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Relative to the other southern pine species, many aspects of longleaf pine (Pinus 
palustris Mill.) growth are poorly understood due to the lack of detailed studies and 
modeling efforts. With changes occurring in the ecosystem and even the climate, there is a 
need for flexible models. One such area is the crown shape and leaf area.  
This thesis is part of a larger research project based at Eglin Air Force Base in 
Florida entitled ?crown shape and leaf area distribution models for naturally regenerated 
longleaf pine trees at Eglin Air Force Base in Florida?. Crown shape and leaf area 
distribution models can also be used as an initialization model to develop biologically-
based, resource driven mixed models (individual tree model between empirical growth and 
yield models and process models) to get more precise growth estimates of longleaf. This 
thesis includes three chapters. Chapter 1 explains about the larger research project at Eglin 
including the sections of in-depth literature review for chapters 2 and 3.  
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Chapter 2 explores the models which can predict the entire distribution of total 
height rather than just the mean total height (H) given diameter at the breast height (DBH). 
Three different models with a normal error term were compared. In the first model 
(Model A) total height was used as a function of DBH with a constant variance. The 
weighted least square approach was applied to model the distribution of H in the second 
model to correct the problem of increasing variance. The third model (Model C) used H 
as a function of DBH and variance was also used as a function of DBH. All three models 
have some probability of predicting negative total height which is not realistic, however, 
the probability of predicting negative height from the third model was very low.  Finally, 
a gamma model was used to predict the distribution of H, this model never predicts 
negative height. Cross validation indicated that the gamma model was the best model to 
predict the distribution of total height among all the models compared in this study.  
Chapter 3 explores the models which can predict the entire distribution of crown 
ratio rather than just the mean crown ratio (CR) given H. Similar model forms using the 
assumption that the errors are normally distributed versus beta distributed errors were 
compared. Two different model forms were used in both the cases. The first model had 
mean crown ratio as a logistic function of H with a constant variance, whereas, the 
second model had a mean crown ratio as a logistic function of H and variance also as a 
function of H. The second model form with beta distributed error was found to be the 
best model among the models used in the study. Cross validation indicated that the beta 
model is capable of predicting the distribution of CR correctly.  This model never suffers 
from the problem of predicting the CR beyond the logical range of 0 and 1.
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CHAPTER 1 
OVERALL INTRODUCTION 
1.1 INTRODUCTION 
Empirical growth models 
Empirical growth models are developed by measuring trees at intervals of a year or 
more and relationships between change in size and certain other variables are determined 
(Bruce, 1990). Extensive databases from long-term permanent field plots covering different 
management regimes and site productivities are required to develop such models. With this 
approach it is rarely possible to predict the effects of change in the environmental 
conditions and forest management regime. These models need to be updated with 
additional data describing the change at the stand level or environmental conditions to be 
able to predict the future stand growth with better precision.  Empirical growth models are 
criticized because they make no allowance for changes in management and environmental 
conditions. 
Most empirical models are developed to simulate forest growth as a guide to 
management. The common variables included in the simple models for even-aged stands 
are species, site index, an index of stand density, and initial tree size usually based on age. 
The primary criterion for selecting the best prediction model is statistical fit to the data. 
These types of models need to be updated as management practices change, or if there are 
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changes in environmental conditions.  In these situations the assumptions that the past can 
predict the future will be violated. 
Empirical forest growth models are classified by Munro (1973) as whole-stand and 
single-tree models.  Single-tree models are divided into distance-dependent and distance- 
independent models. Whole-stand models can be based on untagged re-measured plots. 
Stand-level models use the stand as the primary growth unit.  These models work under the 
assumptions of similar growth pattern during the past and future (Bruce, 1990).  This 
implies that there will be no change in the environmental conditions and management 
practices during the time period under consideration.  They are not suitable to incorporate 
the effects of different environmental factors and changing management regimes. This 
restriction led to the development of more flexible individual tree distance-dependent and 
distance-independent growth and yield models.  
Individual-tree models use a tree as a primary growth unit.  These models also work 
under the assumptions of same growth pattern during the past and future.  Distance-
dependent models are based on mapped plots and distance-independent models are based 
on plots with tagged trees (Bruce, 1990). In the distance-dependent model the competition 
on a subject tree from its surrounding is taken into account to quantify the effect of limited 
growing space on the growth of the subject tree. This effect is quantified by indices based 
on the relative size and location of subject tree and competing trees (Daniels and Burkhart, 
1975). These indices provide empirical predictions of competition, but they do not explain 
how different growth processes are affected by limiting resources.  It is important to 
understand the effects of limiting resources on tree growth to predict the effect of alteration 
in the environmental conditions.  
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Physiologically-based Process models 
A different approach has been taken in the development of physiologically-based 
process models. In these models, trees are grown as the sum of metabolic processes over 
relatively short periods of time (hours or days). The modeled processes could include 
photosynthesis, mineral metabolism, respiration, carbon allocation and assimilation, 
absorption, and accumulation of water, minerals, and gases, translocation, and growth 
regulation (Dixon, 1990). These models require shorter duration of time for data collection. 
These models are independent of current stand conditions and management practices. 
According to Lambert-Beer equation physiologically-based process models 
simulate photosynthetically active radiation absorption (APAR) as functions of the path 
length of sun rays through the crowns, leaf area encountered and an extinction coefficient 
that is species specific (Bartelink, 2000). APAR is then converted to net primary 
productivity (NPP) using some measure of the efficiency of radiation use by the species.  
NPP is then allocated on an hourly (Bossell, 1996) or daily (Bartelink, 2000) time step.  
These values are then integrated over the growing season and then allocated to individual 
tree components of leaf, branch, stem, and root biomass.  
Developing models of tree growth as an end result of physiological processes 
would be is the best approach. However, this approach suffers from some problems. The 
number of detailed processes that need to be measured on each individual tree, 
commitment from a number of scientists for the development of sub-models for each 
process, and the information required to initialize the model severely limits the 
development of such models. This data intensity makes validation of the entire model very 
difficult. Lastly, scaling up physiological processes over both time and space represents 
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another form of extrapolation. Photosynthesis is a short-term event which is highly 
dependent on local and short-term changes in the environment, such as changes in sun 
angle and temperature over a day, which cannot themselves be precisely modeled. 
Integrating these predictions over time and space produce errors and misleading predictions 
(Johnsen et al., 2001). Most physiological studies are conducted on seedlings or small trees 
grown in controlled environment. Scaling these up to mature trees growing in a dynamic, 
competitive environment might lead to severely biased estimates due to the incomplete or 
incorrect model structures (Johnsen et al., 2001). 
A Resource-driven Model 
Empirical growth and yield models have been traditionally used for making 
economic decisions for timber production. Forest inventories could be updated in order to 
make decisions about forest management operations such as harvesting, thinning, or other 
silvicultural operations. To get reliable long-term growth predictions suitable for changing 
environment or management conditions, one alternative would be to opt for a flexible 
model that combines the statistical advantages of empirical models with the structural 
advantages of process models. With this in mind the most important components of 
physiological process models is the interception of solar radiation, which in an empirical 
sense is related to individual tree crowns rather than the bole of a tree generally modeled in 
individual tree models. 
Interception of solar radiation is one of the most important factors for the growth 
and development of a tree. It is closely related to shape of the crown and foliage mass of 
the tree. Foliage mass is an important factor for tree growth which determines the amount 
of solar radiation intercepted by a tree (Vose and Swank, 1990). Vose and Allen (1988) 
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have shown a direct relationship between leaf area and stem wood growth.  The total 
amount of solar radiation intercepted by individual trees is used as one of the most 
important inputs in the physiological process based tree growth models (Mohren, 1987). 
The availability of total radiation to an individual tree in a forest stand depends primarily 
on relative size and position of the tree crown in relation to the neighboring trees. Only a 
small portion of the available radiation is intercepted by an individual tree depending on the 
shape of the crown and foliage distribution in the crown.  Therefore, it is important to 
model tree crown shape and foliage distribution within a crown to predict the total amount 
of radiation intercepted and hence the growth of the tree.  
Crown Shape 
Crown shape of a tree is expected to change from the seedling to mature stages. 
Mohren (1987) explained the change in the crown shape of a Douglas-fir (Pseudotsuga 
menziesii) trees growing in an even-aged stand.  He described crown shape as a function of 
crown parameters, which change over time.  Crown shape also changes due to the 
competition for resources with the neighbor trees.  This change may be restricted to a few 
sides depending upon the size and distance of the competitor in a given azimuth.  The 
overall change in crown shape from cone to parabola to cylinder as described by Mohren 
(1987) is not sufficient.  The change in shape due to competition from the surrounding trees 
also needs to be incorporated.  
Crown shape can be used to describe the competitive environment of a tree. Crown 
shape is a difficult attribute to model and is usually defined by crown length and convexity 
(Grace, 1990). Crown length and crown width have been successfully used as an indicator 
of individual tree growth (Mitchell, 1975).  Terjung and Louie (1972) have indicated that 
  6
there is a variation in total radiation available for interception to the crown based on their 
shapes. They have also demonstrated the variation in availability of radiation to crowns of 
the same shape and surface area but with different dimensions. An upright cone with a 
small ratio of height to radius had 10% more radiation available than a sphere, cylinder, or 
reverse cone with the same surface area. Oker-Blom and Kellomaki (1982) have concluded 
that a narrow and tall cone-shaped crown maximizes radiation interception.  Interception of 
light by individual trees depends upon the available light reaching the crown, sun angle, 
shape of the crown, distribution of leaf area within the crown, and the photosynthetic 
capacity of the foliage. 
Leaf area distribution 
The quantity and distribution of foliage in a tree canopy are important factors to 
determine the potential of a tree to utilize solar energy and assimilate carbon through 
photosynthesis (Grace et al. 1987; Russell et al., 1989).  Foliar distribution using leaf area 
or mass has been modeled using a vertical negative exponential distribution (Kinerson et 
al., 1987), a lognormal distribution (Schrueder and Swank ,1974), and a Weibull 
distribution (Schrueder and Swank, 1974, Hagihara and Hozumi, 1986, and Vose, 1988). 
These distributions predict leaf area as a function of height within the canopy without 
regard to crown volume in space.  Most models assume uniform leaf area distributions 
throughout the crown (e.g. Mohren, 1987, Bartelink, 2000).  Mitchell (1975) has modeled a 
more spatially explicit leaf area distribution by age with concentric shells within the crown 
volume. Grace et al. (1987) has assumed a random foliage arrangement within sub-
canopies defined by photosynthetic capacity rather than age. The random arrangement 
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versus a clumped arrangement has been investigated by Norman and Jarvis (1975) and 
Baldocchi and Hutchison (1986).  
Oker-Blom (1986) and Whitehead et al. (1990) used a Poisson approximation of the 
binomial process to characterize a random dispersion of leaves within sub-canopies. 
Radiation regime in a Sitka spruce (Picea sitchensis) forest canopy was studied in detail by 
Norman and Jarvis (1975). They measured the radiation intercepted at different levels and 
positions within a canopy and predicted the interception assuming random and clumped 
foliage distributions. Predicted radiation values close to the observed radiation values were 
obtained when foliage was assumed to be in clumps.  Baldocchi and Hutchison (1986) also 
concluded that an assumption of clumped foliage gave a better result in predicting 
photosynthetically active radiation regime in an oak-hickory forest canopy.  An assumption 
of clumped foliage is probably more appropriate than random foliage for the tree crown of 
a species like longleaf pine.  Although a random or uniform distribution of leaf area within 
the crown volume is a reasonable simplifying assumption for most trees, the extreme 
clumping of foliage exhibited by longleaf pine at the tip of branches will require a more 
sophisticated model for the spatial distribution of leaf area.  
The amount of solar radiation that can penetrate the layers of foliage and become 
available for interception depends upon the foliage distribution within the tree crown 
(Grace 1990). Foliage distribution has to be defined properly to study the interception of 
solar radiation by an individual tree crown. A Weibull distribution was used by Hagihara 
and Hozumi (1986) to model the vertical distribution of leaf area of an individual tree 
crown.  Schreuder and Swank (1974) demonstrated that a Weibull distribution explained 
vertical crown biomass of white pine (Pinus strobus L.) and loblolly pines better than 
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lognormal and gamma distributions.  A Weibull distribution was also used by Vose (1988) 
to model the vertical distribution of leaf area index in a fertilized loblolly pine stand.  
Vertical distribution of the foliage does not provide information about mutual 
shading of foliage within a tree crown, which can affect total solar radiation intercepted. 
Branch growth from intercepted solar radiation cannot be predicted from the vertical 
distribution of foliage.  Foliage distribution in three dimensions will be useful for the 
computation of expected foliage density at different locations in a tree crown. It can also be 
used to predict expected solar radiation interception at different locations in the tree crown. 
This information will provide more reliable estimates of solar radiation intercepted by tree 
crowns. It would also be useful in predicting the effect of competition and management of 
tree crowns by pruning, thinning, and any environmental factors affecting needle expansion 
and retention (Nepal, 1993).  
In closed-canopy plantations of loblolly pine, branch foliage biomass was largely 
correlated with two factors: branch diameter and relative height (Nepal, 1993). A similar 
positive relationship between branch foliage biomass and branch diameter has been 
demonstrated for other species (Stephens, 1969).  However, the relationship of branch 
foliage biomass to relative height is known to vary by species. Valentine et al. (1994) noted 
that, for loblolly pine, foliage biomass per unit of cross-sectional area of the branch 
fluctuated among crown strata, and fewer needles occurred on the lowest strata because 
these branches have scant foliage. For branches at the crown base, less foliage is sustained 
probably because of restricted light availability, although the branch diameter is larger (Xu 
and Harrington, 1998). 
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The horizontal distribution of branch foliage fluctuates with relative height.  Foliage 
was shifted to the outer part on the branches lower in the crown (Maguire and Bennett, 
1996). A similar finding was reported in radiata pine (Pinus radiata D. Don) in which the 
horizontal foliage distribution along a branch was significantly different at different heights 
within the crown (Wang et al., 1990). The horizontal distribution of foliage within branches 
also varied with branch size, relative dominance of the tree, and crown ratio, which can be 
attributed to the variation in light intensity with these branch-level variables (Xu and 
Harrington, 1998). 
Among the major aspects of crown morphology, crown ratio (defined as the ratio of 
crown length to tree height) is considered one of the most important, since it strongly 
influences light interception and growth (Assmann, 1970). Trees with different crown 
ratios differ in their ability to respond to changes in environmental factors, such as release 
of neighboring competition (Velazqez-Martinez et al., 1992). Crown ratio also can serve as 
a good indicator of the growth potential of individual trees and stands, as an index of 
carbohydrate balance (i.e. ratio of photosynthesizing tissue to aboveground respiring 
tissue). Low values of crown ratio are likely to be associated with low leaf areas and 
possibly variation in foliage distribution within the crown (Xu and Harrington, 1998). 
The main goal of this research project is to develop crown shape and leaf area 
distribution models for naturally regenerated longleaf pine trees at Eglin Air Force Base in 
Florida. The models developed in this study can also be used as an initialization model to 
develop biologically-based, resource driven mixed models (individual tree model between 
empirical growth and yield models and process models) to get more precise growth 
estimates of longleaf. This thesis will include only the first few components of the model. 
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1.2 METHODS 
Study area 
The data for this study were collected in naturally regenerated longleaf pine (Pinus 
palustris Mill.) stands at Eglin Air Force Base in Florida from September 1996 to March 
2000. The total land area of Eglin Air Force Base is approximately 187,000 ha, most of 
which is forested.  The major tree species occurring on the land base at Eglin are longleaf 
pine, sand pine (Pinus clausa (Chapm.) Vasey.), and various scrub oaks (Quercus spp.). 
The base is primarily composed of all-aged stands of longleaf pine.  Frequent disturbances 
from firearms testing maintain the stands in an open character.  This area has soil with low 
moisture holding capacities and limited nutrients which result in very slow growth.  Trees 
face drought conditions during the summer even though the area receives more rainfall than 
any other part of Florida (Anderson et al., 1999). 
Data collection 
The sampling of longleaf pine trees covered the range of tree sizes, seedlings to the 
largest trees observed on the base, across the range of stand densities, and the range of sites. 
The total height (H) ranged from 1.4 to 27.2 m and diameter at breast height (DBH) ranged 
from 1.8 to 42.3 cm. In 27 stands across the study area, 106 trees were selected at random 
locations from September 1996 to 2000. Stands were selected to represent all the classes of 
site index, basal area per ha, and tree density (number of trees per ha).  
Trees growing adjacent to the subject tree were evaluated to determine whether or 
not they are in competition with the subject tree.  A competitor is defined as a tree crown 
projection which is in close proximity with the projected crown of the subject tree. In 
general any tree whose crown projection is near that of the subject tree were recorded as a 
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competitor, since those trees may influence the growth of the subject tree in some way, e.g. 
through root competition.  
Competing trees were assigned a competitor ID number (1 through however many 
competitors there were) and measured for location, DBH, height at the base of live crown 
(HBLC), H, and crown ratio (CR) in the same manner as the subject tree. Species of the 
competitor was also noted. Spatial location of the subject tree and its competitors was 
recorded.  A series of pin flags were laid out on the ground along the edge of the competing 
tree?s crown where it influences the subject tree?s crown.  The azimuth and distance to plot 
center of these flags was then recorded to provide an indication of the location of the 
competing tree?s projected crown.  
Destructive measurements of subject trees were taken on a total of 106 trees. An 
intensive measurement of crown architecture was done on 83 of these trees. Measurement 
of foliage for surface area was also done on these trees. Less intensive crown 
measurements were made on the remaining 23 trees and were referred to as Short Data Set 
(SDS) trees. SDS trees were measured for gross crown characteristics in the field. Each live 
branch in the crown was measured for height above ground, basal diameter (diameter 2 
centimeters away from the bole), overall length, and azimuth relative to the center of the 
tree. The number of shoots bearing live foliage and buds on each branch was counted. 
Twenty percent of these shoots were measured for growth over the three most recent years. 
Full crown architecture trees had detailed measurements made on the subject tree?s crown. 
Subject trees were climbed and their branches were sawed off and carefully lowered to the 
ground in the field after taking the standing measurements. Standing measurements 
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included re-measuring DBH or ground line diameter, H, HBLC, and distance, and azimuth 
relative to the plot center. 
Every fifth branch was selected systematically to be a sample branch. Foliage 
samples were collected from a single point within each meter-radius volume starting from 
the base of sampled branch immediately after the branch was removed from the tree. 
Samples were separated by age class and packed in a sealed plastic bag in a cooler until 
return to the laboratory. The samples collected were transferred and retained in a freezer 
until the time they were measured. They were placed in a sealable bag labeled with the 
stand, plot, and tree number, the sample point number, age of the needle, branch number, 
and distance from the base of branch. The sample point was marked with an aluminum tag 
indicating the sample numbers collected at that point and the distance from the base of 
branch. Additional samples were collected with each additional meter radius from the base 
of the branch. Foliage samples were used to estimate leaf area, leaf biomass, and nutrient 
contents. 
The portion of the bole containing the bases of the branches was cut into shorter 
lengths for ease in handling. The crown of each tree was then brought to the Auburn 
campus to 3-dimensionally map the foliage over the past three years using the method 
devised by Smith (1990, 1994). Each stem was also measured throughout its length for 
diameter and bark thickness.  Stem discs were removed every meter up the tree for radial 
growth, sapwood basal area, specific gravity, and age.  At the laboratory these bole sections 
were placed in a specially designed stand and the branches reattached. Cartesian 
coordinates for the spatial location of live shoot tips were obtained by referencing a grid on 
the floor to obtain X and Y coordinates; Z coordinates were obtained by a tape measure 
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with a plumb bob affixed to the free end. Coordinate sets were measured at the four points 
representing the termini of shoot length growth for the three most recent years. Shoot 
diameter during these three years was also measured.  
A series of conditional probability models will be applied to predict the 
distributions of H, HBLC, crown length (CL), number of whorls in the crown, number and 
size (length and diameter 2 centimeter away from the bole) of the branches in each whorl, 
the number and location of foliar points on each branch, and lastly the number and size of 
needles at each foliar point. Several regression models (linear and non linear) will be 
screened to find the best prediction model for each step in the model with the focus on 
predicting the distribution of values, not just the predicted mean values, using all variables 
from previous steps. Monte Carlo simulations will be used to simulate the marginal 
distribution at each step combining the predicted distributions of all previous steps in the 
model.  
Simulation Steps 
0. Diameter at the breast height (DBH) will be measured in the field directly. 
1. Conditional distribution of H given DBH will be predicted for an individual tree.   
2. Conditional distribution of crown ratio (CR) given H and DBH will be predicted for an 
individual tree.   
3. Conditional distribution of diameter at the base of live crown (DHBLC) given DBH, H, 
and HBLC will be predicted for an individual tree.   
4. Conditional distribution of bole diameter (BD) at different heights given DBH, H, 
HBLC and DHBLC will be predicted for an individual tree.   
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5. Conditional distribution of number of whorls (NWH) on the tree bole given DHBLC, 
crown length (CL), H, and DBH will be predicted for an individual tree.  
6. Conditional distribution of each whorl height (WH) given DBH, CL, DHBLC and NWH 
will be predicted for an individual tree.   
7. Conditional distribution of number of branches (NB) in each whorl given DBH, H, and 
relative height from the ground will be predicted for an individual tree.  
8. Conditional distribution of base of the branch diameter (BBD) given DBH, H, BD, 
relative height in the bole, and the NB in the whorl will be predicted for an individual 
tree. 
9. Conditional distribution of maximum branch length (MBL) given BBD, BD, relative 
height within the crown, and the presence of competitors will be predicted for an 
individual tree.  
10. Conditional distribution of number of foliar points on the tree (NFPT) given DBH, H, 
DHBLC and CL will be predicted for an individual tree. 
11. Conditional distribution of number of foliar points on each branch (NFBP) on a 
branch given BD and NFPT, MBL and the presence of competitors will be predicted for 
an individual tree. 
12. Conditional distribution of distance of each foliar point out from the bole (FPD) 
given BBD, BD, MBL, the presence of competitors and relative height will be predicted 
for an individual tree. 
13. Conditional distribution of horizontal angle of branch (FPH) given BBD and FPD 
will be predicted for an individual tree. 
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14. Conditional distribution of vertical angle of branch (FPV) given FPD, and MBL will 
be predicted for an individual tree. 
15. Conditional distribution of foliar point biomass (FPB) given FPD, relative height 
above the ground and location of other foliage will be predicted for an individual tree. 
This thesis is a part of a large project ?Crown shape and leaf area distribution model 
for naturally regenerated longleaf pine at Eglin Air Force Base, Florida?. Out of the 15 
simulation steps (Flow Chart 1.3) in the overall project this thesis includes only two steps, 
those are,  
Step 1 Prediction of the distribution of total height for longleaf pine at Eglin Air Force 
Base in Florida and  
Step 2 Prediction of the distribution of crown ratio for an individual tree using Normal 
versus Beta distribution model for longleaf pine at Eglin Air Force Base in 
Florida. 
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1.3 FLOW CHART 
2. Crown ratio 
4. Bole diameter at any 
height 
5. Number of whorls 
7. Number of branches in a whorl 
8. Base of branch 
diameter 
9. Maximum branch length 
12. Distance of foliar point out 
from bole 
3. Diameter at the base of the 
live crown  
0. Diameter at breast 
Height  
1. Total height 
10. Number of foliar 
points on the tree 
6. Whorl height 
11. Number of 
foliar points on 
branch 
13. Horizontal angle 
15. Location of a foliar point 14. Vertical angle 
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1.4 LITERATURE REVIEW FOR HEIGHT-DIAMETER MODEL 
Total tree height (H) is often estimated from observed tree diameter at breast height 
(DBH) outside bark. Measuring breast-height diameter is simpler, more accurate, and 
cheaper than measuring tree height. Thus models based on DBH measurements are cost 
effective (Peng, 2004). Tree height-diameter equations to predict height are required by 
forest resource mangers to obtain accurate yield estimations. These estimates are used for 
decision making processes in forest management (Curtis, 1967). Total tree height and DBH 
outside bark are two essential forest inventory measures (Zhang et al., 2002). According to 
Botkin et al. (1972) and Avery and Burkhart (2002) H and DBH are needed to estimate 
timber volume, site index, and in forest growth and yield models. According to them the 
relationship between DBH and the total tree height is fundamental for developing growth 
and yield models for forest stands. Accurate height-diameter functions are essential for the 
prediction of stand development over time. According to Burkhart et al. (1972) and Huang 
et al. (1992) growth and yield models require height and diameter as basic input variables. 
When actual height measurements are not available, height-diameter functions can also be 
used to predict height growth indirectly (Larsen and Hann, 1987).  
Height-diameter relationships of a given species depends on local environmental 
conditions and varies within a geographic region. The local environmental conditions (e. g. 
climate, soil and vegetation type) play a significant role in affecting the height-diameter 
relationships. According to a study done by Zhang et al. (2002) there are distinct variations 
in height-diameter relationships for trees in different ecological regions. Similar results 
were obtained from a study done by Peng (2004). According to him significant differences 
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in height-diameter relationship for black spruce were found between different ecological 
regions. The height-diameter relationship is generally asymptotic with height constrained to 
a maximum, while diameter is not (Prentice and Helmisaari, 1991). According to Niklas 
(1995) height may be constrained by limitations of mechanical support and increasing 
respirational load of stem tissue. Water stress in the upper shoots of tall trees may also limit 
the height growth (Ryan and Yoder, 1997).  
Height-diameter relationships are generally nonlinear. Nonlinear height-diameter 
models have been commonly used in height predictions (Curtis et al., 1981; Arabatzis and 
Burkhart, 1992). Several height-diameter models have been developed for different tree 
species in north America (e.g. Curtis, 1967; Larsen and Hann, 1987; Wang and Hann, 
1988; Huang et al., 1992; Moore et al., 1996; Zhang, 1997; Lappi, 1997). Curtis (1967) 
compared a number of nonlinear height-diameter equations for second-growth Douglas-fir. 
Most of them provided the similar results within the range of the observed data.  
A study done by Huang et al (1992) for major Alberta tree species compared twenty 
nonlinear height-diameter models for 16 different species. All the models were fitted using 
weighted nonlinear least square regression due to the presence of unequal error variance. 
Weighted mean square error, asymptotic t-statistics for the coefficients in the model, plots 
of standardized residuals against predicted height were used to check the performance of 
the models. Sigmoid functions, as for example, Chapman-Richards function, modified 
logistic function, and Weibull-type function produced the most reasonable results.  
Arabatzis and Burkhart (1992) compared the prediction performance of eight 
height-diameter regression models for estimating mean stand height for loblolly pine. The 
nonlinear model of the form 
Db
aeH
/
= performed the best among all the models tested. 
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Moore et al. (1996) have developed individual nonlinear height-diameter equations for ten 
major species in the inland Northwest.  
In a study done by Zhang (1997) six nonlinear growth functions were fitted to tree 
height-diameter data for ten conifer species in the inland Northwest of the United States. 
The models found superior in predictions to other models are Schnute, Weibull, and 
Richards function. In his paper he explained that the best model is selected based on its 
statistical properties such as mean square error, asymptotic t-statistics for the coefficients, 
model
2
R , and analysis of the residual, however, he suggested that the competing models 
should be evaluated based on their predictive ability across the range of tree diameter. He 
further added that model validation should be done using an independent data set.  
Temesgen and Gadow (2004) have evaluated two sets of five height-diameter 
models. The first set of the models used total tree height as a function of DBH; whereas, the 
second set used total tree height as a function of DBH and other stand level variables. The 
analysis of residual plots and fit statistics for the models which include the stand level 
variables were found superior to the models with only DBH as an explanatory variable. 
However, cost of collecting data for additional variable versus the gain in precision should 
always be considered before selecting a model with higher number of explanatory variables 
for a model (Temesgen and Gadow 2004). Therefore, the principle of parsimony should 
always be considered before making selection and recommending a model to use.  
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1.5 LITERATURE REVIEW FOR CROWN RATIO MODEL 
The ratio of live crown length to the total tree height is commonly known as crown 
ratio. Crown ratio is the characteristic usually used to describe the crown size (Hynynen 
1995). Measures of crown dimension are importants component of forest growth and yield 
models, and are used in many tree and crown level growth models (Cole and Lorimer, 
1994). Tree crown parameters have been used as predictor variables in diameter and height 
growth equations (Monseurd and Sterba, 1996). Crown size is an important measure of tree 
vigor (Valentine et al., 1994). Crown ratio and crown length reflect the potential of a 
released tree to use available resources such as increased growing space and therefore are 
useful indictors of tree vigor (Hasenauer and Monserud, 1996), wood quality (Kershaw et 
al, 1990), stand density (Clutter et al., 1983), competition and survival potential (Oliver and 
Larson, 1996). Crown ratio has also been used as an input variable to estimate growth and 
mortality of individual trees (Temesgen et al., 2005). 
The Crown of a tree reflects the level of competition over time (Mitchell, 
1975).When density increases the crown length decreases.  Reducing stand density by the 
application of thinning practices slows the recession of crown base (Short and Burkhart, 
1992). Thus the crown length is highly influenced by the prevailing growing conditions in 
the past (Bella, 1971). CR is also considered as a measure of photosynthetic potential. 
Photosynthates and hormones produced in the crown control shoot growth, cambial 
growth, and root growth (Kozlowski, 1971). According to Monserud (1975) crown ratio is 
a good indicator of a tree?s ability to utilize available resources for growth. 
  21
Measurement of CR for each tree can be time-consuming and difficult to obtain in 
very dense stands and for the trees where the base of live crown is obscured. Predictions of 
tree crown ratio have been based on allometric relations between stand and tree variables 
(Hasenauer and Monserud, 1996). Crown ratio can be predicted directly from tree and 
stand variables (Hasenauer and Monserud, 1996) or indirectly from estimates of the height 
to the base of live crown (Sores and Tome 2000). 
According to Dyer and Burkhart (1987) ?crown ratio has been predicted either 
directly from tree and stand variables or has been computed indirectly from estimates of 
total height and crown height.? They used a nonlinear model form that yields logical 
estimates of CR. The explanatory variables used in the model were stand age, tree diameter, 
and tree height.  
Hynynen (1995) presented a nonlinear model that yields logical predictions for tree 
crown ratio. The model is based on data from permanent experimental plots located in 
even-aged Scots pine. Explanatory variables used in the model were stand dominant height, 
stand basal area, tree diameter, and tree height. The effect of thinning on tree crown ratio 
was modeled by incorporating a thinning response variable into the model.  
In a study done by Hasenauer and Monserud (1996) crown ratio was predicted 
using a logistic function. The explanatory variables used in the model were tree size 
characteristics, stand density, and site factors. The size variable was found to be 
approximately equal in importance to stand density while the site factors explained the least 
amount of variation. The height/diameter ratio was the most important size variable.  
Soares and Tome (2000) have used several nonlinear models for the prediction of 
crown ratio. The models tested were logistic, exponential, Richards and Weibull function. 
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The Richards function was selected for the prediction of crown ratio. As a function of 
age, density, diameter and dominant height.  
In a study conducted by Temesgen et al (2005) crown ratio models for five 
species in British Columbia were fitted using the independent variables size, competition, 
and site. The best predictor for crown ratio was found to be the size variables. Total tree 
height was found to be an important predictor for all five species. The results indicated 
that the CR decreased with increase in height and with increase in competition. A logistic 
model was used to predict the CR which gives the estimates of mean predicted CR 
between 0 and 1.
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CHAPTER 2 
MODEL FOR PREDICTING DISTRIBUTION OF TOTAL HEIGHT FOR 
LONGLEAF PINE AT EGLIN AIR FORCE BASE IN FLORIDA. 
2.1 INTRODUCTION 
The prediction of total height from observed diameter at breast height (1.3 m 
above ground) has many applications in forest management and silvicultural research 
(Meyer, 1940). Height-diameter models have been used in the prediction of tree volume 
(Curtis, 1967), site index, and growth and yield of a tree and a stand (Vanclay, 1994). 
Total tree height and diameter at breast height are also used as important input variables 
in several growth and yields models (Burkhart et al., 1972). Precise estimation of tree 
height is one of the most important requirements in forest inventory, growth and yield 
estimation, and forest management (Botkin et al., 1972).  
Diameter at breast height (DBH) of a tree is easily measured in the field; whereas 
measurement of total tree height (H) is difficult and more time-consuming. Height-
diameter functions can be developed and used to estimate H from the measurements of 
DBH in the field. These functions can be used to predict total tree height growth, and 
volume when actual height measurements are not available (Larsen and Hann, 1987).  
Generally the height-diameter functions have a nonlinear nature. Nonlinear 
height-diameter models have been used in height predictions for many tree species 
(Arabatzis and Burkhart, 1992). Several height-diameter models have been developed 
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and used for various tree species in North America (e.g. Larsen and Hann, 1987; Wang 
and Hann, 1988; Huang et al., 1992; Moore et al., 1996; Zhang, 1997; Lappi, 1997). The 
primary purpose of all of these models is the prediction of the mean tree height for a 
given DBH. Of secondary importance are estimates of the confidence interval about the 
predicted mean height especially near the extremes and beyond the range of the data. 
Selecting model forms that reduce the width of the confidence intervals while 
maintaining good predictions of the mean is a valid objective of model development. The 
width of the confidence interval depends upon two factors, the sample size and the 
variability of the predictions at each DBH. Modeling this variability along with the mean 
therefore has potential to reduce the confidence interval of the mean predicted height. 
Models that seek to predict the distribution of variables, not just the mean, have potential 
benefits as the models of forest growth and yield become more complex. Simulating the 
distribution is essential to estimate prediction errors and ultimately the confidence 
interval of future yields. For example, estimating the average height per tree in an 
inventory when tree heights are predicted from observed DBH normally considers only 
the variability in mean heights between trees. The resulting confidence interval is under 
estimated since it does not include the variability due to the prediction.  
This variability can be easily included by using a Monte Carlo simulation of the 
predicted distribution of tree height for each observed tree. However, this is dependent 
upon the distribution, and not just the mean, being simulated well by the model. For this 
reason, including much more complex models involving multiple interconnected 
predictions, the predicted distribution of height for given DBH will be of equal 
importance as the predicted average height. The primary objectives of this study are to: 
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i) Construct a model to predict the distribution of total height based on DBH for 
longleaf pine (Pinus palustris Mill.) trees growing in natural stands at Eglin Air 
Force Base in Florida. 
ii) Assess the ability of the model to predict the distribution of height based on 
the DBH measurement in the field.  
2.2 MATERIALS AND METHODS 
2.2.1 DATA AND STUDY AREA 
Longleaf pine (Pinus palustris Mill.) is naturally distributed in most of the Atlantic 
and Gulf Costal Plains from southeastern Virginia to eastern Texas and south through the 
northern two-thirds of peninsular Florida. This tree is also found in the Piedmont, Ridge 
and Valley, and mountain Provinces of Alabama and northwest Georgia (Boyer, 1991).  
Longleaf pine grows in warm, wet temperate climates characterized by hot summers and 
mild winters. More frequent fires favor longleaf pines, which are more fire adapted. 
(Boyer, 1991).  
Data for this study were collected in naturally regenerated longleaf pine stands at 
Eglin Air Force Base in Florida from September 1996 to March 2000. Total land area of 
Eglin Air Force Base is approximately 187,000 ha, most of which is forested.  The major 
tree species occurring on the land base at Eglin are longleaf pine, sand pine (Pinus clausa 
(Chapm.) Vasey.), and various scrub oaks (Quercus spp.).  The base is primarily composed 
of all-aged stands of longleaf pine.  Frequent disturbances from firearms testing maintain 
the stands in an open character. The major soil series include Lakeland and Troup (Overing 
and Watts 1989). These soil series have deep, excessively drained, rapidly permeable soils 
and limited nutrients which result in very slow growth.  For this reason the trees face 
  34
drought conditions during the summer even though the area receives more rainfall than any 
other part of Florida (Anderson et al., 1999). The trees are flat topped with a site index 
ranging from 16 to 19 m; whereas a nearby Escambia Experimental Forest with similar age 
has a site index range of 18 to 26 m (Meldahl et al., 1998). The basal area per ha for Eglin 
in the study area was 12 m
2
/ha; whereas the basal area per ha for Escambia Experimental 
Forest was 26-34 m
2
/ha. (Kush et al., 1999). 
Sampling of longleaf pine trees covered the range of tree sizes, from saplings to the 
largest trees observed on the base, across the range of stand densities, and the range of sites. 
Total height (H) ranged from 1.4 to 27.2 m and diameter at breast height (DBH) ranged 
from 1.8 to 42.3 cm. In 27 stands across the study area, 85 sample trees were selected at 
random locations.  Stands were selected to represent all the classes of site index, basal area 
per ha, and tree density. Samples were selected from the stands which were naturally 
established and free of major disturbances, primarily crown-scorching fires, within the past 
five years.  Total height and DBH were measured for each tree. Trees with major defects 
including forking, major breakage, and weak stems were not selected as candidate trees.  
2.2.2 METHODS 
Least squares is a very common method of estimating parameters. This method 
provides optimal estimators when the assumptions of homogeneity of variance in the error 
term (Meng and Tsai, 1986) and linearity between response and predictor variables are 
satisfied. However, the plot of H against DBH depicts a nonlinear relationship. Moreover, 
total height and variance of total height increase as DBH increases (Figure 1) and the 
assumptions required for the optimality of ordinary least squares (OLS) estimators are not 
satisfied. Therefore, a nonlinear least square approach was used in model fitting. A non-
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linear regression model used by Curtis et al. (1981), Larsen and Hann (1987), and Wang 
and Hann (1988) with different formulations was used to obtain an appropriate model form.  
Model fitting was carried out with the NLMIXED procedure using a quasi?Newton 
algorithm (SAS Institute, Inc. 2004). NLMIXED will produce maximum likelihood 
estimates of any likelihood function. This procedure allows all parameters to be functions 
of independent variables and can be used to find estimators of parameters in complex 
models. The NLMIXED procedure uses the method of maximum likelihood (MLE) to 
obtain the estimates of the coefficients numerically. MLE selects as estimates the values of 
the parameters that maximize the likelihood of the observed sample. It is consistent, that is, 
as the sample size gets larger, the estimates converge to the true values. It is asymptotically 
efficient, which means that for large samples, it produces precise estimates. It is also 
asymptotically unbiased, that is, for large samples one expects to get the true value on 
average. The distributions of the estimators themselves are asymptotically normal, if the 
sample is large enough. These are all excellent large sample properties. For the normal 
distribution the least square method and MLE provide the same estimates of parameters 
(Casella and Berger, 2002).  
The following criteria were used to decide the performance of height-diameter models: 
1. Significant t-test for the parameters in the model. 
2. AIC value. 
3. Analysis of the standardized residual plots. 
4. Kolmogorov-Smirnov test for normality of standardized residuals. 
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Figure 1.  Plot of Total Height Vs. Diameter at 
Breast Height
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5. Simulated Type I Error rate using cross validation.  
The asymptotic t-statistic for each coefficient in the model should be significant 
for any model to be considered appropriate for prediction of mean and prediction of 
distribution. It tests whether an independent variable is important to be included in the 
model. The model with any of the parameters insignificant at a specified level of 
significance will be considered a bad model and hence discarded. Therefore, this is the 
first test that any candidate model has to pass to be considered for further analysis.  
Akaike (1973) developed an estimation criterion, defined as 
KdatalAIC
e
2))|
?
((log2 +?= ?  where, )|
?
(log datal
e
? is the value of the maximized 
log-likelihood over the unknown parameter (?  ), given data and the model. K is the 
number of estimated parameters included in the model (Anderson et al., 2000). AIC 
penalizes for the addition of parameters, and thus selects a model that fits well but has the 
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smallest number of parameters. The model with the lowest AIC is selected as a good 
candidate for the data available (Anderson et al., 2000).  
In the normal distribution the standardized residual is computed as, 
ni
e
d
i
i
i
,...,2,1,
?
==
?
,  where 
iii
yye ??= , 
i
y is observed H, and 
i
y?  is the predicted H for 
the ith tree. The standardized residuals have mean zero and unit variance. They are useful 
in analyzing the problems of model specification and outliers. Most of the standardized 
residuals should lie in the range of 33 ???
i
d . Analysis of the standardized residual 
plots against the predicted value should show a more or less even scatter around the zero 
line throughout the range of the predicted values in which case equal error variance is 
assumed. A model that does not suffer from non-constant error variance is considered to 
be good candidate for further analysis. Any pattern in the standardized residual might 
reveal unequal error variance, or a problem of model specification (Huang et al., 1992).  
The Kolmogorov-Smirnov (KS) test was used to test whether the standardized 
residuals follow a standard normal distribution. The KS test is based on comparison of 
the empirical distribution function (edf) of the data and the cumulative distribution 
function (cdf) of an assumed distribution. It is non-parametric and distribution free test 
(Hollander and Wolf ,1999). Standardized residuals for a good model will follow a 
standard normal distribution and will pass this test.  
Cross validation checks whether the distribution obtained from an independent 
data set follows a specified distribution (Lilliefors, 1967). The KS test was used for this 
purpose. The Type I Error rates of the KS test obtained from running the simulation is 
compared to the nominal Type I Error rate of 5% in our study. A model will be deemed a 
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better predictive model than a competing model if its simulated Type I Error rate is closer 
to the nominal Type I Error rate than its competitor?s simulated Type I Error rate. 
2.3 RESULTS  
The analysis of height-diameter relationship depicted by the scatter plot of H and 
DBH (Figure 1) reveals that there exists a nonlinear association. The larger trees growing 
in the study area are flat topped and it is reasonable to assume that the height will 
approach an asymptote as DBH gets larger becoming independent of DBH. Therefore, a 
non-linear model of the form
h
C
hh
DBHba
eH
*
3.1
+
+= was used to predict the mean height in 
all the models; however, different formulations of variance were used to predict the 
distribution of total height. This model estimates the total height to be 1.3 meters as DBH 
approaches zero. Total height approaches an asymptote as DBH gets very large, outside 
the range of the observed data, which is biologically reasonable. The models were 
grouped into two broad categories. Category one (model A, B, and C) requires the 
assumption of normality of the error term and category two (model D) does not require 
the assumption of normality.  
2.3.1 MODELS THAT REQUIRE THE ASSUMPTION OF NORMALITY OF 
THE RANDOM ERROR 
A. Model for the prediction of total height (H) as a nonlinear function of DBH 
This model assumes that total tree height H is normally distributed with mean 
height ? and variance in total height ?P
2
P, that is, ),(~
2
??NH , where 
h
C
hh
DBHba
e
?+
+= 3.1? , 
2
? is an unknown constant and 
h
a B
, 
B
h
b and 
h
c are unknown 
coefficients to be estimated from the data.  The mean? is expected tree height in meters, 
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DBH is the observed diameter outside bark at breast height in centimeters, and e is the 
base of the natural logarithm function. The NLMIXED procedure in SAS was used to 
maximize the likelihood function or equivalently the log likelihood function 
()
?
=
????=
n
i
i
nhhh
Hn
n
HHcba
1
2
2
1
2
1
log2log
2
)),,|,,,(log( ?
?
??? ??
. 
For the nonlinear model A all the parameters
hh
ba , , and 
h
c were significant (Table 
1). The test of normality (Kolmogorov-Smirnov) revealed that the standardized residuals 
were not normal (p-value=0.0293), and the plot of standardized residual against predicted 
total height indicated that the error variances were not equal throughout the range of 
predicted height (Figure 2), that is, there exists a problem of non-constant variance.  
Figure 2. Plot of Standardized residual Vs. Predicted 
Total Height - Model A
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The fitted curve for prediction of total height does go through the center of the 
observed total height (Figure 3). This is indicative of a good predictive ability of Model A 
for the prediction of mean total height. This model works under the assumption of equal 
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variance and the prediction intervals for the whole range of predicted height are the same 
(Figure 3) which is not realistic. The prediction interval is too wide for smaller DBH and 
too narrow for larger DBH. 
Figure 3. Plot of Observed Total Height, Predicted Total 
Height, and Prediction Interval for Total Height against 
Diameter at Breast Height - Model A
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Figure 4 reveals that for all three examples DBH (4, 10, and 40 cm) the variance is 
the same, however, there is a shift in the mean heights. This is true for all the trees with 
different DBH within the range of observed data set (Figure 3).  
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Figure 4. Distribution of Predicted Total Height 
(Diameter at Breast Height = 4, 10, and 40 cm) 
Model A
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Table 1. Model Parameter Estimates 
Model Coeff Estimate P-val LCL UCL AIC K-S  (P-val) 
A 
B
h
a?
B 
3.5232 <.0001 3.0352 4.0112 412 0.0293 
 
B
h
b
?
B 
-7.3457 0.0002 -11.1079 -3.5836   
 
B
h
c?
B
 
-0.7360 0.0002 -1.1095 -0.3626   
 
2
??  
6.7871 <.0001 4.7171 8.8571   
B 
B
h
a?
B 
 3.3395 <.0001    3.0354   3.6437 391.8 <0.010 
 
B
h
b
?
B 
-8.7253 <.0001  -11.2247  -6.2258   
 
B
h
c?
B
 
-0.8846 <.0001   -1.1367  -0.6325   
 
?
?
 
0.05496 <.0001   0.03820  0.07172   
C 
B
h
a?
B 
  3.2688 <.0001    3.1017  3.4359 373.7 0.0611 
 
B
h
b
?
B 
 -9.8979 <.0001  -10.3702 -9.4257   
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B
h
c?
B
 
 -0.9780 <.0001   -1.1055 -0.8505   
 
B
v
b
?
B 
-69.2005 0.0449   -136.80 -1.5980   
 
B
v
c?
B
 
 -2.4469 <.0001   -3.4770 -1.4168   
 
?
?
 
  8.8303 <.0001    5.3966 12.2639   
D 
h
a?    3.2585 <.0001   3.0974   3.4197 380.2 >0.150 
 
h
b
?
 
-9.8464 <.0001 -10.9006  -8.7921   
 
h
c?  -.9797 <.0001 -1.1.22 -0.8572   
 
?
?
 
 0.05256 <.0001  0.03667  0.06845   
 
B. Model for the prediction of total height (H) as a weighted nonlinear function of 
DBH 
Observing an increasing variation of response variable as the values of explanatory 
variable increase is common in forestry (Huang et al., 1992). That the variation in total 
height H increases as the DBH increases is obvious from the scatter plot of H against DBH 
(Figure 1). Using a weighting factor in the regression analysis has been the standard 
approach to correct this problem in forestry (Meng and  Tsai 1986). Generally the weight 
selected is inversely proportional to the error variance (Huang et al., 1992). However, 
weighted regression changes the estimates of parameters and the standard errors of the 
estimates (Ratkowsky, 1990). Weighted statistics are not as straightforward as un-weighted 
statistics and it is difficult to make clear interpretations (Carroll and Ruppert, 1988).  
Theoretically, the weights are required to be known exactly in weighted regression 
(Huang et al., 1992). This is not the case in many practical applications and estimated 
  43
weights must be used instead. It is usually difficult to evaluate the effect of having to use 
estimated weights. While a slight variation in the weights usually do not affect a regression 
analysis significantly, if the weights are estimated from a small sample, the results of an 
analysis could be severely affected (Carroll and Ruppert, 1998). Weighted least squares 
(WLS) estimators of model parameters are also sensitive to the effects of outliers.  
For the nonlinear model B, total height H is taken to be normally distributed with 
mean height ?  and variance 
k
DBH
22
?=?? , that is, ),(~
2
??NH , where 
h
C
hh
DBHba
e
?+
+= 3.1? . This is equivalent to the nonlinear regression 
model ??? ?+= )(DBHH , where ),0(~
2
?? N  and 
k
DBHDBH
2
)( =?  is a weight 
function. To perform weighted nonlinear regression both sides of the nonlinear regression 
model are divided by )(DBH? which gives ?? +=
**
H , where 
)(
*
DBH
H
H
?
=  
and 
)(
*
DBH?
?
? = . 
The weighted nonlinear regression approach (Model B) was applied to correct the 
problem of non-constant variance that was prevalent in Model A. Huang et al. (1992) used 
a weighting factor of the form 
k
ii
DBHw
2
=  as it required only a single unknown parameter 
and goes to 0 as DBH goes to 0. The nonlinear Model B was fitted with WLS using ten 
alternative values for k (k= 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 1, 1.5, 2.0). The highest 
stabilization of error variance was achieved with k = 0.85 (Figure 5). This weight is also 
similar to the weight applied by Larsen and Hann (1987), and Farr et al. (1989).  
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Figure 5. Plot of Standardized Residual Vs. 
Predicted Height - Model B Weighted Least Square
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The model parameter estimates for the mean were obtained by maximizing the 
normal log likelihood where the mean and variance of height are simultaneously specified 
as 
h
C
hh
DBHba
e
?+
+3.1  and 
85.02?
?DBH? , respectively. The NLMIXED procedure allows for 
specification for all parameters of a distribution not just the mean. This way, difficulties 
with transforming the response variable to obtain comparable AIC values were avoided. All 
the parameters for Model B were significant (Table 1). After the application of WLS, the 
plot of standardized residuals against predicted total height revealed that the error variances 
were approximately constant throughout the range of predicted height (Figure 5); however, 
Kolmogorov-Smirnov test of normality (Table 1) indicated that the errors did not follow 
the standard normal distribution (p-value < 0.010). Therefore, the WLS approach was 
appropriate to correct the problem of non-constant error variance; however, non-normality 
of the errors still remains a problem. The fitted line for prediction does go through the 
center of the observed data suggesting that the predictions for the mean height achieved 
from Model B with weight 
85.02?
DBH are acceptable. The prediction interval for total 
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height increases as DBH increases across the range of DBH (Figure 6) which agrees with 
the behavior of the observed data in our study. The AIC for the model is lower than model 
A indicating a slight improvement in the model. 
Figure 7 reveals that as the DBH increases both mean and variance of total height 
also increase. This is obvious from the shift in mean with different spread of the normal 
distribution plots obtained for DBH 4, 10, and 40 cm in the figure.  
Figure 6. Plot of Observed Total Height, Predicted Total 
Height, and Prediction Interval for Total Height Vs. 
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Figure 7. Distribution of predicted Total Height 
 (Diameter at Breast Height = 4, 10, and 40 cm)  
Model B
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C. Model for the prediction of total height as a nonlinear function of DBH and also 
variance of total height as a nonlinear function of DBH 
Since NLMIXED provides MLE of all parameters simultaneously, the variance of 
H can be any function of DBH, not just the limited power function used in weighted 
regression. A model for predicted mean H was developed based on the analysis of the 
scatter plots of H against DBH (Figure 1). A plot of variance versus DBH was made by 
dividing the data into eight classes. A nonlinear function is evident (Figure 8), but the 
variance appears to approach an asymptote instead of going to infinity as assumed in WLS 
where
k
DBH
22
?=?? . Therefore, an exponential function similar to that used for?  was 
used for variance.   
Figure 8. Variance of Total Height Vs. 
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Total height H is taken to be normally distributed with mean height ? and 
variance
2
? , that is, ),(~
2
??NH , where the mean height of H is given by 
h
C
hh
DBHba
e
?+
+= 3.1?  and the variance of H is given by
v
C
v
DBHb
e
?
?=??
2
. This model 
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predicts a total height of 1.3 m and variance of height equal to zero when DBH approaches 
zero (Figure 9). Both the mean and variance of total height approach asymptotes as the 
DBH gets very large implying both the mean and variance become independent of DBH. In 
the model above
h
a , 
h
b , 
h
c , 
v
b , 
v
c  and ? are unknown parameters to be estimated.  
All the parameters for model C were found to be highly significant (p-value<.0001) 
and the AIC for model C was 373.7 which is less than either model A or B (Table 1). A 
plot of the standardized residual (Figure 10) indicated that the problem of non-constant 
variance has been corrected. The test of normality (Kolmogorov-Smirnov) for standardized 
residual was only marginally significant under the null hypothesis of a standard normal (p-
value=0.0611) (Table 1). Similar to model A and B this model was able to predict the mean 
total height very well. Prediction intervals of total heights increased as the DBH of a tree 
increased and approached a constant as DBH increased (Figure 10). The variance of total 
height also increases from a value of zero to a constant spread in the prediction as DBH 
increases.  
Figure 9. Plot of Observed Total Height, Predicted 
Total Height, and Prediction Interval for Total Height 
Vs. Diameter at Breast Height - Model C
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Fig. 10. Plot of Standardized Residual Vs. Predicted 
Total Height -  Model C
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Figure 11 depicts that as DBH increases the mean height and variance of height also 
increases, however, the variance tends to stabilize at higher DBH. 
Figure 11. Distribution of Predicted Total Height 
(Diameter at Breast Height = 4, 10, and 40 cm) 
Model C
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A cross-validation simulation using the fitted Model C was run 1000 times in SAS 
to test the ability of Model C to predict the distribution of total height based on DBH 
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measurements in the field. During the simulation 70 training data points were selected 
randomly out of 85 using the Survey Select procedure of SAS and the model was fitted to 
estimate the parameters. The estimated parameters were then used to predict H for the 
independent (test) data set with 15 data points. Then the standardized residuals were 
computed and tested against the standard normal (K-S) at the 0.05 level. The result 
obtained from the simulation indicated that p-values < 0.05 were obtained approximately 
28% of the time. For stable models this observed rejection rate should approximate the 
rejection rate used in each simulation, 5%. An observed rejection rate of 28% indicates 
model C does not consistently produce standardized residuals that follow a standard normal 
distribution.  
2.3.2 MODELS THAT DO NOT REQUIRE THE ASSUMPTION OF 
NORMALITY OF THE RANDOM ERROR  
D. Gamma Model for the prediction of total height as a function of DBH 
Figure 12 gives the plot of the probability that total height is less than 1.3 m 
estimated by the three models for DBH values in the range of 2 to 12 cm. It reveals that the 
probability of getting a predicted total height of less than 1.3 m is the highest for model A 
followed by models B and C, respectively. For model A the Pr(H<1.3 m) is the highest 
(45%) when a tree has a DBH of approximately 2 cm and the probability declines sharply 
and approaches 0 as DBH approaches 8 cm. Similarly, for model B the estimated Pr(H<1.3 
m) is the highest (35%) when a tree has a DBH of approximately 2 cm and the probability 
declines sharply and approaches 0 as DBH approaches 4.5 cm. Interestingly for model C 
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Figure 12. Probability of predicted Total Height less than 
1.3 m Vs. Diameter at Breast Height 
(Model A, B, and C)
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the estimated Pr(H<1.3 m) is almost 0 when a tree has the DBH less than or equal 
to 3 cm, the probability is highest (1.5 %) when a tree has a DBH of approximately 4 cm 
and the probability declines and approaches 0 as DBH approaches 7 cm. Since predicted 
height less than 1.3 m for trees with positive DBH is not possible, this property of these 
models argues against a normal distribution for the error. A more applicable assumption 
would be a distribution with a minimum value such as the gamma distribution.  
A random variable X  is said to follow the three parameter gamma distribution if its 
probability density function (pdf) is  
()
)(
exp
),,|(
1
??
?
?
?
???
?
?
?
?
?
?
?
?
?
?
? ?
??
=
?
x
x
xf   0,; >? ???x , 
where ? is a shape parameter, ? is a scale parameter, and ?  is a location parameter. 
Since the model must predict a total height of 1.3 m when DBH approaches zero, the 
location parameter?  was set to 1.3. The shape parameter ? influences the peakedness of 
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the distribution, while the scale parameter ? influences the spread of the distribution. The 
mean of the ),,3.1( ??G distribution is 3.1+??  and the variance is
2
?? .  
A convenient reparameterization of the ),,3.1( ??G density to allow direct 
modeling of the mean would result from defining 
?
?
1
=  and ??? )3.1( ?= . This results 
in the pdf 
()
?
?
?
?
?
?
??
?
=
?
??
?
?
??
??
?
???
1
)3.1(
exp)3.1(
),,3.1|(
1
))3.1((
)3.1(
1)
1
(
H
H
Hf . 
Maximizing the gamma log likelihood function )|,,3.1( H???  with 
)(
3.1
h
c
hh
DBHba
e
?+
+=?  and ?  unspecified, the log likelihood function for individual 
observation that is distributed according to the gamma pdf above is given by 
?
?
?
?
?
?
????
??
?
?
????
=
?
???
??
??
1
log)3.1log(
)3.1(
)3.1()3.1log(log)3.1log(
)|,,3.1(
H
HH
H?
 
where ?  is the dispersion parameter, ?  is the mean height, H is the total observed 
height with a range ),3.1[ ? .  
The data set was divided into 7 classes based on DBH. The mean and ? of the 
Gamma distribution for each DBH class was computed using NLMIXED. Figure 13 
indicates that ? is not a function of DBH. The same functional form for ?  as the previous 
model was used. NLMIXED in SAS was used to fit the Gamma model (Model D). All the 
parameters were highly significant (p-value<.0001) (Table 1).  
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Figure 13.  Dispersion parameter ? Vs. 
Average Diameter at Breast Height
-4
-3
-2
-1
0
1
2
3
4
010203040
Average Diameter at Breast Height (cm)
D
i
s
p
er
si
o
n
 P
a
r
a
m
e
te
r
 
?
 
For the gamma distribution, a standardized deviance residual was used which is 
computed as )1(
?
/
, iiri
hd ???  where, 
))3.1?/()3.1log(())3.1?/())3.1?()3.1((2)]3.1?()3.1(([
,
???????????=
iiiiiiiri
yyysignd ????
, 
ri
d
,
is deviance residual, 
ii
h is the diagonal element of the hat matrix, 
i
y is the observed 
height, and 
i
?? is the predicted height (McCullagh and Nelder, 1989). While the Pearson 
residual is appropriate and equivalent to the deviance residual for normally distributed 
errors, it is not appropriate when the errors are not symmetric, such as gamma distribution. 
The reason is that the contribution of each observation to the deviance is a chi-square 
distributed quantity whose square root (with the right sign) is a normally distributed 
random variable(McCullagh and Nelder, 1989). 
Analysis of standardized deviance residual plot revealed that the error variance is 
approximately constant throughout the range of the predicted total height (Figure 14) and 
Kolmogorov-Smirnov test for normality (Table 1) revealed that the standardized deviance 
residuals were normal (p-value > 0.15). Figure 15 indicated that predicted height increased 
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as the DBH increased; however, the rate of increase in total height decreased as the DBH 
attained a value of 30 cm or greater and approached an asymptote. The fitted line for 
prediction passes through the center of the observed data indicating that the predictions 
achieved from the Gamma model are performing as expected for the prediction of mean. 
AIC for the model was 380.2 which is larger than model C.  
It becomes obvious from Figure 15 that the width of the prediction interval 
increases as DBH increases and tends to be constant as DBH gets larger which agrees with 
the observed data and is very similar to model C. As DBH goes to infinity ? goes to the 
asymptotic value of 
h
a
e+3.1 . The variance of the gamma distribution is ??
2
)3.1( ? . The 
variance also approaches an asymptotic value of ?
h
a
e
2
. As DBH goes to zero, ? goes to 
1.3 m and variance goes to zero. These are the same properties as model C.  
Figure 14. Plot of standardized deviance residual Vs. 
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Figure 15. Observed Total Height, Predicted Total Height, 
and Prediction Interval for Total Height Vs. Diameter at 
Breast Height  Model D Gamma
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The distribution of the predicted total height obtained from the gamma distribution 
(Figure 15) depicted that the range of simulated total height was reasonable and the 
majority of the values were centered close to the observed value of total height in the data 
set for the corresponding DBH. The distribution of total height using estimated parameters 
from the gamma model with DBH of 4, 10, and 40 cm were obtained (Figure 16). As 
discussed earlier, it is theoretically impossible to get values of mean total height that are 
less than 1.3 m. Furthermore, since this model is restricted to values greater than 1.3 m, no 
simulated heights below 1.3 m are possible.  
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Figure 16. Distribution of Predicted Total Height 
(Diameter at Breast Height = 4, 10, and 40 cm) 
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A simulation using the fitted Gamma model was also run 1000 times in SAS to test 
the predictive ability of this model in a cross validation. Once again 70 training data points 
were randomly selected out of 85 using Survey select procedure in SAS and the model was 
fitted to estimate the parameters. The estimated parameters were then used to predict H 
from the independent data set of the remaining 15 data points. Then the standardized 
deviance residuals were computed and tested against the standard normal distribution using 
the Kolmogorov-Smirnov test. The result obtained from the simulation indicated that p-
values < 0.05 was obtained approximately 9% of the total number of runs in the simulation. 
This is close to the nominal level of 5%. It should also be noted that model D performed 
slightly better than model C with only 4 parameters as compared to model C with 6 
parameters.  
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2.4 DISCUSSION AND CONCLUSION 
Models with the same mean and different formulations of variance were used to 
compare the performance of the models for the prediction of the distribution of total height 
(table 2). 
Table 2. Models used to fit the data. 
Model Distribution Location (Mean) Variance 
A Normal 
h
C
hh
DBHba
e
?+
+= 3.1?  
2
?  
B Normal 
h
C
hh
DBHba
e
?+
+= 3.1?
k
DBH
2
??  
C Normal 
h
C
hh
DBHba
e
?+
+= 3.1?
)(
Cv
v
DBHb
e
?
??  
D Gamma 
h
c
hh
DBHba
e
?+
+= 3.1?  
??
2
)3.1( ?  
 
It became evident that all the models were performing similarly for the purpose of 
predicting the mean height (Figure 17); however, there was a considerable difference in 
their ability to predict the distribution of total height. 
 
Figure 17. Predicted Total Height  for Model A, B, C, and D Vs. 
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Analysis of the standardized residuals for Model A revealed that they did not follow 
a standard normal distribution (Table 1), and also the error variance was not constant 
throughout the range of predicted H (Figure 2). This model had the highest AIC. The 
prediction interval also included values below 1.3 m of total height for smaller values of 
DBH (Figure 3). For example, a tree with DBH of 4 cm had a distribution of height with 
values below 1.3 m (Figure 4). Therefore, this was not an appropriate model for the 
prediction of total height. 
Weighted regression model with the best weight was fitted in SAS to correct the 
problem of non-constant variance.  Analysis of residuals after the application of weighted 
regression revealed that the problem of unequal error variance was corrected (Figure 5); 
however, the standardized residuals still did not follow a standard normal distribution 
(Table 1). The AIC was less than the AIC for Model A. The prediction interval for the total 
height increased as the DBH increased throughout the range of the DBH, however, the 
width of the prediction interval got very large near the larger end of the DBH which did not 
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agree with the observed data. It became evident from Figure 6 and 7 that the prediction 
interval included the values of total height less than 1.3 m for the smaller DBH e.g. DBH of 
4 cm (Figure 7) though it is theoretically not possible to get a tree with total height of less 
than 1.3 m even when DBH approaches zero. Therefore, this was also not an appropriate 
model for the prediction of distribution of total height. 
Next a non-linear regression model C was tried, where, predicted H was as a non-
linear function of DBH and variance was also a non-linear function of DBH. Assumptions 
of constant variance and normality of error were checked using residual plot and 
Kolmogorov-Smirnov tests, respectively. Analysis of standardized residuals depicted that 
error variance was stabilized (Figure 9); however, the small p-value of the Kolmogorov-
Smirnov test of normality is suggestive of non-normality (Table 1). Model C indicated that 
the prediction interval for the total height increased as the DBH increased up to a point and 
then stayed constant throughout the range of the DBH which agreed with the observed data. 
The AIC was the lowest among all the models; however, it became evident from Figure 10 
and 11 that the prediction interval included the values of total height less than 1.3 m for the 
smaller DBH e.g. DBH of 4 cm (Figure 11). Type I Error rate obtained from running a 
simulation 1000 times was 28%. This error rate was very high compared with the nominal 
Type I Error rate of 5% in the study. Model C was a better model than A and B, however, 
this was also not an adequate model for the prediction of distribution of total height.  
Models with the assumption of normality of errors are reasonable for the prediction 
of the mean height; however, they are not suitable for estimation of the distribution of total 
height since the range of a normally distributed random variable spans from negative 
infinity to positive infinity. So, there is a possibility of obtaining negative predictions, 
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which are not realistic. The normal distribution is symmetric and bell shaped distribution 
and hence cannot explain any kind of skew ness (positive or negative).  In order to 
overcome these problems a gamma distribution was assessed since it does have a minimum 
value and has the potential for significant skewness.  
The gamma model (Model D) was found to be the best model among all the 
nonlinear models used to fit the data in this study. This model needed the estimation of 
only four parameters to predict the distribution of H; whereas, the competing model C 
needed six parameters to be estimated. This model had all the parameters highly significant 
(Table 1). The AIC was 380.2 which is close to the AIC for model C.  Analysis of the plot 
of standardized residuals (Figure 14) revealed that the error variance was constant across 
the whole range of predicted values of total height and the residuals were normally 
distributed (Table 1).  The prediction interval was found to be reasonable and the prediction 
interval did not include a value of total height less than 1.3 m even when DBH approached 
zero. The error rate obtained from the simulation of the model for cross validation using 
Kolmogorav-Smirnov test was reasonable (approximately 9%). This was close to the 
nominal Type I Error rate of 5% in the study which reveals that the gamma model agrees 
with the data to a greater extent than the other models. Therefore, this model was adequate 
to fit the data well and was the best model for the prediction of distribution of total height.  
The MLE technique in NLMIXED procedure makes it possible to model mean?  
and variance 
2
? of total height simultaneously in any distribution. This procedure 
empowers the modeler to design models to predict the distribution of total height when the 
mean and variance are both nonlinear functions of DBH. WLS was a first attempt to model 
the variance as a function of independent variable in the study. It is restricted to a single 
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parameter that must be estimated outside the fitting procedure; however, NLMIXED allows 
the specification of the functional form of the variance along with the functional form of 
mean and obtain the MLE estimates of all the coefficients simultaneously. While the 
normal assumption for the error term is reasonable for the prediction of the mean response 
for a given predictor and the confidence interval on the prediction, it is no longer necessary 
to be restricted to a normal assumption on the error. A normal distribution assumption can 
have serious problems when modeling the entire distribution for simulation purposes e.g. it 
can produce predictions lower than theoretically possible and the distribution is restricted to 
be symmetric about the mean response. NLMIXED can handle any distribution as long as 
the log likelihood function can be specified e.g. gamma distribution which has a minimum 
value and can model skewed error distributions. 
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CHAPTER 3 
PREDICTION OF DISTRIBUTION FOR CROWN RATIO OF AN INDIVIDUAL 
TREE USING NORMAL VERSUS BETA DISTRIBUTION MODEL FOR 
LONGLEAF PINE IN EGLIN AIR FORCE BASE. 
3.1 INTRODUCTION 
The ratio of live crown length to the total tree height is commonly known as crown 
ratio. Crown ratio (CR) is the characteristic usually used to describe the crown size 
(Hynynen, 1995) which is an important element of forest growth and yield models (Cole 
and Lorimer, 1994). According to Short and Burkhart (1992) and Valentine et al. (1994) it 
is frequently used to predict individual tree growth. In many diameter and height growth 
equations tree crown parameters are used as explanatory variables (Monseurd and Sterba, 
1996) and crown ratio has been used as a predictor of tree vigor (Hasenauer and Monserud, 
1996), stand density, competition and survival potential of trees within a forest (Oliver and 
Larson, 1996).  
Tree crown ratio can be predicted directly from tree variables such as total height 
(H) and diameter at the breast height (DBH) (Hasenauer and Monserud  1996). It can also 
be predicted indirectly from estimates of the height to the base of live crown (HBLC) (Dyer 
and Burkhart 1987). Hasenauer and Monserud (1996) and Ritchie and Hann (1987) have 
used the logistic functions to predict the mean tree crown ratio which is always between 0 
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and 1. The logistic function with normal distribution of errors works under the assumption 
that the errors are normally, identically, and independently distributed with mean zero and 
a constant variance, i.e. ),0(~
2
?? NIID . Theoretically, under the assumption of normality 
the error term can assume a value from negative infinity to positive infinity and the 
prediction interval for CR can be well beyond 0 and 1 which is not reasonable. Normal 
distribution approach works fine for the prediction of mean CR, however, it might not work 
for the prediction interval of CR, in all other circumstances.  
An alternative to assuming a normal distribution of errors is to assume the errors 
follow a beta distribution. This distribution assures that the prediction intervals are always 
between 0 and 1 (Cassella and Berger, 2002). Therefore, this study is an attempt to 
compare the distribution of predicted CR using Normal versus Beta distributed errors with 
the same functional form for the mean CR (i.e. logistic).  The fitted model obtained from 
this study can be used for simulation purposes when the entire distribution of predicted CR 
is needed.  
The primary objectives of this study are to: 
i) Compare the prediction of distribution for CR using Normal versus Beta 
distributed errors for longleaf pine (Pinus palustris Mill.)  
ii) Access the ability of these models to predict the distribution of crown ratio. 
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3.2 MATERIALS AND METHODS 
3.2.1 STUDY AREA AND SAMPLING OF TREES 
Longleaf pine is naturally distributed in most of the Atlantic and Gulf Costal Plains 
from southeastern Virginia to eastern Texas and south through the northern two-thirds of 
peninsular Florida. This tree is also found in the Piedmont, Ridge and Valley, and mountain 
Provinces of Alabama and northwest Georgia (Boyer, 1991).  
Longleaf pine grows in warm, wet temperate climates characterized by hot summers and 
mild winters. More frequent fires favor longleaf pines, which are more fire adapted 
(Boyer, 1991).  
Data for this study were collected in naturally regenerated longleaf pine (Pinus 
palustris Mill.) stands at Eglin Air Force Base in Florida from September 1996 to March 
2000.  Total land area of Eglin Air Force Base is approximately 187,000 ha, most of which 
is forested.  The major tree species occurring on the land base at Eglin are longleaf pine, 
sand pine (Pinus clausa (Chapm.) Vasey.), and various scrub oaks (Quercus spp.).  The 
base is primarily composed of all-aged stands of longleaf pine.  Frequent disturbances from 
fire arms testing maintain the stands in an open character. The major soil series include 
Lakeland, and Troup (Overing and Watts 1989). These soil series have deep, excessively 
drained, rapidly permeable soils and limited nutrients which result in very slow growth.  
This is the reason the trees face drought conditions during the summer even though the area 
receives more rainfall than any other part of Florida (Anderson et al., 1999). The larger 
trees are flat topped with a site index ranging from 16 to 19 m; whereas stands at the nearby 
Escambia Experimental Forest with similar age has a site index range of 18 to 26 m 
(Meldahl et al., 1998). The basal area per ha for Eglin in our study area was 12 m
2
/ha; 
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whereas the basal area per ha for Escambia Experimental Forest was 26-34 mP
2
P/ha. (Kush et 
al., 1999). Therefore, the trees are open grown with little crown competition resulting in a 
similar crown ratio throughout the entire range of the total height of the tree (Fig. 1) with 
comparatively higher variance of CR in the shorter trees (i.e. < 5 m ). 
Figure 1. Plot of Crown Ratio Vs. Total Height
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The sampling of longleaf pine trees covered the range of tree sizes, from saplings to 
the largest trees observed on the base, across the range of stand densities and sites. The 
trees were selected to cover the entire range of observed CR in the study area. The total 
height (H) ranged from 1.4 to 27.2 m and diameter at breast height (DBH) ranged from 1.8 
to 42.3 cm. In 27 stands across the study area, 85 sample trees were selected at random 
locations.  Stands were selected to represent all classes of site index, basal area per hectare, 
and tree density. Samples were selected from the stands which were naturally established 
free of major disturbances, primarily crown-scorching fires, within the past five years. 
Total height, DBH, and height to the base of live crown (HBLC) were measured for each 
tree. Trees with major defects including forking, major breakage, and weak stem were not 
selected as a sample. The observed CR was computed as HHBLCHCR /)( ?= . 
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3.2.2 METHODS 
Model fitting was carried out with the NLMIXED procedure using a quasi?Newton 
algorithm (SAS Institute, Inc. 2004). NLMIXED will produce maximum likelihood 
estimates of any likelihood function. This procedure allows all parameters to be functions 
of independent variables and can be used to find estimators of parameters in complex 
models. NLMIXED procedure uses the method of maximum likelihood (MLE) to obtain 
the estimates of the coefficients numerically. MLE selects as estimates the values of the 
parameters that maximize the likelihood of the observed sample. It is consistent, that is, as 
the sample size gets larger, the estimates converge to the true values. It is asymptotically 
efficient, which means that for large samples, it produces precise estimates. It is also 
asymptotically unbiased, that is, for large samples one expects to get the true value on 
average. The distributions of the estimators themselves are asymptotically normal, if the 
sample is large enough. These are all excellent large sample properties. For the normal 
distribution the least square method and MLE provide the same estimates of parameters 
(Casella and Berger, 2002).  
The following criteria were used to compare the performance of height-diameter 
models: 
1. Significant t-test for the parameters in the model. 
2. AIC value. 
3. Analysis of the standardized residual plots. 
4. Kolmogorov-Smirnov test for normality of standardized residuals. 
5. Simulated Type I Error rate using cross validation.  
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The asymptotic t-statistic for each coefficient in the model should be significant for 
any model to be considered appropriate for prediction of the parameters of the distribution. 
It tests the importance of an independent variable and whether it should be included in the 
model. The model with any of the parameters insignificant at a specified level of 
significance will be considered a bad model and hence discarded. Therefore, this is the first 
test that any candidate model has to pass to be considered for further analysis.  
Akaike (1973) developed an estimation criterion, which he defines as 
KdatalAIC
e
2))|
?
((log2 +?= ?  where, )|
?
(log datal
e
? is the value of the 
maximized log-likelihood over the unknown parameter (?  ). K is the number of estimated 
parameters included in the model (Anderson et al. 2000). AIC penalizes for the addition of 
parameters, and thus selects a model that fits well but has the smallest number of 
parameters. The model with the lowest AIC is selected as a good candidate for the data 
available (Anderson et al., 2000).  
In the normal distribution the standardized residual is computed as, 
ni
e
d
i
i
,...,2,1,
?
==
?
,  where 
iii
yye ??= , 
i
y is observed CR, and 
i
y?  is the predicted CR for 
the ith tree. The standardized residuals have mean zero and unit variance. They are useful 
in analyzing the problems of model specification and outliers. Most of the standardized 
residuals should lie in the range of 33 ???
i
d . 
Analysis of the standardized residual plots against the predicted value should show 
a more or less even scatter around the zero line throughout the range of the predicted values 
in which case equal error variance is a valid assumption. A model that does not suffer from 
non-constant error variance is considered to be good candidate for further analysis. Any 
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pattern in the standardized residual might reveal unequal error variance, or problem of 
model specification (Huang et al., 1992).  
The Kolmogorov-Smirnov (KS) test was used to test whether the standardized 
residuals follow a standard normal distribution. The KS test is based on comparison of the 
empirical distribution function (ecdf) of the data and the cumulative distribution function 
(cdf) of an assumed distribution. It is non-parametric and distribution free test (Hollander 
and Wolf, 1999). Standardized residuals for a good model will follow a standard normal 
distribution and will pass this test.  
A cross-validation simulation for the competing models was run 1000 times (Singh 
et al., 2006) in SAS to test the ability of the model to predict the distribution of CR based 
on H measurements in the field. During the simulation 70 training data points were selected 
randomly out of 85 using the Survey Select procedure of SAS and the models were fitted to 
estimate the parameters. The estimated parameters were then used to get the predictions for 
the distribution of CR from independent (test) data set with 15 data points. Then the 
residuals were computed and analysis was performed during each run of the simulation and 
p-values were checked for Kolmogorov-Smirnov test on the standardized residuals. Cross 
validation checks whether the distribution obtained from an independent data set follows a 
specified distribution (Lilliefors, 1967). The Type I Error rates of the KS test obtained from 
running the simulation is compared to the nominal Type I Error rate of 5% (Liu et al., 
2006). A model was deemed a better predictive model than a competing model if its 
simulated Type I Error rate was closer to the nominal Type I Error rate than its 
competitor?s simulated Type I Error rate.  
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3.3 RESULTS 
Prediction of the mean crown ratio should always be between 0 and 1 for a model 
to work properly (Hynynen, 1995). The form of Logistic function commonly used to model 
crown ratio is
x
e
CR
?
+
=
1
1
(Hasenauer and Monserud, 1996; Temesgen et al., 2005), where 
CR is the crown ratio and x is a linear combination of explanatory variables and 
coefficients. Logistic function was first introduced in 1845 by Verhulst (Hasenauer and 
Monserud, 1996) for population growth and has been used to model individual tree 
mortality (Neter and Maynes, 1970) and crown ratio (Hatch, 1980, Ritchie and Hann, 1987, 
and Hasenauer and Monserud, 1996).  
3.3.1 LOGISTIC FUNCTION WITH NORMAL DISTRIBUTION OF ERRORS 
3.3.1.1 Normal Model A 
In order to investigate the appropriate functional relationship of mean CR to H the 
data was divided into 7 classes based on total tree height. Mean CR for each height class 
was computed and Ln((1/? )-1) against H  was plotted to examine the functional 
relationship of mean CR to the total height. Figure 2 indicates that there is an approximate 
linear relationship between Ln((1/? )-1) and H. 
The normal model assumes that tree CR is normally distributed with mean crown 
ratio ? and variance in crown ratio ?P
2
P, that is, ),(~
2
??NCR , where
)(
1
1
Hba
e
?+?
+
=? , 
2
? is 
an unknown constant andB
  
Ba and b  are unknown coefficients to be estimated from the data.  
The parameters of this model were estimated using the method of maximum likelihood 
(NLMIXED, SAS) or equivalently the log likelihood function 
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A logistic model of the form 
)(
1
1
Hba
e
?+?
+
=?  was fitted initially, however, the 
coefficient a  was found to be insignificant (p-val=0.35) and b was marginally significant 
(p-val = 0.07) at 5% level of significance. So, the coefficient a  was set to 0 which forces 
the function through the origin (Figure 2). Thus the model was refitted as
)(
1
1
Hb
e
??
+
=?  
(Normal Model A).  
Since tree density for Eglin in our study area is very low (12 mP
2
P/ha) and the site 
index limited to very low sites, inclusion of stand characteristics was not successful. Simple 
models using just DBH and H were compared.  The AIC for the model with DBH was  
-80.9 and for H was -83.2. Interactions and other combinations of H and DBH were also 
attempted, however, they did not improve the model AIC. Therefore, the model with the 
explanatory variable H was selected as a potential candidate for further analysis.  
Figure 2. Plot of Ln((1/? )-1) Vs. Total Height
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For the Normal model A, the parameter 
2
? was highly significant (p-value < .0001) 
and the parameter b was also significant (p-value = 0.0345) at 5% level of significance 
(Table 1). The test of normality (Kolmogorov-Smirnov) revealed that the standardized 
residuals followed a normal distribution (p-value >0.15) (Table 1), however, the plot of 
standardized residual against predicted crown ratio (Figure 3) revealed a discernible trend 
which indicates a potential problem with model specification. The value of AIC was  
-84.4 (Table 1). 
Figure 3. Standardized Residual Vs. Predicted 
Crown Ratio - Normal Model A
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The fitted line for prediction of crown ratio goes through the center of the observed 
crown ratio (Figure 4). This is indicative of good predictive ability of Normal model A for 
the mean CR. This model assumes equal variance and therefore the prediction intervals for 
the entire range of predicted crown ratio are parallel (Figure 4) which is questionable for 
the smaller trees.  
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Figigure 4. Observed Crown Ratio, Predicted Crown 
Ratio and Prediction Interval for Crown Ratio Vs. Total 
Height for Normal Model A
0
0.2
0.4
0.6
0.8
1
0 5 10 15 20 25 30
Total Height (m)
C
r
ow
n R
a
t
i
o
CR_Obs
CR_pred
LPI_95%
UPI_95%
 
Table 1. Model Parameter Estimates 
Model Coeff Estimate P-val LCL UCL AIC K-S  
(P-val) 
Normal A 
B
b
?
B 
-0.00866 0.0345 -0.01667  -0.00065 -84.4 >0.1500 
 
2
??  
 0.02070 <.0001  0.01439   0.02701   
Normal B 
B
b
?
B
 
-0.00888 0.0130 -0.01584  -0.00192 -90.6 >0.1500 
 
B
c?
B
 
 -4.3269 <.0001  -4.7465   -3.9072   
 
B
d
?
B 
  2.9355 0.0171   0.5351    5.3358   
Beta A 
B
b
?
B 
-0.00836 0.0401 -0.01632 -0.00039 -85.8 >0.1500 
 
2
??  
 11.0598 <.0001   7.8279  14.2916   
Beta B 
B
b
?
B 
-0.00882 0.0124 -0.01569 -0.00195 -94.7 >0.1500 
 
B
c?
B
 
  2.9025 <.0001   2.5025   3.3026   
 
B
d
?
BBB 
 -3.0962 0.0053  -5.2486  -0.9438   
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3.3.1.2 Normal Model B 
In order to investigate the appropriate functional relationship between variance of 
CR and H the data was divided into 7 classes based on total tree height. Variance of CR for 
each height class was computed. Variance of CR against H (Figure 5) was plotted to 
examine the functional relationship between the variance of CR to the total height. Based 
on the plot the functional relationships chosen to fit the variance was 
Hdc
e
/2 +
=? ,  
however,  the same functional form for the mean as model A, that is,  
)(
1
1
Hb
e
??
+
=? was 
used (Normal Model B).  The functional form 
Hdc
e
/2 +
=? produces the variance which 
approaches a lower asymptote as H approaches its higher values.  
Figure 5. Plot of Variance of Crown Ratio Vs. 
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The normal model B assumes that tree CR is normally distributed with mean crown 
ratio ? and variance in crown ratio ?P
2
P, that is, ),(~
2
??NCR , where ,b c and d are 
unknown coefficients to be estimated from the data. The same parameter estimation 
method and log likelihood function were used as the normal model A.  
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All the parameters , c and for the Normal model B were found to be significant b d
(Table 1) at 5% level of significance. The test of normality (Kolmogorov-Smirnov) 
revealed that the standardized residuals followed a normal distribution (p-value >0.15) 
(Table 1), and the plot of standardized residual against predicted crown ratio indicated that 
there was no detectable trend in the standardized residuals (Figure 6), therefore no further 
problems with model specification were indicated. The value of AIC was -90.6 (Table 1) 
which is a slight improvement over model A. Therefore, this model was a good candidate 
for the prediction of the distribution of crown ratio.  
Figure 6. Standardized Residual Vs.Predicted 
Crown Ratio - Normal Model B
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The fitted line for prediction of crown ratio goes through the center of the observed 
crown ratio (Figure 7). This is an indicative of a good predictive ability of Logistic model 
B for the mean CR. The prediction interval for CR is wide for the trees with smaller heights 
(1.3 m to 5 m) compared to the trees with larger heights.  
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Figure 7. Observed Crown Ratio, Predicted Crown Ratio, 
and Prediction Interval for Crown Ratio Vs. Total Height 
Normal Model B
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A normal distribution with mean of predicted crown ratio and standard deviation 
was used to generate the distribution of CR for the total heights 2, 5, 10 and 25 m (Figure 
8). This figure indicates that there is not much change in mean CR, however, there is a 
decrease in variance of CR as the height increase. Crown ratio values greater than 1 and 
less than 0 are possible in the distribution when H = 2 m (Figure 8). 
The nominal value of the probability of Type I Error was set at 0.05. The result 
obtained from the cross validation indicated that p-values < 0.05 were obtained 
approximately 2% of the total number of runs in the simulation. This suggests that the 
distribution of standardized residual has a lighter tail than the standard normal distribution. 
From statistical theory we know that if the model is correctly specified then the 
standardized residual follow an approximate standard normal distribution (Pierce and 
Schaffer 1986). Since the distribution of error deviates from standard normal the optimality 
of this model for the prediction of the distribution of crown ratio is questionable.  
 
Figure 8. Distribution of Crown Ratio 
(Total Height = 2, 5, 10, and 25 m) 
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3.3.2 LOGISTIC FUNCTION WITH BETA DISTRIBUTION OF ERRORS  
The total probability of getting CR outside the logical range [0,1] is very low and is 
approximately zero for Normal model A for the entire range of H (Figure 9), however, the 
total probability of getting CR less than 0 and greater than 1 from Normal model B 
increases as total height approaches 1.3 m. The total probability is approximately 25% 
when H = 1.5 m and the probability goes down to 4% when H = 2 m.  Since predicted  
Figure 9. Probability mass outside 0 and 1 for 
Normal Model A and B Vs. Total Height
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crown ratio outside the range [0, 1] is not possible for any height, there is the potential for a 
better model if a different assumption of the error distribution is made. Therefore, a beta 
distribution was used to model CR and its prediction interval. This distribution is restricted 
to be between 0 and 1 for the entire distribution instead of just the mean (Cassella and 
Berger, 2002). Beta distributions are usually used to model proportions and since CR is the 
also a proportion of total height that supports the crown of a tree, the beta distribution 
should be a good alternative (Casella and Berger, 2002). 
A random variable CR is said to follow the two parameter beta distribution if its 
probability density function (pdf) is
11
)1(
),(
1
),|(
??
?=
??
??
?? CRCR
B
CRf , 
0,0,10 >><< ??CR , where ?  and ? are shape parameters and ),( ??B  
specifies the beta function. The mean and variance of the beta (?, ?) are
??
?
?
+
=   and  
)1()(
2
2
+++
=
????
??
? . 
Beta distribution will attain many different shapes as the value of parameters ? and 
? change. When ? >1 and ?=1 the pdf will be strictly increasing; the pdf will be strictly 
decreasing when ? =1 and ? >1; it will assume U-shaped when ? <1 and ?<1, or unimodal 
when ? >1 and ?>1 (Casella and Berger, 2002).  
In order to use the logistic equation for the mean, as was used previously, it is 
necessary to reparameterize the beta distribution in terms of ? and ?  where 
??
?
?
+
=  
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and ??? += . In terms of ?  and ? the beta distribution would be  
1)1(1
)1(
])1(,[
1
),|(
???
??
?
=
????
????
?? CRCR
B
CRf  
3.3.2.1 Beta Model A 
The Beta distribution was used to fit the data where the mean CR  
)(
1
1
Hb
e
??
+
=?  
and dispersion parameter ?  was a constant. The estimates of ?  and ?  were obtained 
simultaneously using the method of maximum likelihood from NLMIXED procedure in 
SAS.  In the model b is an unknown coefficient to be estimated from the data and H is total 
tree height.  
The log likelihood function for individual observations that are distributed 
according to beta distribution is given by 
)1log(}1)1{(
)log()1())1((log)(log)(log)|,(
CR
CRCR
i
iiii
????+
??+??????=
??
??????????
 
Where
i
? is predicted mean CR with a range ]1,0[ , and ?  is the dispersion 
parameter. It is important to note that variance 
2
?  is related to both ?  and ? since 
?
??
?
+
?
=
1
)1(
2
(Ferrari and Cribari-Neto, 2004). Therefore ?  and 
2
?  are inversely related 
to each other and 
2
?  approaches to 0 as ?  approaches either 0 or 1.  
Standardized residuals used for the normal models A and B are not appropriate for 
asymmetric distributions such as the Beta because they tend to depart from normal 
distribution (Pierce and Schaffer 1986). Deviance residuals are closer to standard normal 
when the distribution of error term is not normal (Pierce and Schaffer, 1986) and the 
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contribution of each observation to the deviance is a chi-square distributed quantity whose 
square root (with the right sign) is a normally distributed random variable (McCullagh and 
Nelder, 1989). For the beta distribution, a deviance residual was used which is computed as 
{}
2/1
))
?
,?()
?
,
~
((2)?( ?????
iiiiii
i
d
llysignr ??= where, )
?
,
~
( ??
ii
l  is the likelihood estimate 
obtained from the saturated model and  )
?
,?( ??
ii
l  is the likelihood estimate obtained from 
the fitted model, 
i
y is the observed CR, 
i
?? is the predicted CR obtained from the fitted 
model, and 
i
?
~
is equal to 
i
y  in the saturated model (Ferrari and Cribari-Neto, 2004).  
The parameters b and 
2
? were significant (Table 1) for the Beta model A. The test 
of normality (Kolmogorov-Smirnov) depicted that the deviance residuals followed a 
normal distribution (p-value >0.15) (Table 1), however, the plot of deviance residual 
against predicted H indicated a discernible trend (Fig. 10). The value of AIC was -85.8 
(Table 1) which is a slight improvement over normal model A.  
Figure 10. Deviance Residual Vs. Total Height
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The fitted line for prediction of crown ratio goes through the center of the observed 
crown ratio (Figure 11) and looks very similar to the normal models. This is indicative of 
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the good predictive ability of Beta model A for the mean CR. The prediction intervals for 
the entire range of total height are parallel (Figure 11) which is questionable for the smaller 
trees.  
Figure 11. Observed Crown Ratio, Predicted Crown 
Ratio, and Prediction Interval for Crown Ratio Vs. Total 
Height - Beta Model A
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3.3.2.2 Beta Model B 
In order to investigate the appropriate functional relationship between ?  and H the 
data was divided into 7 classes based on H. Mean H was computed and ? was predicted for 
each class using NLMIXED procedure in SAS. Based on the plot of ? versus total height 
(Figure 12) the functional relationships chosen to fit the data was 
Hdc
e
/+
=? . It is 
important to note that since the relationship between 
2
? and ? is an inverse one, this is the 
same functional form as used for the variance in normal model B with a change in sign for 
the parameters. 
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Figure 12. Plot of ? Vs. Total Height
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All the parameters b , c , and d were significant (Table 1) for the Beta model B. The 
test of normality (Kolmogorov-Smirnov) revealed that the deviance residuals followed a 
normal distribution (p-value >0.15) (Table 1), and the plot of deviance residual against H 
did not show any detectable pattern (Figure 13). The value of AIC was -94.7, which is the 
lowest of all the models analyzed (Table 1).  
Figure 13. Deviance Residual Vs. Total Height
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It becomes obvious from Figure 14 that the width of prediction interval increases as 
the value of total height decreases. The prediction interval gets prominently larger as the 
total height gets < 5 m.  
Figure 14. Observed Crown Ratio, Predicted Crown 
Ratio, and Prediction Interval for Crown Ratio Vs. 
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Figure 15 provides examples of the distribution for tree heights of 2, 5, 10, and 25 
m. The shape of the distribution also changes from flat to more peaked as the total height 
increases from 2 m to 25 m (Fig. 15). Distribution of crown ratio never exceeds the range 
of [0, 1].  
A cross validation using the fitted Beta model B was run identical to the Normal 
model B. The result obtained from the simulation indicated that p-values < 0.05 was 
obtained approximately 4 % of the total number of runs. This is very close to the nominal 
level of 5%. This means that deviance residuals follow approximately the standard normal 
distribution suggesting that model B is the most optimal model among the models 
considered in this paper for the prediction of distribution of crown ratio.  
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Figure 15. Distribution of Crown Ratio 
(H = 2, 5, 10 and 25 m) - Beta Model B
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3.4 DISCUSSION AND CONCLUSION 
The models with same mean and different formulations of variance were used to 
compare the performance of the models for the prediction of distribution of crown ratio 
(table 2). 
Table.2. Models used to fit the data. 
Model Distribution Location (Mean) Variance 
Normal A Logistic 
)(
1
1
Hb
e
??
+
=?  
2
?  
Normal B Logistic 
)(
1
1
Hb
e
??
+
=?  
Hdc
e
/2 +
=?  
Beta A Beta 
)(
1
1
Hb
e
??
+
=?  
?
??
?
+
?
=
1
)1(
2
 
Beta B Beta 
)(
1
1
Hb
e
??
+
=?  
Hdc
e
/
2
1
)1(
+
+
?
=
??
?  
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It became evident that all the models predicted similarly for the purpose of 
predicting the mean (Figure 16); however, there was some difference in their ability to 
predict the distribution of crown ratio.  
Figure 16. Predicted Crown Ratio for Normal Model A, B 
and Beta Model A, B Vs. H
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Analysis of the residuals for all four models revealed that they followed a normal 
distribution (Table 1), however the residuals for Normal model A and Beta model A 
displayed a detectable trend which indicates that there might be a problem of model 
specification. The prediction interval for the entire range of predicted CR was parallel for 
Normal model A and Beta model A, however, Normal model B and Beta model B 
indicated that the prediction interval for the crown ratio increased as the H decreased. 
Increase in prediction interval became significant when H attained a value < 5m. Normal 
model A had the highest AIC followed by Beta model A, Normal model B, and Beta model 
B had the lowest. These values of AIC indicate that Normal model A had the lowest 
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performance, whereas, Beta model B had the highest performance among all four models. 
Type I Error rate obtained from running a simulation 1000 times was 2% for Normal model 
B, and 4% for Beta model B. These error rates are close compared with the nominal Type I 
Error rate of 5% in the study. This result indicates that Beta model B is a little bit better 
than Normal model B for predicting the distribution of crown ratio.  
The prediction interval for CR obtained from Beta model never crossed beyond the 
logical range [0, 1], whereas, from the Normal models the prediction interval crossed 
beyond the range, for example, the prediction interval for a tree with  
H = 1.5m reveals that there is approximately 25% probability of getting a predicted 
crown ratio value which is outside the logical range [0,1] from Normal model B.  By 
definition the Beta model cannot extend beyond this range and is therefore a more logical 
assumption to make.  
Models with the assumption of normality of errors are good for the prediction of the 
mean CR; however, they are not suitable for estimation of distribution of crown ratio since 
the range of a normally distributed random variable spans from negative infinity to positive 
infinity. So, there is a possibility of obtaining predictions which are not realistic. The 
normal distribution is symmetric and bell shaped and hence cannot explain any kind of 
skewness (positive or negative).  In order to overcome these problems a Beta distribution 
was assessed since the prediction can never go beyond the logical range of crown ratio, that 
is, [0,1]. It can also incorporate the skewness in the distribution if any. 
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