
Energy Usage Pro�ling and Topology-Based Scheduling for Clusters

by

Yangyang Liu

A dissertation proposal submitted to the Graduate Faculty of
Auburn University

in partial ful�llment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 16, 2017

Keywords: Cluster, Wimpy Node, E�ciency, Storm, Scheduling Performance

Copyright 2017 by Yangyang Liu

Approved by

Xiao Qin, Professor of Computer Science and Software Engineering
Wei-shinn Ku, Associate Professor of Computer Science and Software Engineering

Bo Liu, Assistant Professor of Computer Science and Software Engineering
Alvin Lim, Professor of Computer Science and Software Engineering

Eric Wetzel, Assistant Professor of Architecture, Design and Construction

Abstract

Energy saving is rapidly becoming one of the hottest topics in technology �eld within

recent decades. With the development of technology, it brings a sheer increasing trend of

data and the growth scale of clusters and data centers. Meanwhile, it also raises another

essential issue into the path: energy cost.

In the �rst part of dissertation, we are diving into this key issue and evaluating energy-

e�ciency based on TPC-W benchmark: a notable web transaction e-commerce benchmark.

We simulate the web transaction with di�erent database sizes and collect the energy data by

KILL-A-WATT. Also, we deploy this setup on four di�erent cluster systems: PC nodes and

wimpy nodes, and two di�erent heterogeneous systems: using PC as front server and wimpy

as Database server, and using wimpy as Web server and PC as Database server. Energy

result demonstrates di�erent characteristics among them, which can give lightening advice

for future works in data center.

In the second part of this dissertation, we propose a novel scheduler for Apache Storm,

topology-based scheduler(TOSS for short). Nowadays, our world is undergoing profound

challenges in processing a massive amount of data. A handful of computation technologies

emerge as a promising computation platform for data intensive processing. Apache Storm is

an outstanding open-source platform for large-scale streaming computation, which is widely

used in the industry (e.g., Twitter). Performance bottleneck problems encountered in stream-

ing data applications motivate us to investigate scheduling issues in Storm. A key aspect

of tuning Storm performance is to decide how to deploy components of a storm application

among all available nodes in a cluster. Driven by our observations, we design and implement

a new scheduling strategy called TOSS based on application structures. Compared to the ex-

isting round-robin scheduler, TOSS not only judiciously handles tight-bind components, but

ii

also balances workloads by introducing a self-tuning mechanism in the deployment stage.

We conduct experiments by applying two popular and distinct topologies to evaluate the

performance of TOSS. The experimental results suggest that TOSS signi�cantly boost the

performance of the round-robin scheduler. In particular, TOSS substantially improves the

system throughput of Storm while shortens latency of Storm applications.

iii

Acknowledgments

There is a long list of people that I would express my deep gratitude to. First of

all, I would like to express my sincere gratitude to my major advisor Dr.Xiao Qin for the

continuous support of my Ph.D study and related research. I've learn a lot about being an

quali�ed student and a good man. His patient guides and continuous supervision are always

the beacon to me in the darkness. I could not have imagined having a better adviser and

mentor for my Ph.D study.

Besides my adviser, I would like to give my thanks to my co-chair Dr. Ku and rest of

thesis committee: Dr Liu and Dr Lim, for their insightful comments and encouragement,

which helped me to widen my research from various perspectives.

My sincere thanks also goes to my colleagues at Computer System Lab, in particular,

Yuanqi Chen, Ajit Chavan, Shubbhi Taneja, Yi Zhou, Xiaopu Peng, Chaowei Zhang and

Jianzhou Mao, for their helps and suggestions in both academic and daily lives.

I am also indebted to my friends I met in Auburn University, for the sleepless nights

we were working together before deadlines, and for all the fun we have had in the last �ve

years. Without their precious support it would be much less fun in my Auburn life.

Most of all, I would like to express my deepest gratitude to my wife, Xi Huang, and our

parents. They have sacri�ced so much for supporting me spiritually and caring my feelings.

They are always standing with me for cheering me up throughout the good and bad times.

iv

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . vii

List of Tables . ix

1 Introduction . 1

1.1 Energy e�ciency and Web service . 1

1.2 Apache Storm and Scheduling Strategy . 3

2 Related Work . 7

2.1 Energy pro�ling . 7

2.2 Storm and scheduler . 8

3 Pro�ling Energy Usage of Web-Service Applications on Clusters 13

3.1 Objectives . 13

3.2 Framework . 16

3.2.1 The Three-Tier Architecture . 16

3.2.2 Metrics and Data Size . 16

3.2.3 The Software Framework . 18

3.3 Setup . 21

3.3.1 Con�gurations and Toolkit . 21

3.3.2 Experimental Methodology . 24

3.4 Evaluation . 25

3.4.1 Homogeneous Clusters . 25

3.4.2 Homogeneous Wimpy Clusters . 28

3.4.3 Wimpy vs. PC Clusters . 29

v

3.4.4 Heterogeneous Clusters . 30

3.4.5 Put It All Together . 34

3.5 Summary and Future work . 34

3.5.1 Summary and Future Work . 34

3.5.2 Summary . 36

4 TOSS: Topology-based scheduler on Apache Storm 41

4.1 Background . 41

4.1.1 Topology Structures . 41

4.1.2 Scheduling Mechanism . 42

4.2 System Design . 44

4.2.1 Pinpoint Performance Bottleneck . 44

4.2.2 Design and Implementation . 46

4.3 Evaluation and Experimental Results . 53

4.3.1 Performance Metrics . 54

4.3.2 Network-intensive topology . 54

4.3.3 Rolling WordCount topology . 58

4.4 Discussions . 61

4.5 Summary . 62

5 Conclusions and Future Work . 64

5.1 Main Contributions . 64

5.1.1 Energy Cost Pro�ling of Web-Service on Clusters 64

5.1.2 Topology-based Scheduling Policy for Apache Storm Cluster 65

5.2 Future Work . 66

5.2.1 Integrate Scheduler on Energy E�cient Clusters 66

5.2.2 Machine Learning Mechanism . 67

5.3 Conclusion . 68

References . 70

vi

List of Figures

2.1 An example of topology structures in Storm. 11

3.1 In the three-tier architecture, clients submit requests to the web-services; the
middle tier consists of front or Web servers; the requests retrieve data managed
by data servers in tier three. 17

3.2 The software framework about the TPC-W benchmark. 20

3.3 The energy trends of the web and database servers of a conventional PC cluster. 26

3.4 Impact of the table size on CPU utilization of the web and database servers of a
conventional PC cluster. 27

3.5 The energy trends of the web and database servers of a homogeneous wimpy cluster. 28

3.6 Impact of the table size on CPU utilization of the web and database servers of a
homogeneous wimpy cluster. 37

3.7 We are putting two web servers data in the same chart, in order to clearly provide
the picture of the major di�erences. 37

3.8 This is the graph for Database energy comparison from two setups. 38

3.9 This is the energy performance for heterogeneous system with pc web and wipy
database. 38

3.10 This is the energy performance for heterogeneous system with wimpy web and
pc database. 39

3.11 This is CPU utilization for pc web and wimpy database. 39

3.12 This is CPU utilization for wimpy web and pc database. 40

3.13 An overall comparison for all setups. 40

4.1 A master node and worker nodes in Storm. 43

4.2 A simple example of round robin allocation strategy. 44

4.3 Communications among multiple executors before executor allocation. 45

vii

4.4 Communications among multiple executors after executor allocation. 47

4.5 The System Design of the TOSS scheduler. 53

4.6 The diamond strucutre for network intensive topology. 54

4.7 The throughput comparison between default scheduler and �rst TOSS run. . . . 55

4.8 The throughput comparison between default scheduler and second TOSS run. . 55

4.9 The throughput comparison between default scheduler and �fth TOSS run. . . . 56

4.10 The throughput comparison between default scheduler and multiple runs TOSS. 56

4.11 The throughput comparison between default scheduler and �rst TOSS run. . . . 59

4.12 The throughput comparison between default scheduler and second TOSS run. . 60

4.13 The throughput comparison between default scheduler and multiple runs TOSS. 60

viii

List of Tables

3.1 Three types of mixed transactions in the benchmark. 18

3.2 In the modi�ed column, we changed the numbers to expand the database size.
In this case, database server pays more energy cost in processing requests. . . . 19

3.3 Hardware and Software con�gurations for Wimpy nodes 21

3.4 Hardware and Software con�gurations for PC nodes 22

3.5 Detailed speci�cations of the Weanas electricity usage monitor. 23

4.1 Notation and symbols. 48

ix

Chapter 1

Introduction

1.1 Energy e�ciency and Web service

Although various energy conservation techniques have been proposed to reduce energy

cost of clusters, little attention has been paid to energy pro�ling of web-service applications

on heterogeneous clusters. In this study, we analyze the energy consumption of web services

running on heterogeneous clusters, where high-performance nodes and wimpy nodes are

integrated. We show that wimpy nodes can be deployed to improve energy e�ciency of

clusters supporting web services in data centers.

The following three factors motivate us to investigate energy usage of web-service ap-

plications running on heterogeneous clusters.

� High energy cost of clusters housed in modern data centers.

� Popularity of web services supporting e-commerce applications.

� Feasibility of applying wimpy nodes to conserve energy in clusters.

Motivation 1. Nowadays, there is a growing demand of computing in data centers.

Bell et al. showed that computing and storage capacity of data centers exponentially increase

to ful�ll the needs of big data applications [10]. The environment protection agency or EPA

claimed that in 2006 data centers consumes approximately 61 billion kilowatt-hours (kWh),

which accounts for 1.5 percent of the total U.S. electricity consumption [12]. Recently, a

report revealed that the total electricity usage of data centers from 2005 to 2010 dramatically

grew compared with the growth from 2000 to 2005 [35].

1

In the realm of large-scale cluster computing, high performance and low energy cost are

indispensable [35]. In the past decade, much attention has been paid to the scalability issues

in high-performance clusters. Growing evidence shows that energy e�ciency of clusters must

be improved to reduce the operation cost of data centers. When the performance of clusters

was increased by a factor of 1× 104, the performance per watt and performance per square

foot were only improved by a factor of 300, and 65, respectively [24]. This problem motivates

us to address the energy e�ciency issues of clusters.

Motivation 2. An increasing number of Web-service applications are running on clus-

ters housed in data centers. Sample web-service applications include YouTube, Facebook,

Twitter, and to name just a few. To improve performance, scalability, and reliability of web-

service applications, numerous studies were focused on service-oriented system architecture

and design models [11]. How to develop energy-e�cient web-service applications running on

cluster is still an open issue. We start to address this issue by pro�ling energy usage of web

services on clusters.

Motivation 3. In the past decade, a handful of energy-saving techniques have been

developed to improve energy e�ciency of large-scale clusters. For example, FAWN (Fast

Array of wimpy Nodes) is a new cluster architecture with low-power embedded CPUs [6].

Wimpy nodes are also implemented in solving energy utilization problem in big data cen-

ter [38]. Recent evidence show that equipped with low energy-e�cient processors and other

low-power components, wimpy nodes are in a position to trade performance for energy sav-

ings, even for big data [39]. We are motivated by advanced wimpy nodes to investigate the

possibility of substituting conventional high-performance nodes with wimpy nodes to build

energy-e�cient clusters running web-service applications.

In this study, we conduct energy pro�ling research on a real-world e-commerce transac-

tion system, where energy pro�les inspire developers to design and implement novel energy

conservation techniques. We investigate energy e�ciency of various hardware con�gurations,

thereby reducing energy consumption by con�guring system setups. In our experiments, we

2

adopt TPC-W benchmark, which mimics the activities of an e-retailer in a controlled Internet

commerce environment [44]. We examine a total of four scenarios. The �rst two scenarios

represent homogeneous computing environments, where all nodes are identical. In the �rst

scenario, the cluster system is comprised of all server node. All the nodes in the second

scenario are energy-e�cient wimpy nodes. The last two scenarios resemble heterogeneous

clusters. In the third scenario, the front-end server is a serve whereas the back-end nodes

are wimpy nodes. In the last scenario, a wimpy node performs as a front-end node while all

the back-end nodes are high-performance servers. We study and compare the energy pro�les

of the four system con�gurations.

Our new �ndings show that wimpy nodes are energy-e�cient at the cost of marginally

degraded performance. In a three-tier architecture, database servers are busy processing

queries under heavy load. After investigating the two heterogeneous con�gurations, we

observe that the wimpy-frontend-server-backend case is a competitive candidate for cluster

computing; the server-frontend-wimpy-backend case is the worst one due to wimpy nodes'

low computing capacity to handle heavy database load.

The rest of the energy pro�ling part of the dissertation is organized as following. The

Section 1.1 in Chapter 2 summarizes the prior studies related to energy-e�cient computing.

The challenges and design goal of energy pro�ling on clusters running commercial transac-

tion are listed in Section 1.1. Chapter 3 includes all the details about the energy pro�ling

research. In the Chapter 3, Section 3.1 illustrates the objectives for our study. Section 3.3 in-

troduces the background and basic information on TPC-W benchmark. The pro�ling results

of homogeneous and heterogeneous con�gurations can be found in Section 3.4.

1.2 Apache Storm and Scheduling Strategy

As the IT world enters the era of data, massive amount of data introduces challenging

big-data problems. Traditional approaches to data processing mainly involves batch data

processing techniques on large scale clusters. The batch data processing appears to be an

3

e�ective technique for static in-memory data sets. With pressing demands for computing

frameworks that facilitate live streaming processing, it becomes indispensable to build data

analytic software tools processing sheer amount of data in a timely fashion. Nowadays,

the real-time processing platform - Apache Storm[56] (a.k.a., Storm) - handles streaming

data with fairly low latency, thereby boosting resource allocation e�ciency. In our study

we propose to develop a structure-based Storm scheduler called TOSS, which is capable of

accelerating the performance of Storm clusters by shortening process latency. Through an

analysis of static structures for Storm applications, the TOSS scheduler leverages a self-

tuning parameter to allocate executors in a way to reduce inter-node communication cost.

The following three factors motivate us to propose an e�cient scheduler in Apache

Storm.

� Inter-node tra�c is likely to become a performance bottleneck.

� Scheduling executors represented in form of topologies play a vital role in optimizing

performance of storm clusters.

� Reducing rescheduling overhead in the run time.

Motivation 1. We observe that inter-node tra�c imposes noticeable impacts on the

performance of Storm clusters. The default scheduler in Storm evenly distributes all assign-

ments to workers and slots in a simple round-robin fashion. An immediate advantage of this

round-robin approach is to e�ectively balance load and to avoid any performance bottle-

neck by equally splitting workload. Unfortunately, the default scheduler in Storm performs

poorly due to the ignorance of inter-node network tra�cs. Overlooking such network load

inevitably lead to a long latency in realm of real-time processing. For instance, allocating

two executors that extensively exchange information on two processors incurs huge commu-

nication cost, which can be signi�cantly reduced by assigning these two executors on the

same processor. We address this issue by proposing a scheduler that is aware of inter-node

4

tra�c. The overarching goal of our novel scheduler is to cutback high latency imposed by

communication-intensive executors.

Motivation 2. In real-time Storm systems, balancing load across multiple nodes in

a cluster plays an essential role in boosting system performance. Transactional topologies

or topologies for short provide a strong order on data-processing tasks (a.k.a., executors).

Throughout the storm part of dissertation, we use terms tasks and executors interchangeably.

Scheduling decisions for executors have a signi�cant impact on overall performance of storm

clusters. This observation motivates us to be focusing on designing a new scheduler that

judiciously balance workloads to minimize unnecessary network cost while optimizing system

through load balancing.

Motivation 3. Our preliminary �ndings indicate that a balanced schedule may change

its gear and become imbalanced due to frequently changing transactional topologies. Any

topology update is likely to result in a performance bottleneck in Storm clusters. Reschedul-

ing executors tends to alleviate such a performance problem in a Storm cluster at extra

scheduling cost. The frequency of executor rescheduling events largely depends on two fac-

tors, namely, scheduling policies and dynamically changing typologies. In this study, we are

inspired to suppress expensive rescheduling overhead by reducing the number of potential

rescheduling events. We design empirical study to demonstrate that our cost-e�ective sched-

uler TOSS is capable of speeding up streaming data process by minimizing rescheduling

overhead.

In the realm of streaming data processing, low latency time and e�cient scheduling are

two indispensable goals. In order to leverage available resources in Storm clusters, the default

scheduler in Storm clusters evenly distributes the components of a topology on available

resource slots in the round-robin fashion. This straightforward approach equally treats all

resources, thereby being su�cient to avoid workload bottleneck with uniformly distributed

workloads. However, the existing scheduler overlooks inter-node communication overhead

as well as static topology structures, which heavily a�ect the overall throughput and event

5

processing latency. The goal of our study is to cutback processing latency measured as an

interval between an event is generated by a spout and the event is completely processed by

traversing the topology structure.

Inspired by the aforementioned three motivations, we design an innovative and e�-

cient scheduling algorithm - TOSS - for Storm clusters. TOSS aims at reducing the aver-

age event process latency by shortening overall communication costs while balancing load

across multiple cluster nodes. The rationale behind the TOSS scheduler is to identify po-

tential edges with heavy communications on a static topology structure. TOSS groups such

communication-intensive edges together to be allocated within the same slot governed by

a self-tuning parameter called α. For instance, TOSS allocates two components within the

same node rather than two separate nodes to reduce communication cost. Furthermore,

TOSS dispatches a group of executors to a node with the least workload to well balance

load in the Storm cluster. Our experimental results show that the TOSS strategy has an

advantage of making judicious scheduling decisions to optimize overall performance in Storm

clusters.

The rest of the storm part of dissertation is organized as following. Section 2.2 in

Chapter 2 introduces prior studies related to our study. Chapter 4 includes all the details

about the storm scheduler research. Section 4.1 reveals the Apache Storm background and

technical terms. Section 4.2 illustrates the basic ideas about our innovative scheduler algo-

rithm, and Section 4.3 evaluates the performance comparing to default scheduler by running

di�erent benchmarks. In Section 4.4, it o�ers future work directions. The last Section 4.5

makes the conclusion for our storm study.

6

Chapter 2

Related Work

2.1 Energy pro�ling

In the past decade, a wide range of energy conservation techniques were proposed to

reduce operation cost of large-scale clusters in data centers. Existing schemes make an e�ort

to make good tradeo�s between energy e�ciency and performance. In many cases, high

computing capacity comes at the cost of a signi�cant increase of energy cost; reducing en-

ergy consumption tends to have adverse impacts on system performance. Existing power

management strategies fall into two camps, namely, static power management (SPM) and

dynamic power management systems (DPM) [57]. For SPM camp, the main idea of this

approach is to utilise low-power components, such as �ash memory and low energy con-

sumption in Gordon clusters [15]. While DPM techniques focus on dynamic adjustments of

cluster system itself based on current resources. In a notable instance, at the heart of Pow-

erWatch is an internal optimization algorithm that makes use of DVS scheduling to conserve

energy in high-performance computing cluster) [3]. Another scheme saves power through

dynamic voltage/frequency scaling in parallel sparse applications. [16]. Di�erent from the

above studies that were focused on optimizing energy e�ciency in clusters, our research pays

attention to energy usage pro�ling of web applications running on clusters.

Web services have increasingly become popular in various domains. A large number of

intriguing web applications were developed in the past decade [5]. Jazayeri investigated the

trends of web-application usage like searching and tagging [31]. Thanks to the portability

and functionality, E-commerce is tagged as a popular trend on the Internet. Elnikety et

al. proposed an admission control scheme to manage requests issued for e-commerce web

services [23]. In paper [49], Ran explored a new web service discovery system with QoS(stands

7

for quality of service) to speed up adoption rate. Fu et al. presented a new set of mechanism

to analyze web services interaction in terms of communications among asynchronous XML

messages. Unfortunately, those studies have not addressed the energy cost issue in the

realm of e-commerce web platforms. Furthermore, the bene�ts of web service applications

cover various IT-unrelated areas. ProSA [62] facilitates researchers to identify recognition

of errors for proteins in three dimensional level. The availability of interactive web service

largely improves the e�ciency of biological computations.

A handful of systems adopt low-power components to improve system energy e�ciency.

For example, the FAWN architecture integrates low-power embedded CPUs with local �ash

storage, thereby balancing computation and I/O capabilities to enable e�cient and massively

parallel access to data [6]. Vasudevan et al. tested the performance of FAWN using an array

of microbenchmarks [59]. Lang et al. evaluated the performance of wimpy clusters under

non-wimpy workload. Moreover, Yigitbasi et al. proposed an energy e�cient scheduling

technique for heterogeneous clusters [65]. Patterson et al. implemented FAWN in data

storage system [47]. Amanjot et al. evaluated energy e�ciency in FAWN cloud computing

data center [33]. Our work is distinctive to the above studies in the way that we investigate

the energy e�ciency of wimpy clusters under e-commerce workload conditions. We discover

that wimpy clusters are promising platforms to energy-e�ciently run web applications.

2.2 Storm and scheduler

In this section, we review some outstanding systems and solutions related to data pro-

cessing. In 2008, Dean and Ghemawat introduced the programming model called map

MapReduce [20], which accelerates large dataset processing for real world tasks. Later, plenty

of derivatives are developed for high performance computations. Jaliya et al. implemented a

runtime architecture that expand MapReduce structure for more classes of applications [22].

He et al. studied MapReduce and extended capability for graphic data processing on graphics

processors [27]. Genome analysis applied functional programming philosophy of MapReduce

8

to accelerate the DNA analysis computation [43]. In [17], Chu et al. used a distinct method

to speed up machine-learning algorithms by adapting map-reduce paradigm on multicore

computers. Lin et al. investigated in real-world application with MapReduce and proposed

a framework to handle text intensive tasks in natural language processing. Cloudblast [42]

combines the strength of both MapReduce and virtualization for bioinformatics application

on Hadoop clusters. Hyrax [41] introduced a cloud computing based variant of Hadoop on

Android smart phones. In order to support mobile phone characteristics,Hyrax imports the

increment of scale and mobile departure features into Hadoop. HAMA research [52] ex-

plored high level matrix computation based on MapReduce framework. In order to optimize

throughput with heave tra�c, Wang et al. applied data locality to schedule map task for

better performance [61].

In the past decade, an increasing number of streaming process platforms have been de-

veloped to process unbounded streams of data [26]. For example, Filgueira et al. developed a

data-intensive framework combining the strengths of traditional work�ow management sys-

tems with novel parallel stream-based data�ow systems to support data-intensive applica-

tions across multiple heterogeneous resources [25]. Carbone et al. proposed an open-sourced

system for both streaming and batch data processing, which is called Apache Flink [14].

Flink presents a high performance framework to execute pipelined fault-tolerant data�ows.

In paper [68], Zhou et al. proposed a streaming framework to process massive unbounded

LiDAR datasets. By modeling LiDAR data as streaming pipeline works, the computation

is largely improved with a state propagation mechanism. Egilmez et al. presented an an-

alytical framework for QoS(Stands for Quality of Service) enabled streaming applications

on open�ow networks. Streaming process frameworks largely improve the real-time applica-

tions. BiToS [60] is proposed to accelerate BitTorrent(BT) streaming service for P2P content

distribution. Other sample applications running on streaming data platforms include, but

not limited to, visualization [36], adaptive learning [69], diagnostic analysis [34], and to name

just a few.

9

Among an array of competitive streaming data platforms, Storm is a reliable distributed

real-time computing system for streams of data [56]. Unlike batch data processing systems

such as Hadoop, Storm aims at processing unbounded sequences of data with unstopped

components. In addition, Apache Storm enables large scale deployments with advanced ca-

pabilities of handling real-time data. For instance, Morales and Bifet implemented the Samoa

system that makes use of Storm to o�er a collection of distributed streaming algorithms for

popular data mining and machine learning tasks (e.g., classi�cation, clustering, and regres-

sion) [45]. Ranjan elaborated simple instances of large-scale data-stream-processing services

by utilizing Storm as a data analytic layer [50]. Cui et al. proposed POS to simplify

the development of real-time streaming applications on Storm clusters [19]. In paper [32],

Karunaratne et al. demonstrated the way to build micro-clusters to scale Storm clusters on

cloud platforms. Two distributed architectures are proposed to execute a new stream cluster-

ing algorithm in parallel. Manzoor and Morgan applied Support Vector Machine paradigm in

the network intrusion detection research [40]. The detection system utilized Storm to man-

age the network tra�c for security breaches identi�cation. RAPID [58] support interactive

data-mining and analytics in real-time fashion on Storm clusters.

A handful of systems adopt e�cient schedulers to improves system performance. For

example, the Maui scheduler is focused on three perspectives - back�lling, job prioritization

and, fair sharing [30]. Shaout and McAuli�e designed a batch job scheduler applying a fuzzy

logic algorithm to balance loads in a distributed system, thereby maximizing overall per-

formance [53]. Other well-known schedulers have been widely used in various �elds in the

industry. For instance, the static priority pre-emptive scheduling algorithm is deployed in

operating systems governing distributed systems [9]. A new topology-based scaling mecha-

nism was adjusted to eliminate resource usage restriction in Storm clusters [54]. Zaharia et

al. devised a delay scheduler, which achieves locality and fairness by utilizing a simple way

to allocate resources for Hadoop clusters [67]. In [66], delay scheduling and copy-compute

10

Figure 2.1: An example of topology structures in Storm.

splitting scheduling are proposed to improve overall throughput on Hadoop in the indus-

try environment. The aforementioned studies were focused on general-purpose schedulers,

which are inadequate for data streaming applications. Unlike the existing schedulers, TOSS

proposed in this study is customized for Storm clusters to facilitate parallel data streaming

in data centers.

In recent studies, e�orts were made to substitute intriguing schedulers for the default

round-robin scheduler in Storm [48]. For instance, Peng et al. investigated a resource-

aware scheduler focusing on resource demands and availability [48]. The adaptive online

scheduler built by Aniello et al. improves the overall performance in terms of latency and

throughput [7]. Moreover, Rychly et al. investigated scheduling strategies on heterogeneous

Storm clusters [51]. T-Storm is an outstanding scheduler that enables �ne-grained control

to optimize performance [63]. Unfortunately, these schedulers boost system performance at

the cost of extra rescheduling overhead. Compared with the above schedulers, one strength

of our TOSS is to bypass expensive rescheduling cost by analyzing topology structures.

Di�erent from these existing schedulers, TOSS embraces a self-tuning mechanism rather

11

than manually con�guring system parameters. Once the parameters are initialized in TOSS,

the parameters can be automatically tuned for changing workload conditions.

12

Chapter 3

Pro�ling Energy Usage of Web-Service Applications on Clusters

3.1 Objectives

Although there are a handful of emerging energy-saving techniques, the criteria and

challenges still exist. For example, how to comprehensively evaluate energy e�ciency using

benchmarks like the TPC-W workload remains an open issue. In this chapter, we address

the challenges and present our design objectives.

Energy Pro�ling. Energy performance varies under di�erent workload conditions;

this is especially true for the TPC-W benchmark that is mixed with 14 types of requests.

An intuitive energy pro�ling toolkit becomes indispensable to meet the needs of dynamically

changing energy performance. As we mentioned in the previous chapter, maintaining low

energy cost is one of critical goals in the design of web systems housed in data centers.

There are two immediate bene�ts o�ered by energy pro�ling. First, energy pro�ling

sheds light on energy performance under speci�c workload conditions; the measured energy

in turn becomes a basic premise for a precise energy evaluation of the given setups. Second,

energy pro�ling allows system administrators to make decisions on the con�gurations of

existing setups according to a quantitative analysis. Intuitive energy performance graphs

demonstrated by an energy pro�ling tool can expose the shortcomings and potential risks of

an entire system.

Energy E�ciency. The primary goal of our study is centered around energy e�ciency.

We focus on facilitating web services running on clusters with energy awareness and energy

measurement capability, thereby improving the energy e�ciency of data centers housing

the clusters. In addition to high energy e�ciency, maintaining high performance of the

clusters plays an essential role in our design. Hence, the best of our design choices is to

13

make the trade-o� between computing performance and energy e�ciency in the realm of

web services. The energy pro�ling tool developed in this study is orthogonal to techniques

optimizing performance of web services on clusters and; therefore, our toolkit can be readily

incorporated into web services on high-performance clusters. We demonstrate that among

multiple con�gurations, our tool o�ers assistance on selecting a good candidate to optimize

both energy e�ciency and performance of clusters running web services.

Three-Tier performances. The three-tier architecture is becoming increasingly pop-

ular in data centers. Hence, we are motivated to develop an energy pro�ling tool for clusters

powered by the three-tier design (see Section 3.3 for details). Because dynamically changing

load of the three-tier architecture imposes distinct burdens on front and back servers, the

performance and energy cost trends may vary on these two types of servers. Web servers dis-

patch data requests to the back-end ones and have jobs displayed, whereas database servers

manage data and o�er searching services for the web servers. We leverage our tool to ana-

lyze work�ows within three-tier servers to pinpoint any performance or energy-consumption

bottleneck. It is note worthy that our pro�ling technique can be straightforwardly extended

to address the energy e�ciency or performance issues in multiple-tier cluster systems.

Wimpy node. Unlike o�-the-shelf commodity cluster nodes, wimpy nodes equipped

with low-performance wimpy processors o�er cost-e�ective solutions to build large-scale clus-

ters. Not surprisingly, wimpy nodes are unable to accommodate heavy workload normally

handled by traditional high-performance nodes. In order to mitigate the high load assigned

to wimpy nodes, we have to set a fair load threshold for wimpy nodes to avoid potential break

downs. In this dissertation, database load imposed on the wimpy nodes and their counter-

parts are controlled by modifying parameter ITEM (i.e. the number of items). We conduct

an empirical study to tune parameter ITEM in various con�gurations (see Section 3.4). For

example, we discover the upper bound of parameter ITEM for the con�guration where wimpy

nodes are serving as database servers. This performance tuning process is of importance,

14

because any workload beyond the upper bound is very likely to crash the wimpy node due

to the lack of hardware resources (e.g., main memory).

Heterogeneous setup. In our three-tier architecture (see Section 3.3), we investigate

performance and energy e�ciency of heterogeneous clusters seamlessly integrating both con-

ventional nodes and wimpy nodes. There are various ways of putting two types of nodes

together to form a three-tier web service cluster. The ultimate goal is to con�gure our het-

erogeneous cluster to make the best trade-o� between high energy e�ciency and performance

in the arena of web services. Before tuning the performance of web services under a speci�c

con�guration, we quantitatively compare four con�gurations that combine both traditional

and wimpy nodes. Next, we optimize energy e�ciency and performance by varying other

workload parameters like table size used to manipulate load incurred on database servers.

Applying the TPC-W benchmark, we discover the best heterogeneous setup to minimize

energy cost for web services. To resemble real-life scenarios, we replay web requests on our

heterogeneous cluster in accordance with workload sampled and collected from a real-world

system.

Open design. We aim to improve the extensibility and expandability of our proposed

pro�ling toolkit. To achieve this goal, we take an open design approach in the sense that our

solution makes it easy to add, upgrade, and extend pro�ling components into the toolkit.

For example, our pro�ling system supports a range of benchmarks other than TPC-W. Our

system is applicable to multiple-tier clusters in addition to the three-tier ones. Newly added

pro�ling benchmarks can be seamlessly integrated into our system as add-on modules. A

variety of performance metrics are chosen on the �y by system administrators. For example,

if one is only concerned with energy e�ciency, our tool o�ers a way to disable the metrics

related to performance. In this case, pro�ling results can be collected and sampled in a fast

manner; system administrators are focusing on energy issues without being distracted from

any performance measure.

15

3.2 Framework

3.2.1 The Three-Tier Architecture

Bearing the design objectives (see Section 3.1) in mind, we develop a testbed to study

energy e�ciency of web services running on clusters. The testbed embraces the multiple-tier

architecture design to resemble real-world �exible and scalable systems.

The multiple tier architecture in general and the three-tier architecture in particular

are wildly adopted by clusters housed in modern data centers. We build a three-tier cluster

coupled with logically and physically separated servers to perform and process web-service

applications. Fig 3.1 depicts the layout of the three-tier architecture, where clients in tier

one submit requests to front or Web servers in the middle tier, and the requests retrieve

data managed by data servers in tier three. In this three-tier design, requests are submitted

from client terminal to web servers where business rules are implemented; the data servers

are responsible for managing massive amounts of data for web services.

To investigate energy pro�les of web services, we deploy the TPC-W benchmark on the

three-tier testbed to dynamically emulate real-time e-commerce transactions. The testbed

processes the web workload of a book retail website, where multiple web browsers are run-

ning to emulate multiple clients [2]. The testbed utilizes emulated browsers (EB) to simulate

multiple active users shopping online. The primary matrics of TPC-W are the Web Inter-

actions Per Second or WIPS, which has two variants, namely WIPSb and WIPSo. WIPSb

represents the WIPS performance of the browsing process; whereas WIPSo refers to the

WIPS performance of the ordering procedure.

3.2.2 Metrics and Data Size

We apply these two metrics to study the performance of 14 types of transaction requests

(see Table 3.1) in the benchmark. These requests types are grouped into three mix camps,

namely, the browsing mix, shopping mix, and ordering mix. The detailed information on the

16

Figure 3.1: In the three-tier architecture, clients submit requests to the web-services; the
middle tier consists of front or Web servers; the requests retrieve data managed by data
servers in tier three.

three groups of requests can be found in Table 3.1. Regardless of request types, each request

is issued by a client that imposes load on front and end servers in the three-tier system.

Under the dynamically changing workload conditions, we keep track of the cluster's power

consumption as well as system performance.

The important tables stored in the database servers include the ITEM , AUTHOR,

CUSTOMER, and ADDRESS tables. The website data are randomly generated and stored

into the database. We substantially increase the database size to resemble modern big-data

applications running on clusters. We o�er analysis on the impact of data size on the energy

e�ciency of the tested web services. It is worth noting that we manipulate the database size

without changing the benchmark's implementation.

17

Request Browsing mix Shopping mix Ordering mix

Browsing 95.00% 80.00% 50.00%

Home 29.00% 16.00% 9.12%
New Product 11.00% 5.00% 0.46%
Best Seller 11.00% 5.00% 0.46%
Product Detail 21.00% 17.00% 12.35%
Search Request 12.00% 20.00% 14.53%
Search Results 11.00% 17.00% 13.08%

Ordering 5.00% 20.00% 50.00%

Shopping Cart 2.00% 11.60% 13.53%
Customer Reg. 0.82% 3.00% 12.86%
Buy Request 0.75% 2.60% 12.73%
Buy Con�rm 0.69% 1.20% 10.18%
Order Inquiry 0.30% 0.75% 0.25%
Order Display 0.25% 0.66% 0.22%
Admin Request 0.10% 0.10% 0.12%
Admin Con�rm 0.09% 0.09% 0.11%

Table 3.1: Three types of mixed transactions in the benchmark.

The data size can be increased by adding extra records into any of the aforementioned

tables. Among all the database tables, we choose to modify the ITEM table rather than the

other tables to increase data size. We make this decision, because the ITEM table is the

most frequently accessed table compared with the other counterparts. Appending records

into the ITEM table is the most e�ective way of evaluating the impact of data size on the

system's energy e�ciency and performance.

3.2.3 The Software Framework

Fig 3.2 illustrates the detailed software framework of our testbed. The emulated browsers

running on the �rst tier proactively issue a large number of web-service requests. In our ex-

periments, we create 100 threads running in the client tier. Each thread follows the mixed

workload speci�cation (see Table 3.1) to randomly issue requests to the web servers in the

middle tier. If the threads are not in the process of generating requests, we make the threads

sleep. In doing so, we are able to manipulate the sleeping time to dynamically control

18

Tables Fields Default Size Modi�ed Size

I_TITLE 60 1200
ITEM I_PUBLISHER 60 500

I_DESC 500 2000

A_FNAME 20 200
AUTHOR A_LNAME 20 200

A_MNANE 20 200

C_UNAME 20 400
CUSTOMER C_UPASSWD 20 400

C_LNAME 20 400

ADDR_STREET1 40 400
ADDRESS ADDR_STREET2 40 400

ADDR_CITY 30 300

COUNTRY � � �

ORDERS � � �

ORDER_LINE � � �

CC_XACTS � � �

Table 3.2: In the modi�ed column, we changed the numbers to expand the database size. In
this case, database server pays more energy cost in processing requests.

19

Figure 3.2: The software framework about the TPC-W benchmark.

the workload conditions. For example, a long sleeping time leads to light load; short sleep

intervals give rise to heavy workload.

The web servers in the middle tier play a manager's role in terms of request dispatching.

The web servers are capable of balancing the load across to the data servers by evenly

distributed requests, as long as data have su�cient replicas stored on multiple data servers.

The tree-tier system keeps all arrived requests in a central request queue in the web servers

residing in the middle tier, which treats requests based on their types. For example, if

requests intend to retrieve data in the back-end servers, then the web severs dispatch the

requests to the corresponding database servers that are managing the requested data. In

this case, each database server places requests transferred from the web servers into a local

queue. The multiple queue governed by a group of database servers in tier three allow each

tier-three server to enforce its local scheduling policy.

Interestingly, some requests are directly processed by the web servers (e.g., through

JBoss) without being transmitted to the database servers. Samples of these requests include

20

Hardware

Computer HP-Mini-5103
CPU Intel(R) ATOM(TM) CPU N4555 @ 1.66GHz *2
Memory 1.9 GB
Network Broadcom n wireless radio
Disk 155.3GB disk

Software

Operating System Ubuntu 12.04 LTS Linux Kernel 3.11.0-26
Web Server Jboss 4.0.2
Database MySQL 5.1.72

Table 3.3: Hardware and Software con�gurations for Wimpy nodes

displaying the home page and customer registration. It is undoubtedly true that these types

of requests have no energy and performance impact on database servers.

To improve overall system performance, the web servers make use of local caches to

store popular and recently accessed data retrieved from the database servers. The caching

mechanism helps in reducing load imposed on database servers in tier three while shortening

request response times. It is arguably true that caching improves the energy e�ciency of the

database servers thanks to reduced workload by the web servers.

3.3 Setup

This section presents the experiment setup of the web-service cluster. We �rst describe

the hardware and software con�gurations in Subsection 3.3.1. Next, we outline the experi-

mental methodology in Subsection 3.3.2.

3.3.1 Con�gurations and Toolkit

We delineate the experiment setup, where four con�gurations are evaluated. We deploy

the PC and wimpy nodes as the web server and database server in our three-tier architecture

(see Subsection 3.2.1), respectively. Thus, the four setup con�gurations include:

� Homogeneous Cluster 1: PC Web Server and PC Database Server.

21

Hardware

Computer HP Proliant ML110 G6
CPU Intel(R) Celeron(R) 450@2.2GHz
Memory 2 GB
Network 1 GigaBit Ethernet network card
Disk WD-500GB Sata disk([2])

Software

Operating System Ubuntu 12.04 LTS Linux Kernel 3.11.0-26
Web Server Jboss 4.0.2
Database MySQL 5.1.72

Table 3.4: Hardware and Software con�gurations for PC nodes

� Homogeneous Cluster 2: Wimpy Web Server and Wimpy Database Server.

� Heterogeneous Cluster 1: PC Web Server and Wimpy Database Server.

� Heterogeneous Cluster 2: Wimpy Web Server and PC Database Server.

In our �rst con�guration setup, the web and database servers are performed by the

traditional PC nodes. Then, we deploy the wimpy nodes (see the description in the next

paragraph) into the cluster in the other three con�gurations. Thus, in the second con�gu-

ration, all the servers are supported by the wimpy nodes. In the third con�guration, web

servers are powered by the PC nodes, whereas the database servers are supported by the

wimpy nodes. The web and database servers in the last con�guration are performed by the

wimpy and PC nodes, respectively.

We refer to the �rst two con�gurations as homogeneous setups (see the results in Sub-

sections 3.4.1 and 3.4.2); whereas the third and fourth con�gurations are considered as

heterogeneous setups.

Please note that wimpy nodes employed in our system contain cost-e�ective and energy-

e�cient processors. Although wimpy nodes are slower in performance than traditional PC

nodes, wimpy nodes o�er energy savings compared to its PC counterparts. Table 3.3 and 3.4

outline the hardware and software con�gurations of the PC and wimpy nodes. Regardless

22

Speci�cations

Rating 110-130 Volts AC 60Hz
Load max 15 Amps, 1800 Watts
Unit power consumption Under 0.5 Watts

Time Display

Accumulated ON time 0 seconds to 9999 days

Energy Display

Measured voltage range 110-130 Volts AC
Measured current range 0.000-15.000 Amps
Measured power 0.0 - 1800 Watts
Measured frequency range 0-60 Hz
Overload threshold Max. 1800 Watts

Cost Display

Accumulated electricity usage 0.00-9999 killowatt hour(kWh)
Selectable price/kWh 00.00-9.99
Accumulated cost/kWh 0.00-9999
Operating environment 0oC - 50oC
Storage environment −10oC - 50oC
Weight 6.5Oz (185g)

Table 3.5: Detailed speci�cations of the Weanas electricity usage monitor.

of the node types (i.e., PC or wimpy), the JBOSS and Mysql software packages are installed

on the server and database nodes, respectively. We make two types of nodes share the same

software setup, because we are focusing on the energy savings provided by the hardware

con�guration (i.e., wimpy node).

We make use of the Weanas electricity usage monitor to measure energy cost in terms

of kWh (Killwatt-Hour) for each con�guration. The detailed speci�cations of the monitor

are summarized in Table 3.5. We connect one Weanas monitor to the web servers and one

to the database servers to keep track of energy consumption in parallel.

23

3.3.2 Experimental Methodology

In all the four aforementioned con�gurations, clients keep randomly sending requests

governed by the scripts (see, for example, the Browsing Mix in Table 3.1). Approximately

95% requests in the browsing mix are browsing requests, which involve searching and dis-

playing contents. We concurrently run a hundred threads to simulate distinct clients or

customers, which can help to resemble real-world web service scenarios. We also follow the

speci�cation of the TPC-W benchmark [44] by determining the sleep time interval between

two consecutive client requests. This way allows our testbed to simulate a web-service cluster

facilitating e-commerce services.

While we are simulating requests handled by the web-service cluster in the three-tier ar-

chitecture, the electricity monitors are incorporated to measure energy cost. To increase the

measurement accuracy of the monitors, we conduct each experiment for a minimal duration

of two hours. This accumulative energy measures are collected as a total energy cost E with

the unit of kWh. Let N denote the total number of requests issued to the web-service cluster

in each experiment. We measure the energy e�ciency in terms of energy consumption per

request. Such a measure can be derived by the total energy consumption divided by the

total number of requests. Thus, we apply (3.1) to quantify energy cost of each con�guration

under various workload conditions. In the subsequent sections, we use the term energy cost

and EP interchangeably.

EP =
E

N
. (3.1)

The EP metric represents the energy cost with a �xed number of requests. A large EP

value indicates high energy cost in the web-service processing. In this study, we aim at re-

ducing the overall energy consumption in an entire process rather than in a �xed time period.

To achieve this goal, we collect CPU utilization to quantitatively measure performance. We

observe a node's behavior and performance by keeping track of CPU utilization. In the next

24

section, (see Section 3.4), we make use of these two metrics to evaluate the energy e�ciency

and performance of web-service applications on clusters.

3.4 Evaluation

Now we are in a position to present experimental results of the tested web-service cluster

con�gured by four setups (see also Subsection 3.3.1). In Subsections 3.4.1 and 3.4.2, we eval-

uate the energy e�ciency and performance of the homogeneous PC and wimpy clusters. The

comparison between homogeneous PC and wimpy clusters can be found in Subsection 3.4.3.

Finally, we present the experimental results of the heterogeneous clusters in Subsection 3.4.4.

3.4.1 Homogeneous Clusters

Our primary aim is collecting from experiments and graphing the dynamic �gures of

the whole setup, only one case is not enough to get the whole picture. We are also trying

to change the database size by modifying ITEM number, which is a frequently used table in

this mix. We keep the same ITEM contents in the ITEM table but simply populate more

items into ITEM table for a di�erent traversal time. In terms of ITEM numbers, we test

energy with 1 × 104, 2 × 104, 3 × 104, 4 × 104 and 5 × 104 numbers. The energy trends

are demonstrated in Fig. 3.3. Another thing needs to be monitored is the performance for

job handling, so we keep monitoring and recording the CPU utilization every 60 seconds.

Fig. 3.4 is telling the trends about the CPU utilization on front and back servers, this will

be a clear overview for burdens on two nodes.

Fig. 3.3 shows that populating more item numbers gives rise of increased energy cost in

both web and database servers. When the number of items is below 4×104, the Web server's

energy consumption is higher than that of the database server. This trend is reasonable,

because the JBoss middleware imposes extra energy cost to the Web server. Note that JBoss

- playing an application server role - facilitates the communication between clients and the

database. The front Web server receives requests; the Web server also processes any job

25

1 1.5 2 2.5 3 3.5 4 4.5 5

Items Number
×10

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
w

h
 p

e
r

te
n
 t
h

o
u
s
a
n
d

 r
e

q
u
e
s
ts

×10
-6 The Energy Comsumption in PC Setups

PC Web
PC Database

Figure 3.3: The energy trends of the web and database servers of a conventional PC cluster.

that does not access data from the backend server (e.g., such requests include home page

accesses and ordering display). Processing these types of requests lead to an increased energy

consumption in the Web server even when the number of items is relatively small (i.e., fewer

than 4× 104).

When the number of items is larger than 4×104, further increasing ITEM dramatically

pushes up the energy consumption of the database server. As result, the energy consumption

of the database server exceeds that of the Web server. The signi�cantly increased energy

consumption at the database server is attributed to the increased CPU utilization. For

example, Fig. 3.4 reveals that the database server's CPU utilization is consistently growing

when we increase the number of items; in contrast, the CPU utilization of the Web server is

slightly dragged down with an increasing ITEM .

Fig. 3.4 also shows that regardless of the ITEM value, the CPU utilization of the

database server is always higher than that of the Web server. When the ITEM becomes

large, the CPU utilization gap between the database and Web servers widens. In what

follows, we explain the reasoning behind such a widened CPU-utilization gap.

26

1 1.5 2 2.5 3 3.5 4 4.5 5

Items Number ×10
4

0

10

20

30

40

50

60

70

80

C
P

U
 U

ti
li
z
a
ti
o
n

The CPU Utilization in PC Setups

PC Web

PC Database

Figure 3.4: Impact of the table size on CPU utilization of the web and database servers of
a conventional PC cluster.

Our analysis suggests that the database server's high CPU utilization is contributed by

the nature of the browsing mix requests, which demand excessive CPU computing resources

in the back-end nodes. We observe that 95% of the total requests belong to one of the

browsing mix requests, among which the product-detail, search-request, and search-results

requests are proactively accessing data residing in the back-end database. Adding more items

in the database enlarges the item table size, which inevitably extends item-table traversing

time. The long traversal times in turn lead to slow request response times of the Web

server, thereby keeping an increased number of requests in a queue in the database server.

Consequently, the front-end Web server maintains low CPU utilization thanks to (1) the

database's slow response and (2) a long waiting queue at the back-end server.

When the ITEM value reaches 5×104, the CPU utilization of the database server goes

close to 80%, whereas the Web server's CPU utilization almost drops down to zero. The

CPU-utilization trends of the Web and database servers provide evidence for the fact that

the database server consumes more energy than the Web server, when the number of items

is larger than 4× 104.

27

1 1.5 2 2.5 3 3.5 4 4.5 5

Items Number
×10

4

0

1

2

3

4

5

6

K
w

h
 p

e
r

te
n

 t
h

o
u

s
a

n
d

 r
e

q
u

e
s
ts

×10
-7 The Energy Consumption in Wimpy Setups

Wimpy Web
Wimpy Database

Figure 3.5: The energy trends of the web and database servers of a homogeneous wimpy
cluster.

3.4.2 Homogeneous Wimpy Clusters

Now we are in a position to investigate energy e�ciency of a cluster comprised of

homogeneous wimpy nodes. A salient characteristic of the wimpy nodes lies in their high

energy e�ciency by the cost of performance. Not surprisingly, the wimpy cluster exhibits

lower energy consumption than the conventional PC cluster; the request processing time of

the wimpy cluster is longer than that of the PC cluster. Nevertheless, the wimpy cluster

achieves good energy performance or EP measured in terms of energy cost per ten thousand

requests. In what follows, we show evidence of such energy performance trend of the wimpy

cluster.

Fig. 3.5 and 3.6 show energy consumption and CPU utilization of the wimpy cluster

running Web-service applications. Interestingly, both the energy-cost and CPU utilization

trends of the wimpy cluster are similar to those of the conventional PC cluster.

Fig. 3.6 reveals that when the table size exceeds 3 × 104 items, the database server's

CPU utilization approaches 100%. Under the mixed request workload, the database server

is a serious performance bottleneck when the table size is huge. Unlike the wimpy cluster,

the PC cluster's CPU utilization is relatively low at a large table size (e.g., 3 × 104 items)

thanks to the high-speed performance of the database server. This group of experiments

28

indicate that the wimpy cluster is incapable of handling heavy load. When the table size is

set as large as 4× 104 and 5× 104, the saturated database server starts preventing the web

sever from passing the submitted requests to the database server. Consequently, the CPU

utilization of the web server becomes very low (e.g., 20%) due to the large table size (e.g.,

4 × 104 and 5 × 104). In the PC-cluster case, the CPU utilization of the web server drops

down to almost 0 when the table size is set to a large number.

3.4.3 Wimpy vs. PC Clusters

Now we compare energy e�ciency between wimpy and PC clusters running web-service

applications. To make fair comparisons, we keep software con�guration and benchmark

applications identical on the tested wimpy and PC clusters.

Figs. 3.7 and 3.8 show the energy e�ciency of wimpy and PC clusters from the per-

spective of web servers and database servers, respectively. We observe that regardless of the

wimpy or PC servers, the overall energy cost increases with the increasing number of items.

This trend is consistent with the previous experimental results.

Importantly, both wimpy web and wimpy database servers are signi�cantly more energy

e�cient than their PC counterparts. For example, when the number of items is set to 5×104,

the wimpy web server reduces the energy consumption of the PC web server by 60.2%; the

wimpy database server reduces the energy consumption of the PC database server by 39.8%.

The results suggest that the wimpy cluster o�ers an energy-e�cient three-tier architecture

solution to Web-service applications.

The downside of the wimpy cluster, however, lies in its performance under heavy work-

load (e.g., the number of items goes beyond 5 × 104). In the case of e-commerce transac-

tions, customers are expecting to promptly receive response of their ordering and searching

requests; any delay to the response can lead to a huge amount of pro�t loss (see, for exam-

ple, [1]). To optimize a cluster running business web applications, one has to make a good

tradeo� between energy e�ciency and performance under given workload conditions. With

29

respect to system performance, the wimpy cluster is capable of handling requests in a timely

manner if the database size is small; the wimpy cluster's performance inevitably becomes

unacceptable when it comes to large database tables.

For small e-business systems processing small-scale data, wimpy clusters are an ideal

energy-e�cient computing platform to cut operation cost in data centers. wimpy clusters

can o�er energy savings to large-scale web systems, where workload is relatively low (e.g.,

non-peak hours). In contrast, PC clusters are superior to wimpy clusters when web-service

workload becomes heavy (e.g., during holiday seasons and peak hours), because wimpy

clusters are unlikely to handle the request burstiness.

3.4.4 Heterogeneous Clusters

Overall Performance Comparisons

In this subsection, we aim to propose an energy-e�cient way of building heterogeneous

clusters by investigating the energy e�ciency of two types of heterogeneous web-service clus-

ters. Please refer to Subsection 3.3.1 for these two con�gurations of heterogeneous clusters

running web applications. We will answer the following two intriguing questions.

� Question 1: Are heterogeneous clusters more energy e�cient than homogeneous clus-

ters?

� Question 2: What type of heterogeneous cluster is energy e�cient in nature?

We build two heterogeneous clusters. In the �rst con�guration is comprised of PC web

and wimpy database servers; whereas the second heterogeneous system contains wimpy web

and PC database servers. For each heterogeneous cluster, we measure energy consumption

and CPU utilization under web-service workload conditions. Due to the unbalanced en-

ergy and performance e�ciency between PC and wimpy servers, the tested heterogeneous

clusters exhibit distinctive energy and performance behaviors compared with homogeneous

counterparts.

30

Fig. 3.9 shows the energy e�ciency of the heterogeneous con�guration with the PC web

and wimpy database servers. In this group of experiments, we increase the number of items

(i.e., ITEM) from 1 × 104 to 5 × 104 with an increment of 5 × 104. Not surprisingly, we

observe that the energy consumption per request of the PC web server is signi�cantly higher

than that of the wimpy database server. Nevertheless, the energy-e�ciency trends of the PC

web and wimpy database servers are very similar. In other words, the energy consumption

per request slightly goes up when the number of items is increasing. Generally speaking, the

results plotted in Figs. 3.10 and 3.9 are consistent; thus, the wimpy server is more energy

e�cient than the PC server regardless of their role (i.e., web or database servers). Unlike

the trends shown in Fig. 3.9, the energy-e�ciency trends plotted in Fig. 3.10 are seemingly

unpredictable. For example, when the number of items is increased from 1× 104 to 2× 104,

the energy consumption per request goes up; if we further change the number of items from

2×104 to 3×104, the energy consumption drops. In what follows, we elaborate the rationale

behind such intriguing trends.

PC Web and Wimpy Database Servers

In the scenario of the �rst heterogeneous setup (i.e., PC web and wimpy database

servers), the job queue in the PC Web server is almost empty during the course of the entire

testing experiment. The evidence can be found in Fig. 3.11, which reveals that the CPU

utilization of the PC web server stays at a very low level. Thus, the load imposed on the

PC web server is light, making the PC web server sit idle for the majority of the time.

In contrast, Fig. 3.11 illustrate that CPU utilization of the wimpy database server rises

dramatically, indicating that the wimpy server becomes heavily loaded when the number of

items is large. For example, when ITEM varies from 1× 104 to 5× 104, the wimpy database

server's CPU utilization increases from approximately 10% all the way up to 90%. Such

CPU-utilization trend pictures a fact that the performance bottleneck lies in the back-end

wimpy nodes. The performance gap between these two types of servers largely depends on

31

the computing capacity of the internal processors. Speci�cally, the PC's high performance

enables web servers to process multiple requests within a short time period, which is not the

case for wimpy processors.

Upon the arrivals of requests, the front-end PC server easily handles all the displaying

requests. All the other requests requiring detailed item information are placed by the PC web

server into a waiting queue, which is connected to the back-end wimpy database server. The

wimpy server is unable to keep the pace with the fast speed of the PC server; this problem

is worsened when the wimpy server's processing time of each request (e.g., data traversing

time) is large. Under heavy workload conditions, the communication between the PC web

and wimpy database servers is blocked, meaning that a signi�cant number of requests are

waiting at the front-end server due to the saturated wimpy server. In the presence of the

slow wimpy servers, only a limited number of requests are handled by the wimpy database

server; nevertheless, the displaying and ordering requests are independently processed by the

PC web server thanks to the cached data.

An important conclusion drawn from Fig. 3.9 is that the �rst heterogeneous system is

energy-e�cient under light load (e.g., ITEM is smaller than 2×104). The energy e�ciency of

the PC web and wimpy database server noticeably drops under heavy workload (e.g., ITEM

is larger than 3 × 104). The energy consumption per request of the two types of servers is

almost �at before the wimpy database server becomes a performance bottleneck. Once the

wimpy server is overly loaded, the energy e�ciency of both web and database systems is

downgrading.

Wimpy Web and PC Database Servers

Now we o�er an analysis on the energy e�ciency of the second heterogeneous system

powered by wimpy web and PC database servers. Fig. 3.10 reveals that the second het-

erogeneous system exhibits an unpredictable energy e�ciency when it comes to web-service

32

applications. The high-performance PC database server is capable of handling a large num-

ber of requests issued by the front-end wimpy server, implying that the PC database server

never becomes the system performance bottleneck at the back end.

Fig. 3.12 and Fig. 3.11 show that the CPU utilization of the PC database server

marginally grows from 2% to 5% when the number of items varies from 1× 104 to 3× 104.

Then, the database server's CPU utilization jumps to 40% when the number of items is as

large as 5 × 104. One attributing factor is that the local cache in the wimpy web server is

relatively small, which is insu�cient to cache a massive amount of data for future requests

(e.g., browsing and searching). Previously cached data are likely to be repeatedly evicted

from the wimpy server in order to accommodate recent requests.

Unlike the �rst heterogeneous system, the second heterogeneous system has di�erent

CPU trends incurred by the wimpy web server. Fig. 3.12 evidently indicate that the wimpy

web server's CPU utilization slightly increases when the number of items increases, while

CPU utilization decreases in other three con�gurations. It is arguably true that the overall

performance of the second heterogeneous cluster largely depends on the front-end wimpy

node. Requests accessing the database are placed in a job queue residing in the PC server,

waiting for responses from the database hosted on the PC server. The wimpy front-end node

has to independently handle displaying and ordering requests without interacting with the

database server.

In the three-tier web-service architecture, the system reliability and stability partially

depends on the front-end web server. The wimpy web server is responsible for (1) managing

a job queue, (2) receiving calls from browsers, (3) sending data requests to the web server,

(4) receiving data from end node, and (5) processing data. When the wimpy web server's

utilization reaches its peak level, the wimpy node is unable to instantly handle incoming

requests. As a result, the database server's CPU utilization drops correspondingly.

33

3.4.5 Put It All Together

Fig. 3.13 illustrates the energy cost trends of all the four tested con�gurations. We draw

the following three observations by comparing the four con�gurations.

First, the cluster coupled with the wimpy web and PC database servers delivers the worst

performance among all the solutions. If improving energy e�ciency is the sole purpose, the

homogeneous wimpy cluster is undoubtedly a winner under all workload conditions. In the

case of a homogeneous cluster, the processing capacity of front-end servers is on par with

that of back-end servers.

Second, although the two heterogeneous systems have identical hardware components,

they exhibit distinct performance and energy e�ciency. The system equipped with the

wimpy web and PC database servers becomes the worst choice, whereas the PC-web-wimpy-

database system is considered a competitive candidate. In these two heterogeneous comput-

ing environments, the performance bottleneck lies in the wimpy nodes. In contrast, the PC

database servers handle heavy load at the cost of high energy consumption.

Last, when it comes to overall system performance, the PC-web-wimpy-database system

is a good choice. The only downside for such a con�guration is that the energy e�ciency is

low when data size is small due to unbalanced load between the PC web and wimpy database

servers. Fortunately, when the data size is large (e.g., the number of items increases to 4×104

and 5× 104), this heterogeneous system can not only speedup the request process compared

with the two homogeneous clusters, but also be more energy e�cient than the homogeneous

PC cluster.

3.5 Summary and Future work

3.5.1 Summary and Future Work

Energy-e�cient clusters equipped with wimpy nodes o�er ample opportunities to con-

serve energy (see, for example, FAWN - fast array of wimpy nodes [6]). FAWN can well

34

balance computation and I/O capabilities, processing distributed data with parallel accesses.

In the case of our second heterogeneous cluster, we can improve the performance of the front-

end server by replacing the single wimpy node with a wimpy cluster. The wimpy cluster's

parallel processing capability tends to �ll the performance gap between the front-end and

the back-end servers.

Evidence shows that for complex data processing workloads, a large-scale wimpy cluster

may not be as energy-e�cient as a small-scale traditional cluster [37]. This challenging

issue opens up the research arena of heterogeneous cluster computing. We believe that job

scheduling policies, heterogeneity con�gurations, workload pro�ling, and scaleup analysis

are promising ways to optimize performance of heterogeneous clusters powered by energy-

e�cient wimpy nodes. For example, a prior study shows that mixing low-power systems and

high-performance ones can energy-e�ciently handle diverse workloads with various service-

level agreements [18].

Among all the four tested con�gurations, the cluster containing PC web and wimpy

database servers makes the best tradeo� between performance and energy e�ciency. To

speedup back-end processing performance, one may increase the number of wimpy nodes of

the wimpy cluster serving as a database system. Large-scale wimpy clusters have a high

reliability compared with their low-scale counterparts. With a large-scale wimpy database

cluster in place, we plan to design a node partitioning strategy to dynamically partition

the wimpy cluster into a set of small-scale sub-clusters. We also will develop a scheduler

to dispatch requests to the multiple sub-clusters in a way to maximize energy savings while

maintaining good performance.

Recall that Fig. 3.13 shows that the heterogeneous cluster with PC web and wimpy

database servers consumes more energy than the two homogeneous systems. In the future,

we will address this drawback by investigating a heterogeneous computing setup where the

back-end database servers are powered by both energy-e�cient wimpy and high-performance

PC servers. In our design, we plan to have the wimpy nodes store data items that optimize

35

the energy e�ciency of the wimpy database servers; PC database nodes manage data items

that make PC servers o�er energy savings. A challenging issue we will address in the future

study is to investigate what data access patterns are bene�cial to wimpy and PC database

nodes in terms of energy e�ciency. This future investigation allows us to further improve

the overall energy e�ciency and performance of the heterogeneous database clusters.

3.5.2 Summary

In this study, we focused on evaluating energy e�ciency of web servers running on ho-

mogeneous and heterogeneous clusters. We investigated the energy pro�les of a real-world

e-commerce transaction system deployed on clusters. We applied the TPC-W benchmark,

which mimics an e-retailer on the Internet, to study the energy e�ciency of various cluster

con�gurations. Among the four investigated system setups, the �rst two represent homo-

geneous computing environments, whereas the other two are heterogeneous systems. We

showed that reducing energy consumption can be achieved through con�guring cluster sup-

porting web services. Our energy pro�ling results are expected to inspire developers to design

and implement novel energy-e�cient clusters in data centers.

If energy e�ciency is the �rst priority, our evidence shows that homogeneous wimpy

clusters are undoubtedly a winner under all the tested Web workload conditions. We con-

�rmed that in the heterogeneous computing environment, the wimpy nodes are becoming

the system performance bottleneck. Between the two heterogeneous systems, the PC-web-

wimpy-database system is a competitive candidate, whereas the system equipped with the

wimpy web and PC database servers is the worst choice. An important observation con-

cluded from this study is that the PC-Web-wimpy-database system makes a good tradeo�

between energy e�ciency and performance.

36

1 1.5 2 2.5 3 3.5 4 4.5 5

Items Number ×10
4

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

ti
liz

a
ti
o
n

The CPU Utilization in Wimpy Setups

Wimpy Web

Wimpy Database

Figure 3.6: Impact of the table size on CPU utilization of the web and database servers of
a homogeneous wimpy cluster.

1 1.5 2 2.5 3 3.5 4 4.5 5

Items Number
×10

4

1

2

3

4

5

6

7

8

9

K
w

h
 p

e
r

te
n
 t
h

o
u
s
a

n
d
 r

e
q
u
e

s
ts

×10
-7 Comparision between PC Web and Wimpy Web

Wimpy Web
PC Web

Figure 3.7: We are putting two web servers data in the same chart, in order to clearly provide
the picture of the major di�erences.

37

1 1.5 2 2.5 3 3.5 4 4.5 5

Items Number
×10

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
w

h
 p

e
r

te
n
 t

h
o
u

s
a
n
d
 r

e
q
u

e
s
ts

×10
-6 Comparision between PC Database and Wimpy Database

Wimpy Database
PC Database

Figure 3.8: This is the graph for Database energy comparison from two setups.

1 1.5 2 2.5 3 3.5 4 4.5 5

Items Number
×10

4

2

3

4

5

6

7

8

9

K
w

h
 p

e
r

te
n
 t

h
o
u

s
a

n
d
 r

e
q
u

e
s
ts

×10
-7 The bybrid of PC WEB server and Wimpy Database server

PC Web
Wimpy Database

Figure 3.9: This is the energy performance for heterogeneous system with pc web and wipy
database.

38

1 1.5 2 2.5 3 3.5 4 4.5 5

Items Number
×10

4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

K
w

h
 p

e
r

te
n

 t
h
o
u
s
a

n
d
 r

e
q
u
e

s
ts

×10
-6 The bybrid of WP WEB server and PC Database server

Wimpy Web
PC Database

Figure 3.10: This is the energy performance for heterogeneous system with wimpy web and
pc database.

1 1.5 2 2.5 3 3.5 4 4.5 5

Items Number ×10
4

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

ti
liz

a
ti
o
n

CPU Utilization Comparision among pc web server and wimpy database server

PC Web

Wimpy Database

Figure 3.11: This is CPU utilization for pc web and wimpy database.

39

1 1.5 2 2.5 3 3.5 4 4.5 5

Items Number ×10
4

0

5

10

15

20

25

30

35

40

45

C
P

U
 U

ti
liz

a
ti
o
n

CPU Utilization Comparision among wimpy web server and pc database server

Wimpy Web

PC Database

Figure 3.12: This is CPU utilization for wimpy web and pc database.

1 1.5 2 2.5 3 3.5 4 4.5 5

Items Number ×10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

K
w

h
 p

e
r

te
n
 t
h
o
u
s
a
n
d
 r

e
q
u
e
s
ts

×10
-6 The energy performance for all setups

PC web + wimpy database

wimpy web + PC database

wimpy setup

pc setup

Figure 3.13: An overall comparison for all setups.

40

Chapter 4

TOSS: Topology-based scheduler on Apache Storm

4.1 Background

4.1.1 Topology Structures

Storm performs as a reliable distributed and fault-tolerant framework to process stream-

ing data in a real-time fashion. Storm provides a high-level abstraction for a streaming ap-

plication; the abstraction is referred to as topology. A Storm topology intends to organize a

logic data-�ow view governing how data is processed. Storm jobs typically work in a similar

way as that of Map-Reduce jobs running on Hadoop clusters; storm jobs acquire non-stopped

streaming data sets as an input while continuing their execution until being intentionally

killed.

Fig. 2.1 illustrates a sample topology structure in Storm. A topology contains two

major components, namely, spout and bolt. Spouts play the role of data collectors. A spout

is responsible for wrapping actual data generators and emitting an unbounded number of

data referred to as tuple, which follow a prede�ned path in the topology. In contrast, a

bolt encapsulates a speci�c processing logic (e.g., �ltering and mapping tuples) handling

streams delivered from spouts. In general, multiple bolts cooperate one other to cope with

complicated stream transformations that may require multiple steps. Each component (i.e.,

spout or bolt) is executed as a thread in Storm cluster; such a processing component is

de�ned as an executor in storm. In a streaming application, a complete topology may

consist of multiple collaborative spouts and bolts. Owing to tight collaborations among

various components, communication patterns are likely to provoke heavy communications

within a cluster.

41

The Storm architecture is constitutive of two types of nodes - master node and worker

node. The master node, performing as a cluster coordinator, is liable to manage resource

availability. Additionally, the master node maintains an active- membership list to ensure

reliable fault-tolerant processing across worker nodes. The master node utilizes Apache

Zookeeper [28] to manage a list of available nodes in the cluster; meanwhile, the master node

relies on the Nimbus daemon process to perform the coordination. Worker nodes run as ex-

ecutor containers in a cluster. Each worker node is con�gured with a limited number of slots,

each of which curbs the maximum number of resource allocations in execution. A worker's

service and health is constantly monitored by a daemon process named supervisor. Once an

unhealthy event occurs (e.g., temporary hardware fault and process failure), the work node

will report to Nimbus o�ering fault tolerance by immediately handling the error. Fig. 4.1

depicts a master node and worker nodes in a storm cluster, where Nimbus, supervisors, and

executors collectively processing storm tasks.

4.1.2 Scheduling Mechanism

By default, the round-robin scheduler dispatches executors to evenly distribute workload

among computing nodes. Initially, the scheduler iterates through all the executors in a

prede�ned topology and; then, the scheduler allocates assigned executors into available slots

in a storm cluster. Because the round robin strategy handles all processes in a circular

order without any priority, all worker nodes share almost equally process the same number

of executors. Fig. 4.2 elucidates that this cyclic executive allocation eventually leads to two

executors in each slots. The round-robin scheduler is compelling thanks to its simplicity

and starvation-free features, which cause the least scheduling overhead in storm clusters.

Unfortunately, the round-robin scheduler introduces a potential performance bottleneck due

to unbalanced workload distribution. In other words, keeping the equal number of executors

across computing nodes doesn't necessarily guarantee load balancing.

42

Figure 4.1: A master node and worker nodes in Storm.

Storm internally provides an interface IScheduler for any customized scheduling imple-

mentation. Once our TOSS scheduler is implemented and con�gured, Storm will detect the

TOSS con�gurations and substitute TOSS for the existing round-robin strategy. Making

allocation decisions according to static structures, TOSS is able to resolve deployment so-

lutions without rescheduling executors at run time. On the client side, when a topology

is submitted to the master node, critical information embedded in the submission include

(1) initial custom parameter and (2) initial component connectivity (see Section 4.2 for de-

tails). Given the submission information, the TOSS scheduler is allowed to gauge explicit

structures, followed by optimizing scheduling outcomes.

43

Figure 4.2: A simple example of round robin allocation strategy.

4.2 System Design

As a streaming-data processing platform, a Storm cluster's overall throughput is deeply

dependent of event processing latency. We start this section by o�ering a deep analysis

on two contributing factors of computation latency (see Section 4.2.1). Next, we design an

algorithm to alleviate performance bottleneck incurred by the factors (see Section 4.2.2).

4.2.1 Pinpoint Performance Bottleneck

Prior to the design of TOSS, let us discover how to deploy tasks on Storm clusters in a

way to enhance throughput and to lower latency. It is arguably true that the following two

factors heavily a�ect computing latency in the �eld of streaming data process.

� Communications among a group of executors may trigger heavy network tra�c.

� An structure analysis of Storm topology demands �exible parameter con�gurations.

In general, computing components in Storm applications fall into two camps, namely,

spout and bolt. Each component constitutes of executors, which are the basic allocation units

in Storm clusters. Fig. 4.3 illustrates a detailed example of inter executor communications.

In Fig. 4.3, the communication patterns among the eight executors can be modeled by a

44

Figure 4.3: Communications among multiple executors before executor allocation.

directed acyclic graph or DAG for short. In this example, a linear data �ow generated from

spout A is past through Bolt B, which in turn collaborates with Bolt C that completes the

entire process.

Each component in Storm topology is comprised of multiple concurrent running execu-

tors, which contain the same processing logic as that of the component. Those executors

follow the identical data �ow prede�ned in the topology; however, the executors may be al-

located and executed on various processors or worker nodes. Inter-executor communication

cost varies dramatically, heavily depending on allocation strategies.

Fig. 4.4 shows a representative example of intern-executor communication after a resource-

allocation decision is made. The directed data �ow is determined in storm topology (see

Fig. 4.3). It is worth mentioning that communication cost in a pair of two executors may

have a wide discrepancy compared with other executor pairs. For instance, in Fig. 4.4, the

communication tra�c between executors 1 and 4 spawns heavier cost than that between

executors 1 and 5, the communication of which are handled within a thread or a process

rather than across two nodes.

It is noteworthy that predicted workload based on static structures may di�er from

run-time workload. In particular, most of the topology-based schedulers (see, for example,

the o�ine scheduler [36]) con�gure a linear parameter in order to determine the topology

structure. Due to the lack of feedback from the run-time workload, the topology-component

45

partitions governed by the linear parameter are far from the optimal level. Such sub-optimal

partitioning results in run-time lead to serious rescheduling overhead, which in turn incurs

performance penalties for the topology-based scheduling strategies. Therefore, it is important

to device a novel approach to accurately determine an initial linear parameter.

4.2.2 Design and Implementation

Now we are positioned to elaborate the design of TOSS - the topology-based scheduling

algorithm. TOSS improves performance by reducing the communication overhead while

taking advantage of distributed computation power of storm clusters. TOSS works in two

phases to achieve this goal. In the �rst phase, TOSS analyzes static topology structure and

partitions executors in a way to minimize the communication overhead between executors. In

the next phase, TOSS utilizes previously stored run-time workload information to estimate

current workload, followed by adjusting the linear parameter to control executor partitions

without relying on run-time rescheduling.

Recall that (see Section 4.2.1) inter-executor communication is one of the major factors

adversely impacting optimal scheduling in storm clusters. Therefore, it is of importance

to suppress communication overhead during the course of making scheduling decisions. Al-

though inevitable, the communication overhead is largely dependent of executor locations.

In a storm cluster, there are three types of communication overhead, namely, inter-node

communication, inter-process communication, and inter-thread communication. Our pre-

liminary �ndings suggest that (1) inter-thread communication incurs the lowest overhead,

(2) inter-process communication causes higher overhead, and (3) inter-node communication

exhibits the worst overhead. Given a topology, an ideal strategy is to allocate executors

bearing heavy communication load to the same processor rather than multiple processors or

nodes.

46

Figure 4.4: Communications among multiple executors after executor allocation.

We do not imply by any means that minimizing communication overhead guarantees

improved performance. For example, a scheduling solution that aims to exclusively minimiz-

ing communication overhead may prefer to allocate all the executors to a single processor,

which inevitably becomes a performance bottleneck due to the lack of processor- and node-

level parallelism. Such an allocation strategy may prove to be bene�cial in situations, where

computation workload is dominated by communication overhead. However, when a topology

consists of computation-intensive workloads, the strategy can take no advantage of paral-

lelism due to the bottleneck problem where a single processor ends up being responsible

for all computational workload. By utilizing fundamental load-balancing principles, TOSS

makes tradeo� between high throughput and low latency in the storm clusters.

Table 4.1 summarizes important notation and symbols used throughout this part. The

TOSS scheduling policy is divided into two main phases: partitioning and allocation. The

partitioning phase takes a set of topologies (Ω) and the corresponding set E of executors.

TOSS �rst analyzes the static topology structure to discover edges (e.g., between executors

ei and ej) with heavy communication load. We refer such edges as hot edges. Because TOSS

47

Table 4.1: Notation and symbols.
Notation Description
N The set of all nodes in storm cluster
ni The ith worker node in storm cluster
Γi The set of all exectuor for allocation in node ni

αi THe maximu ratio of all executors for assignment θi
E The set of executors for allocation
ei The ith executor waiting for allocation
Ω The set of all topologies
ωi The ith topology for allocation
Θ The set of assignment for allocation
θi The assignment on node i
Li The actual load of node i
ui The CPU utilization of node i
si The CPU speed of node i
Ti,j The tra�c overhead between executor i and executor j

analyzes topology structures without run-time workload, hot edges are pinpointed by merely

investigating the connectivity among a group of components rather than run-time tra�c.

In order to explicitly express connections among all the components, TOSS represents

a topology as a directed acyclic graph or DAG. TOSS traverses through the entire DAG

by implementing a graph traversal algorithm (e.g., Depth First Search [55] and Graph-

Based traversal [13]), followed by partitioning executors into a couple of nodes centered

around hot edges. In doing so, TOSS clusters hot edges within local nodes to avoid heavy

communication tra�c. While partitioning executors into an array of slots, TOSS strives to

maximum resources available on the node (i.e., maximum allowable executor allocation αi

for assignment θi) to prevent the overloading issue (i.e., a single node becomes a performance

bottleneck).

After partitioning is completed, TOSS generates a set Θ of assignments, which speci�c

how to assign executors (e.g., ei) to nodes (e.g., nj). In TOSS, each assignment contains

a group of executors to be dispatched to the same node or processor. Next, TOSS seeks

available nodes to run executor groups. To balance workload, TOSS is aware of the current

workload condition among all the nodes in a Storm cluster. The run-time workloads prior

48

to deploying topology ωi could be locally collected from worker nodes; then, TOSS stores

the workload in a central database for the purpose of future workload estimation. Assuming

that the Storm cluster is homogeneous in nature, we argue that it is intuitive to measure

workload using CPU utilization, which can be acquired through a Java API - getThread-

CpuTime(threadID). In a heterogeneous cluster, however, it is inaccurate to measure load

using CPU utilization as a sole indicator. This is because a high-speed node with high CPU

utilization may sustain better computation performance than low-end node with lower CPU

utilization. In the heterogeneous computing case, the CPU speed should be incorporated

into load predictions.

Let Li denote node ni's load incurred by executors. We use ui to denote the CPU

utilization of node ni. We denote si as the CPU speed of node ni. In the case of multicore

processors, the CPU speed is quanti�ed as a product of the number of cores and the single-

core speed. Hence, we measure the workload Li of node ni as

Li = ui × si. (4.1)

Apart from cutting back communication tra�c, load balancing is a second design goal

in TOSS. To quantitatively measure the load balancing performance, one may introduce load

deviation among all the node in a cluster. Minimizing such a load deviation achieves good

load balancing performance. The load-balancing goal can be achieved by minimizing the

maximal load among all the nodes.

Problem Statement. The problem can be formally stated as follows. Given a cluster

of n nodes each of which has load of Li, TOSS partitions and assign executors in the way to

minimizing the maximal load among all the nodes. Thus, we have

Minimize: max
1≤i≤n

(Li). (4.2)

49

When it comes to inter-executor tra�c measurement, TOSS collects the rate at which

executor ei receives tuples from executor ej (i 6= j). The rate unit is the number of tuples

per second or tuples/sec. Let us denote Ti,j as the inter-executor tra�c between executor ei

and ej.

We measure the total inter-node tra�c by aggregating the tra�c of events exchanged

among executor ei and ej (ei ∈ Γp, ej ∈ Γq, p 6= q) deployed on distinct nodes, where Γp

denotes the set of executors dispatched in node np. The objective of TOSS with respect to

allocation is to minimize the inter-node tra�c. Thus, we have

Min
∑

ei∈Γp, ej∈Γq , p 6=q

Ti,j (i 6= j) (4.3)

For a single assignment, the allocation has to satisfy constraint αi:

θi 6 Θ ∗ αi (4.4)

where θi represents the number of executors in the allocation assignment on node i, and Θ

denotes the total number of executors de�ned in the topology ωr. The αi denotes the the

maximum ratio of all executors that can be allocated for assignment θi. The value of αi

varies anywhere between 0 to 1; we have
∑

i∈N αi = 1.

The algorithms 1 and 2 implement the TOSS scheduling strategy. Algorithm 1 acquires

parameter α by running self-tuning algorithm. By utilizing the graph traversal algorithm

DFS, TOSS searches for a chain in the topology structure. A chain is de�ned as a series

of executors connected by data �ow one after the other, for instance, executor e1, executor

e5 and executor e6 constitute a chain in Fig 4.3. The responsiblity of the chain search is

to group the executors with communications, enabling TOSS to reduce the inter-executor

tra�c overhead by grouping executors into the same slot. DFS is a preferred graph traversal

algorithm thanks to its characteristics to explore as far as possible along each branch before

50

backtracking. After the partition phase is accomplished, TOSS is capable of generating

allocation assignments.

Algorithm 2 is responsible for allocating assignments Θ into available slots or nodes. The

principle followed by Algorithm 2 is to seek a node with the lowest run-time workload. By

utilizing Eq. 4.1, TOSS is able to collect all run-time workload from all the nodes in a storm

cluster. Next, applying PriorityQueue, TOSS assigns load to a node with the minimum

workload. This phase aims to balance the workload among all the nodes, whereas the �rst

phase intents to reduce inter-executor communication cost.

procedure TOSS;
Input : Initial parameter set α, topology set Ω for allocation
Output: Allocation assignment Θ for each executors
Self-tuning parameter set α;
E ← total number of executor for allocation;
for topology ωi ∈ Ω do

for parameter αi ∈ α do
Ei ← E ∗ αi;
θi ← empty set;
Runs DFS algorithm traverse, �nds one chain.;
C ← head of the chain;
while θi.size() < Ei do

θi add ek ∈ E in C;
C ← next component with executor for allocation;
if C reaches the end of chain then

C ← back to head;
end

end
Add θi into Θ;
if C remains executor for allocation then

Leave for next assignment computing iteration;
end

end

end
Algorithm 1: TOSS scheduling algorithm: partition phase

The objective of the self-tuning mechanism is to optimize the system parameters (e.g.,

αi) in a way to evenly dispatch workloads among all the nodes. In particular, given the

parameter set {α1, α2, ..., αm}, the actual workloads are supposed to be evenly split as

51

procedure TOSS;
Output: Executor allocation on all nodes
Collects runtime workload data;
pq ← priorityQueue contains all current runtime workload for nodes N ;
for assignment θi ∈ Θ do

ni ← pq.pop();
assign θi to node ni;

end
Algorithm 2: TOSS scheduling algorithm: allocation phase

{W
M
, W
M
, ..., W

M
}, where W =

∑
n∈N Ln and M is the number of parameters in the α set.

In order to balance overall running workload, we devise a self-tuning system to judiciously

reduce number of executors for heavily loaded assignments, while increasing the number of

executors for assignments where load is relatively light. Hence, we employ the linear regres-

sion technique [46] to utilize gradient descent for parameter tuning. Gradient descent, an

iteratively optimize algorithm, o�ers an optimal value for a function. In the case of TOSS,

the optimal value can be envisioned as evenly distributed workload W
M
. By keeping track

of workload {L1, L2, ..., Lm} from prior assignment, we can deduct the parameter tuning

formula:

αi := αi − ξ × (
Li − W

M

W
), i 6= m (4.5)

and

αm = 1−
∑

k∈M,k 6=m

αk (4.6)

where ξ is the parameter that controls the tuning rate. It is required to con�gure a proper

value for tuning rate ξ to avoid slow tuning or "hill climbing". Additionally, it guarantees

that the new value of αi locates in the range of [0, 1). Practically, a proper tuning rate is

able to improve performance after deploying several topologies.

Fig. 4.5 depicts the system design of the TOSS scheduler. Before making scheduling

decisions, TOSS proactively collects all run-time workloads from the worker nodes. In the

52

Figure 4.5: The System Design of the TOSS scheduler.

partitioning stage, TOSS is in a position to tune allocation parameters for achieve balanced

load. To facilitate parameter tuning, a database is maintained by TOSS to (1) store run-

time workloads and (2) keep track of workloads from prior assignments. After wrapping up

the partitioning and allocation phases, TOSS embark on dispatching all executors to all the

nodes while waiting for the next round of new topology assignments.

4.3 Evaluation and Experimental Results

In this section, we focus on performance of evaluation for the TOSS scheduling algo-

rithm. We validate the TOSS performance by comparing TOSS with the default round-robin

scheduler handling various topology types.

53

Figure 4.6: The diamond strucutre for network intensive topology.

4.3.1 Performance Metrics

We start our experiments by paying attention to the network-sensitive benchmark, which

generates an excessive number of communication tuples among components with light com-

putation overhead. Next, we evaluate the TOSS performance on a general topology that

resemble the characteristics of a broad classic topologies. We apply two fundamental met-

rics to conduct performance evaluation:

� Latency: the latency experienced by events to traverse an entire topology.

� Throughput: the average throughput that tuples pass through all bolt processes.

We implement the proposed TOSS in Storm 0.8.2 obtained from the Storm's repository

on GitHub [8]. All the experiments are carried out on a �ve-node Storm cluster (i.e., four

worker nodes and one master node). The master node plays the role of resource manager,

hosting the Nimbus and Zookeeper services. Each worker node hosts four slots with 2.40

GHz Intel Xecon CPU and 1.90 GB RAM. The entire testbed environment is installed on

top of Ubuntu Linux 12.0 connected by a 1Gbps network.

4.3.2 Network-intensive topology

We start our testing with a simple topology that consists of one spout and three

bolts. The simple benchmark is developed based on the Yahoo storm performance/stress

54

0 5 10 15 20 25 30

Time(10s)

5

10

15

20

25

30

La
te

nc
y(

m
s)

Network sensitive topology - first round

Default
Toss

Figure 4.7: The throughput comparison between default scheduler and �rst TOSS run.

0 5 10 15 20 25 30

Time(10s)

5

10

15

20

25

30

La
te

nc
y(

m
s)

Network sensitive topology - second round

Default
Toss

Figure 4.8: The throughput comparison between default scheduler and second TOSS run.

55

0 5 10 15 20 25 30

Time(10s)

5

10

15

20

25

30

La
te

nc
y(

m
s)

Network sensitive topology - fifth round

Default
Toss

Figure 4.9: The throughput comparison between default scheduler and �fth TOSS run.

1 2 3 4
Submission

0

1

2

3

4

5

6

7

8

T
hr

ou
gh

pu
t(

m
es

sa
ge

s)

×104Overall throughput comparason for first, second and fifth submission

Figure 4.10: The throughput comparison between default scheduler and multiple runs TOSS.

56

test [64][29]. The entire structure is diamond structure with massive communication load

and light computing loads(Shown in the Fig 4.10). The spout repeatedly generates random

strings of a �xed size of 10K bytes as input tuples, which go through two middle bolts with

little changes. Two middle bolts append a single character in the tail of a received input.

The last component in the topology is a counter bolt, which counts the number of received

tuples and outputs the counter value when a tuple is processed in the tail. Because the

process logic in the bolts is straightforward and simple, the measured throughput heavily

depends on the network connectivity in the Storm cluster. Our experiments are running

for an average of 5 minutes when the measured latency and average throughput become

stabilized and converged.

Recall that TOSS incorporates the self-parameter-tuning mechanism. To assess the

e�ectiveness of the parameter-tuning mechanism, we repeatedly run TOSS to process each

topology. We evaluate latency and throughput by comparing multiple executions of TOSS

treating the same topology. Before processing each topology, the prior topologies are killed.

Observing the TOSS performance in a sequence of processes with respect to each topology,

we are able to fully evaluate the behavior of our self-parameter-tuning mechanism in TOSS.

Fig. 4.7, Fig. 4.8 and Fig. 4.9 illustrates the latency of the network-intensive application

(a.k.a., SOL) governed by TOSS and the default scheduler (i.e., the round-robin scheduler),

respectively. We conduct the experiments by submitting the topology multiple times to the

Storm cluster. We ignore the latency measurements in the �rst time window of 20 to 30

seconds due to the high latency caused by executors deployment and initialization. We refer

to such an initial interval as a cold start.

The initial constrain vector [α1, α2, ..., αm] is set to [0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1]. For

example, when α1 is set to 0.1, the maximal number of executors to be grouped within

assignment 1 is 10% of the total number of the executors.

Fig. 4.7 shows latency results of the TOSS and round-robin schedulers under the �rst

topology submission. We observe that the cold start phase lasts for approximately 50 seconds

57

for both TOSS and round-robin schedulers. During the cold start phase, the latency drops

dramatically. The executors are deployed and initialized during the cold start phase, after

which the average latency become stabilized. For example, after time 150 seconds, the latency

of the round-robin scheduler is settled down at around 11.6 ms, whereas the latency of our

TOSS stays at the level of 10.4 ms. Compared to the round-robin scheduler implemented in

the Storm cluster, TOSS noticeably reduces the average latency by 10.34%.

It is noteworthy that the initial constraint vector doesn't resemble the actual workload

condition of the network-sensitive topology. This problem can be solved by our self-tuning

mechanism (see also Section 4.2.2 for details). Fig. 4.8 reveals that after the parameter set

(i.e., initial constraint vector) is automatically tuned, the measured latency under the second

submission has been signi�cantly shortened. More speci�cally, the results in the second

experiment indicate that the self-tuning system in TOSS is capable to reduce the latency

from 11.6 ms to 10.1 ms, which represents a latency reduction of 12.93% compared to the

default round-robin scheduler. Fig. 4.9 demonstrates that after the �fth run, the average

latency of the Storm application managed by TOSS drops to 9.2 ms, which is 20.69% lower

than that of the existing round-robin scheduler.

4.3.3 Rolling WordCount topology

WordCount is a simple MapReduce application running on clusters [20]. The ap-

plication counts the number of occurrences of each word in a given input set on multiple

computing nodes, thereby largely boosting performance with parallelism. Di�erent from

the WordCount application on Hadoop clusters, we test a streaming version of the advanced

WordCount application referred to as Rolling WordCount in our experimental [29]. Di�erent

from the conventional WordCount, Rolling WordCount applies a sliding window to pick a

valid input range. Any text out of the window is considered as an expired input. Compared

with the simple WordCount, Rolling WordCount gains more performance bene�ts from data

58

0 5 10 15 20 25 30

Time(10s)

15

20

25

30

35

40

45

50

55

60

La
te

nc
y(

m
s)

Rolling word count topology - first round

Default
Toss

Figure 4.11: The throughput comparison between default scheduler and �rst TOSS run.

streaming platforms. We conduct a set of experiments using Rolling Word Count, the struc-

ture of which is a linear topology with one spout and three bolts. The spout is responsible

for originating a massive amount of text context by reading a large local text �le. The text

readers repeatedly feeds text input to a split bolt, which is charge of splitting each line into

words to be pushed into a rolling count bolt. The rolling count bolt increments counters

based on distinct input word tuples. Then, the count bolt utilizes the sliding window to �lter

results, passing all outputs to the last bolt. The last stage of the topology is a �le writer

bolt, which writes output data into a local �le.

The spout consists of four executors, whereas the split bolt and the count bolt each has

eight executors. We con�gure the initial constrain vector [α1, α2, ..., αm] as the one used in

the network-intensive topology (see Section 4.3.2. Additionally, we set the sliding window

size to one minute.

Fig. 4.11 and Fig. 4.12 shows the latency comparison between our TOSS and the existing

round-robin scheduler. After the cold start phase, the latency of the round-robin scheduler

stabilizes at approximately 21.95 ms. During the �rst submission, TOSS reduces the latency

59

0 5 10 15 20 25 30

Time(10s)

15

20

25

30

35

40

45

50

55

60

La
te

nc
y(

m
s)

Rolling word count topology - first round

Default
Toss

Figure 4.12: The throughput comparison between default scheduler and second TOSS run.

1 2 3
Submission

0

0.5

1

1.5

2

2.5

3

3.5

T
hr

ou
gh

pu
t(

m
es

sa
ge

s)

×105Overall throughput comparason for first, second and fifth submission

Figure 4.13: The throughput comparison between default scheduler and multiple runs TOSS.

60

of the round-robin scheduler by 8.5%, which is not as impressive as the performance gain

in the case of the network intensive topology (see Section 4.3.2). The rationale behind this

observation is that the initial submission with manually con�gured constraints shortens the

average latency by focusing on tight-binding components. The �rst submission emphasizes

on suppressing network tra�c overhead, which is not on par with the computing load in

the rolling WordCount topology. Nevertheless, TOSS successfully improves the streaming

performance in terms of lowering latency. In the subsequent submissions, TOSS is capa-

ble of forecasting workload and partitioning all the components into a reasonable number

of groups. Fig. 4.12 reveals that the performance is accelerated by tuning the parameter

sets to lower latency. The multiple consecutive submissions o�er further opportunities to

decrease latency and boost throughput. Fig. 4.13 shows that TOSS is able to boost the

Storm performance by raising throughput by 12.05% and 18.97% for the �rst and the second

submissions, respectively.

4.4 Discussions

The experimental results elaborated in Section 4.3 indicate that TOSS is conducive to

handling various topologies on a streaming data processing platform. Figs. 4.7, 4.8, 4.9,

4.11 and 4.12 illustrate that TOSS exhibits signi�cant performance advantages in terms of

lowering latency through an entire topology. In this section, we shed light on a few promising

ways of further optimizing the performance of Storm schedulers powered by TOSS.

In our study, we adopted the gradient descent technique to tune the parameter set. The

constrain vector [α1, α2, ..., αm] intuitively resembles computing workloads after a few tuning

processes are accomplished. Admittedly, the parameter tuning mechanism deserves further

improvements. A handful of alternative parameter-tuning approaches are likely outperform

the gradient descent method. For instance, Eiben and Smit proposed a conceptual framework

for the purpose of parameter tuning. The framework - built on a three-tier hierarchy - utilizes

an evolutionary algorithm to generate well-tuned parameter [21]. Nguyen et al. optimized

61

the arti�cial bee colony algorithm by applying a parameter tuning mechanism [4]. Arcuri

and Fraser performed the largest empirical analysis on parameter tuning for SBSE (i.e.,

Search-based software engineering). Although the existing parameter tuning strategies may

not perfectly cater to our TOSS scheduler, we are inspired by these strategies to take the

parameter tuning mechanism in TOSS to the next high level. The drawback of the existing

parameter tuning mechanisms lies in their incompetence in tuning automation. The goal

of parameter self-tuning is to enable schedulers to automatically con�gure constrain vectors

without a manual tuning procedure. Unfortunately, the gradient descent scheme depends on

parameter ξ to control tuning rate, which is not managed by the current tuning system. Such

a shortcoming can be resolved by replacing gradient descent with an advanced parameter

tuning techniques.

We intend to improve TOSS by further investigating the constrain vector [α1, α2, ..., αm],

which assists TOSS to partition executors into assignments. The parameter set - re�ecting

runtime workload, allows TOSS to balance computation cost among all the nodes in a cluster.

The self-tuning system calibrates workload discrepancy between actual workload and average

workload. The self-tuning mechanism is unable to change the size of parameter set. In our

study, the size of parameter setm leads to the total number of assignments. If the self-tuning

mechanism overlooks the importance of set size m, such a constant size may fail in giving rise

to optimal topology deployments in some cases. Concerning the �exibility of the self-tuning

mechanism, we seek to exploit novel ideas of dynamically adjusting size m for the constrain

vector in TOSS.

4.5 Summary

Storm is an emerging technology in the �eld of streaming data process. The wide range

of use cases motivate us to propose an e�cient scheduler for better performance. In the

storm part of the dissertation, �rstly, we introduced a background of data processing and

provided three motivations for better scheduling performance. Furthermore, we listed bunch

62

of related researches conducted by scholars. The followed sections show the challenge associ-

ated with existing scheduler. Then we presented the design, implementation and evaluation

of TOSS comparing to default round-robin scheduler. The gist of TOSS is to reduce the

latency by grouping the executors with tight bind executors and to balance workloads by

forecasting workload with self-tuned parameters. In the evaluation section 4.3, we conducted

real experiments in a Storm cluster using stream application such as SOL(network sensitive

benchmark) and rolling word count. Experiment results show that our TOSS can achieve

roughly 20% latency decrements after multiple rounds. Additionally, average throughput

can be boosted by around 24%. Moreover, we provide more room for further optimization

based on TOSS. We �rmly believe that the suggestions we purposed in Section 4.4 is able

to improve the e�ciency and �exibility.

63

Chapter 5

Conclusions and Future Work

In this dissertation, we have pro�led energy usage of four distinct setups on web service

clusters and proposed a new topology-based scheduler for Apache Storm clusters. In this

chapter, we make the conclusion of dissertation by illustrating our main contributions and

providing future works for extending our researches. Section 5.1 summaries all the main

contributions in our researches. In the next Section 5.2, we provide future visions about the

extensions and combinations of our past researches.

5.1 Main Contributions

As the IT world enters the era of data, the amount of data that's being created and

processed on a global level is becoming inconceivable. The amount of data leads to the

increasing demands of data center scale. While building up data centers, two main issues are

concerned: computation performance and energy e�ciency. The major goal of scaling data

center is to speed up the data process. Emerging technologies are applied to scale out data

center for high computation performance. Nevertheless, the increment of data center scale

reveals an critical issue: high energy cost. Maintaining low operational of big data centers

is becoming one primary challenges for building data centers. In order to address these two

major concerns, in this dissertation, we proposed two mechanisms to address energy cost

and performance issues respectively.

5.1.1 Energy Cost Pro�ling of Web-Service on Clusters

In the �rst part of our dissertation, we investigated the energy cost and computation

performance of various combinations among pc nodes and wimpy nodes. Wimpy node is an

64

outstanding technology which is in the position of trading part of computation power to low

energy cost. The major goal is to inspect the potentials of di�erent setups and to apply each

setup for di�erent situation. Four setups we investigated are listed as following:

� Homogeneous pc setup

� Homogeneous wimpy setup

� Pc web server and wimpy database server

� Wimpy web server and pc database server

Our experimental results revealed characteristics of all four setups. In our dissertation,

we provide ideas to adjust the composition of data cluster for di�erent primary goals. After

energy cost evaluation with TPC-W benchmark, we make the conclusions that comparing to

traditional nodes, the wimpy node owns the advantage in terms of energy consumption. On

the other side, traditional pc nodes dominate wimpy nodes for handling heavy computation

workloads. No matter how the data center is built, wimpy nodes are undoubtedly becoming

the performance bottleneck.

For heterogeneous setup investigation, two setups show contrary candidacy for building

an energy e�cient data center. The combination of pc web server and wimpy database server

is a competitive candidate, whereas the setup with wimpy web server and pc database server

provides the worst performance for both computation performance and energy consumption.

5.1.2 Topology-based Scheduling Policy for Apache Storm Cluster

Streaming data processing is bene�cial in most scenarios in people's daily lives. Apache

Storm is an outstanding tool with excellent performance and fault tolerance. The second

part of dissertation introduces a brand new scheduling policy for Apache Storm Cluster

by reducing communication cost and balancing the workloads with a self-tuning parameter

mechanism.

65

Our scheduler(Short as TOSS) algorithm contains two major phases: partition and allo-

cation. The �rst phase is responsible to split the topology structure into di�erent assignments

by de�ning the groups with potential communications. A set of parameters [α1, α2, ..., αm] is

utilized by partition phase for limiting the maximum number of executors which can be al-

located in each assignment. The parameter constrains are initialized by developers and later

tuned by self-tuning system. The purpose of self tuning is to re�ect the actual workloads

for topology. In the second phase, the allocation algorithm collects all runtime workloads

from nodes in the cluster. Based on the running workloads, TOSS picks the set of nodes

with relatively low workloads and allocate assignments to nodes one by one. The allocation

phase bene�ts the workload balance in the Storm clusters.

We have evaluated our implemented scheduling policy with two storm benchmark: net-

work sensitive topology and rolling word count topology. Our experimental results show

that our scheduler TOSS achieves signi�cant performance improvement with lower latency

and higher throughput comparing to default round-robin scheduler.

5.2 Future Work

After addressing the challenges on both hardware and software levels, we came across

several interesting problems that are not solved yet. In this section, we provide some open

issues which require further investigations. Furthermore, we present some ideas that combine

and extend our researches for future work.

5.2.1 Integrate Scheduler on Energy E�cient Clusters

In the dissertation, we investigated researches in energy e�ciency cluster setup and

topology based scheduler on hardware and software level respectively. The purpose of the

researches are focusing on energy e�ciency and computation performance. There is strong

possibility that integrates these two ideas into one data cluster. The drawback of our energy

66

pro�ling research is that we stand in the position of trading part of computation perfor-

mance for lower energy consumption. This disadvantage can be o�set with the integration

of scheduler, since our TOSS scheduler is capable to improve computation performance. The

combination of cluster setup choices and scheduler is able to reduce the power consumption

without sacri�cing computation performance.

However, this simple integration ignores the di�erent complexities of two clusters, for the

simple reason that web service applies three-tier architecture, while TOSS is implemented in

Storm cluster with master-slaves structure. The incoherence can be corrected by adjusting

two scheduler on both web servers and database servers. By following the same scheduling

policy, the master node is able to dispatch working executors for web server groups and

database server groups separately. Additionally, a request balance layer may be required for

balancing request sent from client to web servers. The power consumption produced by the

cluster with balanced workloads is higher than the energy cost consumed by the cluster with

overloaded nodes.

5.2.2 Machine Learning Mechanism

Recall that TOSS applies a self-tuning mechanism by exploiting gradient descent method-

ology, the gist of tuning system is to explore the precise parameter sets which re�ects the

actual workloads in the cluster. Essentially, TOSS incorporates the self-tuning mechanism

to predict the workloads about next topology for load balancing.In order to achieve workload

prediction, some other machine learning methodologies are able to improve self-tuning per-

formance. There are plenty of existing machine learning algorithms to acquire more precious

parameters with data collected from last assignment allocations. We �rmly believe that

the performance and e�ciency of scheduler can be further improved by employing machine

learning technologies to analyze topology structure.

Moreover, machine learning methods can be applied in the cluster setup building as well.

The purpose of cluster energy pro�ling is to seek corresponding cluster setups for di�erent

67

workloads with better balance between performance and energy cost. We �rmly believe

that an e�ective workload analysis tool is able to seek a proper cluster setup. Machine

learning algorithms facilitate us to continuously analyze workloads and predict the matched

cluster setup. It is worthwhile to split a data center into small groups of clusters with distinct

setups. For instance, a data center can be split into two camps: a micro homogeneous wimpy

cluster, and a micro heterogeneous pc web and wimpy database cluster. An additional layer

is responsible to apply machine learning algorithms and to feed requests into corresponding

micro clusters. By doing so, all micro clusters handle di�erent groups of requests with

distinct characteristics. Therefore, the cluster is able to conserve part of energy cost, while

the performance is kept in a relatively high level.

5.3 Conclusion

The dissertation has presented energy usage pro�ling and topology based scheduler for

data centers. The experimental results show the improvement provided by our approaches.

The �rst part of the dissertation provides four distinct cluster setup to match di�erent cluster

requirements. By following the energy pro�ling cost, we moved our research to the infrastruc-

ture layer and proposed a topology based scheduling policy. TOSS scheduler owns advantages

with lower latency and higher throughput comparing to default round-robin scheduler. In

particular, the self-tuning parameter system we implemented keeps improving performance

by predicting actual workloads for submitted topology. Moreover, based on our investiga-

tions, future works is able to extend our existing researches by combining advantages of

the two researches. In a scenario where the cluster requires both low energy consumption

and relatively high computation performance, the cluster designer is able to adjust TOSS

scheduling policy for task scheduling, while the cluster setup researches helps designers to

pick a matched cluster setup for di�erent workloads. Furthermore, machine learning algo-

rithms facilitates developers to improve e�ciency and e�ectiveness of data process. There

68

are still some rooms to further improve the decrements of energy cost and increment of

computation performance.

69

References

[1] Amazon 2000. http://www.fool.com/news/2000/wmt001127.htm.

[2] Tpc-w benckmark speci�cation. http://www.tpc.org/tpcw/spec/tpcw_v1.8.pdf.

[3] 20th International Parallel and Distributed Processing Symposium (IPDPS 2006), Pro-

ceedings, 25-29 April 2006, Rhodes Island, Greece. IEEE, 2006.

[4] B. Akay and D. Karaboga. Parameter tuning for the arti�cial bee colony algorithm.

ICCCI, 2009:608�619, 2009.

[5] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services. Springer, 2004.

[6] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Vasudevan.

FAWN: a fast array of wimpy nodes. In Proceedings of the 22nd ACM Symposium

on Operating Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October

11-14, 2009, pages 1�14, 2009.

[7] L. Aniello, R. Baldoni, and L. Querzoni. Adaptive online scheduling in storm. In

Proceedings of the 7th ACM international conference on Distributed event-based systems,

pages 207�218. ACM, 2013.

[8] Apache. Storm github repository, 2015.

[9] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Applying new

scheduling theory to static priority pre-emptive scheduling. Software Engineering Jour-

nal, 8(5):284�292, 1993.

[10] G. Bell, T. Hey, and A. Szalay. Beyond the data deluge. Science, 323(5919):1297�1298,

2009.

70

[11] A. Brown, S. Johnston, and K. Kelly. Using service-oriented architecture and

component-based development to build web service applications. Rational Software

Corporation, 2002.

[12] R. Brown et al. Report to congress on server and data center energy e�ciency: Public

law 109-431. Lawrence Berkeley National Laboratory, 2008.

[13] R. E. Bryant. Graph-based algorithms for boolean function manipulation. Computers,

IEEE Transactions on, 100(8):677�691, 1986.

[14] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache

�ink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering, 36(4), 2015.

[15] A. M. Caul�eld, L. M. Grupp, and S. Swanson. Gordon: using �ash memory to build

fast, power-e�cient clusters for data-intensive applications. In Proceedings of the 14th

International Conference on Architectural Support for Programming Languages and Op-

erating Systems, ASPLOS 2009, Washington, DC, USA, March 7-11, 2009, pages 217�

228, 2009.

[16] G. Chen, K. Malkowski, M. T. Kandemir, and P. Raghavan. Reducing power with per-

formance constraints for parallel sparse applications. In 19th International Parallel and

Distributed Processing Symposium (IPDPS 2005), CD-ROM / Abstracts Proceedings,

4-8 April 2005, Denver, CO, USA, 2005.

[17] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, K. Olukotun, and A. Y. Ng. Map-

reduce for machine learning on multicore. In Advances in neural information processing

systems, pages 281�288, 2007.

[18] B. Chun, G. Iannaccone, G. Iannaccone, R. H. Katz, G. Lee, and L. Niccolini. An

energy case for hybrid datacenters. Operating Systems Review, 44(1):76�80, 2010.

71

[19] B. Cui, J. Jiang, Q. Huang, Y. Xu, Y. Gui, and W. Zhang. Pos: A high-level sys-

tem to simplify real-time stream application development on storm. Data Science and

Engineering, 1(1):41�50, 2016.

[20] J. Dean and S. Ghemawat. Mapreduce: simpli�ed data processing on large clusters.

Communications of the ACM, 51(1):107�113, 2008.

[21] A. E. Eiben and S. K. Smit. Parameter tuning for con�guring and analyzing evolutionary

algorithms. Swarm and Evolutionary Computation, 1(1):19�31, 2011.

[22] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox. Twister:

a runtime for iterative mapreduce. In Proceedings of the 19th ACM international sym-

posium on high performance distributed computing, pages 810�818. ACM, 2010.

[23] S. Elnikety, E. M. Nahum, J. M. Tracey, and W. Zwaenepoel. A method for transparent

admission control and request scheduling in e-commerce web sites. In Proceedings of the

13th international conference on World Wide Web, WWW 2004, New York, NY, USA,

May 17-20, 2004, pages 276�286, 2004.

[24] W. Feng and K. W. Cameron. The green500 list: Encouraging sustainable supercom-

puting. IEEE Computer, 40(12):50�55, 2007.

[25] R. Filgueira, R. F. da Silva, A. Krause, E. Deelman, and M. Atkinson. Asterism:

Pegasus and dispel4py hybrid work�ows for data-intensive science. In Proceedings of

the 7th International Workshop on Data-Intensive Computing in the Cloud, pages 1�8.

IEEE Press, 2016.

[26] M. Garofalakis, J. Gehrke, and R. Rastogi. Data Stream Management: Processing

High-Speed Data Streams. Springer, 2016.

72

[27] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: a mapreduce

framework on graphics processors. In Proceedings of the 17th international conference

on Parallel architectures and compilation techniques, pages 260�269. ACM, 2008.

[28] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free coordination

for internet-scale systems. In USENIX annual technical conference, volume 8, page 9.

Boston, MA, USA, 2010.

[29] Intel-hadoop. Storm benchmark, 2016.

[30] D. Jackson, Q. Snell, and M. Clement. Core algorithms of the maui scheduler. In

Workshop on Job Scheduling Strategies for Parallel Processing, pages 87�102. Springer,

2001.

[31] M. Jazayeri. Some trends in web application development. In International Conference

on Software Engineering, ISCE 2007, Workshop on the Future of Software Engineering,

FOSE 2007, May 23-25, 2007, Minneapolis, MN, USA, pages 199�213, 2007.

[32] P. Karunaratne, S. Karunasekera, and A. Harwood. Distributed stream clustering using

micro-clusters on apache storm. Journal of Parallel and Distributed Computing, 108:74�

84, 2017.

[33] A. Kaur and A. Kaur. Energy management models for e�cient cloud environment: A

review. International Journal of Advanced Research in Computer Science, 6(6), 2015.

[34] E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Nikolaou, Ö. Özçep, C. Svingos,

D. Zheleznyakov, S. Brandt, I. Horrocks, et al. Towards analytics aware ontology based

access to static and streaming data. In International Semantic Web Conference, pages

344�362. Springer, 2016.

[35] J. Koomey. Growth in data center electricity use 2005 to 2010. A report by Analytical

Press, completed at the request of The New York Times, 2011.

73

[36] D. Kumar, J. C. Bezdek, S. Rajasegarar, M. Palaniswami, C. Leckie, J. Chan, and

J. Gubbi. Adaptive cluster tendency visualization and anomaly detection for streaming

data. ACM Transactions on Knowledge Discovery from Data (TKDD), 11(2):24, 2016.

[37] W. Lang, J. M. Patel, and S. Shankar. Wimpy node clusters: what about non-wimpy

workloads? In Proceedings of the Sixth International Workshop on Data Management

on New Hardware, DaMoN 2010, Indianapolis, IN, USA, June 7, 2010, pages 47�55,

2010.

[38] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, and Y. M. Teo. A performance study of

big data on small nodes. PVLDB, 8(7):762�773, 2015.

[39] M. Malik and H. Homayoun. Big data on low power cores: Are low power embedded

processors a good �t for the big data workloads? In 33rd IEEE International Conference

on Computer Design, ICCD 2015, New York City, NY, USA, October 18-21, 2015, pages

379�382, 2015.

[40] M. A. Manzoor and Y. Morgan. Network intrusion detection system using apache storm.

Probe, 4107:4166, 2017.

[41] E. E. Marinelli. Hyrax: cloud computing on mobile devices using mapreduce. Technical

report, Carnegie-mellon univ Pittsburgh PA school of computer science, 2009.

[42] A. Matsunaga, M. Tsugawa, and J. Fortes. Cloudblast: Combining mapreduce and

virtualization on distributed resources for bioinformatics applications. In eScience, 2008.

eScience'08. IEEE Fourth International Conference on, pages 222�229. IEEE, 2008.

[43] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky,

K. Garimella, D. Altshuler, S. Gabriel, M. Daly, et al. The genome analysis toolkit:

a mapreduce framework for analyzing next-generation dna sequencing data. Genome

research, 20(9):1297�1303, 2010.

74

[44] D. A. Menascé. TPC-W: A benchmark for e-commerce. IEEE Internet Computing,

6(3):83�87, 2002.

[45] G. D. F. Morales and A. Bifet. Samoa: scalable advanced massive online analysis.

Journal of Machine Learning Research, 16(1):149�153, 2015.

[46] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied linear statistical

models, volume 4. Irwin Chicago, 1996.

[47] H. R. Patterson III, Z. Wang, and M. L. Huang. Data reconstruction in distributed data

storage system with key-based addressing, Feb. 25 2016. US Patent 20,160,055,054.

[48] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell. R-storm: Resource-aware

scheduling in storm. In Proceedings of the 16th Annual Middleware Conference, pages

149�161. ACM, 2015.

[49] S. Ran. A model for web services discovery with qos. ACM Sigecom exchanges, 4(1):1�

10, 2003.

[50] R. Ranjan. Streaming big data processing in datacenter clouds. IEEE Cloud Computing,

1(1):78�83, 2014.

[51] M. Rychly et al. Scheduling decisions in stream processing on heterogeneous clusters. In

Complex, Intelligent and Software Intensive Systems (CISIS), 2014 Eighth International

Conference on, pages 614�619. IEEE, 2014.

[52] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng. Hama: An e�cient

matrix computation with the mapreduce framework. In Cloud Computing Technology

and Science (CloudCom), 2010 IEEE Second International Conference on, pages 721�

726. IEEE, 2010.

[53] A. Shaout and P. McAuli�e. Job scheduling using fuzzy load balancing in distributed

system. Electronics Letters, 34(20):1983�1985, 1998.

75

[54] C.-K. Shieh, S.-W. Huang, L.-D. Sun, M.-F. Tsai, and N. Chilamkurti. A topology-based

scaling mechanism for apache storm. International Journal of Network Management,

27(3), 2017.

[55] R. Tarjan. Depth-�rst search and linear graph algorithms. SIAM journal on computing,

1(2):146�160, 1972.

[56] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,

K. Gade, M. Fu, J. Donham, et al. Storm@ twitter. In Proceedings of the 2014 ACM

SIGMOD international conference on Management of data, pages 147�156. ACM, 2014.

[57] G. Valentini, W. Lassonde, S. U. Khan, N. Min-Allah, S. A. Madani, J. Li, L. Zhang,

L. Wang, N. Ghani, J. Kolodziej, H. Li, A. Y. Zomaya, C. Xu, P. Balaji, A. Vishnu,

F. Pinel, J. E. Pecero, D. Kliazovich, and P. Bouvry. An overview of energy e�ciency

techniques in cluster computing systems. Cluster Computing, 16(1):3�15, 2013.

[58] M. Vanni, S. E. Kase, S. Karunasekara, L. Falzon, and A. Harwood. Rapid: real-

time analytics platform for interactive data-mining in a decision support scenario. In

SPIE Defense+ Security, pages 102070L�102070L. International Society for Optics and

Photonics, 2017.

[59] V. Vasudevan, D. G. Andersen, M. Kaminsky, L. Tan, J. Franklin, and I. Moraru.

Energy-e�cient cluster computing with FAWN: workloads and implications. In Pro-

ceedings of the 1st International Conference on Energy-E�cient Computing and Net-

working, e-Energy 2010, Passau, Germany, April 13-15, 2010, pages 195�204, 2010.

[60] A. Vlavianos, M. Iliofotou, and M. Faloutsos. Bitos: Enhancing bittorrent for supporting

streaming applications. In INFOCOM 2006. 25th IEEE International Conference on

Computer Communications. Proceedings, pages 1�6. IEEE, 2006.

76

[61] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang. Maptask scheduling in mapreduce

with data locality: Throughput and heavy-tra�c optimality. IEEE/ACM Transactions

on Networking, 24(1):190�203, 2016.

[62] M. Wiederstein and M. J. Sippl. Prosa-web: interactive web service for the recog-

nition of errors in three-dimensional structures of proteins. Nucleic acids research,

35(suppl_2):W407�W410, 2007.

[63] J. Xu, Z. Chen, J. Tang, and S. Su. T-storm: Tra�c-aware online scheduling in storm.

In Distributed Computing Systems (ICDCS), 2014 IEEE 34th International Conference

on, pages 535�544. IEEE, 2014.

[64] Yahoo. Storm performance test, 2015.

[65] N. Yigitbasi, K. Datta, N. Jain, and T. Willke. Energy e�cient scheduling of mapreduce

workloads on heterogeneous clusters. In Green Computing Middleware on Proceedings

of the 2nd International Workshop, page 1. ACM, 2011.

[66] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica.

Job scheduling for multi-user mapreduce clusters. Technical report, Technical Report

UCB/EECS-2009-55, EECS Department, University of California, Berkeley, 2009.

[67] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Delay

scheduling: a simple technique for achieving locality and fairness in cluster scheduling.

In Proceedings of the 5th European conference on Computer systems, pages 265�278.

ACM, 2010.

[68] Q.-Y. Zhou and U. Neumann. A streaming framework for seamless building reconstruc-

tion from large-scale aerial lidar data. In Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, pages 2759�2766. IEEE, 2009.

77

[69] I. Zliobaite and B. Gabrys. Adaptive preprocessing for streaming data. IEEE transac-

tions on knowledge and data Engineering, 26(2):309�321, 2014.

78

