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Abstract

Vital signs, such as breathing and heartbeat, are useful to health monitoring since such sig-

nals provide important clues of medical conditions. Effective solutions are needed to provide

contact-free, easy deployment, low-cost, and long-term vital sign monitoring. In this paper,

we present PhaseBeat to exploit channel state information (CSI) phase difference data to mon-

itor breathing and heartbeat with commodity WiFi devices. We provide a rigorous analysis

of the CSI phase difference data with respect to its stability and periodicity. Based on the

analysis, we design and implement the PhaseBeat system with off-the-shelf WiFi devices, and

conduct an extensive experimental study to validate its performance. Our experimental results

demonstrate the superior performance of PhaseBeat over existing approaches in various indoor

environments.
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Chapter 1

Introduction

It is estimated that over 100 million Americans have chronic health conditions, such as lung

disorders and heart diseases. Three-fourths of the total US healthcare cost are spent to treat

these conditions [1], leading to an increasing demand for long-term health monitoring in in-

door environments. Vital signs, such as breathing and heartbeat, are useful to physical health

monitoring since such signals provide important clues of medical problems, such as sleep dis-

orders or anomalies, and sudden infant death syndrome (SIDS) of sleeping infants [2]. Most

traditional methods for vital sign monitoring require a person to wear special devices such as

a capnometer [3] or a pulse oximeter [4]. These technologies are inconvenient to use and un-

comfortable. Alternative solutions of contact-free, easy deployment, low-cost, and long-term

vital sign monitoring would be highly appealing.

Recently, radio frequency (RF) based vital sign monitoring systems have attracted great

interest, which exploits wireless signals to detect breathing-induced chest movement. For ex-

ample, the Vital-Radio system uses a frequency modulated continuous wave (FMCW) radar

to estimate breathing and heart rates [5]. It works for multiple subjects in parallel, but re-

quires a customized hardware with a large bandwidth from 5.46 GHz to 7.25 GHz. Other

techniques, such as the Doppler radar [6, 7] and the ultra-wideband radar [8], are also incor-

porated to monitor vital signs, which also require dedicated hardware with high frequency and

high cost. The mmVital system [9] uses the received signal strength (RSS) of 60 GHz millime-

ter wave (mmWave) signals for breathing and heart rates estimation with a larger bandwidth

about 7GHz, which also requires customized hardware and a mechanical rotator. A recent work
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UbiBreathe monitors the breathing signal using WiFi RSS, which is coarse channel informa-

tion [10]. UbiBreathe requires a line of sight (LOS) path between the transmitter and receiver,

which limits the RF monitoring range in the deployment environment.

Unlike RSS, the channel state information (CSI) represents fine-grained channel informa-

tion, which is now available for several off-the-shelf WiFi network interface cards (NIC), e.g.,

Intel WiFi Link 5300 NIC [11] and the Atheros AR9580 chipset [12]. Specifically, CSI consists

of both subcarrier-level amplitude and phase information of the orthogonal frequency division

multiplexing (OFDM) channel. It is a more stable representation of channel characteristics

than RSS. In a recent work [13], the authors use the amplitudes of WiFi CSI data to track vital

signs of a sleeping person. However, the CSI phase information has not been used for vital

sign monitoring so far, due to large variations caused by noise and the unsynchronized time

and frequency at the transmitter and receiver.

1.1 Approach

In this paper, we leverage CSI phase difference data between two antennas of the receiver NIC

to detect and monitor breathing rate and heart rate. We find that the CSI phase difference data

is quite stable after suitable calibration. Moreover, the CSI phase difference data is also more

robust than RSS in various deployment scenarios, such as different distances, obstacles/walls,

and orientations. We provide a rigorous analysis of CSI phase difference data, and prove that

for indoor multipath environments under small-scale fading, the CSI phase difference data is

a periodic signal with the same frequency as the breathing signal, when the wireless signal is

reflected from the chest of a person. We also prove that leveraging directional antenna at the

transmitter can boost the signal-to-noise ratio (SNR) of CSI phase difference data, thus making

it possible to remotely monitor the minute heartbeat signal.

Built upon the analysis, we design PhaseBeat, a remote sensing system using CSI phase

difference data for monitoring breathing and heartbeat with commodity WiFi device. First,

PhaseBeat exploits the CSI phase difference data to extract the periodic signal induced by

chest movements (e.g., inhaling and exhaling). Then, PhaseBeat preprocesses the captured

data, with environment detection, data calibration, subcarrier selection, and discrete wavelet
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transform. The cleansed CSI phase difference data is then used to estimate the breathing and

heart rate in realtime. We implement PhaseBeat with off-the-shelf WiFi devices and evaluate

its performance with extensive experiments, which involve four persons over three months in

typical indoor environments, such as a computer laboratory, a through-wall scenario, and a

long corridor. The experimental results demonstrate that PhaseBeat can achieve high accuracy

for breathing and heart rate estimation, with median error of 0.25 bpm and 1 bpm, respectively.

We also find PhaseBeat highly robust for breathing rate estimation under various environments,

such as different distances between the transmitter and receiver, different distances between the

person and the WiFi devices, different orientations and poses, and multiple persons.

The main contributions of this paper are summarized below.

• We theoretically and experimentally validate the feasibility of using CSI phase difference

for vital sign monitoring. In particular, we provide a rigorous analysis of the measured

CSI phase information, with respect to its stability and periodicity. To the best of our

knowledge, this is the first work to exploit CSI phase difference for breathing rate and

heart rate estimation.

• We design the PhaseBeat system based on the analysis. We develop several signal pro-

cessing algorithms for preprocessing the collected CSI phase difference data, which can

obtain the denoised breathing signal and the reconstructed heart signal. Then, we employ

peak detection and root-MUSIC methods for breathing rate estimation with one person

and multiple persons, respectively, and leverage an FFT based method for heart rate esti-

mation.

• We prototype the PhaseBeat system with commodity WiFi devices and validate its supe-

rior performance in typical indoor environments with extensive experiments. Our exper-

imental results demonstrate the superior performance of PhaseBeat over traditional CSI

amplitude based approach.
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1.2 Layout

In the remainder of this paper, we present the research background in chapter 2. Preliminaries

and our analysis of phase difference data are showed in Chapter 3. We describe the Phase-

Beat design in Chapter 4 and demonstrate its performance in Chapter 5. Chapter 6 reviews

conclusion and future work about this paper.
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Chapter 2

Background

2.1 Introduction of Internet of Things

As we enter the new era of information and electronic, the explosive development of electronic

devices and communication technology makes people get access to the internet in mostly any-

where and anytime [14–32]. Now, the next generation of information network is internet of

Things(IoT), which means every device, each person, and any piece of data should all be in-

cluded in a whole internet [33–35]. With IoT technique, everything can upload the information

generated or sensed by itself to the internet. Meanwhile, the data can be transmitted to any-

where or stored in database for the further analysis. The specialty of IoT allows people to gather

and analyze data of anything inside the network infrastructure much more efficiently than be-

fore. Many promising technologies can be fulfilled based on IoT such as healthcare, home

remote monitoring and managing, big data analysis for whole country, operation optimization

in industry, and big environment monitoring.

2.2 Introduction of IoT Based Healthcare

Among these promising technologies, healthcare attracts more attention from the public, be-

cause health is the foundation of peoples daily lives. With the combination of IoT and health-

care the doctor can do remote diagnosis [36]. Traditionally, patients tend to make an appoint-

ment and visit our doctor when get sick, which may take us about 2-3 hours or longer before

getting diagnosis result. With the help of IoT, people do not need to get out to the hospital.

Instead, the doctor can get the information they need from IoT, and patient can also get medical
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Figure 2.1: IoT based Healthcare System Architecture.

care from the doctor when they stay at home or work in their office. Like ordering products

from the website, people can also get medical care without getting out of the door.

In addition to remote diagnosis, IoT based healthcare also includes other applications such

as: remote baby monitoring, log-term human body health tacking, and fitness programs plan-

ning [36]. These applications are mostly about chronic health problem detection and precau-

tion. It is reported that about 100 million people in the U.S. have chronic problems. Actually,

Americans spend a large number of money on their chronic problems, which are almost three

fourths of their total health care cost [1]. However, the cost can be highly reduced if there is a

suitable precaution. Therefore, a long-term health monitoring system is needed to evaluate the

current condition of human, and give the warning to the user if there is a potential risk. With

this kind of system, doctors can provide medical suggestions in the time to reduce the cost of

the chronic diseases.

2.3 Structure of IoT Based Healthcare

Many remote healthcare works show that, an IoT based healthcare system is usually established

by three layers: sensing layer, gateway layer, and cloud layer. [36]The overview of the structure

is showed in Fig. 2.1. The first layer is sensing layer, which is mostly responsible for employing

different kinds of sensors to extract vital sign signals from human body. The gateway layer will
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deal with the extracted signal and then transmit the signal to the Internet for the following

layer. The third layer is called cloud layer, which is mainly concerned with data analysis

and processing. For example, the doctor can collect all vital signs of their patients and give

professional medical suggestions based on the information extracted from the sensing layer,

and ask the patient to the hospital for further diagnosis.

To fulfill this type of IoT based healthcare system, there is an increasing demand for vari-

ous advanced medical sensors to extract the necessary information from users more efficiently

than traditional sensors. Instead of traditional measurements, these sensors are considered as

smart sensors [36], which are more convenient and accurate. Smart sensors play an important

role in IoT based healthcare, because they not only need to monitor human bodies, but also

to transmit the extracted signals to the Internet. They are responsible for collecting the source

information, which is highly related to the final diagnosis result. Therefore, inventing sensors

with high accuracy and convenience has become a popular topic in research field.

2.3.1 Multimedia Sensors in Sensing Layer

The vital signs are extracted in the sensing layer. As we know, four main vital signs are body

temperature, heart rate, respiration rate and blood pressure. These four vital signs can reflect

health condition of human body, and the traditional measurement of these vital signs have been

used by special devices. For instance, people can measure their body temperature by simply

using a thermometer. Blood pressure can be measured by a blood pressure cuff and stetho-

scope. However, even though traditional measurements for vital signals are easy to operate,

there are still some challenges when they are employed in the sensing layer. On one hand, most

of the traditional measurement devices are wearable, which means patients should keep these

measurement tools on their body, like thermometer and stethoscope. These devices are conve-

nient and easy to operate for adults, but they may cause babies and elders feel uncomfortable

in some cases. On the other hand, these traditional devices are mostly invented to measure the

vital signs within a shot period, so most of them are not suitable for long-term monitoring.

Recently, many multimedia sensors are designed to achieve stable and accurate vital signs

measurements. Most of sensors are contact-less and suitable for long-term vital sign monitoring

7



such as RF based sensors [6, 8, 37–40] and other sensing method based on the video taken by

a camera [41]. Some sensors are not contact-less but are also comfortable for users to wear

it, because these sensors are very small or embedded in smart phone. For example, some

techniques use the accelerometer in smart phones to monitor the movement of users [42] and

some technologies employ RFID tag to extract breathing signals [37]. This paper will introduce

some typical technologies for these multimedia sensors.

Radar Monitoring

For radar techniques, there are several types of radar systems such as: Doppler radar [6], ul-

trawideband(UWB) radar, and FMCW radar system. In Doppler radar system, the authors

leverage a CMOS Doppler radar to extract respiratory signal and heart beat signal. The experi-

ments show that the effective distances for measuring heart rate and respiration rate are 1 m and

1.5 m, respectively. The measurement accuracy is related to the SNR of Doppler Radar. With

suitable measuring distance and best SNR the measuring error for both heart rate and breathing

rate is about 1 bpm.

For UWB radar, the system is designed to measure the propagation of UWB radio signal

between two antenna arrays [8]. The authors use arrays to transmit and receive RF signal

instead of single antenna for better accuracy. With MIMO technique, the radar system can

achieve higher accuracy when tracking the movement and position of human. Moreover, the

radar works in 2-8 GHz frequency range. The breathing rate is estimate by reproducing UWB

channel generated by environment changes, which is caused by the movement of human breath.

The measurement is fulfilled by using Vector Network Analyzer(VNA) and virtual antenna

arrays technique. The system is tested both in LOS and NLOS case, and the results show that

the system can track the movement of the human chest within the range about 5 m.

Recently FMCW radar is also used in monitoring vital signals [38]. The authors develop a

Vital-Radio system to monitor the breathing and heart rates of human. The system is operated

by transmitting wireless signals and recording the time before the reflection comes back.

The system can monitor multiple people simultaneously because of the frequency mod-

ulated carrier wave (FMCW) technique. As Fig. 2.2 shows, different reflectors will cause
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Figure 2.2: Reflectors in Different Distance for FMCW Radar.

different reflection time, because the distance from the reflectors to the transmitter is different.

FMCW radar can modulate the frequency before transmitting the wireless signal, so that the

system can separate users with different distance in corresponding buckets. In the measurement

part, both breathing rate and heart rate are estimated by FFT, but the final result is calculated

by using the slope of invers FFT for higher resolution compared with normal FFT. The median

accuracy of the system is high up to 99 percent, and the effective distance is 8 meters. The

experiments show that the system can also operate when the radar and users are in different

rooms.

These radar techniques are all good at monitoring breathing signals with contactless radar

device. With FMCW technique, the radar can also measure human heart rates, and monitor

vital signs for multiple people. However, these radar techniques require special hard device to

transmit and receiver signal.

Channel State Information Implementation

Some techniques can use WiFi signals to extract the vital signals for users such as respiration

rate and heart rate based on channel state information extracted by modified device driver [43–

45]. The technique is established by two computers equipped with Intel 5300 NIC, where one

is set as a receiver and another one is set as a transmitter. Different from other technique, WiFi

monitoring system does not require any special hardware. The papers show that both amplitude
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and phase difference of CSI can be implemented to monitor human breathing movement. In

this paper, we will introduce the sleeping breath monitoring system, which uses the amplitude

of CSI to detect the respiration signal.

The system implements a WiFi device to receive packets sent by the access point, and

extract channel state information. Then the system will identify the event of the user, such

as go to bed, get up and turnover. The breathing rate and heart rate can be estimated after

the data from human event is filtered out, because large noise caused by the sleep event will

highly decrease the SNR. After the signal is calibrated, the respiration rate for single person

is estimated by peak detection algorithm, meanwhile, the breathing rates for two persons can

also be estimated by K-means clustering based on Power Spectral Density(PSD). The signal

related to heart beats is extracted by using band pass filter, where the heart rate is estimated by

applying peak determination in PSD measurement.

Monitoring with Camera

The photoplethysmography(PPG) has already been a main technique and widely used in daily

lives. As we know, PPG can monitor the heart rate by measuring the light absorption signal,

which is caused by blood volume changes. However, traditional PPG is not suitable for long

range monitoring because the system needs to extract the light signal from the blood vessel

with directly attached camera. To extract the PPG from the user remotely, some techniques

can monitor vital sign including breathing rate and heart rate and SpO2 by analyzing the video

taken by an off-the-shelf camera.

One typical system is established as the Fig. 2.3 shows above [41]. The movement of the

user is recorded by a camera, where the image is generated by the ambient light. The resolu-

tion is 8 bits per pixel and the sampling rate is 12 Hz. The first step is using features tracking

technique to separate the frame in several segments such as users head. After that, some re-

gions of interest(ROI) are extracted from different segments. These ROI are divided in two

types: one is subject ROI (ROIs), like forehead and cheek of the user face, which can repre-

sent subjects information. Another one is called reference ROI (ROIr), which can represent the

10



12Hz RGB 

video

R,G,B Average 

in ROIr

R,G,B Average 

in ROIs

Sliding 15s 

Window

Sliding 15s 

Window

Detrend and 

Filter

Detrend and 

Filter

Fit AR Model 

Order 9

Fit AR Model 

Order 9

Pole 

Cancelation

Pole Slection

Sliding 30s 

Window

Detrend and 

Filter

Fit AR Model 

Order 7

HRBR

Hear Rate Module

Breathing Rate Module

Figure 2.3: Camera Based Health Sensing System Structure.

background signal. After ROI extraction, the RGB channel information within a sliding win-

dow are extracted for the following processing, like detrending and filtering. Different from

other measuring methods, the frequency of the target vital signal is estimated by AR modeling

instead of Fourier transform. Before getting the final vital signal the authors also propose a

pole cancellation method to suppress the unrelated components in AR modeling result, which

is caused by low sampling frequency.
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There is also another technique, which focuses on monitoring the heart rate by using the

camera embedded in the off-the-shelf smart phone [46]. Camera of the mobile phone can record

and analyze the color signals when the user puts their finger on the flash light and covers the

camera at the same time. Even though the sensor is not contactless, the sensor is also very

convenient for human because of the high portability of mobile phone.

Different from RF signal monitoring system, vital signals monitoring is hardly affected

by others users movement because camera can easily focus on one user. However, most of

the camera techniques rely on stable illumination. When the light source is not stable, or the

monitoring environment is too dark, the accuracy of measurement results will decline greatly.

Sensing based on Accelerometer

Another technique called Zephyr can measure the human breathing rate by using the redun-

dant data generated from the accelerometer and gyroscope embedded in smartphones [42]. As

smartphones are widely used in human daily life, Zephyr is convenient for monitoring the res-

piration rate for a long term although the accelerometer sensor is not contact-less.

The raw data is collected from different axis for both accelerometer and gyroscope (six

sensors totally) to improve the accuracy of breathing beats estimation. To obtain the smooth

signal for respiration rate estimation the authors implement a Hilbert Transform based method

to estimate the envelope of the signal, which applies a local mean removal technique to reduce

the sudden change influence. The breathing rates from all six sensors are estimated indepen-

dently by FFT and eventually fused into single result by employing Kalman Filter-based fusion

technique. The last step of the system is to get a robust breathing rate result instead of unstable

instantaneous data by using alpha-trimmed filter.

The authors also test the system in various users. The experimental results show that the

median error of the final respiration results is 0.04 bpm and the maximum error is less than 2

bpm, which proves that the system is robust for different users.
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2.3.2 Gateway Layer Introduction

Gateway layer can collect the data coming from all kinds of smart sensors and then transmit the

data to the cloud through wide area network(WAN) [47]. In gateway layer, the data can be sent

to the cloud with either physical interface or wireless interface. For the convenience and flex-

ibility of the whole IOT network the wireless transmission is more suitable for different kinds

of IOT structures than wired transmission. The gateway is also responsible for the safety and

stability during data transmission. Considering multiple sensors and lots of users within IoT

healthcare system, the gateway should be also able to read health data from different sensors

and deal with the collision happened when large number of data are sent at a small period of

time.

2.3.3 Cloud Layer Introduction

In cloud layer, the collected health data can be stored in database, and can be analyzed by

professional organizations [36, 47]. The function of a healthcare system is to provide health-

care solution based on various users health conditions. As a IoT based healthcare system, the

medical service mostly focuses on two parts. The first part is health condition monitoring for

individuals, which is concerned with monitoring different kinds of diseases threaten. To make

the long-term monitoring becomes convenient for the users, the smart health evaluation system

should be developed to evaluate the health condition based on users body information for sev-

eral months or several years. The second part is about precaution for a special disease in a large

group of people, which can highly reduce the influence in the future for society. This function

is related to the big data analysis technique, where many algorithms and data structures are

proposed to achieve high accuracy and high efficiency in potential disease prediction.
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Chapter 3

Preliminaries and Phase Difference Analysis

3.1 Channel State Information Preliminaries

OFDM is widely used in modern wireless network standards, such as WiFi (i.e., IEEE 802.11

a/g/n) and LTE [27,48,49]. With OFDM, the total spectrum is partitioned into multiple orthog-

onal subcarriers, and wireless data is transmitted over the subcarriers using the same modula-

tion and coding scheme (MCS) to mitigate frequency selective fading. Leveraging the device

driver for off-the-shelf NICs, e.g., the Intel 5300 NIC [11], we can extract the CSI from the

NIC, which is fine-grained physical layer (PHY) information. CSI reveals the channel char-

acteristics experienced by the received signal such as the multipath effect, shadow fading, and

distortion [48].

With OFDM, the WiFi channel at the 5 GHz band can be considered as a narrowband

flat fading channel. In the frequency domain, the channel model can be expressed as ~Y =

CSI · ~X + ~N , where ~Y and ~X denote the received and transmitted signal vectors, respectively,

~N is the additive white Gaussian noise, and CSI represents the channel’s frequency response,

which can be estimated from ~Y and ~X .

Although the WiFi OFDM system has 56 subcarriers over a 20 MHz channel, the Intel

5300 NIC can report CSI for only 30 of the 56 subcarriers. The channel frequency response of

subcarrier i, CSIi, is a complex value, that is

CSIi = Ii + jQi = |CSIi| exp (j∠CSIi), (3.1)
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where Ii and Qi are the in-phase component and quadrature component, respectively; |CSIi|

and ∠CSIi are the amplitude response and phase response of subcarrier i, respectively.

For an indoor environment with NLOS components [44], the channel frequency response

of subcarrier i can also be formulated as

CSIi =
K∑
k=0

rk · e−j2πfiτk . (3.2)

where K is the number of multipaths, rk and τk are the attenuation and the propagation delay

from the kth path, respectively, and fi is the central frequency of subcarrier i. Traditionally, the

multipaths are harmful for indoor localization, because only the LOS component is a good indi-

cator of distance [44,50]. However, our PhaseBeat system can effectively exploit the reflections

for vital signals monitoring, as will be shown in this paper.

3.2 Phase Difference Information

In this section, we show that the CSI phase difference data between two antennas for consecu-

tive packets of the 5 GHz OFDM channel is highly stable and a periodic signal with the same

frequency as the breathing signal. We now provide an analysis to validate the stability from

the measured phase difference. Let ∠ĈSI i denote the measured phase of subcarrier i, which is

given by [12, 51–54]

∠ĈSI i = ∠CSIi + (λp + λs)mi + λc + β + Z, (3.3)

where ∠CSIi is the true phase value, mi is the subcarrier index of subcarrier i, β is the initial

phase offset due to the phase-locked loop (PLL), Z is the measurement noise that is assumed

to be AWGN of variance σ2, and λp, λs and λc are the phase errors from the packet boundary

detection (PBD), the sampling frequency offset (SFO), and central frequency offset (CFO),

respectively [51]. The phase errors can be written as

λp = 2π
∆t

N
, λs = 2π

(
T ′ − T
T

)
Ts
Tu
n, λc = 2π∆fTsn, (3.4)
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where ∆t is the packet boundary detection delay, N is the FFT size, T ′ and T are the sampling

periods at the receiver and the transmitter, respectively, Tu is the length of the data symbol, Ts

is the total length of a data symbol and the guard interval, n is the sampling time offset for the

current packet, and ∆f is the center frequency difference between the transmitter and receiver.

Note that we cannot obtain the exact values for ∆t, T ′−T
T

, n, ∆f , and β in (3.3) and (3.4).

Moreover, λp, λs, and λc vary for different packets with different ∆t and n. Thus, the true

phase ∠CSIi cannot be derived from the measured phase value. Fortunately, the measured

phase difference on subcarrier i can be leveraged as in the following theorem.

Theorem 1. The measured phase difference on subcarrier i between two receiver antennas is

stable, and its mean and variation are given by

 E(∆∠ĈSI i) = E(∆∠CSIi) + ∆β

Var(∆∠ĈSI i) = Var(∆∠CSIi) + 2σ2.
(3.5)

Proof. Note that the three antennas of the Intel 5300 NIC use the same clock and the same

down-converter frequency. Consequently, the measured phases of subcarrier i from two an-

tennas have identical packet detection delay, sampling periods, frequency differences, and the

same index mi [55]. Thus the measured phase difference on subcarrier i between two antennas

can be approximated as

∆∠ĈSI i = ∆∠CSIi + ∆β + ∆Z, (3.6)

where ∆∠CSIi is the true phase difference of subcarrier i, ∆β is the unknown difference in

phase offsets, which is in fact a constant [55], and ∆Z is the noise difference with variance 2σ2.

Since ∆t, ∆f , and n are all removed, ∆∠ĈSI i in (3.6) becomes highly stable for consecutive

packets. From (3.6), we can derive the mean and variance of the measured phase difference on

subcarrier i as that given in (3.5).

From (3.6), it can be seen that E(∆∠ĈSI i) − E(∆∠CSIi) is a constant ∆β. The differ-

ence does not change the estimated frequency of vital signals, although its variance becomes
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Figure 3.1: Comparison between phase CSI measured from a single antenna (marked as blue
crosses) and the phase differences measured from two antennas (marked as red dots) of the 5th
subcarrier for 600 consecutively received packets.

larger. Fig. 3.1 is a comparison between the single antenna phases (as blue crosses) and the

phase differences (as red dots) of the 5th subcarrier in the polar coordinate plot for 600 con-

secutively received packets. We can see that the single antenna phase of the 5th subcarrier

is nearly uniformly distributed between 0◦ and 360◦, making it unusable. However, all phase

difference data of the 5th subcarrier concentrate into a sector between 190◦ and 210◦, which

clearly validates Theorem 1.

In the following Theorem, we show the measured phase difference information is periodic.

Lemma 1. When the wireless signal is reflected from the chest of a person with a breathing

frequency fb, the true phase of the reflected signal at any antenna of the receiver is also periodic

with the same frequency fb.
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Proof. Because the wireless signal on subcarrier i is a plane wave, its true phase at the receiver

is determined by the propagation distance, that is ∠CSIi = 2πd(t)/λi, where d(t) is the prop-

agation distance at time t and λi is the wavelength of subcarrier i. When the chest of a person

periodically rises and falls with frequency fb, the propagation distance d(t) of the reflection

signal becomes d(t) = D+A cos(2πfbt), where D is the constant mean distance of the reflec-

tion path, A is the amplitude of the periodic signal from chest movements. Thus, the true phase

of the reflected signal at the receiver is ∠CSIi = 2π(D + A cos(2πfbt))/λi. Clearly, the true

phase at the receiver is a periodic signal with the frequency fb.

Theorem 2. For indoor environments with multipaths, when the wireless signal is reflected

from the chest of a person with breathing frequency fb, the true phase at any antenna of the

receiver is also a periodic signal with frequency fd such that

P (|fd − fb| < ε) = 1, ∀ε > 0. (3.7)

Proof. Based on Lemma 1, the true phase of the reflected signal at the receiver, ∠CSIi =

2π(D+A cos(2πfbt))/λi is periodic with frequency fb. Let the reflected signal be the dynamic

component, and the sum of other LOS and multipath signals as the static component. We can

rewrite (3.2) as

CSIi =
K∑

k=0,k 6=d

rk · e−j2πfiτk + rd · e−j2πfiτd

= |CSIsi | exp (j∠CSIsi ) + |CSIdi | exp
(
j∠CSIdi

)
, (3.8)

where CSIsi is the static component given as
∑K

k=0,k 6=d rk · e−j2πfiτk , CSIdi is the dynamic com-

ponent given as rd · e−j2πfiτd . Moreover, ∠CSIdi is a periodic signal with frequency fb, and

|CSIsi |, ∠CSIsi and |CSIdi | are considered to be constants.

To obtain the phase of CSIi, we illustrate the geometric relationship among the static

component CSIsi , the dynamic component CSIdi , and the total component CSIi using an in-

phase-quadrature (I-Q) plot in Fig. 3.2. From Fig. 3.2, we can easily obtain the angle ∠DST =

∠CSIsi −∠CSIdi , the length OT = |CSIdi | cos(∠CSIsi −∠CSIdi ) + |CSIsi |, and the length TD =
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|CSIdi | sin(∠CSIsi − ∠CSIdi ). Thus, the phase of the total component CSIi can be computed as

∠CSIi = ∠CSIsi−arctan
|CSIdi | sin(∠CSIsi−∠CSIdi )

|CSIdi | cos(∠CSIsi−∠CSIdi )+|CSIsi |
. (3.9)

Because ∠CSIdi is periodic, ∠CSIi is also periodic. To show that the frequency of the total

phase ∠CSIi is fb, we differentiate (3.9) and set the derivative to zero. We then have

cos(∠CSIsi − ∠CSIdi ) = −|CSIdi |/|CSIsi |. (3.10)

The solution is ∠CSIdi = ∠CSIsi+π−arccos(|CSIdi |/|CSIsi |) (vector ~SD2) or ∠CSIdi = ∠CSIsi+

π + arccos(|CSIdi |/|CSIsi |) (vector ~SD1), as shown in Fig. 3.2. When the phase ∠CSIdi ∈

{∠CSIsi + π + arccos(|CSIdi |/|CSIsi |) − 2π, ∠CSIsi + π − arccos(|CSIdi |/|CSIsi |)}, (3.9) is an

increasing function; otherwise, it is a decreasing function. Thus, except for the only two points

D1 and D2, the phase of the total component CSIi is periodic with frequency fb. Moreover,

since the true phase CSIi is continuous, the probability that the true phase CSIi stays exactly at

points D1 or D2 equals to zero. Thus Theorem 2 holds true.

Now consider another antenna. With the same analysis, we can also obtain (3.9) for the

additional antenna, which is also periodic with frequency fb. However, its the static component

CSIsi and the dynamic component CSIdi on subcarrier i that are different, due to the different

positions of the two antennas. This is true for any pair of antennas of the three-antenna Intel

5300 NIC. We thus conclude that the true phase difference between any pair of antennas is a

periodic signal with the frequency fb.

Following Theorem 1 and (3.6), we can easily show that the measured phase difference on

subcarrier i between two antennas is also a stable periodic signal with frequency fb, although

the waveform of the signal is attenuated due to increased noise. To improve the signal wave-

form, directional antennas can be used at the transmitter, which can strengthen the power of

the reflected signal from the human body. In our PhaseBeat system, we adopt a directional

antenna at the transmitter for heart rate monitoring, because the heartbeat introduced effect on
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Figure 3.2: Illustration of the geometric relationship among the static component CSIsi (the
green vector ~OS), the dynamic component CSIdi (the red vector ~SD), and the total component
CSIi (the blue vector ~OD) in the I-Q plot.

the reflected signal is extremely weak. To reveal the effect of directional antennas, we derive

the following corollaries based on Theorem 2 and (3.9).

Corollary 2.1. When the ratio |CSIdi |/|CSIsi | → ∞, the true phase of subcarrier i at a re-

ceiver antenna becomes a periodic signal with frequency fb, and the true phase of subcarrier i

becomes ∠CSIi = ∠CSIdi .

Proof. According to (3.9), we can easily obtain ∠CSIi = ∠CSIdi when the ratio |CSIdi |/|CSIsi | →

∞. Moreover, ∠CSIdi is a periodic signal with frequency fb, and thus the corollary is proven.
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Corollary 2.2. When the ratio |CSIdi |/|CSIsi | → 0, the true phase of subcarrier i at a receiver

antenna will not be periodic, and the true phase of subcarrier i becomes ∠CSIi = ∠CSIsi .

Proof. According to (3.9), we can easily obtain ∠CSIi = ∠CSIsi when the ratio |CSIdi |/|CSIsi | →

0. Moreover, ∠CSIsi is not a periodic signal. Thus the corollary is proven.

Following Corollaries 2.1 and 2.2, it can be seen that when the reflection from the chest

becomes strong, the waveform of the received signal is periodic with a high SNR; when the

chest reflection becomes weak, the waveform of the received signal is still periodic but with a

low SNR. Thus, it is still challenging to estimate the breathing rate and heart rate based on the

reflected signal, due to multipaths, obstacles, long distance between the person and the receiver,

and low SNR. In the following section, we describe the design of the PhaseBeat system, aiming

to overcome the above challenges for estimating breathing rate and heart rate using CSI phase

difference data, for one or more persons.
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Chapter 4

The PhaseBeat System

4.1 PhaseBeat System Architecture

We design the PhaseBeat system to monitor vital signs such as breathing and heartbeat of

one or more persons by leveraging CSI phase difference data with commodity WiFi devices.

Specifically, PhaseBeat exploits CSI phase difference data to extract the periodic signal caused

by the rise and fall of the chest (e.g., inhaling and exhaling). Based on Theorems 1 and 2,

PhaseBeat can effectively exploit CSI phase difference data to monitor vital signs. First, CSI

phase difference data is relatively stable for back-to-back packets in stationary environments

such as people sitting, standing, or sleeping. It can thus be effective for monitoring vital signs.

Second, CSI phase difference data includes the periodic signal that has the same frequency as

the breathing signal. Finally, the CSI phase difference data is more robust, with only small

variations for different distances or different orientations, compared with CSI amplitude data

used in prior work for monitoring vital signs.

The PhaseBeat system architecture is presented in Fig. 4.1. It includes four basic modules:

Data Extraction, Data Preprocessing, Breathing Rate Estimation, and Heart Rate Estimation.

The Data Extraction module extracts CSI phase difference data between two receive antennas

of an off-the-shelf WiFi device. The Data Preprocessing module consists of environment de-

tection, data calibration, subcarrier selection, and discrete wavelet transform. For environment

detection, we adopt a threshold method to determine the stationary states of a person, such as

sitting, standing, or sleeping. For data calibration, we remove the direct current (DC) compo-

nent and high frequency noises, and downsample the processed data. Then, subcarrier selection
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Figure 4.1: PhaseBeat system architecture.

is used to improve the reliability of CSI phase difference data. The discrete wavelet transform

(DWT) is used to obtain the denoised breathing signal with approximation coefficient for level

4 and the reconstructed heart signal with the sum of detail coefficients for level 3 and level 4.

In the Breathing Rate Estimation module, we use peak detection for the case of a single person

and the root-MUSIC method for the case of multiple persons. In the Heart Rate Estimation

module, we use an FFT based method to detect the heart rate.
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4.2 Data Preprocessing

4.2.1 Environment Detection

After extracting the CSI phase difference information using (3.6), we need to determine whether

the person is in a stationary state. When the person is determined to be in a stationary state,

such as sitting, standing, or sleeping, PhaseBeat can estimate his/her breathing rate and heart

rate. A threshold-based method is used to identify whether a segment of CSI phase difference

data is received in a stationary state, by computing the mean absolute deviation of the CSI

phase difference data in a short sliding window.

We define V as the sum of mean absolute deviations of all CSI phase difference data in

the sliding window as

V =
1

|W |

30∑
i=1

∑
k∈W

|∆∠ĈSI i(k)− E(∆∠ĈSI i(k))|, (4.1)

where ∆∠ĈSI i(k) is the measured phase difference from subcarrier i for packet k, W is the

index set of all the packets in the sliding window, |W | is the length of the sliding window.

Because other movement events lead to larger variations in CSI phase difference data than that

caused by the minute movements of breathing and heartbeat, the threshold-based approach is

effective to detect such large movements (such as walking or jumping). In PhaseBeat, we set

the threshold between 0.25 and 6 to identify useful data for vital sign monitoring. Fig. 4.2

shows the environment detection results for different states. When the person is sitting, the

phase difference data is a sinusoidal-like periodic signal over time. When there is no one in the

range, the phase difference data is a straight line with very small fluctuations. When the person

stands up or is walking, the phase difference data exhibits larger fluctuations. Thus, a simple

threshold can be effective to determine the stationary state of the person.

4.2.2 Data Calibration

To obtain robust CSI phase difference data, we further perform data calibration to remove

the DC component and high frequency noises, and to downsample the processed data. First,
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Figure 4.2: Environment detection.

Figure 4.3: Data calibration.

because the DC component affects subcarrier selection, peak detection, and FFT frequency

estimation, PhaseBeat needs to remove the DC component with the Hampel Filter. Unlike

traditional data calibration methods that only remove high frequency noises, we use the Hampel

Filter for detrending of the original CSI phase difference data to remove the DC component.
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Figure 4.4: CSI phase difference series patterns after data calibration.

The Hampel Filter is utilized to obtain the basic trend of the original data, which is set as a

large sliding window with 2000 samples and a small threshold of 0.01. Then, the detrended

data is obtained by subtracting the basic trend data from the original data. In addition, we also

leverage the Hampel Filter to reduce high frequency noises using a smaller sliding window with

50 samples and the same threshold of 0.01. Second, because PhaseBeat employs a data sample

rate of 400 Hz, we need to implement downsampling to reduce the computation complexity for

realtime breathing and heart rate estimation. We use a sampling interval of 20 to obtain the low

frequency CSI phase difference data, that is equivalent to sampling at 20 Hz.

Fig. 4.3 presents the data calibration results. It can be seen that the original phase differ-

ences of all subcarriers have a DC component and high frequency noises. By implementing

the proposed data calibration scheme, both the DC component and high frequency noises are

removed; the CSI from each of the subcarriers becomes a sinusoidal-like periodic signal over

the packets with low noise; and the number of packets is decreased from 10000 to 500, which

is amenable to applying other signal processing methods.
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4.2.3 Subcarrier Selection

PhaseBeat employs subcarrier selection to further boost the reliability of CSI phase difference

data, because different subcarriers have different wavelengths, leading to the different sensitiv-

ity for breathing and heart signals. We use the mean absolute deviation of CSI phase difference

data from every subcarrier to measure its sensitivity. Generally the larger the mean absolute de-

viation, the higher the sensitivity. Thus, we first choose k maximum mean absolute deviations

of CSI phase difference data. Then, we use the median of the k mean absolute deviations of

CSI phase difference data to make the final selection. Fig. 4.4 shows the CSI phase difference

series patterns after data calibration. We can see that the neighboring subcarriers of subcarrier

20 have higher sensitivity to breathing signals. Then, as shown in Fig. 4.6, the mean absolute

deviation of CSI phase difference data of subcarrier 19 is the maximum. In PhaseBeat, we

set the k = 3 as the default value, and subcarriers 19, 18, and 2 are thus selected. With the

above approach, subcarrier 18 is finally selected, which has the highest sensitivity as shown in

Fig. 4.6.

4.2.4 Discrete Wavelet Transform (DWT)

Different from FFT and short time Fourier transform (STFT), DWT can achieve a data time-

frequency representation, which provides not only the optimal resolution both in the time and

frequency domains, but also a multi-scale analysis of the data. With DWT, the phase difference

data after subcarrier selection can be decomposed into an approximation coefficients vector

with a low-pass filter and a detail coefficients vector with a high-pass filter. In fact, the ap-

proximation coefficient vector represents the basic shape of the input signal with large scale

characteristics, while the detail coefficient vector describes the high frequency noises and the

detailed information with small scale characteristics.

In wavelet decomposition, the following steps recursively split the previous approximation

coefficient and detail coefficient into two new coefficients based on the same scheme [56].

After L steps, the DWT can obtain an approximation coefficient αL and a sequence of detail
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coefficients β1, β2, ..., βL. We can compute the DWT coefficients as follows.

 α
(L)
k =

∑
n∈Z ∆∠C̃SI(n)φ

(L)

n−2Lk, L ∈ Z

β
(l)
k =

∑
n∈Z ∆∠C̃SI(n)ψl

n−2lk, l ∈ {1, ..., L} ,
(4.2)

where ∆∠C̃SI(n) is the phase difference data after subcarrier selection, Z is the integer set,

the φ’s and ψ’s are wavelet basis functions, which are orthogonal to each other. The phase

difference data ∆∠C̃SI(n) can be approximated using inverse DWT, as

∆∠C̃SI(n) =
∑
k∈Z

α
(L)
k φ

(L)

n−2Lk +
L∑
l=1

∑
k∈Z

β
(l)
k ψ

l
n−2lk. (4.3)

In PhaseBeat, DWT is employed to remove high frequency noises from the collected CSI

phase difference data. Moreover, the approximation coefficient αL is used to detect the breath-

ing rate, while the sum of detail coefficients βL−1 + βL is used to detect the heart rate. We set

L to 4 in this paper. As shown in Fig. 4.5, for the original signal, we first implement the DWT

based decomposition recursively for four levels with the Daubechies(db) wavelet filter. Because

we obtain a 20 Hz sampling rate after data calibration, and the sampling rate is halved after ev-

ery step of decomposition, the detail coefficient β1 and the approximation coefficient α1 have a

frequency ranging from 10 Hz to 5 Hz and 0 Hz to 5 Hz, respectively. Then, the approximation

coefficient α4 has a frequency in 0 Hz to 0.625 Hz to obtain the denoised breathing signal. The

sum of detail coefficients β3+β4 has the range from 0.625 Hz to 2.5 Hz to reconstruct the heart

signal.

4.3 Breathing Rate Estimation

4.3.1 Peak Detection for the One Person Case

The breathing signal is caused by the small, periodic movement of inhaling and exhaling, which

can be extracted from the phase difference data according to Theorem 2. Although the FFT

based method can be used to estimate the breathing rate, the accuracy may not be good. This

is because the frequency resolution depends on the window size of FFT. If the window size
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Figure 4.5: Discrete wavelet transform results.
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Figure 4.7: Breathing rate estimation for two persons (the upper plot) and three persons (the
lower plot) based on FFT.
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Figure 4.8: Heart rate estimation based on FFT.

becomes larger, the estimation accuracy will be higher, but the larger window size also leads to

a lower time domain resolution. Therefore, our PhaseBeat system employs peak detection to

estimate the breathing rate based on the approximation coefficient αL to achieve high accuracy.
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However, we find that the approximation coefficient αL still has fake peaks (i.e., local

maximums). We thus use the sliding window method to identify the true peak, where the

window size is set to 51 samples based on human’s maximum breathing period [13]. Then, we

can identify all the peaks by checking whether the median of all the samples in the window

is the maximum value or not. After peak detection, all peak-to-peak intervals are averaged to

obtain the period of the breathing signal, denoted as P . Finally, the estimated breathing rate

can be computed as 60/P bpm.

4.3.2 Root-MUSIC for Multiple Person Case

An FFT based method can transform the approximation coefficient αL from the time domain

to the frequency domain to estimate the breathing frequencies for two persons in LOS environ-

ments. However, with more persons and more cluttered environments, the FFT based method

always leads to poor results, especially when there are two or more breathing rates very close

to each other. Fig. 4.7 illustrates the breathing rate estimation for two persons (the upper plot)

and three persons (the lower plot) with the FFT method, where the red dotted lines mark the

real breathing frequencies (i.e., the ground truth). We can see that the estimated frequencies for

the two persons are 0.2 Hz and 0.3 Hz, respectively, which are both quite accurate. However,

for the case of three persons, the FFT curve only shows two peaks, and the estimated breathing

rates are much less accurate.

To address this issue, we propose a root-MUSIC method to estimate multiple breathing

rates based on phase difference data. In fact, we leverage 30 CSI phase difference series patterns

after data calibration to build the estimated correlation matrix R̂, which is given by

R̂ = HHT , (4.4)
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where H is a matrix that represents 30 CSI phase difference series after data calibration, which

is defined as

H =



h1(1) h2(1) · · · h30(1)

h1(2) h2(2) · · · h30(2)

...
... · · · ...

h1(I) h2(I) · · · h30(I)


, (4.5)

where hi(j) is the phase difference from subcarrier i for packet j after data calibration, and I

is the total number of packets. After obtaining the estimated correlation matrix R, we incorpo-

rate the standard root-MUSIC method to obtain multiple persons breathing frequencies, which

is effective for estimating frequencies of signals consisting of a sum of sinusoids with additive

white Gaussian noise [57]. For the same phase difference data for three persons in Fig. 4.7,

the breathing frequencies estimated by the proposed method are 0.1467 Hz, 0.2233 Hz, and

0.2483 Hz, respectively, which are much more accurate than those estimated by the FFT based

on method. Moreover, we can see that the proposed root-MUSIC method can effectively dis-

tinguish two close breathing frequencies.

4.4 Heart Rate Estimation

4.4.1 FFT Based Heart Rate Estimation

Heart rate is an important indicator of health condition and vital sign. Similar to the breathing

signal, the heart signal is also periodic, but its magnitude is extremely weak. Usually, breathing

signal is orders of magnitude stronger than the heart signal. The movement of the heart (i.e.,

diastole and systole) only causes small variations in the reflected signal. Moreover, the much

stronger breathing signal also generates higher harmonics, which becomes strong interferences

to the heart signal. It is thus more challenging to detect the heart rate than the breathing rate.

In PhaseBeat, we employ a directional antenna at the transmitter to improve the power

of the reflected signal. Then, the sum of the detail coefficients βL−1 + βL of the wavelet

decomposition is utilized to estimate the heart rate. When the level of decomposition is L = 4,
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the frequency range is between 0.625 Hz and 2.5 Hz, which filters out the breathing signals,

which are between 0.17 Hz and 0.62 Hz, as well as higher frequency noises. Finally, we can use

an FFT based method to transform the sum of the detail coefficients βL−1+βL to the frequency

domain to estimate the heart rate. To improve the frequency resolution, we adopt the method

proposed in [5] for heart rate estimation. After finding the peak of FFT, we use the three bins,

including the peak bin and its two adjacent bins, where an inverse FFT is performed to obtain a

complex time-domain signal. The heart rate is estimated by evaluating the phase of the signal.

Fig. 4.8 shows the heart rate estimation with FFT. The PhaseBeat estimated heartbeat frequency

is 1.07 Hz, while heartbeat frequency measured by a commercial fingertip pulse sensor is 1.06

Hz. The heart rate estimated error is 0.01 Hz, or 0.6 bpm, in this experiment.
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Chapter 5

Experimental Study

5.1 Test Configuration

In this section, we present our extensive experimental study with PhaseBeat in the 5 GHz band.

In the experiments, we use a desktop computer as an access point and a Lenovo laptop as a

mobile device, both equipped with the Intel 5300 NIC. Our PhaseBeat system is implemented

on the Ubuntu desktop 14.04 LTS OS for both the access point and the mobile device. The

access point operates in the monitor mode and the distance between two adjacent antennas is

d = 2.68 cm, which is half of the wavelength in the 5 GHz band. The mobile device operates

in the injection mode, to transmit packets at 400 packets per second using only one antenna.

Then, we extract CSI phase difference data between two adjacent antennas at the access point

for vital signal estimation.

We conducted extensive experiments with PhaseBeat with four persons over three months.

The test scenarios include a computer laboratory and corridors as shown in Fig. 5.1. We have

three setups in these two environments for the results reported in this paper. The first setup is

within the laboratory, a 4.5 × 8.8 m2 room. The room is crowed with tables and PCs, which

block part of the LOS paths and form a complex radio propagation environment. The second

setup is a through-wall scenario, where the person is on the transmitter side, separated by a

wall from the receiver. The third setup is the 20 m long corridor, where the receiver and the

transmitter are 11 m apart. We use omnidirectional antennas at both the receiver and transmitter

for breathing rate estimation in all the three scenarios. We use a directional antenna at the

transmitter in the laboratory scenario for heart rate estimation. For comparison purpose, we
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Figure 5.1: Experimental setup scenarios.

employ the NEULOG Respiration Monitor Belt Logger Sensor and a fingertip pulse oximeter

to record the ground truths of the breathing and heart rates.

5.2 Performance of Breathing and Heart Rate Estimation

Fig. 5.2 presents the cumulative distribution functions (CDF) of estimation error in breathing

rate estimation. We use the amplitude based method [13] as a benchmark in this experiment.

We can see that both systems have a similar median estimate error at about 0.25 bpm. However,

we can see that for PhaseBeat, 90% of the test data have an estimated error under 0.5 bpm, while

70% of the test data for the amplitude based method have an estimated error under 0.5 bpm.

Moreover, the maximum estimation error for PhaseBeat and the amplitude based method are

0.85 bpm and 1.7 bpm, respectively. Therefore, our PhaseBeat system achieves a considerably

higher accuracy than the amplitude based method for breathing rate estimation.
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Figure 5.2: CDFs of estimation error in breathing rate estimation.
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Figure 5.3: CDFs of estimation error in heart rate estimation.

Fig. 5.3 presents the CDF of estimation error in heart rate estimation. For heart signal

detection, we need to use the directional antenna at the transmitter to improve the received

power. According to Corollary 2.1, we can see that the variation of CSI phase difference data

becomes larger, while the variation of CSI amplitude data becomes small, even we cannot
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Figure 5.4: Accuracy of breathing and heart rates estimation for different sampling frequency.

directly see the periodic heart signal. Thus, we only show the PhaseBeat results for heart signal

estimation. In Fig. 5.3, we find that PhaseBeat has a median estimate error of about 1 bpm,

while 80% of the test data have an estimated error under 2.5 bpm. Moreover, the maximum

estimation error for PhaseBeat is about 10 bpm. We notice that the estimated accuracy of heart

rate is lower than the breathing rate estimation because of the much weaker heart signal.

Fig. 5.4 shows the accuracy of breathing and heart rates estimation for different sampling

frequencies. For data calibration, we adopt a 400 Hz sampling frequency to estimate the vi-

tal signs, which is sufficient to accurately detect the heart signal. As shown in Fig. 5.4, the

breathing rate estimation have a similar high accuracy of about 98% for different sampling

frequencies. However, the accuracy of the heart rate estimation is only 88% for a sampling

frequency of 20 Hz, while it can achieve an accuracy of 95% with the 400 Hz sampling rate.

Thus, we choose the 400 Hz sampling rate for PhaseBeat, which is used for all the experimental

results in this paper.

Fig. 5.5 shows the accuracy of breathing rates estimation for different numbers of persons.

Moreover, we compare the proposed root-MUSIC method using 30 subcarriers with the FFT

based method, and with root-MUSIC method using a single subcarrier. It is noticed that for
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Figure 5.5: Accuracy of breathing rates estimation for different number of persons.

multiple persons, the accuracy of breathing rate estimation decreases for all the three schemes.

Moreover, we can see that for two-person breathing rates estimation, the three methods all

have a high accuracy above 90%. However, for four persons breathing rate estimation, the

root-MUSIC method using 30 subarriers have the best performance among the three.

5.3 Impact of Various Factors

5.3.1 Impact of the Distance between the Transmitter and the Receiver

Fig. 5.6 and Fig. 5.7 show the impact of the distance between the transmitter and the receiver

for the long corridor and through-wall scenario, respectively. When the distance between the

transmitter and the receiver is increased, the mean estimation error is also increased. This is

because the reflected signal is reduced when the distance between the transmitter and receiver

is long, which influences the dynamic range of phase difference data. Moreover, we can see

that the mean estimation error at the same distance for the through-wall scenario is larger than

that for the long corridor scenario. For example, when the distance is 7 m, the mean estimation
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Figure 5.6: Impact of the distance between the transmitter and the receiver for the long corridor.
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Figure 5.7: Impact of the distance between the transmitter and the receiver for through-wall
scenario.

errors for the long corridor and the through-wall scenario are 0.3 bpm and 0.52 bpm, respec-

tively. It is because the signal for the through-wall scenario has a larger attenuation than that

for the long corridor scenario.
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Figure 5.8: Impact of the distance between the user and the receiver.
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Figure 5.9: Impact of user orientation relative to the receiver.

5.3.2 Impact of the Distance between User and the Receiver

Fig. 5.8 shows the impact of the distance between the user and receiver in the long corridor

scenario. We find that when the user locates in the middle of the transmitter and receiver, the
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Figure 5.10: Impact of different poses.

mean estimation error is the maximum at about 0.52 bpm. In addition, when the user is close

to either the transmitter or the receiver, the estimation error assumes the minimum values at

about 0.1 bpm and 0.15 bpm, respectively. When the user is far away with the WiFi devices,

the reflected signal from the transmitter is greatly weakened, which influences the usefulness

of phase difference data.

5.3.3 Impact of User Orientation Relative to the Receiver

Fig. 5.9 shows the impact of user orientation relative to the receiver in the laboratory environ-

ment. We consider four cases including front (0◦), 45◦, 90◦, and back (180◦). As shown in

Fig. 5.4, the mean estimation error is the maximum at 0.3 bpm at the 90◦ direction. For the

front orientation relative to the receiver, we have the minimum error of 0.14 bpm. When the

user orientation relative to the receiver is front or back, the reflected component of the wireless

signal can effectively capture the chest movements (i.e., inhaling or exhaling). Thus, we can

achieve low mean estimation errors in these cases.
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5.3.4 Impact of Different Poses

Fig. 5.10 shows the impact of different poses in the laboratory. We consider three common

poses for a stationary person such as sitting, standing, and lying. As shown in Fig. 5.10, for the

standing pose, the mean estimation error is 0.31 bpm, which is larger than the other poses such

as sitting with 0.22 bpm and lying with 0.26 bpm. This is because the chest of the person will

have less reflection of the wireless signal when the person is standing.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this paper, we presented PhaseBeat, a system that exploits CSI phase difference data to

monitor breathing and heartbeats with commodity WiFi device. We first provided a rigorous

analysis of CSI phase difference data, with respect to its stability and periodicity. We then

described the PhaseBeat design in detail, including environment detection, data calibration,

subcarrier selection, and discrete wavelet transform. We implemented PhaseBeat with off-the-

shelf WiFi devices, and conducted an extensive experimental study with three setups such as

the laboratory, through-wall scenario and the long corridor. The experimental results showed

that PhaseBeat can achieve superior performance on breathing and heart rate detection over

existing CSI amplitude based methods.

6.2 Future Work

With experiment results, we have already proved that the Phasebeat system is able to monitor

the human breathing rate in stable environment. In the future, we also want to expand the

system and improve it in the following directions.

6.2.1 Intelligent Disease Precaution System

With the human chest movement monitoring, the Phasebeat system can detect the apnea and

other details of the respiration when the user is sleeping. These respiration details can reflect

the health condition of the user, and certain apnea can represent the possibility of some special
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disease. The intelligent disease precaution system can record the sleeping data and evaluate the

user health condition with learning algorithm.

6.2.2 Online Multiple Users Monitoring

With advanced signal processing technique, the system can also separate the breathing signals

corresponding to different persons with blind signal separation. However, this kind of technique

should need data from a long period of time, and long-time calculation is also necessary. With

multiple antennas or other some other devices like RFID tags, the system can separate the

different users breathing signals with low calculation time. We plan to extend the system with

more devices, so that the system can monitor users respiration data in real-time.

6.2.3 Vital Signs Monitoring in Unstable Environment

Traditionally, RF signal based health monitoring system is very sensitive to the environment.

It is very hard to do the vital signs monitoring when the environment is not stable, especially

when the user is in moving condition. Large movement will generate large noise in the received

signal, which is hard to be separated because the vital signal is usually small signal. In the

future, we will propose to make the system can resist the noise coming from user’s large body

movement.
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