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Abstract

The q-analog of t-designs and Steiner systems arises canonically from replacing sets of

conventional t-designs by vector spaces over GF (q) and their orders with the dimensions.

Thomas first introduced these generalizations in 1996 [21] and a few q-analogs of t-designs

are known today. Minimal progress was made in constructing a q-Steiner system. In 2013,

the first nontrivial q-Steiner system was constructed S2[2, 3, 13] by Etzion [4] using certain

automorphisms groups. This paper focuses on properties of 2-Steiner systems, S2[2, 3, n],

in a general sense. The notion of an embedded ’skew’ S(2, 4, 2n−1) is introduced and the

consequences on existence are discussed. The smallest nontrivial S2[2, 3, n] that can exist

is n = 7, and currently, its existence is unknown. Parameters from S2[2, 3, n] were applied

to S2[2, 3, 7]. Curious observations of the relationship between points in a hyperplane and

5-spaces were made leading to the notion of a ’special point’. Automorphisms of 2-Steiner

systems, S2[2, 3, n] and n = 7, of odd order are investigated and theoretic proofs of nonexis-

tence is given.
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Chapter 1

Introduction

1.1 Designs and Subspace Designs

A t-design with parameters t− (v, k, λ) is a pair (V,B), where V is a set of v points and

B is a collection of k-subsets of V (usually called blocks) such that every t-subset of V is

contained in exactly λ blocks in B. A Steiner system S(t, k, v) is a t-design with λ = 1. A

parallel class in a Steiner triple system (S, T ) is a set of triples in T that partitions S. An

STS (S, T ) is resolvable if the triples in T can be partitioned into parallel classes. If STS(v)

is one such system, it is also known as a Kirkman triple system of order v and denoted

KTS(v). It is easy to see that in any KTS(v), the number of triples in each parallel class is

v/3 and there are v−1
2

parallel classes.

A subspace design, denoted t−(v, k, λ)q, is the vector space analog of a t-design with V ,

a vector space of dimension v over a finite field GF(q) and B a set of k-dimensional subspaces

called blocks, such that each t-dimensional subspace of V is contained in exactly λ blocks.

The q-analog of a Steiner system denoted by Sq[t, k, v] is called a q-Steiner System.

Both designs and subspace designs can be approached using coding theory or from

the perspective of finite projective geometry. The connections between these areas are well

presented by Etzion and Storm[8].

1.2 Binary Linear Codes

A binary linear code, C, is just a linear subspace of a vector space Fn2 . The dimension

of any linear code is the cardinality of the basis. A basis for C has k words if and only if

|C| = 2k. A codeword x ∈ C has length n. The weight of x, denoted wt(x), is number
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of non-zero digits in x and the complement of x is defined to be x̄ = x + 1 where 1 ∈ Fv2

is the all ones vector. The (Hamming) distance between any two codewords x, y denoted

d(x, y) and is the number of coordinate positions the codewords disagree. It is easy to see

d(x, y) = wt(x+ y). The minimum (Hamming) distance of C, denoted by d, is the smallest

distance between any pair of different codewords. The coset of a linear code C determined

by u is C + u = {v+ u|v ∈ C} where u is any vector in Fv2. It should be noted that if C has

dimension k then there are exactly 2v−k different cosets of C, and each coset has exactly 2k

words.

If C is a linear code over Fv2 for any two x, y ∈ Fv2, the following conditions must be

true:

(i) If x is in the coset C + y, then C + x = C + y,

(ii) If x+ y ∈ C, then x and y are in the same coset,

(iii) Every element of Fv2 is contained in one and only one coset of C. So either C+x = C+y

or {C + x} ∩ {C + y} = Ø.

An important family of perfect, error-correcting, binary linear codes is the Hamming

code. Let Hn denote the Hamming code of length 2n−1, dimension 2n−n−1, and minimum

distance 3. The parity check matrix for Hn can be formed by taking all 2n − 1 non-zero

binary vectors of length n as columns in some order. If α ∈ F2n is a primitive element,

it is convenient to assign the ith column of the parity check matrix to the binary n-vector

of Fn2 corresponding to αi. The support (or coordinates) of any codeword c is defined as

supp(c) = {i|ci 6= 0}. Note this means c ∈ Hn if an only if

∑
i∈supp(c)

αi = 0.

The support of a codeword in Hn corresponds to a subset of vectors in Fn2 , and it will be

convenient to consider words as subsets.
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An example of the parity check matrix of H3 with the non-zero field elements of F23 as

columns:

M =



1 α α2 α3 α4 α5 α6

1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1

.
The binary word c = [1101000] is length 7 and is a codeword in H3 since M · cT = 0.

The support of c, supp(c)={0, 1, 3}, corresponds to the set of field elements {α0, α, α3}

corresponding to the columns of M .

The extended Hamming code, denoted H∗n, has length 2n, minimum distance 4. Adding

a column of zeros and a row of all ones to the parity check matrix ofHn forms the parity check

matrix for H∗n. The codewords of weight 3 in Hn correspond to 2-dimensional subspaces and

form a Steiner triple system S(2, 3, 2n − 1). Similarly, the words of weight 4 in the extended

code, H∗n, form a Steiner quadruple system S(3, 4, 2n).

A known approach to constructing combinatorial structures is to prescribe a certain

group of automorphisms thereby reducing the search space. An introductory overview of

this is presented below.

1.3 Automorphisms of t-designs and linear codes

An automorphism of a t-design, (V,B), is a permutation of the points, V , that maps

blocks of B to themselves. A t-design, t − (v, k, λ) , is said to be cyclic if it has an auto-

morphism consisting of a single v-cycle in which case the point set is usually chosen to be

Zv, the integers (mod v), and the automorphism is π : i → i + 1 (mod v). A multiplier

automorphism of such a cyclic design is induced by multiplication, i.e. σ : i→ mi (mod v)

for m ∈ Zv , gcd(m, v) = 1.

The automorphism group of a linear code consists of all permutations of the coordinates

that map codewords to codewords. A cyclic shift maps a codeword (c0, c1, . . . , cv−1) to

3



(cv−1, c0, c1, . . . , cv−2). A code is said to be cyclic if a cyclic shift is an automorphism of the

code. The Hamming code, Hn, as defined above is a cyclic code. Multiplication by α, that

is π : x→ αx, x ∈ Fn2 , induces the cyclic automorphism.

If an element x is fixed by automorphism π then π(x) = x. The Frobenius automorphism

of Fn2 is σ : x → x2, x ∈ Fn2 . It too induces an automorphism of the Hamming code. The

Galois group is the group of automorphism generated by σ. Define a translation permutation

as addition in the field by an element, that is, for β ∈ Fn2 , define τ : x → x + β, x ∈ Fn2 .

Translations induce automorphisms of the extended Hamming code in a similar manner (see

[15]). Recall we are identifying codewords with subsets of Fn2 and thus τ acting on the subsets

induces a mapping of the codewords.

1.4 Applications of Subspace Designs

The application of codes over vector spaces in network coding has motivated new re-

search of q-analogs of t-designs. In 2014, the strongest result proving non-trivial t−(n, k, λ)q

exist for all t and q provided that k > 12(t + 1) and n is sufficiently large [26]. A q-Steiner

system is also a constant dimension code. Constant dimension codes belong to the family

of Grassmannian Codes and is considered the most important family of error-correction in

random network coding.

A more recent application of constant dimensions codes is used in linear authentication

codes introduced by Wang, Xing and Safavi-Naini [24]. In this sense, properties of the

subspace code are used to detect tampering with authenticated methods. A new class of

unconditionally secure authentication codes called linear authentication codes (or linear A-

codes) have been characterized by subspace designs [24].
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Chapter 2

Geometry of vector spaces and subspaces

In finite geometry, the projective space over V in general, denoted PG(V), is defined as

the set of all subspaces of V . With that, the points of PG(V) are the 1-dimensional subspaces

of V , lines the 2-dimensional subspaces, hyperplanes the (n− 1)-dimensional subspaces, etc.

The Gaussian coefficient,
[
n
k

]
q
, known as the q-analog of the binomial coefficients, counts the

number of subspaces of dimension k in a vector space of dimension n over Fq and is defined

as follows [
n

k

]
q

=
[n]q!

[k]q![n− k]q!
, (k ≤ n).

Let W be an arbitrary fixed vector space of dimension n over Fq. The projective

geometry of order n over Fq, denoted by Pq(n), is the set of all subspaces of W , including

{0} and W itself. Given a non-negative integer k ≤ n, the set of all subspaces W that have

dimension k is also known as a Grassmannian, and is usually denoted by Gq(n, k). Therefore,

an equivalent definition, Pq(n) = ∪0≤k≤nGq(n, k). It is known

|Gq(n, k)| =
[
n

k

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

The following are known but useful parameters involving subspaces.

Lemma 1. Given X in Gq(n, k), there are
[
k
i

]
q

ways to choose an i-dimensional subspace

Z of X. For a fixed Z, assuming i ≤ j, the number of subspaces Y ∈ Gq(n, j) such that

X ∩ Y = Z is [
n− k
j − i

]
q

q(j−i)(k−i).
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Lemma 2. Let K(n, j, t, k) be the number of ways to choose a subspace of dimension j from

a space of dimension n over GF(2) such that it intersects with a given subspace of dimension

k at exactly 2t points:

K(n, j, t, k) =

[
k

t

]
· Πj−t−1

i=0 (2n − 2k+i)

Πj−t−1
i=0 (2j − 2t+i)

.

Recall from basic geometry the following equation.

The Dimension Intersection Equation. Given two subspaces U, V elements of Pq(n),

dim(U + V ) = dim(U) + dim(V )− dim(U ∩ V ).

In geometry, a translate or translated subspace in coding theory terms, is just a coset of

code that corresponds to the same subspace.

Lemma 3. For a fixed subspace U ⊆ Fnq of dimension k there are 2n−k − 1 translates of U

in its complement.

Proof: Since U has 2k − 1 non zero points, there are 2n − 2k points in the complement

of U . From properties of cosets given in Chapter 1, translates of a fixed subspace partition

the remaining points and every translate contains 2k points. Therefore, we must have

2n − 2k

2k
= 2n−k − 1

translates of U in the complement.

Translates x+ U and y + V are parallel if

U ⊂ V or V ⊂ U

given any two subspaces U, V ∈ Pq(n). In geometry, two lines are said to be skew if they are

disjoint but not parallel; that is, one is not a translation of the other. By definition, skew

lines cannot be coplanar.
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The distance between any two subspaces can be defined as

dS(U, V ) = dim(U) + dim(V )− 2dim(U ∩ V )

is considered as the q-analog of the Hamming metric for binary vectors. The equation

defined above is known to be metric, hence both Pq(n) and Gq(n, k) can be regarded as

metric spaces from which a code can be defined. It is worth noting, a q-Steiner System

Sq[t, k, n] is equivalent to a code in Gq(n, k) with
[
n
t

]
q
/
[
k
t

]
q

codewords and minimum distance

d = 2(k − t+ 1). [9]

2.1 Subcodes, sub-designs and embedded codes

Given linear code C over Fnq , the set of words in C, all whose coordinates lie where

Fkq ⊆ Fnq is called a subfield subcode of C over Fkq [cite book]. Here, we consider 2-Steiner

systems S2[2, 3, n] as subcodes of Hn for the following reasons. Every k-subspace, b ⊂ F2n ,

corresponds to a 2k − 1 subset of non-zero elements. Every point in the subset has a binary

n-tuple representation in Fn2 . With the parity check matrix for Hn described as in Chapter 1,

it is easy to see that there is a codeword, c ∈ Hn such that supp(c)={i|αi ∈ b}. The converse

is not true unless k = 2. Let cb denote the codeword corresponding to the k-subspace b and

let Cb ⊂ Hn denote the subcode of all codewords x such that supp(x)⊆ supp (cb); then Cb

is an embedded Hamming code in Fkq with length 2k − 1.

2.2 Vector space dual and the dual of the Hamming code

Let V = Fvq . Two vectors x, y ∈ V are said to be orthogonal if x · y = 0. The dual of

any subspace K ⊆ V , denoted K⊥, is also a subspace and is defined

K⊥ = {u ∈ V|a · u = 0 for all a ∈ K}.
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Note that the vectors in subspace K⊥ have length v.

Associated with any linear code C is the dual code C⊥. If G is a generator matrix for

C, then C⊥ is the solution space to

GxT = 0.

If C is linear, having length n and dimension k then its dual, is also a linear code C⊥ ⊆ V

having dimension n− k. Applying this to Hamming codes, since Hn has length 2n − 1 and

dimension 2n−n−1, the dimension of H⊥n is n. If subspace K is fixed by an automorphism,

its dual space K⊥ is also fixed. A non-zero codeword y in H⊥n has weight 2n−1 therefore, the

complement of y has weight 2n−1 − 1 and must also be a codeword. Hence, complements of

words y in the dual correspond to hyperplanes in Fnq . The subcode consisting of all c ∈ Hn

such that supp(c) ⊆ supp(y) is an (embedded) extended Hamming code of length 2n−1. We

now have the following well-known fact concerning hyperplanes:

Lemma 4. If y + 1 ∈ Hn corresponds to hyperplane Y and cb ∈ Hn corresponds to a k-

subspace, then either supp(cb) ⊆ supp(y + 1) or |supp(cb) ∩ supp(y + 1)| = 2k−1 − 1 (and

|supp(cb) ∩ supp(y)| = 2k−1).

Proof: Let x ∈ supp(cb) ∩ supp(y). For each i ∈ supp(cb) ∩ supp(y + 1) there is

a codeword ci,x of weight 3 with supp(ci,x) = {i, x, i′}. Since ci,x · y ≡ 0 (mod 2), then

i′ ∈ supp(y). Thus

|supp(cb) ∩ supp(y)| = |supp(cb) ∩ supp(y + 1)|+ 1,

and the result follows.

From Lemma 1, we know that any k-dimensional subspace b is contained in 2n−k − 1

hyperplanes and thus there is a corresponding subspace of dimension n−k in H⊥n containing

non-zero codewords whose support is disjoint from that of cb. Similarly, for any (k − 1)-

dimensional subspace, b′ ⊂ b, there are 2n−k+1 non-zero words in the dual whose support is

8



disjoint from the support of cb′ . Hence, there are 2n−k+1 − 2n−k = 2n−k words in H⊥n whose

support contains the support of cb + cb′ which has weight 2k−1.
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Chapter 3

2-analog S2[2, 3, n]

The notion of 2-analog is canonical since it arises by replacing sets of the traditional

t-design by vector spaces over GF (2) and their orders by dimensions of vector spaces. These

generalizations were first introduced by Thomas [21] in 1996. There, he showed that certain

kinds of S2[2, 3, 7] could not exist.

3.1 Combinatorial properties

A 2-analog Steiner system S2[2, 3, n] is equivalent to a Steiner 2-design S(2, 7, 2n − 1)

since every pair of nonzero elements in Fn2 are independent and there are 23 − 1 nonzero

elements in every subspace of dimension 3. Using traditional arguments from design theory

we have the following condition on n:

Lemma 5. A necessary condition for an S2[2, 3, n] to exist is that n ≡ 1 or 3 (mod 6).

Proof: The necessary conditions for a design S(2, 7, 2n − 1) are

(2n − 1)(2n − 2) ≡ 0 (mod 7 · 6)

from which we conclude that n ≡ 0, 1 (mod 3) and

2n − 2 ≡ 0 (mod 6)

which means n− 1 is even.

From now on we will assume that n ≡ 1 or 3 (mod 6). We will refer to 2-dimensional

subspaces as triples and 3-dimensional subspaces in S2[2, 3, n] as blocks. There are 22 − 1
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points in a 2-dimensional subspace and 23−1 points in 3-dimensional subspace and therefore

points in any block. A block is said to cover a triple if the elements in the triple are a subset

of elements in the block. There are 23− 1 points in blocks of S2[2, 3, n] forming seven triples

which is a triple system isomorphic STS(7).

An alternative definition of subspace designs given in [9] is as follows, a subspace design

S2[t, k, n] is an (n,M, d, k) code in Gq(n, k) with d = 2(k − t+ 1).

3.2 S2[2, 3, 13] example

In 2013, Etzion et. al. produced the first example of a q-Steiner System. A S2[2, 3, 13]

was found by prescribing the normalizer of a Singer subgroup of GL(13,2) as a group of

automorphisms of the base blocks corresponding to columns of the 15 subspaces of F13
2 .

Equivalently, these are base blocks of a cyclic design mod 213 − 1 having 2 as a multiplier

automorphism.

{0, 2181, 2519, 3696, 6673, 6965}, {0, 13, 4821, 5178, 7823, 8052, 8110},

{0, 21, 2900, 4226, 4915, 6087, 8008}, {0, 27, 1190, 3572, 4989, 5199, 6710},

{0, 119, 490, 5941, 6670, 6812, 7312}, {0, 1, 1249, 5040, 7258, 7978, 8105},

{0, 9, 1144, 1945, 6771, 7714, 8102}, {0, 17, 291, 1199, 5132, 6266, 8057},

{0, 30, 141, 682, 2024, 6256, 6406}, {0, 37, 258, 2093, 4703, 5396, 6469},

{0, 7, 1857, 6681, 7259, 7381, 7908}, {0, 11, 209, 1941, 2926, 3565, 6579},

{0, 20, 1075, 3939, 3996, 4776, 7313}, {0, 31, 814, 1161, 1243, 4434, 6254},

{0, 115, 949, 1272, 1580, 4539, 4873}

3.3 Connections to Steiner Systems S(2, 4, 2n−1)

From Chapter 2, we know each hyperplane of Fn2 corresponds to an embedded Hamming

subcode Hn−1 ⊂ Hn and the complement of a hyperplane (corresponding to a word in the

dual) contains an embedded extended Hamming code as a subcode of length 2n−1.
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Let B be the collection of 3-subspaces or blocks of a S2[2, 3, n] and let α ∈ F2n be a

primitive element. For each y in the dual of Hn define a pair (Vy, Qy) where Vy = {αi|i ∈

supp(y)} and Qy = {Vy ∩ b|b ∈ B}.

Lemma 6. The design (Vy, Qy) defined above is a S(2, 4, 2n−1) and is a sub-design of the

embedded S(3, 4, 2n−1).

Proof: For every pair i, j ∈ supp(y) there is a unique block b ∈ B with αi, αj ∈ b thus

(Vy, Qy) is a 2-design. Since the intersection of subspaces is a subspace the blocks intersect

the hyperplane in 3 or 7 points and thus intersects Vy in 0 or 4 points. The 4 points form a

word in the code and thus a block of the S(3, 4, 2n−1).

Consider the design (Vy, Qy) defined above. If {αi, αj, αk, αu} ∈ Qy then αi +αj +αk +

αu = 0. The block b ∈ B with b ∩ Vy = {αi, αj, αk, αu} is spanned by αi, αj, αk and the

subspace b′ with b′∩Vy = {αi+β, αj +β, αk +β, αu+β} is spanned by αi+β, αj +β, αk +β.

These subspaces have at least 2 elements in common: αi + αj and αi + αk and thus b′ 6∈

B. In other words, the automorphism τ of the extended Hamming subcode on supp(y)

corresponding to the translation of any β applied to the blocks of Qy must give a disjoint

set.

In geometry, two lines are said to be skew if they are disjoint but not parallel; that is,

one is not a translation of the other. The words of weight 4 of the extended Hamming code

of length 2n−1 can be thought of as planes in the affine geometry over Fn−12 . Define a skew

S(2, 4, 2n−1) then as a collection of ”planes” in the extended Hamming code, no two of which

are parallel (i.e. translates of one another). Therefore, the S(2, 4, 2n−1), (Vy, Qy) must be

”anti-translation” or ”skew”.

3.4 Implications of ‘Skewness’

The existence of S2[2, 3, 13] means that there exist skew S(2, 4, 212) in the S(3, 4, 212)

contained in the extended Hamming code. It is open whether the converse is true in general;
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Does the existence of an skew S(2, 4, 2n−1) in the extended Hamming code of length 2n−1

imply the existence of an S2[2, 3, n]?

The words of weight 4 in the extended Hamming code of length 2n−1 will always contain

a subset of codewords corresponding to a S(2, 4, 2n−1) when n − 1 is even; just pick an

appropriate translate of an extended Preparata code (see [2],[12],[25],[15]). However, such

S(2, 4, 2n−1) are never ”skew”. In fact, they always contain translations as we show in

Chapter 5. Using known Design Theory, arguments we have the following Lemmas.

3.5 Allocation of blocks in S2[2, 3, n]

Lemma 7. A 4-dimensional subspace has at most one block of S2[2, 3, n] contained in it.

Proof: From the Grassmannian, we know there are seven 3-dimensional subspaces in

any 4-subspace. By the dimension intersection equation, any two intersect in a triple since

3 + 3 − 4 = 2. Therefore, at most one of the seven 3-spaces in a 4-space can be a block in

the design.

Consider the blocks of a skew S(2, 4, 2n−1) over points in F2n−1 . For each a ∈ F2n−1 the

pairs {x, x+ a} must be covered by a block of the form {x, x+ a, y, y + a}. There are 2n−2

of these pairs and thus the design must have 2n−3 such blocks. Moreover, the blocks must

be disjoint and therefore must form a skew parallel class. The associated triples are of the

form {a, x+ y, x+ y + a} and there must be 2n−3 such triples for each nonzero a ∈ F2n−1 .

Lemma 8. Given an S2[2, 3, n], every hyperplane must contain

(2n−1 − 1)(2n−3 − 1)

3(23 − 1)

blocks and each point of the hyperplane is in exactly 2n−3−1
3

of those blocks.

Proof: Given y in the dual code and the complementary hyperplane on y+1, the blocks

in B corresponding to the skew S(2, 4, 2n−1) design, (Vy, Qy), cover 2n−3(2n−1 − 1)/3 triples
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in the complementary hyperplane on y + 1. The remaining (2n−1 − 1)(2n−3 − 1)/3 triples

must be covered by blocks in the hyperplane giving

(2n−1 − 1)(2n−3 − 1)

3(23 − 1)

subsystems. There are at most 2n−3 blocks through a point which intersect the hyperplane

in a triple since there are at most that many disjoint 4-tuples in the skew S(2, 4, 2n−1). Thus

each point is in at least 2n−3−1
3

blocks but each block is counted seven times and therefore

at least

(2n−1 − 1) · (2n−3 − 1)

3 · 7

blocks.

Lemma 9. Let (V,Q) denote the points and blocks of an S(3, 4, 2m) and let (V0, Q0), (V1, Q1)

with V = V0 ∪ V1 be two disjoint sub S(3, 4, 2m−1) systems. Let (V,D) , D ⊂ Q be a sub

S(2, 4, 2m) then |D ∩Q0| = 2m−2(2m−2 − 1)/6 = |D ∩Q1|.

Proof: Since (V0, Q0) is a S(3, 4, 2m−1) for any block b ∈ D either |b ∩ V0| = 4 or

|b ∩ V0| = 2. Let y = |D ∩Q0| and z denote the number of blocks in D intersecting V0 in 2

points then 4z = 2m−1 · 2m−1 and 6y + z = 2m−1(2m−1 − 1)/2 the result follows.

Corollary 1. For any two words x, y in the dual of the Hamming code, given S(2, 4, 2n−1)

subdesigns (Vx, Qx), (Vy, Qy), then if V ′ = Vx ∩ Vy and Q′ = Qx ∩Qy,

|Q′| = 2n−3(2n−3 − 1)

6

Note that if x, y ∈ H⊥n then x + y ∈ H⊥n and the corresponding hyperplanes intersect

in an n − 2 dimensional subspace. Blocks of an S2[2, 3, n] that intersect V ′ = Vx ∩ Vy in 2

points must have one point in the subspace and 2 points in Vx ∩ Vx+y and Vx+y ∩ Vy as well.
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Corollary 2. Given an S2[2, 3, n] then every n-2 dimensional subspace must contain

(2n−3 − 1)(2n−3 − 2)

7 · 6

blocks.

Proof: Blocks of an S2[2, 3, n] that intersect V ′ = Vx ∩ Vy , Vx ∩ Vx+y or Vx+y ∩ Vy in

four points cover a total of 3(2n−3(2n−3 − 1)/6) triples of the subspace corresponding to the

intersection of the complementary 3 hyperplanes. The remaining triples must be covered by

blocks.

3.6 S2[2, 3, 7]

From Corollary 2, we have that in a S2[2, 3, 7], every 5-dimensional subspace must

contain 5 blocks. We also have from Lemma 8 any point in a 6-dimensional subspace is

in exactly 5 blocks contained in that subspace; we believe this is no coincidence. These

constraints combined with known subspace properties, 5-dimensional subspaces have become

especially significant to study as well as the arrangement of the blocks contained in these

subspaces.

Let p ∈ F27 be a non-zero point, define p to be a special -point in S2[2, 3, 7] if for any

hyperplane containing p, the 5 blocks incident with it that are contained in the hyperplane

span a 5-dimensional subspace.

3.6.1 5-dimensional subspaces in F7
2

Let S ⊂ F7
2 is a 5-dimensional subspace, by Corollary 2 there must be 5 blocks contained

on the 31 non-zero points of S. With di the degree of the point i ∈ S, we have the equation

∑
i∈S

di = 35.

15



Any two blocks in S must intersect in a point since the dimension of the intersection is

3 + 3− 5 = 1 giving ∑
i∈S

(
di
2

)
= 10.

If di ≥ 1 for all i in S then the solution is unique and the 5 blocks in S must intersect in

a point. Hence, if no 5-space exists containing a point of degree 0, every point must be a

special-point. Since there are 63 5-subspaces in any hyperplane, it is feasible for every point

in a given hyperplane to be special.

3.6.2 Derived geometric spreads

Lemma 10. Triples from the intersection of the blocks in S2[2, 3, 7] through point a and

hyperplane V where a /∈ V induce a spread in V .

Proof: Given hyperplane V , any block not contained must intersect V it in a triple

since 3 + 6 − 7 = 2 . By properties of the design, triples are disjoint and therefore must

partition the points in V creating a parallel class or spread in V .

In geometry, a spread is said to be regular (or geometric) if for any three triples A,B,C

in the spread the 4-subspace generated by A,B either contains C or C is disjoint from that

subspace. Any two blocks intersecting in a generate a 5-subspace which then must intersect

hyperplane V disjoint with a in a 4-subspace. If point a is special, then the induced spread

is regular. Conversely, if the spread in V induced by a is regular, it follows that the 5 blocks

contained in the 5-space generated must all be incident to a.
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Chapter 4

Automorphisms of S2[2, 3, n]

Recently a large number of cyclic S2[2, 3, 13] were constructed [4] which in addition had

the Frobenius automorphism. Prior to this, the problem had been studied by a number of

authors without much success (e.g.[20],[21],[14],[10]). In 2008, Kohneri and Kurtz established

the non-existence of S2[2, 3, 7] with a cyclic automorphism In addition, [4] established non-

existence of S2[2, 3, 7] having the Galois group of order 7 as automorphisms. Similarly, the

non-existence of S2[2, 3, 9] with a cyclic automorphism was established by Etzion[11] and

independently by the authors. It was conjectured [4] that (cyclic) S2[2, 3, p], exist, for p a

prime, p > 7, p ≡ 1 (mod 6). It is well known, an automorphism of the Hamming code (or

equivalently projective space) has 2k−1 fixed points (k ≥ 0) and has an embedded Hamming

subcode on the set of fixed points[19],[7]. Similarly, an automorphism of an S2[2, 3, n] of odd

order has an S2[2, 3, k] sub-design on the set of fixed points. A proof of this and other

automorphisms properties is presented below.

4.1 Automorphisms of odd order

Theorem 1. An automorphism of odd order of an S2[2, 3, n] has 2k − 1 fixed points, k ≥ 0,

and has a S2[2, 3, k] embedded sub-design on the set of fixed points.

Proof: The triples on the set of fixed points are fixed pointwise therefore any block

containing such triple must be fixed set-wise. In a block covering a triple of fixed points,

the four remaining points must be mapped to themselves. This can only happen under an

even order automorphism or the identity. Thus the block is contained in the set of fixed

points.

17



Corollary 3. A block in S2[2, 3, 7] with an automorphism of odd order has 0, 1 or 7 fixed

points.

Specifically, lets consider automorphisms of order 3.

Lemma 11. Any automorphism of order 3 of an S2[2, 3, n] with 2s − 1 fixed points must

have 2s − 1 ≤ (2n−s − 1)/3 if (2n−s − 1)/3 is not divisible by 3.

Proof: As noted earlier, an automorphism of odd order of an S2[2, 3, n] must have 2s−1

fixed points and have an S2[2, 3, s] on the set of fixed points. The remaining 2n−2s points fall

into orbits. The orbits {x, y, z} of an automorphism of order 3 are either triples or generate

a 3-subspace. In either case γ = x + y + z must be fixed. Any block fixed set-wise by the

automorphism but not in S2[2, 3, s] must contain a triple which is an orbit. Conversely, if

the orbit {x, y, z} is a triple and f 6= 0 is a fixed point then {x + f, y + f, z + f} is also

an orbit which generates a fixed 3-subspace. If there are 2s − 1 fixed points there would be

2s(2n−s − 1)/3 orbits. If x of these are triples then there must be (2s − 1)x orbits which are

not; thus

(2s − 1)x = 2s(2n−s − 1)/3− x

or x = (2n−s−1)/3 orbits that generate a 3-space (and thus exactly that many set-wise fixed

blocks). Each fixed point is in (2s−1− 1)/3 fixed blocks of the sub S2[2, 3, s]. The remaining

2s−1(2n−s − 1)/3 blocks through that point have orbits of size 1 or 3. If (2n−s − 1)/3 is not

divisible by 3 there must be orbits of size 1 and thus 2s − 1 ≤ (2n−s − 1)/3.

Corollary 4. Any automorphism of order 3 of an S2[2, 3, 7] must have one fixed point.

Proof: From Corollary 3, the number of fixed points of an automorphism of an S2[2, 3, 7]

must be 0, 1 or 7. The orbits {x, y, z} of an automorphism of order 3 are either triples or

generate a 3-subspace. In either case f = x+y+z must be fixed. Any block fixed set-wise by

the automorphism must contain a triple which is an orbit. Conversely if the orbit {x, y, z} is

a triple and f 6= 0 is a fixed point then {x+f, y+f, z+f} is also an orbit which generates a
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fixed 3-subspace. If there are 7 fixed points it must be a block. In this case there would be 40

orbits. If x of these are triples then there must be 7x orbits which are not; thus 7x = 40− x

or x = 5.

Each fixed point would be in 21 blocks which have to fall into orbits of length 1 or 3.

Thus each fixed point would have to be in at least 3 fixed blocks which is impossible with

only 5 fixed triples.

It is known, a 3-dimensional subspace in F7
2 has 24 cosets which are isomorphic to F4

2.

The triples through any non-zero point of the corresponding block must have two points in

a coset and thus blocks through this point must intersect in a triple of cosets in two points

each. For this reason, we consider F7
2 as F3

2 × F4
2.

Let α denote the primitive element in F23 and β be the primitive element in F24 . We

can assume that b0 = {(αi, 0) : i = 0, . . . 6} is a block of the S2[2, 3, 7]. Note the dual of b0

is {0} × F4
2.

Each triple T of F23 corresponds to a hyperplane T × F24 . The three triples in F23

intersecting any non-zero point αi correspond to three hyperplanes in F27 intersecting in a

5-dimensional subspace {0, αi} × F24 .

Lemma 12. Any automorphism of odd order mapping b0 to itself induces an automorphism

of a Kirkman triple system on {0} × F16 assuming the points of b0 are special.

Proof: Any automorphism fixing b0 must also fix b⊥0 set-wise. The 4-dimensional

subspace b⊥0 cannot contain a block since any two 3-dimensional subspaces contained in a 4-

dimensional subspace must intersect in a triple and there are no fixed points in b⊥0 . Therefore

the triples of b⊥0 must be covered by blocks of {0, αi} × F4
2. For any i ∈ {0, 1, . . . 6}, the

{0, αi} × F4
2 is a 5-dimensional subspace containing 5 blocks. If these blocks intersect b0 in

a point, then the intersection with b⊥0 must be a Kirkman Triple System of order 15.

There are two non-isomorphic Kirkman triple systems on the triples of F4
2 (see [16] )

each having an automorphism group of order 168. In both cases, the automorphisms of order
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three have 3 fixed points implying the automorphism of the S2[2, 3, 7] would have to have 7

fixed points which, as we shall see, cannot happen.

Thus, an automorphism of order 3 must have the 21 blocks fixed set-wise, each containing

a fixed triple.

The following theorem was recently established computationally using computer search.

Using the job scheduling system Torque of the Linux cluster of the University of Bayreuth

the estimated run time was 27 600 000 CPU-days. This result however, is a simple conclusion

from the theoretical approach discussed here.

Theorem 2. [13] An S2[2, 3, 7], if it exists, cannot have an automorphism of order 3.

Clearly, from the above arguments if an automorphism of the S2[2, 3, 7] fixes a block it

induces an automorphism of a Kirkman triple system and thus the order must divide 168.

With automorphisms of order 7 and 3 ruled out, this means only involutions (i.e. of order

2) could be an automorphism. The Hamming code has involutions (see [7]) so that would

be a suitable direction for further research.
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Chapter 5

Preparata codes

For background on extended General Preparata codes and their translates see [2],[12],or

[15]. To make the paper self-contained we present a version of the construction of these

codes and review some of the pertinent established properties.

Let σ = 2k and assume gcd(22k − 1, 2r − 1) = 1. Let α be a primitive element in Fr2.

Define

H =


1 1 1 . . . 1

1 α . . . α2r−2 0

1 ασ+1 . . . (ασ+1)2
r−2 0


Let the syndromes for u, v ∈ F2r

2 be

uHT = (s0, s1, sσ+1), vH
T = (s∗0, s

∗
1, s
∗
σ+1).

Then define P (r, σ) as follows:

Definition 1 (General (extended) Preparata Code). For r ≥ 3, r odd, then for u, v ∈ F2r

2 ,

(u, v) ∈ P (r, σ) if and only if

• s0 = s∗0 = 0

• s1 = s∗1

• sσ+1 + sσ+1
1 = s∗σ+1

The kernel of a (non-linear ) code C is the subspace of all x such that C = C + x. The

code C is the union of cosets of the kernel as is any translate of the code. We have then,
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Lemma 13. The kernel K of P (r, σ) consists of all words (u, v) such that s1 = s∗1 = 0.

The kernel of the extended General Preparata code is invariant under translation. More-

over the extended General Preparata codes are subcodes of the extended Hamming code.

The words of weight 4 in certain translates of the extended General Preparata are known to

be S(2, 4, 2r+1) designs. To prove these designs are not skew we just need to show that the

coset of the kernel contains translates.

If we identify words in the extended Hamming code with subsets of Fr2 × {0, 1} then

we can also identify words with pairs of subsets of Fr2.If we identify u, v ∈ F 2r

2 with subsets

U, V ⊆ Fr2 then a translate maps (U, V ) to (U + αi, V + αi), for αi ∈ Fr2 and induces a

corresponding permutation on the words u, v.

Theorem 3. A coset of the kernel of a extended general Preparata code contains translates.

Proof: Let K + x be a coset of the kernel, K, where x has weight 4 and x is in

the extended Hamming code. Then x corresponds to either ({αi, αj, αi + β, αj + β}, 0) or

({αi, αj}, {αi + β, αj + β}) for some β ∈ F2r

2 . But there is a codeword (u, u) in the kernel

with corresponding subset (U,U) with U = {αi, αj, αi + β, αj + β}. In either case x+ (u, u)

is a translate of x.

Until [4] the only known examples of embedded S(2, 4, 2r+1) in the extended Hamming

code came from extended Preparata codes.

5.1 Normal Bases and Galois groups

We believe the conjecture that S2[2, 3, p] exist when p > 7 is a prime [4] and presumably

being cyclic and having Galois group as well as automorphisms, should be modified. To

explain, we need to introduce normal bases.

A normal basis N of the field Fn2 over F2 is a basis of the form N = {α, α2, α22 , . . . , α2n−1}

for some α ∈ Fn2 . Let σ(x) = x2 be the Frobenius automorphism then a normal basis is an

orbit under σ. Of course, not every orbit of σ is a basis. An element α ∈ Fn2 is said to
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be a normal element or is said to generate a normal basis if its orbit under σ is a basis.

Normal bases are of interest in cryptography and coding theory especially with respect to

implementation of finite field arithmetic[3].

Define the trace of α ∈ Fn2 as

Tr(α) =
n−1∑
i=0

σi(α) =
n−1∑
i=0

α2i

Theorem 4. [1], [22] The number of normal elements in Fn2 for n odd is

v(n, 2) =
∏
d|n

(2τ(d) − 1)φ(d)/τ(d)

where τ(d) is the order of 2 (mod d) and φ(d) is Euler’s totient function.

Obviously, we have the following.

Corollary 5. For an odd prime p having 2 as a primitive element (mod p), β ∈ F2p, β 6= 1,

β is normal if and only if Tr(β) = 1.

Consider a (cyclic) S2[2, 3, p], p a prime, having the Galois group of F2p as automor-

phisms. The Frobenius automorphism fixes a point and a hyperplane corresponding to

elements β having Tr(β) = 0. The complement is a word y in the dual of the Hamming

code, with supp(y) = {i|Tr(αi) = 1}. When 2 is a primitive element (mod p), Then the

orbits of length p in y are all normal basises and thus uniform.

Example Consider the field F8 and y ∈ H7, supp(y) = {i|Tr(αi) = 1}. In this case the

order of 2 is τ(7) = 3 and φ(7) = 6 thus there are 72 normal elements or 7 normal basis.

Then supp(y) consists of 9 orbits of length 7 under σ∗ 7 of which correspond to normal basis.

Example Consider the field F13
2 and y ∈ H13, supp(y) = {i|Tr(αi) = 1}. In this case the

order of 2 is τ(13) = 12 and φ(13) = 12 thus there are 212−1 normal elements or 315 normal
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basis. Then supp(y) consists of 315 orbits of length 13 under σ∗ all of which correspond to

normal basis.

If Artin’s Conjecture on primitive elements is true, then there will be infinitely many

primes which satisfy the conditions of the above corollary. For this reason, we believe the

conjecture should have as an added condition that 2 is a primitive element (mod p). Thus

S2[2, 3, p] should exist for p = 19 but not for p = 31.
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Chapter 6

Conjectures, Conclusions and Future Research

Regarding the existence of a S2[2, 3, 7], in 2016, Heden et. all proved a strengthened ver-

sion of a classical result from Thomas [21] established 20 years earlier. Using the term α-point

in place of special-point defined here in Chapter 3, they showed that every 6-dimensional

subspace of V = F7
2 must contain at least one point that is not an α-point [18] This would

imply there exist 5-space S containing a point i such that di = 0. based on our analysis, we

claim the following:

Conjecture. If there are points in F7
2 that are not special-points, a S2[2, 3, 7] does not exist.

Establishing this would involve proofs of further results and computational studies.

Many of the theoretical techniques and ideas presented here will possibly be effective in

establishing existence of larger S2[2, 3, n] as well as automorphism orders.
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