’s Change of Rings
Lemmas, and it can be extended to right and left duo rings not containing zero-divisors.

The proof used in [15, Lemma VI1.2.10] carries over to this setting.

Lemma 9.11. Let R be a right and left duo ring without zero-divisors, and let 0 # s € R. If

M is a left R-module such that sz # 0 for every 0 # x € M, then pdr/sg(M/sM) < pdg(M).

We now look to extend another of Kaplansky’s Change of Rings Lemmas to the case

that R is a duo ring without zero-divisors. First, we need the following from [25]:

Lemma 9.12. /25 Theorem 9.32] If ¢ : R — R* is a ring homomorphism and A* is a right
R*-module, then pdr(A*) < pdg.(A*) + pdr(R*).

Observe that if R is any ring and ¢ : R — R is an automorphism of rings, then every
right R-module M carries another R-module structure induced by o: For x € M and r € R,
define = * r = xo(r). Let M* denote the R-module M when using the structure induced by
o. Since 1 xr = 1o(r), we have that R* is a free right R-module. Hence, pdr(R*) = 0 and
pdr(M) = pdr(M*) < pdg«(M*) by Lemma 9.12. Since o is an isomorphism, we can use

o~ ! to get the reverse inequality, and therefore pdg(M) = pdg«(M*).

Proposition 9.13. Let R be a duo ring without zero-divisors, and let 0 # s € R. If
o : R — R denotes the automorphism defined by o(r) = s 'rs, then o : R/sR — R/sR

defined by o(r + sR) = o(r) + sR is an automorphism of R/sR.

Proof. If v’ = r + st for some t € R, then s ''s = s lrs + s !'sts = s~ 'rs + ts. Since
sR = Rs, we have 7(r') = &(r) and hence @ is well-defined. It is easily seen that 7 is an
epimorphism and an R-map. To see that @ is a monomorphism, observe that &(r) = 0 and
the duo condition yield s~'rs = ts for some t € R. Hence t = s7'r € Q, and r = st € sR.

Therefore, 7 is an automorphism of R/sR. ]

71



Let U be any right R/sR-module. Then, U can be viewed as a right R-module with
Us = 0. Moreover, using 7 as defined in Proposition 9.13, we have ux(r+sR) = uo(r+sR) =
u(o(r) + sR) = uo(r) + 0 = u X r, where x and x denote the module structures induced by

o and o, respectively. We are now ready to extend Kaplansky’s change of rings result.

Theorem 9.14. Let R be a duo ring without zero-divisors, and let 0 # s € R. If M is a

right sR-module such that pdr/sg =1, then pdgr = 2.
ght R/sR dul h th pd/(M)lhpd(M)Q

Proof. Assume, for a contradiction, that pdr(M) < 1, and consider an exact sequence
0 - P - P - M — 0 of right R-modules with Py and P, projective. Applying

_ Qg R/sR induces the exact sequence of right R/sR-modules:
0 — Torh (M, R/sR) = PL®p R/sR — Py@®p R/sR — M &y R/sR — 0.

However, M @ R/sR = M since M is an R/sR-module. Furthermore, since P, Q@ R/sR
is a projective R/sR-module for i = 0,1, and pdg/sr(M) = 1, we have that Tory(M, R/sR)
is a projective R/sR-module.

Now, the sequence 0 — sR “R— R/sR — 0 is an exact sequence of R-R-bimodules.
We consider the induced sequence 0 — Tork(M, R/sR) LN M@ysR S M@y R. Note
that in M @, R we have 2 ® st = xs ® t = 0 since M is a right R-module satisfying
Ms = 0. Thus, im ¢* = 0 and 0 is an isomorphism. It then follows that A = M @), sR is
isomorphic to Tory(M, R/sR) as an R-module, and hence as an R/sR-module. Therefore,
A is a projective R/sR-module.

Let A* denote the R-module A with the module structure induced by & as defined in
Proposition 9.13. For x ® ts € A, we have (z @ ts) xr = z @ tss 'rs = x ® trs. However,
A A* — M defined by A(z ® ts) = xt is an isomorphism of R-modules, and hence also
of R/sR-modules. As previously shown, Lemma 9.12 implies that A and A* have the same

projective dimension as both R and R/sR-modules since ¢ and & are automorphisms of R
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and R/sR, respectively. Thus, we have a contradiction since this leads to

1= de/sR<M) = de/sR(A*> = de/sR(A) = de/SR(TOI'}%(M, R/SR)) =0.

Therefore, pdr(M) > 1 and pdr/sr(M) < pdr(M).
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Chapter 10

Generalizations of Matlis Domains

10.1 Tight Systems and G(X;) Families

As we will see in Theorem 10.11, Rr/R is a direct summand of /R in the case that
pdr(Q) < 1 and pdr(Q/Rr) < 1. We will eventually consider a direct sum decomposition
of /R whose construction depends on these conditions. In order to ensure the second
condition is satisfied, as well as to ensure we have the desired direct sum decomposition, we
need a family of submodules which satisfy the following conditions. For a right R-module

M, a set S of submodules of M is a G(RXg)-family if the following are satisfied:
(i) 0,M € S.
(ii) S is closed under unions of chains.

(iii) Given A € § and a countable subset X of M, there exists B € S such that A, X C B

and B/A is countably generated.

A submodule N of a right R-module M is called tight if pdr(M/N) < pdr(M). For a right
R-module M of projective dimension < m, a family 7 = {M; | i € I} of tight submodules

of M is called a tight system if
(i) O,M € T;
(ii) 7 is closed under unions of chains;
(iii) if M;, M; € T with M; < M, then pdp(M;/M;) < pdr(M) < m;

(iv) For every M; € T and every subset S of M of cardinality < X,,_, there exists M; € T

such that M; < M;, S C M; and M;/M; is < R,,_;-generated.
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For our purposes, we have that M, /M, is countably-generated in condition (iv) since
we consider a tight system for /R in the case that pdg(Q/R) < 1. The following result
ensures the existence of a tight system in the case that pdr(M) < 1. The proof is the same

as the integral domain case found in [15, Prop. 5.1].

Lemma 10.1. [15] Let R be a semi-prime right and left Goldie-ring and M a right R-module.

If pdr(M) < 1, then M admits a tight system.

Once we have an appropriate G (Rp)-family of tight submodules, we will use the following

lemma to extract a well-ordered ascending chain of direct summands.

Lemma 10.2. [20] Let R be a ring and let M be a right R-module. Let U be a family of
submodules of M, and take Uy to be a subset of U. Suppose there exists a chain {M,},<p

such that
o for every v < B, M,11 = M, @ U, for some U, € Uy,

o My=0, and M, =, M, for every v < 5.

v<y

Then, M = . _z U, is a direct sum of modules with U, € Uy for every v < f.

v<B

The following variation developed in [7] by Bazzoni, Eklof, and Trlifaj of a tight system
is sometimes useful in producing factors which have generating sets of higher cardinality.
For a right R-module M of projective dimension < 1 and a regular uncountable cardinal &,

aset T ={M,; | i€ I} of submodules of M is a k-tight system if the following hold:
(i) 0 € T and each M; € T is < k-generated.
(ii) 7 is closed under unions of well-ordered chains of length < k.

(i) Every M; € T is a tight submodule of M. That is, pdg(M/M;) < 1.

(iv) For every M; € T and every subset S of M of cardinality < r, there exists M; € T
such that M; < M;, S C M; and M;/M; is < k-generated.
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It is of note that if M is a right R-module of a semi-prime right Goldie-ring R, then M

admits such a system. For any right R-module M, define

M* = Ker ExtL(M, ) = {X € Mody, | ExtL(M, X) = 0}.

Using the notation in [7], for any index set I and cardinal &, let E/"<*! denote the submodule

of E(R)" consisting of elements with support of cardinality < .

Lemma 10.3. [7, Lemma 3.1] Let M be a right R-module and consider any reqular un-
countable cardinal k < gen M. If pdr(M) < 1 and M~ contains EV<%! for every index set

I, then M admits a k-tight system.

Lemma 10.4. Let R be a semi-prime right Goldie-ring and M a right R-module. If
pdr(M) < 1, then M admits a k-tight system for any regular uncountable cardinal k <

gen M.

Proof. Let I be any index set and « any regular uncountable cardinal of cardinality < gen M.
As a submodule of a direct sum of non-singular modules, E"<#! is a non-singular right R-
module. Let # = (24)aer € EYV<%, and take ¢ to be any regular element of R. Since R
is a semi-prime right Goldie-ring, the non-singular, injective module F(R) is divisible in
the classical sense [1, Corollary 4.5]. Hence, for every o € I, there exists y, € F(R) such
that z, = yac. Let ¥ = (Ya)aer so that x = ye, and observe that [supp (y)| < & since
lsupp (7)| < & and c is regular. Thus, y € E<%) and we conclude that E5<#l is divisible
in the classical sense. Furthermore, as a non-singular, divisible right R-module of a semi-
prime right Goldie-ring, E/-<*] must also be injective [1, Corollary 4.5]. Therefore, E<"]

is contained in M+ and Lemma 10.3 shows that M admits a s-tight system. O]

10.2 Pre-Matlis Duo Domains

We are now ready to turn our attention to modules of projective dimension < 1. In

particular, we consider rings for which the maximal right ring of quotients ()" has projective
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dimension < 1. Observe that it follows immediately from Lemma 9.10 that pdr(Q) < 1
precisely when pdr(Q/R) < 1. As previously mentioned, we look to decompose (Q/R)g into
a direct sum of countably generated submodules and extend the characterization of Matlis

domains to a more general setting. We start with the following result from U. Albrecht in

[1]:

Theorem 10.5. [1] Let R be a semi-prime right and left Goldie-ring. If Q/R is a direct

sum of countably generated submodules, then pdr(Q) < 1.

We now consider the converse of this result. We begin our discussion with an example
which provides a ring for which (Q/R)g is not the direct sum of countably generated sub-
modules A;/R where each A; is a subring of (). However, this particular ring is hereditary
and hence pdr(Qr) < 1. We first consider the following lemmas from Bessenrodt, Brungs,

and Torner in [§]:

Lemma 10.6. /8, Lemma 3.1] The following are eqivalent for a ring R:
a) R is a right Noetherian, right chain ring.

b) R is a local principal right ideal ring.

c) The lattice of right ideals of R is inversely well-ordered by inclusion.

Lemma 10.7. /8, Lemmas 1.4, 3.2] Let R be a right Noetherian right chain ring. Then R

15 a right duo ring. In particular, every right ideal is two-sided.

Proof. Let I be a right ideal of R. Since R is a right Noetherian right chain ring, I is a
principal ideal, say [ = aR for some a € R. As a right chain ring, R is a local ring whose
unique maximal right ideal J(R) consists of all non-unit elements of R. Let U = R\J(R)
denote the group of units, and suppose there exists u € U such that aR C waR. Then,
waR C v?aR C ... Cu"aR C ..., n < w, is a strictly ascending chain of right ideals of R.

This contradicts R being right Noetherian, and thus UaR C aR.
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We now show that R is right duo by showing that Ra C UaR C aR. Take ra € Ra. If
r € U or if ra € aR, then clearly ra € UaR. Otherwise, r ¢ U and there exists x € J(R)
such that rax = a. Hence, ra(l +z) = ra+rax =ra+a = a+ra = (1 +r)a. Observe that
both 1+ z and 1 + r are units in R, since otherwise 1 = (1+2) —z = (1+4+7r) —r € J(R).
Thus, ra = (1 +7)a(l +x)~! € UaR. O

Theorem 10.8. Let R be a right Noetherian, right chain domain whose lattice of right ideals
18 inversely order isomorphic to an ordinal o of uncountable cardinality. Then, R is a right
hereditary right duo ring with classical right ring of quotient @ such that (Q/R)g is not the

direct sum of countably generated submodules A;/ R where each A; is a subring of Q.

Proof. Observe that R is a right duo ring by Lemma 10.7, and hence every right ideal of R
is two-sided. Moreover, R is a right hereditary ring since every right ideal of R is principal
by Lemma 10.6, and R has a classical right ring of quotients ) since every right Noetherian
domain is a right Ore domain.

We first show that @ is not countably generated. If it were, then we could find
{ca | n < w} such that @ =", _ Re,'. We consider the right ideals ¢, R of R, and observe
that Ny« R # 0 since o is of uncountable cardinality. We pick a non-zero d € ), cw R,
say d = c,ry,. For all ¢ € QQ, we have qd € R. Specifically, c"'d € R for all 0 # ¢ € R. Thus,
de ﬂ#o cR. In particular, 0 # d? and d°R C dR C ﬂc#o cR C d?R, and we can find r € R
such that d = d?r. Since R is a domain, 1 = dr. Hence, d ¢ J(R) and d is a unit, from
whence it follows R = Qd = @), a contradiction. Thus, r(Q is not countably generated.

Now assume (Q/R)r = @;Ai/R for some index set I, where A;/R is countably
generated and A; is a two-sided submodule of R. Note that if A; is a subring of @,
then A; is indeed a two-sided submodule R. Pick a countable subset J, C I, and write
> Aj =2 oy )R, Then, r,ct € 37 Re,'. However, Rc, ! is also an R-submodule
of Qr. To see this, let » € R and pick s € R such that rc,, = ¢,,s. This is possible since
a right Noetherian, right chain ring is right duo by Lemma 10.7. Then, ¢, 'r = sc,! and

thus 37, A; € Y, Re,'. Since rQ is not countably generated, we may assume that this
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inclusion is proper. Otherwise, we can add Rd~! to the sum on the right-hand side, and
proceed with Y Rc,! 4+ Rd~' such that d™* ¢ > Rc,!.

We can now find a countable subset J; of I such that Jy C J; and ¢! € Y 7 A;. Since
each A; is two-sided, >7, A; € 3 Re,' € 3, Aj. Inductively, we obtain an ascending
chain Jy C J; C ... of countable subsets of I and a countable family {d,, | n < w} C R such

that J = J,_, Jn is a countable subset of I with Y, A; =3 _ Rd'. If RQ # >, _ Rd,',

n<w
then there exists 0 # ¢ € R such that ¢! ¢ >~ _ Rd;'. Since R is a right chain ring, either
cR C d,Ror d,R C cR. If the latter occurs, then d, = ct, for some t,, € R and ¢! = t,d,*,

—L. It readily follows

a contradiction. Thus, ¢ = d,s, for some s, € R and d;l = s,C
that > _. Rd,;' C Re™'. However, R C Rc™!, so that >, A; C Y new Rd;' C Rc™!
implies @, A;/R C Rc™'. Thus, Re™' = @,(4;/R) ® U/R for some R C U C Re™* since
(B, A;/R) C Q/R. Observe that Q/R = @, A;/R is a decomposition of both (Q)/R)r and
r(Q/R) since A; is a two-sided submodule for each i € I. Moreover, @ ;(A;/R) is not finitely
generated since ), A; C > Joiy Aj for every n < w, and we have a contradiction. Thus,
Q= ... Rd, L contradicting the fact that zQ is not countably generated. Therefore,
(Q/R)r is not the direct sum of countably generated submodules A;/R where each 4, is a

subring of Q). O]

Let R* denote the multiplicative monoid of regular elements of R. In trying to fully
extend the characterization of Matlis domains to the general non-commutative setting, a
few issues arise involving the localization of R at a submonoid T of R* and the formal
construction of the ring of quotients. A primary complication that arises is related to the
filtration properties of the multiplicative monoid of non-zero elements of an integral domain.
We say that R* has a filtration if it is the union of a continuous (or smooth) well-ordered
ascending chain

=Ty <T'<..<T.<.T.=R"
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of submonoids. The chain is well-ordered if the index set « runs over the ordinals a < &
for some ordinal x, and the chain is continuous (or smooth) if T = {J,_5 T, for every limit
ordinal 8 < k.

In the general setting, R* does not necessarily have a filtration with the same properties
that we find in integral domains. In particular, if we consider a submonoid 7" of R* and a
countable subset S of R*, then it is not guaranteed that the localization at the submonoid
generated by T and S is countably generated over the localization at T'. If R is an integral
domain, then the monoid of non-zero elements does in fact have this property. As we will see,
filtrations which have this characteristic will be essential in decomposing )/ R into countably
generated summands. The example in Theorem 10.8 provides a ring for which R* does not
have our desired filtration, and we see that in this instance @/R is not a direct sum of
countably generated submodules. To counter this issue, we introduce a filtration similar to
the third axiom of countability introduced by P. Griffith and P. Hill in [19]. A monoid T
satisfies the third axiom of countability if there exists a family C = {T; | i € I'} of submonoids

of T" such that
(i) 1 eC.
(ii) C is closed under unions of chains.

(i) If i € I and X C T is countable, then there exists i € I such that T;, X C T}, and T},

is countably generated over T;.

We refer to the family C as an Aziom III family of T'.
Moreover, we introduce notions similar to that of a normal subgroup and a normal series

of a group. Define a normal series of a submonoid T of R* to be an ascending chain

=Ty <T)<.<Ta<.T,=T
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of submonoids of T such that T, < T for every a < k. In other words, tT, = T,t for every
t € T and every a < k. Combining a variation of the third axiom of countability with this
notion of normality, we develop a filtration for R* which will allow us to produce a chain
of direct summands of Q/R. We say that a domain R is a pre-Matlis domain if R* is the

union of a smooth filtration

{(}=Ty<T)<..<T,<.T.=R"

of submonoids with the following properties:
(i) T, < R* for every a < k.

(i) If « < k and X C R* is countable, then there exists 8 < k such that T,,, X C T and

T} is countably generated over T,.

We consider an example from Bessenrodt, Brungs, and Toérner in [8] of a ring whose
monoid of regular elements has the desired filtration of normal submonoids. For an ordered
group (G, <) with identity e, let GT = {g € G | e < g} denote the positive cone of G. Let
K be a division ring and consider all power series of the form a = deG gag, with a, € K.
Define the support of a to be supp(a) = {g € G | a, # 0}, and refer to a as a generalized
power series if supp(a) is a well-ordered subset of G. If ag = ga for every a € K and g € G,
then the set of all generalized power series, denoted K[[G]], is a ring with normal power
series addition and multiplication. Moreover, K[[G]] is a division ring and the following

proposition from [8] shows that K[[G*]] is a duo chain domain with quotient ring K[[G]].

Proposition 10.9. /8, Prop. 1.24] Let (G, <) be an ordered group and K a division ring.
Then the subring R = {a € K[[G]] | e < min supp(a)}U{0} of K[[G]] is a duo chain domain

satisfying the following properties:

i) The set of non-zero principal right ideals is given by {gR | e < g}.
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ii) The two sided ideals of R correspond to the upper classes of G, the prime ideals to the

convex semigroups of G .
iii) The residue field R/ J(R) is isomorphic to K.

Theorem 10.10. Let (G, <) be an ordered group which has an Aziom III family of normal

subgroups, and let R = K[[G*]]. Then R is a pre-Matlis domain.

Proof. Suppose G has an Axiom III family C' = {N, | @ < k} of normal subgroups. Since
GTNN, is a normal subroup of G for each a < k&, it is easily seen that C' = {GTNN, | a <

k} is an Axiom III family of G™:
i) {e} =G n{e} € ' since {e} € C.

ii) If {G* N Ng}p<, is a chain in €7, then {Ns}p<, is a chain in C. Hence, {J;_, N5 € C,

from whence it follows G* N (U, N3) € C'.

iii) Let @ < k and let X C G* C G be countable. Since C' is an Axiom III family, there
exists B < k such that N,, X C Ng and Nj is countably generated over INV,. Therefore,

GT N N,, X €GN Nz and Gt N Ng is countably generated over GT N N,,.

For each a < k, define T,, = K[[GTNN,]|]\{0} to be the set of all non-zero generalized power
series Y ga, over G N N, and K. By Proposition 10.9, K[[G* N N,]] is a duo ring, and
hence 1, = T,r for every r € R*. By extending property iii) of the Axiom III family of
Gt to {T,}a<w, we have the second condition of our filtration satisfied. Therefore, K[[G™]]

is a pre-Matlis domain. O

It is of note that a right and left chain ring is a strongly non-singular, semi-hereditary
ring with finite Goldie-dimension [2]. Hence, K[[G*]] satisfies the conditions of Proposi-
tion 7.1, and every two-sided essential submodule of ) has the finite Baer-splitting property.
In 1952, C.G. Chehata showed in [12] that there exists a simple, totally ordered group G. If

we take this group G and its positive cone G, then K[[G"]] is a duo domain which has no

82



non-trivial normal submonoids coming from G, and whose monoid of regular elements has
our desired filtration.

We are now ready for the main theorems, which extend the characterization of Matlis
domains to duo rings not containing zero-divisors. The first result shows that in our setting

Rr/R is a direct summand of (/R whenever T is a normal submonoid of R*, and both

pdr(Q) and pdr(Q/Rr) are < 1.

Theorem 10.11. Let R be a right and left duo ring not containing zero-divisors. If T'a .S
are submonoids of R* such that pdr(Rs) < 1 and pdr(Rs/Rr) < 1, then Rr/R is a direct

summand of Rs/R.

Proof. As a first step, we show that (Rr/R)p is S-divisible for all prime ideals P of R. Since
R is a duo ring, P is completely prime, and R\ P is multiplicatively closed. If TN P = 0,
then (Rr)p = Rp since T C R\P in this case. Thus, t"'p~ € Rp forallt € T and p € R\P.
Since localizing at P is a flat functor, (Rr/R)p = (Ry)p/Rp = Rp/Rp = 0 is S-divisible.

Now, assume T'N P # (). We first show that given any s € S, Ry/sRy is projective
as a left R/sR-module. Clearly, Rr is a left R-module since r(at™') = (ra)t~! € Ry for
any r € R and any at™! € Ry. Since R is a duo ring, sR = Rs. Thus, for any r € R, we
can find r; € R such that rs = sry. Thus, r(sat™!) = sri(at™!), and sRr is a submodule
of gRr. Since R is duo, sR is a two-sided ideal of R, and we can view Rr/sRr as a left
R/sR-module.

Consider the exact sequence 0 - Ry — Rg — Rg/Rr — 0. By assumption, pdr(Rg) <
1 and pdr(Rs/Rr) < 1. If pdgr(Ry) > 1, then pdg(Rr) > pdr(Rs) and hence pdgr(Rs/Rr) =
pdr(Rr) +1 > 1 by Lemma 9.10. However, this is a contradiction and thus pdr(Ry) < 1.
Consequently, pdr/sr(Rr/sRr) < pdr(Rr) < 1 by Lemma 9.11. Now, consider the exact
sequence 0 — Rr/sRy — Rs/sRr — Rs/Rr — 0 of left R-modules. Since Rg is s-divisible
and hence sRs = Rg, we have Rg/Rr = sRg/sRr = Rg/sRr, and thus pdgr(Rs/Rr) =
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pdr(Rs/sRr). Therefore, we have

de(RT/SRT) < de<RS/RT) = de<RS/SRT) <1

by Lemma 9.10. However, Theorem 9.14 shows that if pdg,rs(Rr/sRr) = 1 then pdr(Rr/sRr)
must be 2, which is a contradiction. Therefore, pdg/sg(Rr/sRr) = 0, and hence Rp/sRy is
projective as a left R/sR-module.

We now show that (Rr)p = (Rg)p whenever TN P # (). Observe that Rp is a local ring
since P is completely prime. Hence, Rp/sRp is a local ring. Moreover, since R is a duo ring
and T is a normal submonoid of R*, we can view (Rr)p as a left Rp-module. To see this,
take (at=')m™' € (Rr)p and bn~' € Rp where n,m € R\ P. The duo condition provides
a; € R such that n='an = na;. Since T is normal, we can find ¢; € T such that tn = nt;.

Thus,

bn t(at'm™) = bain 't im Tt = (bayt; D (n T tm ) = (baity ) (mn) "t € (Rr)p.

Since localization at P is an exact functor, (Rr)p/s(Ry)p is projective as a left (Rp)/s(Rp)-
module by what was shown in the preceding paragraph. Since projective modules over local
rings are free [26, 4.58], (Rr)p/s(Rr)p is a free (Rp)/s(Rp)-module.

Now assume (Rp)p/s(Rr)p # 0, and consider t € TN P # (. If ¢ were a unit of Rp,
then ! € Rp would imply ¢t € R\P. Furthermore, if (au=')m™! € (Rr)p, then the duo

condition provides a; € R such that

au'mt = ttautm Tt = ta(ut) " 'm Tt € t(Ry)p.

Hence, t(Rr)p = (Rr)p.
Since (Rr)p/s(Rr)p is a free (Rp)/s(Rp)-module, there exists some index set / such

that (Rr)p/s(Rr)p = ®1(Rp)/s(Rp). Moreover, since (Rr)p is divisible by ¢, it must also
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be the case that ®;(Rp)/s(Rp) = t ®; (Rp)/s(Rp). However, this implies Rp/sRp =
t(Rp/sRp). But t € PRp, which is a contradiction since ¢ is not a unit in Rp. Therefore,
given any s € S, (Rr)p/s(Rr)p = 0 and hence (Ry)p = s(Rr)p. Thus, if (rm Yu™! €
(Rp)s, we can use the duo and normality conditions to find m € R and w; € S such
that (rm Du™! = u;'rym™' € u; (Rr)p = (Rr)p. Furthermore, it is easily seen that
(Rr)p C (Rp)s since 2T = Tz for every x € R* and T C S. For if rt7'm~ € (Ry)p, then
there exists t; € T C S such that rt7'm~' = rm~ ;" € (Rp)s. Thus, (Rp)p = (Rp)s.

L= rm~1s;! € (Rp)s whenever

Finally, observe that there exists s; € S such that (rs™!)m~
(rs7')m~! € (Rg)p, whence it follows (Rp)s = (Rs)p. Therefore, (Rr)p = (Rp)s = (Rs)p,
and it readily follows from the S-divibility of Rg that (Rr/R)p = (Rr)p/Rp = (Rs)p/Rp
is S-divisible. Consequently, Ry /R is S-divisible.

Suppose s € S. By the S-divisibility of Ry/R, we have s(Rr/R) = Rr/R , and
hence sRyr + R = Ry. Furthermore, Ry /sRy is projective as a left R/sR-module. Hence
R/(R N sRy) = (sRr+R)/sRr = Ry /sRy is projective as left R/sR-module. The canonical
epimorphism 7 : R/sR — R/(R N sRy) defined by 7(r + sR) = r+ (R N sRr) induces

the exact sequence

0— (R N sRr)/sR— R/sR— R/(R N sRr)—0

which splits since R/(R N sRr) is projective as a R/sR-module. However, multiplication
by s induces isomorphisms

s'R/R= R/sR

and

(s'R N Rr)/R= (R N sRy)/sR.

Hence

[s'R/R])/[(s"'R N Rp)/R] = s 'R/[(s'RN Ry)] = R/(R N sRy)
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is a projective R/sR-module. Thus, [sT'R/R] = [(s"'R N Ry)/R|®C/R for some submodule
C of s7'R containing R Observe that C/R = Ry/sRp. Using the notation of Fuchs and
Salce, let B = (\pey(Rp N Rg) where W is the set of maximal ideals P with 7N P # 0.
We have (Rr)p = (Rg)p in the case that TN P # (). Hence,

(C/R)p = (Rr/sRr)p = (Rr)p/s(Rr)p = (Rs)p/s(Rs)p = (Rs)p/(Rs)p = 0

from which we obtain Cp = Rp. Since C C Rg and (s"'R N Ry)/R C Rr/R, we have
s'R/R < Rr/R+ B/R for every s € S. Thus Rs/R = Ry/R+ B/R

It remains to be seen that (Ry/R) N (B/R) = 0. Once this is established, we have
shown that Rs/R = (Rr/R) @ (B/R). Again using the notation of Fuchs and Salce, let
A = Npey(Rp N Rg), where V is the set of maximal ideals with TN P = (. Since Ry
is clearly contained in A and Rr N B < AN B, it suffices to show that AN B = R. It is
easily seen that R C AN B. For if x € R, then x € Ry for any submonoid T of R*. Hence,
x € Rp N Rg for every maximal ideal P and thus z € AN B.

To see that AN B C R, it suffices to show that R = [Npem-spec 2P| N Rs where m-Spec
is the set of all maximal ideals of R. Let * = us™' € Rg\R and consider the right ideal

1

I, ={r € R| xr € R}. It is non-zero since s = us™'s = u € R yields s € I,. Moreover,

I, is a proper right ideal since 1 ¢ I,. Hence, it follows that there exists a maximal right
ideal P containing I,. Since R is duo, P is a two-sided ideal. If x € Rp, then z = rm™!
for some r € R and m € R\P. However, xzm = r € R implies that m € I, C P, which
is a contradiction. Thus, given x € Rg\R, there exists some maximal ideal P of R such

that x ¢ Rp. Hence, x € R whenever x € Rp for every maximal ideal P of R. Therefore,

R = [NpemspecRp] N Rs and AN B = R. O

Theorem 10.12. Consider the following conditions for a semi-prime right and left Goldie-

ring R with classical right and left ring of quotients @, and let K = Q/R:
a) Kr = @1A;/R where each A; is a subring of Q such that (A;)r is countably generated.
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b) Kr is a direct sum of countably generated submodules.
c) Every divisible module is h-divisible.
d) All divisible modules are weakly cotorsion.

e) Z(D) is a direct summand of D whenever D is divisible.

f) pdr(Q/R) < 1.

Then a) = b) = ¢) = d) = e) = f), and ) = a) if R is a right and left duo pre-Matlis

domain.

Proof. Since a) = b) is obvious, we turn to b) = ¢). Since R is a duo ring not containing
zero-divisors, it is a semi-prime right and left Goldie-ring by Lemma 9.8. Hence, every
element of @) can be written as ¢~!r. Let D be a divisible module, and consider a € Z(D).
We select a regular element sy of R such that asg = 0. Using a standard back and forth
argument, we may find a countable subset {s,|n < w} of R” such that F = [, .,s.'R]/R
is a direct summand of Q/R.

We now show that we can find regular elements t,, of R with t5 = s¢ and t,.1 = r,t,
for all n < w such that 3,.,s.'R C U, t,'R. Assume that we have already constructed
to, ..., t, with the desired properties such that sy*,...,s;! € £, R. Since R is a semi-prime
right and left Goldie ring, Rt,, and Rs,; are essential left ideals of R. We hence obtain a
regular element ¢,,,; € R such that ¢,,.1 = ts,, .1 and ¢, 1 = 7,411, for some r,,,t € R. Thus,
Spi1 =ttt and ¢t =t} r, 1. Observe that each 7, is regular in R. Let U = U, ;' R,
and observe E C U/R. We let ag = a and 1y = sg, and select {a,, € D|n < w} such that
Uni1Tne1 = ap for n < w. Since ¢ 'R is a free right R-module, setting a,,(t,') = a,, defines
amap a, : t,'R — D. Moreover,

OénJrl(tq;l) = O‘nJrl(t;lerl)rnH = Qp41Tn+1 = Ap = O‘n(t;1>
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and ap(1) = ag(tg'sy = apso = 0. Thus, the «,, induce a map a : U/R — D with
alty! + R) = a. However, ty' = s;' € E, and so a|E : E — D contains a in its image.
Hence, there is a map 3 : Qr — D such that a € im (3.

Moreover, the last arguments of the last paragraph show that any countable direct
summand of Kz can be embedded into a submodule of K of projective dimension 1. Thus,
K has projective dimension 1 and the same holds for Qr. Since R is a semi-prime right and
left Goldie-ring, every non-singular module, which is divisible in the classical sense, is actually
a (Q-module, and hence injective and has projective dimension 1. This holds in particular for
D/Z(D). By [1, Corollary 4.6] Z(D) is weakly cotorsion, and so Exty(D/Z(D), Z(D)) = 0.
This shows that D is h-divisible.

¢) = d): By Theorem 4.1 of [1], Z(D) is a direct summand of D whenever D is a
divisible module because D is h-divisible by ¢). Since divisible modules are divisible in the
classical sense, all modules which are divisible in the classical sense are weakly cotorsion by
Corollary 4.6 of [1]. Thus all divisible modules are weakly cotorsion. However, if all such
modules are weakly cotorsion, then their singular submodule is a direct summand. Thus,
d) = e) holds. Finally, e) = f) follows from [1, Proposition 5.1].

f) = a): Assume pdgr(Q/R) = 1, and assume that R is a pre-Matlis domain with the
desired filtration

{1} :TO S T1 S S Ta S TR = RX.

As a semi-prime right and left Goldie-ring, R has a maximal right ring of quotients ) which
is also its maximal left ring of quotients, as well as its classical right and left ring of quotients
[17, Theorem 3.37]. Thus, every regular element of R is invertible in Q and Q = {ab™! | a,b €
R with b regular} = {c7'd | ¢,d € R with c regular}. Let U = {Rr,/R | o < r}. Observe
that for each a < k, Ry, /R is a submodule of )/R. We show that U is a G(RX¢)-family of
Q/R. Clearly, condition i) is satisfied since {0} = Rp13/R € U and Q/R = Rpx/R € U.
Moreover, U is closed under unions of chains since {7}, } o<, forms a smooth chain and includes

R*=U,_.T

a<k T
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To see that condition #i7) is satisfied, take Ry, /R € U and let
X ={rjs;' + R | rj,s; € R with s; regular, j < w}

be a countable subset of @)/R. Using condition ii) of the filtration, there exists 5 < k
such that T, C Tp, {s; | j < w} C Tp, and T is countably generated over T,. Hence,
Rr, /R, X C R, /R and there exists a countable subset S, C Tj such that T = S, T, =
T, Ss. Thus, if t € Tp, there exists Sq,, Sags - San € Sq a0 Lo, tay, .-, ta, € Ty such that ¢ =
SeytaySastas---Sayta,- Then if rt=t + Ry € Ry, /Rr,, we have rtTt =t s oty st sl
Therefore, (Ry,/R)/(Rz,/R) = Ry, /Ry, is countably generated by {s™' | s € S,\T,} and
U is a G(Rp)-family of Q/R.

It follows from Lemma 10.1 that /R admits a tight system 7. It is clear that 7 is also
a G(Ny)-family of /R, and it is easily seen that U NT is a G(Ny)-family of tight submodules

of Q/R of the form Ry, /R for o < k. Thus, given any Ry, /R€UNT,

pdr(Q/Rr,) = pdr((Q/R)/(Rr,/R)) < pdr(Q/R) < 1.

It then follows from Theorem 10.11 that Ry, /R is a direct summand of @/ R for every a < k.
Since R* = J,.,. Ta, we have Q/R = J,.,. Rr./R. Moreover, the smooth filtration ensures

that Ry,/R = U, .5 Rr,/R € UNT, and hence there exists 3 < x and a continuous well-

<8
ordered ascending chain { Ry, /R | v < 8} € UNT of submodules of ()/ R such that Ry, /Ris a
direct summand of @/R and Rr,,,/Rr, is countably generated. Hence, Q/R =D, _;A,/R

where each A, is a countably generated. Finally, since R is right and left duo and Ry, is a

subring of ) for each v, we have that each A, is a two-sided submodule of (). O

As mentioned, the example in Theorem 10.8 provides a ring for which R* does not have
our desired filtration of normal submonoids. Moreover, this example is such that pdg(Q) < 1
even though @)/R cannot be written as a direct sum of countably generated submodules.

Theorem 8.2 shows that if Qg is countably generated, then a module is h-divisible if and
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only if it is divisible in the classical sense. However, the ring in Theorem 10.8 has a maximal
ring of quotients which is not countably generated. In the case that (Q)/R)g is generated by

N;-many elements, we can find the following filtration of countable submonoids of R*:

Corollary 10.13. Suppose R is a semi-prime right and left Goldie-ring such that (Q/R)r
1s a direct sum of Ny many countable modules, then there exists a smooth ascending chain

To<T <..<T,<.. a<Ny, of countable submonoids of R* such that R* = T.

a<N; Tar

Proof. Let Ty = {1} and let T, = (J;_, Tp for each limit ordinal o < X;. Note that each
T, is countable as the countable union of a countable set. Let o < ¥; and suppose that for
each 8 < a, T has been defined so that Ry, /R is a direct sum of countably many A,/R.
Then, Ry, /R = @; A,/R C Q/R for some countable set I,. If Ry, = @, then we are
done. Otherwise, there exists p < ¥y with A, € Ry,. Let A, = (rpt;;! | n < w) and define
T! = (T,,t, | n < w). Observe that T} is countable since it is countably generated by

countable sets. Since Ry /R C Q/R =
such that Rri/R C @ A/R.

LRy A, /R, we can find a countable subset Ié o1,

If Ry = @, then we are done. Otherwise, there exists po < Ny with A, ¢ Rp1.
As before, let Ay, = (rt;} | n < w) and define T2 = (Th,tn2 | n < w). Then, T2 is
countable and we can find a countable subset I2 D I} such that Rp2/R C D A/R.
Note that Rpi/R C @n A/R € Rrz/R C @2 Ay/R. Continue this process to find
I,CI)C2C..C?C..andT, CTy CT?C ..CT»C .. satisfying Rym/R C
D, Av/R C Rpnsa /R C Dot A/ R

Let Toy1 = U, T and let I = J,,_, 1. Observe that both T, and I are countable
since each T} and each I7 are countable. If rt~!' + R € Rp,,, /R, then ¢t € T for some
n < w. Hence, rt™' + R € D A/R C D;A/R and so Ry, /R C P;A,/R. On the
other hand, if v € @, A, /R =, D, Av/R, then z € B, A,/ R for some n < w, and thus
x € Ri™ /R C Ry, /R. Hence, Ry, /R =@, A,/R C Q/R. Therefore, T, is defined for
every a < Ny and Tp <T) < ... <T, < .. «a< ¥ isasmooth ascending chain of countable

submonoids of R* such that R* = T, O

a<N; Tor
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We conclude by once again considering rings which are right strongly non-singular and
right semi-hereditary. Recall that if R is a right strongly non-singular, right semi-hereditary
ring with finite right Goldie-dimension, then any two-sided essential submodule of @) has
the finite Baer-splitting property (Proposition 7.2). In the context of Theorem 10.12, we see
that for this class of rings our decomposition of (Q)/R)g results in submodules A; of @) which

have the finite Baer-splitting property:

Corollary 10.14. Let R be a right and left duo pre-Matlis domain such that pdr(Q) < 1.
If R is right semi-hereditary, then (Q/R)r = @©1A;/R where each A; is an R-submodule of

Q) satisfying the finite Baer-splitting property.

Proof. The proof of Theorem 10.12 shows that (Q/R)r = ®;A;/R, where each A; is a two-
sided R-submodule of ). Moreover, each A; is of the form Ry, where 7; is a submonoid of
R*. Since R C Ry, C @ and R <. Qg, we have Rg <. (Rr1,)r <. Qg by [17, Prop. 1.1].
Hence, A; is a two-sided R-submodule of () such that (A;)r is essential in ). As a semi-prime
right and left Goldie-ring, R is strongly non-singular by [28, Ch. XI, Proposition 5.4] and
[28, Ch. XII, Corollary 2.6]. Therefore, each A; has the finite Baer-splitting property by

Proposition 7.2. O
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