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Abstract 

In many laboratory studies such as medicine, fisheries, and chemistry comparison of two 

different methods of measurement is of great importance. These measurements are critical when 

the methods are changed, a new or alternative method proposed, or two exciting methods are not 

in complete agreement. The most common used methods such paired t-test, correlation and 

regression can be misleading, thus, Altman and Bland introduced a new method to address the 

shortages of those methods. However, Altman-Bland method is not introducing a test of 

significance. Moreover, threshold and intervals in this method are not set in prior. These two 

drawbacks are addressed in this study. P-value quantified for the Altman-Bland method and 

thresholds are set before the run of test.  
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Chapter1: Introduction  

In many laboratory studies such as medicine, fisheries, and chemistry comparison of two 

different methods of measurement is of great importance (Altman and Bland, 1983; Giavarina, 

2015; Stevens et al., 2015).  (Giavarina, 2015). The new methods (contender) can introduce 

benefits compared to the existing or accepted method (gold standard). For an instant, the new 

method may reduce the cost and time which would result in improved efficiency. The new 

method may improve the accuracy to avoid under and over estimations (Stevens et al., 2015). 

However, the magnitude of these changes in measurements between the new and old method 

needs to be quantified. To that end, various statistical approaches have been employed, including 

but not limited to paired t-test, correlation, regression, and Altman-Bland, (Balakrishnan et al., 

2005; Barnhart et al., 2007; Marinovich et al., 2013). Among these methods, Altman-Bland, have 

been used the most and been cited more than 30,000 times (Stevens et al., 2015). The Altman-

Bland method first introduced in 1983 in a manuscript entitled “Measurement in Medicine: the 

Analysis of Method Comparison Studies” (Altman and Bland, 1983). In this study, we review 

methods that have been used before Altman-Bland and will demonstrate the benefits of Altman-

Bland method over them.  A simple approach will be proposed at the end of the study to quantify 

p-value for the Altman -Bland method.  
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1.1. Paired t-test 

A paired t-test (H0: µd= 0, H0: µd ≠ 0 ) is a crude however widely used method for test of 

agreement (Balakrishnan et al., 2005). This method only evaluates if the averages of two 

methods have agreement while the random differences between these two methods can be large. 

It has been shown that t-test may reject the agreement of averages if the scatter around the 45o 

line is near zero (indicating good agreement), and may fail to reject it if the scatter is very high 

(indicating poor agreement). There are two problems involved with this approach: First, this 

method is trying to provide supporting evidence to a claim by not rejecting H0 means that low 

power works in our favor: Even if the two measures were to exhibit very little agreement, we 

could ensure retaining H0 by having a sufficiently small sample size. This would not constitute 

credible evidence of agreement. The second problem is that this approach is focused on the mean 

difference. It is quite possible for the mean difference to be very close to zero, and yet for large 

differences to exist for some or even many subjects. Thus, we could retain H0 even in the 

presence of substantial disagreement between the measures. In other words, the rationale is that 

to the extent that the two measures are in agreement, the average difference of the measurements 

for each subject will approach zero. Thus, failing to reject H0 would lead us to conclude in favor 

of agreement.  
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1.2. Correlation  

Correlation is to determine the relationship between a pair of variables. The result of the 

correlation is called correlation coefficient which is calculated as the ratio of covariance between 

the variables to the product of their standard deviations (Giavarina, 2015). This ratio ranging 

from +1 to -1 and closer to the two sides the stronger the linear relation is.  Pearson product 

moment coefficient of correlation is the most common correlation method used which measures 

the degree of linear association between two variables. A common test of hypothesis involving 

Person’s r consists of testing the H0 that ρ=0. For the purpose of assessing agreement, this 

hypothesis test is rarely conducted, and for good reasons: simply rejecting H0: ρ=0 would 

constitute remarkably weak evidence of agreement. 

 

Admittedly superior to the paired t-test for comparison of methods, the correlation approach is 

problematic in that the magnitude of Pearson’s r depends on how close the data points are to the 

linear regression line, whereas agreement depends on closeness to the identity line. As the 

regression line is not constrained to have a zero intercept and a unit slope, these two lines can 

have quite different locations. This makes Pearson’s r a possibly misleading measure of 

agreement, as it can overestimate (though not underestimate) the extent of the agreement 

between the two measures. 

𝑟𝑥𝑦 =

∑ (
𝑥𝑖 − 𝑥̅

𝑠𝑥
) ∙ (

𝑦𝑖 − 𝑦̅
𝑠𝑦

)𝑛
𝑖=1

𝑛 − 1
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Correlation shows the relation and its strength, while it incapable of showing the agreement. A 

strong relation would be observed with any straight line between the variables while the 

agreement requires the points along the equality line (Bland and Altman, 2010). Moreover, the 

correlation would not be affected by a change in measurement scale while the agreement will be 

affected, and data with poor agreement have been shown to have strong correlations (Bland and 

Altman, 2010). Another shortage involved with the test of significance is that they only show 

that the two methods are related which seems obvious considering that both methods are to 

measure the same variable. However, this cannot be necessarily translated to agreement of two 

methods.  

 

1.3. Regression 

Regression also is to determine the relationship between variables, however, in this case, one of 

the variables is the dependent variable or outcome, while the other one is the predictor while in 

correlation both variables are considered the same (Crawford, 2006). In other words, linear 

regression finds the best line that predicts one variable from the other one and quantifies it using 

r2 (Giavarina, 2015). Linear regression includes the assumption that should be met before 

analysis (Crawford, 2006). These assumptions are:” (i) normally distributed residuals with a 

mean of zero; (ii) constant variance of the residuals; and (iii) independence of residuals from 

different observations.” 
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linear regression, with the gold standard measure (x2) as the dependent variable and the 

contender measure (x1) as the independent variable. For the purpose of assessment of agreement 

between two continuous measures, a two-part H0 is used, and the research hypothesis is that 

neither will be rejected: 

• 𝐻01: 𝛽0 = 0 

• 𝐻𝐴1: 𝛽0 ≠ 0 

• 𝐻02: 𝛽1 = 1 

• 𝐻𝐴2: 𝛽1 ≠ 1 

A problem with this approach is that low power helps the research hypothesis of agreement (as 

the research hypothesis is aligned not with HA but with H0). 

 

 

1.4.Altman and Bland Method 

Since its first publication in 1983, a fourth approach, the Altman-Bland (Douglas Altman & 

Martin Bland) approach has been a very popular choice for assessing agreement. Unlike the 

other three approaches outlined above, it focuses on the entire distribution of differences. 

This method which is also called ‘‘limits of agreement’’ approach uses a scatter plot called 

“difference plot” to differentiate the measurements on a subject by two different methods (Myles 

and Cui, 2007). This plot can determine if the difference is related to averages and if there was 
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no relationship the distribution of the differences can be computed as follow (Stevens et al., 

2015):   

𝑑 ̅± 1.96 Sd 

sample of i= 1, 2, …, n subjects, 

 𝑑 ̅= sample average 

Sd = standard deviation of the observed differences 

The limits are representing intervals that are expected to include 95% of the differences, 

assuming that the differences have a rough normal distribution. Horizontal reference lines 

corresponding to the upper and lower limits of agreement and the average difference 𝑑 ̅, are 

added to the plot. The agreement between two methods are evaluated based on a maximum 

allowable difference between two measurements that have been determined by the scientist.  

 

1.4.1. Drawbacks of Bland and Altman method  

The difference plot is the main result of the Altman-Bland approach. It provides the 95% 

agreement limits, which are the estimated limits within which 95% of the differences in the 

population would fall, assuming a normal distribution for these differences. These limits are not 

set by the investigator; they are a function of the sample data. The question to be answered by 

the investigator is whether these limits are narrow enough and whether the bias (average 
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difference) is small enough to conclude in favor of the satisfactory agreement. Thus, the Altman-

Bland method has two limitations: 

1) Lack of a test of significance is the first drawback of this method. The software 

implementations that often are provided test the H0: Bias = 0. However, these test that 

were not provided by Altman and Bland are exactly like paired t-test with same 

disadvantageous discussed above.  

2) As with the correlation approach, since a threshold of what constitutes sufficient 

agreement does not need to be specified a priori, it is not clear how to translate the results 

(correlation coefficient or computed agreement limits) into a decision as to whether 

sufficient agreement has been reached 
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Chapter 2: Numerical examples from methods that have been used for agreement 

As discussed in chapter one techniques such as paired t-test, correlation and regression are not 

appropriate techniques for method comparison and agreement. However, Bland-Altman provides 

a simple and appropriate approach for measure of agreement. In this chapter, numeric examples 

are used to show why methods such as regression, correlation, and paired t-test are inappropriate 

for measure of agreement and the results compared to outcomes of Altman-Bland method. 

2.1. Material and Methods 

In this study, data generated using SAS version (9.4), to show how early methods including the 

use of regression, correlation, and t-test cannot be used to show the agreement of methods. 

2.2. Results 

2.2.1 Example showing inappropriacy of t-test and equivalence testing 

Two datasets (n=30), with equal means, randomly generated (appendix 1). The characteristics of 

the generated data is depicted in Table 1. The t-test rejects the null hypothesis suggesting that 

two methods are in agreement (Table 2), while the two data sets are randomly generated and 

only have an equal average. Altman-bland method, however, reveals the difference between two 

methods (Fig. 2.1). The mean difference was zero since the mean values were equal. However, 

the limits of agreement (-82.4, 82.4) are not small enough that we can consider that two methods 

agree.  “These limits are not set by the investigator; they are a function of the sample data. The 
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question to be answered by the investigator is whether these limits are narrow enough and 

whether the bias (average difference) is small enough to conclude in favor of sufficient 

agreement. Altman and Bland did not recommend a test of significance for these agreement 

limits.  

 

2.2.2. Example showing inappropriacy of regression and correlation 

Two random data set (n=100) with a significant correlation were generated (appendix 2).  

Pearson’s correlation coefficient suggested a strong agreement between the two methods (r = 

0.94). Similarly, linear regression methods showed an agreement between two methods (r2 = 

0.88, p < 0.001, Fig. 2.2).  

However, the Bland-Altman method revealed that the two methods are not in agreement. Figure 

2.3B compares two methods (generated data). Since a linear relation can be observed between 

average and the difference in two methods (Fig. 2.3B), a logarithmic transformation have been 

suggested in such cases (Bland and Altman, 2010). The mean difference was -0.016 on the log 

scale with limits of agreements of -0.1, 0.1. The antilog of this limit would be 0.70, and 1.26 

respectively. It is of importance to consider that these values are dimensionless ratios and are 

suggesting that for 95% of cases the second method will be between 0.70 and 1.26 times of the 

first method. Thus, the second method may differ from the first method by 30% below and 26% 

above. 
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Tables and Graphs 

 

Table 2.1. Summary of the data generated for evaluation of the t-test.  
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Table 2.2. Summary of the t-test. t-test rejects the null hypothesis suggesting that two methods 

are in agreement 
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Figure 2.1. Altman-Bland graphs for the generated data with equal means. 
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Figure 2.2. The linear regression between to generated data 
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Figure 2.3. Altman-Bland graphs for the generated data with significant relation 
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Chapter 3: Upper-tail one-sample binomial proportion test 

 

Computing a two sided interval estimate for a population proportion is of importance in applied 

statistics (Pires and Amado, 2008). The One-Sample Proportion Test is used to assess whether a 

population proportion (P1) is significantly different from a hypothesized value (P0). The 

hypotheses may be stated regarding the proportions, their difference, their ratio, or their odds 

ratio, but all four hypotheses result in the same test statistics. 

In this study, a one-sample binomial proportion test was used to address the question of 

agreement. Let's say we want 0.75 of the differences to be located within the interval we have 

specified. The number of successes divided by the number of trials defines the binomial 

proportion. Thus, greater proportion inside the interval is preferred. The data sets with values 

inside the interval were considered “1”, otherwise they were considered “0”. This approach helps 

us to quantify the p-value with the binomial distribution. H0 can be tested that this proportion is 

smaller than .75 and set out to reject it. 

𝐻0: 𝜋 ≤ .75 

𝐻𝐴: 𝜋 > .75 

The null hypothesis is that of the insufficient agreement, and its rejection constitutes the 

evidence in favor of agreement. This proportion test approach has the following desirable 

features: 
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1) It requires the investigator to define a priori what is meant by agreement, regarding limits 

and proportion, before being possibly influenced by the data. 

2) It provides a p-value so that the agreement questions can be answered. 

3) This p-value pertains to a test of hypothesis in which the research hypothesis is aligned 

with the alternative hypothesis so that the claim of the agreement is made more difficult 

when statistical power is low.    

4) This test is focused on the entire distribution of differences, not on the mean of these 

differences. 

To further clarify this method, a numeric example is provided below. The characteristics of the 

generated data are depicted in table 3.1. In this case, we want 0.75 of the differences to be 

located within the interval the we have specified (-0.5, 0.5, Fig.3.1). The null hypothesis 

explained above, can be tested for this data set (Fig.3.2). This sampling distribution has been 

generated under H0 (π = .75). The p-value for our binomial significance test of proportion is the 

area under the curve that is as or more extreme than the observed value. As depicted in figure 

3.1, 9 data points fall outside the difference limits, which means that the observed proportion of 

interest is (30-9)/30 = 0.7. This is an upper-tail test, so more extreme means larger (we could 

reject H0 with a sample proportion larger than .75 but not smaller). For an upper-tail one-sample 

binomial test of proportion, the p-value is given by ∑,x=k,n(combined(n,x)·px·(1-p) (n-x) ). With 

an observed proportion of 0.7000 and an upper-tail p-value of 0.803407 (not shown on SAS 
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output, table 3.2). We do not reject the H0 of π ≤ .75 and conclude that it is not in favor of the 

agreement, with difference limits of ± 0.5 (table. 3.2). 

In this example, out of 30 points, 21 are within the interval. The exact p-value was the red area in 

figure 3.2 (0.1298 + 0.1593 + 0.1662 + 0.1455 + 0.1047 + 0.0604 + 0.0269 + 0.0086 + 0.0018 + 

0.0002 = 0.8030407). If it were a continuous distribution it would be the area. However, since it 

is a discrete distribution, the p-value would be the sum of them. It is important to consider that 

the purpose was to conduct an exact binomial test so not a χ2  approximation and SAS does not 

give us the exact p value for the binomial test.   

One of the advantages of this proposed method is that the intervals have to be set before the test 

run. While in Altman-Bland method nothing is determined ahead of time which may have 

impacts on the decision made by scientists and be bias. 
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Tables and Graphs 

 

Table 3.1. Characteristics of the generated data 
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Table 3.2. Proportion test for the generated data 
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Figure 3.1. 0.75 of the differences to be located within the interval  
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Figure 3.2. This sampling distribution has been generated under H0 (π = .75) so the p-value for 

our binomial significance test of proportion is the area under the curve that is as or more extreme 

than the observed value (21/30=0.7000). This is an upper-tail test, so more extreme means larger 

(we could reject H0 with a sample proportion larger than .75 but not smaller). 
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