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 Longleaf ecosystems have severely decreased in total area since pre-European 
settlement. These dramatic losses are the principle reason for the listing of many plants 
and animals as endangered, and have been the driving factor for recent longleaf 
ecosystem restoration efforts. While studies have documented the regional decline of 
longleaf ecosystems, they provide little information on fine scale fragmentation patterns 
and current locations. This lack of information often limits the efficacy of longleaf 
ecosystem management, monitoring, and restoration.  
 To aid longleaf restoration efforts we developed a series of fine grain (30 m) 
ecosystem probability distributions using multitemporal Landsat enhanced thematic 
mapper plus imagery, digital elevation models, field data, ancillary data sets, polytomous 
logistic regression, and a hierarchical classification scheme. Using our ecosystem 
 v
probability distributions, resource managers can identify the most probable locations for 
longleaf ecosystems, locate potential restoration sites, prioritize restoration efforts, and 
estimate ecosystem area. 
 vi
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INTRODUCTION 
Currently, longleaf ecosystems are estimated to occupy 1.2 X 10
6
 ha across the 
Southeastern United States, a mere 5% of the 24.3 X 10
6
 ha pre-European settlement 
estimate (Outcalt and Sheffield, 1996). This dramatic loss of habitat has had a substantial 
impact on numerous plants and animals, and is the primary reason that many 
Southeastern species have been listed as threatened or endangered (Tuldge, 1999).  Due 
to this loss of habitat, there is a strong need for the conservation and restoration of these 
critically endangered ecosystems (Noss et al., 1995).  
While conservation and restoration efforts have begun, they have been limited, in 
part, by the lack of information depicting the current location of these ecosystems.   
Long-term studies such as the Forest Inventory Analysis have been useful in identifying 
trends in longleaf ecosystem decline (Kelly and Bechtold, 1990; Outcalt and Sheffield, 
1996), but are ill-suited to provide meaningful information at fine spatial scales. Due to 
the coarse nature of these data sets (e.g., 20 km grain), organizations have had to take a 
broad based approach towards longleaf ecosystem management, monitoring, and 
restoration, often limiting the efficacy of their efforts. To become more effective, these 
organizations need accurate, fine scale data sets that identify forested ecosystem types 
and depict the current location and distribution of longleaf ecosystems. 
Remotely sensed data (e.g., satellite imagery and digital elevation models) 
provide a unique opportunity to generate such a data set by linking fine grain (30 m) 
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spectral information with spatially explicit examples of forested ecosystem types. Due to 
the amount of spectral overlap among coniferous ecosystems in the Southeast, though, 
few analysts have successfully differentiated longleaf ecosystems from other coniferous 
ecosystems using common classification (e.g., maximum likelihood classifiers, 
clustering, classification trees, and artificial neural networks) and radiometric 
normalization (e.g., at-sensor reflectance, dark object subtraction, and ridge regression) 
techniques. This suggests either one of two scenarios: there are no differences (spectrally 
or in elevation) between longleaf and other coniferous ecosystems, or current 
methodologies may be too restrictive and/or inappropriate to depict the differences 
between coniferous ecosystems in the Southeast. Given the visual and structural 
differences of longleaf ecosystems (e.g., relatively sparse overstories, and diverse 
understories, composed of many grasses and forbs), we believed the latter scenario to be 
the case. Therefore, we adopted a probabilistic classification procedure (polytomous 
logistic regression), created a new radiometric normalization procedure, and implemented 
these procedures with a hierarchical classification scheme to differentiate between 
forested ecosystems types.  
While these procedures theoretically provided the flexibility and accuracy needed 
to distinguish among forested ecosystems, they have not been thoroughly tested against 
commonly used classification and normalization techniques in remote sensing. Therefore, 
we compared each procedure against other commonly used classification and 
normalization procedures. To present our findings in a clear and concise manner we 
separated each comparison into distinct chapters. Chapter 1 directly compares 
polytomous logistic regression (PLR) with a maximum likelihood classifier, also known 
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as discriminant analysis (i.e., linear and quadratic discriminant functions), to determine if 
there are any benefits to adopting the PLR process. Chapter 2 directly compares our 
radiometric normalization procedure, Aggregate No Change Regression, with 4 other 
radiometric normalization procedures in terms of bringing Landsat enhanced thematic 
mapper plus imagery to a common radiometric scale. Finally, in Chapter 3, we introduce 
our hierarchical classification scheme and describe how the procedures introduced in 
Chapters 1 and 2 were used to predict the distributions of longleaf ecosystems. Each 
chapter can be read independently and is styled in publication format according to the 
editor?s guidelines of Photogrammetric Engineering and Remote Sensing. 
Our findings indicate that, on average, longleaf ecosystems are spectrally different 
than other forested ecosystems. Furthermore, by incorporating our newly developed 
radiometric normalization technique and adopting PLR in a hierarchical framework, these 
differences can be used to accurately and precisely predict the probability distribution of 
longleaf and other forested ecosystems, thereby providing resource managers with the 
information needed to begin addressing fine scale questions pertaining to longleaf 
ecosystem management, monitoring, and restoration.
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CHAPTER 1 
 
COMPARING POLYTOMOUS LOGISTIC REGRESSION AND DISCRIMINANT 
ANALYSIS: A REMOTE SENSING PERSPECTIVE 
 
ABSTRACT 
Maximum likelihood classification, also known as discriminant analysis, is a 
popular supervised technique used by remote sensing analysts. While this classification 
procedure has been embraced by the remote sensing community, it has some distinct 
drawbacks such as being limited to continuous data, the assumptions of multivariate 
normality and equal covariance, limited modeling diagnostics, and few techniques that 
address model parsimony.  
An alternative classification approach, which is less restrictive and has been 
successfully used in other fields to distinguish among class types, is called polytomous 
logistic regression (PLR).  To assess the utility of PLR in image classification, we 
compared and contrasted PLR with the traditional maximum likelihood procedure (using 
linear and quadratic discriminant functions).  Our findings indicate PLR is a flexible 
alternative to the traditional maximum likelihood classification.  
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INTRODUCTION 
 Remote sensing analysts commonly use a maximum likelihood classification 
technique to perform supervised classifications (Lillesand and Kiefer, 1994; Erdas, 1997; 
Jensen, 2000).  This technique, also referred to as dicriminant analysis in the statistical 
literature (Press and Wilson, 1978; Johnson and Wichern, 2002), distinguishes among 
classes by estimating the distance between each class, using either a linear or a quadratic 
discriminant function, for a given set of explanatory variables (Erdas, 1997; Johnson and 
Wichern, 2002; Metternicht, 2003).  From these distance measures, analysts either create 
a hard classification (i.e., maximum likelihood classification) by generating rules that 
allocate class types to new observations based on minimizing class distance or 
maximizing posterior probability  (Jensen, 1986; Johnson and Wichern, 2002), or by 
incorporating posterior probabilities into a fuzzy classification (Foody, 1996; Benz et al., 
2004; Metternicht, 2003).  Discriminant analysis, though, assumes multivariate normality 
and equal covariance for linear dicriminant functions, and multivariate normality for 
quadratic functions.  As these assumptions are often difficult to satisfy (Press and Wilson, 
1971; Foody, 1996), discriminant analysis tends to overestimate the magnitude of 
association among classes (Halpern et al., 1971; Press and Wilson, 1978; Hosmer et al, 
1983; Hosmer and Lemeshow, 1989) and produces misleading posterior probabilities 
(Press and Wilson, 1978; Hosmer and Lemeshow, 2000; Johnson and Wichern, 2002).   
To circumvent these issues, analysts have employed a number of different 
techniques ranging from ignoring the statistical assumptions of discriminant analysis and 
performing a maximum likelihood classification (Ram?rez-Garc?a et al., 1998; Keuchel et 
al., 2003; Galv?o et al, 2005) to using alternative procedures that do not rely on the 
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assumption of multivariate normality (Yoshida and Omatu, 1994; Gopal and Woodcock, 
1996; Brown de Colstoun et al., 2003; Pal and Mather, 2003).  The accuracy of their 
classification is then assessed using a different analysis (e.g., class proportions and/or a 
kappa statistic), which compares the number of times classes were correctly identified to 
the number of times they were misclassified (Foody, 2002).  Assessing class accuracy 
using class proportions and kappa statistics (Foody, 2002; Agresti, 2002) assumes a 
multinomial distribution and large sample normality, respectively, (Agresti, 2002) which 
are typically easier to satisfy.   
An alternative classification technique, which assumes a multinomial distribution 
and large sample normality, is polytomous logistic regression (PLR).  This technique has 
been successfully used in numerous other fields including geography (Wrigley, 1985), 
engineering (Hasegawa and Kurita, 2002), biological and molecular sciences (Bailey et 
al., 2003), education (Peng and Nichols, 2003), and environmental sciences (Mahopatra 
and Kant, 2005).  Some of the benefits of using a PLR classification include the ability to 
use probabilistic classifications, it has relatively few statistical assumptions, the ability to 
use both continuous and categorical data as explanatory variables, and it focuses on 
directly modeling class probabilities (Agresti, 2002).  Using PLR, hard classifications can 
be generated by setting probability thresholds ranging from identifying minimum or 
maximum probabilities for each class to using a maximum likelihood allocation rule 
(MLAR) for each observation (i.e., the same allocation rule used in discriminant 
analysis).   
PLR hard classifications that use a MLAR, however, may not always provide 
good separation among classes when there is substantial overlap among explanatory 
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variables and can bias class area estimates.  For example, consider the hypothetical 
probability distribution of 5 class types illustrated in Figure 1.  In this scenario, using a 
MLAR (represented by the dashed lines) to classify each observation results in 
substantial misclassification (misclassification rate > 25%) between the following 
classes: Water Deciduous, Deciduous and Evergreen, Evergreen and Field, and Field and 
City.  Moreover, class area estimates, which are calculated by summing the multiple of 
the number of observations allocated to each class (using a MLAR) by the area of each 
observation, are substantially biased because misclassification errors are far from 
symmetric for the majority of class comparisons.  Using class probabilities, however, 
increases the ability to distinguish among class types at different ranges of the 
explanatory variable.  In addition, unbiased estimates of class area can be calculated by 
weighting the area of each observation by the probability of each class and then summing 
the weighted area estimates by class for all observations.     
Many have made the argument that hard classifications do not always adequately 
describe class transitions (Foody, 1996; Benz et al., 2004; Metternicht, 2003).  To address 
this issue they have incorporated posterior probabilities, calculated from the discriminant 
analysis procedure, into their classification.  These probabilities, however, are biased 
when statistical assumptions are not met (Hosmer and Lemeshow, 2000; Johnson and 
Wichern, 2002).  In contrast, the PLR method does not have the same restrictive 
assumptions as discriminant analysis and directly models class probabilities, potentially 
providing analysts with a more accurate estimate of class probabilities.   
To illustrate the difference between posterior probabilities of discriminant 
analysis and PLR probabilities, it is useful to look at how each method derives these 
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estimates.  In discriminant analysis, class probabilities are indirectly calculated based on 
class distance measurements and the assumption that each class has a multivariate normal 
distribution.  Maholanobis distances (MD), quadratic discriminant score (QDS), and 
posterior probabilities (PP) are calculated as follows: 
    ()( ) p1,..., jn        1,...,i          )(MD
i
==?
?
?==
?
xxSxx
1
ij
iD                                 (1) 
 
() ()()  
,...,
        lnlnQDS
class jprior for p
nj
piD
j
jjijjijj
=
=
+?
?
???==
?
1
2
1
xxSxx
2
1
S
1
    (2) 
 
()       
)(
2
1
exp
)(
2
1
exp
|
1
?
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
=
j
i
j
j
iD
iD
ijPP                                                          (3)  
where x
i
 and x  are the observed vector and mean vector, respectively, and S and S
j
 are 
the pooled sampled covariance matrix and the sample covariances, respectively (Johnson 
and Wichern, 2002).   
The PLR method, however, directly estimates class probabilities and assumes that 
multi-category responses have a multinomial distribution with asymptotic errors around 
the linear form of the natural log transformation of class odds (logits).  Estimated class 
(response) probabilities {?
j
(x)} are determined by manipulating baseline category logits 
as follows: 
given that 
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Where ?
j
(x) is the mean probability of group j, with class means and variances equal to 
n?
j
 and n?
j
(1-?
j
), respectively (Agresti, 2002).  Maximum likelihood estimates of beta 
values are determined in an iterative fashion, typically using the Newton-Raphson or 
Fisher scoring methods, and the standard errors for each beta are based on profile 
likelihood functions or asymptotic normality (Agresti, 1990).    
While the PLR method has a number of benefits over the classical supervised 
approach, there are some drawbacks.  The first drawback deals with the efficiency of the 
PLR method when the multivariate normality assumption holds (Bull and Donner, 1987).  
Multivariate normality, however, rarely holds in remote sensing (Foody, 1996).  
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Secondly, PLR cannot obtain a maximum likelihood estimate when there is no overlap in 
class explanatory values.  While an unsolvable maximum likelihood estimate may be 
troubling in terms of mathematic complexity and model fit estimates (Agresti, 2002), 
viewed from a classification perspective this situation means that some of the class types 
can be separated from the rest of the class types with 100% accuracy given a set of rules.  
In this situation, a probabilistic classification is not required.  Instead, class types can be 
assigned using means and/or Mahalanobis distance.  For classes that do have overlap in 
the explanatory values, a maximum likelihood estimate can be solved and a probabilistic 
classification can be generated.  
From a theoretical standpoint, PLR is a very robust classification technique that 
should provide a better depiction of class distributions when compared with discrimant 
analysis.  However, few have directly compared these techniques (Bull and Donner, 
1987; Hossain et al., 2002) and to our knowledge, no one has applied PLR in a remote 
sensing framework. Therefore, we compared and contrasted the two techniques from the 
standpoint of a hard classification (using a MLAR) and a probabilistic classification. We 
then further demonstrate the utility and flexibility of PLR using an example of 3 land 
cover types that share a significant portion of spectral space.      
METHODS 
To contrast these two classification techniques, we compared hard classifications 
generated by the PLR method using a MLAR, with hard classifications generated by both 
linear and quadratic discrimant functions, for 15 different Landsat enhanced thematic 
mapper plus (ETM+) scenes.  Landsat ETM+ scenes were rectified using Multi-Resource 
Land Characteristics Consortium data processing level 1t (NASA, 2005) procedures.  
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Class types consisted of generalized National Land-Cover Database categories (Table 1; 
after Homer et. al., 2004) and temporal features (i.e. clouds, burnt areas, shadows, and 
smoke) and were visually interpreted at the spatial scale of one ETM+ pixel using ETM+ 
imagery and digital ortho quarter quads.   
To maintain consistency across the study area, one image interpreter identified all 
class types. Classification errors potentially caused by image acquisition dates 
representing different seasons were accounted for by randomly selecting 1 of 3 
phonologies for each scene comparison; leaf-off winter season, leaf-on spring growing 
season, leaf-on fall season (Figure 2; Table 2).  Digital number (DN) values occurring at 
the same spatial location as image interpreted samples were extracted on a nearest pixel 
basis, by band, using the sample command in Environmental Systems Research 
Institute?s (ESRI) Spatial Analyst extension (ESRI, 2005).  Samples were then randomly 
partitioned into a training (~ 70% of the data for each scene) and validation (~ 30% of the 
data for each scene) data set and imported into Statistical Analysis Software (SAS) 
version 8.2 to perform all analyses (Discriminant and Logistic procedures were used to 
perform the maximum likelihood classification and PLR classifications, respectively).  
Total sample size, by class and scene, are listed in Table 3.  
In studies that have contrasted PLR and discrimant analysis (Bull and Donner, 
1987; Hossain et al., 2002), only 3 classes were used to compare the two methods.  In 
remote sensing, however, there are often many more than 3 classes.  To determine 
whether the number of classes had an appreciable effect on the accuracy of the hard 
classification method, as many as 10 class types were sampled from some scenes, while 
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other scenes had as few as 4 class types sampled.  In all, 10,350 image-interpreted 
samples were collected across 15 different scenes.    
Validation accuracies were used to estimate the level of agreement between 
observed and predicted classes using kappa statistics (Foody, 2002; Erdas, 1997; Agresti, 
1990).  Each classification method?s mean kappa estimate and corresponding lower and 
upper kappa confidence limits were compared on a scene-by-scene basis to determine if 
the number of classes had an appreciable effect on the accuracy of a particular 
classification method.  To test general accuracy trends, we compared mean estimates of 
kappa for all scenes among all classification methods using a one-way nonparametric 
analysis of variance.    
In situations where there was complete spectral separation among some of the 
classes, the logistic procedure was allowed to continue using the last maximum 
likelihood iteration to determine fit statistics.  While fit statistics in these situations may 
be misleading due to an unsolvable maximum likelihood estimate, predicted class types, 
based on probabilities and a MLAR, can still be used to compare the class accuracy of the 
two methods.   
After comparing the classification methods using a hard classification, the PLR 
procedure was performed again for a randomly chosen scene (path/row 21/37) and the 
classes Evergreen, Deciduous, and Wetland to develop and interpret a parsimonious 
probabilistic classification.  Training data for this scene were used to generate a suite of 
classification models, from which the best fitting and most parsimonious model was 
selected using Akaike?s Information Criterion (AIC; Akaike, 1973).  The top ranked 
model was then used to perform a probabilistic classification for that scene.  To validate 
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our probabilistic classification, we compared the summed class frequency estimates 
(lower and upper 95% confidence limits) against observed class frequencies using the 
validation data set for that scene. Class frequency confidence intervals were calculated 
for each observation using the delta method (Agresti, 1990; Agresti, 2002). Under this 
scenario, a PLR model that contains a predefined proportion (i.e., 95%) of observed class 
frequencies within its predefined confidence interval (i.e, 95% confidence interval), 
suggests a good model fit and that the model can be generalized to the rest of the 
population.   
RESULTS 
Hard Classification 
 Kappa estimates for the PLR hard classifications and Quadratic maximum 
likelihood classification were significantly larger than kappa estimates for linear 
maximum likelihood classification for scenes 19/38 and 20/38 (Figure 3).  Additionally, 
the PLR hard classifications had a significantly larger kappa value when compared to the 
linear maximum likelihood classification method for scenes 20/37 and 20/39.  There were 
no significant differences in mean kappa estimates, however, between PLR hard 
classifications and quadratic maximum likelihood classification.  These results suggest 
that the number of classes and the sample size of each comparison did not have an 
appreciable effect on the accuracy of any particular classification method (Table 2; 
Figure 3).  In addition, there were no significant differences in hard classification 
accuracy trends among the different classification methods (all method comparisons: 
Kruskal-Wallace X
2
df = 2
 = 1.6935; p-value = 0.43, PLR vs Linear maximum likelihood 
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classification: Kruskal-Wallis X
2
df =1
 = 0.7230; p-value = 0.40, PLR vs Quadratic 
maximum likelihood classification Kruskal-Wallis X
2
df = 1
 = 0.1897; p-value = 0.66).   
Probabilistic Classification 
Reapplying the PLR classification method for the classes Evergreen, Deciduous, 
and Wetland in scene 21/37, we found only 6 spectral bands were needed to sufficiently 
describe the probability transition among classes (Table 4).  Using Landsat ETM+ bands 
2 through 7, we were able to generate a statistically significant model (X
2
df = 12
 = 227.59; 
p-value < 0.0001) that explained the majority of information within our training data 
(max rescaled 8211.0
~
2
=R ; SAS 2005).  Interpreting the beta estimates, in terms of odds 
ratio (calculated as follows; ratio, odds=
?
ij
x
e where B
j
 = the slope estimate for band
j
 and 
x
i
 = the DN value for band
j
), we identified the effect each Landsat ETM+ band had on 
class probabilities (Table 5).  For example, with every incremental increase in DN values 
for band 4, while holding bands 2, 3, 5, 6, and 7 constant, the average odds (chances) of 
the classes Deciduous and Evergreen increased by multiples of 1.455 and 1.202, 
respectively, when compared with the Wetland Class.  Comparing the Deciduous and the 
Evergreen class, however, was less straightforward.  Odds ratio between the Deciduous 
and Evergreen classes were calculated as follows: 
Given that the log odds of,   
;  ln,ln
j
Wetland
Deciduous
Wetland
Evergreen
and ?x?=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
 
where i = DN values for bands 2 ? 7 and J= classes Evergreen and Deciduous, and that, 
()()
EvergreenDeciduous
Wetland
Deciduous
Wetland
Evergreen
Deciduous
Evergreen
?x?x ???=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
lnlnln                        (7) 
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Using equation 7 and exponentiating the results (Agresti, 2002), the estimated average 
odds of the class Deciduous increased by a multiple of 1.211 for every incremental 
increase in band 4 DN values (Table 4).   
Using the delta method (Agresti, 1990; Agresti, 2002) to generate 95% 
confidence intervals for each observation in the validation data set and summing the 
lower and upper probability estimates for all observations, we predicted (within the lower 
and upper confidence limits) the total number of observations for each class (Figure 4).  
In addition, we were able to predict (within the lower and upper bounds of a 95% 
confidence interval) the cell counts of a hard classification accuracy assessment by using 
a MLAR and summing the lower and upper probability confidence interval for each class 
(Figure 4).  User accuracies (row proportions; Figure 4), were calculated by dividing the 
area under a specified class distribution (the sum of class probabilities for a given class 
type), within the bounds of a given MLAR, by the total area of that class distribution (the 
sum of class probabilities for a given class type across all MLARs).  Producer accuracies 
(column proportions; Figure 4) were calculated by dividing the area of each specified 
class distribution, within the bounds of each MLAR, by the area of all class distributions 
within the bounds of that MLAR. 
DISCUSSION 
 For all 15 scene comparisons, hard classification accuracies were similar among 
PLR, linear discriminant analysis, and quadratic discriminant analysis.  Similar results 
have been documented in other studies (binary case: Press and Wilson, 1978; 
multinomial case: Hossain et al., 2002).  Under different circumstances, such as when 
categorical variables provide important class separating information, the PLR 
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classification would have a significant advantage over the linear or quadratic maximum 
likelihood classification method given that categorical variables can be directly 
incorporated into a PLR model (Hosmer et al., 1983).  In cases where maximum 
likelihood classification assumptions are met, both the PLR and maximum likelihood 
classification methods will give equivalent results (Hosmer and Lemeshow, 2000), the 
primary difference among the methods is the efficacy of the algorithms (binary case: 
Efron, 1975; multinomial case: Bull and Donner, 1987).  Historically, the PLR 
classification method may have been less appealing due to the amount of processing time 
required to calculate a maximum likelihood estimate.  With today?s computer processors, 
however, this is no longer an issue.   
 When performing a maximum likelihood classification, sometimes analysts 
ignore the statistical assumptions of the classification technique and rely on an 
independent accuracy assessment to estimate classification accuracy.  While an accuracy 
assessment does assess the hard classification rule, it does not consider issues such as 
over fitting the data, modeling assumptions, multicollinearity, or model parsimony in the 
initial statistical model.  Failure to address these issues can mask the relationship between 
explanatory variables and response variables, reducing the overall accuracy of the 
classification, and limiting our understanding of the driving components of the model 
(Press and Wilson, 1978; Foody, 1996; Hosmer and Lemeshow, 2000; Johnson and 
Wichern, 2002).   
The PLR method differs from the discriminant analysis method in its modeling 
assumptions, its ability to incorporate both categorical and continuous variables, its focus 
on directly modeling class probabilities, and its ability to estimate model error (i.e., error 
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in the estimated probabilities).  While the discriminant method can be used to derive 
posterior probabilities, these probabilities are based on the assumption of multivariate 
normality, which seldom holds for remote sensing data (Foody, 1996).  Moreover, 
posterior probabilities only represent the mean probability given a set of explanatory 
variables values.  By definition, they do not include measures of probability error.  In 
contrast, the PLR method estimates probability error, which provides analysts and end 
users with a much finer level of detail.  In essence, a PLR classification is not limited to 
one map.  Instead, a probabilistic map, with corresponding lower and upper confidence 
limits can be produced for each respective class and observation. 
 For example, each observation in scene 21/37 represents a Landsat ETM+  pixel.  
Class probabilities for each pixel in that scene are interpreted as the mean proportion of 
times that one would expect to find each class at a pixel with given spectral values.  
Assume there were 100 pixels with DN values of 47, 36, 65, 69, 124, and 33 for bands 2 
through 7, respectively. Using equations 4 and 5 and the delta method, we would expect 
on average 28 (12-45, 95% confidence intervals), 7 (0-17, 95% confidence intervals), and 
65 (47-83, 95% confidence intervals) pixels out of the original 100 pixels to be 
Evergreen, Deciduous, and Wetland, respectively.  These types of maps not only depict 
the probability of each class for each pixel, but also maintain the modeling errors 
associated with class probabilities, which can be directly incorporated into other 
predictive models.   
A number of techniques exist to validate PLR models (Neter et al., 1996).  For 
example, a classical model validation approach is to generate models for both training 
and validation data sets and compare beta estimates and significant model parameters.  
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The difficulty with this approach is that it requires a substantial amount of data.  We 
demonstrated (Figure 4) how conditional probabilities and probability confidence interval 
can be used to assess the accuracy of a PLR model when sample size is limited.  One can 
then infer whether PLR probabilities can be generalized to the rest of the population (i.e., 
the rest of the pixels inside a Landsat ETM+ image) by comparing these predicted 
estimates with observed independent data.   
Evaluating PLR fit statistics and taking into consideration model parsimony, 
Landsat ETM+ bands 2 through 7 were useful in separating the classes Evergreen, 
Deciduous, and Wetland in scene 21/37.  ETM+ band 1 did not provide any additional 
information and was subsequently removed from the analysis.  Interpreting the results for 
scene 21/37 in terms of scaled energy (i.e., DN values) and odds ratios, we see that as the 
amount of energy being reflected and transmitted from the earth?s surface in ETM+ 
bands 3 and 6 increases (wavelength ranges of  0.630 ?m - 0.690 ?m and 10.40 ?m ? 
12.50 ?m, respectively), while the energy being reflected and transmitted in band 2 
remains low (wavelength range 0.525 ?m ? 0.605 ?m) the odds of the Evergreen class 
increase (Table 4).  Conversely, as the amount of energy being reflected and transmitted 
in bands 3 and 6 decrease while maintaining band 2 at low levels the odds of the 
Deciduous class increase.   
These results have biological implications.  For example, given the date of image 
acquisition and that certain objects use different portions of the electromagnetic 
spectrum, these results may suggest that in the spring, Deciduous class types absorb a 
relatively large portion of visible light (bands 2 and 3) when performing photosynthesis, 
 
 
 19
and that these class types maintain cooler daily temperatures (band 6) when compared 
with Evergreen and Wetland classes.    
Whether remote sensing analysts are primarily focused on developing a hard 
classification, building a series of probability maps, or understanding the driving 
components of a classification, it is critical that modeling assumptions are checked.  
Failing to do so may result in biased classification models.  If the assumptions of a 
classification method are met, such as in the PLR example for scene 21/37, then class 
probabilities can be used as an alternative to a hard classification.  Moreover, these class 
probabilities (and estimates of error) can provide a more accurate depiction of class area 
(and area confidence intervals).  This is not to imply that every pixel has a certain 
proportion of its area allocated to each class.  Instead, it indicates that, on average, we 
expect a certain number of pixels to be allocated to each class type, given a set of 
explanatory values.  This means that as the number of pixels used to calculate class area 
for a specified region increases, the accuracy of our class area estimate should also 
increase. 
Identifying class location, however, is less straightforward.  Given that class 
probabilities do not represent the amount of class area within each pixel, a class 
allocation rule must be specified to identify class location.  Arguably, one of the easiest 
rules to apply is a MLAR.  While this type of rule will ensure that every pixel is 
classified into one of the predefined categories, in some instances this rule may allocate 
class types to pixels where the probability of being a specific class could be as low as 
100% divided by the number of classes.  Alternatively, with the PLR method users can 
select class probability thresholds that identify class locations.  While this approach may 
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leave some pixels unclassified, it provides users of the data set with a level of precision 
(in terms of probabilities) for each class location.  By maintaining class probabilities for 
each pixel, data set users have the flexibility to address numerous different scenarios.  For 
example, if a user was interested in identifying locations in scene 21/37 where there was 
a high probability of the class Evergreen (x >  66%) and medium to high probability of 
the class Wetland (33% < x < 66%), they could perform a GIS query to find such 
locations.  To determine the accuracy of each potential class, a user could apply GIS 
zonal functions (ESRI, 2005) to average the summed probabilities of each class 
combination. 
CONCLUSION 
The PLR technique has desirable qualities for classifying remotely sensed data 
which include relatively unrestrictive model assumptions, the ability to incorporate both 
continuous and categorical variables directly into the classification scheme, relatively 
easy techniques for model comparison (e.g., AIC), an intuitive relationship between class 
types and explanatory variables (odds ratios), and a focus on directly modeling class 
probabilities (model error).  The outputs from the PLR method are class probability 
distributions.  Using class probability distributions and estimates of model error, users 
can accurately calculate the amount of area for each class type within a predefined level 
of confidence.  In addition, they can query each class probability distribution to generate 
a wide variety of maps identifying class location that are tailored to specific questions.  
These maps can include a MLAR map, but are not limited to this type of map.  Overall, 
the PLR classification method provides an extremely flexible alternative to the classical 
supervised approach. 
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Table 1. Cross walk between our stage 1 land cover classes and NLCD
+
 classes. 
Land Cover Classes NLCD Classes 
Water 11  Open Water     
21  Developed, Open Space   
22  Developed, Low Intensity  
23  Developed, Medium Intensity 
24  Developed, High Intensity  
31  Barren Land (Rock/Sand/Clay) 
 Urban / Transportation 
/ Bare Ground 
32  Unconsolidated Shore   
41  Deciduous Forest   
Forested 
*
 
42  Evergreen Forest   
43  Mixed Forest   
Deciduous   Evergreen 
52  Shrub/Scrub     
71  Grassland/Herbaceous   
81  Pasture/Hay   Field 
82  Cultivated Crops     
90  Woody Wetlands   
Wet Vegetated Area 
95  Emergent Herbaceous Wetlands 
+
NLCD classes 12, 51, 72, 73, and 74 were not applicable to our study 
*Forested classes where split into 2 groups Evergreen and Deciduous based on the 
dominance of "Evergreen" and "Deciduous" trees. 
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Table 2. Landsat ETM + Scene, date, and number of classes used to compare maximum 
likelihood classification and PLR classifications. 
Scene 
(Path/Row) 
Season Date 
Number 
of 
Samples 
Number of 
Classes 
19/37 Spring 4/5/2000 251 5 
19/38 Spring 4/5/2000 2155 8 
19/39 Winter 12/20/2001 345 5 
20/36 Spring 6/18/2001 579 5 
20/37 Fall 10/8/2001 1371 7 
20/38 Fall 10/8/2001 1421 10 
20/39 Winter 1/25/2001 1005 6 
21/36 Winter 3/5/2001 406 4 
21/37 Spring 4/19/2000 897 9 
21/38 Winter 2/15/2000 633 8 
21/39 Spring 5/24/2001 318 7 
22/36 Fall 10/3/2000 88 4 
22/37 Spring 5/15/2001 405 8 
22/38 Spring 5/15/2001 282 7 
22/39 Fall 11/7/2001 194 6 
Table 3. Number of samples per class type for each Landsat ETM+ scene.  Approximately 70% of the samples were used to generate 
each classification model, while the remaining 30% of the data were used to test each classification methodology. 
Scene   
(Path Row) 
Burn City Clouds Deciduous Evergreen Field Shadow Smoke Water Wetland
19/37 44 46 0 0 48 0 0 47 66 0 
19/38 0 310 262 249 313 268 267 218 268 0 
19/39 59 0 0 0 71 73 0 0 71 71 
20/36 0 0 110 111 109 139 0 0 110 0 
20/37 192 195 191 197 204 196 0 0 196 0 
20/38 128 128 128 128 240 136 133 140 128 132 
20/39 170 157 0 169 172 0 0 0 168 169 
21/36 0 0 0 88 87 146 0 0 85 0 
21/37 86 240 80 77 81 78 0 74 101 80 
21/38 65 70 0 63 63 63 0 65 64 180 
21/39 44 44 0 50 45 44 0 0 47 44 
22/36 0 0 22 0 0 22 0 0 22 22 
22/37 69 44 78 44 34 45 0 0 37 44 
22/38 41 40 0 40 40 0 0 41 40 40 
22/39 33 0 29 41 33 0 29 0 0 29 
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Table 4. Model fit statistics for the PLR classification method using the Wetland class as the baseline response variable.  Model one 
represents our top model.  
Model 
# 
Landsat ETM+ Bands 
Used in the Model 
DF AIC ?AIC 
AIC Model 
Weight 
X
2
 Nested 
Comparison 
P-value 
1 bands 2-7 12 182.277 0.000 0.500 2 vs 1 0.14266 
2 bands 1-7* 14 182.382 0.105 0.474 NA NA 
3 bands 2, 4-7 10 188.195 5.918 0.026 
3 vs 2 
3 vs 1 
0.07921 
0.07048 
4 bands 1-6 12 204.660 22.383 0.000 4 vs 2 0.00000 
5 bands 2-6 10 207.000 24.723 0.000 5 vs 2 0.00000 
6 bands 3-7 10 219.876 37.599 0.000 6 vs 2 0.00000 
 * Model with most parameters (i.e., all Landsat ETM+ Bands)
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Table 5. Maximum likelihood beta estimates, standard errors, chi-square values, p-values, and odds ratio for the top ranked 
probabilistic classification model.  Band 3 for the deciduous and evergreen classes and band 6 for the evergreen class have p-values 
> 0.05.  While these variables are not significant at ? = 0.05 for their respective class, they are significant for the other class, thus 
making them significant in the overall model.   
Variables Class DF 
Beta 
Estimates 
Standard 
Error 
X
2 
P-value 
Odds ratio 
(Class/Wetland
Odds ratio 
(Deciduous/Evergreen)
Intercept deciduous 1 263.2 59.218 19.7474 <.0001 Exp(263.2) * 
Intercept evergreen 1 66.4517 23.3085 8.128 0.0044 Exp(66.45) * 
Exp(196.75) * 
Band 2 deciduous 1 -1.2422 0.3525 12.4202 0.0004 0.289 * 
Band 2 evergreen 1 -1.0443 0.2176 23.0397 <.0001 0.352 * 
0.820 
Band 3 deciduous 1 -0.5096 0.2806 3.2996 0.0693 0.601 
Band 3 evergreen 1 0.2172 0.1315 2.7259 0.0987 1.243 
0.483 * 
Band 4 deciduous 1 0.3752 0.1062 12.4725 0.0004 1.455 * 
Band 4 evergreen 1 0.1839 0.0593 9.6166 0.0019 1.202 * 
1.211 
Band 5 deciduous 1 -0.3569 0.1599 4.9818 0.0256 0.7 * 
Band 5 evergreen 1 -0.4247 0.1066 15.8722 <.0001 0.654 * 
1.070 
Band 6 deciduous 1 -1.8291 0.4746 14.8544 0.0001 0.161 * 
Band 6 evergreen 1 -0.2898 0.1794 2.6094 0.1062 0.748 
0.215 * 
Band 7 deciduous 1 1.1635 0.3278 12.5954 0.0004 3.201 * 
Band 7 evergreen 1 0.8261 0.2043 16.3519 <.0001 2.284 * 
1.401 
 
* Odds ratio that is significantly different than 1 at ? = 0.05 
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Figure 1. Cross sectional view of a hypothetical, multidimensional, 5 class probability distribution.  The vertical dashed lines identify 
the location of each class? maximum likelihood allocation rule while holding variables X
i-1
 constant and allowing variable X
1
 to 
vary.   
0% 
100% 
Water Deciduous Evergreen Field City
Class Probability
 
Variable X
1
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Figure 2. Seasonality of each Landsat ETM+ scene and the spatial location of each sample point (total of 15 different scenes).
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Figure 3. Estimated mean kappa values (measure of agreement among classes) and 95% confidence intervals for each Landsat 
ETM+ scene (Path Row) for the PLR and MLC methods. 
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Figure 4. Comparison between an observed hard classification accuracy assessment and a predicted hard classification accuracy 
assessment using the top ranked PLR probabilistic classification model and a MLAR.  
 Predicted  Classes   
Deciduous Evergreen Wetland Totals 
 
  Counts         
 
    Row  
Proportion     
 
  Column 
Proportion 
Lower 
predicted 
(95% CI) 
Observed 
(predicted) 
Upper 
predicted 
(95% CI)
Lower 
predicted 
(95% CI)
Observed 
(predicted) 
Upper 
predicted 
(95% CI)
Lower 
predicted  
(95% CI) 
Observed 
(predicted) 
Upper 
predicted 
(95% CI)
 
Lower 
predicted 
(95% CI)
Observed 
(predicted) 
Upper 
predicted  
(95% CI)
15.49 
18.00 
(18.48) 
20.98 0.17 
0.00 
(2.03) 
4.43 0.00 
4.00 
(0.91) 
2.32  15.66 
22.00 
(21.42) 
27.73 
0.72 
0.82 
(0.86) 
0.98 0.01 
0.00 
(0.09) 
0.21 0.00 
0.18 
(0.04) 
0.11  0.73 1.00 1.30 
Deciduous 
0.74 
0.86 
(0.88) 
1.00 0.01 
0.00 
(0.11) 
0.23 0.00 
0.17 
(0.04) 
0.10     
0.00 
2.00 
(1.56) 
3.72 11.36 
18.00 
(14.60) 
17.42 0.57 
4.00 
(3.08) 
5.81  11.93 
24.00 
(19.24) 
26.95 
0.00 
0.08 
(0.08) 
0.19 0.59 
0.75 
(0.76) 
0.91 0.03 
0.17 
(0.16) 
0.30  0.62 1.00 1.40 
Evergreen 
0.00 
0.10 
(0.07) 
0.18 0.60 
0.95 
(0.77) 
0.92 0.02 
0.17 
(0.13) 
0.24     
0.00 
1.00 
(0.96) 
2.36 0.52 
1.00 
(2.37) 
4.55 16.43 
16.00 
(20.01) 
23.08  16.95 
18.00 
(23.34) 
29.99 
0.00 
0.06 
(0.04) 
0.10 0.02 
0.06 
(0.10) 
0.19 0.70 
0.89 
(0.86) 
0.99  0.72 1.00 1.28 
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rve
d
 Cla
sses 
Wet
land 
0.00 
0.05 
(0.05) 
0.11 0.03 
0.05 
(0.12) 
0.24 0.68 
0.67 
(0.83) 
0.96     
               
 15.49 21.00 27.06 12.05 19.00 26.4 17 24.00 31.21  44.54 64.00 84.67 
 
Totals 
0.74 1.00 1.29 0.64 1.00 1.39 0.70 1.00 1.30     
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CHAPTER 2 
 
BRINGING IMAGES TO A COMMON RADIOMETRIC SCALE USING 
AGGREGATE NO CHANGE REGRESSION: A COMPARISON  
BETWEEN RADIOMETRIC NORMALIZATION  
TECHNIQUES 
 
ABSTRACT  
 Aggregate no change regression (AG-NCR) is a relative normalization procedure 
that addresses changes in the reflectance between images by aggregating the digital 
number values of each image, which have not experienced land use change or temporal 
features such as clouds, and regressing those values against one another. What separates 
this normalization procedure from other common relative normalization techniques is that 
it explicitly addresses spectral differences between images caused by geo-rectification 
errors. Compared with 2 absolute normalization models, a top ranking relative 
normalization model, and a combination of absolute and relative normalization model, 
AG-NCR significantly reduced the variability between 11 Landsat ETM+ scene 
comparisons, accounting for approximately 96% of the total variation between images. 
Using this technique, multiple images representing the same season, can be brought to a 
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common radiometric scale for the purpose of generating fine grain regional 
classifications. 
INTRODUCTION 
In recent years, the ability to produce fine grain (30 m) classifications that span 
across large extents has dramatically increased (Vogelmann et al., 2001; Skole et al., 
1997). Many of these regional classifications have been successfully performed by 
mosaicing adjacent satellite images acquired from sensors such as Landsat 7 (Homer et 
al., 1997, 2004). Adjacent images, though, often have significantly different spectral 
reflectance due to changes in the environment and changes in the sensor as a function of 
image acquisition dates (Hall et al., 1991; Du et al., 2002). If not accounted for, these 
spectral differences can increase class variability, causing the precision and accuracy of a 
classification to decrease (Song et al., 2001; Hall et al., 1991).  
To compensate for spectral differences between images, analysts have employed a 
number of different techniques ranging from classifying on a scene-by-scene basis 
(Vogelmann et al., 2001), to normalizing images prior to classification (Pax-Lenney et 
al., 2001). While the first approach addresses spectral differences between scenes, it does 
so in an indirect fashion, leading to issues such as edge matching, increased sampling, 
and multiple classification accuracies (many classification models), making the final map 
less appealing, more costly, and difficult to assess. Transforming imagery to a common 
radiometric scale, however, addresses spectral differences directly, potentially removing 
the issues associated with scene-by-scene classifications. For these reasons, radiometric 
normalization is often preferred over the time intensive scene-by-scene classification 
technique (Pax-Lenney et al., 2001; Song et al., 2001; Olthof et al., 2005a, b). Currently 
 
 
 38
though there is no commonly accepted radiometric normalization technique, and existing 
procedures do not fully address the sources of spectral differences between images. The 
purpose of this paper is to compare and contrast four commonly used radiometric 
normalization techniques with our newly developed technique that directly considers geo-
rectification errors. 
Background 
Radiometric normalization can be separated into two broad categories, absolute 
and relative. Absolute radiometric normalization attempts to transform spectral 
reflectance to surface reflectance using empirically derived models that account for 
atmospheric conditions and changes in the sensor given the temporal nature of the 
imagery. These models, referred to as radiometric transfer codes (RTC), have been 
shown to be effective at converting at-sensor reflectance to surface reflectance (Holm et 
al., 1989; Moran et al., 1992), but typically require accurate atmospheric information at 
the time of image acquisition, which is seldom available for historical imagery and can be 
costly to collect for multiple scenes (Chavez, 1996; Du et al., 2002; Velloso and De 
Souza, 2002; Canty et al., 2004). Therefore, alternative absolute normalization routines 
have been developed, such as dark object subtraction (Chavez, 1988, 1989, 1996; Song et 
al., 2001), which assumes the reflectance of certain objects (e.g., water and shadows) are 
near or at zero and that reflectance values deviating from zero, for these objects, are 
caused by atmospheric interference. In this methodology, dark objects are often manually 
selected through image interpretation (Chavez, 1989). In instances where manual 
selection is too time consuming and/or expensive, automated routines have been 
developed (Teillet and Fedosejevs, 1995; McDonald et al., 1998; Song et al., 2001).  
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Relative radiometric normalization attempts to transform spectral reflectance of 
one image (slave image) to match the spectral reflectance of another image (master 
image). The focus of this approach is not to transform image spectral reflectance to 
surface reflectance but to bring images to a common radiometric scale. This approach not 
only accounts for atmospheric and sensor conditions, but also accounts for changes in the 
biotic and abiotic environment (e.g., differences in soil moisture and growth in 
vegetation). Relative normalization procedures include algorithms such as histogram 
equalization and matching (Erdas, 1997), linear regression (Jensen, 1983), multiple 
regression (Olsson, 1993), non-parametric smoothing (Velloso and De Souza, 2002), and 
piecewise regression (Erdas, 1997). This approach typically uses features that remain 
constant through time to capture the spectral relationship, by band, between two images. 
Using these relationships, relative normalization then transforms the spectral reflectance 
of the slave image to match the spectral reflectance of the master image.  
Identifying spectrally constant features in the imagery is integral to the relative 
normalization approach. Numerous ways have been proposed to achieve this task ranging 
from manual interpretation (Schott et al., 1988) to automated techniques (Hall et al., 
1991). Others have suggested pixels occupying the same geometric location between 
images be used to transform the digital number (DN) values of one image to match the 
DN values of another image (Jensen, 1983; Song et al., 2001). In this approach, pixels 
that have been affected by land use change, given different image acquisition dates, are 
thought to have a minimal effect on the image transformation process. Yuan and Elvidge 
(1996), however, have demonstrated that a no change regression (NC) procedure reduces 
the effects of land use change and/or temporal features, such as clouds between image 
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acquisition dates and improves the normalization process. They also found that pixels 
that have undergone land use change or that have temporal features could have a 
significant, negative impact on the normalization process. 
Given that the objectives of absolute and relative normalization differ, few have 
directly compared the 2 methodologies. Song et al., (2001) evaluated 4 dark object 
subtraction (DOS) methods (absolute), 2 dense dark vegetation (DDV) methods 
(absolute), a path radiance (PARA) method (absolute), and a regression method (relative) 
in terms of overall classification accuracies and found that 2 DOS methods and the 
regression technique were the top performing normalization models. However, no 
statistical tests were performed to determine if overall differences in classification 
accuracy could be attributed to a particular normalization method (e.g., compare 
variability in overall accuracies, perform ANOVA, or perform non-parametric ANOVA). 
Furthermore, errors in the classification may have been an artifact of the classification 
methodology and or classification rule(s) as opposed to the normalization technique, 
potentially masking the effect of the normalization process. Alternatively, one could 
evaluate both approaches by comparing how well each method transforms one image to 
match the spectral values of another image. Comparing absolute and relative 
normalization techniques in this manner, Yuan and Elvidge (1996) found that NC 
regression outperformed Chavez?s (1988) haze correction algorithm (early DOS), 
Jensen?s simple regression (1983), Hall et al.?s (1991) dark and bright regression, Schott 
et al.?s (1988) pseudoinvariant features normalization, mean-standard deviation 
normalization, and a minimum maximum normalization procedure. 
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While the NC regression showed a remarkable improvement in bringing two MSS 
images (27 years between scene acquisition dates) to a common radiometric scale, it 
makes assumptions that may limit the utility of the technique.  For example, only MSS 
bands 3 and 4 were used to identify no change pixels. Different bands, however, 
accentuate different features in satellite imagery (Jensen, 2000). Pixels identified as 
having constant reflectance or changed reflectance in bands 3 and 4 may not represent 
pixels that have constant reflectance or changed reflectance in other spectral bands. 
Furthermore, initial estimates that are determined by locating the centers of land and 
water ellipsoids from band 3 and 4 scattergrams can potentially be influenced by extreme 
land and water values. Finally, NC regression assumes the geometric rectification 
between images is accurate (i.e., the spatial location of a pixel in one scene represents the 
same spatial location in another scene). Geometric accuracies ranging from + 1 to + 8 
pixels for ETM+ imagery, depending on whether the source data have been terrain 
corrected or systematically corrected, are commonly encountered (NASA, 2005), 
potentially limiting the validity of this assumption.  
Given the assumptions of the NC regression, recent improvements in DOS 
methods (Chavez, 1996; Song et al., 2001), and that the Multi-Resource Land 
Characteristics Consortium (MRLC) has adopted at-satellite reflectance transformation of 
Landsat imagery (Huang et al., 2002), we compared and contrasted the ability of five 
normalization methods to bring images, acquired over different dates with the same 
representative season, to a common radiometric scale (Table 1).  
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METHODOLOGY 
Overview 
This section provides an overview of the study design and methods. Sections 
following the overview describe different aspects of our analyses in detail. 
Eleven overlapping areas of 9 Landsat enhanced thematic mapper plus (ETM+) 
images (Figure 1), acquired over a 2-year period representing a leaf-off winter season, 
were used to compare and contrast 5 radiometric normalization procedures (Table 1). 
Each Landsat image was preprocessed by the MLRC using processing level 1T 
procedures (NASA, 2005). Because extremely bright objects (e.g., sand, rocks, and 
concrete) have the potential to saturate individual Landsat ETM+ bands in one image 
without necessarily saturating the same band in another image (given changes in sun 
elevation angle, solar illumination, and atmospheric condition) we removed pixels that 
had DN values > to 240 for image pairs from the analysis. In addition, areas that had 
substantial cloud cover were removed from the analysis. For the remaining pixels in each 
of the overlapping regions, we developed a non-parametric change detection method and 
used it to identify no change pixels. Each no change pixel was then randomly assigned 
into a training (~ 50%) and validation (~ 50%) data set. Spectral values were extracted 
from each image, by band, on a pixel basis, using the no change subset, and imported into 
Statistical Analysis Software version 8.3 (SAS). The appropriate transformation 
coefficients for each normalization method were determined and applied to the validation 
data set.  
Master image spectral values for the validation data sets were then compared 
against transformed slave images spectral values for each method, on a pixel basis, using 
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ordinary least squares regression. Techniques that have brought images to a common 
radiometric scale in this analysis should predict intercept (?) and slope (?) values 
approximately equal to 0 and 1, respectively, and should explain a large amount of the 
variation between spectral values in image overlaps [i.e., have a large coefficient of 
determination (R
2
)]. To test whether there was a significant improvement among 
normalization methods, we compared predicted intercept and slope estimates with 
expected values for each method and performed a non-parametric one-way analysis of 
variance using R
2
 estimates. R
2
 estimates were compared by band as opposed to root 
mean squared error estimates because they are independent of scale, thereby allowing for 
direct comparison among the different normalization techniques (Olsson, 1993).  
Identifying No Change Pixels 
After removing potentially saturated DN values (i.e., > 240 for both images) from 
the overlap between two images, we subtracted the DN values of the slave image from 
the DN values of the master image by band on a pixel basis. Using an equal area slicing 
algorithm we ranked differenced values from smallest to largest and then grouped 
rankings into 100 classes, each with approximately equal area (ESRI, 2005; ERDAS, 
1997). Assuming that 90% of the area in the overlap between scenes had not experienced 
land use change or temporal features we then selected no change pixels by querying 
sliced categories > 5 and < 95.  
Ordinary Least Squares Regression  
Ordinary least squares regression was used to determine how well the spectral 
values of each transformed slave image matched the spectral values of each master 
image. Assuming that transformed slave images have been brought to the same 
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radiometric scale as master images, one would expect a perfect 1 to 1 linear relationship 
that crosses through the origin (i.e., intercept of 0, slope of 1, and R
2
 = 1). Using ordinary 
least squares regression and the validation data set, we estimated intercept (?), slope (?), 
and R
2
 parameters by minimizing the deviation (Q) between transformed slave image and 
master image spectral values as follows (Neter et al., 1996): 
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To determine the amount of variation explained between master and transformed slave 
image we use the following equation: 
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The top performing normalization method was determined by comparing estimated ?, ?, 
and R
2
 values against expected values.  
Normalization Methods 
Dark Object Subtraction (DOS) ? DOS assumes that there are objects in the 
imagery that are completely dark. However, due to atmospheric scattering these objects 
will not appear absolutely dark (Chavez, 1988). Song et al. (2001) indicated that the top 2 
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DOS models, in terms of classification accuracy, were a method that assumed no 
atmospheric transmittance loss and no diffuse downward radiation (DOS1) and a method 
that assumes transmittance loss, diffuse downward radiation, and Rayleigh scattering 
(DOS3). Given that both methods gave comparable results in their study, we selected 
DOS1, the simpler of the two methods for our comparison.  
 To transform DN values (a measure of at-satellite radiance) to surface reflectance, 
using DOS1, we needed to identify the location of dark objects and account for the 
additive effect of atmospheric interference. Dark objects (DNmin) were located using the 
lowest DN value within an image, by band, which had > 1000 pixels (Teillet and 
Fedosejevs, 1995; Song et al., 2001). Assuming a 1 % surface reflectance for these 
objects (Chavez, 1989; Moran et al., 1992; Song et al., 2001) path radiance (Lp
k
) was 
calculated as follows; 
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where G
,
 B, ESUN, and ? are band specific measures of gain, bias, solar exoatmospheric 
irradiance, and sun elevation angle, respectively. Using equation 4, surface reflectance 
(sr
k
) was derived using the following equation (after Song et al., 2001): 
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where Lsat
k 
is at-satellite radiance and is calculated as follows (Markham and Barker; 
1986; Huang et al., 2002): 
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For this method, the overlapping areas in slave and master scenes were transformed to 
surface reflectance and then regressed against one another using the validation data set.  
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At-Sensor Reflectance (ASR) ? ASR is a first order normalization routine 
adopted by the MRLC (Huang et al., 2002). This routine directly addresses issues of 
sensor change and illumination geometry. ASR is calculated using equation 6 to convert 
DN values to at-satellite radiance and then converting at-satellite radiance to sensor 
reflectance as follows (Huang et al., 2002): 
 
()?sinESUN
dLsat?
ASR
k
k
?
??
=
2
                                                                          (7) 
where d is the earth sun distance in astronomical units and can be calculated according to 
Iqbal (1983). This approach is similar to DOS1 except that Lp
k
 term is removed
 
and the 
square of earth sun distance is added to the reflectance formula. In this method, the 
overlapping areas in slave and master scenes were transformed to sensor reflectance and 
then regressed against one another using the validation data set.   
No Change Regression (NCR) ? NCR is a relative normalization procedure that 
attempts to bring adjacent overlapping images to a common radiometric scale. Unlike the 
previously described procedures, this technique requires images to share a portion of 
geographic space. After removing pixels that represent land use change or temporal 
features, NCR regresses, on a pixel basis, the DN values of a slave image onto a master 
image using ordinary least squares regression (Yuan and Elvidge, 1996). Estimated 
intercept and slope coefficients are then used to transform DN values of the slave image 
to match DN values of the master image. Elvidge et al. (1995) suggest identifying no 
change pixels by first locating the centers of land and water pixels in scattergrams of 
Landsat multispectral scanner (MSS) bands 3 and 4 (approximate ETM+ spectral 
equivalent of band 4) and deriving initial estimates for each linear transformation. Using 
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these estimates and a half-perpendicular width of 10 DN (approximate ETM+ equivalent, 
20 DN), they generated a series of Boolean equations separating change verses no change 
pixels. Extreme water and land values (i.e. land use change or temporal features), 
however, can skew the center of water and land pixels, adversely affecting the initial 
intercept and slope estimates of the linear transformation. Furthermore, pixels identified 
as no change in certain bands may not represent no change pixels in other bands given 
that each band accentuates different environmental characteristics for both MSS and 
ETM+ sensors (Jensen, 2000). Therefore, we adopted our non-parametric approach of 
identifying no change pixels described early in this paper.  
Using the training data set and equations 1 and 2 we estimated linear 
transformation coefficients by band for each overlapping area. Applying these estimates 
to the DN values of the slave image validation data set, we then regressed transformed 
slaved image DN values against master image DN values, by band, for all image 
comparisons. 
At-Sensor No Change Regression (AS-NCR) ? AS-NCR is a merger of the 
absolute ASR and the relative NCR normalization methods. The primary difference 
between this method and ASR and NCR is that before applying NCR we transformed DN 
values to at-sensor reflectance. After converting DN values to at-sensor reflectance, we 
regressed slave image reflectance onto the master image reflectance using the training 
data set. Estimated slope and intercept coefficients were then used to transform the slave 
image?s sensor reflectance values, for the validation data set by band for all 11 image 
comparisons. Finally, these transformed sensor reflectance were regressed against master 
sensor reflectance by band for all image comparisons. 
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Aggregate No Change Regression (AG-NCR) ? AG-NCR is a relative 
normalization procedure that, in addition to accounting for changes in the biotic and 
abiotic environment, also addresses errors in the geographic rectification process. This 
technique is identical to the NCR procedure with one exception; prior to extracting the 
spectral values from the overlapping region of two images, AG-NCR performs a mean 
aggregating function (ESRI, 2005; ERDAS, 1997). The aggregating function helps to 
limit the effect of geographic rectification inaccuracies between two images by 
minimizing the importance of the spatial location of any one individual pixel. The 
assumption is that factors affecting differences between scene DN values occur at coarser 
scales than an individual ETM+ pixel (grain size 30 meters), and that geo-rectification 
errors are such that a pixel occupying the same spatial location in two scenes may not 
represent the spectral reflectance of  the same objects.  
To determine an appropriate aggregation size, a series of empirical tests were 
performed, simulating geo-rectification errors between the overlapping areas of two 
images. DN values (0-255) were randomly assigned to pixels within a master scene 
overlap, assuming a worst-case scenario between adjoining pixels (i.e., no spatial 
correlation between spectral reflectance). Slave scene pixel values were then calculated 
using an arbitrary linear transformation of the master scene.  
( )
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Next, constant spatial shifts of 1, 2, and 4 pixels were applied to the slave image to mimic 
geo-rectification errors. Finally, mean aggregates of 0, 25, 100, 400, 625, 2500, 10000, 
and 40000 pixels were compared, using ordinary least squares regression analysis. From 
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the regression analyses mean estimated intercept, slope, and R
2
 were obtained for each 
aggregation level and were plotted against the size of the aggregating function for each 
corresponding pixel shift (Figure 2). From these plots a conservative aggregation size of 
50 (2500 pixels) was selected based on identifying a point where all estimated values 
(intercept, slope, and R
2
, respectively) begin to reach a local asymptote (5, 0.875, and 1, 
respectively), for the three simulated pixel shifts.    
 After aggregating the bands of each image, we randomly assigned 50% of the 
aggregated pixels to a training and validation data set. From the training data set, we 
generated intercept and slope coefficients by band for each image comparison, using 
equations 1 and 2. Using these estimates and the validation data sets, we transformed the 
DN values of the slave image and regressed those values against the master image DN 
values by band for each image comparisons.  
RESULTS 
Transformation Coefficients 
 Transformation intercepts and slope estimates for NCR and AS-NCR (DN 
equivalent) were very similar (Table 2). Comparing mean R
2
 values for these methods 
revealed that both techniques explain equal amounts of variation between slave and 
master image spectral reflectance (Table 2). Given at-sensor reflectance is a linear 
transformation of DN values, these results were expected.  
On average, AG-NCR had smaller intercepts than NCR and AS-NCR (DN 
equivalents) and had larger slopes than NCR (? = 0.05). In addition, AG-NCR had initial 
R
2
 values that were significantly larger than the other two relative methods (Kruskal-
Wallace X
2
df = 2 
= 35.66; p-value < 0.0001; Table 2).  
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For ASR and DOS1 methods, transformation coefficients were determined by 
band using image header files and the lowest DN value with at least 1000 pixels within 
each image (Teillet and Fedosejevs, 1995; Song et al., 2001). Transformation values for 
each parameter within ASR and DOS1 can be found in Table 3.  
Validation Coefficients 
The amount of variation explained between master spectral values and 
transformed slave values for DOS1, ASR, NCR, and AS-NCR methods were equal for all 
bands, suggesting that given a linear transformation, these 4 methods would equivalently 
bring each image to common radiometric scale. The appropriate linear transformation for 
NCR and AS-NCR would be, on average, an intercept and slope value equal to 0 and 1, 
respectively, implying that these two methods are at a common radiometric scale (Table 
4). DOS1 and ASR, however, had intercept and slope values different than 0 and 1, 
indicating that an additional additive and multiplicative transformation is necessary to 
bring each image to a common radiometric scale (Table 4).  
In addition to having average intercept and slope values approximately equal to 0 
and 1, respectively, the AG-NCR method showed a significant improvement (Kruskal-
Wallace X
2
df = 4 
= 44.41; p-value < 0.0001) in the amount of variation explained between 
master and transformed slave spectral reflectance (Table 4). On average, AG-NCR 
explained an additional 6% of the variation (averaged across all ETM+ bands) between 
master spectral values and transformed slave values.  
DISCUSSION 
Comparing transformed slave spectral values with master spectral values, we 
determined that AG-NCR out-performed the rest of the normalization procedures in 
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terms of bringing each scene to a common radiometric scale. NCR and AS-NCR also 
brought each Landsat ETM+ image to common radiometric scale but did not explain as 
much of the variability between each image comparison, thereby suggesting geo-
rectification accuracy is an additional source of spectral variability between images. 
Furthermore, when comparing AS-NCR and NCR it was apparent both methods 
explained the same amount of variation between master and transformed slave spectral 
values, indicating the additional step of converting DN to at-sensor reflectance prior to 
performing regression is unnecessary.  
The DOS1 and ASR methods did not bring adjacent scenes to a common 
radiometric scale. This finding implies that these models may not be appropriate, by 
themselves, to mosaic adjacent images for the purposes of classification. When 
transformed slave values were regressed against master slave values, DOS1 and ASR 
explained equal amounts of the variation in the overlap, again suggesting that converting 
to surface and satellite reflectance is unnecessary. While DOS1 and ASR performed 
poorly in our tests, it should be noted the objective of these methods are to estimate 
surface and satellite reflectance, not to bring images to common radiometric scale. 
Studies interested in quantifying the affects of biological growth between two images 
acquired at different time periods may be better suited by a normalization approach such 
as DOS1, ASR, dark object bright object regression (Hall et al., 1991), pseudo invariant 
features (Schott et al., 1988), or a combination of these techniques with AG-NCR. 
Prior to comparing normalization methods, we identified and removed pixels that 
had experienced land use change and/or temporal features using a non-parametric slicing 
algorithm. This algorithm was developed to address issues of automation, outlier 
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influence, and individual band differences. Using our non-parametric differencing 
technique, one can conservatively estimate the amount of land use change and/or 
temporal features within the overlapping areas of two scenes and implement those 
estimates directly into the model. In our study, we chose to mask the majority of temporal 
features before running our non-parametric differencing technique. This additional step, 
however, could have been directly addressed using our non-parametric differencing 
procedure. For example, given a short time period between ETM+ image acquisition 
dates (1 year) one might hypothetically estimate that 6% of the overlapping area between 
two images has experienced land use change. In addition, for the visible and near infrared 
portions of the electromagnetic spectrum (ETM+ bands 1-4), temporal features, such as 
clouds, appear to be covering 7% of the slave scene in the overlapping area. Given that 
the slave scene is subtracted from the master scene in our technique, we can set slicing 
thresholds as follows:  
                                          
  valueslice5,7 bands  valueslice
  valueslice4-1 bands  valueslice
pixels NC  3
pixels NC  10
97
97
<>
<>
 
The assumption in this example is that land use change is equally distributed (3% of the 
area in the overlap) to upper and lower extreme differenced values, while differenced 
values associated with temporal features are allocated to only the lower extreme 
differences in ETM+ bands 1-4. Conservative (i.e., inflated) estimates of land use change 
and temporal features should be used when applying this approach and special care 
should be given when allocating thresholds for temporal features given that clouds in a 
slave scene would manifest as negative differenced values where as clouds in a master 
scene would manifest as positive differenced values in ETM+ bands 1-4. By inflating 
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land use change and temporal features estimates, analysts can be assured of removing 
pixels that have experienced extreme spectral change from the regression analysis.  
 Interestingly, the amount of average variation unexplained in the AG-NCR 
method was very close to the amount of variation left unexplained for an aggregation size 
of 50 and a one pixel shift in our simulation study (Figure 2). This similarity suggests 
further improvements to bring images to a common radiometric scale can be achieved 
through increased geo-rectification accuracies. Alternatively, one could increase the 
aggregation size, but this would more than likely have a minimal impact on the amount of 
variance explained given that R
2
 began to reach a local asymptote at an aggregate size of 
50 in our simulation (Figure 2).  
In a recent study (Velloso and De Souza, 2002), there has been some question as 
to the validity of linear regression assumptions (i.e., normally distributed errors and a 
linear relationship between two images acquired at different dates). Checking regression 
diagnostics for our study, these assumptions appeared to be valid. Furthermore, almost all 
of the variation in DN values for each master scene was explained by the DN values of 
each transformed slave scene (mean R
2
 = 0.96). Deviations from a linear relationship and 
or low R
2
 values (< 0.8) may suggest that slave and master images represent different 
seasons and/or pixels representing land use change or temporal features may still be 
affecting the regression model. In the former case, our approach would be inappropriate, 
given that different vegetation types use light differently at various times of the year. In 
the latter case, non-parametric differencing thresholds could be adjusted to alleviate the 
problem.  
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Given numerous reasons for variation between two images, we suggest that R
2
 
values be used to determine if two images have been brought to a common radiometric 
scale. Conservatively speaking, when using AG-NCR, R
2
 values less than 0.90 for any 
band should be checked to see if the assumption of linearity is being met and values less 
than 0.80 more than likely suggest that images have not been brought to a common 
radiometric scale.  
CONCLUSION 
 Compared with 3 popular radiometric normalization techniques and a 
combination of at-sensor reflectance and no change regression, Aggregate No Change 
Regression (AG-NCR) showed a significant improvement in bringing 11 adjacent scenes 
to a common radiometric scale. This method can easily be automated and provides a 
quantitative assessment of how well two images have been normalized (R
2
). The 
advantages of AG-NCR include: 1) it directly addresses geo-rectification errors, 2) it uses 
a non-parametric differencing technique to identify changed pixels, 3) and it works on an 
individual band basis.  
The intent of AG-NCR is to bring images acquired under similar seasons and 
solar illumination geometries, to a common radiometric scale. Often, however, subtle 
changes in illumination and seasonality can go undetected with visual inspection of the 
imagery alone. Using AG-NCR and estimates of model fit, remote sensing analysts can 
identify these situations and determine which images have been brought to a common 
radiometric scale. Properly normalized imagery can then be mosaiced together and used 
to perform accurate fine grain, regional classifications, in a cost and time efficient 
manner. 
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Table 1. Method, source, and normalization issues addressed 
Method Acronym Source Issues Addressed 
Dark object 
subtraction 1 
DOS1 Song et al., 2001 sensor and atmosphere 
At-Sensor 
Reflectance 
ASR NASA, 2001 sensor 
No Change 
Regression 
NCR after Yuan and Elvidge, 1996 
sensor, atmosphere, changes in biotic 
and abiotic condition 
At-Sensor No 
Change 
Regression 
AS-NCR 
NASA, 2001 
after Yuan and Elvidge, 1996 
sensor, atmosphere, changes in biotic 
and abiotic condition 
Aggregate No 
Change 
Regression 
AG-NCR This Paper 
sensor, atmosphere, changes in biotic 
and abiotic condition, and geometric 
rectification 56 
Table 2. Initial mean regression estimates for relative normalization procedures. AS-NCR intercept and slope estimates correspond to 
changes in sensor reflectance. Values inside () indicate digital number (DN) equivalents*. 
 
 
 
 
 
 
 
* DN equivalents were estimated by back transforming sensor reflectance to DN values. Average sun elevation and solar distance of 34.96? and 0.9864, 
respectively, were used to calculate DN intercept and slope values. 
Normalization 
Technique 
Parameter Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 
intercept 3.400 2.278 2.309 2.862 2.457 1.544 
slope 0.952 0.957 0.945 0.961 0.955 0.957 AG-NCR 
R
2
 0.946 0.960 0.967 0.941 0.968 0.963 
intercept 5.892 3.192 3.099 4.654 4.082 2.725 
slope 0.907 0.935 0.927 0.931 0.932 0.930 NCR 
R
2
 0.861 0.907 0.910 0.889 0.919 0.911 
intercept 0.012 (5.95) 0.006 (3.01) 0.005 (2.74) 0.013 (4.04) 0.010 (3.48) 0.006 (2.23) 
slope 0.944 0.972 0.965 0.976 0.972 0.970 AS-NCR 
R
2
 0.861 0.907 0.910 0.889 0.919 0.911 
57 
Table 3. Elevation Distance and digital number values of selected dark objects used in ASR and DOS1 normalization techniques.  
 
Path Row Date Elevation Distance 
Dark Object 
(Band 1) 
Dark Object 
(Band 2) 
Dark Object 
(Band 3) 
Dark Object 
(Band 4) 
Dark Object 
(Band 5) 
Dark Object 
(Band 7) 
1937 12/20/2001 29.1600 0.9840 41 25 18 11 3 4 
1938 12/20/2001 30.3500 0.9840 42 27 19 12 3 4 
2036 2/26/2001 40.0700 0.9902 48 29 21 12 2 3 
2037 12/27/2001 28.9700 0.9836 41 25 18 10 2 3 
2038 1/25/2001 33.1700 0.9846 44 28 21 12 2 3 
2039 1/25/2001 34.2800 0.9846 46 28 18 10 2 2 
2136 3/5/2001 42.5600 0.9919 53 33 25 14 3 4 
2137 2/15/2000 37.5200 0.9878 47 29 21 13 2 3 
2138 2/15/2000 38.5700 0.9878 49 32 24 14 3 4 
58 
Table 4. Summarized validation statistics. Values represent averaged estimates across 11 scene comparisons. AS-NCR and ASR 
intercept estimates correspond to changes in sensor reflectance (RF). DOS1 intercept estimates corresponds to changes in surface RF. 
AG-NCR and NCR intercept estimates correspond to changes in digital number (DN) values. Values inside () indicate the DN 
equivalents* for validation intercept and slope estimates for models that use RF.  
 
 
 
 
 
 
 
 
 
 
 
*DN equivalents were estimated by back transforming RF to DN values. Average sun elevation (34.96?), solar distance (0.9864), and dark objects values for 
ETM+ bands 1-5 and 7 (46, 28, 21, 12, 2, and 3, respectively) were used to calculate the intercept and slope values for each appropriate normalization model.  
Normalization 
Technique 
Parameter Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 
intercept -0.02 0.015 0.181 -0.02 0.066 0.119 
slope 1.001 1.000 0.997 1.001 1.000 0.998 AG-NCR 
R
2
 
0.947 0.962 0.968 0.942 0.968 0.963 
intercept 0.006 0.00 -0.00 0.006 0.00 0.001 
slope 1.000 1.000 1.000 1.000 1.000 1.000 NCR 
R
2
 
0.861 0.907 0.909 0.888 0.919 0.910 
intercept 0.000 (0.01) 0.00 (0.00) 0.00 (0.00) 0.000 (0.01) 0.00 (0.00) 0.000 (0.00) 
slope 1.000 1.000 1.000 1.000 1.000 1.000 AS-NCR 
R
2
 
0.861 0.907 0.909 0.888 0.919 0.910 
intercept 0.011 (5.95) 0.006 (3.01) 0.005 (2.74) 0.012 (4.04) 0.009 (3.48) 0.005 (2.23) 
slope 0.944 0.972 0.965 0.976 0.972 0.970 ASR 
R
2
 
0.861 0.907 0.910 0.888 0.919 0.910 
intercept 0.006 (5.37) 0.006 (-0.63) 0.005 (-1.31) 0.013 (1.47) 0.011 (0.56) 0.006 (-0.96) 
slope 0.946 (0.95) 0.973 (0.96) 0.967 (0.96) 0.978 (0.96) 0.974 (0.97) 0.971 (0.96) DOS1 
R
2
 
0.861 0.907 0.910 0.888 0.919 0.910 
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Figure 1. Scenes (path and row) and overlaps used in the comparison between 
normalization methods. 
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 Figure 2. Scatter plots for simulated, image overlapping regions where a slave image is a 
linear function of a master image and has a constant geometric rectification error of 1, 2, 
and 4 pixels. Expected intercept and slope values are 5 and 0.875 respectively.   
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CHAPTER 3 
 
CREATING LONGLEAF ECOSYSTEM PROBABILITY DISTRIBUTIONS ACROSS 
THE SOUTHEAST 
 
ABSTRACT  
 Longleaf ecosystems have declined to a mere 5% of their original range since 
European settlement. These dramatic losses, in what was once the dominant pine 
ecosystem across the southeastern U.S., are the principle reasons for the listing of many 
plants and animals as threatened and endangered and have been the driving factor for 
recent longleaf ecosystem restoration efforts. While studies have documented the 
regional decline of longleaf ecosystems, they provide little information on fine scale 
fragmentation patterns and current ecosystem locations. This lack of information often 
limits the efficacy of restoration efforts.  
 To aid longleaf restoration efforts we developed a series of fine grain (30 m) 
ecosystem probability distributions using multitemporal Landsat enhanced thematic 
mapper plus imagery, digital elevation models, field data, ancillary data sets, polytomous 
logistic regression, and a hierarchical classification scheme. Using our ecosystem 
probability distributions, resource managers can identify the most probable locations for 
 
 
  67
longleaf ecosystems, locate potential restoration sites, prioritize restoration efforts, and 
estimate ecosystem area.  
INTRODUCTION  
 Longleaf ecosystems, some of the most species rich plant ecosystems outside of 
the tropics (Outcalt and Sheffield, 1996), have experienced increased attention over the 
last several decades. Recent studies on longleaf ecosystems have included topics ranging 
from structural characteristics (Noel et al., 1998), ecological classification (Peet and 
Allard, 1993; Carter et al., 1999), vegetation composition (Hedman et al., 1999), to 
current trends and condition (Outcalt and Sheffield, 1996), with the latter example 
becoming a primary focus for numerous organizations due to the ecological value of 
these ecosystems. Findings, based on the USDA Forest Service?s, Forest Inventory 
Analysis (FIA, Gillespie, 1996), have documented dramatic area reductions in longleaf 
ecosystems across the southeastern U.S. (henceforth Southeast) since 1935 and suggest 
that the ecosystem has been eliminated from northeastern North Carolina and 
southeastern Virginia (Outcalt and Sheffield, 1996).  
Historically, longleaf ecosystems ranged from Virginia to Texas (Frost, 1993; 
Figure 1), covering between 24-37 million hectares across the landscape (Outcalt and 
Sheffield, 1996; Frost, 1993), making it formally the dominant coniferous ecosystem in 
the Southeast (Frost, 1993; Peet and Allard, 1993). However, by the early 1930?s, 
longleaf ecosystems had been decimated to 8 million hectares (Outcalt and Sheffield, 
1996) and by the 1980?s to less than 1.6 million hectares across the Southeast (Kelly and 
Bechtold, 1990) due to over harvesting, fire suppression, and land conversion.     
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Currently, longleaf ecosystems are estimated to occupy 1.2 million hectares 
across the Southeast, a mere 5% of their pre-European settlement estimate (Outcalt and 
Sheffield, 1996). This tremendous loss of habitat has had a dramatic impact on numerous 
plants and animals and is the primary reason that many species have become listed as 
threatened or endangered (Tuldge, 1999). Since the 1980?s, the amount of longleaf 
ecosystem area has remained fairly stable on public lands, while private land holdings 
have shown a declining area trend (Outcalt and Sheffield, 1996). This is especially 
alarming for states such as Alabama where longleaf ecosystems are primarily found on 
private lands (Outcalt and Sheffield, 1996). These findings indicate a strong need for the 
conservation of this critically endangered ecosystem (Noss et al., 1995).  
While conservation and restoration efforts have begun, they have been limited, in 
part, by the lack of information depicting the current location of these ecosystems. Long 
term studies such as the FIA have identified declining longleaf ecosystem trends, but are 
ill-suited to provide meaningful information at fine spatial scales. Due to the coarse 
nature of these data sets, organizations have had to take a broad based approach towards 
longleaf ecosystem management, monitoring, and restoration, often limiting the efficacy 
of their efforts. To become more effective, these organizations need accurate, fine scale 
data sets that identify coniferous ecosystem types and depict the current location and 
distribution of longleaf ecosystems. 
Many recent studies have focused on gradient analysis and ecosystem 
classification (Peet, and Allard, 1993; Carter et al., 1999; Weakley et al., 2000; Goebel et 
al., 2001) to better understand the abiotic and vegetated composition of longleaf 
ecosystems. While these types of studies have been used to quantify differences in 
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longleaf ecosystems, they typically do not address other coniferous ecosystems, and often 
fall short in identifying the location of longleaf ecosystems, particularly across large 
extents. Furthermore, patterns emerging at fine scales may not extend to coarser scales 
(Perry et al., 2002), thereby causing confusion in regional ecosystem classifications. 
Finally, these classification techniques are typically very labor intensive, can be 
challenging to interpret, and require a substantial amount of field work when trying to 
map fine scale class distributions, making these approaches logistically unattainable and 
too expensive to apply at regional scales. 
Alternatively, remote sensing offers a unique opportunity to link fine grain 
information (i.e., field samples) with large extents (i.e., the Southeast). Remote sensing 
satellites, such as Landsat 7, continuously quantify portions of the electro-magnetic 
spectrum reflected and transmitted from the earth?s surface at a grain size of 15, 30, or 60 
m (225, 900, and 3600 m
2
, respectively) depending on the wavelength of the 
electromagnetic radiation, at an extent of 183 by 170 km (Jensen, 2000; NASA, 2005). 
Using spectral information obtained from remote sensing satellites and field sample 
locations, analysts have successfully identified land use (Yang et al., 2001), forest types 
(Jakubauskas, 1996; Schmidt and Skidmore, 2003; Foody and Hill, 1996; Brown de 
Colstoun et al., 2003; Yu et al., 1999), forest structure (Hall et al., 1995; Chen, 1996; 
McDonald et al., 1998; Makela et al., 2001), and many other variables across numerous 
landscapes.  
Several techniques and algorithms have been developed to analyze remotely 
sensed data. These techniques range from isoclustering algorithms with post 
identification to regression analysis, multivariate analysis, classification trees, artificial 
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neural networks, and polytomous logistic regression (PLR). Using PLR, Hogland et al. 
(in progress; see chapter 1) demonstrated the flexibility and utility of probabilistic 
classifiers when there was substantial spectral overlap between land cover types. Given 
the structural similarities between longleaf and other coniferous ecosystems in the 
Southeast, a probabilistic classification would be well suited to distinguish ecosystem 
types. To improve classification accuracy for projects with an extent that spans across 
multiple satellite images (Song et al., 2001; Vogelmann et al., 2001; Du et al., 2002), 
remote sensing analysts have developed techniques that radiometrically normalize sensor 
reflectance (Elvidge, 1995; Song et al., 2001; Hogland and MacKenzie, in progress; see 
chapter 2). Comparing normalization techniques, Hogland and MacKenzie (in progress; 
see chapter 2) found that an Aggregate No Change Regression (AG-NCR) procedure 
significantly improved the ability to bring images to a common radiometric scale. Once 
images have been brought to a common radiometric scale, reflectance in one image can 
be generalized to reflectance in another image, implying that relationships between 
vegetated ecosystems and the spectral values in one image can be used to identify the 
same relationships in other images. 
 While remote sensing offers one of the most economically viable and regionally 
consistent means to identify the location of ecosystems across the Southeast, few analysts 
have focused on the critically endangered longleaf ecosystem. To aid in management, 
monitoring, and restoration of longleaf ecosystems, we generated a series of fine scale 
(grain size 30 m) forested ecosystem data sets depicting the probability distributions of 
Hardwood, Mixed Hardwood/Pine, Coastal Plain Longleaf, Mountain Longleaf, Slash, 
and Loblolly ecosystems across eastern Mississippi, Alabama, western Georgia, and the 
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panhandle of Florida (Figure 1). These data sets can be used with a geographic 
information system (GIS) to identify ecosystem locations, potential longleaf restoration 
areas, and corridors between longleaf ecosystems. They can also be used to manage 
existing longleaf ecosystems, determine the amount of longleaf ecosystem area, and/or be 
directly incorporated into existing ecosystem models.   
METHODS 
Forested ecosystem probability distributions were mapped across portions of the 
Southeast using the spatial locations of image and field interpreted samples, 
multitemporal Landsat enhanced thematic mapper plus (ETM+) imagery, ancillary data 
sets, PLR, and a hierarchal classification scheme. Our study area (Figure 1) is known for 
its diverse vegetation found on a wide variety of soil types ranging from clayey hills 
occurring in the Piedmont and Ridge and Valley portions of Alabama to xeric sandhill 
sites comprised of coarse sandy soils (Peet and Allard, 1993).  Longleaf ecosystems 
across our study area are known to vary from relatively sparse overstory and understory 
vegetation in the more xeric sites to floristically rich savannas and flatwoods found along 
mesic sites (Peet and Allard, 1993). This pattern of species scarcity and abundance 
depending on soil moisture led Peet and Allard (1993) to hypothesize that longleaf 
composition would vary in an interpretable manner between physiographic regions. From 
their study, we hypothesized that spectral differences in forested ecosystems can be used 
to identified longleaf ecosystems.  
 Our primary explanatory variables include Landsat ETM+ imagery (spectral 
bands 1-5 and 7) acquired from 1999 to 2002 (Figure 2). Landsat ETM+ imagery was 
chosen specifically because of its availability, cost, and resolution (spectral, spatial, and 
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temporal). Recent studies have found that multitemporal imagery improved classification 
accuracy (Reese et al., 2002; Homer et al., 2004). Therefore, image dates were selected to 
approximate three seasons: 1) leaf-on spring growing season, 2) leaf-on late summer/fall 
season, and 3) leaf-off winter season (Figure 2). In all, 64 ETM+ images, representing 22 
Landsat scenes, were used to distinguish among forested ecosystem types. Ancillary 
information used in this study include FIA findings, digital elevation models (DEMs), 
and vector layers of known publicly and privately owned protected lands within our study 
area, tree distribution maps (after Little, 1971), and Level III Omernik ecoregions 
(Omernik, 1987).  
Due to the inherent spectral variability of multiple Landsat ETM+ images 
(Elvidge et al., 1995; Yuan and Elvidge, 1996; Song et al., 2001; Hogland and 
MacKenzie, in progress; see chapter 2), AG-NCR was used to bring ETM+ scenes of the 
same season, to a common radiometric scale (Hogland and MacKenzie, in progress; see 
chapter 2). AG-NCR is a relative normalization procedure that determines the optimal 
linear transformations needed to bring spectral bands of 2 images to common radiometric 
scales by regressing the overlapping aggregated digital number (DN) values of a slave 
and master image. The inputs to this normalization technique include a conservative 
percent area estimate of land use change and temporal features (e.g., clouds, smoke, burnt 
areas, and shadows) for the overlapping region of a slave and master image and an 
appropriate aggregation size. For this study, we estimated land use change and temporal 
features to account for 20% of the area in the overlapping region and used an aggregation 
size of 50 (2500 pixels). Large bodies of water and areas that had significant cloud cover 
were removed from this analysis prior to performing the AG-NCR procedure. Images that 
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could not be brought to a common radiometric scale, identified using measures of model 
fit (R
2
 < 0.85 for any ETM+ bands), were removed from the classification. Once images 
representing the same season were brought to a common radiometric scale they were then 
merged together by band to create three large images representing each season. Bands 
from each season were then used as explanatory variables for our hierarchical 
classification scheme.  
Hierarchical Classification Scheme 
 Our hierarchical classification scheme is a 2 level, multi-stage classification that 
uses the conditional probabilities of a preceding PLR model to constrain the conditional 
probabilities of subsequent PLR models. Using this approach, we were able to reduce the 
impact of temporal features in multitemporal imagery and were able to hierarchically 
organize our classification without losing spatially explicit class information. The 
benefits of our hierarchical classification scheme include fewer field samples, preserving 
modeling and classification errors, and the ability to account for confounding temporal 
features.  
The first stage in level 1 of our hierarchical classification scheme generated a 
series of land cover, land use change, and temporal features probability distributions at 
the resolution of one ETM+ pixel, using extracted spectral values visually interpreted 
from our normalized multitemporal ETM+ imagery and digital ortho quarter quads. 
Temporal feature probability distributions occurring in stage 1, which identify the season 
and type of temporal feature, were then allocated to land cover and land use change 
probability distributions by restricting the explanatory variables of each consecutive stage 
to seasonal imagery that did not have confounding temporal feature class types. For 
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example, a probabilistic land cover classification that uses multitemporal ETM+ imagery 
representing a leaf-on and leaf-off season generates 3 PLR models (i.e., stages; Figure 3). 
The first PLR model identifies the probability distribution of land cover, land use change, 
and temporal feature class types using the ETM+ bands from both seasons. The second 
and third PLR models (i.e., second and third stage) generate a series of land cover and 
land use change probability distributions using only leaf-on or leaf-off imagery as 
explanatory variables, respectively. Land cover and land use change probability 
distributions generated in the second and third PLR models are then multiplied by the 
temporal feature probability distributions of the first PLR model. The product of these 
multiplications are then added to the land cover and land use change probability 
distributions of the first PLR model, thereby constraining the land cover and land use 
change probability distributions of the second and third PLR model to the temporal 
features probability distributions of the first PLR model.  
 The first stage in the second level of our hierarchical classification scheme 
generated a series of forested ecosystem probability distributions using extracted spectral 
values from ETM+ imagery interpreted from field samples and PLR (Figure 3). Similar 
to level 1 of our hierarchical classification, temporal features can have confounding 
effects on forested ecosystem probability distributions. To account for these effects, the 
same staging scheme as described in level 1 was used to generate a series of ecosystem 
PLR models. The probability distributions of each forested ecosystem stage were then 
multiplied by the probability distributions of Deciduous and Evergreen land cover types, 
for each corresponding level 1 stage. The product of these multiplications were then 
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summed across all ecosystem stages, thereby constraining forested ecosystem 
probabilities by Deciduous and Evergreen land cover types.  
In the second level of our hierarchical classification, field samples potentially 
could occur at the same geographic location as temporal features in the imagery. To 
account for this scenario, an initial hard classification (sensue Foody and Hill, 1996) of 
the field sample points was performed using the level 1, stage 1 PLR model and a 
maximum likelihood allocation rule. Field samples identified as a temporal features were 
then subset into groups, based on the seasonality of the confounding feature, and used in 
the appropriate forested ecosystem PLR stage.  
Image Sampling Scheme 
 Land cover, land use change, and temporal features class types were visually 
interpreted at the spatial scale of one ETM+ pixel across the study area using the 
normalized ETM+ imagery and digital ortho quarter quads. Class types include 
generalized National Land-Cover Database categories (Table 1; after Homer et al., 2004), 
land use change (e.g., cropland converted to bare ground, clear cuts, and developing 
areas) and temporal features (e.g., clouds, burnt areas, shadows, and smoke). To maintain 
consistency across the study area, one image interpreter identified all class samples. 
Using ArcGIS version 8.3, Environmental Systems Research Institute?s Spatial Analyst 
extension and our normalized multitemporal ETM+ imagery, DN values occurring at the 
same spatial location as image interpreted sample plots were extracted on a nearest pixel 
basis by band using the sample command (ESRI, 2005). In all, 10,941 spectral samples, 
representing the DN values of land cover, land use change, and temporal features for each 
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band of our normalized multitemporal ETM+ imagery, were collected across our study 
area. 
Field Sampling Scheme 
 Due to the presence of large, contiguous, coniferous stands on public lands 
(Outcalt and Sheffield, 1996) and issues of accessibility, field samples of forested 
ecosystems were primarily collected in national forests, national wildlife refuge areas, 
state forests, and military installations. Prior to field visits, potential sample sites were 
identified using aerial photography, stand data, and other ancillary data sets (e.g., spatial 
layers identifying forest boundaries, roads, and stream networks). After navigating to 
prioritized areas, sample locations were selected based on field observations. Locations 
that appeared to be composed of predominantly one overstory species ( > 75% of the 
overstory component) were sampled based on the following criteria; 1) sampling plots 
were at least 60 m from any road, 2) sampling plots represented at least a 3 by 3 pixel 
area of homogeneous overstory, and 3) sample locations had a minimum distance of 60 m 
from one another. In all, 1772 field samples were collected across our study area.   
            At each sample location, a 0.04 ha plot (~ half an ETM+ pixel) was used to 
categorize ecosystem types by quantifying the relative density of tree species > 4 m in 
height. Plots that had > 75% relative density for a single pine tree species, were 
categorized as one of the following forested ecosystem; Coastal Plain Longleaf, 
Mountain Longleaf, Loblolly, or Slash. Plots that had > 75% relative density for 
hardwood tree species were grouped into one class called Hardwoods. Plots that had a 
mixture of hardwood and pine species (relative densities of hardwood and pine species < 
75% and > 25% for a given group) were categorized as Mixed Hardwood Pine. Plots that 
 
 
  77
had mixture of pine species with relative densities < 75% and > 25% for given groups of 
pines were removed from our analysis because they were found to occupy the same 
spectral space as low class probabilities of the two most prevalent pine species within 
those groups, thus generating redundant information. By setting probabilistic thresholds 
for each pine dominant ecosystem (> 75% relative density for a given pine species), users 
can identify the probable locations of mixed pine ecosystems. Dominant pine ecosystems 
not represented in our classification scheme (e.g., shortleaf, sand, spruce and Virginia 
pine) accounted for a small portion of our study area and thus were not directly modeled. 
In addition to categorizing relative densities, geographic coordinates (WGS 84) were 
collected at each sample location using a Garmin eTrex Legend global positioning 
systems (GPS) unit. To maintain a close proximity to the true location of our sample plot, 
GPS coordinates were only recorded when location errors were less than 10 meters. 
Sample plots were then projected into Albers equal area projection using ArcGIS version 
8.3 and were used to extract elevation and spectral data from our DEMs and our 
normalized multitemporal ETM+ imagery, on a nearest pixel basis, using the same 
process described in the previous section. 
PLR Models 
 Prior to extracting spectral information for image and field interpreted samples, 
we randomly partitioned each data set into 2 groups, a training (~70% of the data) and a 
validation (~ 30% of the data) data set. Training data were used to develop PLR 
classifications for each stage of our hierarchical classification scheme by first removing 
redundant or insignificant explanatory variables via a stepwise procedure (SAS, 2005). 
Thresholds for variables entering and staying in each PLR model were set at a 
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significance level of 0.15 and 0.10, respectively. Next, using combinations of the 
remaining explanatory variables, a suite of potential PLR classifications were generated, 
from which the best fitting, most parsimonious models were selected based on Akaike's 
Information Criterion (AIC; Akaike, 1973; Table 2). The validation data set was then 
used to independently assess the predictive capabilities of our classification models using 
methods described in Hogland et al. (in progress; see chapter 1). To avoid extrapolating 
our PLR models when generating our probabilistic classification, we restricted each 
predictive model to the upper and lower values of sampled explanatory variables. In level 
1 of our hierarchical classification scheme, all pixels within our study area fell within the 
spectral range of image interpreted samples. In level 2 of our hierarchical classification 
scheme, many pixels within our study area fell outside the range of our DN and elevation 
values sampled in the field. Subsequently, ecosystem probabilities for those pixels were 
not calculated and class probabilities for those pixels reverted to level 1 Evergreen and 
Deciduous class probabilities.     
 Because the spatial location of each forested ecosystem type was not known prior 
to the beginning of our study, we approached each stage of level 2 in our hierarchical 
classification as a retrospective study (Agresti, 2002). Therefore, forested ecosystems 
were given an equal sampling weight for each PLR model. To account for forested 
ecosystem prior probabilities across our study area, we incorporated Bayesian statistics 
into our analyses.  
Bayesian statistics were generated in the form of prior abundance estimates, 
relative to a maximum abundance of 100, for each forested ecosystem using FIA findings 
(Outcalt and Sheffield, 1996) and the spatial layers of tree species range maps (after 
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Little, 1971), known publicly owned and privately owned protected lands, and Level III 
Omernik Ecoregions (Omernik, 1987). Prior abundance estimates can be converted to 
prior probabilities as follows; 
                
AbundancePrior 
AbundancePrior 
iesProbabilitPrior 
n
1i
i
i
i
?
=
=                                             (1) 
where i identifies each ecosystem type and n is the total number of ecosystems. Figure 4 
illustrates the prior abundance estimates used at the intersection and extent of each spatial 
layer.  
RESULTS 
All winter leaf-off and summer/fall leaf-on ETM+ images were brought to a 
common radiometric scale for each respective season (R
2
 > 0.85 for every ETM+ band; 
Figure 2). On average, the AG-NCR normalization procedure accounted for 96.6 % and 
96.8% of the variation between ETM+ images representing a winter and summer/fall 
season, respectively.  
Six ETM+ images representing a spring leaf-on season could not be brought to a 
common radiometric scale (R
2
 < 0.85 for at least one ETM+ band; Figure 2), and were 
subsequently removed from our hierarchical classification. Furthermore, 2 representative 
images, identified as path/row 18/39 and 19/36 for the spring leaf-on season (Figure 2), 
could not be obtained and consequently were not used in our hierarchical classification. 
On average, the AG-NCR normalization procedure accounted for 96.5% of the variation 
between the remaining 14 spring leaf-on ETM+ images. 
Models selected for each stage in our hierarchical classification can be found in 
Table 2. While the best fitting most parsimonious models were achieved using a 
 
 
  80
combination of spectral bands from all seasons, these models could not be generalized to 
our entire study area because of the problems with 8 spring leaf-on images previously 
mentioned. Therefore, we limited our final probabilistic classifications to PLR models 
which used winter and summer/fall normalized ETM+ imagery. Reducing the 
explanatory variables in our hierarchical classification had a minimal effect on model fit 
(
2
R
~
? ~ 0.01; SAS, 2005) and decreased the total number of land use change and temporal 
features classes (i.e., land use change and temporal features occurring in the spring 
imagery), making for a less complex probabilistic classification that could be generalized 
across our study area. 
PLR stages 
 Slope estimates for each explanatory variable in our hierarchical classification 
(Tables 3 and 4) identify changes in the natural log odds ratio (logits) of each class 
comparison (Agresti, 2002; Hogland et al., in progress; see chapter 1), given a change in 
that explanatory variable. Odds ratios represent the number of times one class was found 
versus a baseline class (i.e., a class with which all other classes are compared against in 
the PLR classification), for a given set of explanatory variables. Alternatively, one can 
view these class counts as class probabilities (i.e., the counts of one class ?A? divided by 
the counts of another class ?B? is equivalent to the ratio of {A/{A+B}} / {B/{A+B}}). 
Therefore, the exponentiation of the slope estimates for each logit provides an intuitive 
description of the change in probabilities between one class versus the baseline class. 
This description is properly interpreted as a multiplicative increase/decrease in the ratio 
of 2 class probabilities for every incremental increase in a given explanatory variable. To 
determine the change in probabilities between one class and another class other than the 
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baseline class, one can exponentiate the difference between the beta estimates of a given 
explanatory variable. For example, in stage 1 of level 1 in our hierarchical classification 
(Table 3) the odds of the Deciduous class (i.e., the probability of the Deciduous class / 
the probability of the Water class) increase on average by a multiple of 1.59 (e
(0.464)
)
 
for 
every unit increase in ETM+ spectral band 4 during a winter leaf-off season. However, 
when comparing the Deciduous class with the Evergreen class the odds of the Deciduous 
class (i.e., the probability of the Deciduous class / the probability of the Evergreen class) 
decrease on average by a multiple of   0.94 (e
(0.464 - 0.526)
)
 
 for every unit increase in 
spectral band 4 during a leaf-off season. Using odds ratios, analysts can quickly 
determine how changes in the spectral values affect the probability of one class given the 
probability of another class, they can objectively compare the slope estimate of 
explanatory variable when values have been standardized (Appendix 1), and they can 
generate class probability through a series of mathematical manipulations (Appendix 
2A). 
Level 1 of the hierarchical classification scheme ? The top performing model 
in stage 1, level 1 used normalized spectral bands 1-5 and 7 from both seasons to 
calculate class probabilities of land cover, land use change, and temporal features (Table 
2). Subsequent stages also used ETM+ bands 1-5 and 7 to calculate class probabilities, 
but were restricted to only one season for each PLR model (Figure 3). Each stage in level 
1 generated statistically significant models (p-value < 0.0001) that explained the majority 
of the information within the data (
2
R
~
values > 0.96). Slope estimates for each stage of 
level 1 can be found in table 3. 
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Assessing each stage?s PLR model using class 95% confidence intervals, a 
maximum likelihood allocation rule, and the validation data set (Hogland et al, in 
progress; see chapter 1), we found that each PLR model accurately predicted the number 
of observations occurring for each class (Table 5). This result suggests that our PLR 
models for level 1 were unbiased and could be applied across our study area. Applying 
our level 1 PLR models, we effectively removed the confounding temporal features in 
our multitemporal imagery while maintaining the spatially explicit nature of our PLR 
model and classification errors (Figure 5).  
Level 2 of the hierarchical classification scheme ? The top performing model 
in level 2, stage 1 used ETM+ spectral bands 1-5 from both the winter leaf-off and 
summer/fall leaf-on season and DEMs to differentiate between forested ecosystems types 
(Tables 2 and 4). Stage 2 and 3 PLR models used DEMs and ETM+ bands 1-5 and 7 for  
summer/fall leaf-on and winter leaf-off seasons, respectively, to distinguish forested 
ecosystems. Each stage of level 2 generated statistically significant models (p-value < 
0.0001) that explained large portions of the information within the data (
2
R
~
values > 
0.93). 
Comparatively, both the Slash and Mountain Longleaf ecosystem classes are 
spectrally closest to the Coastal Plain Longleaf ecosystem class in the winter leaf-off 
season (i.e., slopes closest to zero in stage 1; Table 4 and appendix 1). However, these 
forested ecosystems quickly become distinguishable in band 1 of the summer/fall leaf-on 
season and low and high elevations, respectively (Table 4; appendix 1). Furthermore, the 
spectral differences between the Slash and Coastal Plain Longleaf ecosystem 
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dramatically increases in ETM+ bands 2, 3, and 4 representing a summer/fall leaf-on 
season. 
Assessing the accuracy of our forested ecosystem classification using the same 
methodology as in stage one, we were able to predict the number of observations 
occurring for each PLR iteration (Table 6). Constraining our ecosystem models by the 
conditional probabilities of stage 1 Evergreen and Deciduous classes, we were able to 
identify the probability distribution of each forested ecosystem type while maintaining 
stage 1 and stage 2 modeling and classification errors (Figure 6). 
 DISCUSSION 
 Using the spatial locations of image interpreted and field interpreted samples, 
multitemporal ETM+ imagery, ancillary data sets, PLR, and our hierarchical 
classification scheme, we have accurately (i.e., good model fit) depicted the probability 
distributions of longleaf and other pine ecosystems across a large portion of the 
Southeast. To account for differences among forested ecosystem prior probabilities, given 
spectral reflectance and the elevation of each pixel, we estimated prior abundance of each 
ecosystem, relative to a maximum abundance of 100, on a pixel basis, using recent FIA 
findings (Outcalt and Sheffield, 1996) and the spatial distribution of our ancillary data 
sets (Figure 4). While we believe these estimates to be an accurate depiction of the 
chance of finding each forested ecosystem, given the spectral reflectance and elevation of 
each pixel, they may be insufficient to account for site-specific cases. In instances where 
the prior abundance of a given ecosystem is greater or less than our assumed values, 
absolute ecosystem probabilities will be skewed to either the lower or higher end of the 
probability distribution, respectively. Relative values (i.e., the magnitude of change in the 
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logits between any two pixels within the same prior abundance estimates), however, 
remain constant across the spatial distribution of our prior abundance estimates. 
Therefore, individuals that have further knowledge of prior ecosystem abundance for a 
site specific location (in relation to the spectral reflectance and elevation of that location) 
can directly incorporate that information into the probabilistic ecosystem classification 
(Appendix 2B). 
Potential biological implications 
 While the goal of this study was to generate a spatially explicit data set that 
accurately depicts the distribution of longleaf ecosystems across a large portion of the 
Southeast, many other biologically important questions, pertaining to ecosystem structure 
and the effects on spectral reflectance can be addressed. For example, given the 
dependence of longleaf ecosystems on fire (Lear et al., 2005) and that longleaf 
ecosystems typically have sparse overstories with a diverse understory (Peet and Allard, 
1993) when compared to loblolly ecosystems, one would expect Coastal Plain Longleaf 
ecosystems to reflect and transmit more spectral energy than Loblolly ecosystems in the 
photosynthetically active portion of the electromagnetic spectrum (ETM+ bands 1 and 3). 
To test this prediction we compared the probability of finding a Loblolly ecosystem with 
the probability of finding a Coastal Plain Longleaf ecosystem (odds ratio; Table 4) using 
exponentiated slope estimates for ETM+ bands 1 and 3, acquired during a winter leaf-off 
and summer/fall leaf-on season using level 1, stage 1 in our hierarchical classification 
scheme. Surprisingly, we found a mixed effect when comparing these values. In ETM+ 
band 1, for both the winter and summer/fall periods, the mean odds of finding a loblolly 
ecosystem increased by multiples of 1.40 and 1.36, respectively, for every increase of 1 
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DN value. In ETM+ band 3, however, the odds of finding a loblolly ecosystem declined 
by multiples of 0.73 and 0.62, respectively, for every DN value increase. Interpreting 
these results, we see that as reflectance increase in the spectral range of ETM+ band 1, 
coastal plain longleaf ecosystems are less likely to occur when compared with loblolly 
ecosystems and that as reflectance increase in the spectral range of ETM+ band 3, 
longleaf ecosystems are more likely to occur when compared with loblolly ecosystems. 
This could suggest a relative trade off in the way each ecosystem absorbs electromagnetic 
energy for the purposes of photosynthesis (i.e., longleaf ecosystems prefer higher energy, 
shorter wavelength, electromagnetic energy, and loblolly ecosystems prefer lower energy, 
longer wavelength, electromagnetic energy). To determine if these results are due to 
chance alone, one could incorporate standard error estimates (Appendix 3) with mean 
slope estimates (Tables 4) to calculate the probability that each slope estimate is 
equivalent to zero. In this example, the slope estimates for both seasons and bands were 
significantly different from zero (p-value < 0.0001), meaning the relationship found 
between the probability of finding a loblolly vs. longleaf ecosystem is very unlikely to be 
caused by chance alone. Comparing the effect of changes in other spectral bands, such as 
the near and middle infrared bands (ETM+ bands 4, 5, and 7), on the odds of each 
forested ecosystem, analysts can begin to characterize other biological aspects of each 
ecosystem. It is important to remember, however, that our relationships are correlational 
not causal, and that further tests, designed as an experiment, should be performed to 
substantiate biological interpretations. 
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Management implications 
Using our forested ecosystem probability distributions and a GIS, resource 
managers can generate probability distribution maps for a specific location (Figure 8), set 
probability thresholds to identify the most probable locations of longleaf ecosystems, 
identify potential longleaf ecosystem restoration sites, and incorporate ancillary data sets 
to prioritize restoration locations. By weighting the area of each pixel by the probability 
of each ecosystem, managers can obtain an estimate of the amount of ecosystem area for 
a predefined location. For example, if a resource manager wanted to estimate the average 
amount of area within the boundary of the Blackwater State Forest in Florida that was 
classified as a coastal plain longleaf ecosystem type, they could use zonal statistics to 
sum the multiples of pixel area by ecosystem probability (Figure 7). In so doing, 
managers would estimate there to be approximately 19,500 hectares of Coastal Plain 
Longleaf ecosystem within Blackwater State Forest. This area estimate, however, would 
more than likely be inflated given that mixed pine ecosystems were not modeled. To 
account for mixed pine ecosystems we would suggest setting a minimum probability 
threshold of 25% when performing area calculations. Furthermore, this estimate 
represents only the mean estimate of ecosystem area. Using modeling error and the delta 
method (Agresti, 1990) managers could generate probability confidence intervals for 
each pixel within the study area, which could be used to generate a range of ecosystem 
area estimates representing a predefined level of ecosystem area accuracy.      
CONCLUSION  
We successfully mapped longleaf ecosystems at a fine spatial resolution (30 m 
grain), across a large portion of the Southeast. These probabilistic ecosystem 
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classifications provide resource managers with a level of detail that is statistically 
accurate and precise and flexible enough to begin addressing fine scale longleaf 
ecosystem restoration questions. In addition, model and classification errors have been 
maintained in a spatially explicit manner across our study area, thereby allowing other 
researchers to incorporate our model errors into their work. Future studies could 
potentially improve upon our results by incorporating ETM+ imagery from a spring leaf-
on season, adding a textual component to the analysis, and/or directly incorporating the 
spatial locations of FIA data. Finally, probabilistic ecosystem classification will be made 
available through the Alabama Gap Analysis by the end of August 2005. 
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Table 1. Cross walk between our level 1 land cover classes and NLCD
+
 classes. 
Land Cover Classes NLCD Classes 
Water 11  Open Water   
21  Developed, Open Space  
22  Developed, Low Intensity  
23  Developed, Medium Intensity 
24  Developed, High Intensity  
31  Barren Land (Rock/Sand/Clay) 
 Urban / Transportation 
/ Bare Ground 
32  Unconsolidated Shore  
41  Deciduous Forest  
Evergreen 
42  Evergreen Forest   
43  Mixed Forest   
Fore
sted
*
 
Deciduous 
52  Shrub/Scrub   
71  Grassland/Herbaceous  
81  Pasture/Hay   
Field 
82  Cultivated Crops   
90  Woody Wetlands   
Wet Vegetated Area 
95  Emergent Herbaceous Wetlands 
+
National Land-Cover Dataset (NLCD) classes 12, 51, 72, 73, and 74 were not applicable 
to our study. 
*Forested classes were split into 2 groups Evergreen and Deciduous based on the 
dominance (> 50% percent cover) of Evergreen and Deciduous trees.
Table 2. PLR model statistics for each level and stage of our hierarchical classification scheme (HCS). W and S/F identify winter 
and summer/fall seasonality of the imagery. 
+
All explanatory variables listed had values significantly different than 0 (? < 0.0001)  
 
*
Model selected for each stage of our HCS
Explanatory Variables 
+
 
HCS 
Level 
HCS 
stage 
Top 3 
models W ETM+ 
Bands 
S/F ETM+ 
Bands 
DEM
Degrees 
of 
Freedom
AIC ?AIC 
Model 
Weight 
X
2
 Nested 
Comparison 
p-value 
1* 1-5 and 7 1-5 and 7 no 168 7443.25 0.000 1.0000 - - 
2 1, 3-5, and 7 1-5 and 7 no 154 7496.27 53.020 0.0000 1 vs.2 0.0000 1 
3 1-5, and 7 1-5 no 154 7551.562 108.312 0.0000 1 vs.3 0.0000 
1* - 1-5 and 7 no 36 3952.42 0.000 0.9994 - - 
2 - 1-5 no 30 4180.83 228.410 0.0000 1 vs.2 0.0000 2 
3 - 2-7 no 30 3967.41 14.990 0.0006 1 vs.3 0.0001 
1* 1-5 and 7 - no 36 4839.211 0.000 1.000 - - 
2 2-7 - no 30 5045.916 206.705 0.000 1 vs.2 0.0000 
1 
3 
3 1-5 - no 30 5188.836 349.625 0.000 1 vs.3 0.0000 
1 1-5 1-5 and 7 yes 60 3271.926 0.000 0.457 - - 
2* 1-5 1-5 yes 55 3272.197 0.271 0.399 1 vs.2 0.0679 1 
3 1 and 3-5 1-5 and 7 yes 55 3274.232 2.306 0.144 1 vs.3 0.0308 
1* - 1-5 and 7 yes 35 4027.868 0.000 0.8921 - - 
2 - 1-5 yes 30 4032.092 4.224 0.1079 1 vs.2 0.0142 2 
3 - 1, 3-5, and 7 yes 30 4194.528 166.660 0.0000 1 vs.3 0.0000 
1* 1-5 and 7 - yes 35 4104.671 0.000 0.8242 - - 
2 1, 3-5, and 7 - yes 30 4107.761 3.090 0.1758 1 vs.2 0.0225 
2 
3 
3 1-2, 4-5, and 7 - yes 30 4219.027 114.356 0.0000 1 vs.3 0.0000 
89 
Table 3. Slope and intercept estimates for each stage of level 1 in our hierarchical classification scheme (HCS). The land cover class 
type ?Water? was used as the baseline category. W and S/F identify winter leaf-off and summer/fall seasons, respectively. 
HCS stage Logits intercept W Band 1 W Band 2 W Band 3 W Band 4 W Band 5 W Band 7 
S/F band 
1 
S/F band 
2 
S/F band 
3 
S/F band 
4 
S/F band 
5 
S/F band 
7 
LUC W, S/F -3.527 -0.493 -0.040 -0.170 0.278 -0.118 0.218 0.341 -0.202 -0.059 0.261 0.117 0.134 
LUC W -5.503 -0.078 -0.315 0.133 0.292 -0.013 -0.010 0.204 -0.287 -0.099 0.306 -0.154 0.322 
LUC S/F 0.356 -0.403 -0.069 -0.408 0.334 0.027 -0.110 0.477 -0.319 -0.098 0.252 0.106 0.224 
Burnt W -9.352 -0.198 -0.219 -0.391 0.423 -0.410 0.536 0.423 -0.086 -0.184 0.331 0.098 0.068 
Burnt S/F -5.316 -0.186 0.003 -0.405 0.434 -0.094 0.056 0.390 -0.126 -0.196 0.143 -0.024 0.253 
Smoke W -33.550 0.892 -0.170 -0.526 0.545 -0.367 0.374 -0.279 -0.280 -0.348 0.338 0.077 0.325 
Smoke S/F -21.892 -0.704 0.028 -0.213 0.474 -0.145 0.226 0.946 -0.083 -0.520 0.319 -0.005 0.240 
Clouds S/F -29.553 -0.430 0.197 -0.248 0.385 -0.125 0.090 0.627 -0.060 -0.205 0.418 -0.057 0.230 
Shadow S/F 13.476 -0.941 0.588 -0.669 0.834 0.138 0.130 0.755 -1.041 -0.096 -0.139 -0.348 -0.251 
Fields -22.224 -0.432 0.245 -0.303 0.506 -0.292 0.333 0.249 -0.266 -0.065 0.467 0.099 0.175 
Urban / Trans. / 
Bare  
-29.764 -0.194 0.146 -0.183 0.440 -0.294 0.268 0.419 -0.162 -0.009 0.388 -0.159 0.293 
Deciduous -4.725 -0.162 -0.183 -0.209 0.464 -0.135 0.104 0.298 -0.233 -0.491 0.351 0.213 0.024 
Evergreen 5.317 -0.354 0.143 -0.160 0.526 -0.186 -0.075 0.066 -0.168 -0.208 0.327 0.009 0.138 
1 
Wet  Vegetated  -21.056 0.005 -0.026 -0.082 0.236 -0.090 -0.038 0.273 0.195 -0.262 0.210 0.165 -0.101 
LUC S/F -18.146 - - - - - - 0.291 -0.670 0.136 0.293 0.226 0.152 
Fields -26.316 - - - - - - 0.192 -0.580 0.137 0.526 0.126 0.256 
Urban / Trans. / 
Bare 
-30.296 - - - - - - 0.345 -0.268 0.126 0.400 -0.041 0.249 
Deciduous -5.990 - - - - - - 0.240 -0.530 -0.214 0.338 0.388 -0.262 
Evergreen -4.310 - - - - - - 0.187 -0.316 -0.058 0.338 0.068 -0.107 
2 
Wet Vegetated  -23.247 - - - - - - 0.299 0.100 -0.154 0.149 0.336 -0.294 
LUC W -0.435 0.073 -0.654 0.100 0.299 0.107 0.081 - - - - - - 
Fields -15.736 -0.085 -0.110 -0.169 0.555 -0.042 0.253 - - - - - - 
Urban / Trans. / 
Bare 
-20.152 0.085 -0.008 -0.083 0.490 -0.219 0.289 - - - - - - 
Deciduous 2.170 0.205 -0.800 -0.177 0.466 0.160 -0.001 - - - - - - 
Evergreen 14.310 -0.080 -0.639 -0.036 0.506 0.110 -0.249 - - - - - - 
3 
Wet Vegetated  -12.737 0.400 -0.399 -0.073 0.266 0.161 -0.188 - - - - - - 
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Table 4. Slope and intercept estimates for each stage of level 2 in our hierarchical classification (HCS). The forested ecosystem 
Coastal Plain Longleaf was used as the baseline class. W and S/F identify winter leaf-off and summer/fall seasons, respectively. 
HCS 
stage 
Logits intercept
W  
band 1
W 
band 2
W  
band 3
W  
band 4
W  
band 5
W  
band 7 
S/F 
band 1
S/F 
band 2
S/F 
band 3
S/F 
band 4
S/F 
band 5
S/F 
band 7
Elevation
Slash 0.923 -0.060 -0.051 -0.033 -0.043 0.020 - -0.160 0.374 -0.163 0.150 -0.026 - -0.009 
Hardwood 1.626 0.225 0.320 -0.297 -0.254 0.250 - 0.332 -0.741 -0.617 0.206 0.106 - -0.002 
Mixed Hardwood/Pine -6.648 0.267 0.206 -0.327 -0.146 0.236 - 0.115 -0.149 -0.305 0.057 -0.044 - 0.012 
Mountain Longleaf 1.969 0.149 0.083 0.107 -0.021 -0.027 - -0.349 -0.103 -0.007 0.066 0.006 - 0.025 
1 
Loblolly -7.415 0.340 0.182 -0.312 -0.075 0.069 - 0.304 -0.173 -0.485 -0.162 0.106 - 0.024 
Slash -0.508 - - - - - - -0.212 0.321 -0.151 0.105 -0.034 0.032 -0.012 
Hardwood -4.733 - - - - - - 0.642 -0.875 -0.820 0.188 0.435 -0.169 0.012 
Mixed Hardwood/Pine -10.663 - - - - - - 0.420 -0.186 -0.508 0.039 0.155 -0.009 0.019 
Mountain Longleaf -0.650 - - - - - - -0.168 0.013 -0.013 0.055 0.087 -0.146 0.034 
2 
Loblolly -10.427 - - - - - - 0.580 -0.067 -0.555 -0.198 0.209 -0.177 0.030 
Slash -2.315 -0.008 0.047 -0.041 0.055 -0.091 0.132 - - - - - - -0.010 
Hardwood -16.141 0.459 0.205 -0.487 -0.253 0.346 -0.135 - - - - - - 0.012 
Mixed Hardwood/Pine -13.610 0.361 0.197 -0.470 -0.127 0.235 -0.091 - - - - - - 0.015 
Mountain Longleaf -13.584 0.102 0.004 0.090 0.025 0.016 -0.111 - - - - - - 0.031 
3 
Loblolly -12.831 0.423 0.211 -0.377 -0.150 0.178 -0.254 - - - - - - 0.024 
91 
Table 5. Predicted 95% class count confidence intervals (CI) vs. observed class counts for level 1 validation data set. 
  
 
 
 
 
 
 
 
 
 
*
 Land use change 
+
Temporal features
Stage 1 Stage 2 Stage 3 
Land Cover, LUC
*
, 
and TF
+
 classes 
Lower 
95% CI 
Observed
Upper 
95% CI 
Lower 
95% CI 
Observed 
Upper 
95% CI 
Lower 
95% CI 
Observed 
Upper 
95% CI 
LUC W, S/F 86.9 107 147.4 - - - - - - 
Burnt W 90.1 118 151.4 - - - - - - 
LUC W 71.8 98 129.6 - - - 179.0 205 247.5 
Smoke W 15.7 19 24.8 - - - - - - 
Burnt S/F 95.4 143 189.1 - - - - - - 
LUC S/F 89.7 115 131.4 202.7 222 254.1 - - - 
Clouds S/F 108.9 149 179.9 - - - - - - 
Shadow S/F 69.0 69 71.7 - - - - - - 
Smoke S/F 83.4 108 147.8 - - - - - - 
Fields 237.5 286 322.0 245.7 286 308.9 252.0 286 322.3 
Urban / Trans. / 
Bare 
228.9 246 287.2 228.2 246 266.9 234.2 246 283.0 
Deciduous 272.9 315 389.7 294.2 315 372.6 270.0 315 368.4 
Evergreen 292.8 356 379.0 307.8 356 380.9 308.5 356 368.5 
Water 340.0 356 363.5 347.3 356 361.6 341.5 356 372.5 
Wet Vegetated 129.7 182 219.1 144.4 182 211.8 135.5 182 209.5 
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Table 6. Predicted 95% confidence intervals (CI) for class counts vs. weighted observed class counts for level 2 validation data sets. 
The observed number of samples (actual) were weighted to remove the effect of prior probabilities.  
 
 
 
 
 
Stage 1 Stage 2 Stage 3 
Forested Ecosystem 
classes 
Lower 
95% CI 
Observed 
(actual) 
Upper 
95% CI 
Lower 
95% CI 
Observed 
(actual) 
Upper 
95% CI 
Lower 
95% CI 
Observed 
(actual) 
Upper 
95% CI 
Slash 80.7 118 (55) 150.1 98.5 129 (58) 156.3 93.3 127 (58) 152.6 
Hardwoods 95.9 123 (83) 142.7 109.2 136 (85) 153.0 105.0 129 (83) 159.9 
Mixed Hardwood/Pine 81.1 111(72) 173.7 98.8 123 (78) 177.4 95.7 117 (74) 175.2 
Mountain Longleaf 63.0 79 (19) 105.7 79.4 86 (19) 113.7 74.5 84 (19) 109.6 
Coastal Plain Longleaf 78.3 126 (126) 154.5 94.9 143 (143) 159.5 84.5 136 (136) 148.3 
Loblolly 79.9 120 (51) 150.8 101.7 136 (61) 166.7 88.9 128 (52) 155.3 
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Figure 1. An overlay of the historical range of longleaf ecosystems (after Little, 1971) and our study area. The extent of our study 
area was defined as the counties within the state of Alabama and the counties that intersected United States Fish and Wildlife Service 
econumber 29 and 30 (USFWS, 2000). 
Study Area
Longleaf Range Map
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Figure 2. An overlay of our study area (outlined in gray), and Landsat scenes by path row (PR; outlined in red) showing the dates of 
ETM+ image acquisition for a winter leaf-off (W), a summer/fall leaf-on (F), and a spring leaf-on (S) season. Dates followed by an 
M or X indicate master images and images that could not be brought to a common radiometric scale, respectively. N/A identifies 
scenes for which we were unable to obtain a suitable image representing a spring leaf-on season.  
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Figure 3. Hierarchical classification scheme for two seasons. W and S/F identify land use change (LUC) and temporal feature (TF) classes found 
in the normalized ETM+ imagery representing a winter leaf-off and summer/fall leaf-on season, respectively. 
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Figure 4. Three maps illustrating the spatial configuration of forested ecosystem prior abundance estimates. Maps A, B, and C 
correspond to the prior abundance estimates, relative to a maximum abundance estimate of 100, for Mountain Longleaf, Coastal 
Plain Longleaf, and Slash ecosystems, respectively. Prior abundance estimates for Hardwood, Mixed Hardwood/Pine, and Loblolly 
ecosystems were set at 100 across our study area.   
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Figure 5. Level 1 Land cover and land use change probabilistic classifications.
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Figure 6. Level 2 Forested ecosystem probabilistic classifications. 
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Figure 7. Average area (m
2
) per pixel for Coastal Plain Longleaf Ecosystems within Blackwater State Forest. Blackwater State 
Forest is located in the northwest portion of the Florida panhandle and is depicted as the red area in the location map.  
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Figure 8. Probability distribution of the Coastal Plain Longleaf ecosystem within and around Conecuh National Forest located in 
southern Alabama (identified as the red area within the location map).
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APPENDIX 1 
Standardized slope and intercept estimates for each stage of level 1 in our hierarchical classification scheme (HCS). 
 
HCS 
stage 
Class 
W Band 
1 
W Band 
2 
W Band 
3 
W Band 
4 
W Band 
5 
W Band 
7 
S/F band 
1 
S/F band 
2 
S/F band 
3 
S/F band 
4 
S/F band 
5 
S/F band 
7 
LUC W, S/F -3.1161 -0.2767 -1.7509 3.4166 -2.0383 2.7979 5.3104 -3.334 -1.1294 3.9077 2.6607 2.4798 
LUC W -1.2517 -1.5296 -4.0133 5.1994 -7.0932 6.8795 6.5879 -1.4274 -3.5158 4.9499 2.2323 1.2464 
LUC S/F -0.4954 -2.198 1.3685 3.5964 -0.2254 -0.123 3.1765 -4.7399 -1.8856 4.5854 -3.4976 5.9296 
Burnt Areas W 5.6347 -1.1848 -5.4059 6.7049 -6.3506 4.7961 -4.3463 -4.6395 -6.6306 5.0609 1.7377 5.9921 
Burnt Areas 
S/F 
-1.1742 0.0216 -4.1659 5.339 -1.6305 0.7172 6.0852 -2.0864 -3.7443 2.132 -0.5385 4.6576 
Smoke W -2.5441 -0.4788 -4.1895 4.1024 0.4597 -1.4046 7.4427 -5.2787 -1.8632 3.7648 2.4116 4.1279 
Smoke S/F -2.7135 1.3773 -2.5504 4.7307 -2.172 1.1576 9.767 -0.9951 -3.9054 6.2497 -1.2994 4.2329 
Clouds S/F -5.9394 4.1031 -6.8712 10.254 2.397 1.6716 11.7622 -17.2281 -1.8363 -2.0867 -7.8979 -4.6273 
Shadow S/F -4.4426 0.1945 -2.1934 5.8292 -2.5155 2.9003 14.7463 -1.379 -9.9206 4.7731 -0.1159 4.4327 
Fields -2.7271 1.7116 -3.1128 6.2186 -5.0633 4.2753 3.8808 -4.3941 -1.2421 6.9918 2.2538 3.2201 
City -1.2263 1.0165 -1.8775 5.4121 -5.0909 3.434 6.5285 -2.6768 -0.1623 5.8117 -3.5973 5.4114 
Deciduous -1.0227 -1.2741 -2.1514 5.7059 -2.3372 1.3384 4.643 -3.8568 -9.3526 5.2498 4.8278 0.4449 
Evergreem -2.2348 0.9975 -1.6391 6.4748 -3.2161 -0.9606 1.0293 -2.7864 -3.9582 4.895 0.2099 2.5405 
1 
Wet Vegetated 
Areas 
0.0306 -0.1799 -0.8438 2.908 -1.5621 -0.4837 4.2482 3.2286 -5.0042 3.1406 3.7382 -1.8564 
LUC S/F - - - - - - 2.1235 -5.6794 1.6586 4.0858 4.577 2.2241 
Fields - - - - - - 1.4017 -4.9152 1.676 7.341 2.5559 3.7537 
City - - - - - - 2.5168 -2.2715 1.5472 5.5785 -0.8337 3.6504 
Deciduous - - - - - - 1.7535 -4.4902 -2.614 4.7194 7.8462 -3.8358 
Evergreem - - - - - - 1.369 -2.6778 -0.7064 4.7138 1.3701 -1.5604 
2 
Wet Vegetated 
Areas 
- - - - - - 2.1805 0.8503 -1.8881 2.0731 6.7956 -4.3077 
LUC W 0.4676 -4.7482 1.0839 4.123 2.018 1.1106 - - - - - - 
Fields -0.5458 -0.8013 -1.8264 7.6573 -0.7847 3.4555 - - - - - - 
City 0.5427 -0.0548 -0.897 6.7515 -4.1107 3.9544 - - - - - - 
Deciduous 1.3189 -5.8125 -1.9078 6.4299 3.0132 -0.019 - - - - - - 
Evergreem -0.513 -4.6406 -0.3922 6.9721 2.0607 -3.3962 - - - - - - 
3 
Wet Vegetated 
Areas 
2.5668 -2.9023 -0.7863 3.6629 3.0243 -2.5741 - - - - - - 
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Standardized slope estimates for each stage of level 2 in our hierarchical classification scheme. 
 
stage Ecosystem 
W 
band 1 
W 
band 2 
W 
band 3 
W 
band 4 
W 
band 5 
W 
band 7 
S/F 
band 1 
S/F 
band 2 
S/F 
band 3 
S/F 
band 4 
S/F 
band 5 
S/F 
band 7 
Elevation 
Slash -0.214 -0.117 -0.123 -0.251 0.177 - -0.421 0.711 -0.369 0.777 -0.144 - -0.742 
Hardwood 0.799 0.735 -1.119 -1.500 2.206 - 0.873 -1.409 -1.399 1.065 0.588 - -0.192 
Mixed 
Hardwood/Pine 
0.946 0.473 -1.228 -0.864 2.079 - 0.301 -0.283 -0.691 0.297 -0.248 - 1.026 
Mountain Longleaf 0.526 0.191 0.402 -0.124 -0.241 - -0.920 -0.197 -0.017 0.341 0.032 - 2.197 
1 
Loblolly 1.205 0.418 -1.174 -0.443 0.609 - 0.801 -0.330 -1.100 -0.840 0.591 - 2.106 
Slash -  - - - - -0.576 0.638 -0.369 0.573 -0.200 0.098 -1.033 
Hardwood -  - - - - 1.745 -1.740 -2.004 1.025 2.530 -0.519 1.045 
Mixed 
Hardwood/Pine 
-  - - - - 1.141 -0.370 -1.240 0.215 0.901 -0.027 1.641 
Mountain Longleaf -  - - - - -0.456 0.027 -0.033 0.301 0.507 -0.448 2.960 
2 
Loblolly -  - - - - 1.577 -0.132 -1.354 -1.083 1.212 -0.544 2.616 
Slash -0.027 0.111 -0.156 0.342 -0.810 0.811 - - - - -  -0.906 
Hardwood 1.648 0.480 -1.855 -1.584 3.099 -0.831 - - - - -  1.056 
Mixed 
Hardwood/Pine 
1.296 0.462 -1.789 -0.795 2.105 -0.556 - - - - -  1.311 
Mountain Longleaf 0.367 0.010 0.343 0.155 0.146 -0.684 - - - - -  2.713 
3 
Loblolly 1.517 0.496 -1.438 -0.938 1.597 -1.559 - - - - -  2.080 
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APPENDIX 2 
A)  
Class probabilities for each stage of our hierarchical classification can be calculated using 
tables 3 and 4 as follows: 
given that 
( )
() ().-1  then 
,11 ,1
1
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hJ
xx
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=
=
==
J
h
j
j
,...,J-j
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                                                       (1) 
Using the linear form of the logit 
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and substituting  
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?
?
=
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 and ?
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 are solved as follows; 
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Where ?
j
(x) = the mean probability of group j, with class means and variances = n?
j
; 
n?
j
(1-?
j
) respectively (Agresti 2002) given the values (x) and slope estimates (?) of 
explanatory variables in matrix notation.  
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B) 
Prior probabilities can be incorporated into stage 2 of our hierarchical classification by 
taking the natural log transformation of the odds of a given class, subtracting the natural 
log transformation of the ratio of that given class? original prior abundance estimates 
divided by the baseline class? prior abundance, and adding the natural log transformation 
of the ratio of that given class? prior probability by the baseline class?s prior probability 
as follows: 
Adjusted log odds
j
 = 
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
?
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?
?
?
?
?
J
prior
j
prior
J
j
J
j
ln
abundanceprior 
abundanceprior 
lnln
?
?
                                      (6) 
Manipulating equations 4 and 5 adjusted class probabilities can be estimated as follows; 
Adjusted
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1
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j
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APPENDIX 3 
Standard error estimates for the explanatory variables of each stage of level 1 in our hierarchical classification scheme. 
W and S/F identify the period in which ETM+ bands were acquired and LUC and TF were identified for a winter leaf-off and 
summer/fall leaf-on season, respectively.
HCS 
Stage 
Logits intercept 
W 
Band 1 
W 
Band 2 
W 
Band 3 
W 
Band 4 
W 
Band 5 
W 
Band 7 
S/F 
band 1 
S/F 
band 2 
S/F 
band 3 
S/F 
band 4 
S/F 
band 5 
S/F 
band 7 
LUC W, S/F 4.8229 0.1434 0.1463 0.086 0.0878 0.0984 0.1129 0.1185 0.1324 0.0846 0.0465 0.0818 0.1186 
LUC W 4.5928 0.139 0.1438 0.0895 0.0848 0.0986 0.1129 0.116 0.129 0.0889 0.0452 0.0836 0.1231 
LUC S/F 4.6715 0.142 0.1462 0.0866 0.0863 0.0988 0.1149 0.1205 0.1315 0.0865 0.045 0.0832 0.1224 
Burnt W 9.244 0.2891 0.372 0.1904 0.1031 0.1208 0.1193 0.2842 0.4548 0.234 0.0937 0.152 0.2186 
Burnt S/F 4.3171 0.1318 0.13 0.0841 0.0841 0.0971 0.1131 0.1078 0.1196 0.0829 0.0416 0.0799 0.1166 
Smoke W 4.9291 0.1465 0.1608 0.0943 0.0864 0.1047 0.1245 0.1255 0.1473 0.0887 0.048 0.0823 0.1179 
Smoke S/F 4.5308 0.1368 0.1403 0.0833 0.0847 0.0982 0.1135 0.1122 0.1237 0.0843 0.0439 0.0815 0.1177 
Clouds S/F 72.5307 1.4017 1.8499 0.8682 0.4988 1.0174 1.6292 1.791 2.2977 2.1181 0.8093 1.728 1.8594 
Shadow S/F 4.5393 0.1376 0.1414 0.0835 0.0849 0.0981 0.1133 0.1154 0.1265 0.0883 0.0441 0.0814 0.1169 
Fields 4.6617 0.139 0.1423 0.0837 0.0844 0.0974 0.1116 0.1145 0.123 0.0825 0.0434 0.0819 0.1171 
Urban / Trans. 
/ Bare  
4.605 0.1373 0.144 0.0832 0.0849 0.0976 0.1109 0.1143 0.1241 0.083 0.0442 0.0814 0.1168 
Deciduous 4.4273 0.1338 0.1341 0.082 0.0842 0.0973 0.1129 0.111 0.119 0.0836 0.0433 0.0823 0.1208 
Evergreen 4.4878 0.1355 0.1388 0.0874 0.0845 0.0995 0.1178 0.1149 0.1245 0.0888 0.0445 0.0839 0.1235 
1 
Wet  
Vegetated  
4.3485 0.1286 0.1214 0.0753 0.0828 0.0957 0.1095 0.1047 0.1046 0.0726 0.0417 0.0786 0.115 
LUC S/F 3.9467 - - - - - - 0.1069 0.1303 0.0745 0.0473 0.0797 0.1161 
Fields 3.8998 - - - - - - 0.1056 0.1263 0.0737 0.046 0.0797 0.1162 
Urban / Trans. 
/ Bare 
3.9505 - - - - - - 0.1056 0.124 0.0725 0.0469 0.0793 0.1158 
Deciduous 3.6805 - - - - - - 0.1014 0.122 0.076 0.0451 0.0797 0.1191 
Evergreen 3.5706 - - - - - - 0.1012 0.1206 0.0749 0.045 0.0794 0.1195 
2 
Wet 
Vegetated  
3.5777 - - - - - - 0.0957 0.1091 0.0658 0.0421 0.076 0.1108 
LUC W 2.4528 0.0699 0.0942 0.0526 0.0453 0.0534 0.0676 - - - - - - 
Fields 2.5061 0.0711 0.0957 0.0525 0.0441 0.0533 0.0674 - - - - - - 
Urban / Trans. / 
Bare 
2.5085 0.0703 0.0965 0.0527 0.0447 0.0533 0.0671 - - - - - - 
Deciduous 2.3743 0.0676 0.0928 0.0524 0.0438 0.0539 0.0688 - - - - - - 
Evergreen 2.6171 0.0742 0.103 0.0648 0.0443 0.0596 0.0809 - - - - - - 
3 
Wet 
Vegetated  
2.1213 0.056 0.0685 0.0435 0.0411 0.0491 0.0616 - - - - - - 
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Standard error estimates for the explanatory variables of each stage of level 2 in our HICS. 
 
HCS 
stage 
Logits intercept
W  
band 1
W 
band 2
W  
band 3
W  
band 4
W  
band 5
W  
band 7 
S/F 
band 1
S/F 
band 2
S/F 
band 3
S/F 
band 4
S/F 
band 5
S/F 
band 7
Elevation
Slash 2.399 0.055 0.078 0.056 0.020 0.027 - 0.070 0.083 0.052 0.029 0.030 - 0.003 
Hardwood 3.439 0.085 0.121 0.082 0.029 0.035 - 0.109 0.122 0.084 0.037 0.041 - 0.004 
Mixed Hardwood/Pine 2.592 0.062 0.090 0.065 0.022 0.030 - 0.082 0.093 0.062 0.031 0.033 - 0.002 
Mountain Longleaf 4.532 0.087 0.127 0.098 0.029 0.040 - 0.119 0.133 0.089 0.046 0.048 - 0.003 
1 
Loblolly 2.705 0.066 0.095 0.070 0.024 0.032 - 0.086 0.101 0.068 0.035 0.036 - 0.003 
Slash 2.050 - - - - - - 0.053 0.075 0.051 0.022 0.030 0.053 0.003 
Hardwood 2.677 - - - - - - 0.070 0.100 0.072 0.028 0.047 0.087 0.003 
Mixed Hardwood/Pine 2.026 - - - - - - 0.052 0.076 0.055 0.022 0.033 0.059 0.002 
Mountain Longleaf 3.812 - - - - - - 0.095 0.118 0.084 0.036 0.054 0.101 0.003 
2 
Loblolly 2.223 - - - - - - 0.058 0.087 0.061 0.026 0.037 0.065 0.002 
Slash 1.619 0.046 0.070 0.049 0.017 0.033 0.049 - - - - - - 0.003 
Hardwood 1.943 0.060 0.092 0.066 0.024 0.041 0.057 - - - - - - 0.002 
Mixed Hardwood/Pine 1.657 0.050 0.076 0.056 0.019 0.036 0.051 - - - - - - 0.002 
Mountain Longleaf 2.922 0.071 0.110 0.087 0.025 0.051 0.077 - - - - - - 0.002 
3 
Loblolly 1.745 0.052 0.080 0.059 0.020 0.038 0.056 - - - - - - 0.002 
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