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Abstract

This dissertation focuses on extending certain notions from Abelian group theory and

module theory over integral domains to modules over non-commutative rings. In particular,

we investigate generalizations of torsion-freeness and characterize rings for which torsion-

freeness and non-singularity coincide under a Morita-equivalence. Here, a right R-module

M is non-singular if xI is nonzero for every nonzero x ∈ M and every essential right ideal

I of R, and a right R-module M is torsion-free if TorR1 (M,R/Rr) = 0 for every r ∈ R.

Incidentally, we find that this is related to characterizing rings for which the n × n matrix

ring Matn(R) is a Baer-ring. A ring is Baer if every right (or left) annihilator is generated

by an idempotent. Strongly non-singular and semi-hereditary rings play a vital role, and we

consider relevant examples and related results.

This leads to a discussion of divisible modules and two-sided submodules of the maximal

ring of quotients Q. As with torsion-freeness, there are various notions of divisibility in

the general setting, and we consider rings for which these various notions coincide. More

specifically, we consider the structure of Q/R in the case that its projective dimension is ≤ 1

and R is a right and left duo domain. A ring R is a right (left) duo ring if Ra ⊆ aR (aR ⊆

Ra) for every a ∈ R. In this setting, we find that h-divisibility and classical divisibility

coincide, and Q/R can be decomposed into a direct sum of countably-generated two-sided

R-submodules. We consider related results, as well as examples of such rings.
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Chapter 1

Introduction

The structure of modules over integral domains has been widely researched and has

seen several advancements in recent years. This dates back to the 1930s with R. Baer’s

work in Abelian group theory, and since then several familiar notions from Abelian group

theory have been extended to modules over integral domains. However, the degree to which

this theory can be extended to general associative rings is not known. For instance, the

classical notions of torsion-freeness and divisibility can be defined in several ways which are

equivalent for modules over integral domains but not for modules over arbitrary rings. In

this dissertation, we look to classify the rings for which some of these notions and results

can be extended to non-commutative rings.

Throughout our discussions, the maximal ring of quotients will play a pivotal role. The

theory of quotient rings has become an integral part of non-commutative ring theory. It has

its origins in the 1930s with the development of the classical ring of fractions by Ø. Ore

and K. Asano. The general theory, however, began seeing development in the 1950s through

the work of Y. Utumi, A.W. Goldie, and several others. K.R. Goodearl and B. Stenström

consolidated and expanded many of these results in the 1970s, and use of the maximal ring

of quotients remains extensive in non-commutative ring theory to this day.

For an integral domain R, there exists a commutative ring Qr containing R as a subring

such that every non-zero element of R is a unit in Qr. Moreover, every non-zero element in

Qr is of the form rs−1 for some r, s ∈ R. Here, rs−1 represents an equivalence class (r, s),

where (r, s) ∼ (a, b) if and only if rb = sa (see Chapter 9). The ring Qr is unique and we will

refer to it as the classical right ring of quotients of R. The classical left ring of quotients Ql

is similarly defined, and Qr = Ql for an integral domain. A more general construction will
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be defined in Chapter 9, with units in Q being taken from a multiplicatively closed subset

S ⊆ R of non-zero divisors.

The formal construction of the classical ring of quotients can fail in the case that R

is non-commutative, and such an over-ring may not exist, even in the case that R is a

non-commutative domain. Moreover, the right and left ring of quotients of an arbitrary

associative ring do not necessary coincide. It is well-known that a ring R has a classical

right ring of quotients if it satisfies the right Ore condition: given a, s ∈ R with s regular,

there exists b, t ∈ R with t regular such that at = sb. In Section 5.2, we consider a more

general construction of the maximal right ring of quotients, which depends on finding an

essential extension of R, as opposed to the classical construction of forming fractions. This

construction results in a ring Q which coincides with the classical ring of quotients in the

case that R is an integral domain.

The first part of the dissertation deals with extending the classical notion of torsion-

freeness to the general setting. IfR is an integral domain andM is anR-module, we define the

torsion submodule of M to be tM = {x ∈M | annr(x) contains some regular element of R},

where annr(x) = {r ∈ R | xr = 0} is the right annihilator of R and r ∈ R is regular if

it is not a right or left zero-divisor. We say that M is torsion-free in the classical sense if

tM = {0} and torsion if tM = M . Unfortunately, problems arise in the non-commutative

setting since tM is not necessarily a submodule of M . There are various ways to extend

the notion of torsion-freeness to the general setting. Following Hattori [18], we say that a

right R-module M over a ring R is torsion-free if TorR1 (M,R/Rr) = 0 for every r ∈ R. This

is based on homological properties of modules and coincides with the classical definition in

the case R is commutative. Goodearl takes a different approach in [17] by considering the

singular submodule

Z(M) = {x ∈M | xI = 0 for some essential right ideal I of R}
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of M . The module M is singular if Z(M) = M and non-singular if Z(M) = 0. A ring

R is right non-singular if it is non-singular as a right R-module. Determining when these

two notions coincide is of great interest, and we look at relevant background information on

torsion-freeness and non-singularity in Chapters 4 and 5.

In 2005, Professors U. Albrecht, J. Dauns, and L. Fuchs were able to classify the non-

commutative rings for which torsion-freeness and non-singularity coincide. This significant

development in module theory was published in the Journal of Algebra [3] along with related

results and applications, and has led to several follow-up results. However, at the time, they

were unable to classify the rings R for which the classes of torsion-free and non-singular

right S-modules coincide for every ring S Morita-equivalent to R. Two rings are Morita-

equivalent if their module categories are equivalent. One complication that arises is the fact

that torsion-freeness is not preserved under a Morita-equivalence, whereas non-singularity is

in fact a Morita-invariant property [13, Example 5.4].

It turns out that the question regarding coincidence of torsion-freeness and non-singularity

under a Morita-equivalence is closely related to the problem of classifying the rings for which

the n× n matrix ring Matn(R) is a Baer-ring. A ring is a Baer-ring if every right (or left)

annihilator ideal is generated by an idempotent. We are able to find necessary and sufficient

conditions for a ring R so that Matn(R) is a Baer-ring. Incidentally, these conditions also

provide us with rings for which the classes of torsion-free and non-singular modules coincide

under a Morita-equivalence. The characterization of these rings is provided in Theorem 6.5,

which states that the classes of torsion-free and non-singular S-modules coincide for every

ring S Morita equivalent to a ring R if and only if R is a right strongly non-singular, right

semi-hereditary, right Utumi ring not containing an infinite set of orthogonal idempotents.

A ring is right strongly non-singular if its maximal right ring of quotients is a perfect left

localization. These rings will play a pivotal role throughout all of our discussions and will

be explored in Section 5.2. Semi-hereditary rings will be defined and explored in Chapter 2,

and we define Utumi rings in Section 5.3. In determining these conditions, we make use of
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the existence of a Morita-equivalence between R and Matn(R) (Proposition 6.2), as well as

the fact that Matn(R) is isomorphic to the endomorphism ring of any free right R-module

with basis {xi}ni=1 (Lemma 2.6). The endomorphism ring EndR(M) of a right R-module M

is the set of all R-homomorphisms f : M → M , which is a ring under point-wise addition

and composition of functions.

After classifying the rings for which torsion-freeness and non-singularity coincide under

a Morita-equivalence, we continue our discussion of strongly non-singular, semi-hereditary

rings. In particular, we consider how these rings are related to two-sided essential submodules

of Qr. In the case that R is right strongly non-singular, right semi-hereditary with finite

Goldie-dimension, [2] provides some information about direct summands of An whenever

A is a two-sided essential submodule of Qr. Moreover, we show that in this case every

epimorphism An → A → 0 splits. This leads to a discussion of direct summands of Q/R,

which is in part motivated by the integral domain case.

An integral domain R is called a Matlis domain if the projective dimension of its maximal

ring of quotients Q is at most 1. For a Matlis domain, we can find a direct sum decomposition

of (Q/R)R into countably generated summands [15]. We extend this result to the general

setting and find that several complications arise. One of the primary obstacles relates to

the set R× of regular elements of R. In the general setting, we find that the localization

RS/RT over two submonoids T ⊂ S is not necessarily countably generated even in the case

that S is countably generated over T . To overcome this difficulty, we introduce a filtration

on R× similar to the third axiom of countability developed by P. Griffith and P. Hill [19].

Furthermore, we extend the notion of a normal series of subgroups to provide a normal series

of submonoids in our filtration. We discuss duo rings and localizations in Chapter 9, and

our filtration is discussed in Chapter 10.

In constructing our filtration, we have to be careful in ensuring that we have suitable

chains of direct summands. In particular, we must make sure that the projective dimension

of the summands does not surpass that of Q, and we must ensure that each summand is
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countably generated. Several examples are provided. In particular, we provide a ring for

which Q/R cannot be decomposed into a direct sum with countably generated factors even

though it has projective dimension ≤ 1. This particular ring does not have our desired

filtration. We discuss projective dimension, and resolve some general issues regarding pro-

jectivity of certain submodules of Q in Section 9.2. Divisible modules will also play a role in

our discussion and main theorem, and we find that these modules have a nice connection to

torsion-free modules (see Chapter 8). There are several notions of divisibility in the general

setting, one of which is dual to Hattori’s definition of torsion-freeness. Moreover, as with

torsion-freeness, we are interested in determining when the various notions of divisibility

coincide. We find that this is closely related to our generalization of Matlis domains (see

Theorem 10.12).

Unless noted otherwise, all rings are assumed to be associative with unit and are not

necessarily commutative. The term domain will refer to a ring that does not contain zero

divisors and is not necessarily commutative, while integral domain will be used for commu-

tative domains.

5



Chapter 2

Semi-hereditary Rings and p.p.-rings

We begin by looking at projective modules. A right R-module P is projective if given

right R-modules A and B, an epimorphism π : A → B, and a homomorphism ϕ : P → B,

there exists a homomorphism ψ : P → A such that πψ = ϕ. In other words, the following

diagram commutes:

P
ψ

��
ϕ
��

A π
// B // 0

In particular, every free right R-module is projective [26, Theorem 3.1]. We make use of the

following well-known characterization of projective modules:

Theorem 2.1. [26] Let R be a ring. The following are equivalent for a right R-module P :

(a) P is projective

(b) P is isomorphic to a direct summand of a free right R-module. In other words, there is

a free right R-module F = Q
⊕

N , where N is a right R-module and Q ∼= P .

(c) For any right R-module M and epimorphism ϕ : M → P , M = ker (ϕ)
⊕

N .

Let ModR be the category of all right R-modules for a ring R. A complex in ModR is a

sequence of right R-modules and R-homomorphisms in ModR,

...→ Ak+1
αk+1−−−→ Ak

αk−→ Ak−1 → ...

such that αk+1αk = 0 for every k ∈ Z. Observe αk+1αk = 0 implies that im(αk+1) ⊆ ker (αk).

The sequence is called exact if im(αk+1) = ker (αk) for every k ∈ Z. An exact sequence

0 → A
α−→ B

β−→ C → 0 of right R-modules is referred to as a short exact sequence. Such
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an exact sequence is said to split if there exists an R-homomorphism γ : C → B such that

βγ = 1C , where 1C is the identity map on C.

Lemma 2.2. [26] Let 0 → A
α−→ B

β−→ C → 0 be a sequence of right R-modules. If this

sequence is split exact, then B ∼= A
⊕

C.

Proof. If the exact sequence 0 → A
α−→ B

β−→ C → 0 of right R-modules splits, then there

exists an R-homomorphism γ : C → B such that βγ ∼= 1C . Observe that since α is a

monomorphism, im(α) ∼= A. Moreover, if x ∈ ker(γ), then γ(x) = 0. However, β(0) =

βγ(x) = x since βγ = 1C . Thus, x = 0 and γ is also a monomorphism. Hence, im(β) ∼= C.

Therefore, to show that B ∼= A
⊕

C, it suffices to show that B ∼= im(α)
⊕

im(γ).

Let b ∈ B. Then β(b) ∈ C and γβ(b) ∈ im(γ). Furthermore, b−γβ(b) ∈ ker(β) = im(α)

since β(b − γβ(b)) = β(b) − βγβ(b) = β(b) − β(b) = 0. Hence, b = [b − γβ(b)] + γβ(b) ∈

im(α) + im(γ). Suppose, x ∈ im(α) ∩ im(γ). Then, there exists some a ∈ A such that

α(a) = x, and there exists some c ∈ C such that γ(c) = x. Now, α(a) ∈ im(α) = ker(β),

which implies β(x) = βα(a) = 0. However, it is also the case that β(x) = βγ(c) = c. Hence,

c = 0 and it follows that x = γ(c) = γ(0) = 0. Thus, im(α) ∩ im(γ) = 0. Therefore,

B ∼= im(α)
⊕

im(γ) ∼= A
⊕

C.

Proposition 2.3. [26] The following are equivalent for a right R-module P :

(a) P is projective.

(b) The sequence 0 → HomR(P,A)
HomR(P,ϕ)−−−−−−→ HomR(P,B)

HomR(P,ψ)−−−−−−→ HomR(P,C) → 0 is

exact whenever 0→ A
ϕ−→ B

ψ−→ C → 0 is a an exact sequence of right R-modules.

Proof. (a) ⇒ (b): Suppose P is projective. Observe that the functor HomR(P, ) is left

exact [26, Theorem 2.38]. Thus, if 0→ A
ϕ−→ B

ψ−→ C → 0 is exact, then

0→ HomR(P,A)
HomR(P,ϕ)−−−−−−→ HomR(P,B)

HomR(P,ψ)−−−−−−→ HomR(P,C)
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is exact. Therefore, it remains to be shown that HomR(P, ψ) is an epimorphism. Let

α ∈ HomR(P,C). Since P is projective, there exists a homomorphism β : P → B such that

α = ψβ. Hence, HomR(P, ψ)(β) = ψβ = α. Therefore, HomR(P, ψ) is an epimorphism.

(b) ⇒ (a): Let P be a right R-module and assume exactness of 0→ A
ϕ−→ B

ψ−→ C → 0

implies exactness of 0 → HomR(P,A)
HomR(P,ϕ)−−−−−−→ HomR(P,B)

HomR(P,ψ)−−−−−−→ HomR(P,C) → 0.

This implies HomR(P, ψ) is an epimorphism. Thus, if α ∈ HomR(P, ψ), then there exists

some β ∈ HomR(P,B) such that HomR(P, ψ)(β) = ψβ = α. That is, given an epimorphism

ψ : B → C and a homomorphism α : P → C, there exists a homomorphism β : P → B such

that α = ψβ. Therefore, P is projective.

A ring R is a right p.p.-ring if every principal right ideal is projective as a right R-

module. A ring R is right semi-hereditary if every finitely generated right ideal is projective

as a right R-module. For a right R-module M and any subset S ⊆ M , define the right

annihilator of S in R as annr(S) = {r ∈ R | xr = 0 for every x ∈ S}. The right annihilator

of S is a right ideal of R. Similarly, the left annihilator of S in R can be defined for a left

R-module M as annl(S) = {r ∈ R | rx = 0 for every x ∈ S}. The left annihilator of S is a

left ideal of R. The following proposition shows that right p.p.-rings can be defined in terms

of annihilators of elements and idempotents, where an idempotent is an element e ∈ R such

that e2 = e.

Proposition 2.4. A ring R is a right p.p.-ring if and only if for every x ∈ R there exists

some idempotent e ∈ R such that annr(x) = eR.

Proof. For x ∈ R, consider the function fx : R → xR given by r 7→ xr. This is a well-

defined epimorphism. Then R is a right p.p.-ring if and only if the principal right ideal xR

is projective for for every x ∈ R if and only if ker (fx) is a direct summand of R for every

x ∈ R. Observe that for each x ∈ R, ker (fx) = annr(x). Hence, R is a right p.p.-ring if and

only if annr(x) is a direct summand of R. Note that every direct summand of R is generated

by an idempotent since R ∼= eR
⊕

(1 − e)R for any idempotent e ∈ R. Thus, as a direct
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summand, annr(x) = eR for some idempotent e ∈ R. Therefore, R is a right p.p.-ring if and

only if for every x ∈ R there is some idempotent e ∈ R such that annr(x) = eR.

Let Matn(R) denote the set of all n × n matrices with entries in R. Under standard

matrix addition and multiplication, Matn(R) is a ring. A useful characterization of semi-

hereditary rings is that such rings are precisely those for which Matn(R) is a right p.p.-ring

for every 0 < n < ω. To show this, the following two lemmas will be needed:

Lemma 2.5. [26] A ring R is right semi-hereditary if and only if every finitely generated

submodule U of a projective right R-module P is projective.

Proof. Suppose R is right semi-hereditary and let U be a submodule of a projective right

R-module P . By Theorem 2.1, P
⊕

N is free for some right R-module N . Hence, P is a

submodule of a free module, and it follows that any submodule of P is also a submodule

of a free module. Thus, without loss of generality, it can be assumed that P is a free right

R-module. Moreover, since U is finitely generated, it can be assumed that P is finitely

generated with basis X = {x1, x2, ..., xn} for some 0 < n < ω.

Inductively, it will be shown that U is a finite direct sum of finitely generated right

ideals. If n = 1, then P = x1R ∼= R. Since submodules of the right R-module R are right

ideals, U is a finitely generated right ideal. Suppose n > 1 and assume U is a finite direct

sum of finitely generated right ideals for k < n. Let V = U∩(x1R+x2R+...+xn−1R). Then,

V is a finitely generated submodule of a free right R-module with basis {x1, x2, ..., xn−1}. By

assumption, V is a finite direct sum of finitely generated right ideals. Note that if u ∈ U ,

then u = v+xnr with v ∈ V and r ∈ R. This expression for u is unique since X is a linearly

independent spanning set. Thus, the map ϕ : U → R defined by ϕ(u) = ϕ(v + xnr) = r is a

well-defined homomorphism.

Now, im(ϕ) is a finitely generated right ideal of R since it is the epimorphic image

of the finitely generated right R-module U . Hence, im(ϕ) is projective since R is right

semi-hereditary. Consider the short exact sequence 0 → K
ι−→ U

ϕ−→ im(ϕ) → 0, where

9



K = kerϕ and ι is the inclusion map. This sequence splits since im(ϕ) is projective, and

thus U ∼= K
⊕

im(ϕ) by Lemma 2.2. Hence, U is a finite direct sum of finitely generated

right ideals since both K and im(ϕ) are finitely generated right ideals. Since R is right

semi-hereditary, each of these right ideals is projective. Therefore, U is projective as the

direct sum of projective right ideals.

Conversely, suppose that if P is a projective right R-module, then every finitely gener-

ated submodule U of P is projective. Let I be a finitely generated right ideal of R. Note that

R is a free right R-module and thus projective. Hence, I is a finitely generated submodule

of R, and by assumption I is projective. Therefore, R is right semi-hereditary.

Lemma 2.6. Let R be a ring, and F a finitely generated free right R-module with basis

{xi}ni=1 for 0 < n < ω. Then, Matn(R) ∼= EndR(F ).

Proof. Let S = EndR(F ) and take f ∈ S. Then, f(xk) ∈ F for each k = 1, 2, ..., n. Hence,

f(xk) is of the form
n∑
i=1

xiaik, where aik ∈ R for every i and every k. Let A = {aik} be

the n × n matrix whose i-kth entry is aik, and let ϕ : S → Matn(R) be defined by f 7→ A.

If f, g ∈ S are such that f = g, then f(xk) = g(xk) for every k = 1, 2, ..., n. Hence, ϕ is

well-defined. Furthermore, if f(xk) =
n∑
i=1

xiaik and g(xk) =
n∑
i=1

xibik for k = 1, 2, ..., n, then

(f + g)(xk) = f(xk) + g(xk) =
n∑
i=1

xi(aik + bik). Thus, if A = {aik} and B = {bik} are the

n× n matrices with entries determined by f and g respectively, then A+B = {aik + bik} is

the n× n matrix with entries determined by f + g. Hence, ϕ(f + g) = A+B = ϕf + ϕg.

To see that ϕ is a ring homomorphism, it remains to be seen that ϕ(fg) = ϕ(f)ϕ(g) =

AB. In other words, it needs to be shown that the entries of the matrix AB are determined

by fg(xj) for j = 1, 2, ..., n. Observe that if A = {aik} and B = {bik} are n×n matrices, then

under standard matrix multiplication AB is the n×n matrix whose i-jth entry is
n∑
k=1

aikbkj.

This is indeed the matrix determined by the endomorphism fg since the following holds:

fg(xj) = f(
n∑
k=1

xkbkj) =
n∑
k=1

f(xk)bkj =
n∑
k=1

n∑
i=1

xiaikbkj =
n∑
i=1

xi

n∑
k=1

aikbkj.
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Finally, note that if A = {aik} ∈ Matn(R), then
n∑
i=1

xiaik ∈ F and f̂ : xj 7→
n∑
i=1

xiaik

is an R-homomorphism from {xi}ni=1 into F . This can be extended to an endomorphism

f ∈ F . It readily follows that ψ : Matn(R) → S defined by {aik} 7→ f is a well-defined

ring homomorphism. Moreover, ϕψ({aik}) = ϕ(f) = {aik} and ψϕ(f) = ψ({aik}) = f .

Thus, ϕ and ψ are inverses, and therefore ϕ is an isomorphism between S = EndR(F ) and

Matn(R).

Theorem 2.7. [11] A ring R is right semi-hereditary if and only if Matn(R) is a right

p.p.-ring for every 0 < n < ω.

Proof. Suppose R is right semi-hereditary. For 0 < n < ω, let F be a finitely generated

free right R-module with basis {xi}ni=1. By Lemma 2.6, Matn(R) ∼= EndR(F ). Therefore,

it suffices to show that S = EndR(F ) is a right p.p.-ring. Take s ∈ S. Since F is finitely-

generated, sF is a finitely generated submodule of F . Free modules are projective, and

thus sF is projective by Lemma 2.5. Since sF is an epimorphic image of F , Theorem 2.1

shows that F ∼= ker s
⊕

N for some right R-module N . Thus, ker s = eF for some nonzero

idempotent e ∈ S. Suppose r ∈ annr(s) = {t ∈ S | st(f) = 0 for every f ∈ F}. Then,

sr = 0 and r ∈ ker s = eF ⊆ eS. On the other hand, suppose et ∈ eS. Since sef = 0 for

every f ∈ F , set(f) = 0 for every f ∈ F . Hence, et ∈ annr(s). Therefore, annr(s) = eS and

S = EndR(F ) ∼= Matn(R) is a right p.p.-ring.

Suppose Matn(R) is a right p.p.-ring for every 0 < n < ω. Let I be a finitely generated

right ideal of R with generating set {a1, a2, ..., ak}, and take F to be a free right R-module

with basis {x1, x2, ..., xk}. Note that there exists a submodule K of F which is isomorphic to

I. Hence, K is also generated by k elements, say b1, b2, ..., bk. Let S = Matk(R) ∼= EndR(F ).

For any f ∈ F , there exists r1, r2, ..., rk ∈ R such that f = x1r1 + x2r2 + ... + xkrk. Let

s ∈ S be the well-defined homomorphism defined by s(f) = s(x1r1 + x2r2 + ... + xnrn) =

b1r1 + b2r2 + ...+ bnrk. Note that im(s) = K and thus s : F → K is an epimorphism.
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It will now be shown that ker (s) = annr(s)F . Here, as before, annr(s) refers to the

annihilator in S. If y =
n∑
i=1

tifi ∈ annr(s)F , then stifi = 0 for every i = 1, 2, ..., n. Hence,

y ∈ ker (s). On the other hand, let f ∈ ker (s). Now, fR is a submodule of F , and so we

can find some t ∈ S such that t : F → fR is an epimorphism and tf = f . Then, for any

x ∈ F , s[t(x)] = s(fr) for some r ∈ R. However, s(fr) = (sf)r = 0. Thus, t ∈ annr(s) and

f = tf ∈ annr(s)F . Therefore, ker (s) = annr(s)F . Moreover, since Matk(R) ∼= EndR(F )

is a right p.p.-ring by assumption, annr(s) = eS for some idempotent e ∈ S. Observe that

SF = F since
n∑
i=1

sifi ∈ F for si ∈ S and fi ∈ F , and f = 1F (f) ∈ SF for any f ∈ F .

Hence, ker (s) = annr(s)F = eSF = eF . Thus, ker (s) is a direct summand of F . It then

follows from Theorem 2.1 that I ∼= K is projective since s : F → K is a an epimorphism.

Therefore, R is a right semi-hereditary ring.

Two idempotents e and f are called orthogonal if ef = 0 and fe = 0. If R contains

only finite sets of orthogonal idempotents, then being a p.p.-ring is right-left-symmetric.

Moreover, if R is a right (or left) p.p.-ring not containing an infinite set of orthogonal idem-

potents, then it satisfies both the ascending and descending chain conditions on annihilators

(Theorem 2.11). A ring R satisfies the ascending chain condition on annihilators if given

any ascending chain I0 ⊆ I1 ⊆ ... ⊆ In ⊆ ... of annihilators, there exists some k < ω such

that In = Ik for every n ≥ k. Similarly, R satisfies the descending chain condition on anni-

hilators if every descending chain of annihilators terminates for some k < ω. Before proving

Theorem 2.11, we look at some basic results regarding annihilators and the chain conditions.

Lemma 2.8. Let S and T be subsets of a ring R such that S ⊆ T . Then, annr(T ) ⊆ annr(S)

and annl(T ) ⊆ annl(S).

Proof. For r ∈ annr(T ) and t ∈ T , tr = 0. Let s ∈ S ⊆ T . Then, sr = 0 and hence

r ∈ annr(S). Thus, annr(T ) ⊆ annr(S). A similar computation shows the theorem holds

for left annihilators.
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Lemma 2.9. Let U be a subset of a ring R, and let A = annr(U) = {r ∈ R | ur = 0 for

every u ∈ U}. Then, annr(annl(A)) = A.

Proof. Suppose r ∈ annr(annl(A)), and let u ∈ U . Then, ua = 0 for every a ∈ A. Hence,

u ∈ annl(A), and thus ur = 0. Therefore, annr(annl(A)) ⊆ A. Conversely, suppose

a ∈ A. Then, ba = 0 for every b ∈ annl(A). Hence, a ∈ annr(annl(A)). Therefore,

A ⊆ annr(annl(A)).

Lemma 2.10. R satisfies the ascending chain condition on right annihilators if and only if

R satisfies the descending chain condition on left annihilators.

Proof. Suppose R satisfies the ascending chain condition on right annihilators. Let annl(U1)

⊇ annl(U2) ⊇ ... be a descending chain of left annihilators. Note that if annl(Ui) ⊇ annl(Uj),

then annr(annl(U1)) ⊆ annr(annl(U2)) ⊆ ... is an ascending chain of right annihilators by

Lemma 2.8. By the ascending chain condition on right annihilators, there is some k < ω such

that annr(annl(Un)) = annr(annl(Uk)) for every n ≥ k. Therefore, annl(annr(annl(Un))) =

annl(annr(annl(Uk))) for every n ≥ k, and by a symmetric version of Lemma 2.9 it follows

that annl(Un) = annl(Un) for every n ≥ k. A similar argument shows that the descending

chain condition on left annihilators implies the ascending chain condition for right annihila-

tors.

Theorem 2.11. [11] Let R be a right p.p.-ring which does not contain an infinite set of

orthogonal idempotents. Then R is also a left p.p.-ring, every right or left annihilator in

R is generated by an idempotent, and R satisfies both the ascending and descending chain

condition for right annihilators.

Proof. Let A = annr(U) for some subset U of R and consider B = annl(A). Suppose B

contains nonzero orthogonal idempotents e1, ..., en, and let e = e1 + ... + en. Note that e is

also an idempotent since e2 = (e1 + ...+ en)(e1 + ...+ en) = e21 + ...+ e2n+ e1e2 + ...+ en−1en =

e1 + ...+en = e. Suppose B = Re. The claim is that A = (1−e)R, and hence A is generated
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by an idempotent. To see this, first note that annr(B) = annr(annl(A)) = A by Lemma 2.9.

Thus, it needs to be shown that annr(B) = (1− e)R. If b ∈ B = Re, then b = se for some

s ∈ R. For all r ∈ R, we obtain b(1−e)r = se(1−e)r = (se−se2)r = (se−se)r = 0. Hence,

(1 − e)R ⊆ annr(B). On the other hand, suppose r ∈ annr(B). Then, r = r − er + er =

(1 − e)r + er. Note that e ∈ B = annl(A), and so er = 0 since r ∈ annr(B) = A. Thus,

r = (1 − e)r ∈ (1 − e)R, and hence annr(B) ⊆ (1 − e)R. Therefore, if B = Re, then A is

generated by an idempotent.

If B 6= Re, then select b ∈ B\Re, and observe ba = 0 for every a ∈ A since b 6= re for any

r ∈ R. Therefore, B 6= Be, which implies B(1−e) 6= 0. Let 0 6= y ∈ B(1−e), say y = s(1−e)

for some s ∈ B. Since R is a right p.p.-ring, annr(y) = (1−f)R for some idempotent f ∈ R.

Observe that f is nonzero. For otherwise, annr(y) = R and y = 0, which is a contradiction.

If 0 6= a ∈ A, then ya = s(1− e)a = sa− sea = 0− s · 0 = 0. Thus, a ∈ annr(y) = (1− f)R,

and so A ⊆ (1 − f)R. Hence, fA ⊆ f(1 − f)R = 0 and f ∈ annl(A) = B. Observe that

e ∈ annr(y) = (1− f)R since ye = s(1− e)e = 0, and so e = (1− f)t for some t ∈ R. Thus,

(1− f)e = (1− f)(1− f)t = (1− f)t = e, and so fe = f(1− f)t = (f − f 2)t = 0. Note also

that fei = 0 for i = 1, ..., n, since yei = s(1 − e)ei = s(ei − eei) = s(ei − ei) = 0 and hence

ei ∈ annr(y).

Let en+1 = (1 − e)f = f − ef . Note en+1 is an idempotent since fe = 0 and thus

(f − ef)(f − ef) = f − fef − ef + efef = f − 0 − ef + 0 = f − ef . Consider ei for

some i = 1, ..., n. Then, en+1ei = (1 − e)fei = (1 − e) · 0 = 0, and eien+1 = ei(1 − e)f =

(ei− eie)f = (ei− ei)f = 0 · f = 0. Thus, en+1 is orthogonal to e1, ..., en. Furthermore, en+1

is nonzero, since otherwise we have f = ef . This would imply f = f 2 = efef = e · 0 · f = 0,

which is a contradiction. Note also that en+1 ∈ B since both e and f are in B.

Then, e1, ..., en, en+1 are nonzero orthogonal idempotents contained in B. As before, if

e = e1 + ...+ en+1 and B 6= Re, then there is a nonzero idempotent en+2 ∈ B orthogonal to

e1, ..., en+1. Since R does not contain any infinite set of orthogonal idempotents, this process

must stop for e1, ..., ek. Thus, for e = e1 + ... + ek, B = Re and A = (1 − e)R. Therefore,
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each right and left annihilator is generated by an idempotent. From a symmetric version of

Proposition 2.4, it follows that R is a left p.p.-ring.

Finally, it needs to be shown that R satisfies the ascending and descending chain condi-

tions for right annihilators. Let C ⊆ D be right annihilators. Then, there are idempotents

e and f such that C = eR and D = fR. Hence, eR ⊆ fR, and it follows that e = fe.

Thus, g = f − ef is a nonzero idempotent. Furthermore, g and e are orthogonal, since

eg = e(f−ef) = ef−e2f = ef−ef = 0 and ge = (f−ef)e = fe−efe = e−e2 = 0. Note that

fR = eR+gR. For, if er+gs ∈ eR+gR, then er+gs = er+(f−ef)s = er+fs+efs ∈ fR,

and conversely, if fr ∈ fR, then fr = (f+ef−ef)r = efr+(f−ef)r = efr−gr ∈ eR+gR.

Let I1 ⊆ I2 ⊆ ... be a chain of right annihilators. Then, for I1 ⊆ I2, there are idempotents

e and f such that I1 = eR and I2 = fR, and there is an idempotent g orthogonal to e such

that I2 = I1 + gR. It then follows that I3 = I1 + gR+hR for some idempotent h orthogonal

to both e and g. Since R does not contain an infinite set of orthogonal idempotents, this

must terminate with some k < ω so that In = Ik for every n ≥ k. Therefore, R satisfies the

ascending chain condition on right annihilators. The descending chain condition on right

annihilators follows from Lemma 2.10.
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Chapter 3

Homological Algebra

Before discussing torsion-freeness and non-singularity of modules, we need some basic

results in Homological Algebra regarding tensor products, flat modules, and functors.

3.1 Tensor Products

Let A be a right R-module, B a left R-module, and G any Abelian group. A function

f : A×B → G is called R-biadditive, or R-bilinear, if the following conditions are satisfied:

(i) For each a, a′ ∈ A and b ∈ B, f(a+ a′, b) = f(a, b) + f(a′, b),

(ii) For each a ∈ A and b, b′ ∈ B, f(a, b+ b′) = f(a, b) + f(a, b′),

(iii) For each a ∈ A, b ∈ B, and r ∈ R, f(ar, b) = f(a, rb).

Note that in general f(a + a′, b + b′) 6= f(a, b) + f(a′, b′). The tensor product of A and B,

denoted A
⊗

RB, is an Abelian group and an R-biadditive function h : A × B → A
⊗

RB

having the universal property that whenever G is an Abelian group and g : A × B → G is

R-biadditive, there is a unique map f : A
⊗

RB → G such that g = fh.

Proposition 3.1. [26] Let R be a ring. Given a right R-module A and a left R-module B,

the tensor product A
⊗

RB exists.

Proof. Let F be a free Abelian group with basis A × B, and let U be a subgroup of F

generated by all elements of the form (a+ a′, b)− (a, b)− (a′, b), (a, b+ b′)− (a, b)− (a, b′),

or (ar, b) − (a, rb), where a, a′ ∈ A, b, b′ ∈ B, and r ∈ R. Define A
⊗

RB to be F/U , and

denote (a, b) + U ∈ F/U as a ⊗ b. In addition, let h : A × B → A
⊗

RB be defined by
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(a, b) 7→ a ⊗ b. Observe that h is a well-defined R-biadditive map. For if a, a′ ∈ A and

b ∈ B, then h(a + a′, b) = (a + a′, b) + U = (a + a′, b) − [(a + a′, b) − (a, b) − (a′, b)] + U =

[(a, b) + U ] + [(a′, b) + U ] = h(a, b) + h(a′, b). Similarly, h(a, b + b′) = h(a, b) + h(a, b′) for

b, b′ ∈ B, and h(ar, b) = (ar, b) + U = (ar, b)− [(ar, b)− (a, rb)] + U = (a, rb) + U = h(a, rb)

for r ∈ R.

Let G be any Abelian group and g : A × B → G any R-biadditive map. For F/U to

be a tensor product, it needs to be shown that there is a function ϕ : A
⊗

RB = F/U → G

such that g = ϕh. Define f̂ : A × B → G by (a, b) 7→ g(a, b). Each element of F is of the

form
∑

A×B (a, b)n(a,b), where n(a,b) = 0 for all but finitely many (a, b) ∈ A × B. Let f be

defined by
∑

A×B (a, b)n(a,b) 7→
∑

A×B f̂ [(a, b)]n(a,b). This is clearly well-defined since f̂ is

well-defined. Moreover, f [(a, b)] = f̂ [(a, b)] for (a, b) ∈ A × B, and thus f extends f̂ to a

function on F . Note that if k is another extension of f̂ , then k must equal f since they are

equal on the generating set A×B. Hence, f is a unique extension. Also observe that f is a

homomorphism since, given x, y ∈ F , f(x+ y) = f(
∑

A×B (a, b)n(a,b) +
∑

A×B (a′, b′)m(a,b))

=
∑

A×B f̂ [(a, b)]n(a,b) +
∑

A×B f̂ [(a′, b′)]m(a,b) = f(x) + f(y).

It readily follows from g being R-biadditive that the homomorphism f : F → G which

we have just constructed is also R-biadditive. To see this, observe that if a, a′ ∈ A and

b ∈ B, then f [(a+ a′, b)]− f [(a, b)]− f [(a′, b)] = g[(a+ a′, b)]− g[(a, b)]− g[(a′, b)] = 0. The

other two conditions are satisfied with similar computation. Thus, we have that f(U) = 0.

Define ϕ : F/U = A
⊗

RB → G by ϕ(x + U) = f(x). If x + U = x′ + U , then x − x′ ∈ U

and hence f(x − x′) ∈ f(U) = 0. Thus, f(x) = f(x′) and ϕ is well-defined. Furthermore,

ϕh(a, b) = ϕ[a ⊗ b] = ϕ[(a, b) + U ] = f [(a, b)] = g[(a, b)]. Therefore A
⊗

RB = F/U is a

tensor product.

Proposition 3.2. Let R be a ring, A a right R-module, and B a left R-module. Then, the

tensor product A
⊗

RB is unique up to isomorphism.

Proof. It has already been shown that A
⊗

RB exists. Suppose H and H ′ are both tensor

products, and let h : A × B → H and h′ : A × B → H ′ be the respective R-biadditive
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functions having the universal property. Then, there exists a function f : H → H ′ such that

h′ = fh and a function f ′ : H ′ → H such that h = f ′h′. Hence, h = f ′fh and h′ = ff ′h′.

That is, f ′f ∼= 1H and ff ′ ∼= 1H′ . Therefore, f : H → H ′ is an isomorphism.

Each element of A
⊗

RB is a finite sum of the form
n∑
i=1

(ai ⊗ bi). These elements are

referred to as tensors. The elements a⊗b that generate A
⊗

RB are referred to as elementary

tensors. Given a, a′ ∈ A, b, b′ ∈ B, and r ∈ R, the following properties hold for tensors:

(i) (a+ a′)⊗ b = a⊗ b+ a′ ⊗ b,

(ii) a⊗ (b+ b′) = a⊗ b+ a⊗ b′,

(iii) ar ⊗ b = a⊗ rb.

These properties can be proved in a method similar to that used in the proof of Proposi-

tion 3.1 to show that h : A×B → A
⊗

RB defined by (a, b) 7→ a⊗ b is R-biadditive.

Proposition 3.3. [26, Prop. 2.46] Let R be a ring, A,A′ ∈ ModR, and B,B′ ∈ RMod.

If f : A → A′ and g : B → B′ are R-homomorphisms, then there is an induced map

f ⊗ g : A
⊗

RB → A′
⊗

RB
′ such that (f ⊗ g)(a⊗ b) = f(a)⊗ g(b).

Proof. Let h : A×B → A
⊗

RB and h′ : A′×B′ → A′
⊗

RB
′ be the respective R-biadditive

maps with the universal tensor property. Define ϕ : A×B → A′×B′ by ϕ(a, b) = (f(a), g(b)).

It then follows that h′ϕ : A×B → A′
⊗

RB
′ is R-biadditive. For if a, a′ ∈ A and b ∈ B, then

h′ϕ(a + a′, b) = h′(f(a + a′), g(b)) = h′[f(a) + f(a′), g(b)] = h′[f(a), g(b)] + h′[f(a′), g(b)] =

h′ϕ(a, b)+h′ϕ(a′, b). Similarly, h′ϕ(a, b+b′) = h′ϕ(a, b)+h′ϕ(a, b′) and h′ϕ(ar, b) = h′ϕ(a, rb)

for b′ ∈ B and r ∈ R. By the universal property of the R-biadditive map h, there exists

a map ϕ̂ : A
⊗

RB → A′
⊗

RB
′ such that h′ϕ = ϕ̂h. Hence, ϕ̂(a ⊗ b) = ϕ̂h(a, b) =

h′ϕ(a, b) = h′[f(a), g(b)] = f(a) ⊗ g(b). Therefore, f ⊗ g = ϕ̂ is an induced map satisfying

(f ⊗ g)(a⊗ b) = f(a)⊗ g(b).

The following lemmas will be needed in a later section:
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Lemma 3.4. [15, Ch. I, Lemma 6.1] Let R be a ring, A a right R-module, and B a left

R-module. If a ⊗ b is a tensor in A
⊗

RB, then a ⊗ b = 0 if and only if there exists

a1, a2, ..., ak ∈ A and r1, r2, ..., rk ∈ R such that a = a1r1 + a2r2 + ... + akrk and rjb = 0 for

j = 1, 2, ..., k.

Lemma 3.5. For a left R-module M, there is an R-module isomorphism

ϕ : R
⊗

RM → M given by ϕ(r ⊗ m) = rm. Here, R is viewed as a right R-module.

Similarly, N
⊗

RR
∼= N for a right R-module N .

Proof. First, observe that R ×M ψ−→ M given by ψ((r,m)) = rm is R-biadditive. Thus, we

can define an R-module homomorphism R
⊗

RM
ϕ−→ M that sends each r ⊗m ∈ R

⊗
RM

to rm. In other words, ϕ(r ⊗ m) = ψ(r,m). Note that for every s ∈ R, ϕ(s(r ⊗ m)) =

ϕ(sr ⊗m) = (sr)m = s(rm) = sϕ(r ⊗m).

Let α : M → R
⊗

RM be defined by α(m) = 1 ⊗ m. Clearly α is a well-defined R-

module homomorphism since α(m + n) = 1 ⊗ (m + n) = 1 ⊗ m + 1 ⊗ n = α(m) + α(n),

and α(rm) = 1 ⊗ rm = 1r ⊗m = 1 ⊗m. It follows that αϕ(r ⊗m) = α(rm) = 1 ⊗ rm =

1r ⊗m = r ⊗m, and ϕα(m) = ϕ(1 ⊗m) = 1m = m. Thus, ϕ is a bijection and hence an

R-module isomorphism.

Lemma 3.6. [26, Theorem 2.63] If A
i−→ B

p−→ C → 0 is an exact sequence of left R-

modules, then for any right R-module M, M
⊗

RA
1⊗i−−→ M

⊗
RB

1⊗p−−→ M
⊗

R C → 0 is an

exact sequence.

Proof. For M
⊗

RA
1⊗i−−→M

⊗
RB

1⊗p−−→M
⊗

R C → 0 to be exact, it needs to be shown that

im(1⊗ i) = ker (1⊗ p) and 1 ⊗ p is surjective. Since im(i) = ker (p) and hence pia = 0 for

every a ∈ A, it readily follows that im(1⊗ i) ⊆ ker (1⊗ p). For if
∑

(mj ⊗ aj) ∈ M
⊗

RA,

then (1 ⊗ p)(1 ⊗ i)[
∑

(mj ⊗ aj)] = (1 ⊗ p)[
∑

(1 ⊗ i)(mj ⊗ aj)] = (1 ⊗ p)[
∑

(mj ⊗ iaj)] =∑
(1⊗p)(mj⊗iaj) =

∑
(mj⊗piaj) =

∑
(mj⊗0) = 0. To see that im(1⊗i) = ker (1⊗ p), first

note that since im(1⊗ i) is contained in the kernel of 1⊗ p, there is a uniqe homomorphism

19



ϕ : M
⊗

RB/im(1⊗i)→M
⊗

R C such that ϕ[(m⊗b)+im(1⊗i)] = (1⊗p)(m⊗b) = m⊗pb

[21, Ch. IV, Theorem 1.7].

It can be shown that ϕ is an isomorphism, and from this it will follow that im(1⊗ i) =

ker (1⊗ p). Note that since the sequence A
i−→ B

p−→ C → 0 is exact and hence p is

surjective, for every c ∈ C there exists an element b ∈ B such that pb = c. Let the

function f : M × C → M
⊗

RB/im(1 ⊗ i) be defined by (m, c) 7→ p ⊗ b. If there is

another element b0 ∈ B such that pb0 = c, then p(b − b0) = pb − pb0 = c − c = 0. Hence,

b−b0 ∈ ker (p) = im(i). Thus, there is an a ∈ A such that ia = b−b0, and it then follows that

m⊗b−m⊗b0 = m⊗(b−b0) = m⊗ia ∈ im(1⊗i). Hence, (m⊗b−m⊗b0)+im(1⊗i) = 0, and

therefore f is well-defined. Furthermore, it is easily seen that f is an R-biadditive function.

Thus, if h : (m, c) 7→ m ⊗ c is the biadditive function of the tensor product, then there is

a homomorphism ψ : M
⊗

R C → M
⊗

RB/im(1 ⊗ i) such that ψh = f . In other words,

ψ(m⊗ c) = (m⊗ b) + im(1⊗ i).

Observe that ψϕ[(m⊗ b)+ im(1⊗ i)] = ψ(m⊗pb) = ψ(m⊗c) = (m⊗ b)+ im(1⊗ i) and

ϕψ(m⊗c) = ϕ[(m⊗b)+im(1⊗i)] = m⊗pb = m⊗c. Thus, ϕ is an isomorphism with inverse

ψ. Now, let π : M
⊗

RB → M
⊗

RB/im(1 ⊗ i) be the canonical epimorphism given by

m⊗b 7→ m⊗b+im(1⊗i). Then, ϕπ(m⊗b) = ϕ[(m⊗b)+im(1⊗i)] = m⊗pb = (1⊗p)(m⊗b).

Hence, ϕπ = 1⊗ p. Therefore, since ϕ is an isomorphism, ker (1⊗ p) = ker (ϕπ) = ker (π) =

im(1 + i).

Finally, it needs to be shown that 1 ⊗ p is surjective. Let
∑

(mj ⊗ cj) ∈ M
⊗

R C.

Since p is surjective, for each j, there exists an element bj ∈ B such that pbj = cj. Thus,

(1⊗ p)[
∑

(mj ⊗ bj)] =
∑

(1⊗ p)(mj ⊗ bj) =
∑

(mj ⊗ pbj) =
∑

(mj ⊗ cj). Therefore, 1⊗ p is

surjective and the sequence M
⊗

RA
1⊗i−−→M

⊗
RB

1⊗p−−→M
⊗

R C → 0 is exact.

A right R-module M is flat if 0→ M
⊗

RA
1M⊗ϕ−−−→ M

⊗
RB

1M⊗ψ−−−→ M
⊗

R C → 0 is an

exact sequence of Abelian groups whenever 0 → A
ϕ−→ B

ψ−→ C → 0 is an exact sequence of

left R-modules.
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Proposition 3.7. [26, Prop. 3.46] Let R be a ring and let {Mi}i∈I be a collection of right

R-modules for some index set I. Then, the direct sum
⊕

IMi is flat if and only if Mi is flat

for every i ∈ I. Moreover, R is flat as a right R-module, and any projective right R-module

P is flat.

Proof. First note that if 0→ A
ϕ−→ B

ψ−→ C → 0 is an exact sequence of left R-modules, then

M
⊗

RA
1M⊗ϕ−−−→ M

⊗
RB

1M⊗ψ−−−→ M
⊗

R C → 0 is exact by Lemma 3.6. Thus, M is flat if

and only if 1M ⊗ ϕ is a monomorphism whenever ϕ is a monomorphism.

Suppose A and B are left R-modules and let ϕ : A → B be a monomorphism. For⊕
IMi to be flat, it needs to be shown that 1 ⊗ ϕ : (

⊕
IMi)

⊗
RA → (

⊕
IMi)

⊗
RB is

a monomorphism. By [26, Theorem 2.65], there exist isomorphisms f : (
⊕

IMi)
⊗

RA →

(
⊕

IMi

⊗
RA) and g : (

⊕
IMi)

⊗
RB → (

⊕
IMi

⊗
RB) defined by f : (xi)⊗ a 7→ (xi ⊗ a)

and g : (xi)⊗b 7→ (xi⊗b). Furthermore, since 1Mi
⊗ϕ is a homomorphism for each i ∈ I, there

is a homomorphism ψ :
⊕

I(Mj

⊗
RA)→

⊕
I(Mj

⊗
RB) such that (xi ⊗ a) 7→ (xi ⊗ ϕ(a)).

Observe that ψ is a monomorphism if and only if 1Mi
⊗ϕ is a monomorphism for each i ∈ I.

It then follows that ψf = g(1⊗ϕ) since ψf [(xi)⊗a] = ψ(xi⊗a) = xi⊗ϕ(a) = g[(xi)⊗ϕ(a)] =

g(1 ⊗ ϕ)[(xi ⊗ a)]. Therefore,
⊕

IMi is flat if and only if 1 ⊗ ϕ is a monomorphism if and

only if ψ is a monomorphism if and only if 1Mi
⊗ϕ is a monomorphism for each i if and only

if Mi is flat for each i.

To see that R is flat as a right R-module, note that Lemma 3.5 gives isomorphisms

f : A→ R
⊗

RA and g : B → R
⊗

RB defined by f(a) = 1R⊗a and g(b) = 1R⊗ b. Observe

that (1R⊗ϕ)f(a) = (1R⊗ϕ)(1R⊗a) = 1R⊗ϕ(a) = gϕ(a). Hence, (1R⊗ϕ) = gϕf−1, which

is a monomorphism. Therefore, R is flat as a right R-module.

Let P be a projective right R-module. Then there is a free right R-module F and an

R-module N such that F = P
⊕

N . As a free module, F is a direct sum of copies of R,

which is flat. Hence, F is also flat. Therefore, P is flat as a direct summand of F .
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3.2 Bimodules and the Hom and Tensor Functors

Let A be a right R-module. Consider the functor TA : RMod→ Ab defined by TA(B) =

A
⊗

RB with induced map TA(ϕ) = 1A⊗ϕ : A
⊗

RB → A
⊗

RB
′, where Ab is the category

of all Abelian groups and ϕ ∈ HomR(B,B′) for left R-modules B and B′. Observe that

TA(ϕ)(a⊗ b) = a⊗ ϕ(b). TA is sometimes denoted TA( ) = A
⊗

R . Similarly, the functor

TB(A) = A
⊗

RB with induced map ψ ⊗ 1B can be defined for a left R-module B and

ψ ∈ HomR(A,A′). We also consider the functor HomR(A, ) : ModR → Ab with induced

map f∗ : HomR(A,B) → HomR(A,C) defined by f∗(h) = fh, where f : B → C is a

homomorphism for right R-modules B and C.

Let R and S be rings and let M be an Abelian group which has both a left R-module

structure and a right S-module structure. Then, M is an (R, S)-bimodule if (rx)s = r(xs)

for every r ∈ R, s ∈ S, and x ∈ M . This is sometimes denoted RMS. In particular, if A is

a right R-module and E = EndR(A), then M is an (E,R)-bimodule. Note that for x ∈ M

and α ∈ E, scalar multiplication αx is defined as α(x).

Proposition 3.8. Let R and S be rings. Suppose M is an (R, S)-bimodule and N is a right

S-module. Then, HomS(MS, NS) is a right R-module and HomS(NS,MS) is a left R-module.

Proof. First, observe that HomS(MS, NS) is an Abelian group. For if f, g ∈ HomS(MS, NS),

then f(xr) = f(x)r and g(xr) = g(x)r for every r ∈ R. Hence, f + g ∈ HomS(MS, NS) since

(f+g)(xr) = f(xr)+g(xr) = f(x)r+g(x)r = (f+g)(x)r. Moreover, if h ∈ HomS(MS, NS),

then [f + (g + h)](x) = f(x) + (g + h)(x) = f(x) + g(x) + h(x) = (f + g)(x) + h(x) =

[(f + g) + h](x). Hence, HomS(MS, NS) is associative. Furthermore, the map α : a 7→ 0 acts

as the zero element. Finally, note that if f ∈ HomS(MS, NS), then g : M → N defined by

g(x) = −f(x) is such that (f +g)(x) = f(x)+g(x) = f(x)−f(x) = 0. Hence, every element

of HomS(MS, NS) has an inverse. Therefore, HomS(MS, NS) is an Abelian group.

Now, let ϕ ∈ HomS(MS, NS), r, r′ ∈ R, and x ∈ M . Define the right R-module

structure on HomS(MS, NS) by (ϕr)(x) = ϕ(rx). Then, (ϕ + ψ)(r)(x) = (ϕr + ψr)(x) =
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(ϕr)(x) + (ψr)(x) = ϕ(rx) + ψ(rx) = (ϕ + ψ)(rx) for ψ ∈ HomS(MS, NS). Moreover,

[ϕ(r + r′)](x) = ϕ[(r + r′)x] = ϕ[rx + r′x] = ϕ(rx) + ϕ(r′x) = (ϕr)(x) + (ϕr′)(x) for

r′ ∈ R. Finally, observe that [ϕ(rr′)](x) = ϕ[(rr′)(x)] = ϕ[r(r′x)] = (ϕr)(r′x). Therefore,

HomS(MS, NS) satisfies the conditions of a right R-module. Similarly, HomS(NS,MS) is a

left R-module with (rπ)(x) = rπ(x) for any π ∈ HomS(NS,MS).

Proposition 3.9. [26] Let R be a subring of S. Suppose M is an (R, S)-bimodule and A is a

right R-module. Then, A
⊗

RM is a right S-module. In particular, S is an (R, S)-bimodule

and hence A
⊗

R S is a right S-module.

Proof. Let y =
n∑
i=1

(ai ⊗ xi) ∈ A
⊗

RM and let s ∈ S. Define the right S-module structure

onA
⊗

RM by (
n∑
i=1

(ai ⊗ xi))s =
n∑
i=1

(ai ⊗ xis). To see that this does define a right S-module,

consider the well-defined map µs : M →M defined by µs(x) = xs. By the bimodule structure

of M , rµs(x) = r(xs) = (rx)s = µs(rx) for r ∈ R. Hence, µs ∈ HomR(M,M). Consider

the functor TA( ) = A
⊗

S . By Proposition 3.3, there is a well-defined homomorphism

TA(µs) = 1A ⊗ µs : A
⊗

RM → A
⊗

RM such that (1A ⊗ µs)(a ⊗ x) = a ⊗ µs(x) =

a ⊗ xs. If the element ys is defined by ys = (1A ⊗ µs)(y) = (1A ⊗ µs)(
n∑
i=1

(ai ⊗ xi)) =

n∑
i=1

(1A ⊗ µs)(ai ⊗ xi) =
n∑
i=1

(ai ⊗ xis), then the S-module structure is well-defined since

(1A ⊗ µs) is a well-defined homomorphism and
n∑
i=1

(ai ⊗ xis) ∈ A
⊗

RM . The remaining

right S-module conditions follow readily. Moreover, it is easy to see that S satisfies the

conditions of an (R, S)-bimodule. Therefore, given any right R-module A, A
⊗

R S is a right

S-module.

Proposition 3.10. Let R ≤ S be rings and let M be an (R, S)-bimodule. Then, the following

hold:

(a) The functor TM( ) =
⊗

RM : ModR → Ab is actually a functor ModR →ModS.

(b) The functor HomS(M, ) : ModS → Ab is actually a functor ModS →ModR.
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Proof. (a): It has already been shown in Proposition 3.9 that TM(A) = A
⊗

RM is a right

S-module for any right R-module A. It needs to be shown that if ψ ∈ HomR(A,A′) for

A′ ∈ ModR, then TM(ψ) = ψ ⊗ 1M ∈ HomS(A
⊗

RM,A′
⊗

RM). In other words, it needs

to be shown that ψ ⊗ 1M is an S-homomorphism. Let s ∈ S. Then, (ψ ⊗ 1M)(a ⊗ x)s =

(ψ(a) ⊗ x)s = ψ(a) ⊗ xs = (ψ ⊗ 1M)(a ⊗ xs) = (ψ ⊗ 1M)[(a ⊗ x)s]. Thus, TM(ψ) is a

morphism in ModS, and therefore TM( ) is a functor with values in ModS.

(b): Given any right S-module N , HomS(M,N) is a right R-module by Proposition 3.8.

It needs to be shown that if f : N → N ′ is a homomorphism for N,N ′ ∈ ModS, then the

induced map f∗ = HomR(M, f) : HomS(M,N)→ HomS(M,N ′) defined by f∗(ϕ) = fϕ is an

R-homomorphism. Note that if ϕ, ψ ∈ HomS(M,N), then f(ϕ+ψ) = fϕ+fψ. Hence, f∗ is

a homomorphism since f∗(ϕ+ ψ) = f(ϕ+ ψ) = fϕ+ fψ = f∗ϕ+ f∗ψ. Let r ∈ R. Observe

that (ϕr)(x) = ϕ(rx) by Proposition 3.8. Moreover, since M has a left R-module structure

and fϕ is an element of the right R-module HomS(M,N ′), Proposition 3.8 also shows that

[fϕ(x)]r = f [ϕr](x) = fϕ(rx) for x ∈ M . Thus, [f∗(ϕ(x))]r = [fϕ(x)]r = fϕ(rx) =

f∗[ϕ(rx)] = f∗[(ϕr)(x)]. Hence, f∗ is an R-homomorphism, and therefore HomS(M, ) is a

functor with values in ModR.

The following lemmas will be used later to show ModR ∼= ModMatn(R). The proofs are

omitted and can be found in Rings and Categories of Modules by Frank Anderson and Kent

Fuller.

Lemma 3.11. [5, Proposition 20.10] Let R and S be rings, M a right R-module, N a

right S-module, and P an (S,R)-bimodule. If M is finitely generated and projective, then

µ : N
⊗

S HomR(M,P )→ HomR(M,N
⊗

S P ) defined by µ(y⊗f)(x) = y⊗f(x) is a natural

isomorphism. Here, x ∈M , y ∈ N , and f ∈ HomR(M,P ).

Lemma 3.12. [5, Proposition 20.11] Let R and S be rings, M a right R-module, N a

left S-module, and P an (S,R)-bimodule. If M is finitely generated and projective, then

ν : HomR(P,M)
⊗

S N → HomR(HomS(N,P ),M) defined by ν(f ⊗ y)(g) = fg(y) is a

natural isomorphism. Here, f ∈ HomR(P,M), g ∈ HomS(N,P ), and y ∈ N .
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3.3 The Tor and Ext Functors

Consider the exact sequence P = · · · → P2
d2−→ P1

d1−→ P0
ε−→ A→ 0 of right R-modules,

where Pj is projective for every j. Such an exact sequence is called a projective resolution

of the right R-module A. Note that a projective resolution can be formed for any projective

right R-module A since every right R-module is the epimorphic image of a projective right

R-module. Define the deleted projective resolution, denoted PA, by removing the morphism

ε and the right R-module A. Note that the projective resolution is an exact sequence, and

hence im(di+1) = ker (di). Therefore, didi+1 = 0 for every i ∈ Z+, and thus the projective

resolution P and the deleted projective resolution PA are both complexes. However, PA is

not necessarily exact since im(d1) = ker (ε), which may not equal the kernel of the morphism

P0 → 0. Now, if T : ModR → Ab is an additive covariant functor then we can form the

induced complex TPA, which is defined as · · · → T (P2)
T (d2)−−−→ T (P1)

T (d1)−−−→ T (P0)→ 0.

For n ∈ Z, the nth homology is Hn(C) = Zn(C)/Bn(C), where C is a complex,

Zn(C) = ker (dn), and Bn(C) = im(dn+1). Hence, Hn(C) = ker (dn)/im(dn+1). If we

consider the deleted projective resolution PA as defined above, then · · · → P2

⊗
RB

d2⊗1B−−−−→

P1

⊗
RB

d1⊗1B−−−−→ P0

⊗
B → 0 is the induced complex TBPA of the functor TB( ) =

⊗
RB.

The Tor functor TorRn (A, ) : RMod→ Ab is defined by

TorRn (A,B) = Hn(TBPA) = ker (dn ⊗ 1B)/im(dn+1 ⊗ 1B).

Note that TorRn (A,B) does not depend on the choice of projective resolution [26]. The

functor TorRn (A, ) is referred to as the left derived functor of A
⊗

RB since it makes up for

the loss of exactness from applying the tensor functor to an exact sequence. The following

two well-known propositions will be useful later:

Proposition 3.13. [26] If M ∈ModR and 0→ A→ B → C → 0 is an exact sequence of left

R-modules, then the induced sequence · · · → TorRn+1(M,C)→ TorRn (M,A)→ TorRn (M,B)→

TorRn (M,C)→ · · · → TorR1 (M,C)→M
⊗

RA→M
⊗

RB →M
⊗

R C → 0 is exact.
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Proposition 3.14. [26] A right R-module M is flat if and only if TorRn (M,X) = 0 for every

left R-module X and every n ≥ 1.

Dual to the notion of the left derived functor Tor is the right derived functor Ext. Given

a right R-module B, we choose an injective resolution E = 0→ B
ν−→ E0 d0−→ E1 d1−→ E2 d2−→ ···,

where each Ej is injective. As with Tor, we form the deleted injective resolution EB and apply

a functor T to this new complex to form the induced complex TEB. Define the nth homology

of TEB to be Hn(TEB) = ker (Tdn)/im(Tdn−1). If T = HomR(A, ) is the Hom functor,

we have 0 → HomR(A,E0)
d0∗−→ HomR(A,E1)

d1∗−→ HomR(A,E2)
d2∗−→ · · ·, and the Ext functor

ExtnR(A, ) : ModR → Ab is given by ExtnR(A,B) = Hn(HomR(A,EB)) = ker (dn∗ )/im(dn−1∗ ).

The functor ExtnR(A, ) is referred to as the right derived functor of HomR(A,B) since it

makes up for the loss of exactness from applying the Hom functor to an exact sequence:

Proposition 3.15. [26] If M ∈ ModR and 0 → A → B → C → 0 is an exact sequence of

right R-modules, then the following induced sequences are exact:

a) 0→ HomR(C,M)→ HomR(B,M)→ HomR(A,M)→ Ext1R(C,M)→ Ext1R(B,M)

→ Ext1R(A,M)→ Ext2R(C,M)→ Ext2R(B,M)→ Ext2R(A,M)→ · · ·

b) 0→ HomR(M,A)→ HomR(M,B)→ HomR(M,C)→ Ext1R(M,A)→ Ext1R(M,B)

→ Ext1R(M,C)→ Ext2R(M,A)→ Ext2R(M,B)→ Ext2R(M,C)→ · · ·

Moreover, we have the following useful connection between the Tor and Ext functors:

Proposition 3.16. [14, Theorem 3.2.1] Let R and S be rings, M a left R-module and N

an (S,R)-bimodule. If E is an injective left S-module, then for every i < ω,

ExtiR(M,HomS(N,E)) ∼= HomS(TorRi (N,M), E).
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Chapter 4

Torsion-freeness

In 1960, Hattori used the homological properties of classical torsion-free modules over

integral domains to give a more general definition of torsion-freeness. He defines a right

R-module M to be torsion-free if TorR1 (M,R/Rr) = 0 for every r ∈ R, and he defines a left

R-module N to be torsion-free if TorR1 (R/sR,N) = 0 for every s ∈ R [18]. The following

equivalent definition of torsion-freeness is also given by Hattori in [18, Proposition 1]:

Proposition 4.1. [18] The following are equivalent for a right R-module M .

(a) M is torsion-free

(b) For each x ∈ M and r ∈ R, xr = 0 implies the existence of x1, x2, ..., xk ∈ M and

r1, r2, ...rk ∈ R such that x =
k∑
j=1

xjrj and rjr = 0 for every j = 1, 2, ..., k.

Proof. Consider the exact sequence 0→ Rr
ι−→ R

π−→ R/Rr → 0 of left R-modules, where ι is

the inclusion map and π is the epimorphism r 7→ r+Rr. This induces a long exact sequence

X = ...→ TorR1 (M,R/Rr)
f−→ M

⊗
RRr

1M⊗ι−−−→ M
⊗

RR
∼= M

1M⊗π−−−→ M
⊗

RR/Rr → 0 [26,

Corollary 6.30]. Observe that condition (b) is equivalent to 1M ⊗ ι being a monomorphism.

For if 1M ⊗ ι : x ⊗ r 7→ xr is a monomorphism, then xr = 0 implies x ⊗ r = 0. Hence,

there exists x1, x2, ..., xk ∈ M and r1, r2, ..., rk ∈ R such that x = x1r1 + x2r2 + ... + xkrk

and rjr = 0 for j = 1, 2, ..., k by Lemma 3.4. On the other hand, if xr = 0 implies

x = x1r1 + x2r2 + ... + xkrk and rjr = 0, then x ⊗ r = x1r1 + x2r2 + ... + xkrk ⊗ r =

x1⊗r1r+x2⊗r2r+...+xk⊗rkr = 0. Hence, ker (1M ⊗ ι) = 0 and 1M⊗ι is a monomorphism.

To complete the proof, it needs to be shown that M is torsion-free if and only if 1M⊗ι is a

monomorphism. If M is torsion-free, then TorR1 (M,R/Rr) = 0. Thus, 0→M
⊗

RRr
1M⊗ι−−−→
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M
⊗

RR
∼= M

1M⊗π−−−→ M
⊗

RR/Rr → 0 is exact and so 1M ⊗ ι is a monomorphism. Con-

versely, if 1M⊗ι is a monomorphism, then im(f) = ker (1M ⊗ ι) = 0 in the induced sequence

X. However, f is a monomorphism. Hence, 0 = im(f) ∼= TorR1 (M,R/Rr).

A ring R is torsion-free if every finitely generated right (or left) ideal is torsion-free as

a right (or left) R-module. Hattori shows in [18] that a ring R is torsion-free if and only if

every principal left ideal of R is flat. To see this, observe that if 0→ J
i−→ R

p−→ R/J → 0 is

an exact sequence of right R-modules with J finitely generated, then 0 → J
⊗

RRr
i⊗1Rr−−−→

R
⊗

RRr
p⊗1Rr−−−→ R/J

⊗
RRr → 0 is an exact sequence whenever Rr is flat. This is the case

if and only if TorR1 (R/J,Rr) = 0. Hattori gives a natural isomorphism in [18, Proposition 7]

showing that TorR1 (R/J,Rr) ∼= TorR1 (J,R/Rr). Hence, TorR1 (J,R/Rr) = 0 if and only if Rr

is flat for every r ∈ R. That is, every finitely generated right ideal is torsion-free if and only

if every principal left ideal is flat.

In 2004, John Dauns and Lazlo Fuchs provided the following useful characterization of

torsion-free rings:

Theorem 4.2. [13]The following are equivalent for a ring R:

(a) R is torsion-free.

(b) For every s, r ∈ R, sr = 0 if and only if s ∈ s · annl(r). In other words, sr = 0 if and

only if s = su and ur = 0 for some u ∈ R.

Proof. (a) ⇒ (b): Suppose R is a torsion-free ring. For s ∈ R, sR is torsion-free as a right

R-module. By Proposition 4.1, if a ∈ sR and r ∈ R with ar = 0, then there exists u ∈ R

so that a = su and ur = 0. Hence, if sr = 0, we have s = su and ur = 0 for some u ∈ R,

since s = s · 1 ∈ sR. Conversely, if there is some u ∈ R such that s = su and ur = 0, then

sr = (su)r = s(ur) = s · 0 = 0. Therefore, sr = 0 if and only if s = su and ur = 0 for some

u ∈ R.

(b) ⇒ (a): Assume that sr = 0 for every s, r ∈ R if and only if s = su and ur = 0

for some u ∈ R. Let Rr be a finitely generated left ideal of R. Assume that the sequence
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0 → J → R → R/J → 0 is exact with J finitely generated. Then, R is a torsion-free ring

if 0 → J
⊗

RRr
ϕ−→ R

⊗
RRr

ψ−→ R/J
⊗

RRr → 0 is exact. By Lemma 3.6, it follows that

J
⊗

RRr
ϕ−→ R

⊗
RRr

ψ−→ R/J
⊗

RRr → 0 is exact. In order for the entire sequence to be

exact, it needs to be shown that ϕ is a monomorphism.

Note that R
⊗

RRr
∼= Rr by Lemma 3.5. Consider j ⊗ sr ∈ J

⊗
RRr. Since j ⊗ sr =

js ⊗ r and js ∈ J , tensors in J
⊗

RRr can be written as k ⊗ r for some k ∈ J . Thus, it

needs to be shown that J
⊗

RRr
ϕ−→ Rr given by ϕ(k ⊗ r) = kr is a monomorphism. Let

k ⊗ r ∈ kerϕ. Then ϕ(k ⊗ r) = kr = 0. By assumption, there exists some u ∈ R such that

k = ku and ur = 0. Then, k ⊗ r = ku ⊗ r = k ⊗ ur = k ⊗ 0 = 0. Thus, kerϕ = 0 and ϕ

is a monomoprhism. Therefore, 0→ J
⊗

RRr
ϕ−→ R

⊗
RRr

ψ−→ R/J
⊗

RRr → 0 is an exact

sequence, and hence R is a torsion-free ring.

Proposition 4.3. [18, Proposition 7] A ring R is torsion-free if and only if every submodule

of a torsion-free right R-module is torsion-free.

Proof. Suppose R is torsion-free and let N be a submodule of a torsion-free right R-module

M . Consider the exact sequence 0→ N
ι−→M

π−→M/N → 0, where ι is the inclusion map and

π is the canonical epimorphism. As noted above, if R is torsion-free, then the principal left

ideal Rr is flat for every r ∈ R. Hence, 0 → N
⊗

RRr → M
⊗

RRr → M/N
⊗

RRr → 0

is exact and so TorR1 (M/N,Rr) ∼= 0. Observe that TorR1 (M,R/Rr) ∼= 0 since M is torsion-

free. If we consider the long exact sequence derived from the functor TorRn ( , R/Rr), then

0 ∼= TorR1 (M/N,Rr) ∼= TorR2 (M/N,R/Rr) → TorR1 (N,R/Rr) → TorR1 (M,R/Rr) ∼= 0 is

exact. Therefore, TorR1 (N,R/Rr) = 0 and N is torsion-free. On the other hand, if every

submodule of a torsion-free right R-module is torsion-free, then every finitely generated right

ideal of R is torsion-free since R itself is torsion-free as a right R-module.

Theorem 4.4. [13]A ring R is a right p.p.-ring if and only if R is torsion-free and, for each

x ∈ R, annr(x) is finitely generated.
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Proof. Suppose R is a right p.p.-ring. Then, for each r ∈ R, annr(r) = eR for some

idempotent e ∈ R. Let s ∈ R be such that rs = 0. Then, s ∈ annr(r), and hence s = es
′

for some s
′ ∈ R. It follows that es = e2s

′
= es

′
= s. Furthermore, e = e2 ∈ eR = annr(r)

and hence re = 0. Note also that if s = es and re = 0, then s ∈ eR = annr(r) and hence

rs = 0. Thus, rs = 0 if and only if s = es and re = 0. Therefore, R is a torsion-free ring

by a symmetric version of Theorem 4.2. Moreover, since R is a right p.p.-ring, annr(r) is

generated by an idempotent and thus finitely generated.

Conversely, suppose R is a torsion-free ring and the right annihilator of every element of

R is finitely generated. Let s ∈ R and let {s1, ..., sn} be the finite set of generators for annr(s).

Note that each si ∈ annr(s), and so ssi = 0 for each i = 1, ..., n. Let S =
n⊕
R be the direct

sum of n copies of R, and consider S as a left R-module. Let s
′

= (s1, ...sn) ∈ S. Note that

S is a torsion-free left R-module since it is the direct sum of copies of R, which is torsion-free

as a left R-module. Thus, the submodule Rs
′

of S is torsion-free by Proposition 4.3. Hence,

Proposition 4.1 gives some u ∈ R such that s
′

= us
′

and su = 0, and thus u ∈ annr(s).

Note that si = usi for each i = 1, ..., n. This implies that si ∈ uR for each i, and so

{s1, ..., sn} ⊆ uR. It follows that annr(s) = s1R + ... + snR ⊆ uR. Suppose x ∈ uR. Then,

x = ut for some t ∈ R. Thus, sx = sut = 0 · t = 0, and so x ∈ annr(s). Therefore,

annr(s) = uR.

Now, since R is a torsion-free ring, uR is torsion-free as a finitely generated right ideal of

R. By a symmetric version of Theorem 4.2, since su = 0, there exists an e ∈ uR = annr(s)

such that u = eu and se = 0. Let x ∈ uR. Then, x = ut = eut ∈ eR for some t ∈ R. Hence,

uR ⊆ eR. On the other hand, suppose y ∈ eR. Then, for some v ∈ R, y = ev and sy =

sev = 0 · v = 0. Thus, y ∈ annr(s) and eR ⊆ annr(s) = uR. Hence, annr(s) = uR = eR

and e = ur for some r ∈ R. It then follows that e is an idempotent since e2 = eux = ux = e.

Therefore, annr(s) is generated by an idempotent and so R is a right p.p.-ring.

Lemma 4.5. If R is a right p.p.-ring and e ∈ R is a nonzero idempotent, then eR = annr(x)

for some x ∈ R. In particular, eR = annr(1− e).
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Proof. If er ∈ eR, then (1 − e)er = (e − e2)r = (e − e)r = 0. Hence, er ∈ annr(1 − e)

and eR ⊆ annr(1 − e). On the other hand, if s ∈ annr(1 − e), then (1 − e)s = 0. Hence,

s− es = 0, and so s = es ∈ eR. Therefore, eR = annr(1− e).

Proposition 4.6. [3] If R is a right and left p.p.-ring which does not contain an infinite set

of orthogonal idempotents and M is a torsion-free right R-module, then annr(x) is generated

by an idempotent for every x ∈M .

Proof. Let R be a right and left p.p.-ring which does not contain an infinite set of orthogonal

idempotents. Take M to be a torsion-free right R-module and let A = annr(x) for some

nonzero x ∈ M . Suppose r0 ∈ R is such that xr0 = 0. Note that the cyclic submodule xR

is torsion-free since R is a right p.p.-ring. Moreover, annl(r0) = Re0 for some idempotent

e0 ∈ R since R is a left p.p.-ring. By Proposition 4.1, there exists xs1, xs2, ..., xsn ∈ xR and

t1e0, t2e0..., tne0 ∈ Re0 = annl(r0) such that x = xs1t1e0 + xs2t2e0 + ... + xsntne0. Hence,

xe0 = xs1t1e
2
0 + xs2t2e

2
0 + ... + xsntne

2
0 = x. Thus, 0 = x − xe0 = x(1 − e0). Therefore, if

(1− e0)r ∈ (1− e0)R, then x(1− e0)r = 0 and (1− e0)R ⊆ A.

Now, if there exists some r1 ∈ A\(1 − e0)R, then r1 6= (1 − e0)r1 and hence e0r1 6= 0.

However, xe0r1 = xr1 = 0. Since R is a left p.p.-ring, annl(e0r1) = R(1 − f) for some

idempotent 1−f . Note that as before it follows from Proposition 4.1 that x = x(1−f) since

xe0r1 = 0. Furthermore, 1− e0 ∈ annl(e0r1) = R(1− f) since (1− e0)e0r1 = e0r1− e0r1 = 0.

Hence, there is some r ∈ R such that (1− e0)f = r(1− f)f = r(f − f) = 0. Thus, e0f = f .

Let e1 = (1−f)e0 = e0−fe0. Then, e21 = (e0−fe0)(e0−fe0) = e0− e0fe0−fe0 +fe0fe0 =

e0 − fe0 − fe0 + fe0 = e0 − fe0 = e1. Thus, e1 is an idempotent. Moreover, e1 is nonzero,

since otherwise e0 = fe0 and hence e0 = 0.

Now, e1e0 = (1 − f)e0e0 = (1 − f)e0 = e1, and Lemma 4.5 shows that (1 − e0)R =

annr(e0) and (1 − e1)R = annr(e1). Thus, if r ∈ annr(e0), then e1r = e1e0r = 0. Hence,

r ∈ annr(e1) = (1 − e1)R, and so (1 − e0)R ⊆ (1 − e1)R. Moreover, e1e0r1 = e1r1 =

(1 − f)e0r1 = 0 since 1 − f ∈ annr(e0r1). Thus, e0r1 ∈ annr(e1) = (1 − e1)R. However,

e0r1 is nonzero and hence e0r1 /∈ annr(e0) = (1 − e0)R. Thus, (1 − e0)R ⊂ (1 − e1)R is a
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proper inclusion. By supposing there is some r2 ∈ A\(1 − e1)R and repeating these steps,

and then supposing there is some r3 ∈ A\(1−e2)R and so on, we can construct an ascending

chain (1− e0)R ⊂ (1− e1)R ⊂ (1− e2)R ⊂ .... However, this chain must terminate at some

point since R only contains finite sets of orthogonal idempotents. Therefore, there is some

idempotent e ∈ R such that A = (1− e)R.

Proposition 4.7. [3] If R is a right and left p.p.-ring not containing an infinite set of

orthogonal idempotents, then a cyclic submodule of a torsion-free right R-module is projective.

Proof. Let M be a torsion-free right R-module, and take N to be a cyclic submodule of

M . Then, N is of the form xR for some x ∈ N ≤ M . By Proposition 4.6, annr(x) = eR

for some idempotent e ∈ R. If f : R → xR is the epimorphism defined by r 7→ xr, then

xR ∼= R/ ker (f) = R/annr(x) by the First Isomorphism Theorem. It then follows that

xR ∼= R/annr(x) ∼= [eR
⊕

(1− eR)]/annr(x) ∼= [eR
⊕

(1− e)R]/eR ∼= (1− e)R. Therefore,

N is a principal right ideal of R, and thus projective, since R is a right p.p.-ring.

A ring R is a Baer-ring if annr(A) is generated by an idempotent for every subset A of

R. Note that if R is Baer, then annr(annl(A)) = eR for some idempotent e ∈ R. Hence,

annl(A) = annl(annr(annl(A))) = annl(eR) = R(1 − e) by Lemma 4.5. Thus, annr(A) is

generated by an idempotent if and only if annl(A) is generated by an idempotent. Therefore,

the property that R is a Baer ring is right-left-symmetric. The following theorem from Dauns

and Fuchs [13] gives conditions for which a ring R is Baer:

Theorem 4.8. [13] If R is a torsion-free ring and right annihilators of elements are finitely

generated and satisfy the ascending chain condition, then R is a Baer-ring.

Proof. It follows from Theorem 4.4 that R is a right p.p.-ring since annr(x) is finitely

generated for every x ∈ R. Thus, for each x ∈ R, there is some idempotent e ∈ R such that

annr(x) = eR. Suppose R contains an infinite set E of orthogonal idempotents. Consider

two idempotents e1 and e2 in E, and let e1r ∈ e1R. Note that since e1 and e2 are orthogonal
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idempotents, e1r = (e1 + 0)r = (e21 + e2e1)r = (e1 + e2)e1r ∈ (e1 + e2)R. Therefore,

e1R ⊆ (e1 + e2)R. Inductively, we can construct an ascending chain of principal ideals

generated by idempotents. For if e1, ..., en, en+1 are orthogonal idempotents in the infinite

set and (e1 + ...+ en)r ∈ (e1 + ...+ en)R, then (e1 + e2 + ...+ en)r = (e21 + e22...+ e2n + 0)r =

[(e21 +e1e2 + ...e1en)+(e2e1 +e22 + ...+e2en)+ ...+(ene1 + ...+e2n)+(en+1e1 + ...+en+1en)]r =

(e1 + ...+ en+1)(e1 + ...+ en)r ∈ (e1 + ...+ en+1)R.

Hence, e1R ⊆ (e1 +e2)R ⊆ ... ⊆ (e1 + ...+en)R ⊆ (e1 + ...+en+1)R ⊆ ... is an ascending

chain of principal ideals generated by idempotents. Furthermore, this will be an infinite

chain since there are an infinite number of idempotents in E. Note that by Lemma 4.5, for

each n ∈ Z+, (e1 + ... + en)R = annr(x) for some x ∈ R. Thus, an infinite ascending chain

of right annihilators has been constructed, contradicting the ascending chain condition on

right annihilators. Therefore, R does not contain an infinite set of orthogonal idempotents.

Since R is a right p.p.-ring which does not contain an infinite set of orthogonal idempotents,

by Theorem 2.11 every right annihilator in R is generated by an idempotent. Therefore, R

is a Baer-ring.
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Chapter 5

Non-singularity

5.1 Essential Submodules and the Singular Submodule

Let R be a ring and consider a submodule A of a right R-module M . If A∩B is nonzero

for every nonzero submodule B of M , then A is said to be an essential submodule of M .

This is denoted A ≤e M . In other words, A ≤e M if and only if B = 0 whenever B ≤ M is

such that A ∩B = 0. A monomorphism α : A→ B is called essential if im(A) ≤e B.

Proposition 5.1. [5, Corollary 5.13] A monomorphism α : A→ B is essential if and only

if, for every right R-module C and every β ∈ HomR(B,C), β is a monomorphism whenever

βα is a monomorphism.

The singular submodule of M is defined as Z(M) = {x ∈M | xI = 0 for some essential

right ideal I of R}. Equivalently, Z(M) = {x ∈ M | annr(x) ≤e R}. For if I ≤e R and

x ∈ M is such that xI = 0, then for any nonzero right ideal J of R, there is an element

a ∈ I ∩ J . Since a ∈ I, xa = 0. Hence, a ∈ annr(x) ∩ J and so annr(x) ≤e R. On

the other hand, note that annr(x) is a right ideal of R such that x · annr(x) = 0. A right

R-module M is called singular if Z(M) = M and non-singular if Z(M) = 0. If R is viewed

a right R-module, then the right singular ideal of R is Zr(R) = Z(RR). The ring R is right

non-singular if it is non-singular as a right R-module.

Proposition 5.2. [17] A right R-module A is non-singular if and only if HomR(C,A) = 0

for every singular right R-module C.

Proof. Suppose A is a non-singular right R-module and C is a singular right R-module.

Let f ∈ HomR(C,A). If it can be shown that f(Z(C)) ≤ Z(A), then the proof follows
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readily since f(C) = f(Z(C)) and Z(A) = 0. Suppose x ∈ Z(C). Then, annr(x) ≤e R.

Hence, if I is any nonzero right ideal of R, then there exists some y ∈ I such that xy = 0.

Then, f(x)y = f(xy) = f(0) = 0 and y ∈ annr(f(x)) ∩ I. Thus, annr(f(x)) ≤e R and so

f(x) ∈ Z(A). Therefore, f(Z(C)) ≤ Z(A).

Conversely, suppose A is a right R-module and HomR(C,A) = 0 for every singular right

R-module C. Then, HomR(Z(A), A) = 0 since the singular submodule Z(A) is singular.

Hence, the inclusion map ι : Z(A) → A given by ι(x) = x is a zero map. Thus, Z(A) =

ι(Z(A)) = 0. Therefore, A is a non-singular right R-module.

Proposition 5.3. [17] The following are equivalent for a right R-module C:

(a) C is singular.

(b) There exists an exact sequence 0→ A
f−→ B

g−→ C → 0 such that f is essential.

Proof. (a) ⇒ (b): Suppose C is a right R-module. Let 0 → A
ι−→ B

g−→ C → 0 be an exact

sequence of right R-modules such that B is free and ι is the inclusion map. Let {xα}α∈K

be a basis for B for some index K. Then, for each α ∈ K, g(xα) ∈ C = Z(C). Hence,

there exists an essential right ideal Iα of R such that g(xαIα) = g(xα)Iα = 0. Thus, for each

α ∈ K and each iα ∈ Iα, xαiα ∈ ker g = A. That is, xαIα ≤ A for each α ∈ K, and it follows

that
⊕

K xαIα ≤ A. If xαJ is a nonzero right ideal of xαR, then J is a nonzero right ideal of

R, and there is a nonzero element y ∈ Iα ∩ J . Then it readily follows that xαy ∈ xαIα ∩ xαJ

is nonzero. Hence, xαIα ≤e xαR for each α ∈ K. Thus,
⊕

K xαIα ≤e
⊕

K xαR = B.

Therefore, A is also essential in B since
⊕

K xαIα ≤ A. It then follows from the exactness

of the sequence that im(A) ∼= A ≤e B.

(b)⇒ (a): Assume 0→ A
f−→ B

g−→ C → 0 is an exact sequence of right R-modules such

that im(A) ≤e B. For each b ∈ B, define hb : R→ B by hb(r) = br, and let

Ib = {r ∈ R | br ∈ im(A)}. Note that Ib is a nonzero right ideal of R. Suppose Ib is not

essential in R. Then there is a nonzero right ideal J of R such that Ib ∩ J = 0. Moreover,

if s ∈ ker (hb), then hb(s) = bs = 0 ∈ im(A) and it follows that ker (hb) ⊆ Ib. Hence,
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ker (hb)∩ J = 0. Thus, hb|J is a monomorphism. This implies that hb(J) must be a nonzero

right ideal of B since J is a nonzero right ideal of R. Thus, hb(J) ∩ im(A) 6= 0 by the

assumption that im(A) ≤e B. Then for some nonzero j ∈ J , bj = hb(j) ∈ im(A). Hence,

j ∈ Ib ∩ J , which is a contradiction. Therefore, Ib is an essential right ideal of R. Note

that for every b ∈ B, if bi ∈ bIb, then bi ∈ im(A). Then by exactness of the sequence,

bIb ⊆ im(A) = ker g. Hence, g(b)Ib = g(bIb) = 0, which implies g(b) ∈ Z(C). Since

this is the case for every b ∈ B, g(B) ⊆ Z(C). Furthermore, since the sequence is exact,

C = g(B) ⊆ Z(C). Therefore, C = Z(C).

Proposition 5.4. If R is a right p.p.-ring, then R is a right non-singular ring.

Proof. Let R be a right p.p.-ring and take any x ∈ R. Suppose annr(x) ≤e R. Since R is a

right p.p.-ring, annr(x) = eR for some idempotent e ∈ R. Observe that R = eR
⊕

(1− e)R.

Hence, annr(x)∩ (1− e)R = 0. However, this implies that (1− e)R = 0 since annr(x) ≤e R.

Hence, 1 − e = 0, and so annr(x) = 1R = R. Thus, xr = 0 for every r ∈ R, which implies

x = 0. Therefore, R is right non-singular.

5.2 The Maximal Ring of Quotients and Right Strongly Non-singular Rings

The maximal ring of quotients and strongly non-singular rings will play an important

role in determining which rings satisfy the condition that the classes of torsion-free and non-

singular modules coincides. We explore these concepts in this section. If R is a subring of a

ring Q, then Q is a classical right ring of quotients of R if every regular element of R is a unit

in Q and every element of Q is of the form rs−1, where r, s ∈ R with s regular [21]. We will

discuss this construction in more detail in Chapter 9 when we discuss general localizations.

For a ring which is not necessarily commutative, such a Q may not exist. Thus, we consider

a more general way to define the right ring of quotients which guarantees its existence for

any ring R.
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This general construction of the right ring of quotients is based on the property that

RR ≤e QR whenever R is a ring with classical right ring of quotients Q. However, we

actually need a property slightly stronger than essentiality. Let A be a submodule of a right

R-module B. If HomR(M/A,B) = 0 for every right R-module M satisfying A ≤ M ≤ B,

then B is a rational extension of A. This is denoted A ≤r B.

Lemma 5.5. [17] Let B be a non-singular right R-module and take any submodule A of B.

Then, A ≤r B if and only if A ≤e B.

Proof. Suppose A ≤r B and let M ≤ B be such that M ∩ A = 0. Now, M
⊕

A is a

right R-module satisfying A ≤ M
⊕

A ≤ B. Hence, HomR([M
⊕

A]/A,B) = 0. Consider

f : (M
⊕

A)/A→M defined by (m+a)+A 7→ m for m ∈M and a ∈ A. If m,m0 ∈M and

a, a0 ∈ A are such that (m+ a) +A = (m0) + a0) +A, then (m−m0) + (a− a0) ∈ A. Hence,

m−m0 ∈ A. However, M∩A = 0 and so m−m0 = 0. Thus, f is well-defined. Moreover, f is

an isomorphism. For if m ∈M , then f [(m+a)+A] = m for any a ∈ A, and f [(m+a)+A] = 0

implies that (m + a) + A = m + A = 0. Observe that f ∈ HomR([M
⊕

A]/A,B) = 0 since

M ≤ B. Thus, M = im(f) = 0 and therefore A ≤e B. Note that this implication does not

require B to be right non-singular.

On the other hand, suppose A ≤e B and take M to be a right R-module such that

A ≤ M ≤ B. Then, any nonzero submodule N of B is such that A ∩ N 6= 0. Hence, any

nonzero submodule K of M is such that A ∩ K 6= 0 since any such submodule is also a

submodule of B. Thus, A ≤e M . Consider the exact sequence 0 → A
ι−→ M

π−→ M/A → 0,

where ι is the inclusion map and π is the canonical epimorphism. Observe that im(ι) =

A ≤e M . Hence, M/A is singular by Proposition 5.3. It then follows from Proposition 5.2

that HomR(M/A,B) = 0 since B is nonsingular. Therefore, B is a rational extension of

A.

Let R be a subring of a ring Q. If RR ≤r QR, then Q is a right ring of quotients of R.

Observe that R is a right ring of quotients of itself since RR ≤r RR. Similarly, if RR ≤r RQ,
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then Q is a left ring of quotients of R. Let Q be a right ring of quotients of R such that

given any other right ring of quotients P of R, the inclusion map µ : R → Q extends to a

monomorphism ν : P → Q. Here, Q is called a maximal right ring of quotients of R. This is

denoted Qr when there is no confusion as to which ring the maximal quotient ring applies,

and Qr(R) otherwise. The maximal left ring of quotients Ql is similarly defined. In general,

Qr 6= Ql.

A right R-module E is called injective if, given any two right R-modules A and B, a

monomorphism α : A→ B, and a homomorphism ϕ : A→ E, there exists a homomorphism

ψ : B → E such that ϕ = ψα. If M is a right R-module and E is an injective right R-module

such that MR ≤e ER, then E is called an injective hull of M . Every right R-module M has

an injective hull, which is unique up to isomorphism [17, Theorems 1.10, 1.11].

Theorem 5.6. [17] For any ring R, the maximal right ring of quotients Qr(R) exists. In

particular, if E is the injective hull of RR and T = EndR(E), then Q = ∩{ker δ | δ ∈ T and

δR = 0} is a maximal right ring of quotients.

Proof. If E is the injective hull of R, then τx = τ(x) defines a left T -module structure

on E for τ ∈ T and x ∈ E. Let T0 = EndT (E) and define ω(x) = xω for ω ∈ T0 and

x ∈ E. Consider the homomorphisms ψ : T → E and ϕ : T0 → E defined by ψτ = τ1

and ϕω = 1ω. It is easily seen that ψ is an epimorphism and ϕ is a monomorphism. Let

x ∈ E and consider the homomorphism σ : R → xR defined by σ(r) = xr. Since R is a

subring of E, σ can be extended to a homomorphism τ : E → E. Thus, τ(1) = σ(1) = x

and so ψ(τ) = τ(1) = x. Therefore, ψ is an epimorphism. Now, suppose ω ∈ kerϕ. Then

1ω = ϕ(ω) = 0. If x ∈ E, then τ1 = x for some τ ∈ T since ψ is an epimorphism. Hence,

ω(x) = xω = (τ1)ω = τ(1ω) = τ(0) = 0. Therefore, ω = 0 and ϕ is a monomorphism.

If δ ∈ T is such that δR = 0, then δ(1ω) = (δ1)ω = 0 for every ω ∈ T0. Hence,

1ω ∈ Q. Therefore, ϕ can actually be defined as a map T0 → Q. It readily follows that

ϕ maps onto Q and hence ϕ : T0 → Q is an isomorphism. To see this, let x ∈ Q and

consider ν : E → E defined by (τ1)ν = τx. This can be defined for every τ ∈ T since
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ϕ is a well-defined epimorphism onto E. Thus, if 1E ∈ T is the identity map on E, then

ϕ(ν) = 1ν = [1E(1)]ν = 1E(x) = x. Therefore, ϕ is onto.

We now define multiplication on Q. For x, y ∈ Q, let x · y = ϕ[(ϕ−1x)(ϕ−1y)] =

1(ϕ−1x)(ϕ−1y). Clearly x · y ∈ Q and it is easily seen to be associative. Since ϕ is an

isomorphism, if r ∈ R, then there exists some ω ∈ T0 such that ϕ(ω) = 1ω = r. Thus, if

x ∈ Q, then x · r = 1(ϕ−1x)(ϕ−1r) = (ϕϕ−1x)(ω) = xω = (x1)ω = x(1ω) = xr. It follows

from [17, Theorem 2.26] that this multiplication defines a unique ring structure on Q which

is consistent with the R-module structure..

To see that Q is a right ring of quotients, suppose R ≤M ≤ Q for some right R-module

M and let α ∈ HomR(M/R,Q). Consider the epimorphism π : M → M/R given by x 7→

x+R, and define γ = απ : M → Q. Observe that γR = 0 since γ(r) = απ(r) = α(r+R) = 0

for any r ∈ R. Moreover, γ can be extended to a map β ∈ T such that βR = 0. Since Q is the

intersection of the kernels of all homomorphisms δ ∈ T satisfying δR = 0, M ⊆ Q ⊆ ker β.

Thus, γM = βM = 0 and so α(x + R) = γ(x) = 0 for any x ∈ M . Therefore, R ≤r Q and

Q is a right ring of Quotients.

To see that Qr is a maximal right ring of quotients, let P be another right ring of

quotients. Then RR ≤r PR by definition, and hence RR ≤e PR by Lemma 5.5. If ι : R→ P

and µ : R→ E are the inclusion maps, then by injectivity of E, there exists a homomorphism

ν : P → E such that νι = µ. Observe that R ∩ ker ν = kerµ = 0. This implies ker ν = 0

since R is essential in P and ker ν is a submodule of P . Therefore, the inclusion map

µ : R → E can be extended to a monomorphism ν : P → E. Moreover, [17, Theorem 2.26]

shows that νP is contained in Q, and hence the inclusion map R → Q can be extended

to a monomorphism ν : P → Q. Finally, note that since R ≤ νP ≤ Q and RR ≤r QR,

HomR(νP/R,Q) = 0. Hence, given x ∈ P , the homomorphism σ : νP/R → Q defined by

σ(νy+R) = ν(xy)− (νx)(νy) is the zero map. Therefore, ν is a ring homomorphism and Q

is a maximal right ring of quotients of R.
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Goodearl shows in [17, Corollary 2.31] that Qr is injective as a right R-module. There-

fore, Qr(R) is an injective hull of R since RR ≤e Qr
R by Lemma 5.5. Moreover, since the

injective hull is unique up to isomorphism, we can refer to Qr(R) as the injective hull of

R. The following results about maximal quotient rings will be needed later. The proofs are

omitted.

Proposition 5.7. [3, Proposition 2.2] For a right non-singular ring R, R is a left p.p.-

ring such that Qr(R) is torsion-free as a right R-module if and only if all non-singular right

R-modules are torsion-free.

Theorem 5.8. [28, Ch. XII, Proposition 7.2] If R is a right non-singular ring and M is a

finitely generated non-singular right R-module, then there exists a monomorphism

ϕ : M → ⊕nQr for some n < ω. In other words, M is isomorphic to a submodule of a free

Qr-module.

For a ring R, its maximal right ring of quotients Qr is a perfect left localization of R

if Qr is flat as a right R-module and the multiplication map ϕ : Qr
⊗

RQ
r → Qr, defined

by ϕ(a ⊗ b) = ab, is an isomorphism. If R is a right non-singular ring for which Qr is a

perfect left localization, then R is called right strongly non-singular. Goodearl provides the

following useful characterization of right strongly non-singular rings:

Theorem 5.9. [17, Theorem 5.17] Let R be a right non-singular ring. Then, R is right

strongly non-singular if and only if every finitely generated non-singular right R-module is

isomorphic to a finitely generated submodule of a free right R-module.

Corollary 5.10. [17, Theorem 5.18] Let R be a right non-singular ring. Then, R is

right semi-hereditary, right strongly non-singular if and only if every finitely generated non-

singular right R-module is projective.

Proof. For a right non-singular ring R, suppose R is right semi-hereditary, right strongly

non-singular. Let M be a finitely generated non-singular right R-module. By Theorem 5.9,
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M is isomorphic to a finitely generated submodule of a free right R-module F . Therefore,

since R is right semi-hereditary, M is projective by Lemma 2.5.

Conversely, assume every finitely generated non-singular right R-module is projective.

Since R is right non-singular, every finitely generated right ideal of R is non-singular. Hence,

every finitely generated right ideal is projective and R is right semi-hereditary. Furthermore,

every finitely generated non-singular right R-module is a direct summand, and hence a

submodule, of a free right R-module. Therefore, R is right strongly non-singular by Theo-

rem 5.9.

5.3 Coincidence of Torsion-freeness and Non-singularity

We know turn our attention to rings for which the classes of torsion-free and non-singular

right R-modules coincide, which is investigated in [3] by Albrecht, Dauns, and Fuchs. A few

definitions are needed before stating their theorems in full. A ring is right semi-simple if it

can be written as a direct sum of modules which have no proper nonzero submodules, and

a ring is right Artinian if it satisfies the descending chain condition on right ideals. Assume

semi-simple Artinian to mean right semi-simple, right Artinian. The following results from

Stenström consider rings with semi-simple right maximal ring of quotients.

Proposition 5.11. [28, Ch. XI, Proposition 5.4] Let R be a ring whose maximal right ring

of quotients is semi-simple. Then, Qr = Ql if and only if Qr is flat as a right R-module.

Theorem 5.12. [28, Ch. XII, Corollaries 2.6,2.8] Let R be a ring and suppose Qr(R) is

semi-simple. Then:

(a) Qr is a perfect right localization of R. In other words, if R is left non-singular, then it

is left strongly non-singular.

(b) If M is any non-singular right R-module, then M
⊗

RQ
r is the injective hull of M .

A ring R is von Neumann regular if, given any r ∈ R, there exists some s ∈ R such that

r = rsr. These rings are of interest because R is von Neumann regular if and only if every
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right R-module is flat [26, Theorem 4.9]. The following lemmas will be needed in the next

chapter.

Lemma 5.13. [26] If R is a semi-simple Artinian ring, then R is von Neumann regular.

Proof. The Wedderburn-Artin Theorem states that R is semi-simple Artinian if and only

if it is isomorphic to a finite direct product of matrix rings over division rings. For any

division ring D, Matn(D) ∼= EndD(
⊕nD) is von Neumann regular [26]. Therefore, R is von

Neumann regular since direct products of regular rings are regular.

Lemma 5.14. [28] A ring R is right non-singular if and only if Qr is von Neumann regular.

Proof. Stenström shows in [28, Ch. XII] that if R is right non-singular, then Qr ∼= EndR(E),

where E ∼= Qr is the injective hull of R. In [28, Ch. V, Proposition 6.1], it is shown that

such rings are regular.

Conversely, assume Qr is von Neumann regular. Let I be an essential right ideal of R

and take x ∈ R to be nonzero. Suppose xI = 0. Since Qr is regular, there exists some q ∈ Q

such that xqx = x. Hence, qxR is a nonzero right ideal of R, and so I ∩ qxR 6= 0. Thus,

0 6= qxr ∈ I for some nonzero r ∈ R. However, xr = xqxr ∈ xI = 0. This implies qxr = 0,

which is a contradiction. Therefore, xI 6= 0 and R is right non-singular.

Let R be a ring and M a right R-module. A submodule U of M is S-closed if M/U

is non-singular. The following lemma shows that annihilators of elements are S-closed for

non-singular rings.

Lemma 5.15. If R is a right non-singular ring, then for any x ∈ R, annr(x) is S-closed.

Proof. Let R be right non-singular. It needs to be shown that R/annr(x) is non-singular

for any x ∈ R. That is, for x ∈ R, Z(R/annr(x)) = {r + annr(x) | (r + annr(x))I = 0 for

some I ≤e R} = 0. Let 0 6= r + annr(x) ∈ R/annr(x) and I be a nonzero essential right

ideal of R such that (r + annr(x))I = 0. Then, for any a ∈ I, ra + annr(x) = 0. Hence,

ra ∈ annr(x) and xra = 0 for every a ∈ I. In other words, (xr)I = 0. If xr 6= 0, then there
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is a contradiction since I ≤e R and Z(R) = 0. Thus, xr = 0 and r ∈ annr(x). Therefore,

r + annr(x) = 0, and it follows readily that Z(R/annr(x)) = 0.

If R is a right non-singular ring and every S-closed right ideal of R is a right annihilator,

then R is referred to as a right Utumi ring. Similarly, R is a left Utumi ring if R is left non-

singular and every S-closed left ideal of R is a left annihilator. The following result from

Goodearl characterizes non-singular rings which are both right and left Utumi.

Theorem 5.16. [17, Theorem 2.38] If R is a right and left non-singular ring, then Qr = Ql

if and only if every R is both right and left Utumi.

For a ring R, if every direct sum of nonzero right ideals of R contains only finitely

many direct summands, then R is said to have finite right Goldie-dimension. Denote the

Goldie-dimension of R as G-dim RR. If a ring R with finite right Goldie-dimension also

satisfies the ascending chain condition on right annihilators, then R is a right Goldie-ring.

The maximal right quotient ring Qr is a semi-perfect left localization of R if Qr
R is torsion-free

and the multiplication map Qr
⊗

RQ
r → Qr is an isomorphism. The following is a useful

characterization of rings with finite right Goldie-dimension:

Theorem 5.17. [28, Ch. XII, Theorem 2.5] If R is a right non-singular ring, then Qr is

semi-simple if and only if R has finite right Goldie-dimension.

We are now ready to state two key results from U. Albrecht, L. Fuchs, and J. Dauns,

which consider rings for which the classes of torsion-free and non-singular modules coincide.

These will be needed in the next chapter to prove the main theorem of this thesis. The proof

of Theorem 5.18 is omitted.

Theorem 5.18. [3, Theorem 3.7] The following are equivalent for a ring R:

(a) R is a right Goldie right p.p.-ring and Qr is a semi-perfect left localization of R.

(b) R is a right Utumi p.p.-ring which does not contain an infinite set of orthogonal idem-

potents.
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(c) R is a right non-singular ring which does not contain an infinite set of orthogonal idem-

potents, and every finitely generated non-singular right R-module is torsion-free.

(d) A right R-module M is torsion-free if and only if M is non-singular.

Furthermore, if R satisfies any of the equivalent conditions, then R is a Baer-ring and Qr is

semi-simple Artinian.

Theorem 5.19. [3] The following are equivalent for a ring R:

(a) R is a right and left non-singular ring which does not contain an infinite set of orthogonal

idempotents, and every S-closed left or right ideal is generated by an idempotent.

(b) R is a right or left p.p.-ring, and Qr = Ql is semi-simple Artinian.

(c) R is a right strongly non-singular right p.p.-ring which does not contain an infinite set

of orthogonal idempotents.

(d) R is right strongly non-singular, and a right R-module is torsion-free if and only if it is

non-singular.

(e) For a right R-module M, the following are equivalent:

(i) M is torsion-free

(ii) M is non-singular

(iii) If E(M) is the injective hull of M , then E(M) is flat.

Proof. (a)⇒ (b): Assume R is right and left non-singular, contains no infinite set of orthog-

onal idempotents, and every S-closed right or left ideal is generated by an idempotent. Let

I be an S-closed right ideal of R. Then, I = eR for some idempotent e ∈ R. As shown

in the proof of Lemma 4.5, eR = annr(1 − e). Thus, I = eR is the right annihilator of

1 − e. Note that a symmetric argument shows that if J is an S-closed left ideal of R, then

J = Rf is a left annihilator of 1 − f for some idempotent f ∈ R. Hence, R is both a
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right and left Utumi ring. By Lemma 5.15, since R is a right non-singular ring, annr(x)

is S-closed for every x ∈ R. This implies that annr(x) is generated by an idempotent for

every x ∈ R. Therefore, R is a right p.p-ring. A symmetric argument shows that R is also a

left p.p.-ring since condition (a) applies to both right and left ideals. Note that R satisfies

condition (b) of Theorem 5.18 since it is a right Utumi p.p.-ring which does not contain an

infinite set of orthogonal idempotents. Hence, Qr is semi-simple Artinian by Theorem 5.18.

Furthermore, since every right and left S-closed ideal is an annihilator, R is right and left

Utumi. Therefore, Qr = Ql by Theorem 5.16.

(b) ⇒ (c): Suppose R is a right p.p.-ring and Qr = Ql is semi-simple Artinian. Since

R is a right p.p.-ring, it is also a right non-singular ring. Hence, R has finite right Goldie-

dimension by Theorem 5.17. Suppose R contains an infinite set of orthogonal idempotents.

Consider two orthogonal idempotents e and f , and let x ∈ eR ∩ fR. Then, x = er = fs for

some r, s ∈ r. This implies that x = 0 since er = e2r = efs = 0. Thus, eR ∩ fR = 0 for

any two orthogonal idempotents e and f in the infinite set, and eR
⊕

fR is direct. Hence,

R contains an infinite direct sum of nonzero right submodules, which contradicts R having

finite right Goldie-dimension. Therefore, R does not contain an infinite set of orthogonal

idempotents.

By Theorem 5.12, since R is semi-simple Artinian, R is a left strongly non-singular

ring. Hence, the multiplication map ϕ : Qr
⊗

RQ
r → Qr, defined by ϕ(q ⊗ p) = qp, is

an isomorphism. Note that this also implies that Qr is flat as a left R-module. However,

in order for R to be right strongly non-singular, it needs to be shown that Qr is flat as a

right R-module. By Proposition 5.11, Qr is indeed flat as a right R-module since Qr = Ql is

assumed to be semi-simple Artinian. Therefore, R is a right strongly non-singular ring which

does not contain an infinite set of orthogonal idempotents. Note that Theorem 2.11 shows

that R is also a left p.p.-ring. Thus, if we had instead assumed that R is a left p.p.-ring,

then a symmetric argument could be used to show that R is also a right p.p.-ring, and the

latter part of the proof would remain the same.
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(c) ⇒ (d): Assume R is a right strongly non-singular right p.p.-ring which does not

contain an infinite set of orthogonal idempotents. Then, Qr is flat as a right R-module, which

follows from R being right strongly non-singular. Since flat R-modules are torsion-free, this

implies that Qr is torsion-free. By Theorem 2.11, since R is a right p.p.-ring and does not

contain an infinite set of orthogonal idempotents, R is also a left p.p.-ring. Hence, every

non-singular right R-module is torsion-free by Proposition 5.7. Thus, R satisfies condition

(c) of Theorem 5.18, which implies that a right R-module M is torsion-free if and only if M

is non-singular.

(d)⇒ (e): Suppose R is right strongly non-singular, and a right R-module is torsion-free

if and only if it is non-singular. Then, conditions (i) and (ii) of (e) are clearly equivalent,

and it suffices to show that a right R-module is non-singular if and only if its injective hull

is flat. Suppose M is a non-singular right R-module. Note that R satisfies condition (d)

of Theorem 5.18, and hence Qr is semi-simple Artinian. By Theorem 5.12, M
⊗

RQ
r is an

injective hull of M . Thus, if E(M) denotes the injective hull of M , then E(M) ∼= M
⊗

RQ
r,

since an injective hull of a right R-module is unique up to isomorphism. This implies that

E(M) is a right Qr-module, since M
⊗

RQ
r is a right Qr-module by Proposition 3.9. Fur-

thermore, since Qr is semi-simple Artinian, every Qr-module is projective. Hence, E(M)

is projective and thus isomorphic to a direct summand of a free Qr-module F . Note that

Qr is flat as a right R-module since R is right strongly non-singular. Thus, Proposition 3.7

shows that any free Qr-module is flat since such modules can be written as
⊕

i∈IMi for some

index set I, where Mi is isomorphic to Qr for every i ∈ I. This implies that E(M) is flat by

Proposition 3.7 since it is a direct summand of the flat right R-module F =
⊕

i∈IMi.

On the other hand, assume that the injective hull E(M) of some right R-module M is

flat. Noting again that R satisfies condition (d) of Theorem 5.18, it follows that R is a right

p.p.-ring. Thus, R is a torsion-free ring by Theorem 4.4. Since flat R-modules are torsion-

free, E(M) is torsion-free as a right R-module. Hence, M is a submodule of a torsion-free

right R-module. Thus, M is a torsion free right R-module by Proposition 4.3. Therefore,
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M is non-singular since a right R-module is torsion-free if and only if it is non-singular by

assumption.

(e) ⇒ (a): For a right R-module M , assume that M is torsion-free if and only if M is

non-singular if and only if the injective hull E(M) is flat. By Theorem 5.18, R is a right

p.p.-ring which does not contain an infinite set of orthogonal idempotents. It then follows

from Proposition 5.4 that R is a right non-singular ring. Hence, R is also a left p.p.-ring

by Proposition 5.7, since every non-singular right R-module is torsion-free, and a symmetric

argument for Proposition 5.4 shows that R is left non-singular.

The injective hull E(R) is flat as a right R-module since R is assumed to be right non-

singular. Hence, Qr is flat as a right R-module, since Qr is the injective hull of R. We’ve

already shown that R satisfies the equivalent conditions of Theorem 5.18, which implies that

Qr is a semi-simple Artinian ring. Thus, it follows from Proposition 5.11 that Qr = Ql. Since

R is both right and left non-singular, every S-closed right ideal of R is a right annihilator

and every S-closed left ideal of R is a left annihilator by Theorem 5.16. Furthermore, note

that Theorem 5.18 shows that R is a Baer-ring. Hence, every annihilator is generated by an

idempotent. Therefore, every S-closed right ideal and every S-closed left ideal is generated

by an idempotent.
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Chapter 6

Morita Equivalence

Before proving the main theorem, we discuss Morita equivalences. In particular, we

show that there is a Morita equivalence between R and Matn(R) for any 0 < n < ω. This

is then used to show that the classes of torsion-free and non-singular Matn(R)-modules

coincide for certain conditions placed on R.

Let R and S be rings. The categories ModR and ModS are equivalent (or isomorphic) if

there are functors F : ModR → ModS and G : ModS → ModR such that FG ∼= 1ModS and

GF ∼= 1ModR . Note that these are natural isomorphisms. In other words, if η : GF → 1ModR

denotes the natural isomorphism, then for each M,N ∈ ModR, there exist isomorphisms

ηM : GF (M) → M and ηN : GF (N) → N such that βηM = ηNGF (β) whenever β ∈

HomR(M,N). Here, GF (β) denotes the induced homomorphism. The functors F and G are

referred to as an equivalence of ModR and ModS. If such an equivalence exists, then R and

S are said to be Morita-equivalent. In [28, Ch. IV, Corollary 10.2], Stenström shows that

R and S are Morita-equivalent if and only if there are bimodules SPR and RQS such that

P
⊗

RQ
∼= S and Q

⊗
S P
∼= R. A property P is referred to as Morita-invariant if for every

ring R satisfying P , every ring S Morita-equivalent to R also satisfies P .

A generator of ModR is a right R-module P satisfying the condition that every right R-

module M is a quotient of
⊕

I
P . Note that R and any free right R-module are generators

of ModR. A progenerator of ModR is a generator which is finitely generated and projective.

Lemma 6.1. [5] Let R be a ring, P a progenerator of ModR, and S = EndR(P ). Then,

there is an equivalence F : ModR → ModS given by F (M) = HomR(P,M) with inverse

G : ModS →ModR given by G(N) = N
⊗

S P .
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Proof. As a projective generator of ModR, P is a right R-module. P also has a left S-module

structure with (f ∗ g)(x) = f(g(x)) for f, g ∈ S and x ∈ P , where multiplication in the

endomorphism ring is defined as composition of functions. It then readily follows that P is

an (S,R)-bimodule since f(xr) = f(x)r for any f ∈ S and r ∈ R. Thus, F = HomS(P, ) is

a functor ModS →ModR and G =
⊗

R P is a functor ModR →ModS by Proposition 3.10.

It needs to be shown that GF ∼= 1ModR and FG ∼= 1ModS are natural isomorphisms.

Since P is a progenerator of ModR, it is finitely generated and projective as a right R-

module. Thus, it follows from Lemma 3.12 that if M is any right R-module, then GF (M) =

G(HomR(P,M)) = HomR(P,M)
⊗

S P
∼= HomR(HomS(P, P ),M) ∼= HomR(EndS(P ),M)

∼= HomR(R,M) ∼= M . Similarly, given any right S-module N , FG(N) = F (N
⊗

S P ) =

HomR(P,N
⊗

S P ) ∼= N
⊗

S HomR(P, P ) = N
⊗

S S
∼= N by Lemma 3.11. Therefore, F is

an equivalence with inverse G.

Proposition 6.2. Let R be a ring. For every 0 < n < ω, R is Morita-equivalent to Matn(R).

Proof. Let P be a finitely generated free right R-module with basis {xi}ni=1 for 0 < n < ω.

Then, P is a progenerator of ModR and Matn(R) ∼= EndR(P ) by Lemma 2.6. Therefore,

the equivalence of Lemma 6.1 is a Morita-equivalence between R and Matn(R).

Lemma 6.3. [28, Ch. X, Proposition 3.2] If R and S are Morita-equivalent, then the

maximal ring of quotients, Qr(R) and Qr(S), are also Morita equivalent.

Proposition 6.4. Let R and S be Morita-equivalent rings with equivalence

F : ModR →ModS and G : ModS →ModR.

(i) If U is an essential submodule of a right R-module M , then F (U) is an essential

submodule of the right S-module F (M).

(ii) If M is a non-singular right R-module, then F (M) is a non-singular right S-module.

In other words, essentiality and non-singularity are Morita-invariant properties.
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Proof. (i): Let U be an essential submodule of M ∈ ModR. Then, the inclusion map

ι : U → M is an essential monomorphism. Consider the induced homomorphism F (ι) :

F (U) → F (M). Note that since ι is a monomorphism, F (ι) is a monomorphism [5,

Proposition 21.2]. Let W be any right S-module and take β ∈ HomS(F (M),W ) to be

such that βF (ι) : F (U) → W is a monomorphism. There is a natural isomorphism

ΦU,W : HomS(F (U),W ) → HomR(U,G(W )) defined by γ 7→ G(γ)η−1U , where ηU denotes

the isomorphism GF (U)→ U [5, 21.1]. Hence, ΦU,W (βF (ι)) is a monomorphism. Moreover,

ΦU,W (βF (ι)) = G(hF (ι))η−1U = G(h)GF (ι)η−1U = G(h)η−1M ηMGF (ι)η−1U = ΦM,W (β)ιηUη
−1
U =

ΦM,W (β)ι. Thus, ΦM,W (β)ι is a monomorphism and it follows from Proposition 5.1 that

ΦM,W (β) is a monomorphism since ι is essential. Furthermore, ΦM,W (β) is a monomor-

phism if and only if β is a monomorphism [5, Lemma 21.3]. Hence, F (ι) is an essential

monomoprhism by Proposition 5.1. Therefore, F (U) ∼= im(F (ι)) is an essential submodule

of F (M).

(ii): Let M be a non-singular right R-module. It needs to be shown that F (M)

is a non-singular right S-module and in view of Proposition 5.2 it suffices to show that

HomS(C,F (M)) = 0 for any singular right S-module C. By Proposition 5.3, there is an exact

sequence 0→ A
f−→ F → C → 0 of right S-modules such that f(A) ≤e F and F is free. Then,

G(f(A)) ≤e G(B) by (i). Hence, 0 → G(A)
G(f)−−→ G(B) → G(C) → 0 is an exact sequence

of right R-modules such that G(f(A)) ≤e G(B). Thus, G(C) is a singular right R-module

by Proposition 5.3. Since G(C) is singular and M is non-singular, HomR(G(C),M) = 0

by Proposition 5.2. Therefore, HomS(C,F (M)) ∼= HomR(G(C),M) = 0. Observe that in

this proof, it is also shown that singularity is Morita-invariant since we show that G(C) is

singular for an arbitrary singular module C.

We now prove the main theorem of this portion of the dissertation, which characterizes

rings for which torsion-freeness and non-singularity coincide under a Morita-equivalence.

Theorem 6.5. The following are equivalent for a ring R:
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(a) R is a right strongly non-singular, right semi-hereditary, right Utumi ring not containing

an infinite set of orthogonal idempotents.

(b) Whenever S is Morita-equivalent to R, then the classes of torsion-free right S-modules

and non-singular right S-modules coincide.

(c) For every 0 < n < ω, Matn(R) is a right and left Utumi Baer-ring not containing an

infinite set of orthogonal idempotents.

Moreover, if R is such a ring, then the corresponding left conditions are also satisfied.

Proof. (a) ⇒ (b): Assume R is a right strongly non-singular, right semi-hereditary, right

Utumi ring not containing an infinite set of orthogonal idempotents. Let R and S be Morita

equivalent, and let F : ModR → ModS and G : ModS → ModR be an equivalence. Also,

take N to be a finitely generated non-singular right R-module. Since R is right strongly

non-singular, N is isomorphic to finitely generated submodule V of a free right R-module

by Theorem 5.9. Furthermore, since R is right semi-hereditary and free R-modules are pro-

jective, V ∼= N is projective by Lemma 2.5. Thus, since projective modules are torsion-free,

it follows that finitely generated non-singular right R-modules are torsion-free. Therefore,

R satisfies condition (c) of Theorem 5.18, which implies that the maximal ring of quotients

Qr(R) is a semi-simple Artinian ring. Note that Qr(R) and Qr(S) are Morita-equivalent

by Lemma 6.3. Hence, Qr(S) is also semi-simple Artinian, since these properties are pre-

served under a Morita-equivalence [5]. Furthermore, Qr(S) is a regular ring by Lemma 5.13.

Therefore, Lemma 5.14 shows that S is right non-singular.

Let M be a finitely generated non-singular right S-module. Then, G(M) is a finitely

generated non-singular right R-module since non-singularity and being finitely generated

are both Morita-invariant properties [5]. Thus, since R is a right strongly non-singular

ring, G(M) is isomorphic to a finitely generated submodule of a free right R-module P by

Theorem 5.9. Note that as a free right R-module, P is projective, which is also a Morita-

invariant property [5]. Hence, F (P ) is a projective right S-module. Furthermore, since G(M)
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is isomorphic to a finitely generated submodule of P , FG(M) ∼= M is isomorphic to a finitely

generated submodule U of F (P ). Now, F (P ) is projective and hence a submodule of a free

right S-module, which implies U ∼= M is a submodule of a free right S-module. Therefore,

M is isomorphic to a finitely generated submodule of a free right S-module, and S is right

strongly non-singular by Theorem 5.9.

It has been shown that S is a right non-singular ring with a semi-simple Artinian

maximal right ring of quotients. Thus, S has finite right Goldie-dimension by Theorem 5.17.

Hence, S cannot contain an infinite set of orthogonal idempotents. Moreover, S is a right

p.p.-ring since R is right semi-hereditary. For if P is a principal right ideal of S, then G(P ) is

a finitely generated right ideal of the right semi-hereditary ring R, which implies that G(P )

is projective. Hence, FG(P ) ∼= P is projective, which again follows from projectivity being

Morita-invariant. Then, S is a right strongly non-singular right p.p.-ring which does not

contain an infinite set of orthogonal idempotents. Therefore, a right S-module is torsion-free

if and only if it is non-singular by Theorem 5.19.

(b) ⇒ (a): Assume that the classes of torsion-free and non-singular S-modules coincide

for every ring S Morita-equivalent to R. Thus, since Matn(R) is Morita-equivalent to R

for every 0 < n < ω, the classes of torsion-free right Matn(R)-modules and non-singular

right Matn(R)-modules coincide for every 0 < n < ω. Hence, Matn(R) is a right Utumi

p.p.-ring which does not contain an infinite set of orthogonal idempotents by Theorem 5.18.

Thus, R is right semi-hereditary by Theorem 2.7. In particular, since these conditions are

satisfied for every 0 < n < ω, they are satisfied for n = 1. Hence, R ∼= Mat1(R) is a right

semi-hereditary right Utumi ring not containing an infinite set of orthogonal idempotents.

It needs to be shown that R is right strongly non-singular. Let M be a finitely generated

non-singular right R-module. By Corollary 5.10, R is right strongly non-singular if M

is projective. Let 0 → U → F =
n⊕
R → M → 0 be an exact sequence of right R-

modules. Since F is a finitely generated free right R-module, it is a progenerator of ModR.

Hence, 0 → HomR(F,U) → HomR(F, F ) = EndR(F ) → HomR(F,M) → 0 is exact by
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Proposition 2.3. Moreover, if S = EndR(F ) ∼= Matn(R), then F : ModR → ModS given by

F (M) = HomR(F,M) and G : ModS →ModR given by G(N) = N
⊗

S F is an equivalence

by Lemma 6.1. Thus, HomR(F,M) is a non-singular right S-module by Proposition 6.4 (ii).

Furthermore, since S is Morita-equivalent to R, the S-module HomR(F,M) is torsion-free by

assumption. Note that since the sequence is exact, HomR(F,M) ∼= S/HomR(F,U). Thus,

HomR(F,M) is cyclic as an S-module since HomR(F,U) is a right ideal of the right S-module

S. Note also that S is a left p.p.-ring by Theorem 2.11 since S is a right p.p.-ring which

does not contain an infinite set of orthogonal idempotents. Thus, the cyclic torsion-free

right S-module HomR(F,M) is projective by Proposition 4.7. Therefore, M ∼= GF (M) =

G(HomR(F,M)) is a projective right R-module and R is right strongly non-singular.

(a) ⇒ (c): Assume R is right strongly non-singular, right semi-hereditary, right Utumi,

and does not contain an infinite set of orthogonal idempotents. It has been shown that

any ring S Morita-equivalent to such a ring is right strongly non-singular and the classes of

torsion-free and non-singular right S-modules coincide. Thus, Matn(R) is right strongly non-

singular and a right Matn(R)-module is torsion-free if and only if it is non-singular, which

follows from Matn(R) being Morita-equivalent to R for any 0 < n < ω. By Theorem 5.19,

Matn(R) is a right strongly non-singular right p.p.-ring which does not contain an infinite

set of orthogonal idempotents. It then follows from Theorem 2.11 that Matn(R) satisfies the

ascending chain condition on right annihilators. Furthermore, Theorem 4.4 shows that since

Matn(R) is a right p.p.-ring, Matn(R) is a torsion-free ring such that right annihilators of

elements are finitely generated. Hence, Matn(R) is a Baer-ring by Theorem 4.8. Moreover,

Theorem 5.19 shows that every S-closed one-sided ideal of Matn(R) is generated by an

idempotent. Thus, every right ideal of Matn(R) is a right annihilator and every left ideal of

Matn(R) is a left annihilator. Hence, Matn(R) is a right and left Utumi ring.

(c) ⇒ (a): Suppose Matn(R) is a right and left Utumi Baer-ring for every 0 < n < ω

and does not contain an infinite set of orthogonal idempotents. Then, Matn(R) is a right

p.p.-ring, and so R is right semi-hereditary by Theorem 2.7. Furthermore, since Matn(R)
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satisfies these conditions for every 0 < n < ω, R ∼= Mat1(R) is a right and left Utumi

Baer-ring not containing an infinite set of orthogonal idempotents. Thus, every S-closed

one-sided ideal of R is an annihilator and hence generated by an idempotent. Therefore,

since R is a right and left p.p.-ring and hence right and left non-singular, R is right strongly

non-singular by Theorem 5.19.

Corollary 6.6. The following are equivalent for a ring R which does not contain an infinite

set of orthogonal idempotents:

(a) R is a right and left Utumi, right semi-hereditary ring.

(b) For every 0 < n < ω, Matn(R) is a Baer-ring, and Qr(R) is torsion-free as a right

R-module.

Proof. (a)⇒ (b): Suppose R is right and left Utumi and right semi-hereditary. Then, R is a

right p.p.-ring and hence right non-singular. Moreover, R is a left p.p.-ring by Theorem 2.11,

which implies that R is also a left non-singular ring. Since R is both right and left Utumi,

Qr(R) = Ql(R) by Theorem 5.16. Furthermore, since R is a right Utumi right p.p.-ring which

does not contain an infinite set of orthogonal idempotents, Qr(R) = Ql(R) is semi-simple

Artinian and torsion-free by Theorem 5.18. Therefore, R is right strongly non-singular by

Theorem 5.19.

Since R is a right strongly non-singular, right semi-hereditary, right Utumi ring not con-

taining an infinite set of orthogonal idempotents, the classes of torsion-free and non-singular

right Matn(R)-modules coincide by Theorem 6.5. Moreover, the proof of Theorem 6.5 shows

that Matn(R) is right strongly non-singular. Thus, Matn(R) is a right strongly non-singular,

right p.p.-ring not contain an infinite set of orthogonal idempotents by Theorem 5.19. It

then follows from Theorem 2.11 that Matn(R) satisfies the ascending chain condition on

right annihilators. Since Matn(R) is a right p.p.-ring, Theorem 4.4 shows that Matn(R)

is a torsion-free ring such that right annihilators of elements are finitely generated. Hence,

Matn(R) is a Baer-ring by Theorem 4.8.
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(b) ⇒ (a): Assume Matn(R) is a Baer-ring for every 0 < n < ω, and Qr(R) is torsion-

free as a right R-module. Since Matn(R) is a Baer-ring, it is both a right and left p.p.-ring.

Hence, R is both right and left semi-hereditary by Theorem 2.7. It then readily follows that

R is right and left non-singular. Note also that R ∼= Mat1(R) is a Baer-ring since Matn(R)

is Baer for every 0 < n < ω. Let I be a proper S-closed right ideal of R. Then, R/I is

non-singular as a right R-module. Furthermore, R/I is cyclic and thus finitely generated.

Hence, R/I is isomorphic to a submodule of a free Qr-module by Theorem 5.8. Since Qr

is assumed to be torsion-free as a right R-module, it follows from Proposition 4.6 that I is

generated by an idempotent e ∈ R. Hence, I = annr(1 − e) by Lemma 4.5 and R is right

Utumi. Observe that the argument works for S-closed left ideals as well, and so R is also

left Utumi.

The next example illustrates why it is necessary to consider right semi-hereditary rings

in Theorem 6.5.

Example 6.7. Let R = Z[x]. As an integral domain, R is a strongly non-singular p.p.-

ring not containing an infinite set of orthogonal idempotents [3, Corollary 3.10]. By Theo-

rem 5.19, the classes of torsion-free and non-singular right R-modules coincide, and by The-

orem 5.18 R is right Utumi. However, R is not semi-hereditary since the ideal xZ[x] + 2Z[x]

of Z[x] is not projective. As seen in the proof of Theorem 2.7, this implies S = Mat2(R) is

not a right or left p.p.-ring, and hence not a Baer ring. Therefore, Theorem 6.5 does not

hold if R is not assumed to be right semi-hereditary.

Moreover, this example shows that the classes of torsion-free and non-singular S-modules

do not necessarily coincide, even if R has this property and S is Morita-equivalent to R.

In [9, Theorem 4.3.5], Birkenmeier, Park, and Rizvi show that Matn(R) is a Baer-ring

precisely when every finitely generated torsionless right R-module is projective. A right

R-module is torsionless if it is isomorphic to a submodule of RI for some set I. In case

that R has finite right Goldie-dimension, this condition is equivalent to R being right semi-

hereditary:
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Corollary 6.8. The following are equivalent for a ring R with finite right Goldie-dimension:

a) R is right semi-hereditary.

b) Every finitely generated torsionless right R-module is projective.

Proof. In view of [9, Theorem 4.3.5], it needs to be shown that a ring R with finite right

Goldie-dimension is right semi-hereditary if and only if Matn(R) is a Baer-ring for every

0 < n < ω. Now, R is right semi-hereditary if and only if Matn(R) is a right p.p.-ring for

every 0 < n < ω [27]. Hence, R is right semi-hereditary whenever Matn(R) is a Baer-ring.

On the other hand, note that Matn(R) has finite right Goldie-dimension since every ring

Morita-equivalent to R also has finite dimension. Thus, Matn(R) does not contain an infinite

set of orthogonal idempotents. Therefore, if R is right semi-hereditary, Matn(R) is a right

p.p-ring not containing an infinite set of orthogonal idempotents, and it follows from [27,

Theorem 1] that Matn(R) is a Baer-ring.

Clearly, the conditions in part a) of Theorem 6.5 imply that every finitely generated

torsionless module is projective since these conditions imply that Matn(R) is a Baer-ring.

However, the condition on the torsionless modules in [9] is not enough to ensure that the

coincidence of torsion-freeness and non-singularity is preserved by Morita-equivalence. The

following examples provide rings for which the conditions of Theorem 6.5 fail, even though

every finitely generated torsionless module is projective.

Example 6.9. Let R = F I for some field F and an infinite index-set I. Then R is a

commutative semi-hereditary ring which is its own maximal ring of quotients. Thus, R is

strongly non-singular, and all finitely generated torsionless R-modules are projective. There-

fore, Matn(R) is a Baer-ring for all n < ω, but R does not satisfy Theorem 6.5 since it has

infinite Goldie-dimension.
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The next example provides a ring with finite right Goldie-dimension but infinite left

Goldie-dimension. In the context of this thesis, this example provides a right Utumi Baer-

ring which is not left Utumi. Hence, the conditions of Theorem 6.5 fail. However, it is easily

seen that every finitely generated torsionless module is projective.

Example 6.10. [11] Let K = F (y) for some field F and consider the endomorphism f of K

determined by y 7→ y2. The ring we consider is R = K[x] with coefficients written on the right

and multiplication defined according to kx = xf(k) for any k ∈ K. Observe that yx = xy2.

It can be shown that Rx ∩ Rxy = 0, and hence Rxy ⊕ Rxyx⊕ Rxyx2 ⊕ ...⊕ Rxyxk ⊕ ... is

an infinite direct sum of left ideals of R. Thus, R has infinite left Goldie-dimension. On the

other hand, every right ideal of R is a principal ideal [11], and thus R is right Noetherian.

It then follows from Theorem 5.18 that R is a right Utumi Baer ring and Qr is semi-simple

Artinian. However, R having infinite left Goldie-dimension but finite right Goldie-dimension

implies that Qr 6= Ql [3, Proposition 4.1]. Therefore, Theorem 5.16 shows that R cannot be

left Utumi.

Thus, we have a right Utumi Baer-ring which is not left Utumi, and so this ring fails

to satisfy the conditions of Theorem 6.5. However, since R is a Baer-ring and every right

ideal is principal, R is right semi-hereditary. Therefore, every finitely generated torsionless

right R-module is projective by Corollary 6.8. Observe that Example 6.10 also illustrates

why it is necessary in Theorem 6.5 to include the requirement Matn(R) is both right and

left Utumi.
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Chapter 7

The Baer-Splitting Property

In the previous chapter, we saw that the strongly non-singular and semi-hereditary

properties ensure the preservation of coincidence of torsion-freeness and non-singularity un-

der a Morita-equivalence. In [2], U. Albrecht shows that these properties are also related to

two-sided essential submodules of Qr:

Proposition 7.1. [2] The following are equivalent for a ring R with finite right Goldie-

dimension:

i) R is right strongly non-singular, right semi-hereditary.

ii) If A is a two-sided R-submodule of Qr such that AR is essential in Qr, then every

S-closed submodule of An is a direct summand.

iii) If A is a two-sided R-submodule of Qr such that AR is essential in Qr and n < ω, then

every right non-singular epimorphic image of An is a direct summand.

This is dual to a property known as the finite Baer-splitting property. An R-module

A has the finite Baer-splitting property if every epimorphism An → A → 0 splits. In other

words, a module A has this property when finite direct sums of copies of A behave like pro-

jectives. Furthermore, in [6], R. Baer shows that for a finite rank completely decomposable

Abelian group, every pure subgroup is a direct summand. A submodule N of an R-module M

is pure if R/I is projective with respect with the exact sequence 0→ N →M →M/N → 0

whenever I is a finitely-generated right ideal of R.

Let R be a ring with finite right Goldie-dimension. We show that the submodules of

Proposition 7.1 have the finite Baer-splitting property. In Chapter 10, we will see that under
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similar conditions (Q/R)R can be decomposed into a direct sum of countably-generated two-

sided submodules of the form Ai/R, where each Ai has the finite Baer-splitting property.

Proposition 7.2. Let R be a right strongly non-singular, right semi-hereditary ring with

finite right Goldie-dimension. If A is a two-sided R-submodule of Q such that AR is essential

in Q, then A has the finite Baer-splitting property.

Proof. Consider an exact sequence 0 → U
α−→ An

β−→ A → 0 of right R-modules, and apply

()∗ = HomR( , A) to get the induced sequence 0 → A∗
β∗−→ (An)∗ → U∗ of left E-modules,

where E = EndR(AR). As shown in [2], E is a subring of Qr containing R precisely when

A is a two-sided essential submodule of Qr. Since R is a right strongly non-singular, right

semi-hereditary ring with finite right Goldie-dimension, the classes of torsion-free and non-

singular right R-modules coincide by Theorem 5.19. Hence, R is left strongly non-singular

by [3, Corollary 4.3]. Moreover, [3, Theorem 5.2] shows that R is left semi-hereditary and

Qr = Ql is semi-simple Artinian.

Now, every intermediate ring S satisfying R ⊆ S ⊆ Qr is also left strongly non-singular,

left semi-hereditary by [2, Theorem 3.2], and hence E ∼= A∗ is a left strongly non-singular,

left semi-hereditary ring. Thus, coker β∗ = (An)∗/im β∗ is projective since it is a finitely

generated non-singular left E-module. Consequently, β∗ splits, and applying the ()∗ functor

again leads to β∗∗ splitting as well [22]. Thus, there exists γ : A∗∗ → (An)∗∗ such that

β∗∗γ = 1A∗∗ . Furthermore, there are natural homomorphisms A → A∗∗ and An → (An)∗∗,

and the following diagram commutes:

(An)∗∗

σ

��

β∗∗ //
A∗∗γoo

σ

��
An

β // A // 0

A diagram chase shows that there exists δ : A → An such that βδ = 1A, and therefore β

splits.
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Chapter 8

Divisible Modules

Related to the concept of torsion-freeness is the notion of divisibility. As with torsion-

freeness, issues arise when trying to extend the concept of divisibility from integral domains

to general non-commutative rings. As such, there are various definitions of divisibility in

the general setting. We refer to D ∈ ModR as divisible in the classical sense if Dc = D

for every regular element c ∈ R. In other words, D is divisible in the classical sense if

right multiplication by c on D is an epimorphism for every regular element c ∈ R. A

slightly stronger notion of divisibility, which was developed by E. Matlis in [24], is that of

h-divisibility. We say that a right R-module D is h-divisible if it is an epimorphic image of

a direct sum of copies of Qr.

Finally, we say that a right R-module D is divisible if Ext1R(R/Rr,D) = 0 for every

r ∈ R. Observe that this is similar to Hattori’s definition of torsion-freeness based on the

Tor functor, and it generalizes the notion of divisibility in the classical sense. As such, we

find that the notions of torsion-freeness and divisibility are related through their characters

modules. The character module of a right (left) R-module M is the left (right) R-module

M∗ = HomZ(M,Q/Z).

Proposition 8.1. Let R be a ring. A right R-module M is torsion-free if and only if M∗ is

divisible.

Proof. Suppose M is torsion-free, and consider any r ∈ R. Using Proposition 3.16, we

see that Ext1R(R/Rr,HomZ(M,Q/Z)) ∼= HomZ(TorR1 (M,R/Rr),Q/Z) since M is a (Z, R)-

bimodule and Q/Z is injective. Since M is torsion-free, TorR1 (M,R/Rr) = 0 and hence

Ext1R(R/Rr,HomZ(M,Q/Z)) = 0. Therefore, M∗ is divisible. On the other hand, suppose
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M∗ is divisible. We again use Proposition 3.16 to find that HomZ(TorR1 (M,R/Rr),Q/Z) = 0,

implying that TorR1 (M,R/Rr) = 0. Therefore, M is torsion-free.

Furthermore, [4, Section 2] shows that if R is a right p.p.-ring, then a right R-module

N is divisible if and only if N∗ is torsion-free.

As with torsion-freeness, it is of interest when the various notions of divisibility coincide.

It is always the case that h-divisibility implies classic divisibility. Moreover, divisibility and

classic divisibility coincide for domains. L. Fuchs and L. Salce show in [15] that all three

notions of divisibility coincide in the case that R is a countable integral domain. In the

general setting, we have the following from U. Albrecht in [1]:

Theorem 8.2. [1, Theorem 5.5] Let R be a semi-prime right and left Goldie-ring such that

QR is countably generated.

a) An R-module is h-divisible if and only if it divisible in the classical sense.

b) If a right R-module D is divisible in the classical sense, then Z(D) is a direct summand

of D.

c) R is a right p.p.-ring if and only if the classes of h-divisible and divisible modules coincide.

Thus, all three notions of divisibility coincide in the case that R is a semi-prime right and

left Goldie p.p.-ring for which Q is countably generated as a right R-module. In Chapter

10, we will characterize rings for which this holds without requiring Q to be countably

generated. Finally, if R is a semi-prime right Goldie-ring, then [1, Corollary 4.5] shows that

a non-singular module D is divisible if and only if it is divisible in the classical sense if and

only if it is injective.

A right R-module M is weakly cotorsion if Ext1R(Qr,M) = 0. The proof of [1, Theo-

rem 5.5] shows that for a semi-prime right and left Goldie-ring for which QR is countably

generated, every classically divisible module is weakly cotorsion. Furthermore, the following

theorem from [1] gives a nice characterization of weakly cotorsion modules:
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Proposition 8.3. [1, Theorem 4.3] If R is a right Utumi p.p.-ring not containing an infinite

set of orthogonal idempotents, then

i) A right R-module D is divisible if and only if the singular submodule Z(D) is divisible

and D/Z(D) is injective.

ii) A right R-module D is weakly cotorsion if and only if Z(D) is a direct summand when-

ever D is divisible.

Related to condition ii) of Proposition 8.3, we have the following for a ring with finite

Goldie-dimension:

Theorem 8.4. The following are equivalent for a right non-singular ring R:

a) R has finite right Goldie dimension.

b) For any M ∈ModR, M ⊗R Qr/R = 0 if and only if M/Z(M) is injective.

Proof. a) ⇒ b) Let M be a right R-module and assume M ⊗R Qr/R = 0. Note that

M/Z(M) ⊗R Qr/R = 0 as well. Since R has finite right Goldie dimension, K = Ker

TorR1 (−, Qr/R) coincides with the class of non-singular right R-modules [4, Theorem 3.4].

We first show that if E is the injective hull of M/Z(M), then E/(M/Z(M)) ∈ K. Observe

that M/Z(M) is non-singular, and hence E is non-singular since M/Z(M) ≤e E and non-

singularity is closed under essential extensions [17, Proposition 1.22]. Thus, E ∈ K and

TorR1 (E,Qr/R) = 0. By exactness of 0 → M/Z(M) → E → E/(M/Z(M)) → 0, we obtain

the exact sequence

0 = TorR1 (E,Qr/R)→ TorR1 (E/(M/Z(M)), Qr/R)→M/Z(M)⊗R Qr/R = 0,

implying that TorR1 (E/(M/Z(M)), Qr/R) = 0 and E/(M/Z(M)) ∈ K. Thus, E/(M/Z(M))

is non-singular. However, this implies E = M/Z(M) sinceE is non-singular andM/Z(M) ≤e

E [17, Proposition 1.21]. Therefore, M/Z(M) is injective.
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Conversely, assume M/Z(M) is injective. Observe that since R has finite right Goldie

dimension and Z(M) is singular, Z(M) ⊗R Qr/R = 0 by [4, Theorem 3.4]. Thus, if

M/Z(M)⊗R Qr/R = 0, we obtain the exact sequence

0 = Z(M)⊗R Qr/R→M ⊗R Qr/R→M/Z(M)⊗R Qr/R = 0.

So, it suffices to show that M ⊗R Qr/R = 0 for any injective, non-singular right R-module

M . Let U be a finitely generated submodule of such an M . Since M is injective, there is a

direct summand V of M which is the injective hull of U . Thus, we may assume that M is the

injective hull of the finitely generated non-singular right R-module U . Hence, U ≤e M and

the inclusion map β : U → M is an essential monomorphism. By [28, Ch. XII, Proposition

7.2], there exists a monomorphism α : U → ⊕nQr for some n < ω. Moreover, since ⊕nQr

is injective and the inclusion map β : U → M is an essential monomophism, there exists

a monomorphism γ : M → ⊕nQr with γβ = α [28, Ch. V, Lemma 2.2]. Therefore, the

injective module M is a direct summand of ⊕nQr [26, Corollary 3.27]. We obtain the exact

sequence ⊕nQr ⊗R Qr/R → M ⊗R Qr/R → 0 from the canonical projection map, and thus

the result follows provided ⊕nQr ⊗R Qr/R = 0.

Observe that if Qr⊗RQr/R = 0, then ⊕nQr⊗RQr/R ∼= ⊕n(Qr⊗RQr/R) = 0 since Qr

is an (R,R)-bimodule [26]. So it remains to be seen that Qr ⊗R Qr/R = 0. We obtain the

following commutative diagram, where h and g are multiplication maps:

Qr ⊗R R
h
��

f // Qr ⊗R Qr

g

��

// Qr ⊗R Qr/R // 0

Qr
1Qr

// Qr

Now, R has finite right Goldie dimension and thus Qr is a perfect left localization of R
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[28, Ch. XII, Corollary 2.6]. Hence, the multiplication map g : Qr ⊗R Qr → Qr is an

isomorphism. It readily follows that f is an isomorphism, and therefore Qr ⊗R Qr/R = 0.

b)⇒ a) Assume that for any rightR-moduleM , M
⊗

RQ
r/R = 0 if and only ifM/Z(M)

is injective. We show that R has finite right Goldie dimension by showing that ⊕IQr is

injective for any set I [28, Ch. XIII, Proposition 3.3]. By assumption, if ⊕IQr⊗RQr/R = 0,

then ⊕IQr/Z(⊕IQr) is injective. Since R is right non-singular, Qr is right non-singular, and

hence ⊕IQr is right non-singular [17, Propositions 1.22, 1.32]. Therefore, ⊕IQr/Z(⊕IQr) ∼=

⊕IQr is injective whenever ⊕IQr ⊗R Qr/R = 0. However, Qr ⊗R Qr/R = 0 by assumption

since Qr is right non-singular and injective, and it readily follows that⊕IQr⊗RQr/R = 0.
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Chapter 9

Duo Rings

9.1 Localizations and Duo Rings

We find that the problem concerning coincidence of the various notions of divisibility is

closely related to rings for the which the projective dimension of Q is at most 1. If R is an

integral domain and pdR(Q) ≤ 1, then R is called a Matlis domain. E. Matlis [24], S.B. Lee

[23], and L. Fuchs and L. Salce [15, Ch. VII, Theorem 2.8] characterize Matlis domains by

showing that an integral domain R is a Matlis domain if and only if divisible R-modules are

h-divisible if and only if Q/R is a direct sum of countably generated (divisible) submodules.

We look to extend this result to the non-commutative setting. In particular, we find that

several related results hold for semi-prime right and left Goldie-rings, an important class of

non-commutative rings. We begin with a discussion on general localizations, duo rings, and

projective dimension.

For a commutative ring R and multiplicatively closed subset T ⊆ R, the localization of

R at T , denoted by RT , is the set of equivalence classes of pairs (r, t), with r ∈ R and t ∈ T ,

under the equivalence relation (r, t) ∼ (r′, t′) if and only if s(rt′ − r′t) = 0 for some s ∈ R.

Typically, (r, t) is denoted as the fraction r/t, and RT is a ring under fraction addition and

multiplication. For an integral domain, the classical ring of quotients Q is the localization

at the monoid of non-zero elements. As mentioned previously, R does not necessarily have

a right or left classical ring of quotients in the general setting. However, for semi-prime

Goldie-rings, we have the following:

Theorem 9.1. [17] A ring R has a classical right ring of quotients which is semi-simple if

and only if R is a semi-prime right Goldie-ring.
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Theorem 9.2. [17] If R is a semi-prime right and left Goldie-ring, then there exists a semi-

simple ring Q which is both the classical right and left ring of quotients of R, as well as the

right and left maximal ring of quotients of R.

Of special note is the localization of R at R\P , where P is a prime ideal of R. This is

referred to as the localization at P and is denoted by RP . In the general setting, R\P is not

necessarily multiplicatively closed. However, it is multiplicatively closed in the case that R

is a duo ring. A ring R is a right duo ring if Ra ⊆ aR for every a ∈ R, and it is a left duo ring

if aR ⊆ Ra for every a ∈ R. We call R a duo ring if it is both a right and left duo ring. A

prime ideal P is completely prime if xy ∈ P implies that x ∈ P or y ∈ P for every x, y ∈ R.

It is clear that if P is completely prime, then R\P is multiplicative since x, y ∈ R\P implies

xy /∈ P . The following shows that if R is a duo ring, then every prime ideal is completely

prime, from whence it follows that R\P is multiplicative and the localization at P is defined.

Proposition 9.3. If R is a duo ring, then every prime ideal is completely prime.

Proof. Let P be a prime ideal of R, and let x, y ∈ R with xy ∈ P . Then, yR = Ry since

R is a duo ring, and hence (xR)(yR) = xyR ⊆ P . Since P is prime, xR ⊆ P or yR ⊆ P .

Therefore, x ∈ P or y ∈ P and P is completely prime.

In some cases, it is convenient for the localization RP of a duo ring R at a prime ideal P

to again be a duo ring. The following give two instances when this occurs. As H.H. Brungs

shows in [10], Lemma 9.4 implies that RP is duo in the case that R is a Noetherian duo ring.

Lemma 9.4. [10] Let R be a duo ring. If RP satisfies the ascending chain condition for

principal right and left ideals, then RP is a duo ring.

Lemma 9.5. Let R be a duo ring and consider any prime ideal P of R. If xP = Px for

every x ∈ R, then RP is a duo ring.

Proof. Let P be a prime ideal of R, and let 0 6= r ∈ R and t ∈ R\P . We show that

rt−1(RP ) = (RP )rt−1. Take any as−1 ∈ RP and consider (rt−1)(as−1) ∈ rt−1(RP ). Since
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R is a duo ring, at = ta1 for some a1 ∈ R, and hence t−1a = a1t
−1. Moreover, there exists

a2 ∈ R such that ra1 = a2r. Next, we show that t(R\P ) = (R\P )t. Once this is shown, we

can find s1 ∈ R\P such that st = ts1 and hence t−1s−1 = s−11 t−1. Let tx ∈ t(R\P ). Since

R is duo, tx = x1t for some x1 ∈ R. If x1 ∈ P , then x1t = tx2 for some x2 ∈ P since R is

strong duo. Thus, tx = x1t = tx2 and hence t(x − x2) = 0. However, this implies t = 0 or

x = x2 ∈ P , which is a contradiction since t is regular and x ∈ R\P . Therefore, x1 ∈ R\P

and t(R\P ) ⊆ (R\P )t. The other inclusion is similar.

Finally, we use a similar process to show there exists s2 ∈ R\P such that rs1 = s2r and

hence rs−11 = s−12 r. From the duo condition on R, there exists s2 ∈ R such that rs1 = s2r.

Suppose s2 ∈ P . Since R is strong duo, there exists s3 ∈ P such that r(s1 − s3) = 0. If

r is regular, this leads to s1 = s3 ∈ P , which is a contradiction. If r is not regular, there

may exist 0 6= y ∈ R such that s1 − s3 = y. If y ∈ P , then s1 = y + s3 ∈ P , which is a

contradiction. However, if y ∈ R\P , then y = s1 − s3 = 0 since elements of R\P cannot be

zero divisors. This again leads to s1 ∈ P , which is a contradiction. Therefore, s2 ∈ R\P .

Putting everything together, we have the following:

rt−1as−1 = ra1t
−1s−1 = a2rt

−1s−1 = a2rs
−1
1 t−1 = a2s

−1
2 rt−1 ∈ (Rp)rt

−1

Thus, rt−1(RP ) ⊆ (RP )rt−1. The other inclusion is similar since we assume R to be both

right and left duo. Therefore, rt−1(RP ) = (RP )rt−1 and RP is a duo ring.

We also consider right and left duo rings which do not contain any zero-divisors. These

rings are of interest because they are right and left Ore domains with finite Goldie-dimension.

A domain R is a right Ore domain (left Ore domain) if aR ∩ bR 6= 0 (Ra ∩ Rb 6= 0) for all

non-zero a, b ∈ R. A ring R satisfies the right Ore condition (left Ore condition) if given

a, s ∈ R with s regular, there exists b, t ∈ R with t regular such that at = sb (ta = bs). A

ring R has a classical right (left) ring of quotients if and only if it satisfies the right (left)

Ore condition [17].
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Lemma 9.6. If R is a right (left) duo ring, then it satisfies the right (left) Ore condition.

Proof. Let a, s ∈ R with s regular. If R is a right duo ring then Rs ⊆ sR, and thus as = sb

for some b ∈ R. The left condition is similar.

Lemma 9.7. If R is a right and left duo ring not containing zero-divisors, then it is a right

and left Ore domain. In Particular, R has right and left Goldie-dimension 1.

Proof. Let 0 6= a, b ∈ R. Since R has no zero-divisors, ab 6= 0, and we can find 0 6= c ∈ R

such that 0 6= ab = bc using the duo property. Thus, 0 6= ab ∈ aR ∩ bR, and therefore R is

a right Ore domain. Similarly, Ra ∩ bR 6= 0. By [17, Theorem 3.30], R has finite right and

left Goldie-dimension. Now, R has a classical ring of quotients Q which is a division ring.

Hence, R is uniform as both a right and left R-module by [17, Corollary 3.25], and therefore

R has right and left Goldie-dimension 1.

Lemma 9.8. If R is a right and left duo ring not containing zero-divisors, then it is a

semi-prime right and left Goldie-ring.

Proof. If R is a duo ring not containing zero-divisors, then it is a right and left Ore domain

with finite right and left Goldie-dimension by Lemma 9.6 and Lemma 9.7. Moreover, R

satisfies the ACC on right and left annihilator ideals since {0} and R are the only such

ideals in a domain [17]. Therefore, R is a right and left Goldie-ring. Finally, if R does not

contain any zero-divisors, then aRa = 0 implies a = 0, and thus R is semi-prime.

9.2 Projective Dimension

We now discuss the projective dimension of a module over a right and left duo domain.

For any ring R, we say that a right R-module A has projective dimension ≤ n, denoted

pdR(A) ≤ n, if there exists a finite projective resolution

0→ Pn → · · · → P1 → P0 → A→ 0.
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If the length of the shortest projective resolution is n then pdR(A) = n, and pdR(A) =∞ if

every projective resolution of A has infinite length. The following two lemmas will be useful

in determining the projective dimension of a module:

Lemma 9.9. [26, Prop. 8.6] The following are equivalent for a right R-module A:

i) pdR(A) ≤ n.

ii) ExtkR(A,M) = 0 for every right R-module M and every k ≥ n+ 1.

iii) Extn+1
R (A,M) = 0 for every right R-module M .

Lemma 9.10. Let R be a ring, and let 0→ A→ B → C → 0 be an exact sequence of right

R-modules.

i) If any two of pdR(A), pdR(B), or pdR(C) is finite, then so is the third.

ii) Only the following can occur:

a) pdR(A) < pdR(B) = pdR(C);

b) pdR(B) < pdR(A) = pdR(C)− 1;

c) pdR(A) = pdR(B) ≥ pdR(C)− 1.

Proof. If pdR(A) = pdR(B) = ∞, then pdR(C) ≤ ∞ = pdR(B) + 1 and we are in case c).

Suppose pdR(A) = pdR(C) =∞. If pdR(B) <∞ = pdR(A), then pdR(C) =∞ = pdR(A)+1

and we are in case b). If pdR(B) = ∞ = pdR(A), then pdR(C) = ∞ ≤ pdR(A) + 1 and

we are in case c). Finally, suppose pdR(B) = pdR(C) = ∞. If pdR(A) < ∞ = pdR(B),

then pdR(C) = ∞ = pdR(B) and we are in case a). If pdR(A) = ∞ = pdR(B), then

pdR(C) =∞ ≤ pdR(A) + 1 and we are in case c).

Assume that neither A,B nor C is projective. We will deal with those cases at the

end. Suppose that pdR(A) < pdR(B) = n for any 1 ≤ n < ω. Then, given any right

R-module M , we have ExtkR(A,M) = 0 for every k ≥ n and ExtmR (B,M) = 0 for every
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m ≥ n + 1. Hence, the sequence 0 = ExtnR(A,M)→ Extn+1
R (C,M)→ Extn+1

R (B,M) = 0 is

exact by Proposition 3.15, from whence it follows Extn+1
R (C,M) = 0. Therefore, pdR(C) ≤ n.

Now, suppose pdR(C) < n. Then, ExtnR(C,M) = 0 for every right R-module M , and thus

0 = ExtnR(C,M) → ExtnR(B,M) → ExtnR(A,M) = 0 is exact. However, this implies that

ExtnR(B,M) = 0 and pdR(B) ≤ n− 1, which is a contradiction. Therefore, pdR(C) = n.

The other cases are similar. Assume pdR(B) < pdR(A) = n for any 1 ≤ n < ω. Then,

given any right R-module M , we have ExtkR(A,M) = 0 for every k ≥ n+1 and ExtmR (B,M) =

0 for everym ≥ n. Hence, the sequence 0 = Extn+1
R (A,M)→ Extn+2

R (C,M)→ Extn+2
R (B,M) =

0 is exact by Proposition 3.15, from whence it follows Extn+2
R (C,M) = 0. Therefore,

pdR(C) ≤ n + 1. Now, suppose pdR(C) < n + 1. Then, Extn+1
R (C,M) = 0 for every

right R-module M , and thus 0 = ExtnR(B,M)→ ExtnR(A,M)→ Extn+1
R (C,M) = 0 is exact.

However, this implies that ExtnR(A,M) = 0 and pdR(A) ≤ n − 1, which is a contradiction.

Therefore, pdR(C) = n+ 1.

Finally, assume pdR(B) = pdR(A) = n for any 1 ≤ n < ω. Then, given any right R-

module M , we have ExtkR(A,M) = ExtkR(B,M) = 0 for every k ≥ n+1. Hence, the sequence

0 = Extn+1
R (A,M)→ Extn+2

R (C,M)→ Extn+2
R (B,M) = 0 is exact by Proposition 3.15, from

whence it follows Extn+2
R (C,M) = 0. Therefore, pdR(C) ≤ n + 1. In this case, there is no

contradiction in assuming pdR(C) < n+ 1.

If C is projective, then the sequence splits and B ∼= A⊕C. This implies that pdR(B) =

sup{pdR(A), pdR(C)} = pdR(A) [26], and we are in case c). Suppose B is projective. If

pdR(B) < pdR(A) = n for some n > 0, then pdR(C) = pdR(A) + 1 using the same long exact

sequence used above to prove case b). If 0 = pdR(B) = pdR(A), then we have a projective

resolution of C of length 1, and hence pdR(C) ≤ 1 = pdR(A) + 1. Finally, suppose A is

projective. If pdR(A) < pdR(B) = n for some n > 0, then pdR(C) = pdR(B) using the same

long exact sequence used above to prove case a). If 0 = pdR(A) = pdR(B), then we again

have a projective resolution of C of length 1 and are in case c).
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We are interested in the relationship between the projective dimensions over the rings R

and R/rR, where r ∈ R is a non-zero divisor. In the case that R is commutative, Kaplansky

found that pdR/rR(M/rM) ≤ pdR(M) whenever r ∈ R is a non-zero divisor such that xr 6= 0

for every 0 6= x ∈ M [15, Lemma VI.2.10]. This is one of Kaplansky’s Change of Rings

Lemmas, and it can be extended to right and left duo rings not containing zero-divisors.

The proof used in [15, Lemma VI.2.10] carries over to this setting.

Lemma 9.11. Let R be a right and left duo ring without zero-divisors, and let 0 6= s ∈ R. If

M is a left R-module such that sx 6= 0 for every 0 6= x ∈M , then pdR/sR(M/sM) ≤ pdR(M).

We now look to extend another of Kaplansky’s Change of Rings Lemmas to the case

that R is a duo ring without zero-divisors. First, we need the following from [25]:

Lemma 9.12. [25, Theorem 9.32] If ϕ : R→ R∗ is a ring homomorphism and A∗ is a right

R∗-module, then pdR(A∗) ≤ pdR∗(A
∗) + pdR(R∗).

Observe that if R is any ring and σ : R → R is an automorphism of rings, then every

right R-module M carries another R-module structure induced by σ: For x ∈M and r ∈ R,

define x ∗ r = xσ(r). Let M∗ denote the R-module M when using the structure induced by

σ. Since 1 ∗ r = 1σ(r), we have that R∗ is a free right R-module. Hence, pdR(R∗) = 0 and

pdR(M) = pdR(M∗) ≤ pdR∗(M
∗) by Lemma 9.12. Since σ is an isomorphism, we can use

σ−1 to get the reverse inequality, and therefore pdR(M) = pdR∗(M
∗).

Proposition 9.13. Let R be a duo ring without zero-divisors, and let 0 6= s ∈ R. If

σ : R → R denotes the automorphism defined by σ(r) = s−1rs, then σ : R/sR → R/sR

defined by σ(r + sR) = σ(r) + sR is an automorphism of R/sR.

Proof. If r′ = r + st for some t ∈ R, then s−1r′s = s−1rs + s−1sts = s−1rs + ts. Since

sR = Rs, we have σ(r′) = σ(r) and hence σ is well-defined. It is easily seen that σ is an

epimorphism and an R-map. To see that σ is a monomorphism, observe that σ(r) = 0 and

the duo condition yield s−1rs = ts for some t ∈ R. Hence t = s−1r ∈ Q, and r = st ∈ sR.

Therefore, σ is an automorphism of R/sR.
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Let U be any right R/sR-module. Then, U can be viewed as a right R-module with

Us = 0. Moreover, using σ as defined in Proposition 9.13, we have u∗(r+sR) = uσ(r+sR) =

u(σ(r) + sR) = uσ(r) + 0 = u× r, where ∗ and × denote the module structures induced by

σ and σ, respectively. We are now ready to extend Kaplansky’s change of rings result.

Theorem 9.14. Let R be a duo ring without zero-divisors, and let 0 6= s ∈ R. If M is a

right R/sR-module such that pdR/sR(M) = 1, then pdR(M) = 2.

Proof. Assume, for a contradiction, that pdR(M) ≤ 1, and consider an exact sequence

0 → P1 → P0 → M → 0 of right R-modules with P0 and P1 projective. Applying⊗
RR/sR induces the exact sequence of right R/sR-modules:

0→ Tor1R(M,R/sR)→ P1

⊗
RR/sR→ P0

⊗
RR/sR→M

⊗
RR/sR→ 0.

However, M
⊗

RR/sR
∼= M since M is an R/sR-module. Furthermore, since Pi

⊗
RR/sR

is a projective R/sR-module for i = 0, 1, and pdR/sR(M) = 1, we have that Tor1R(M,R/sR)

is a projective R/sR-module.

Now, the sequence 0→ sR
i−→ R→ R/sR→ 0 is an exact sequence of R-R-bimodules.

We consider the induced sequence 0 → Tor1R(M,R/sR)
∂−→ M

⊗
R sR

i∗−→ M
⊗

RR. Note

that in M
⊗

RR we have x ⊗ st = xs ⊗ t = 0 since M is a right R-module satisfying

Ms = 0. Thus, im i∗ = 0 and ∂ is an isomorphism. It then follows that A = M
⊗

R sR is

isomorphic to Tor1R(M,R/sR) as an R-module, and hence as an R/sR-module. Therefore,

A is a projective R/sR-module.

Let A∗ denote the R-module A with the module structure induced by σ as defined in

Proposition 9.13. For x ⊗ ts ∈ A, we have (x ⊗ ts) ∗ r = x ⊗ tss−1rs = x ⊗ trs. However,

λ : A∗ → M defined by λ(x ⊗ ts) = xt is an isomorphism of R-modules, and hence also

of R/sR-modules. As previously shown, Lemma 9.12 implies that A and A∗ have the same

projective dimension as both R and R/sR-modules since σ and σ are automorphisms of R
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and R/sR, respectively. Thus, we have a contradiction since this leads to

1 = pdR/sR(M) = pdR/sR(A∗) = pdR/sR(A) = pdR/sR(Tor1R(M,R/sR)) = 0.

Therefore, pdR(M) > 1 and pdR/sR(M) < pdR(M).
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Chapter 10

Generalizations of Matlis Domains

10.1 Tight Systems and G(ℵ0) Families

As we will see in Theorem 10.11, RT/R is a direct summand of Q/R in the case that

pdR(Q) ≤ 1 and pdR(Q/RT ) ≤ 1. We will eventually consider a direct sum decomposition

of Q/R whose construction depends on these conditions. In order to ensure the second

condition is satisfied, as well as to ensure we have the desired direct sum decomposition, we

need a family of submodules which satisfy the following conditions. For a right R-module

M , a set S of submodules of M is a G(ℵ0)-family if the following are satisfied:

(i) 0,M ∈ S.

(ii) S is closed under unions of chains.

(iii) Given A ∈ S and a countable subset X of M , there exists B ∈ S such that A,X ⊆ B

and B/A is countably generated.

A submodule N of a right R-module M is called tight if pdR(M/N) ≤ pdR(M). For a right

R-module M of projective dimension ≤ m, a family T = {Mi | i ∈ I} of tight submodules

of M is called a tight system if

(i) 0,M ∈ T ;

(ii) T is closed under unions of chains;

(iii) if Mi,Mj ∈ T with Mi < Mj, then pdR(Mj/Mi) ≤ pdR(M) ≤ m;

(iv) For every Mi ∈ T and every subset S of M of cardinality ≤ ℵm−1, there exists Mj ∈ T

such that Mi ≤Mj, S ⊆Mj and Mj/Mi is ≤ ℵm−1-generated.
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For our purposes, we have that Mj/Mi is countably-generated in condition (iv) since

we consider a tight system for Q/R in the case that pdR(Q/R) ≤ 1. The following result

ensures the existence of a tight system in the case that pdR(M) ≤ 1. The proof is the same

as the integral domain case found in [15, Prop. 5.1].

Lemma 10.1. [15] Let R be a semi-prime right and left Goldie-ring and M a right R-module.

If pdR(M) ≤ 1, then M admits a tight system.

Once we have an appropriate G(ℵ0)-family of tight submodules, we will use the following

lemma to extract a well-ordered ascending chain of direct summands.

Lemma 10.2. [20] Let R be a ring and let M be a right R-module. Let U be a family of

submodules of M , and take U0 to be a subset of U . Suppose there exists a chain {Mγ}γ≤β

such that

• for every γ < β, Mγ+1 = Mγ ⊕ Uγ for some Uγ ∈ U0,

• M0 = 0, and Mγ =
⋃
ν<γMν for every γ ≤ β.

Then, M =
⊕

γ<β Uγ is a direct sum of modules with Uγ ∈ U0 for every γ < β.

The following variation developed in [7] by Bazzoni, Eklof, and Trlifaj of a tight system

is sometimes useful in producing factors which have generating sets of higher cardinality.

For a right R-module M of projective dimension ≤ 1 and a regular uncountable cardinal κ,

a set T = {Mi | i ∈ I} of submodules of M is a κ-tight system if the following hold:

(i) 0 ∈ T and each Mi ∈ T is < κ-generated.

(ii) T is closed under unions of well-ordered chains of length < κ.

(iii) Every Mi ∈ T is a tight submodule of M . That is, pdR(M/Mi) ≤ 1.

(iv) For every Mi ∈ T and every subset S of M of cardinality < κ, there exists Mj ∈ T

such that Mi ≤Mj, S ⊆Mj and Mj/Mi is < κ-generated.
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It is of note that if M is a right R-module of a semi-prime right Goldie-ring R, then M

admits such a system. For any right R-module M , define

M⊥ = Ker Ext1R(M, ) = {X ∈ModR | Ext1R(M,X) = 0}.

Using the notation in [7], for any index set I and cardinal κ, let E[I,<κ] denote the submodule

of E(R)I consisting of elements with support of cardinality < κ.

Lemma 10.3. [7, Lemma 3.1] Let M be a right R-module and consider any regular un-

countable cardinal κ ≤ gen M . If pdR(M) ≤ 1 and M⊥ contains E[I,<κ] for every index set

I, then M admits a κ-tight system.

Lemma 10.4. Let R be a semi-prime right Goldie-ring and M a right R-module. If

pdR(M) ≤ 1, then M admits a κ-tight system for any regular uncountable cardinal κ ≤

gen M .

Proof. Let I be any index set and κ any regular uncountable cardinal of cardinality ≤ gen M .

As a submodule of a direct sum of non-singular modules, E[I,<κ] is a non-singular right R-

module. Let x = (xα)α∈I ∈ E[I,<κ], and take c to be any regular element of R. Since R

is a semi-prime right Goldie-ring, the non-singular, injective module E(R) is divisible in

the classical sense [1, Corollary 4.5]. Hence, for every α ∈ I, there exists yα ∈ E(R) such

that xα = yαc. Let y = (yα)α∈I so that x = yc, and observe that |supp (y)| < κ since

|supp (x)| < κ and c is regular. Thus, y ∈ E[I,<κ] and we conclude that E[I,<κ] is divisible

in the classical sense. Furthermore, as a non-singular, divisible right R-module of a semi-

prime right Goldie-ring, E[I,<κ] must also be injective [1, Corollary 4.5]. Therefore, E[I,<κ]

is contained in M⊥ and Lemma 10.3 shows that M admits a κ-tight system.

10.2 Pre-Matlis Duo Domains

We are now ready to turn our attention to modules of projective dimension ≤ 1. In

particular, we consider rings for which the maximal right ring of quotients Qr has projective
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dimension ≤ 1. Observe that it follows immediately from Lemma 9.10 that pdR(Q) ≤ 1

precisely when pdR(Q/R) ≤ 1. As previously mentioned, we look to decompose (Q/R)R into

a direct sum of countably generated submodules and extend the characterization of Matlis

domains to a more general setting. We start with the following result from U. Albrecht in

[1]:

Theorem 10.5. [1] Let R be a semi-prime right and left Goldie-ring. If Q/R is a direct

sum of countably generated submodules, then pdR(Q) ≤ 1.

We now consider the converse of this result. We begin our discussion with an example

which provides a ring for which (Q/R)R is not the direct sum of countably generated sub-

modules Ai/R where each Ai is a subring of Q. However, this particular ring is hereditary

and hence pdR(QR) ≤ 1. We first consider the following lemmas from Bessenrodt, Brungs,

and Törner in [8]:

Lemma 10.6. [8, Lemma 3.1] The following are eqivalent for a ring R:

a) R is a right Noetherian, right chain ring.

b) R is a local principal right ideal ring.

c) The lattice of right ideals of R is inversely well-ordered by inclusion.

Lemma 10.7. [8, Lemmas 1.4, 3.2] Let R be a right Noetherian right chain ring. Then R

is a right duo ring. In particular, every right ideal is two-sided.

Proof. Let I be a right ideal of R. Since R is a right Noetherian right chain ring, I is a

principal ideal, say I = aR for some a ∈ R. As a right chain ring, R is a local ring whose

unique maximal right ideal J(R) consists of all non-unit elements of R. Let U = R\J(R)

denote the group of units, and suppose there exists u ∈ U such that aR ( uaR. Then,

uaR ( u2aR ( ... ( unaR ( ..., n < ω, is a strictly ascending chain of right ideals of R.

This contradicts R being right Noetherian, and thus UaR ⊆ aR.
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We now show that R is right duo by showing that Ra ⊆ UaR ⊆ aR. Take ra ∈ Ra. If

r ∈ U or if ra ∈ aR, then clearly ra ∈ UaR. Otherwise, r /∈ U and there exists x ∈ J(R)

such that rax = a. Hence, ra(1 + x) = ra+ rax = ra+ a = a+ ra = (1 + r)a. Observe that

both 1 + x and 1 + r are units in R, since otherwise 1 = (1 + x)− x = (1 + r)− r ∈ J(R).

Thus, ra = (1 + r)a(1 + x)−1 ∈ UaR.

Theorem 10.8. Let R be a right Noetherian, right chain domain whose lattice of right ideals

is inversely order isomorphic to an ordinal σ of uncountable cardinality. Then, R is a right

hereditary right duo ring with classical right ring of quotient Q such that (Q/R)R is not the

direct sum of countably generated submodules Ai/R where each Ai is a subring of Q.

Proof. Observe that R is a right duo ring by Lemma 10.7, and hence every right ideal of R

is two-sided. Moreover, R is a right hereditary ring since every right ideal of R is principal

by Lemma 10.6, and R has a classical right ring of quotients Q since every right Noetherian

domain is a right Ore domain.

We first show that RQ is not countably generated. If it were, then we could find

{cn | n < ω} such that Q =
∑

n<ω Rc
−1
n . We consider the right ideals cnR of R , and observe

that ∩n<ωcnR 6= 0 since σ is of uncountable cardinality. We pick a non-zero d ∈
⋂
n<ω cnR,

say d = cnrn. For all q ∈ Q, we have qd ∈ R. Specifically, c−1d ∈ R for all 0 6= c ∈ R. Thus,

d ∈
⋂
c 6=0 cR. In particular, 0 6= d2 and d2R ⊆ dR ⊆

⋂
c 6=0 cR ⊆ d2R, and we can find r ∈ R

such that d = d2r. Since R is a domain, 1 = dr. Hence, d /∈ J(R) and d is a unit, from

whence it follows R = Qd = Q, a contradiction. Thus, RQ is not countably generated.

Now assume (Q/R)R ∼=
⊕

I Ai/R for some index set I, where Ai/R is countably

generated and Ai is a two-sided submodule of R. Note that if Ai is a subring of Q,

then Ai is indeed a two-sided submodule R. Pick a countable subset J0 ⊆ I, and write∑
J0
Aj =

∑
n<ω(rnc

−1
n )R. Then, rnc

−1
n ∈

∑
mRc

−1
m . However, Rc−1m is also an R-submodule

of QR. To see this, let r ∈ R and pick s ∈ R such that rcm = cms. This is possible since

a right Noetherian, right chain ring is right duo by Lemma 10.7. Then, c−1m r = sc−1m and

thus
∑

J0
Aj ⊆

∑
mRc

−1
m . Since RQ is not countably generated, we may assume that this
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inclusion is proper. Otherwise, we can add Rd−1 to the sum on the right-hand side, and

proceed with
∑

mRc
−1
m +Rd−1 such that d−1 /∈

∑
mRc

−1
m .

We can now find a countable subset J1 of I such that J0 ⊆ J1 and c−1m ∈
∑

J1
Aj. Since

each Aj is two-sided,
∑

J0
Aj (

∑
mRc

−1
m ⊆

∑
J1
Aj. Inductively, we obtain an ascending

chain J0 ⊆ J1 ⊆ ... of countable subsets of I and a countable family {dn | n < ω} ⊆ R such

that J =
⋃
n<ω Jn is a countable subset of I with

∑
J Aj =

∑
n<ω Rd

−1
n . If RQ 6=

∑
n<ω Rd

−1
n ,

then there exists 0 6= c ∈ R such that c−1 /∈
∑

n<ω Rd
−1
n . Since R is a right chain ring, either

cR ⊆ dnR or dnR ⊆ cR. If the latter occurs, then dn = ctn for some tn ∈ R and c−1 = tnd
−1
n ,

a contradiction. Thus, c = dnsn for some sn ∈ R and d−1n = snc
−1. It readily follows

that
∑

n<ω Rd
−1
n ⊆ Rc−1. However, R ⊆ Rc−1, so that

∑
J Aj ⊆

∑
n<ω Rd

−1
n ⊆ Rc−1

implies
⊕

J Aj/R ⊆ Rc−1. Thus, Rc−1 =
⊕

J(Aj/R) ⊕ U/R for some R ⊆ U ⊆ Rc−1 since

(
⊕

J Aj/R) v Q/R. Observe that Q/R =
⊕

I Ai/R is a decomposition of both (Q/R)R and

R(Q/R) since Ai is a two-sided submodule for each i ∈ I. Moreover,
⊕

J(Aj/R) is not finitely

generated since
∑

Jn
Aj ⊆

∑
Jn+1

Aj for every n < ω, and we have a contradiction. Thus,

Q =
∑

n<ω Rd
−1
n , contradicting the fact that RQ is not countably generated. Therefore,

(Q/R)R is not the direct sum of countably generated submodules Ai/R where each Ai is a

subring of Q.

Let R× denote the multiplicative monoid of regular elements of R. In trying to fully

extend the characterization of Matlis domains to the general non-commutative setting, a

few issues arise involving the localization of R at a submonoid T of R× and the formal

construction of the ring of quotients. A primary complication that arises is related to the

filtration properties of the multiplicative monoid of non-zero elements of an integral domain.

We say that R× has a filtration if it is the union of a continuous (or smooth) well-ordered

ascending chain

{1} = T0 ≤ T1 ≤ ... ≤ Tα ≤ ...Tκ = R×
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of submonoids. The chain is well-ordered if the index set α runs over the ordinals α < κ

for some ordinal κ, and the chain is continuous (or smooth) if Tβ =
⋃
γ<β Tγ for every limit

ordinal β < κ.

In the general setting, R× does not necessarily have a filtration with the same properties

that we find in integral domains. In particular, if we consider a submonoid T of R× and a

countable subset S of R×, then it is not guaranteed that the localization at the submonoid

generated by T and S is countably generated over the localization at T . If R is an integral

domain, then the monoid of non-zero elements does in fact have this property. As we will see,

filtrations which have this characteristic will be essential in decomposing Q/R into countably

generated summands. The example in Theorem 10.8 provides a ring for which R× does not

have our desired filtration, and we see that in this instance Q/R is not a direct sum of

countably generated submodules. To counter this issue, we introduce a filtration similar to

the third axiom of countability introduced by P. Griffith and P. Hill in [19]. A monoid T

satisfies the third axiom of countability if there exists a family C = {Ti | i ∈ I} of submonoids

of T such that

(i) 1 ∈ C.

(ii) C is closed under unions of chains.

(iii) If i ∈ I and X ⊆ T is countable, then there exists i0 ∈ I such that Ti, X ⊆ Ti0 and Ti0

is countably generated over Ti.

We refer to the family C as an Axiom III family of T .

Moreover, we introduce notions similar to that of a normal subgroup and a normal series

of a group. Define a normal series of a submonoid T of R× to be an ascending chain

{1} = T0 ≤ T1 ≤ ... ≤ Tα ≤ ...Tκ = T
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of submonoids of T such that Tα / T for every α < κ. In other words, tTα = Tαt for every

t ∈ T and every α < κ. Combining a variation of the third axiom of countability with this

notion of normality, we develop a filtration for R× which will allow us to produce a chain

of direct summands of Q/R. We say that a domain R is a pre-Matlis domain if R× is the

union of a smooth filtration

{1} = T0 ≤ T1 ≤ ... ≤ Tα ≤ ...Tκ = R×

of submonoids with the following properties:

(i) Tα / R
× for every α < κ.

(ii) If α < κ and X ⊆ R× is countable, then there exists β < κ such that Tα, X ⊆ Tβ and

Tβ is countably generated over Tα.

We consider an example from Bessenrodt, Brungs, and Törner in [8] of a ring whose

monoid of regular elements has the desired filtration of normal submonoids. For an ordered

group (G,≤) with identity e, let G+ = {g ∈ G | e ≤ g} denote the positive cone of G. Let

K be a division ring and consider all power series of the form a =
∑

g∈G gag, with ag ∈ K.

Define the support of a to be supp(a) = {g ∈ G | ag 6= 0}, and refer to a as a generalized

power series if supp(a) is a well-ordered subset of G. If ag = ga for every a ∈ K and g ∈ G,

then the set of all generalized power series, denoted K[[G]], is a ring with normal power

series addition and multiplication. Moreover, K[[G]] is a division ring and the following

proposition from [8] shows that K[[G+]] is a duo chain domain with quotient ring K[[G]].

Proposition 10.9. [8, Prop. 1.24] Let (G,≤) be an ordered group and K a division ring.

Then the subring R = {a ∈ K[[G]] | e ≤ min supp(a)}∪{0} of K[[G]] is a duo chain domain

satisfying the following properties:

i) The set of non-zero principal right ideals is given by {gR | e ≤ g}.
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ii) The two sided ideals of R correspond to the upper classes of G+, the prime ideals to the

convex semigroups of G+.

iii) The residue field R/J(R) is isomorphic to K.

Theorem 10.10. Let (G,≤) be an ordered group which has an Axiom III family of normal

subgroups, and let R = K[[G+]]. Then R is a pre-Matlis domain.

Proof. Suppose G has an Axiom III family C = {Nα | α < κ} of normal subgroups. Since

G+∩Nα is a normal subroup of G+ for each α < κ, it is easily seen that C ′ = {G+∩Nα | α <

κ} is an Axiom III family of G+:

i) {e} = G+ ∩ {e} ∈ C ′ since {e} ∈ C.

ii) If {G+ ∩Nβ}β<γ is a chain in C ′, then {Nβ}β<γ is a chain in C. Hence,
⋃
β<γ Nβ ∈ C,

from whence it follows G+ ∩ (
⋃
β<γ Nβ) ∈ C ′.

iii) Let α < κ and let X ⊆ G+ ⊆ G be countable. Since C is an Axiom III family, there

exists β < κ such that Nα, X ⊆ Nβ and Nβ is countably generated over Nα. Therefore,

G+ ∩Nα, X ⊆ G+ ∩Nβ and G+ ∩Nβ is countably generated over G+ ∩Nα.

For each α < κ, define Tα = K[[G+∩Nα]]\{0} to be the set of all non-zero generalized power

series
∑
gag over G+ ∩ Nα and K. By Proposition 10.9, K[[G+ ∩ Nα]] is a duo ring, and

hence rTα = Tαr for every r ∈ R×. By extending property iii) of the Axiom III family of

G+ to {Tα}α<κ, we have the second condition of our filtration satisfied. Therefore, K[[G+]]

is a pre-Matlis domain.

It is of note that a right and left chain ring is a strongly non-singular, semi-hereditary

ring with finite Goldie-dimension [2]. Hence, K[[G+]] satisfies the conditions of Proposi-

tion 7.1, and every two-sided essential submodule of Q has the finite Baer-splitting property.

In 1952, C.G. Chehata showed in [12] that there exists a simple, totally ordered group G. If

we take this group G and its positive cone G+, then K[[G+]] is a duo domain which has no
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non-trivial normal submonoids coming from G, and whose monoid of regular elements has

our desired filtration.

We are now ready for the main theorems, which extend the characterization of Matlis

domains to duo rings not containing zero-divisors. The first result shows that in our setting

RT/R is a direct summand of Q/R whenever T is a normal submonoid of R×, and both

pdR(Q) and pdR(Q/RT ) are ≤ 1.

Theorem 10.11. Let R be a right and left duo ring not containing zero-divisors. If T / S

are submonoids of R× such that pdR(RS) ≤ 1 and pdR(RS/RT ) ≤ 1, then RT/R is a direct

summand of RS/R.

Proof. As a first step, we show that (RT/R)P is S-divisible for all prime ideals P of R. Since

R is a duo ring, P is completely prime, and R\P is multiplicatively closed. If T ∩ P = ∅,

then (RT )P = RP since T ⊆ R\P in this case. Thus, t−1p−1 ∈ RP for all t ∈ T and p ∈ R\P .

Since localizing at P is a flat functor, (RT/R)P = (RT )P/RP = RP/RP = 0 is S-divisible.

Now, assume T ∩ P 6= ∅. We first show that given any s ∈ S, RT/sRT is projective

as a left R/sR-module. Clearly, RT is a left R-module since r(at−1) = (ra)t−1 ∈ RT for

any r ∈ R and any at−1 ∈ RT . Since R is a duo ring, sR = Rs. Thus, for any r ∈ R, we

can find r1 ∈ R such that rs = sr1. Thus, r(sat−1) = sr1(at
−1), and sRT is a submodule

of RRT . Since R is duo, sR is a two-sided ideal of R, and we can view RT/sRT as a left

R/sR-module.

Consider the exact sequence 0→ RT → RS → RS/RT → 0. By assumption, pdR(RS) ≤

1 and pdR(RS/RT ) ≤ 1. If pdR(RT ) > 1, then pdR(RT ) > pdR(RS) and hence pdR(RS/RT ) =

pdR(RT ) + 1 > 1 by Lemma 9.10. However, this is a contradiction and thus pdR(RT ) ≤ 1.

Consequently, pdR/sR(RT/sRT ) ≤ pdR(RT ) ≤ 1 by Lemma 9.11. Now, consider the exact

sequence 0→ RT/sRT → RS/sRT → RS/RT → 0 of left R-modules. Since RS is s-divisible

and hence sRS = RS, we have RS/RT
∼= sRS/sRT = RS/sRT , and thus pdR(RS/RT ) =
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pdR(RS/sRT ). Therefore, we have

pdR(RT/sRT ) < pdR(RS/RT ) = pdR(RS/sRT ) ≤ 1

by Lemma 9.10. However, Theorem 9.14 shows that if pdR/Rs(RT/sRT ) = 1 then pdR(RT/sRT )

must be 2, which is a contradiction. Therefore, pdR/sR(RT/sRT ) = 0, and hence RT/sRT is

projective as a left R/sR-module.

We now show that (RT )P = (RS)P whenever T ∩P 6= ∅. Observe that RP is a local ring

since P is completely prime. Hence, RP/sRP is a local ring. Moreover, since R is a duo ring

and T is a normal submonoid of R×, we can view (RT )P as a left RP -module. To see this,

take (at−1)m−1 ∈ (RT )P and bn−1 ∈ RP where n,m ∈ R \ P . The duo condition provides

a1 ∈ R such that n−1an = na1. Since T is normal, we can find t1 ∈ T such that tn = nt1.

Thus,

bn−1(at−1m−1) = ba1n
−1t−1m−1 = (ba1t

−1
1 )(n−1m−1) = (ba1t

−1
1 )(mn)−1 ∈ (RT )P .

Since localization at P is an exact functor, (RT )P/s(RT )P is projective as a left (RP )/s(RP )-

module by what was shown in the preceding paragraph. Since projective modules over local

rings are free [26, 4.58], (RT )P/s(RT )P is a free (RP )/s(RP )-module.

Now assume (RT )P/s(RT )P 6= 0, and consider t ∈ T ∩ P 6= ∅. If t were a unit of RP ,

then t−1 ∈ RP would imply t ∈ R\P . Furthermore, if (au−1)m−1 ∈ (RT )P , then the duo

condition provides a1 ∈ R such that

au−1m−1 = tt−1au−1m−1 = ta1(ut)
−1m−1 ∈ t(RT )P .

Hence, t(RT )P = (RT )P .

Since (RT )P/s(RT )P is a free (RP )/s(RP )-module, there exists some index set I such

that (RT )P/s(RT )P ∼= ⊕I(RP )/s(RP ). Moreover, since (RT )P is divisible by t, it must also
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be the case that ⊕I(RP )/s(RP ) = t ⊕I (RP )/s(RP ). However, this implies RP/sRP =

t(RP/sRP ). But t ∈ PRP , which is a contradiction since t is not a unit in RP . Therefore,

given any s ∈ S, (RT )P/s(RT )P = 0 and hence (RT )P = s(RT )P . Thus, if (rm−1)u−1 ∈

(RP )S, we can use the duo and normality conditions to find r1 ∈ R and u1 ∈ S such

that (rm−1)u−1 = u−11 r1m
−1 ∈ u−11 (RT )P = (RT )P . Furthermore, it is easily seen that

(RT )P ⊆ (RP )S since xT = Tx for every x ∈ R× and T ⊆ S. For if rt−1m−1 ∈ (RT )P , then

there exists t1 ∈ T ⊆ S such that rt−1m−1 = rm−1t−11 ∈ (RP )S. Thus, (RT )P = (RP )S.

Finally, observe that there exists s1 ∈ S such that (rs−1)m−1 = rm−1s−11 ∈ (RP )S whenever

(rs−1)m−1 ∈ (RS)P , whence it follows (RP )S = (RS)P . Therefore, (RT )P = (RP )S = (RS)P ,

and it readily follows from the S-divibility of RS that (RT/R)P = (RT )P/RP = (RS)P/RP

is S-divisible. Consequently, RT/R is S-divisible.

Suppose s ∈ S. By the S-divisibility of RT/R, we have s(RT/R) = RT/R , and

hence sRT + R = RT . Furthermore, RT/sRT is projective as a left R/sR-module. Hence

R/(R ∩ sRT ) ∼= (sRT +R)/sRT = RT/sRT is projective as left R/sR-module. The canonical

epimorphism π : R/sR → R/(R ∩ sRT ) defined by π(r + sR) = r + (R ∩ sRT ) induces

the exact sequence

0→ (R ∩ sRT )/sR→ R/sR→ R/(R ∩ sRT )→ 0

which splits since R/(R ∩ sRT ) is projective as a R/sR-module. However, multiplication

by s induces isomorphisms

s−1R/R ∼= R/sR

and

(s−1R ∩ RT )/R ∼= (R ∩ sRT )/sR.

Hence

[s−1R/R]/[(s−1R ∩ RT )/R] ∼= s−1R/[(s−1R ∩ RT )] ∼= R/(R ∩ sRT )
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is a projective R/sR-module. Thus, [s−1R/R] = [(s−1R ∩ RT )/R]⊕C/R for some submodule

C of s−1R containing R Observe that C/R ∼= RT/sRT . Using the notation of Fuchs and

Salce, let B =
⋂
P∈W(RP ∩ RS) where W is the set of maximal ideals P with T ∩ P 6= ∅.

We have (RT )P = (RS)P in the case that T ∩ P 6= ∅. Hence,

(C/R)P ∼= (RT/sRT )P = (RT )P/s(RT )P = (RS)P/s(RS)P = (RS)P/(RS)P = 0

from which we obtain CP = RP . Since C ⊆ RS and (s−1R ∩ RT )/R ⊆ RT/R, we have

s−1R/R ≤ RT/R +B/R for every s ∈ S. Thus RS/R = RT/R +B/R

It remains to be seen that (RT/R) ∩ (B/R) = 0. Once this is established, we have

shown that RS/R = (RT/R) ⊕ (B/R). Again using the notation of Fuchs and Salce, let

A =
⋂
P∈V(RP ∩ RS), where V is the set of maximal ideals with T ∩ P = ∅. Since RT

is clearly contained in A and RT ∩ B ≤ A ∩ B, it suffices to show that A ∩ B = R. It is

easily seen that R ⊆ A ∩B. For if x ∈ R, then x ∈ RT for any submonoid T of R×. Hence,

x ∈ RP ∩RS for every maximal ideal P and thus x ∈ A ∩B.

To see that A ∩ B ⊆ R, it suffices to show that R = [∩P∈m-SpecRP ] ∩ RS where m-Spec

is the set of all maximal ideals of R. Let x = us−1 ∈ RS\R and consider the right ideal

Ix = {r ∈ R | xr ∈ R}. It is non-zero since xs = us−1s = u ∈ R yields s ∈ Ix. Moreover,

Ix is a proper right ideal since 1 /∈ Ix. Hence, it follows that there exists a maximal right

ideal P containing Ix. Since R is duo, P is a two-sided ideal. If x ∈ RP , then x = rm−1

for some r ∈ R and m ∈ R\P . However, xm = r ∈ R implies that m ∈ Ix ⊆ P , which

is a contradiction. Thus, given x ∈ RS\R, there exists some maximal ideal P of R such

that x /∈ RP . Hence, x ∈ R whenever x ∈ RP for every maximal ideal P of R. Therefore,

R = [∩P∈m-SpecRP ] ∩RS and A ∩B = R.

Theorem 10.12. Consider the following conditions for a semi-prime right and left Goldie-

ring R with classical right and left ring of quotients Q, and let K = Q/R:

a) KR
∼= ⊕IAi/R where each Ai is a subring of Q such that (Ai)R is countably generated.
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b) KR is a direct sum of countably generated submodules.

c) Every divisible module is h-divisible.

d) All divisible modules are weakly cotorsion.

e) Z(D) is a direct summand of D whenever D is divisible.

f) pdR(Q/R) ≤ 1.

Then a) ⇒ b) ⇒ c) ⇒ d) ⇒ e) ⇒ f), and f) ⇒ a) if R is a right and left duo pre-Matlis

domain.

Proof. Since a) ⇒ b) is obvious, we turn to b) ⇒ c). Since R is a duo ring not containing

zero-divisors, it is a semi-prime right and left Goldie-ring by Lemma 9.8. Hence, every

element of Q can be written as c−1r. Let D be a divisible module, and consider a ∈ Z(D).

We select a regular element s0 of R such that as0 = 0. Using a standard back and forth

argument, we may find a countable subset {sn|n < ω} of Rx such that E = [Σn<ωs
−1
n R]/R

is a direct summand of Q/R.

We now show that we can find regular elements tn of R with t0 = s0 and tn+1 = rntn

for all n < ω such that Σn<ωs
−1
n R ⊆ ∪n<ωt−1n R. Assume that we have already constructed

t0, . . . , tn with the desired properties such that s−10 , . . . , s−1n ∈ t−1n R. Since R is a semi-prime

right and left Goldie ring, Rtn and Rsn+1 are essential left ideals of R. We hence obtain a

regular element tn+1 ∈ R such that tn+1 = tsn+1 and tn+1 = rn+1tn for some rn, t ∈ R. Thus,

s−1n+1 = t−1n+1t and t−1n = t−1n+1rn+1. Observe that each rn is regular in R. Let U = ∪n<ωt−1n R,

and observe E ⊆ U/R. We let a0 = a and r0 = s0, and select {an ∈ D|n < ω} such that

an+1rn+1 = an for n < ω. Since t−1n R is a free right R-module, setting αn(t−1n ) = an defines

a map αn : t−1n R→ D. Moreover,

αn+1(t
−1
n ) = αn+1(t

−1
n+1)rn+1 = an+1rn+1 = an = αn(t−1n )

87



and α0(1) = α0(t
−1
0 s0 = a0s0 = 0. Thus, the αn induce a map α : U/R → D with

α(t−10 + R) = a. However, t−10 = s−10 ∈ E, and so α|E : E → D contains a in its image.

Hence, there is a map β : QR → D such that a ∈ im β.

Moreover, the last arguments of the last paragraph show that any countable direct

summand of KR can be embedded into a submodule of KR of projective dimension 1. Thus,

KR has projective dimension 1 and the same holds for QR. Since R is a semi-prime right and

left Goldie-ring, every non-singular module, which is divisible in the classical sense, is actually

a Q-module, and hence injective and has projective dimension 1. This holds in particular for

D/Z(D). By [1, Corollary 4.6] Z(D) is weakly cotorsion, and so Ext1R(D/Z(D), Z(D)) = 0.

This shows that D is h-divisible.

c) ⇒ d): By Theorem 4.1 of [1], Z(D) is a direct summand of D whenever D is a

divisible module because D is h-divisible by c). Since divisible modules are divisible in the

classical sense, all modules which are divisible in the classical sense are weakly cotorsion by

Corollary 4.6 of [1]. Thus all divisible modules are weakly cotorsion. However, if all such

modules are weakly cotorsion, then their singular submodule is a direct summand. Thus,

d)⇒ e) holds. Finally, e)⇒ f) follows from [1, Proposition 5.1].

f) ⇒ a): Assume pdR(Q/R) = 1, and assume that R is a pre-Matlis domain with the

desired filtration

{1} = T0 ≤ T1 ≤ ... ≤ Tα ≤ ...Tκ = R×.

As a semi-prime right and left Goldie-ring, R has a maximal right ring of quotients Q which

is also its maximal left ring of quotients, as well as its classical right and left ring of quotients

[17, Theorem 3.37]. Thus, every regular element of R is invertible in Q and Q = {ab−1 | a, b ∈

R with b regular} = {c−1d | c, d ∈ R with c regular}. Let U = {RTα/R | α ≤ κ}. Observe

that for each α < κ, RTα/R is a submodule of Q/R. We show that U is a G(ℵ0)-family of

Q/R. Clearly, condition i) is satisfied since {0} = R{1}/R ∈ U and Q/R = RR×/R ∈ U .

Moreover, U is closed under unions of chains since {Tα}α≤κ forms a smooth chain and includes

R× =
⋃
α<κ Tα.
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To see that condition iii) is satisfied, take RTα/R ∈ U and let

X = {rjs−1j +R | rj, sj ∈ R with sj regular, j < ω}

be a countable subset of Q/R. Using condition ii) of the filtration, there exists β < κ

such that Tα ⊆ Tβ, {sj | j < ω} ⊆ Tβ, and Tβ is countably generated over Tα. Hence,

RTα/R,X ⊆ RTβ/R and there exists a countable subset Sα ⊆ Tβ such that Tβ = SαTα =

TαSα. Thus, if t ∈ Tβ, there exists sα1 , sα2 , ..., sαn ∈ Sα and tα1 , tα2 , ..., tαn ∈ Tα such that t =

sα1tα1sα2tα2 ...sαntαn . Then if rt−1 +RTα ∈ RTβ/RTα , we have rt−1 = rt−1αns
−1
αn ...t

−1
α2
s−1α2

t−1α1
s−1α1

.

Therefore, (RTβ/R)/(RTα/R) ∼= RTβ/RTα is countably generated by {s−1 | s ∈ Sα\Tα} and

U is a G(ℵ0)-family of Q/R.

It follows from Lemma 10.1 that Q/R admits a tight system T . It is clear that T is also

a G(ℵ0)-family of Q/R, and it is easily seen that U ∩T is a G(ℵ0)-family of tight submodules

of Q/R of the form RTα/R for α < κ. Thus, given any RTα/R ∈ U ∩ T ,

pdR(Q/RTα) = pdR((Q/R)/(RTα/R)) ≤ pdR(Q/R) ≤ 1.

It then follows from Theorem 10.11 that RTα/R is a direct summand of Q/R for every α < κ.

Since R× =
⋃
α<κ Tα, we have Q/R =

⋃
α<κRTα/R. Moreover, the smooth filtration ensures

that RTβ/R =
⋃
γ<β RTγ/R ∈ U ∩ T , and hence there exists β ≤ κ and a continuous well-

ordered ascending chain {RTγ/R | γ < β} ⊆ U∩T of submodules ofQ/R such that RTγ/R is a

direct summand of Q/R and RTγ+1/RTγ is countably generated. Hence, Q/R =
⊕

γ<β Aγ/R

where each Aγ is a countably generated. Finally, since R is right and left duo and RTγ is a

subring of Q for each γ, we have that each Aγ is a two-sided submodule of Q.

As mentioned, the example in Theorem 10.8 provides a ring for which R× does not have

our desired filtration of normal submonoids. Moreover, this example is such that pdR(Q) ≤ 1

even though Q/R cannot be written as a direct sum of countably generated submodules.

Theorem 8.2 shows that if QR is countably generated, then a module is h-divisible if and
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only if it is divisible in the classical sense. However, the ring in Theorem 10.8 has a maximal

ring of quotients which is not countably generated. In the case that (Q/R)R is generated by

ℵ1-many elements, we can find the following filtration of countable submonoids of R×:

Corollary 10.13. Suppose R is a semi-prime right and left Goldie-ring such that (Q/R)R

is a direct sum of ℵ1 many countable modules, then there exists a smooth ascending chain

T0 ≤ T1 ≤ ... ≤ Tα ≤ ..., α < ℵ1, of countable submonoids of R× such that R× =
⋃
α<ℵ1 Tα.

Proof. Let T0 = {1} and let Tσ =
⋃
β<σ Tβ for each limit ordinal σ < ℵ1. Note that each

Tσ is countable as the countable union of a countable set. Let α < ℵ1 and suppose that for

each β ≤ α, Tβ has been defined so that RTβ/R is a direct sum of countably many Aν/R.

Then, RTα/R =
⊕

Iα
Aν/R v Q/R for some countable set Iα. If RTα = Q, then we are

done. Otherwise, there exists µ < ℵ1 with Aµ * RTα . Let Aµ = 〈rnt−1n | n < ω〉 and define

T 1
α = 〈Tα, tn | n < ω〉. Observe that T 1

α is countable since it is countably generated by

countable sets. Since RT 1
α
/R ⊆ Q/R =

⊕
ν<ℵ1 Aν/R, we can find a countable subset I1α ⊇ Iα

such that RT 1
α
/R ⊆

⊕
I1α
Aν/R.

If RT 1
α

= Q, then we are done. Otherwise, there exists µ2 < ℵ1 with Aµ2 * RT 1
α
.

As before, let Aµ2 = 〈rnt−1n,2 | n < ω〉 and define T 2
α = 〈T 1

α, tn,2 | n < ω〉. Then, T 2
α is

countable and we can find a countable subset I2α ⊇ I1α such that RT 2
α
/R ⊆

⊕
I2α
Aν/R.

Note that RT 1
α
/R ⊆

⊕
I1α
Aν/R ⊆ RT 2

α
/R ⊆

⊕
I2α
Aν/R. Continue this process to find

Iα ⊆ I1α ⊆ I2α ⊆ ... ⊆ Inα ⊆ ... and Tα ⊆ T 1
α ⊆ T 2

α ⊆ ... ⊆ T nα ⊆ ... satisfying RTnα /R ⊆⊕
Inα
Aν/R ⊆ RTn+1

α
/R ⊆

⊕
In+1
α

Aν/R.

Let Tα+1 =
⋃
n<ω T

n
α and let I =

⋃
n<ω I

n
α . Observe that both Tα+1 and I are countable

since each T nα and each Inα are countable. If rt−1 + R ∈ RTα+1/R, then t ∈ T nα for some

n < ω. Hence, rt−1 + R ∈
⊕

Inα
Aν/R ⊆

⊕
I Aν/R and so RTα+1/R ⊆

⊕
I Aν/R. On the

other hand, if x ∈
⊕

I Aν/R =
⋃
n

⊕
Inα
Aν/R, then x ∈

⊕
Inα
Aν/R for some n < ω, and thus

x ∈ Rn+1
Tα

/R ⊆ RTα+1/R. Hence, RTα+1/R =
⊕

I Aν/R v Q/R. Therefore, Tα is defined for

every α < ℵ1 and T0 ≤ T1 ≤ ... ≤ Tα ≤ ..., α < ℵ1 is a smooth ascending chain of countable

submonoids of R× such that R× =
⋃
α<ℵ1 Tα.
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We conclude by once again considering rings which are right strongly non-singular and

right semi-hereditary. Recall that if R is a right strongly non-singular, right semi-hereditary

ring with finite right Goldie-dimension, then any two-sided essential submodule of Q has

the finite Baer-splitting property (Proposition 7.2). In the context of Theorem 10.12, we see

that for this class of rings our decomposition of (Q/R)R results in submodules Ai of Q which

have the finite Baer-splitting property:

Corollary 10.14. Let R be a right and left duo pre-Matlis domain such that pdR(Q) ≤ 1.

If R is right semi-hereditary, then (Q/R)R ∼= ⊕IAi/R where each Ai is an R-submodule of

Q satisfying the finite Baer-splitting property.

Proof. The proof of Theorem 10.12 shows that (Q/R)R ∼= ⊕IAi/R, where each Ai is a two-

sided R-submodule of Q. Moreover, each Ai is of the form RTi , where Ti is a submonoid of

R×. Since R ⊆ RTi ⊆ Q and RR ≤e QR, we have RR ≤e (RTi)R ≤e QR by [17, Prop. 1.1].

Hence, Ai is a two-sided R-submodule of Q such that (Ai)R is essential in Q. As a semi-prime

right and left Goldie-ring, R is strongly non-singular by [28, Ch. XI, Proposition 5.4] and

[28, Ch. XII, Corollary 2.6]. Therefore, each Ai has the finite Baer-splitting property by

Proposition 7.2.
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