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Abstract

In this dissertation, the linear elastic contact between a nominally-flat rough surface and

a rigid flat is studied analytically and numerically. When the roughness is excluded from the

surface, the corresponding contact area is referred to as the nominal contact area and it is

larger than the real area of contact when the roughness is included. At the stage of early

contact, where the real area of contact is nearly vanishing, the historical development of the

corresponding statistical models is studied systematically based on the various combinations

of the different forms of the asperity contact model and the probability density function. At

the stage of nearly complete contact, where the real area of contact almost reaches the nominal

contact area, various statistical models are proposed under the framework of the statistical

model at the stage of early contact. At this stage, the non-contact area (the complimentary of

the real area of contact) consists of multiple non-contact regions which can be considered by

pressurized “cracks”. Through the study of the area and the trapped volume of each pressurized

“crack”, the (non-)contact ratio and the average interfacial gap can be formulated following the

statistical approach.

For the purpose of validation, the boundary element method (Polonsky and Keer model)

is adapted for the periodic nominally-flat rough surface contact problem. A new surface gen-

eration algorithm is developed to generate a rough surface which is isotropic, Gaussian and

fractal. Multiple surface groups are generated numerically associated with different parameters

(i.e., the lower/upper cut-off wavenumber and Hurst dimension) and each group contains 50

generated surfaces. The statistical models at the stage of early contact and the nearly complete

contact are validated by the solutions solved by the boundary element method. Finally, an

empirical model is found through a curve-fit based on the statistical model of nearly complete

contact and the boundary element method results.
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rough surface #1 associated with various σ0/E

∗ = 1/20, 1/50, 1/100 in the
loading stage. Black dashed line indicates non-adhesive limit results. Dashed
line with other color represents the results in the JKR limit. . . . . . . . . . . . 188

6.10 (a) The non-contact ratio, 1 − A∗, and the average interfacial gap, ḡ∗, of the
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Chapter 1

Introduction

Rough surface contact is an important branch of the contact mechanics field where the inter-

action between rough surfaces is studied. When the analytical analysis and computer aided

engineering (CAE) is applied to the various engineering practices where the contact interfaces

are involved, nearly all the interfaces are assumed to be smooth and deterministic. In the study

of tribology, however, rough surfaces are an important concern. Traditionally, rough surface

contact is never explicitly mentioned in the definition of tribology which is defined as the study

and application of the principles of friction, lubrication and wear of interacting surfaces. This

is also reflected in the world-wide tribology conferences where few sessions are dedicated to

rough surface contact (or broadly contact mechanics). The logic behind this is unclear since

the study of the rough surface contact is the key to all major three topics in tribology. Friction

between the interacting surfaces stems from the interaction between the asperities. The rough

surface contact plays a major role in the mixed and boundary lubrication. One of the major

types of wear, abrasive wear, is due to the ploughing of harder asperities over the softer counter

surfaces. In order to give more vivid example of how rough surface contact affects machine

components, two examples are given below:

Electrical connector Rough surface contact originally stems from the study of the electri-

cal contact between the connectors. Researchers, nearly one hundred years ago, found a strange

phenomenon that the summation of the bulk resistances is lower than the measured resistance

of the connector pair [1]. This leads to an important suggestion that the mating surfaces are

not in contact everywhere within the nominal contact area. This hypothesis has been revis-

ited by experiments [2]. The increasing part of the resistance is called the contact resistance
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(constriction resistance), which is attributed to the constriction of the current flow within the

discretized contact spots, see Fig. 1.1. Those contact spots are known as the a-spots in the study

of the electrical contact literature. Joule heating is a direct consequence of the constriction of

the current lines and it eventually results in failure at the vicinity of the a-spots in the form of

oxidation.

Current Flow

Figure 1.1: Schematic representation of the current lines constricted by the A-spots between
the two rough surfaces.

Seal Industrial sealing devices can be divided into two categories, namely, the static and

dynamic seals. Gaskets are one of the static seals which “are clamped between two separable

members of a mechanical joints” [3]. To prevent the leakage of the pressurized fluids/gas, the

roughness of the surfaces of the sealing interfaces are commonly lapped down to a fine level

so that the bearing area (real area of contact) is as large as possible. Regardless of advanced

polishing technique, the roughness is inevitable on the machined surface. Therefore, zero-

leakage can never be achieved [4]. The researchers found that the leakage correlates with the

contact area distribution [5–7]. The mechanical face seal is a dynamic seal which is widely

used in the pump industry. The leakage of the fluids and gas are prevented by the flat face

interaction between two primary seal rings, as well as the secondary O-rings. The failure of

the mechanical seal is mainly due to the wear of the two primary seal rings. The lubricant is

applied to separate two interfaces in order to reduce the frictional torque [8]. However, the

asperity interaction still exists which eventually causes wear.

2



The reviews of the experimental, analytical and numerical work conducted in the past are

presented in the rest of this chapter.

1.1 Review of Experimental Work

In the area of rough surface contact, the main topic is how to measure the interfacial properties,

e.g., the real area of contact, interfacial gap distribution, contact pressure distribution, etc.

Among all the interfacial properties, the real area of contact is the most heated topic. Therefore,

this review is biased towards the work associated with the measurement of real area of contact.

The methods developed for the measurement of the real area of contact and interfacial

properties can be generally divided into two categories, namely, the indirect and direct meth-

ods. Depending on whether the measurements and the physical contact are taken in the same

time and location, some methods are in-situ and the rest are ex-situ. In the following sec-

tions, attempts in the past to tackle these two challenges are divided into five main categories,

namely, (i) the contact resistance method, (ii) acoustic method, (iii) pressure sensitive paper,

(iv) CT/micro-CT/MRI, (v) coating method and (vi) optical method. A brief survey of differ-

ent experimental techniques applied to the rough surface contact, along with the corresponding

technical specifications, are summarized in Table 1.1 at the end of Section 1.1. More details

on the historical development of the experimental techniques can be found in the following

literature reviews: [9–14]. Indeed the experimental work shall never be succeed without the

development of the rough surface measurement technique (e.g., stylus profilometer, optical

profilometer, atomic force microscope (AFM) and etc). However, this will not be touched in

this review and the interested reader should refer to [15–17] for more details.

1.1.1 Contact Resistance Method
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Current -in

Current -out

v

Circular contact area

Figure 1.2: Schematic representation of the contact resistance measurement between two cylin-
drical pins using four-wire method.

The contact resistance method is an in-situ and indirect measurement of the contact area.

This method plays an important role in the early stage of the development of the rough sur-

face contact theory. Before 1912, electrical conductance between contacting bodies had been

widely studied. Binder [1] in 1912 found that the measured conductance across two contacting

bodies is smaller than the summation of the conductance of each contact body. Based on this

experimental result, Binder made an important assumption that only a small portion of the area

is in solid contact. In the later years, this assumption had been approved by other advanced

experimental work, which will be discussed later, and is treated as a basic principle in the study

of the rough surface contact. From the author’s perspective, the rough surface contact stems

from the work of Binder.

Contact resistance method can be applied to measure the apparent contact area of the

axisymmetric indenter. When two similar cylindrical pins are in contact within a nominal

circular/elliptical region, the current is flowing from one metal to another and it is constricted

within this region, see Fig. 1.1. If we neglect the contaminants over the contact interfaces (e.g.,

oxide layer), the constriction of the current line results in the contact resistance. The contact

resistance is in a function of the electric conductivities of the mating metals and the radius of
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the contact [2]. Based on this closed-form solution, the apparent circular contact region can be

quantified indirectly by measuring the contact resistance first [1, 18]. This method is restricted

to the case where two surfaces are smooth and the apparent contact region is circular, see Fig.

1.2. For the non-circular contact region, the corresponding closed-form relation between the

contact resistance and the real area of contact may not be available. Assuming the each asperity

contact area is the same, Tabor [18] was able to estimate the number of contacting asperity and

the mean asperity contact area of a nominally flat rough surface contact. Another restriction of

this method is that both contact bodies has to be conductive, i.e., the contact pairs involving the

ceramic and polymer are not suitable for this method.

1.1.2 Acoustic Method

Indenter

Interface

Substrate

Ultra-sonic transducer

Applied load

Figure 1.3: Schematic representation of the acoustic method.

The acoustic method is an in-situ and indirect measurement of the contact area. A schematic

representation of the acoustic method is shown in Fig. 1.3. The acoustic method has many

successful applications to the contact problems (e.g., spherical contact [19, 20], universal joint

contact [19], wheel-rail contact [21], dovetail milling cutter-steel plate contact [24], etc.) where
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the dimensions of the contact area are commonly in the macro-scale. Except for the mapping

of real area of contact, the acoustic method can also predict the contact stiffness [22, 23].

In the acoustic method, the mapping of the real area of contact relies on the distribution

of the reflection coefficient R. At the solid-solid contact interface, R approaches 0. When

the interfaces are out-of-contact with infinite gap (i.e., out-of-contact), R approaches 1. For the

location where the air of finite gap is trapped between rough interfaces,R should between 0 and

1. However, the acoustic transducer has a focused spot with the radius of several hundred µm,

which is larger than 1 µm (an common lateral resolution in characterizing the rough surfaces).

This causes blurred boundaries between the distribution of the reflection coefficient at contact

and out-of-contact area. Therefore, the acoustic method cannot distinguish the contact area

from the out-of-contact area down to the micron/nano-scale. Its application is mainly restricted

to the large-scale contact problem where the size of the contact area is significantly larger than

the that of the focused spot of the acoustic transducer. Another limitation of the acoustic method

is that the acoustic transducer needs to be emerged in the water bath for a good focusing of the

incident wave over the interface.

1.1.3 Pressure Sensitive Paper

Pressure sensitive paper/film is used in the study of faults friction [25–27], tire-road interaction

[28] and wheel-rail interaction [29]. This method can indirectly measure the contact pressure

distribution and the real area of contact. This method is simple and does not require complicated

equipment. This method is normally for the purely normal contact. During the contact, a thin

pressure sensitive paper manufactured by Fujifilmr (Japan, Tokyo) is inserted between the

indenter and the sample, see Fig. 1.4(a). After detaching of the contact pair, the contact spots on

the pressure sensitive paper turn to different colors which are correlated with the corresponding

contact pressure. After scanning of the paper, the contact pressure distribution and the contact

spot distribution can be identified through image processing, see Fig. 1.4(b). The resolution

is limited by the size of the ink capsular in the paper. Additionally, the insertion of a third

body (pressure sensitive paper) between the contacting rough surfaces may change the contact

status, especially when the thickness of the paper is larger than the roughness. Therefore, this
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Image Scanner

(a)

(b)

Indenter

Pressure sensitive paper

Substrate

Applied load

Indenter

Substrate

Figure 1.4: Schematic representation of the (a) indentation scheme and (b) the color distribution
on the pressure sensitive paper after the indentation. Blue and red colors are associated with
the low and high contact pressure.

method can only be applied to the large scale contact problem where the roughness/waviness is

significantly larger than the thickness of the paper. Under the larger load, some sharp asperities

may cause the penetration of the paper. The contact pressure may also create surface tension

outside the contact area where the color is changed and that spot may be mistakenly treated as

contact spot. Therefore, this method tends to exaggerate the real area of contact and cannot be

applied to case where local contact pressure is extremely high.

1.1.4 CT/micor-CT/MRI

Computed Tomograph (CT)/ micro-Computed Tomograph (micro-CT)/Magnetic resonance im-

age (MRI) is a non-destructive method to create cross-sections of a physical object. The cross-

sections are combined to form 3D image. These advanced techniques are wildly used in the
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Figure 1.5: 3D plots of the contact interfaces and the corresponding contact area distribution
[34] associated with three different contact pair. Reprinted from Polymer Testing, 53, Kriston,
A., Fülöp, T., Isitman, N.A., Kotecký, O. and Tuononen, A.J., A novel method for contact
analysis of rubber and various surfaces using micro-computerized-tomography, pp. 136, 2016,
with permission from Elsevier.

radiology and many engineering practices (e.g., defect detect in the engineering materials).

CT/micro-CT/MRI scan is an ideal method for the measurement of the contact area and the

interfacial gap. However, it is until recently that CT/micro-CT/MRI is applied to the study

of the real area of contact. The contact area and the interfacial gap can later be identified

through image processing of the recorded 3D images, see Fig. 1.5. Unless material is mag-

netic, CT/micro-CT is capable of measuring most engineering materials. The clinical MRI

scanner is also suitable for bio-materials. The clinical MRI scanner was used in the study of

joint contact [30]. The CT scanner was frequently used to study the electrical contact interface

by the group of Swingler [31–33]. Recently, Kriston et al. [34] used the micro-CT to study the

contact between rubber and various rough surfaces.

Since the contact pair must be loaded inside the chamber of the CT/micro-CT, the sample

size is restricted. Due to the relatively long scanning time, the CT/micro-CT/MRI scanner is

currently suitable for the quasi-static loading only. The resolution of the micro-CT scanner is

also limited to 2 µm [34]. A better resolution can be achieved using the nano-CT, but the

working space for the specimen is further reduced.
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photographic negative
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Radiated paint

Applied load

Substrate

Indenter

Figure 1.6: Schematic representation of the coating method proposed by Tarasenko et al. [35].

1.1.5 Thin Coating Method

The thin coating method is an indirect and ex-situ method. A thin film of coating can be used

to identify the location of contact between two rough surfaces in various ways. The literatures

related to this topic are relatively rare compared with the other methods. Tarasenko et al. [35]

applied a thin, radiated paint onto one surface. The paint was suspended in the solvent and

was deposited on the surface once the solvent evaporated. After detachment of the contact

pair, the radiated paint is assumed to be transferred from one surface to another only within

the contact area. The original rough surfaces are irradiated. On the photographic negative of

the rough surface (originally without paint), the area with transferred paint (contact area) has

a great contrast with the area without paint (out-of-contact area). Schematic representation of

Tarasenko’s method is illustrated in Fig. 1.6. A similar idea has been used by D’yachenko et

al. [36]. Before mating of two rough surfaces, one of them is radio-activated. After detachment

of the contact pair, the metallic particles from the activated surface are assumed to be trans-

ferred to the counter surface, which is not activated. The real area of contact can be mapped
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using the radiographic methods. Nitta [38] inserted a thin film of poly(ethyleneterephthalate,

PET) between two rough surfaces. After contact, the PET film is severely deformed within the

contact area. Then, the contact area distribution can be indirectly obtained through the optical

measurement of the indents on the PET film. Bettscheider et al. [37] deposited a thin film of

gold (Au80Pb20) on the surface of a substrate which is indented by a bearing ball. When the

deposited surface is scanned by the scanning electron microscope (SEM), the second electron

image can create a strong contrast inside and outside the contact area due to the the difference

of the topographical gradient. The coating method can only applied to the quasi-static contact

where no sliding occurs. The methods rely on the local behavior of the coating. In refs. [35,36],

it is nearly impossible to prove that the transfer of coating occurs throughout the entire contact

area. In refs. [37, 38], the methods rely on the permanent deformation of the coating and its

substrate may overestimate the real area of contact since the coating outside the contact area

(closing to the contact edges) may also have severe deflection. The deflected part of coating

also may not always be part of the contact area.

1.1.6 Optical Method

The optical method is an in-situ and direct method and a schematic representation is shown

in Fig. 1.7. It is the most popular technique applied to the rough surface contact problem

in the various aspects of tribology. It can measure the contact area spots between contacting

bodies at either purely normal dry contact [10, 39–43, 45, 47, 52, 56, 57], the pre-sliding dry

contact [44, 48, 50, 51], the sliding dry contact [47, 53–55, 58], torsional contact [46, 49] and

the wet/lubricated contact [54, 58–60]. The major restriction of the optical method is that one

or both contacting bodies are transparent materials. The early studies of contact area using the

optical method has been extensively discussed in the review papers [6, 7, 25]. The commonly

used transparent bodies are glass (e.g., sapphire [44, 45] and elastomers (e.g., PMMA [51],

PDMS [48, 50, 52] and rubber [43, 49, 54]). This significantly limits its application to the

contact problem associated with the soft materials. Different types of optical devices are used

in different applications. For the sliding contact occurring over a very short time (e.g., the pre-

sliding [50,51] and fingertip sliding [53]), high-speed cameras with high frame per second (fps)
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Normal load

Tangential load

Indenter

Transparent substrate
(e.g., sapphire)
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Image Processing

Binarized Image

Contact area
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Figure 1.7: Schematic representation of the optical method.

are used. For other contact problems under quasi-static loading, digital cameras [43,59], optical

profilometry [37, 42, 56, 57] or digital microscope cameras [44, 47] are used. Additionally, the

lateral resolution of the optical method is restricted by the theoretical limit of the optical device,

i.e., 0.2µm. The reported (in-plane) resolutions of the measurements (interval between pixels)

taken by the optical method vary from 0.2 µm [40] to 8 µm [42]. The resolution is usually

deteriorated significantly to 156 µm if a high-speed camera [51] is used.

1.1.7 Remarks

Table 1.1 summarizes the main features of the experimental technique discussed above. It is

clear there no universial approach to measure the real area of contact. An appropriate approach

should be picked based on the practical problems.

1.2 Review of Analytical Work

Ever since the experimentalists [1, 2, 18] confirmed that only a fraction of the apparent contact

area is in contact based on the electrical contact, many theoretical attempts have been made
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to accurately calculate the real area of contact. Analytical work developed in the past can be

divided into two main categories: random process model and the multi-scale model. The ran-

dom process model is also known as the statistical model or the multi-asperity contact model.

In the former category, the roughness is considered as a random process, i.e., the geometry of

the roughness is indeterministic. The rough surface contact problem in this category is solved

in a statistical manner. In the later category, the rough surface is assumed to have a multi-

scale nature where more geometrical features are shown as the length scale is decreased. This

multi-scale nature of rough surface indeed changes the real area of contact, the contact pres-

sure, etc, as more and more finer scales are included. The development of the models in these

two categories are briefly discussed and the inter-connections between them are also touched

upon. Before we move to the introduction of these two major models, some fundamental works

performed by Barber [61, 62] need to be introduced. Barber [61] rigorously proved that, for a

purely normal contact between a rigid punch with a smooth surface and an elastic half-space,

the indentation depth and the real area of contact increased monotonically with the normal load.

This monotonic trend is obvious in many statistical and multi-scale models under certain load-

ing condition and assumptions. However, it is Barber who firstly gave the rigorous proof based

on the fundamental equations. It is obvious that Barber’s theorem is suitable for the rough

surface contact. Barber [62] later showed the analogy between the electrostatic problem and

purely normal contact problem. Additionally, he rigorously proved that the purely normal elas-

tic contact between two half-spaces with rough surfaces is equivalent to an elastic half-space

indented by a rigid rough surface.

1.2.1 Random Process Model

It is commonly known that the first1 random process model is developed by Greenwood and

Williamson [63] in 1966 and it is referred to as the GW model. In their classic paper, Green-

wood and Williamson studied the purely normal contact between a nominally flat rough surface

1The very first statistical model is developed long before the Greenwood-Williamson model by the Soviet
Union scholar Zhuravlev in 1940. The English version of this historical paper is translated by Borodich [67].
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ξh
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Hertzian contact
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Figure 1.8: A schematic representation of the GW model at (a) a global view. The detailed
interaction between the rough surface and the rigid flat is illustrated in (b). The contact at the
asperity level is shown in (c).
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and a rigid flat, see Fig. 1.8(a). The contact load is supported by individual contacting asperi-

ties and a cross-sectional view of the contact interface is shown in Fig. 1.8(b). Each asperity is

assumed to have an axisymmetric parabolic shape. The contact load, Pi, and the corresponding

contact radius, ai, of each contacting asperities are in the function of the indentation depth, δ,

see Fig. (1.8)(c). The classic Hertzian theory is used [65, 75] to calculate Pi(δ) and ai(δ). The

indentation depth is the subtraction of the surface separation, d, from the asperity height, ξ, i.e.,

δ = ξ − d. Taking the asperity height as the only random variable and assuming it follows the

Gaussian distribution, Φh(ξ), then the statistical expectation (ensemble average) of the contact

load and the contact area of all asperities is

〈Ai〉 =

∫ ∞

d

πa2
i (ξ − d)Φh(ξ)dξ, 〈Pi〉 =

∫ ∞

d

Pi(ξ − d)Φh(ξ)dξ. (1.1)

Therefore, the real area of contact, Ar, and the total applied load, P , associated with the surface

separation, h, is

Ar = n〈Ai〉, P = n〈Pi〉, (1.2)

where n is the total number of asperities. Asperity density η, a ratio of n to the nominal contact

area, An, is often used to replace n, thus the above relation is rewritten as

A∗ = η〈Ai〉, p̄ = η〈Pi〉, (1.3)

where A∗ = Ar/An is the contact ratio and p̄ = P/An is the average contact pressure.

Some important assumptions adopted in the GW model are summarized below:

• Assumption 1. The asperities have the same radius of curvature, R;

• Assumption 2. Neighboring contacting asperities do not interact2;

• Assumption 3. The asperity deformation is linear elastic;

• Assumption 4. The asperity height follows the Gaussian distribution.
2This assumption is commonly referred to as the asperity interaction, even though it may confuse readers

who are not in this area. An appropriate description may be stated as: “Neighboring contacting asperities are not
coupled due to the elastic deformation of the substrate”.
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In the rest of this section, the improvements of the GW model relating to the above four as-

sumptions in the past literatures are briefly reviewed.

Assumption 1 is due to the fact that the radius of curvature of the asperity is not a ran-

dom variable. Some attempts have been made from the tribologists and mathematicians to

include the radius of curvature as a random variable. Based on the measured rough surfaces,

Whitehouse and Archard [68] found a correlation that the higher asperities have sharper tips

(smaller radius of curvature). By assuming an exponential-like auto-correlation function and

the tips of the asperities are all axisymmetric, Whitehouse and Archard derived a joint proba-

bility density function (PDF) Φh(ξ, C) where C is the radius of curvature of the asperity tip.

This joint PDF is used by Onions and Archard [69] under the framework of the GW model.

In fact, a more rigorous and systematic study of the statistics of the isotropic random sta-

tionary surface [70], as well as the random moving surface [71], has been conducted by the

mathematician Longuet-Higgins in the late 1950s. It was Nayak [72] in 1971 who applied

the Longuet-Higgins’ random theory to the characterization of the engineering surfaces and

it is commonly known as the Nayak’s random theory. In his classic paper, the statistics of

the isotropic random surface (3D) and random profile (2D) are distinguished for the first time

and studied individually. Various forms of PDF have been derived analytically and some are

essential to the later development of the statistical models. Starting from Nayka’s paper [72],

moments(mh
0 , mh

2 and mh
4), describing the variance of the surface height, surface slope and the

surface curvature, and the bandwidth parameter, αh = mh
0m

h
4/(m

h
2)2, became popular in the

statistical characterization of the isotropic rough surfaces. A more detailed compilation of the

statistics of the isotropic Gaussian random surface (profile) can be found in Thomas’s excellent

textbook [73]. Bush, Gibson and Thomas [74] in 1975 proposed the most complete random

process model (known as the BGT model) for the linear elastic Gaussian surface contact. The

asperity is assumed to have a parabolic shape associated with major and minor principle curva-

tures. Hertzian theory [75] for the single asperity contact is naturally applied to calculate the

normal load and the elliptical contact area on the single asperities in a function of penetration.

The joint PDF of the asperity is in a function of the asperity height, major and minor principle

curvatures of the asperity summit. When the normal load is vanishing, the contact ratio (real
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area of contact normalized by the nominal contact area) is asymptotically proportional to the

average pressure (normal load normalized by the nominal contact area) with the constant of

proportionality depending on the root mean square (rms) slope and the reduced modulus, E∗,

only. The complete BGT model involves triple integrals for the calculation of the real area of

contact and the applied load. Some efforts have been made to simplify the BGT model through

reducing the number of the random variables [73, 77, 79]. In the original GW model, several

inputs (e.g., asperity density) need to be obtained from the measured rough surface data. For

a strictly Gaussian surface, those inputs should be in a function of the moments, mh
0 , mh

2 and

mh
4 [72, 74, 76] which makes the GW model much easier to be applied as long as the moments

are known in advance. This simplification of the inputs of the GW model was first proposed by

McCool [76].

Assumption 2 is due to the fact that the substrate beneath the rough surface is rigid, which

is not explicitly claimed by Greenwood and Williamson in the GW model [63]. Therefore,

the GW model can also be treated as a Winkler elastic foundation [65] with nonlinear springs.

When the real area of contact is a negligibly small fraction of the nominal contact area, each

contacting asperity is distantly away from each other. Therefore, each contacting asperity can

be studied individually and assumption 2 is approximately satisfied. As the applied load in-

creases, the distance between the neighbouring contacting asperities is reduced and the state

of stress at one asperity may eventually affect its neighboring contacting asperities (by lower

their height) and it is known as the asperity interaction. As the applied load further increases,

the isolated circular/elliptical asperity contact areas may coalesce into irregular shaped contact

patches. Therefore, most of the random process models can only be applied to the light load

case. Since the roughness in the random process model is indeterministic, it is nearly impossi-

ble to include the deflection of the substrate accurately. Alternatively, the deflection has been

included in an average sense [81, 82, 89]. Few attempts have been made to include the asperity

coalescence [83, 84].

Assumption 3 restricts the application of the GW model to linear elastic materials. Nowa-

days, the GW model has been adapted to cover various material types. Among those, the

elastoplastic rough surface contact is the most active area. The key to the adaption of the GW
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model to cover different material types is to develop the corresponding asperity contact model.

In the elastoplastic asperity contact model, the deformation of the single asperity has usually

been divided into three stages based on the extent of the indentation depth [85]: (i) linear elastic

stage; (ii) elastoplastic stage and (iii) fully plastic stage. The linear elastic stage is governed

by the Hertzian theory [65, 75]. The fully plastic stage is commonly described by a truncation

model known as the Abbott-Firestone (AF) model. However, in the original paper of Abbott

and Firestone [86], no truncation model of fully plastic stage is mentioned. Instead, they in-

vented a way to study the properties of the bearing surfaces known as the Abbott-Firestone

curve. Up till now, the first paper on the fully plastic model is still unknown. In the fully

plastic stage, the contact pressure distribution is assumed to be the same as the hardness which

is considered as a “common sense” ever since the classic text book of Tabor [18]. This “com-

mon sense” has been revisited by Jackson and Green [85] using finite element method (FEM)

and Jackson et al. [87] by the slip line theory. They found that the hardness is not constant at

three times and the yield strength and the ratio of hardness to yield strength is reduced with

the increase of the contact area. In the elastoplastic stage, the contact region and the substrate

beneath it are in a mixture of elastic and plastic deformation. An approximated solution was

proposed by Chang et al. [88] for the elastoplastic stage based on the volume conservation and

it is commonly known as the CEB model. Zhao et al. [89] fixed the discontinuity in the CEB

model using a polynomial fit. For a more accurate approximation, the curve-fit results of Pi(δ)

and ai(δ) are obtained based on the FEM results [85,90,96]. If the asperity contact is no longer

in the (quasi-)stage stage, the impact model should be used instead [92–97]. More information

on the development of the elastoplastic asperity contact can be found in a recent review by

Ghaednia et al. [98]. Using the above mentioned single asperity models, different elastoplastic

rough surface contact models are proposed [99–101].

The application of GW model is restricted to the Gaussian surfaces by Assumption 4.

However, the Gaussianity of some engineering surfaces have been questioned by Borri and

Paggi [102] and Borodich et al. [103]. Except for the Gaussian distribution, the Weibull dis-

tribution [104, 105], Pearson distribution [106, 107] and other asymmetric distributions in a

function of the skewness and kurtosis [108] are used in the random process model.
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1.2.2 Multi-scale Model

It is commonly accepted that the first multi-scale model for the rough surfaces contact is devel-

oped by Archard [109] in 1957. In the Archard model [109], a rough sphere of radius R0 is in

contact with a rigid flat. Archard [109] claimed that the rough surface on the sphere should have

the following structure: spherical protuberances of radius R1 � R0 are evenly distributed over

the smooth sphere. This “protuberances on protuberances” structure is repeated self-similarly

as the the length scale decreases, see Fig. 1.9. At the finer scales, the protuberances of radius

Rn, which are subjected to the contact pressure, evenly distributed over the larger protuberances

of radius Rn−1. The Hertzian theory [65, 75] is applied to calculate the contact area on each

single protuberance. Starting from initial two scale structure (only includes the base sphere of

radius R0 and protuberances of radius R1), the contact load, P , vs. the real area of contact,

Ar, can be derived hierarchically. As the number of scales, n, increases, Archard [109] found

that the P vs. Ar relation gradually approaches a linear relation. Note that the Hertzian theory

(single asperity contact model) predicts a non-linear relation, so Archard model implies that

the roughness induces a linearizing effect. Compared with the other popular analytical models,

the Archard model is seldom used these days due to the following drawbacks:

• The rough spherical surface depicted in the Archard model is unrealistic.

• The load P vs. Ar relation associated with n scales structure should be manually derived.

As n increases, the derivation becomes tedious.

As the first multi-scale model, some of the breakthroughs achieved in the Archard model are

listed below and all of them more or less inspired the rest of the multi-scale models and

• The “protuberances on protuberances” structure is equivalent to the concept of (self-

similar) fractals found by Mandelbrot [112] and applied firstly by Majumdar [110, 111]

in 1991. It is surprised that Archard has already applied this concept successfully to the

rough surface contact 34 years ago.

• The Archard model is the first model to predict that the linear relation between the contact

load P and the real area of contact Ar could possibly occur in the rough surface contact.
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This linearity has been observed in the numerical model of nominally flat rough surface

contact [113, 114].

Figure 1.9: Multi-scale structure of (b) the real area of contact and (b) the roughness (c-f)
proposed by Archard [109]. Archard, J.F., Elastic deformation and the laws of friction., Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
1957, 243(1233), pp. 193, by permission of the Royal Society.
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The fractal geometry, invented by Mandelbrot [112], is one way to characterize multi-

scale nature of rough surfaces. The rough profile (2D) can be represented by the Weierstrass-

Mandelbrot (WM) function [111, 115]. The WM function for the rough surface (3D) is pro-

posed by Ausloos and Berman [116] (see also a similar form proposed by Yan and Komvoupolous

[117]). Two parameters in the WM function are essential to the fractal characterization: D and

G. D is the fractal dimension where D ∈ [1, 2] for rough profile and D ∈ [2, 3] for rough sur-

face. G is the characteristic length scale of the surface. Recently, Zhang et al. [118] questioned

the validity of the fractal characterization since the different methods of evaluating D and G do

not give a consistent prediction for the rough surfaces.

Majumdar and Bhushan [111] proposed the first fractal (MB) model where the multi-scale

nature of the rough surface is introduced to the rough surface contact model. The rough surface

height was assumed to follow the Gaussian distribution. The contact area at a given surface

separation was calculated based on Abbott-Firestone curve [86]. The contact load at a given

contact spot of size a was calculated by the Hertzian theory [75]. Due to the known probability

density function of the contact spot size found by Mandelbrot [112], the total contact load was

obtained based on the statistical expectation of the contact load at each asperity. The MB model

has been criticized for its anti-physical phenomenon when it is applied to the elastoplastic

contact. For instances, the MB model predicts a transition from plastic to elastic contact as

the load is increased [134]. A 3D rough surface contact model has been proposed by Yan and

Komvoupolous [117].

Ciavarella et al. [119] adapted the Archard model to the case where a nominally flat rough

profile (2D) is in contact with a rigid flat. The rough profile is represented by the WM function

which is the summation of the sinusoidal waviness components of increasing frequency. The

“protuberance on protuberance” structure in the Archard model is replaced by the “waviness

on waviness” model. The classic sinusoidal waviness (2D) model solved by Westergaard [66]

is used to determine the real area of contact as the number of higher frequency components

are increased (i.e., the length scale is decreased). Ciavarella et al. [119] gives a striking pre-

diction that the real area of contact may monotonically decrease to zero if an infinite number

of frequency components are included (i.e., the sampling points interval in the rough profile
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approaches zero). Additionally, Ciavarella et al. [119] firstly considers the probability of the

contact pressure distribution in the rough surface contact. This important concept will be used

by Persson [120] and eventually lead to the well-known Persson’s model.

Except for the WM function, the fractal geometry is often characterized by its power

spectrum density(PSD) vs. frequency relation. More and more measurements [121–124] point

to the fact that there is a wide group of engineering surfaces whose (angular average) PSD

vs. frequency relation follows a linear relation in a wide span of frequencies. This linear

relation has been tested within a large span of wavelengths, [1nm, 1000m], associated with

different measurement technique (e.g., optical profilometer, atomic force microscope (AFM)

and scanning tunneling microscope (STM)). Two fractal parameters, G and D, can be obtained

from the linear fit of the PSD vs. frequency relation. However, Zhang et al. [118] questioned if

those fractal surfaces associated with linear PSD vs. frequency relation are real fractal.

Persson [120] analytically derived an ingenious model for the frictional contact between a

rigid fractal surface and a viscoelastic half-space. The PSD vs. frequency relation of the rough-

ness is linear. The real area of contact in a function of average contact pressure is derived, in

the Appendix B of [120], based on the probability density function of the contact pressure dis-

tribution which evolves with the number of the included frequency components. An alternative

explanation of the Persson’s model on the real area of contact is given by Manners and Green-

wood [126] where a simpler form of the probability density function of the contact pressure is

given. The real area of contact is found to be represented by an error function of the average

contact pressure [126, 127]. This simple relation has been tested extensively by different nu-

merical methods [113, 114, 128] and it is proved to be a good approximation to the numerical

solution. The Persson model has been extended to calculate different interfacial properties and

contact schemes, namely, the adhesive rough contact, average interfacial contact [127], leakage

rate of seals [129], interfacial stiffness [130] and etc. The Persson model has been criticized

that it is solely based on the geometry arguments and lack of information on the elasticity [131].

Recently, Ciavarella [132] obtained a similar error function for the real area of contact based

on a random process model developed by Xu et al. [133]. This indeed shows a close relation
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between the Persson model and the random process model built under the framework of the

GW model. This will be discussed in detail in Chapter 5.

In fact, not all the rough surface can be characterized either by the WM function or the

linear PSD vs. frequency relation. An universal way of representing the rough surface is the

Fourier series. Jackson and Streator [134] adopt Archard’s idea of “protuberance on protu-

berance” [109]. The fast Fourier transform (FFT) is applied to obtain the amplitude of each

sinusoidal component. The number of scales depends on the number of the sampling points.

The tip of the sinusoidal waviness is considered as a protuberance with a parabolic shape. In

this way, the Archard model which needs manual derivation has been adapted to an automated

algorithm. The real area of contact shows a convergent trend as n reaches the maximum value.

A simplified version of the Jackson and Streator model is proposed by Jackson [135]. The

Jackson and Streator model has been applied to many aspects of tribology, e.g., the electrical

contact resistance [136–138], thermal contact resistance [139], liquid-mediated collapse [140],

adhesive contact [141], elastoplastic contact [134, 142], viscoplastic contact [138] and liquid-

mediated adhesion [143, 144].

1.3 Review of Numerical Work

In the current tribological study, tribologists are facing important challenges when modeling

the contact interfaces:

1. The contact body is far more complicated than a bulk of continuum media. The substrate

may be covered by multiple layers of different medias, e.g., thin film coating, oxide layer,

contaminants, organic film, etc.

2. The rough surface has a multi-scale structure which needs higher resolution of profilom-

etry down to the nano-scale. This may result in an unrealistic number of sampling points

and the increases of the memory and computational time.
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3. The mechanism between the interaction of the mating surfaces may beyond the scope of

the classical mechanics where different disciplines, e.g., the chemical reaction and quan-

tum mechanics, may be involved, especially when the considered length scales include

the nano-scale.

4. Fluid-structure interaction, wear, third bodies and thermal effects may also play a key

role in the interface.

It is clear that the analytical models can never satisfy the accuracy needed to the modeling of

such complicated interfacial contact. This can only be achieved by the deterministic numerical

models. The deterministic numerical models in the past literatures can be divided into two main

categories: finite element method (FEM) and boundary element method (BEM).

1.3.1 FEM

Figure 1.10: A schematic representation of a meshed rough surface, as well as the substrate,
created in ANSYSr. Figure courtesy of Xianzhang Wang.
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The general theory of the computational contact mechanics using FEM is well documents

in [145–148]. However, the rough surface contact is barely touched in those monographs. As

far as the author knows, the first rough surface contact finite element (FE) model is proposed

by Komvopoulos and Choi [149] in 1992. The (rigid) rough surface in their FE model consists

of multiple parabolic asperities and the contact problem is in plane-strain condition. The first

3D rough surface contact model is proposed by Hyun et al. [113] in 2004. Most of the FE

models developed later are mainly dedicated to the fundamental study of the rough elastoplastic

contact [150–152]. Due to the popularity of the FEM in the applied mechanics community and

the mature commercial products (e.g., ANSYSr and ABAQUSr), tribologists prefer to use the

FEM software package to simulate the rough contact problem in many engineering practice,

e.g., the lip seal [153] and electrical connectors [154, 155]. Fig. 1.10 schematically illustrates

a meshed rough surface, as well as the substrate.

In the fundamental study of the rough surface contact, FEM is less popular than BEM due

to the following reason:

1. The discretization is performed on the boundary, as well as the volume. Commonly,

the FE model contains more nodes than that of the BEM (at least for the linear elastic

analysis), especially when the interface is discretized according to the measured rough

surface data with fine resolution.

2. Few algorithms are applied to accelerate the FE model.

The above drawbacks prevent the FE models from being widely utilized for the rough surface

contact in the tribological model.

1.3.2 BEM

Broadly speaking, the Boundary Element Method (BEM) is referring to any numerical tools

which solve the approximated solutions on the boundary of a specific problem. In the com-

putational mechanics, the BEM is referring to a general-purpose numerical tool established in

the late 1970s. A brief historical development of BEM can be found in [156]. For the linear

elastic problem, the general-purpose BEM utilizes the Betti’s reciprocal theorem to connect
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the boundary values (tractions and the surface displacement) of the current problem and that

of a special problem [156]. This special problem should have the closed-form solution. Since

few linear elasticity problems have closed-form solutions, the infinite domain subjected by a

point load is commonly chosen as the special problem. The corresponding solution is known as

Kelvin’s solution [156]. Then, the relation between the traction and the surface displacement

components are obtained in an integral form known as the boundary integral equation (BIE).

Combining with the boundary conditions (e.g., Karush-Kuhn-Tucker condition), the boundary

values can be solved iteratively. The enforcement of contact in the general-purpose BEM is

more or less similar to that in the FEM, e.g., the penalty method. The very first the general-

purpose BEM model of contact problem is published in 1982 by Andersson et al [157]. The

application of BEM to the contact problem has been discussed in many the general-purpose

BEM-related monographs [158–160]. The general-purposeBEM has also been applied to some

tribological problems, see adhesive Hertzian contact [161] and thermal mechanical wear under

dry sliding contact [162].

Unfortunately, few general-purpose BEM models are created for the rough surface contact.

Two drawbacks in the BEM models bring inefficiency to the rough surface contact modeling as

the number of nodes (sampling points) increases:

1. The discretized form of the BIE involves the matrix-scalar production which consumes

most of the time before the solving process.

2. The stiffness matrix is nearly fully populated which makes the solving process computa-

tionally expensive.

These are the main reasons why the general-purpose BEM models in the examples of many

BEM papers are restricted to node counted in the thousands or less. The above two drawbacks

may be overcome by fast algorithms, e.g., the fast multipole BEM [163], but the application of

the fast multipole BEM to the contact problem is rare to find [164], not to mention the rough

surface contact.
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In the same time as the birth of the BEM, a special form of BEM is developed by the

tribologists. In order to distinguish both, the general-purpose BEM is referred to as the con-

ventional BEM and the one developed in tribology is the special BEM. From the perspective

of the conventional BEM, the special problem in the special BEM is a half-space subjected to

a point load on the boundary solved by Boussinesq [64]. In some rare cases, the quarter space

subjected to a point load on the boundary [165] is used as the special problem. In Chapter 3, it

will be proved that the special BEM with the Boussinesq solution can be derived from the con-

ventional BEM using the Kelvin’s solution. The restriction brought by the Boussinesq solution

is that the special BEM can only be applied to the contact problem where any flexible contact

bodies are half-spaces. In many contact problem, e.g., the Hertzian contact, the dimensions of

the contact area are usually several orders of magnitude less than the dimensions of the contact

bodies. Therefore, the approximation of the contact body by a half-space is reasonable.

The special BEM is extremely popular in the numerical analysis of rough surface contact.

Based on the periodicity of the boundary conditions, the special BEM can be divided into

non-periodic [166, 167] and periodic BEM [168, 169]. The fundamental solutions in the non-

periodic and periodic BEM are the Boussinesq solution [64] and the Westergaard solution [66].

The special BEM can be divided into two parts: the BIE and contact modeling.

For a purely normal contact, a closed-form solution of the normal surface displacement

in an integral form of the contact pressure is given by the BIE. Commonly, the computational

boundary (either the same size as the nominal contact area or the size of one period) is a flat

rectangle. To match with the sampling points measured by the profilometry, the computational

boundary is discretized rectilinearly into rectangular elements with constant lengths, ∆x and

∆y. Some numerical models use the triangular elements [65, 161, 171]. Nearly all the models
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utilizes constant element3 on the boundary, i.e., the tractions are uniform within the neighbor-

hood, [xi−∆x/2, xi+∆x/2]×[yj−∆y/2, yj+∆y/2], of the sampling point at (xi, yj). The cor-

responding influence coefficient has the closed-form solution developed by Love [170]. Higher

order elements, e.g., the bi-linear triangular element [65,161,171,172] and the bi-quadratic ele-

ment [173,174], are rarely used since (i) the forms of the influence coefficients are complicated

and (ii) the assembly of the stiffness matrix from the influence function is not straight-forward.

After the discretization, the surface displacement at all nodes can be represented by a matrix-

vector production where the matrix and the vector consist of the Love’s influence coefficients

and the tractions, respectively. This discretized form has been widely used not only in the rough

surface contact, but also in the lubrication problem to account for the surface deflection due to

the lubricant pressure [166]. As the number of the sampling points (nodes) are increased to a

large number (for example: 512 × 512), the time consumed in performing the matrix-vector

production significantly increases. Two acceleration schemes, namely, the Multi-Level-Multi-

Integration (MLMI) [175] and Fast Fourier Transform (FFT) [176], are developed. The MLMI

is mainly used under the framework of the multi-grid method [166, 177]. In the frequency do-

main, the spectrum of the normal surface displacement and the contact pressure has a closed

form solution [66]. Note that the fast algorithm for the periodic [169] and non-periodic con-

tact [176] should be handled differently due to the alias brought by the fourier transform. For

the elastoplastic contact, an extra term is added to the BIE to account for the effect due to the

residual stress (strain) inside the substrate [178, 179].

The contact modeling is mainly associated with the boundary conditions. For a purely nor-

mal contact excluding the adhesion, it is the Karush-Kuhn-Tucker (KKT) condition where the

interfacial gap and the contact pressure are zero within the contact and non-contact area, respec-

tively. Inspired by the numerical method used in solving the Reynolds equation, the relaxation

method (e.g., the Newton-Raphson method) has been applied to iteratively correct the contact

3In the traditional computational mechanics, the geometry of the boundary is assumed to the smooth or piece-
wisely smooth. Therefore, the BEM model with the higher order elements approximates the true solutions better
than that with the lower order elements. This golden rule, however, does not apply to the boundary represented by
the rough surface. The multi-scale and random natures of the roughness makes its geometry unpredictable within
the two neighboring sampling points. Rigorously speaking, the interpolation of the traction between the sampling
points (nodes) with any orders are not appropriate.
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pressure [166]. To ensure the zero pressure at the non-contact area, the negative pressure is set

to zero. Another method is to treat the contact problem as an optimization problem. Since the

product of the interfacial gap and the contact pressure is zero everywhere, then the contact prob-

lem is equivalent to a Linear Complementarity Problem (LCP) [180–182]. Since the influence

matrix used for the calculation of the surface displacement is positive definite, then the LCP

problem is equivalent to a quadratic programming problem [180]. From the mechanics perspec-

tive, the physical meaning of the quadratic problem is that the true solution results in the mini-

mization of the total complementary energy [171]. This concept should be very familiar since

the entire theory of FEM is built upon the variational formulation. Many numerical solvers des-

ignated for the quadratic programming problem (e.g., the simplex method [171,183]) and LCP

(e.g., conjugate gradient method (CGM) [182, 184, 185] and pivoting method [186, 187]) are

applied to the rough surface contact model. Among all the solvers, the CGM solver proposed

by the Polonsky and Keer [185] is the most popular one.

Rough surfaces usually require the measurement of the rough surface geometry with a

fine resolution down to the nano-scale. At this small scale, the conventional treatment of the

material as a continuous media may not be sufficient to accurately capture the interfacial inter-

action [188]. Instead, the interaction at the molecular and atomic levels, as well as the quantum

effect, may become dominant. An all-atoms simulation for a reasonably large domain may

be too computationally expensive. A common structure of such a multi-scale computational

model [189] is (i) to simulate the deformation of the substrate using the BEM or FEM, (ii)

the creating of several layers of atoms over the bulk interface to account for the interaction

at the atomic level using the molecular dynamics (MD) simulation and (iii) to create a bridge

domain between the bulk and the interface composed of atoms to guarantee the continuity.

One of such multi-scale computational models used wildly in the rough surface contact is the

Green’s Function Molecular Dynamics (GFMD) proposed by Campañá and Müser [190]. A

similar multi-scale model can also be found in [191]. In GFMD, the substrate is discretized

into lattices (e.g., face-centered cubic) and the corresponding lattice Green function is used to

account for the elastic substrate deformation. The lattice Green function can be treated as the

counterpart of the Kelvin’s or Mindlin’s solution of the lattice space.
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1.4 Problem Statement

A common statement of contact problem of elastic rough surfaces interaction is as follows:

Consider two linear elastic, isotropic, homogeneous half-spaces with the rough interfaces,

h1(x, y) and h2(x, y), under the purely normal compressive load pair, P , acting at the far

end of both half-spaces. The Young’s modulus and the Poisson’s ratio are Ei and νi (i = 1, 2).

Determine the stress, σij , strain, εij and displacement, ui, components (i = x, y, z) on the

interface and in the substrate of each half-space.

Based on the above fundamental solutions, we can extract the useful results that have

important applications:

• Contact pressure p(x, y) = −σzz(x, y)

For the non-adhesive contact, i.e., no tensile normal traction is allowed, the contact pres-

sure is everywhere non-negative. If the adhesion is included, p(x, y) is a mixture of

tensile and compressive stress. In the non-adhesive contact, p(x, y) is used to distinguish

the contact boundary, Γc, and non-contact boundary, Γnc. Γc is a set of in-plane points

(x, y) where the corresponding pressures are positive. Similarly, Γnc is a set including all

the non-contact points where p(x, y) = 0.

• Contact ratio A∗

The real area of contact, Ar, can be measured based on the distribution of the points in

the contact boundary Γc. Since the nominal contact area An (which is the size of the

entire z = 0 plane) is infinite, it is reasonable to use the ratio which is defined as follows:

A∗ = lim
An→∞

Ar/An. (1.4)

• Average interfacial gap ḡ

The interfacial gap g(x, y) within Γc is zero and is positive within Γnc. The average

interfacial gap over the entire nominal contact area is defined as follows:

ḡ = lim
An→∞

1

An

∫∫

Ωnc

g(x, y)dxdy. (1.5)
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The assumptions are tabulated below:

1. The spectrum to wavelength ratios of the rough surfaces should be small;

This enables the validity of the half-space assumption and small deformations in the

linear elasticity,

2. No interfacial friction;

The interfacial friction introduces coupling between the normal (shear) stress and tan-

gential (normal) displacement component and inevitably increases the complexity of the

model. Additionally, the inclusion of interfacial friction (e.g., the Coulomb law) will

only reduce the contact area by a small portion [65].

3. Rough surface is characterized by a Gaussian, isotropic and random process.

According to Barber [62], the contact problem stated above can be further simplified to

a rough half-space with a composite rough surfaces, h(x, y) = h1(x, y) + h2(x, y), in purely

normal contact with a rigid flat. The Young’s modulus and the Poisson’s ratio of the only

half-space satisfy:
1

E∗
=

1− ν2

E
=

1− ν2
1

E1

+
1− ν2

2

E2

. (1.6)

Finally, the contact problem which is studied throughout the entire dissertation should be

stated as follows:

Consider a linear elastic, isotropic, homogeneous half-space with the rough interface, h(x, y),

in the purely normal contact with a fixed rigid flat under the compressive load, P , acting at

the far end of the half-space. The Young’s modulus and the Poisson’s ratio satisfy Eq. (1.6).

Determine the corresponding contact pressure, p(x, y), the contact ratio, A∗, and the average

interfacial gap, ḡ.

1.5 Outline of this dissertation

In Chapter 2, the statistical characterization of a nominally flat, isotropic, Gaussian rough sur-

face is briefly introduced. The different forms of the PDFs of the asperities of a rough surface
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and the corresponding “pressure surface”4 in the functions of different combinations of the

random variables (e.g., asperity height). The closed-form of the moments of a fractal, Gaus-

sian and isotropic rough surface and the corresponding “pressure surface” are given where the

PSD of the rough surface shows a linear relation against the frequency. In Chapter 3, statistical

models of the early contact proposed in the past literature are studied systematically for the first

time. Important statistical models proposed in the past literature are reviewed according to the

different forms of the PDFs and the Hertzian contact models. In Chapter 4, a general formula-

tion of the new statistical models of the nearly complete contact is given. Multiple statistical

models are proposed due to their different PDFs and the Hertzian contact models. In Chapter

5, the adhesion in the form of the Dugdale model is introduced to the statistical model of nearly

complete contact. In Chapter 6, the special BEM formulation wildly used in the rough surface

contact is derived from the conventional BEM. The BEM model is validated by some analytical

solutions. In Chapter 7, the statistical model of early and nearly complete contact is validated

by the BEM. In Chapter 8, an empirical model is developed for the prediction of the real area

of contact (contact ratio) when the load is increased from null to infinity. The empirical model

is a curve-fit function based on the statistical model at nearly complete contact and the BEM.

4The geometry of the contact pressure when the roughness is completely flattened
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method for contact analysis of rubber and various surfaces using micro-computerized-

tomography. Polymer Testing, 53, pp.132-142.

[35] Tarasenko, V.S., 1959. The experimental determination of actual areas of contact between

touching surfaces. Scientific Notes, Odessa Polytechnic Institute, 16.

[36] D’yachenko, P.E., Tolkacheva, N.N., Andreev, G.A. and Karpova, T.M., 1964. The actual

contact area between touching surfaces, translated by Consultant Bureau. New York, NY.

[37] Bettscheider, S., Gachot, C. and Rosenkranz, A., 2016. How to measure the real contact

area? A simple marker and relocation foot-printing approach. Tribology International,

103, pp.167-175.

[38] Nitta, I., 1995. Measurements of real contact areas using PET films (thickness, 0.9 µm).

Wear, 181, pp.844-849.

[39] Dyson, J. and Hirst, W., 1954. The true contact area between solids. Proceedings of the

Physical Society. Section B, 67(4), pp.309-312.

[40] Bhushan, B. and Dugger, M.T., 1990. Real contact area measurements on magnetic rigid

disks. Wear, 137(1), pp.41-50.

[41] Dieterich, J.H. and Kilgore, B.D., 1994. Direct observation of frictional contacts: New

insights for state-dependent properties. Pure and Applied Geophysics, 143(1), pp.283-

302.

[42] Hendriks, C.P., and Visscher, M., 1995. Accurate real area of contact measurements on

polyurethane. ASME Journal of Tribology, 117, pp.607-611.

36



[43] Castillo, J., Blanca, A.P.D.L., Cabrera, J.A. and Simn, A., 2006. An optical tire contact

pressure test bench. Vehicle System Dynamics, 44(3), pp.207-221.

[44] Ovcharenko, A., Halperin, G., Etsion, I. and Varenberg, M., 2006. A novel test rig for in

situ and real time optical measurement of the contact area evolution during pre-sliding of

a spherical contact. Tribology Letters, 23(1), pp.55-63.

[45] Z̆ugelj, B.B., and Kalin, M., 2017, In-situ observations of a multi-asperity real contact

area on a submicron scale. Journal of Mechanical Engineering, 63(6), pp.351-362.

[46] Chateauminois, A., Fretigny, C. and Olanier, L., 2010. Friction and shear fracture of an

adhesive contact under torsion. Physical Review E, 81(2), p.026106.

[47] Krick, B.A., Vail, J.R., Persson, B.N. and Sawyer, W.G., 2012. Optical in situ micro

tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding

experiments. Tribology letters, 45(1), pp.185-194.
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Chapter 2

Statistical Characterization of A Nominally Flat, Isotropic, Gaussian Rough Surface

2.1 Introduction

Engineering surfaces are always rough and always deviate from the designed (mean) surface.

This uneveness can be easily visualized when the surface height is measured over a finite area

using the profilometry, see Fig. 2.1. Applying the Fast Fourier transform (FFT), the spectrums

of the rough surfaces can be obtained. Then, the rough engineering surface is considered to

be the superposition of the waviness and the roughness. The waviness is related to the lower

frequency (larger wavelength) components of the spectrum and can be extracted using a low-

pass filter. The roughness is related to the higher frequency (lower wavelength) components of

the spectrum and can be extracted using a high-pass filter. Many factors can cause the wavi-

ness over the engineering surfaces, e.g., the vibration of the machine tools [1]. Additionally,

waviness is sometimes created artificially on the mating surfaces to improve the tribological

performances (e.g., reducing friction, achieving higher load capacity and lower wear rate) be-

tween the machine components, e.g., the laser texure [2]. The roughness of the engineering

surfaces is mainly due to the fracture of the material at the micro-scale or even lower scales dur-

ing the machining. The material at the smaller scales can no longer be considered as continua

due to the existence of the micro-structures, e.g., the voids, second phase particles, inclusions

and grain boundaries. Due to the action of the cutting tool, the crack propagation (fracture

of the material) should follow the designed profile macroscopically. Depending on the dif-

ferent micro-structures in front of the crack, the crack propagation cannot maintain a straight

path and therefore it is kinked [3]. For example, some cracks prefer to propagate along the
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grain boundaries which have random directions. Thus, the randomness and the small scales of

the micro-structures cause the crack propagation being kinked about the design path at a high

frequency rate and the roughness is created. It is shown numerically that the statistics of the

roughness is largely dependent of the spatial distribution of the micro-structure [3].

(a) (b)

[mm]

Figure 2.1: (a) 3D surface height and (b) the corresponding contour measured from the electri-
cal connector by the optical profilometer.

Generally, the contacts between the machine components are either conforming or non-

conforming. A contact is conforming if “two mating surfaces can fit exactly or closely to-

gether without deformation” [4]. This type of contact can be found in the journal bearing

between the shaft and the bearing bore (or bushing). The radius of the shaft and bearing

bore are slightly different in order to include the lubricant between the mating surfaces. Non-

conforming contact can be found in the contact pair where the mating surfaces have dissimilar

profile. Non-conforming contact can be easily found in the ball/roller bearing where the rolling

elements/rollers are in non-conforming contact with the inner/outer race.

Regardless of the global geometries of the contact interfaces, the contact between rough

surfaces at the smaller scales are quite the same. Consider a non-conforming contact between

a rolling element and the inner race in the ball bearing for example, see Fig. 2.2(a). The

nominal contact area in the macro-scale should be an ellipse according to the Hertzian contact

theory, see Fig. 2.2(c). Due to the roughness, solid contact does not occur everywhere inside
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the elliptic region but is only concentrated on the higher asperities, see Fig. 2.2(b). Therefore,

the elliptic nominal contact area has been broken into finite smaller asperity contact regions,

see Fig. 2.2(c). To further simplify the contact problem, usually the curvatures of the mating

surfaces are assumed to be so large compared with the nominal contact area that each body

can be considered by a half-space. Thus, the rough surface, h(x, y), over the contact interface

(boundary of the half-space) can be considered as a nominal flat which oscillates about z = 0

plane, see Fig. 2.2(d) for the interface height of the inner race. The surface height is measured

about its mean level1, i.e., 〈h〉 = 0.

(a)

(b)

(c)

(d)

h

Inner Race

Rolling Element

P

〈h〉 = 0

Contact Out-of-Contact

Figure 2.2: (a) Schematic representation of a rolling element in contact with a inner race; (b)
Detailed interfacial contact between the asperities; (c) Schematic representation of the nominal
contact area (bounded by the solid line) and the real area of contact (black region); (d) Nominal
flat rough interface of the inner race leveled about 〈h〉 = 0.

Before the start of the next section, I would like to introduce an important naming con-

vention which will be used throughout the rest of this dissertation. In Chapter 4 of statistical

models at early contact, the asperities and the probability density functions are related to the

rough surfaces. In Chapter 5, similar type of statistical models are built at another extreme,

i.e., nearly complete contact. The “asperities” and the probability density functions (PDF) are
1〈h〉 represents the ensemble average of the rough surface height since the rough surface is a random process

which has infinite statistically similar realizations.
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related to the “pressure surface” which is the geometry of the contact pressure at complete

contact. The superscripts h and p are used to represent the statistical and geometrical param-

eters of the rough surfaces and the corresponding“pressure surface”. For example: ξh means

the summit height of a rough surface and κp1 is the principle curvature of the asperity of the

“pressure surface”.

2.2 Spectral Moments and its Statistical Meaning

The Fourier transform pair is widely used in the entire dissertation. Due to its various forms,

the following ones are adapted in the rest of the dissertation:

F [f ](kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)exp [−i2π(kxx+ kyy)] dxdy, (2.1)

f(x, y) = F−1[F [f ]](x, y) =

∫ ∞

−∞

∫ ∞

−∞
F [f ](kx, ky)exp [i2π(kxx+ kyy)] dkxdky. (2.2)

where kx and ky are the wave number in the x and y directions.

Recalling the problem statement in Section 1.4, the rough surface, h(x, y), covers the

entire z = 0 plane. Since the Fourier transform requires
∫∫∞
−∞ |f(x, y)|dxdy <∞ and h(x, y)

is not bounded at r =
√
x2 + y2 → ∞, Eq. (2.1) cannot be applied to h(x, y) to obtain

the spectrum, F [h](kx, ky). An alternative is to obtain the power spectrum density (PSD),

Sh(kx, ky), through the Fourier transform of the auto-correlation function (ACF), Rh(x, y).

The definition of Rh(x, y) is [5]

Rh(x, y) = 〈h(ξ, η)h(ξ + x, η + y)〉. (2.3)

For a stationary and non-periodic random process, h(x, y), with 〈h〉 = 0, Rh(x, y) is

bounded at the infinity [13], i.e., Rh(r →∞)→ 0 and
∫∫∞
−∞ |Rh(x, y)|dxdy <∞. Therefore,

56



the Fourier transform is valid to be applied to Rh(x, y). The Fourier transform of the ACF2 is

PSD3 [5]:

Sh(kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
Rh(x, y)exp [−i2π(kxx+ kyy)] dxdy, (2.7)

and the inverse Fourier transform of PSD is ACF:

Rh(x, y) =

∫ ∞

−∞

∫ ∞

−∞
Sh(kx, ky)exp [i2π(kxx+ kyy)] dkxdky. (2.8)

Substituting Eq. (2.3) into Eq. (2.7) and changing the integral order in Eq. (2.7), we can get

the relation between PSD and the spectrum:

Sh(kx, ky) = lim
A0→∞

1

A0

|F [h](kx, ky)|2. (2.9)

In the practice, A0 is the sampling area and is finite.

Alternatively, the random rough surface can be “regarded as being the sum of an infinite

number of infinitesimally small, uncorrelated, sinusoidal waviness” [5, 8, 10]:

h(x, y) =
∞∑

n

B(kxn, kyn) cos(xkxn + ykyn + εn), (2.10)

2Due to various forms of Fourier transform pairs, the expression and unit of PSD may also be varied [6]. The
following Fourier transform pair is wildly used by Persson [7–9] and many other researchers:

F [f ](kx, ky) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f(x, y)exp [−i(wxx+ wyy)] dxdy, (2.4)

f(x, y) = F−1[F [f ]](x, y) =

∫ ∞

−∞

∫ ∞

−∞
F [f ](wx, wy)exp [i2π(wxx+ wyy)] dwxdwy. (2.5)

where wx(y) = 2πkx(y) is the angular frequency . Thus, the corresponding PSD is 1/(2π)2 times the one defined
in Eq. (2.7) [6]. Therefore, the corresponding relation between B(wx, wy) and Sh(wx, wy) in Eq. (2.11) should
be rewritten as [7, 8]

B(wx, wy) = lim
A0→∞

2π√
A0

√
Sh(wx, wy). (2.6)

where A0 = LxLy . In the practice, A0 is the sampling area and is finite.
3Some authors refer to Sh(kx, ky) as “power spectrum” [7–9] or “height spectrum” [11, 12]
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where there are infinite number of wave vector, (kxn, kyn) and εn is the random phase between

[0, 2π]. The amplitude, B(kx, ky), can be related with the PSD, Sh(kx, ky), through [7]

B(kx, ky) =
1√
LxLy

√
Sh(kx, ky), (2.11)

Since, the amplitude, B(kx, ky), of a rough surface, h(x, y), can be calculated through FFT, Eq.

(2.11) is one of the approaches to calculate PSD.

Following the Nayak’s random theory [5], the spectral moments, mh
pq, are defined as:

mh
pq =

∫∫ ∞

−∞
wpxw

q
yS

h(kx, ky)dkxdky, (2.12)

where wx and wy are angular wave number: wx(y) = 2πkx(y).

The above spectral moments, mh
pq, are related to the variances of the partial derivatives of

h with respect to (w.r.t) x and y coordinates:

mh
pq =





0, p or q is odd〈(
∂(p/2+q/2)h

∂x(p/2)∂y(q/2)

)2
〉
. p and q are even

(2.13)

Since Sh(kx, ky) is an even function of kx and ky, mh
pq = 0 is easily deduced when at least one

of p and q is odd [5]. The proof of Eq. (2.13) when p and q are even is given below:

Proof. LetRh

[
∂(p/2+q/2)h

∂x(p/2)∂y(q/2)

]
(x, y) and Sh

[
∂(p/2+q/2)h

∂x(p/2)∂y(q/2)

]
(kx, ky) be the ACF and PSD of

the partial derivatives of h w.r.t x and y. Resorting to the identity in Eq. (2.8), we have

Rh

[
∂(p/2+q/2)h

∂x(p/2)∂y(q/2)

]
(0, 0) =

∫∫ ∞

−∞
Sh
[
∂(p/2+q/2)h

∂x(p/2)∂y(q/2)

]
(kx, ky)dkxdky. (2.14)

Using the following identity [13]:

Sh
[
∂(m+n)h

∂xm∂yn

]
(kx, ky) = w2m

x w2n
y S

h(kx, ky),
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and the definition of R(x, y) in Eq. (2.3), Eq. (2.14) is rewritten as:

〈(
∂(p/2+q/2)h

∂x(p/2)∂y(q/2)

)2
〉

=

∫∫ ∞

−∞
wpxw

q
yS

h(kx, ky)dkxdky = mpq.

In most published analytical work, the rough surface is commonly simplified by the as-

sumption of isotropy. A rough surface is isotropic if the spectral moments of the rough profiles

in any arbitrary directions are the same [5]. This assumption implies that the PSD has an ax-

isymmetric form, i.e., Sh(kx, ky) = Sh(k) where k =
√
k2
x + k2

y . For the sake of simplicity,

only the moments related to the variance of ∂(p/2)h/∂x(p/2) and ∂(p/2)h/∂y(p/2), i.e., mh
p0 and

mh
0p are used. Since mh

p0 = mh
0p, an abbreviated notation, mh

n, is used to represent mh
p0 and

mh
0p.

Under the assumption of isotropy, Eq. (2.12) is simplified to (let kx = kcosθ and ky =

ksinθ):

mh
n =





2π
1 · 3 · · · · · (n− 1)

2 · 4 · · · · · n
∫∞

0
Sh(k) (2πk)nkdk n = 0, 2, 4, ...,

0, n = 1, 3, 5, ... .

(2.15)

The bandwidth parameter, αh, defined by Nayak [5] is essential to the statistical models and is

based on the first three non-zero moments:

αh =
mh

0m
h
4

(mh
2)2

. (2.16)

The root mean square (rms) surface slope,
√
〈|∇h|2〉, is widely used in many rough surface

contact models. For an isotropic rough surface, we have the following identity [10, 16]:

√
〈|∇h|2〉 =

√
mh

2/2. (2.17)
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kl kskr k

Figure 2.3: Schematic representation of the power spectrum density (PSD) of a self-affine
fractal surface.

2.3 Example: Spectral Moments of a Self-Affine Fractal Surface

The fractal surface is widely used in the rough surfaces contact as the surface inputs of the

numerical models [14–16] and other multi-scale models [19, 20] even though it receives criti-

cisms [21, 22]. One PSD frequently used in the rough surface contact has the form illustrated

in Fig. 2.3. The closed-form is given piece-wisely below:

Sh(k) =





Ck−2(1+H) k ∈ [kr, ks],

Ck
−2(1+H)
r k ∈ [kl, kr),

0 otherwise,

(2.18)

where ks and kl are the cut-off wavenumbers associated with the shortest (λs) and the longest

(λl) wavelengths, respectively. kr is the roll-off wavenumber. The fractal surface associated

with the above PSD is called self-affine since the surface geometry is not scaled uniformly in

the x, y and z directions when the length scale decreases.
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Applying Eq. (2.15) to the fractal surface, the non-zero (even order) moments are

mh
n = (2π)n+1

∏n/2
k=1(2k − 1)C
∏n/2

k=1(2k)

[
k
−2(1+H)
r

n+ 2
(kn+2
r − kn+2

l ) +
1

n− 2H

(
kn−2H
s − kn−2H

r

)
]
,

(2.19)

where
∏0

k=1(·) = 1.

According to the PSD of many measured rough surfaces, the frequencies, kr and kl, are

almost identical. Thus, kr ≈ kl and the above closed-form can be further reduced to [16]:

mh
n =

∏n/2
k=1(2k − 1)
∏n/2

k=1(2k)

(2π)n+1C

n− 2H
(kn−2H
s − kn−2H

l ). (2.20)

The first four non-zero moments can be written as [16]:

mh
0 =

πC

H

(
k−2H
l − k−2H

s

)
, (2.21)

mh
2 =

1

4

(2π)3C

1−H
(
k2−2H
s − k2−2H

l

)
, (2.22)

mh
4 =

3

16

(2π)5C

2−H
(
k4−2H
s − k4−2H

l

)
, (2.23)

mh
6 =

5

32

(2π)7C

3−H
(
k6−2H
s − k6−2H

l

)
. (2.24)

The bandwidth parameter has the closed form as follows [16]

αh =
3

2

(1−H)2

H(2−H)

(1− ξ−2H)(ξ4−2H − 1)

(ξ2−2H − 1)2
, (2.25)

where the magnification ratio is ξ = ks/kl. It is obvious that, except formh
0 , the other three mo-

ments shown above are unbounded as the magnification ratio ξ reaches infinity (i.e., the entire

frequency range is included) [17]. Generally, all the non-zero order moments are unbounded

as ξ →∞.

2.4 Asperities of the Rough Surface

The terminology “asperity”, a fundamental concept in the tribology, especially in the rough

surface contact, is frequently used in the previous sections without a proper definition. An
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asperity is visualized as a protuberance with a higher altitude then all its surroundings. Com-

monly, the highest point on the asperity of the rough surface is called the summit [5]. In the

measured rough surfaces, the asperities can be pinpointed by “four nearest neighbor” or “eight

nearest neighbor” [18].

When the rough surface contact is in the early stage where the contact ratio is negligibly

small, nearly all the solid contacts occur on the higher asperities. Thus, the geometry of the

single asperity is essential to the modelling of the rough surfaces contact at the early stage.

Consider a local coordinates, x′y′, parallel to xy plane. The projection of the origin, o′,

of x′y′ coordinates on z = 0 coincides with that of the summit. The geometrical form of the

asperity might be described by4

h(x′, y′) = ξh − 1

2
κh1(x′)2 − 1

2
κh2(y′)2, (2.26)

where ξh is the summit height. κh1 = 1/Rh
1 and κh1 = 1/Rh

2 are the (positive) principle curva-

tures (κh2 ≥ κh1 ≥ 0) of the summit along the principles axes x′ and y′.

Back to the base coordinate, xy, the geometry of the asperity is defined as h(x, y) where

[x, y]T = R2×2[x′, y′]T + [x0, y0]T . R2×2 is the rotation matrix. The corresponding Hessian

matrix is

Hh(x, y) =




∂2h

∂x2

∂2h

∂x∂y
∂2h

∂y∂x

∂2h

∂y2


 . (2.27)

Since Hh(x, y) is invariant of the translation, [x0, y0]T , and the rotation, R2×2, the absolute

values of two eigenvalues of Hh(x, y) are the principal curvatures: κh1 and κh2 . The following

curvatures will be used in the later sections:

• Absolute mean curvature of the summit:

κhm = (κh1 + κh2)/2. (2.28)

4Parabolic form of asperity is dominant in the rough surface contact models proposed in the past literatures.
This is mainly due to to the Hertzian theory where the interfaces are also parabolic form.
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• Geometrical curvature of the summit:

κhg =
√
κh1κ

h
2 . (2.29)

• Absolute semi-difference curvature of the summit:

κhd = |κh1 − κh2 |/2 =
√

(κhm)2 − (κhg)
2. (2.30)

Absolute mean curvature and the geometric curvature of the summit play a central role in

simplifying the Hertzian elliptical contact model into two different circular contact models. We

will back to this topic in Section 4.2.

Since κh1 and κh2 are eigen values of Hf (x, y), κhm, κhg and κhd can also be defined in the

base coordinates as5 [5, 23]:

κhm =−
(
∂2h

∂x2
+
∂2h

∂y2

)
/2, (2.31)

κhg =

[
∂2h

∂x2

∂2h

∂y2
−
(
∂2h

∂x∂y

)2
]1/2

, (2.32)

κhd =

[
1

4

(
∂2h

∂x2
− ∂2h

∂y2

)2

+

(
∂2h

∂x∂y

)2
]1/2

. (2.33)

The above equations have practical usage when the measured rough surface data is available.

2.5 The Joint Probability Density Functions of Asperity

At the early contact, the load is distributed over the higher asperities. In order to calculate the

real area of contact and the total load for a fixed surface separation, all the contacting asperities

should be identified and the corresponding contact area and contact load should be calculated.

This methodology works for the deterministic (measured) surfaces in which the number of

asperities are finite. However, the corresponding results are not representative of the other

statistically similar realizations.

5Product of the eigen values is the determinant of the matrix. Sum of the eigen values is the trace of the matrix.
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In Section2.4, a parabolic asperity is shown to be uniquely represented by (ξh, κh1 , κ
h
2), see

Eq. (2.26). Since the rough surfaces are random processes, an equivalent statistical approach

is to find the probability density of the contacting asperities with the summit height, ξh > d,

and the principle curvatures, 0 ≤ κh1 ≤ κh2 . In the rest of this section, Nayak’s random theory

[5] is introduced which is mainly used to find the probability density functions (PDF) of the

asperities of the random, isotropic, Gaussian rough surface. The alternative forms of the PDF

with different random variables derived by Greenwood [23] are also discussed. A total of four

different PDFs with different random variables combination are given. Different forms of the

PDF together with different types of asperity contact models in Section 4.1 are used to form

different statistical models in Chapter 4.

The random theory was firstly developed by the mathematician Longuet-Higgins [24, 25]

to study the statistics of the surface of the ocean. It is Nayak [5] who introduced the Longuet-

Higgins’ random theory to the tribology community. Nayak [5] defined the following notations:

ξh1 = h, ξh2 =
∂h

∂x
, ξh3 =

∂h

∂y
,

ξh4 =
∂2h

∂x2
, ξh5 =

∂2h

∂x∂y
, ξh6 =

∂2h

∂y2
.

In this classic paper [72], Nayak gave the joint probability6 of a point on the random, isotropic,

Gaussian surface is a function of random variables (ξh1 , ..., ξ
h
6 ), see Eq. (35) in [5].

Defining the following dimensionless groups [23]:

ξh∗ = ξh/
√
mh

0 ,

(ξh∗4 , ξh∗5 , ξh∗6 ) = (ξh4 , ξ
h
5 , ξ

h
6 )/
√
mh

4 ,

(u1, u2, u3) =

(
ξh∗4 + ξh∗6

2
, ξh∗5 ,

ξh∗4 − ξh∗6

2

)
, (2.34)

6The random variables are up to the second order derivatives of the height because the height of the parabolic
asperity is a second-order polynomial.
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then the PDF of the asperity7 in a function of the summit hight, ξh∗, and other curvatures of the

summit, (u1, u2, u3), is [23]:

Φ(ξh∗, u1, u2, u3) =
mh

4

mh
2

√
C1

(2π)2
3
√

3 exp
[
−C1

(
ξh∗
)2
]
|u2

1 − u2
2 − u2

3|×

exp

{
−3

2

[
C1u

2
1 + u2

2 + u2
3 + C1

√
2

αh
u1ξ

h∗
]}

, (2.35)

where C1 = αh/(2αh − 3).

Eq. (2.35), however, does not have a practical usage in the rough surface contact, since

none of the curvatures in (u1, u2, u3) are directly used in any of the Hertzian asperity contact

models (this will be discussed in detail in Section. 4.2). In the rest of this section, an alternative

form of Eq. (2.35) developed by Greenwood [23] is introduced. Based on Greenwood’s new

PDF, three more PDFs are derived.

Substituting the dimensionless groups in Eq. (2.34) into Eqs. (2.31) and (2.33), we have

the following identity [23]:

κh∗m = κhm/
√
mh

4 = −u1, (2.36)

κh∗d = κhd/
√
mh

4 =
√
u2

2 + u2
3. (2.37)

Then, the PDF of the asperity in Eq. (2.35) can be transformed into an equivalent PDF8 with

the random variables (ξh∗, κh∗m , κ
h∗
d ) [23]:

Φ(ξh∗, κh∗m , κ
h∗
d ) =

27

2π

√
C1 exp

[
−C1

(
ξh∗ − 3κh∗m

2
√
αh

)2
]
[
(κh∗m )2 − (κh∗d )2

]
κh∗d ×

exp

[
−3

4
(κh∗m )2 − 3

2
(κh∗d )2

]
. (2.38)

7Asperity is identified by ξh2 = ξh2 = 0, ξh4 < 0, ξh6 < 0 and ξh4 ξ
h
6 − (ξh5 )2 > 0. The detailed derivation of the

PDF of the asperity can be found in [5].
8Rewriting u2 = κh∗d cos(θ), u3 = κh∗d sin(θ) and du2du3 = κh∗d dκh∗d dθ and integrating over 0 ≤ θ ≤ 2π

results in Eq. (2.38)
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The PDF in a function of the random variables: ξh∗, κh∗1 and κh∗2 Using the relation

between (κh1 , κ
h
2) and (κhm, κ

h
d) shown in Eqs. (2.28) and (2.30), the PDF9 of the asperity with

(ξh∗, κh∗1 , κ
h∗
2 ) can be obtained from Eq. (2.38) is [27]:

Φ(ξh∗, κh∗1 , κ
h∗
2 ) =

27

8π

√
C1 exp

[
−C1

(
ξh∗ − 3(κh∗1 + κh∗2 )

4
√
αh

)2
]
κh∗1 κ

h∗
2 (κh∗2 − κh∗1 )×

exp

{
− 9

16

[
(κh∗1 )2 + (κh∗2 )2 − 2

3
κh∗1 κ

h∗
2

]}
. (2.39)

The PDF in a function of the random variables: ξh∗ and κh∗m This PDF can be obtained

by integrating Eq. (2.38) over κh∗d ∈ [0, κh∗m ] [5]:

Φ(ξh∗, κh∗m ) =
3
√
C1

2π
exp

[
−C1

(
ξh∗
)2
]{

3(κh∗m )2 − 2 + 2 exp

[
−3

2
(κh∗m )2

]}
×

exp

{
−1

2

[
3C1(κh∗m )2 −

√
3C2κ

h∗
m ξ

h∗
]}

, (2.40)

where C2 = C1

√
12/αh.

The PDF in a function of the random variables: ξh∗ and κh∗g This PDF can be obtained

by substituting Eq. (2.30) into Eq. (2.38) and integrating Eq. (2.38) over κh∗m ∈ [κh∗g ,∞) [23]:

Φ(ξh∗, κh∗g ) =
9

2
√

2π

√
αh

αh − 1
(κh∗g )3erfc

[
µ

(
3κh∗g −

ξh∗
√
αh

αh − 1

)]
×

exp

[
−αh

(
ξh∗
)2

2(αh − 1)
+

3(κh∗g )2

2

]
, (2.41)

where µ =

√
1

2

αh − 1

2αh − 3
.

The PDF in a function of single random variable: ξh∗ Further integrating Eq. (2.41)

over the κh∗g ≥ 0, the PDF of the asperity in a function of the asperity height ξh∗ only is

9The following identity is used:

dκh∗m dκh∗d = det

(
∂κh∗m /∂κh∗1 ∂κh∗m /∂κh∗2
∂κh∗d /∂κh∗1 ∂κh∗d /∂κh∗2

)
dκh∗1 dκh∗2 =

1

2
dκh∗1 κh∗2 .
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obtained10 [5, 23]:

Φ(ξh∗) =
3

2π

√
2αh − 3

αh
ξh∗exp

[
−C1(ξh∗)2

]
+

3
√

3

2
√

2π

1

αh
[
(ξh∗)2 − 1

]
×

exp
[
−1

2
(ξh∗)2

]
[1 + erf (β)] +

√
αh

2π(αh − 1)
×

exp
[−αh(ξh∗)2

2(αh − 1)

]
[1 + erf(γ)] , (2.42)

where β = ξh∗

√
3

2(2αh − 3)
and γ = ξh∗

√
αh

2(αh − 1)(2αh − 3)
. The error function reads as:

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

McCool’s Relations In order to analytically express the inputs of the original GW model

[32]: (ηh, mh, Rh, σhs ), McCool [33] summarized the corresponding results derived by Nayak

[5] and Bush et al. [31]:

ηh =
1

6
√

3π

(
mh

4

mh
2

)
, (2.43)

mh = 4

(
mh

0

παh

)1/2

, (2.44)

Rh =
3

8

(
π

mh
4

)1/2

, (2.45)

σhs =

(
1− 0.8968

αh

)1/2

(mh
0)1/2, (2.46)

where ηh is the asperity density; mh is the distance between the mean asperity level and mean

surface level. Rh is the average radius of asperity; σhs is the root mean square (rms) of the

asperity height. Note that McCool’s relations are only valid for the Gaussian surfaces.

10The original solution (Eq. (50) in [5]) is misprinted. The correct one can be found in Appendix A in [23].
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2.6 Statistical Characterization of the “Pressure Surface”

When a nominally flat rough surface, h(x, y), is completely flattened by a rigid flat under

the purely normal contact, the corresponding contact pressure can be determined analytically

through the Fourier transform [4, 30]:

pc(x, y) = F−1 [πE∗k F [h](kx, ky)] . (2.47)

where k =
√
k2
x + k2

y . It is obvious that 〈pc〉 = 0 since 〈h〉 = 0. The geometry of the

pressure distribution, −pc(x, y), is referred to as the “pressure surface” and it plays a key role

in modeling the nearly complete contact where the real area of contact is almost the same as

the nominal contact area. More details can be found in Chapter 6.

In the beginning of this section, the statistical nature the “pressure surface” can be de-

scribed as being isotropic and Gaussian as long as the corresponding rough surface is isotropic

and Gaussian process. A proof is given below:

• Isotropy

According to Eq. (2.9), the PSDs of h(x, y) and −pc(x, y) have the following relation

S[pc](kx, ky) =
1

4
(E∗)2(2πk)2S[h](kx, ky). (2.48)

Since the rough surface is isotropic, i.e., S[h](kx, ky) = S[h](k), the “pressure surface”

must be isotropic.

• Gaussianity

Firstly, a general theorem states that if p1 and p2 are two Gaussian random variables,

then p = p1 + p2 is still a Gaussian random variable [13]. Secondly, Eq. (2.47) can be

rewritten in a convolution form:

pc(ξ, ζ) =

∫∫

Ω

K(ξ − x, ζ − y)h(x, y)dxdy. (2.49)
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Representing the above integral using the Riemann sum, then pc(xk, yl) is the summa-

tion,
∑∞

i=1

∑∞
j=1Aijklhij , of an infinite set of Gaussian random variables multiplied by

a constant forth order tensor Aijkl. As a matter of fact, the “pressure surface”, −pc(x, y),

is a Gaussian random process.

According to the above statement, the “pressure surface” and the rough surface equiva-

lently the same in a statistical sense. Following the definition of the asperity given in Section.

2.4, the geometry of the asperity of the pressure surface can also be represented by

p(x′, y′) = ξp − κp1
2

(x′)2 − κp2
2

(y′)2, (2.50)

where axes x′ and y′ are the principal axes along which the principal curvatures are defined.

The summit height of the asperity is ξp and the unit is [Pressure]. The absolute minimum and

maximum principal curvatures of the summit of the asperity are κp1 and κp2, respectively. The

unit of the curvatures is [Pressure/Length2].

The joint PDF Φp(ξh1 , κ
h
1 , κ

h
2), as well as its other simplified forms, of the asperity of the

rough surface tabulated in Section. 2.5 can be directly applied to that of the “pressure sur-

face”. The only difference is that the moments mp
n should be calculated based on the “pressure

surface”.

2.6.1 Moments mp
n

Since the “pressure surface” is isotropic, the definition of the moments of the isotropic rough

surface in Eq. (2.15) can be directly applied to mp
n while the superscript “h” is replaced by

“p”. Similar to the moments of the rough surface in Eq. (2.15), the moments of the “pressure

surface” can also be defined in an integral form of its own PSD. Replacing the superscript “h”

by “p” and substituting Eq. (2.48) into Eq. (2.15), the non-zero moments mp
n can be written in

an integral form of S[h](k):

mp
n = (E∗)2π

2

1 · 3 · · · (n− 1)

2 · 4 · · ·n

∫ ∞

0

Sh(k)(2πk)n+2kdk n = 0, 2, 4, · · · . (2.51)
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Comparing with the form of mh
n in Eq. (2.15), the following relation between mh

n and mp
n are

obtained [17, 34]:

mp
n =

n+ 2

4(n+ 1)
(E∗)2mh

n+2 n = 0, 2, · · · , (2.52)

and the identities of the first three non-zero moments are:

mp
0 =

1

2
(E∗)2mh

2 , mp
2 =

1

3
(E∗)2mh

4 , mp
4 =

3

10
(E∗)2mh

6 . (2.53)

Following the definition of αh in Eq. (2.16), the bandwidth parameter of the “pressure surface”,

αp, is

αp =
mp

0m
p
4

(mp
2)2

=
27

20

mh
2m

h
6

(mh
4)2

. (2.54)

For the fractal surface with the PSD in Eq. (2.18), the corresponding non-zero moments, mp
n,

are

mp
n = (E∗)2

∏n/2
k=1(2k − 1)
∏n/2

k=1(2k)

(2π)n+3C

4(n+ 2− 2H)
(kn+2−2H
s − kn+2−2H

l ). (2.55)

The first three non-zero moments mp
n are

mp
0 =(E∗)2 1

8

(2π)3C

1−H
(
k2−2H
s − k2−2H

l

)
, (2.56)

mp
2 =(E∗)2 1

16

(2π)5C

2−H
(
k4−2H
s − k4−2H

l

)
, (2.57)

mp
4 =(E∗)2 3

64

(2π)7C

3−H
(
k6−2H
s − k6−2H

l

)
. (2.58)

and the bandwidth parameter αp is

αp =
3

2

(2−H)2

(1−H)(3−H)

(ξ2−2H − 1)(ξ6−2H − 1)

(ξ4−2H − 1)2
. (2.59)

For the fractal rough surface, only zero order moment is bounded. Different from the moments

of the fractal rough surface, all not moments of the “pressure surface” are bounded regardless

of its order.
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2.7 Conclusions

In this chapters, the statistical characterization of the random, isotropic, Gaussian rough sur-

faces, mainely the moments, mh
n, and the various forms of the PDF of the asperities, Φh, are

discussed in detail. It is proved rigorously that

• the moments of the rough surface are equivalent to the variance of the derivatives of the

surface height with respect (w.r.t) the in-plane coordinates (i.e., x and y), see Eq. (2.13);

• the moments of the rough surface can be determined based on the PSD, see Eq. (2.15).

The moments of a fractal surface with a fixed PSD shown in Eq. (2.18) are explicitly given.

Four different PDFs of asperities, Eqs. (2.39-2.42), are tabulated based on the findings of

Nayak [5], Greenwood [23] and Carbone [27] and will be used to build various statistical

models of early contact with different types of Hertzian contact models in Chapter 4. The

similar statistical characterization is also applied to the “pressure surface” when a random,

isotropic, Gaussian rough surface is completely flattened. A rigorous proof is given to show

that the “pressure surface” is also a random, Gaussian, isotropic surface. Closed-form relations

between the moments of the “pressure surface”, mp
n, and mh

n are given, see Eq. (2.52). The

PDFs of the asperities of the rough surface can be directly applied to describe the PDF of the

asperities of the “pressure surface” where the superscript “h” is replaced by “p”.
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Chapter 3

Boundary Element Method for Rough Surface Contact Problem

3.1 Introduction

In this chapter, Boundary Element Method (BEM) applied to the rough surface linear elastic

contact problem is discussed in detail. The main reason why BEM models are discussed before

the statistical models at early (Chapter 4) and nearly complete contact (Chapter 5) is that BEM

models are served as a tool to validate the statistical models. The statistical models discussed

in Chapter 4 and 5 are proposed for the extreme cases where the load is extremely small and

large. Due to the lack of experimental data (not to mention the rough surface is nearly yielded

everywhere at nearly complete contact), the results of BEM models can be served as the refer-

ence to be compared with. Additionally, from the education perspective, BEM models are also

observation tools to offer the straight evidences for the reasonings upon which the statistical

models are built.

Commonly, the numerical models fall into three categories, namely, the Finite Element

Method (FEM) [1–12], the Boundary Element Method (BEM) [?, 13–24, 26–32] and other

multi-scale models [33–35]. Since the multi-scale nature of the interfacial geometry is crucial

to the accuracy of the numerical model, BEM is extremely popular in modeling the rough

surfaces contact. However, the numerical models commonly referred to as BEM in the rough

surface contact literatures are slightly different from the general-purpose BEM in many BEM

textbooks [36–39]. Those general-purpose BEM models are mostly associated with the Kelvin

(fundamental) solution for the elastostatics problems. Many classic BEM models have been

applied to plane (2D), axisymmetric, and spatial (3D) contact problem (e.g., [40–42]) with
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finite domain. However, the BEM frequently applied to the rough surfaces contact problem is

using the Boussinesq solution as the fundamental solution, i.e., the boundary is perfectly flat.

A common point of all the BEM models applied to the rough surface contact problem is

that the displacement of the rough interface can be expressed as the convolution of the traction

and the closed-form kernel, see [45]. It is surprising to see that different names have been as-

signed to this type of method in the past literatures of the rough surface contact, e.g., the FFT

method [22,46] and the minimum principle/mathematical programming method [13,14]. Since

the Boussinesq solution is applied in nearly all the BE models mentioned above, then the corre-

sponding BEM is only valid theoretically for the contact problem where a rigid rough surface is

in contact with a linear elastic half-space where the boundary is perfectly flat. Since the rough

surface height and slope over the interface is negligibly small, those BEM models are still a

good approximation to the problems where a rigid flat is in contact with an elastic rough half-

space or two rough surfaces are in contact. Recently, the general-purpose BEM with the Kelvin

solution is applied by Li and Kahraman in a series of articles [47–51] to some tribological prob-

lems. The BEM formulation of the interfacial displacement and the sub-surface state of stress

considering the effect of the rough interface was initially proposed [47] in the mixed lubricated

point contact problem. A similar BEM formulation [48] in the plane stress/strain condition

was also developed for the mixed lubricated line contact. The infinite boundary outside the

contact area is meshed with the infinite line/quadralateral elements [47, 48]. Li also showed

the difference of the sub-surface stress distribution with and without the effect of the rough

interface [49]. The BEM of the half-space/half-plane was applied to study the micro-pitting in

the mixed lubricated line/point contact [50, 51].

In the following sections, the dry contact problem between an elastic half-space and a

rigid flat is formulated using the general-purpose BEM with the Kelvin solution. In Section

3.2 and Section 3.3, the Boundary Integral Equations (BIEs) for the displacement components

of the rough boundary subjected to the prescribed traction is formulated firstly. If we neglect

the roughness on the boundary, BIEs derived in Section is exactly the Boussinesq solution and

this is shown in Section 3.4. The numerical integral of the kernel is introduced in Section

3.5 for both the periodic and non-periodic problems. The boundary conditions and different
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approaches of solving the dry rough contact problem are briefly introduced in Section 3.6 and

Section 3.7, respectively. The validity of the BEM model is approved in Section 3.8 using two

classic problems.

3.2 The Kelvin Solution

A closed-form, fundamental solution is essential to the classic BEM. In the three-dimensional

(3D) elastostatic problem, the Kelvin solution is dominantly used in all the general-purpose

BEM. The other fundamental solutions (e.g., the Mindlin solution and Boussinesq solution)

can be derived directly from the Kelvin solution. .

The Kelvin solution quantifies the response of the displacement and the traction at the

field point x = (x, y, z) due to a unit point load ei (i = 1, 2, 3) acting at the source point

ξ = (ξ, ζ, η) of an infinite, linear elastic body. The unit vector ei is parallel to the axis of the

based coordinate (x, y, z). The displacement, body force, stress and the traction components

are written in the tensorial forms: ui, fi, σij and pi where

pi = σijnj. (3.1)

The normal direction of the boundary Γ is ni and is pointing to the opposite direction of domain,

Ω. The distance between the source and field points is:

ρ =
√

(ξ − x)2 + (ζ − y)2 + (η − z)2. (3.2)

The resultant displacement components, ui(x) where i = 1, 2, 3, due to a unit point load

ej at ξ is denoted by u∗ij and has the following closed-form [36]:

u∗ij(ξ,x) =
1

16π(1− ν)Gr
[(3− 4ν)δij + ρ,iρ,j] , (3.3)

where G and ν are the shear modulus and Poisson’s ratio of the domain, Ω, respectively. Notic-

ing that G = E/ [2(1 + ν)] where E is Young’s modulus. Similarly, the traction components,

pi(x) where i = 1, 2, 3, on the boundary with the normal direction, n = [n1, n2, n3], due to a
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unit point load ej at ξ is denoted by p∗ij and has the closed-form [36]:

p∗ij(ξ,x) =
−1

8π(1− ν)ρ2

{
[(1− 2ν)δij + 3ρ,iρ,j]

∂ρ

∂n
− (1− 2ν)(ρ,inj − ρ,jni)

}
, (3.4)

where ρ,i is the partial derivative of ρ with respect to x:

ρ,1 = (x− ξ)/ρ, ρ,2 = (y − ζ)/ρ, ρ,3 = (z − η)/ρ, (3.5)

and
∂ρ

∂n
is the normal derivative:

∂ρ

∂n
= ∇ρ · n =

3∑

i=1

ρ,ini. (3.6)

3.3 Boundary Integral Equations of a Half-Space Problem with an Arbitrary Rough

Boundary Γ = {(x, y, z)|(x, y) ∈ R2, z = −h(x, y)}

Consider a finite domain Ω enclosed by the boundary Γ = {(x, y, z)|(x, y) ∈ R2, z = −h(x, y)},

see Fig. 3.1.

h(x, y)
Γ

Ω
Mean level

(a) (b)

x

yz z

y

Figure 3.1: Schematic representation of the (a) the rough surface on the half-space and (b) one
rough profile (highlighted in (a)) along y-axis. The colored figure is available online.

The internal displacement components, ui = [u, v, w] where i = 1, 2, 3, inside Ω under

the action of the applied tractions pi, i = 1, 2, 3, and surface displacements ūi = [ū, v̄, w̄] over
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Γ can be expressed by the Somigliana’s identity [36]:

ui(ξ) =

∫∫

Γ

u∗ij(ξ,x)pj(x)dΓ(x)−
∫∫

Γ

p∗ij(ξ,x)ūj(x)dΓ(x) +

∫∫

Ω

u∗ij(ξ,x)fj(x)dΩ(x),

(3.7)

where fj is the body force component.

The Somigliana’s identity is a direct consequence of the Betti’s reciprocal theorem and the

stress static equilibrium equation. In the Betti’s reciprocal theorem, one of the solution set is

replaced by Kelvin’s fundamental solution discussed in Section. 3.2. Based on Eq. (3.7), the

strain components, εij , inside Ω can be directly determined using the definition:

εij =
1

2
(ui,j + uj,i), (3.8)

and the state of stress, σij , inside Ω is determined using the Hook’s law:

σij = 2Gεij +
2Gν

1− ν εkkδij, (3.9)

where εkk = εxx + εyy + εzz. A tensorial form of σij inside Ω can be found in [36].

For a 3D elastostatic problem, the advantage of using BEM is to reduce the dimension of

the problem from three to two. This reduction of dimensionality is achieved by moving ξ onto

the boundary Γ, then the final BIE for the 3D elastostatic problem is [36]:

Cij(ξ)ūj(ξ)+

∫∫

Γ

p∗ij(ξ,x)ūj(x)dΓ(x) =

∫∫

Γ

u∗ij(ξ,x)pj(x)dΓ(x)+

∫∫

Ω

u∗ij(ξ,x)fj(x)dΩ(x).

(3.10)

Some remarks of Eq. (3.10) are drawn as follows:

• p∗ij and u∗ij are singular kernels where the singularity occurs when ξ → x over the bound-

ary Γ. The kernel p∗ij has a strong singularity O(
1

ε2
) and u∗ij has a weak singularity O(

1

ε
)

where ε = |ξ − x|. Thus, the boundary integrals related to p∗ij and u∗ij are in the sense of

the Cauchy principal value, i.e., [36]

∫∫

Γ

p∗ij(ξ,x)ūj(x)dΓ(x) =

∫∫

Γ−Γε

p∗ij(ξ,x)ūj(x)dΓ(x),
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where Γε is an infinitesimally small surface of radius ε centered about ξ. The remaining

integral in Eq. (3.10) is in the normal (Riemann) sense.

• The Betti’s reciprocal theorem generally requires the domain Ω to be bounded by Γ.

Consequently, Eq. (3.10) cannot be applied to the half-space problem. Betti’s reciprocal

theorem may still be applied to the half-space problem if σijρ2 → 0 as ρ → ∞ [53].

In the purely normal rough contact problem, this asymptotic behavior implies that the

mean normal traction over the entire interface Γ is vanishing, i.e., p̄ = 0. Otherwise, the

half-space subjected to the non-uniform the traction distribution p(x, y) − p̄ (with zero

mean) and the uniform traction p̄ should be studied separately.

• If the boundary, Γ = {(x, y, z)|(x, y) ∈ R2, z = −h(x, y)}, is differentiable of class

C1, i.e., the first order derivatives of h(x, y), namely, h,x and h,y, exist and continuous

over the entire Γ [36], then, Cij(ξ) = 1
2
δij . If the boundary is differentiable of class C1

piecewisely, Cij(ξ) can be determined based on the fact that the rigid body motion is

excluded [36, 37].

If the body force components are ignored, the domain integral in Eq. (3.10) is avoided.

For a purely normal contact between a rigid flat and half-space with the rough boundary Γ, i.e.,

p1(x) = p2(x) = 0 and p(x) = p3(x). Therefore, the simplified BIEs of a half-space problem

with an arbitrary, differentiable up to class C1 boundary Γ = {(x, y, z)|(x, y) ∈ R2, z =

−h(x, y)} is

1

2
ūi(ξ) +

∫∫

Γ

p∗ij(ξ,x)ūj(x)dΓ(x) =

∫∫

Γ

u∗i3(ξ,x)p(x)dΓ(x). (3.11)

Eq. (3.11) is a composition of three Fredholm integral equations of the second kind. For

an arbitrary Γ, Eq. (3.11) is nearly impossible to be solved analytically to get the interfacial

displacement, ūj , as the integral transform of the normal traction p. Numerical techniques in

the BEM, e.g., the Gaussian quadrature, can be applied to perform the numerical integral of

the kernels [36,37]. A resulting system of linear equations can be formed based on the applied

constraints over the entire interface. Unlike FEM, the stiffness matrix in the BEM is full rank.
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The problems with a small number of degree of freedom (D.O.F), the Gaussian elimination can

be used. For the rough surface contact (easily associated with more than hundred thousands of

D.O.Fs), more advanced solvers should be used (e.g., the element-by-element technique [38],

parallel programming [38], fast multipole BEM [39], etc).

In the following section, the complexity of the above BIEs are relaxed by assuming that

the boundary Γ is nominally flat with negligibly small roughness heights and slopes. As a

matter of fact, the rough boundary Γ can be approximated by z = 0 and the classic Boussinesq

solution can be retrieved from Eq. (3.11).

3.4 Boundary Integral Equations of a Half-Space Problem with the Boundary Γ =

{(x, y, z)|(x, y) ∈ R2, z = 0}

As the boundary Γ is simplified to z = 0, the corresponding Kelvin’s solution, Eqs. (3.3) and

(3.4), can be simplified and are tabulated in Eq. (A.2) in Appendix A. Let η = 0 in Eq. (A.2),

we can get the fundamental solutions over z = 0:

u∗13(ξ′, ζ ′, 0) = u∗23(ξ′, ζ ′, 0) = 0,

u∗33(ξ′, ζ ′, 0) =
3− 4ν

16π(1− ν)G

1

r
,

p∗11(ξ′, ζ ′, 0) = p∗12(ξ′, ζ ′, 0) = p∗21(ξ′, ζ ′, 0) = p∗22(ξ′, ζ ′, 0) = 0,

p∗13(ξ′, ζ ′, 0) = −p∗31(ξ′, ζ ′, 0) =
1− 2ν

8π(1− ν)

ξ′

r3
,

p∗23(ξ′, ζ ′, 0) = −p∗32(ξ′, ζ ′, 0) =
1− 2ν

8π(1− ν)

ζ ′

r3
,

p∗33(ξ′, ζ ′, 0) = δ(ξ − x, ζ − y). (3.12)

where r =
√

(ξ − x)2 + (ζ − y)2 =
√
ξ′2 + ζ ′2 and δ(x, y) is two-dimensional Dirac’s func-

tion.
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Substituting the simplified Kelvin solutions in Eq. (3.12) into Eq. (3.11), we have follow-

ing three integral equations1:

1

2
ū(ξ, ζ)+

∫∫

Γ

p∗13(ξ − x, ζ − y, 0)w̄(x, y)dΓ(x, y) = 0, (3.13)

1

2
v̄(ξ, ζ)+

∫∫

Γ

p∗23(ξ − x, ζ − y, 0)w̄(x, y)dΓ(x, y) = 0, (3.14)

1

2
w̄(ξ, ζ)+

∫∫

Γ

[p∗31(ξ − x, ζ − y, 0)ū(x, y) + p∗32(ξ − x, ζ − y, 0)v̄(x, y)] dΓ(x, y) =

∫∫

Γ

u∗33(ξ − x, ζ − y, 0)p(x, y)dΓ(x, y). (3.15)

Applying the convolution theorem to Eqs. (3.13)-(3.15), the resulting surface displace-

ment components, ūi, after the rearrangement, are2

F [ū] (kx, ky) =
i(1− 2ν)

4πG

kx
k2
F [p] (kx, ky), (3.16)

F [v̄] (kx, ky) =
i(1− 2ν)

4πG

ky
k2
F [p] (kx, ky), (3.17)

F [w̄] (kx, ky) =
1− ν
2πG

1

k
F [p] (kx, ky). (3.18)

After the inverse Fourier transform, BIEs in Eq. 3.11 are reduced to the following three decou-

pled BIEs of surface displacement components:

ū(ξ, ζ) = −1− 2ν

4πG

∫∫

Γ

ξ − x
r2

p(x, y)dxdy, (3.19)

v̄(ξ, ζ) = −1− 2ν

4πG

∫∫

Γ

ζ − y
r2

p(x, y)dxdy, (3.20)

w̄(ξ, ζ) =
1

4πG

∫∫

Γ

1

r
p(x, y)dxdy. (3.21)

Eqs. (3.19) - (3.21) are exactly the same as that derived by the Boussinesq potentials [45] and

it will be the foundation of the special BEM applied to the rough surface contact.

1
∫∫

Γ
p∗33(ξ − x, ζ − y, 0)w̄(x, y) = 0 since this integral is in the sense of Cauchy principal value

2Eq. (3.12) in the frequency domain can be found by setting η = 0 in Eq. (A.3) in Appendix A.
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3.4.1 Displacement, Strain and Stress Components

Setting fj = 0 and substituting the surface displacement components, ūi, in Eqs. (3.19)-(3.21)

into Eq. (3.7) , the displacement components inside Ω in the frequency domain are

F [u] (kx, ky, η) =
i

2G
e−2πkη

(
−ηkx

k
+

1− 2ν

2π

kx
k2

)
F [p] (kx, ky), (3.22)

F [v] (kx, ky, η) =
i

2G
e−2πkη

(
−ηky

k
+

1− 2ν

2π

ky
k2

)
F [p] (kx, ky), (3.23)

F [w] (kx, ky, η) =
1

2G
e−2πkη

(
1− ν
π

1

k
+ η

)
F [p] (kx, ky). (3.24)

The inverse Fourier transform of the transfer function of above displacement components can

be found in [45].

The internal strain components, εij , in the frequency domain are

F [εxx](kx, ky, η) = − π
G
e−2πkη

[
−ηk

2
x

k
+

1− 2ν

2π

k2
x

k2

]
F [p] (kx, ky),

F [εyy](kx, ky, η) = − π
G
e−2πkη

[
−ηk

2
y

k
+

1− 2ν

2π

k2
y

k2

]
F [p] (kx, ky),

F [εzz](kx, ky, η) = − 1

2G
e−2πkη (1− 2ν + 2πkη)F [p] (kx, ky),

F [εxy](kx, ky, η) = F [εyx](kx, ky, η) = − π
G
e−2πkη

(
−ηkxky

k
+

1− 2ν

2π

kxky
k2

)
F [p] (kx, ky),

F [εyz](kx, ky, η) = F [εzy](kx, ky, η) =
iπ

G
e−2πkηηkyF [p] (kx, ky),

F [εxz](kx, ky, η) = F [εzx](kx, ky, η) =
iπ

G
e−2πkηηkxF [p] (kx, ky),

F [εkk](kx, ky, η) = −1− 2ν

G
e−2πkηF [p] (kx, ky). (3.25)
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The internal stress components, σij , in the frequency domain are

F [σxx](kx, ky, η) = −
(
k2
x

k2
− 2πη

k2
x

k
+ 2ν

k2
y

k2

)
e−2πkηF [p] (kx, ky),

F [σyy](kx, ky, η) = −
(
k2
y

k2
− 2πη

k2
y

k
+ 2ν

k2
x

k2

)
e−2πkηF [p] (kx, ky),

F [σzz](kx, ky, η) = − (1 + 2πkη) e−2πkηF [p] (kx, ky),

F [σxy](kx, ky, η) = F [σyx](kx, ky, η) = −kxky
k2

[(1− 2ν − 2πkη] e−2πkηF [p] (kx, ky),

F [σyz](kx, ky, η) = F [σzy](kx, ky, η) = i2πkyηe
−2πkηF [p] (kx, ky),

F [σxz](kx, ky, η) = F [σzx](kx, ky, η) = i2πkxηe
−2πkηF [p] (kx, ky). (3.26)

The inverse Fourier transform of the transfer functions of the above state of stresses can

be found in [45]. Note that Tripp [54] gave the similar transfer functions associated with the

boundary normal stress: σzz|z=0 = p0 cos(αx) cos(αy) which is only a subset of the solutions

developed above. Tripp’s solution can be recovered from Eqs. (3.26) if kx, ky and p are replaced

by the angular frequencies and the normal stress, σzz|z=0.

3.4.2 Remarks

In Section 3.4, it is shown that, under the assumption that the boundary Γ is perfectly flat, the

coupled system of BIEs in Eq. (3.11) for the arbitrary rough boundary is deduced to three

decoupled BIEs in Eqs. (3.19) - (3.21). This can be considered as an alternative to derive the

Boussinesq solution. The same problem is also visited by Boussinesq [43] using Boussinesq

potentials and by Sneddon [55] using Papkovitch-Neuber potentials and the integral transform

method. The Fourier transform used in the BEM formulation is inspired by the integral trans-

form method developed by Sneddon [55].

Now it is clear that numerical methods using Boussinesq solutions applied to the rough

surface contact are essentially BEM. In the mean time, several restrictions arise which are listed

below:

1. The height of the rough boundary, z = −h(x, y), should be continuous and piece-wise

differentiable of class C1.
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2. The local slope of the rough boundary should be several order of magnitude smaller than

the unity.

3. The mean traction over the entire Γ should be zero. This ensures the validity of the

extension of the Betti’s reciprocal theorem to the half-space.

The first assumption is against the measurement data and the some analytical models (e.g.,

Weierstrass-Mandelbrot (WM) function [56, 57]) that the rough surfaces are continuous but

non-differentiable everywhere. Depending on the shape function used in the elements3, the

rough boundary is smoothed to some extent and it is the main reason why the rough surface in

BEM is (piece-wisely) smooth. The second assumption implies that the rough surface height

is negligibly small compared with the lateral dimension as long as the rough boundary is nom-

inally flat. The third assumption implies that when Eqs. (3.19) - (3.21) (or (3.16)-(3.18)) are

used to calculate the normal displacement due to the applied normal traction, the mean value

of the applied normal traction should not be included in the calculation. The mean value of the

applied normal traction only adds a rigid body motion to the displacement components which

is indeterministic and a uniform internal state of stresses which can be determined through the

Hook’s law.

The validity of Eqs. (3.19)-(3.21) used in the rough surface contact can be quantified by

the root mean square (rms) slope:
√
mh

2 . As long as
√
mh

2 � 1, then Eqs. (3.19)-(3.21)

are good approximations to the true relation between ui(x) and pi(x). Otherwise, the strongly

coupled system in Eqs. (3.11) needs to be solved and the computational complexity is increased

significantly.

3.5 Numerical Integral of Kernel

3.5.1 Non-Periodic Point Load Kernel

Since the rough surface is under purely normal contact and the interface is frictionless, only the

normal surface displacement (i.e.,. Eq. (3.19)) matters. The kernel,
1

r
, in the corresponding

3The shape function used in the rough surface contact model is discussed in the next section.
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convolution is denoted by

K(ξ − x, ζ − y) =
1√

(ξ − x)2 + (ζ − y)2
, (3.27)

and its physical meaning is the normal displacement at (ξ, ζ, 0) of a half-space due to the

action of a unit, normal, point load acting on (x, y, 0). This kernel is commonly referred to as

the influence function in the contact mechanics. If the unit, normal, point load is periodically

distributed with the periods: λx and λy, the corresponding influence function is available in Eq.

(B.11), see Appendix B.

3.5.2 Discretized Form of Normal Displacement

Let us denote a finite, rectangular region on z = 0 boundary by Γp. If a non-periodic normal

traction distribution, p(x, y), is acting upon Γp, then the resultant normal displacement of z = 0

can be determined by:

w̄(ξ, ζ) =
1

πE∗

∫∫

Γp

K(ξ − x, ζ − y)p(x, y)dxdy, (3.28)

where the influence function, K(x, y), has the form in Eq. (3.27). If the normal traction,

p(x, y), is λx- and λy- periodic and one of the period is Γp:

Γp = {(x, y, z)|x ∈ [0, λx), y ∈ [0, λy), z = −h(x, y)}

then the normal displacement can still be formulated by the same form of the convolution

shown above where K(x, y) has the closed-form in Eq. (B.11) in Appendix B.

Discretizing Γp uniformly with the uniform intervals: ∆x and ∆y, we have

Γp =
{

(xi, yj, 0)|xi = ∆x(i− 1), yj = ∆y(j − 1), i(j) = 0, · · · , Nx(y)

}
. (3.29)

where Nx(y) = Lx(y)/∆x(y) + 1.
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Non-Periodic Discretized Boundary

Assuming p(x, y) is approximated by a piecewise function with constant value, pij = p(ξi, ζj),

within the neighborhood: [ξi−∆x/2, ξi + ∆x/2]× [ζj−∆y/2, ζj + ∆y/2], then the discretized

w̄ij can be approximated by a double summation:

w̄ij =
1

πE∗

Nx∑

k=1

Ny∑

l=1

Kijkl pkl, (3.30)

where Kijkl is a fourth order tensor and can be further reduced to Krs where r = |i − k| + 1

and s = |j − l|+ 1 because of the symmetry:

Kijkl = Krs =(R + ∆x/2) ln

{
(S + ∆y/2) + [(S + ∆y/2)2 + (R + ∆x/2)2]

1/2

(S −∆y/2) + [(S −∆y/2)2 + (R + ∆x/2)2]1/2

}

+(S + ∆y/2) ln

{
(R + ∆x/2) + [(S + ∆y/2)2 + (R + ∆x/2)2]

1/2

(R−∆x/2) + [(S + ∆y/2)2 + (R−∆x/2)2]1/2

}

+(R−∆x/2) ln

{
(S −∆y/2) + [(S −∆y/2)2 + (R−∆x/2)2]

1/2

(S + ∆y/2) + [(S + ∆y/2)2 + (R−∆x/2)2]1/2

}

+(S −∆y/2) ln

{
(R−∆x/2) + [(S −∆y/2)2 + (R−∆x/2)2]

1/2

(R + ∆x/2) + [(S −∆y/2)2 + (R + ∆x/2)2]1/2

}
, (3.31)

where R = |xi − ξk| and S = |yj − ζl|.

In the BEM, the element used with the zero order approximation scheme is referred to as

the constant element [36–39]. The higher order approximation schemes (e.g., quadratic shape

function) were also applied by Hou et al. [58] and Liu et al. [59].
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Periodic Discretized Boundary

Applying the zero order approximation scheme to the traction p(x, y), w̄x,y can also be approx-

imated by Eq. (3.30) where the discretized influence function is:

Kijkl = Krs =
∞∑

m=1

∞∑

n=1

1

π2mn
√
m2/λ2

x + n2/λ2
y

×

{
sin
[

2πm

λx
(R + ∆x/2)

]
− sin

[
2πm

λx
(R−∆x/2)

]}
×

{
sin
[

2πn

λy
(S + ∆y/2)

]
− sin

[
2πn

λy
(S −∆y/2)

]}
. (3.32)

Alternatively, w̄(x, y) can also be determined using the Fourier transform pairs:

w̄(x, y) = F−1

[
1

πE∗
√
k2
x + k2

y

F [p]

]
, (3.33)

based on the correspondence shown in Eqs. (B.9) and (B.10).

3.6 Governing Equations and Boundary Conditions

The region, Γp, can be further divided into the contact region, Γc, and the non-contact region,

Γnc. The boundary conditions at Γc and Γnc are:

p(x, y) > 0, g(x, y) = 0 where (x, y) ∈ Γc, (3.34)

p(x, y) = 0, g(x, y) > 0 where (x, y) ∈ Γnc. (3.35)

One of the governing equations is based on the geometrical relation on the deformed contact

interface, see Fig. 3.2:

g(x, y) = 〈h(x, y)− w̄(x, y)〉|Γc − [h(x, y)− w̄(x, y)] (x, y) ∈ Γp, (3.36)

where w̄(x, y), is determined either by Eq. (3.30) with the discretized influence function in Eq.

(3.32) or Eq. (3.33) using the fast Fourier transform (FFT).
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The force balance equation is written as

1

λxλy

∫∫

Γp

p(x, y)dxdy = p̄. (3.37)

(a)

x

y
z

Undeformed interface Γc

w̄(x, y) h(x, y) − w̄(x, y)

Ω
Mean level

Rigid flat

z

y

(b)

h(x, y)

g(x, y)

Figure 3.2: Schematic representation of the (a) rough surface contact problem and (b) the
deformed shape of the rough profile (highlighted in (a)) along y-axis. The colored figure is
available online.

3.7 Numerical Implementations

The solving of purely normal rough surface contact is equivalent to finding the contact pressure

distribution, p(x, y), which satisfies (i) the boundary conditions in Eqs. (3.34) and (3.35) and

(ii) the load balance equation (Eq. (3.37)). Commonly, the solver used in the rough surface

contact can be divided into two categories: the relaxation method and the optimization method.

3.7.1 The Relaxation Method

The relaxation method is introduced by Venner and Lubrecht [60] and it is inspired by the

similar method applied to solving the Reynolds equation in the hydrodynamic and elastohydro-

dynamic lubrication [60].

An alternative form of Eq. (3.36) is

g(x, y) = d− h(x, y) + w̄(x, y). (3.38)
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Since 〈w̄〉 = 0, the deformed and undeformed rough interface share the same mean level.

Therefore, d is the mean interfacial gap.

Expanding Eq. (3.38) in Taylor series within the discretized contact region Γc and keeping

the terms only up to the first order:

gij +
Nx∑

k=1

Ny∑

l=1

∂gij
∂pkl

δpkl = 0, (3.39)

where
∂gij
∂pkl

=
1

πE∗
Krs.

The above identity is clear based on Eq. (3.30). As |i − k| and |j − l| are increased, Krs

is decreased significantly. Consequently, only the residual pressure, δpkl, within the closest

neighborhood of (xi, yj) have the obvious impact on the equilibrium of Eq. (3.39). If the four

nearest neighbors of (xi, yj) is utilized, Eq. (3.39) is rewritten as:

K11δpij +K21(δpi+1 j + δpi−1 j) +K12(δpi j+1 + δpi j−1) = −πE∗gij. (3.40)

and it is referred to as the five-point-relaxation scheme [60]. Eq. (3.40) can solved differently

depending on the relaxation method (e.g., the point/line Gauss-Seidel relaxation). The bound-

ary conditions in Eqs. (3.34) and (3.35) are achieved by setting all the negative pressure to

zero.

It is commonly accepted that the relaxation method is superior for reducing the out-of-

balance error associated with the higher frequency, but can hardly reduce the low frequency

components [60]. This can be overcome by the Multi-Grid Method (MGM). For more detail of

this advanced technique, readers should refer to [60].

3.7.2 The Optimization Method

The optimization method is firstly applied to the frictionless, purely normal, elastic contact

problem by Conry and Seireg [13] and Kalker and van Randen [14].
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In a discretized boundary Γ, Eq. (3.38) can be written in a tensorial form:

g = u1 + K p, (3.41)

where g, p and u1 are the first order tensor of gij , pij and d−hij . K in Eq. (3.32) is the second

order tensor and positive definite.

The boundary conditions in Eqs. (3.34) and (3.35) are transformed as follows:

p ≥ 0 g ≥ 0 and pTg = 0 at Γ. (3.42)

The above conditions are Karush-Kuhn-Tucker (KKT) conditions. Eqs. (3.41) and (3.42) form

the Linear Complementary Problem (LCP) [23, 61]. A brief introduction on the application of

the LCP formulation in the various contact mechanics problems is given by Xi et al. [62, 63].

Since K is positive definite, the uniqueness of the solutions of the above LCP is guaranteed if

either p̄ or d is given. The Conjugate Gradient(CG) algorithm is one of the efficient solvers

of the LCP [21, 24, 32]. The CG solver is firstly applied by Nogi and Kato [21] and later by

Polonsky and Keer [24] to the non-periodic rough surface contact model in which K has the

form of Eq. (3.31). The boundary conditions in Eq. (3.42) can be strictly imposed in each

iteration [24]. The Polonsky and Keer model [24] can be easily adapted to cover the periodic

cases as long as K takes the form of Eq. (3.32). Without further noticing, the Polonsky and

Keer model is used as the only numerical model throughout the rest of the dissertation.

Finding the solution of the LCP is equivalent to minimizing the following quadratic prob-

lem (QP):

min f = pT u1 +
1

2
pT K p, (3.43)

where

p ≥ 0 and g ≥ 0 at Γ. (3.44)

Eqs. (3.43) and (3.44) are the variational formulation proposed by Kalker and van Randen [14]

In the rest of this section, the variational method and the relaxation method discussed in

the previous section are linked based on the theory of optimization and the downsides of using
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the relaxation method are explicitly explained. By setting the gradient ∇f = 0, Eq. (3.43)

is equivalent to Eq. (3.39) and can be solved in the way discussed in the previous section.

Thus, the relaxation method basically solves the unconstrained linear system u1 + K p = 0

using the steepest descent method. However, KKT conditions in Eq. (3.42) are only achieved

approximately by setting the negative pressure to zero in each iteration. This is referred to as

the greedy method [32] and this is dominantly applied in the numerical models. Bemporad and

Paggi [32] claimed that no rigorous proof can be found to show that this method can impose

the KKT conditions rigorously. Moreover, Bemporad and Paggi used a counterexample, see

Fig. 2 in [32], to illustrate that the greedy method fails to rigorously fulfill the KKT conditions

at some nodes. Yastrebov et al. [30] also reported that the real area of contact between the bi-

sinusoidal waviness and the rigid flat determined by Stanley and Kato model [22] (which uses

the relaxation method) deviates from the closed-from solution at the nearly complete contact,

see Fig. 4 in [30] for more details. Additionally, obvious deviations can also be found in the

similar plots shown by Xu et al. [64], see Figs. 7 and 8 in [64].

3.7.3 Convergent Criterion

The outputs of the BEM model are, namely, pij and gij . The contact ratio, A∗, can be extracted

from p(x, y) based on the number of contacting nodes4

A∗ = N/(NxNy). (3.45)

where N is the number of the sampling points associated with pij > 0.

4However, this method is questioned by Yastrebov et al. [31, 65] since A∗ is a upper limit of the true contact
ratio. The lower limit of the true contact ratio can be estimated by:

S =
π

4
Sd,

where Sd is the perimeter of the discretized contact area. Thus, the true contact area is the mean value of the lower
and upper limits. Comparing with the contact ratio predicted in the nearly complete contact, the error introduced
by using Eq. (3.45) may be significant at the early contact [31, 65]. The gap between upper limit and the true
contact ratio should be decreased by the finer mesh.
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The average interfacial gap ḡ is extracted from gij by

ḡ =
1

NxNy

∑

(xi,yj)∈Γc

gij. (3.46)

In order to make sure all the interfacial results are truly converged, a specified convergence

criterion should be addressed. At the beginning of kth iteration, the initial contact pressure,

contact ratio and average interfacial gap are labeled as: p̃(k)
ij , Ã∗(k) and ˜̄g∗(k). The results came

after the iteration are without the tilde. The commonly used criterion is that the difference of

the relaxed and unrelaxed p(k)
ij and p̃(k)

ij should be lower than a critical value:

‖p(k)
ij − p̃(k)

ij ‖2/‖p(k)
ij ‖2 < 5× 10−5, (3.47)

where ‖ · ‖2 is the L2 norm.

However, the above criterion may not guarantee that the contact ratio is also converged,

thus the following criterion is added:

|A∗(k) − Ã∗(k)|/A∗(k) <
2

NxNy

. (3.48)

This criterion only allows the number of contacting nodes to be changed between neighboring

iterations, at most, by one node.

Assuming the average contact pressure, p̄, is monotonically increased, based on the Bar-

ber’s theorem [66], A∗ should also monotonically increase. Similarly, we can expect that ḡ is

monotonically decreased and a rigorous proof is given in Appendix C. Therefore, the following

restrictions should also be satisfied:

A∗(p̄) > A∗(p̄0), ḡ(p̄) < ḡ0(p̄0) where p̄ > p̄0. (3.49)

Theoretically, the gap within the contact region should be zero. In the BEM, however, the

interpenetration/out-of-contact still exists within Γc at each iteration. In the calculation of ḡ,

g(x, y) is assumed to be zero within Γc. To quantify the interpenetration/out-of-contact within

94



Γc, let us define the root mean square (rms) of the gap within Γc as:

σh =

√√√√ 1

N

∑

(xi,yj)∈Ωc

g2
ij. (3.50)

At early contact, σh should be negligible compared with
√
mh

0 . At the nearly completely

contact, σh should be negligible compared with ḡ. Thus, the following criterion is proposed:

σh < min(0.0001
√
mh

0 , 0.01ḡ). (3.51)

Consequently, the convergence of the solutions should satisfy a composite criterion consisting

of Eqs. (3.47), (3.48), (3.49) and (3.51). If this composite criterion is not satisfied within 200

iterations and the process shows a slow convergent trend, then the solution is assumed to be

converged.

3.8 Examples

In this section, the boundary element method developed above is used to solve the following

two problems:

1. an elastic contact between a half-space with periodic, sinusoidal wavy boundary and a

rigid flat.

2. an elastic contact between a half-space with periodic, nominally flat roughness and a

rigid flat.

3.8.1 Sinusoidal Waviness Contact

Consider a contact pair between a sinusoidal waviness and a rigid flat under a uniform contact

pressure p̄. The similar study has been done by many researchers [30,44,64,67]. The waviness

height has the sinusoidal form leveled about z = 0 plane of the half-space:

h(x, y) = ∆ cos(2πx/λx) cos(2πy/λy), (3.52)
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Figure 3.3: (a) The contact ratio, A∗, and (b) the average interfacial gap, ḡ/∆, through the
entire range of p̄/p∗ predicted by various methods.
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Figure 3.4: The evolution of the contact area distribution

where x ∈ [0, λx) and y ∈ [0, λy). When the waviness is achieved complete contact for the first

time when p̄∗ monotonically increases from zero, the corresponding average contact pressure

is denoted by p∗ [44]:

p∗ =
1

2
E∗
√
α2 + β2∆, (3.53)

where α = 2π/λx and β = 2π/λy.
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Figure 3.5: The dimensionless contact pressure distribution, p/p∗, associated with (a) A∗ =
3.79%, (b) A∗ = 46.44%, (c) A∗ = 72.43% and (d) A∗ = 89.19%.

The closed-form solution is only available asymptotically when p̄ → 0 and p̄ → p∗. At

extremely light load, the contact only occurs over the asperities and it can be approximated

by the Hertzian contact theory [44, 64], see Section 4.2 for more detail. When p̄ → p∗, the

non-contact area can be divided into multiple penny-shaped cracks, see Section 5.2 for more

detail. The final closed-forms of the asymptotic solutions are given by Johnson et al. [44]:

A∗(p̄) = 1− 3

2π
(1− p̄/p∗), (3.54)

ḡ(p̄) =
16∆

15π2

(
3

2

)3/2

(1− p̄/p∗)5/2 . (3.55)

This waviness problem is also solved by the finite element method using ANSYSr and results

were reported in [64]. The constants used in the numerical simulations are tabulated Table 3.1.
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Figure 3.6: The dimensionless interfacial gap distribution, g/∆, associated with (a) A∗ =
3.79%, (b) A∗ = 46.44%, (c) 72.43% and (d) A∗ = 89.19%.

Table 3.1: Constants

E∗ [GPa] λx [m] k′ = λy/λx ∆/λx
220 0.001 1 0.02

The BEM results have a good agreement with the finite element results throughout the

entire loading range (from first touch till the initial complete contact), see Fig. 3.3. As shown

in Fig. 3.4(a), the contact area concentrated at the peak of the sinusoidal waviness at the initial

loading stage where A∗ = 3.79%. The corresponding pressure, Fig. 3.5(a), is similar to the

Hertzian contact pressure and the interfacial gap distribution, Fig. 3.6(a), is similar to the shape

of the sinusoidal waviness. As the load is increased, the isolated contact area over peaks are

gradually increased and are coalesced into an irregular contact patch at a transition point. At the

vicinity of this transition point, the change of A∗ is accelerated against p̄, see Fig. 3.4. As the

load is further increased, the deformed shape of the interface at the non-contact area are close
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to penny-shaped cracks, see Fig. 3.6(c). At the high load range, the non-contact regions are

almost the same as penny-shaped cracks and are distantly located, see Fig. 3.6(d). The contact

pressure gradually transformed from the Hertzian contact pressure distribution, Fig. 3.5(a), to

the one in, Fig. 3.5(d), similar to the sinusoidal pressure distribution at complete contact.

3.8.2 Rough Surface Contact

Figure 3.7: Contour of the dimensionless height of the generated rough surface h/
√
mh

0 .

A nominally flat rough surface, shown in Fig. 3.7, is generated numerically based on the

algorithm developed by Xu and Jackson [52] and it will be discussed in details in Chapter 7.

Since the generated roughness is not strictly Gaussian, the corresponding closed-form solution

is not available. As shown in Fig. 3.8, the contact ratio, A∗, and the average interfacial gap,

ḡ∗ = ḡ/
√
mh

0 , monotonically increases and decrease, respectively, with the increase of p̄. At

the initial loading stage, the contacting asperities create numerous isolated asperity contact

areas with approximately elliptical/circular shapes, see Fig. 3.9(a). As load increases, the

asperity coalescence occurs where multiple isolated asperity contact areas are combined into
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0 predicted by the BEM. The colored figure is available online.
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Figure 3.9: The contact area distribution associated with (a) A∗ = 3.79%, (b) A∗ = 46.44%,
(c) 72.43% and (d) A∗ = 89.19%.
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Figure 3.10: The interfacial gap distribution associated with (a)A∗ = 3.79%, (b)A∗ = 46.44%,
(c) 72.43% and (d) A∗ = 89.19%. The colored figure is available online.

one irregular contact patch, see Fig. 3.9(b). Figs. 3.9(a,b) are the direct evidence why the

statistical models discussed in Chapter 4 is only valid for the early contact where p̄ and A∗

are nearly vanishing. As the load further increases, the contact area becomes larger than non-

contact area and the non-contact patches are surrounded by the contact area, see Fig. 3.9(c).

At high load range, the contact area is nearly the same as the nominal contact area and each

isolated non-contact regions are can be approximated by elliptical/circular shapes, see Fig.

3.9(d). The evolution of the interfacial gap follows the same trend observed in the waviness

contact, see Fig. 3.10. Figs. 3.9(d) and 3.10(d) clearly shows that, at the nearly complete

contact, the contact problem can be decomposed into numerous individual elliptical/circular

(half) “cracks” with certain trapped volumes. .
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3.9 Discussions

In the above sections, a special BEM is applied to the rough contact problem where the domain

is a half-space with the boundary z = 0. In the study of contact mechanics, this special BEM

is dominantly applied mainly in the form of the Boussinesq influence function (continuous

boundary: Eq. (3.27)) or Love’s influence coefficient (discontinuous boundary: Eq. (3.31)).

Two important reasons are contributed to the popularity of this special BEM. One reason is

that many contact problem is localized to a negligibly small region. Compared with the contact

area, the contact bodies (domains) are approximately half-spaces as long as the curvature of the

mating interface is small. From author’s personal opinion, the second reason is related to the

classic book, Contact Mechanics, written by Johnson [45]. Unlike the other contact mechanics

monographs [68–70] in the past using the complex variable method, the derivation of the plane

and spatial contact problem in Johnson’s book relies heavily on the superposition of the point

load (Flamant (2D) and Boussinesq (3D)) solution. The following sentence from his mono-

graph accurately states his idea of solving contact mechanics problem from an engineering

perspective: “to start from the stresses and displacements produced by concentrated normal

and tangential forces. The stress distribution and deformation resulting from any distributed

loading can then be formed by superposition”.

However, in many contact/tribological problems, the spherical domain can not be approx-

imated by the half-space with the boundary z = 0. In the seal industry, the deformation of the

rubber ring seals due to the normal and shear stresses from the lubricant and the counter surface

may be inaccurate if the Boussinesq solution is used. The other problems includes (1) plastic

thrust bearing, (2) gear tooth contact, (3) the wheel-rail interaction, (4) tire-road interaction,

etc. Unfortunately, the conventional BEM may not be suitable for the rough surface contact

problem where the number of sampling points (nodes) nowadays easily exceeds one million.

If we restrict out discussion within the scope of linear elastostatic problem, the conventional

BEM, usually introduced in the BEM textbook, suffers the following shortages:

1. The stiffness matrix is full-rank and asymmetric. The size of the memory needed for the

storage of this stiffness matrix is O(N2) where N is number of nodes.
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2. Solving the system of N-equations by the traditional Gauss elimination requires O(N3).

Among all the fast BEM, the fast multipole BEM [39] may be a solution to improve the effi-

ciency of the conventional BEM in the large-scale simulation. The fast multipole BEM uses the

fast multipole method [71] together with the tree-code [71] to reduce the storage of the stiffness

matrix and the computational complexity in solving the system equations. The fast multipole

BEM can reduce the computational complexity down to O(N log(N)). This is the same com-

plexity many fast methods are claimed when applied to the rough surface contact, e.g., the

fast FFT [72] and the Multi-Level-Multi-Integration (MLMI) [73]. However, those methods

requires a rectilinear grid with constant intervals and these restriction can be abandoned in the

fast multipole BEM. In the past literatures, the fast multipole BEM has a superior behavior

when applied to the 3D elasticity [39, 74]. Discussion of application of multipole BEM to the

elastostatic problem is out of scope of this dissertation, readers should refer to Liu’s book [39]

for more detail.

3.10 Conclusions

In this chapter, the periodic and non-periodic rough surface contact between an elastic half-

space and a rigid flat is formulated using the BEM with the Kelvin solution. The BIE is ob-

tained for the half-space with the boundaries z = 0 and z = −h(x, y), respectively. For the case

of z = 0, the Boussinesq solutions are rederived. The surface displacement, strain and stress

components in the substrate and on the boundary are derived in the frequency domain. The

normal interfacial displacement is the convolution of the contact pressure. The corresponding

influence function is derived in the closed-form for both periodic and non-periodic problem.

The governing equations and the boundary conditions are explicitly given and solved by the

optimization. Finally, the convergent criterion is proposed for the numerical solutions, namely,

the contact ratio, the contact pressure and the interfacial gap. The validity of the numerical

model is examined by solving the sinusoidal waviness contact problem. A good agreement

of A∗ and ḡ predicted by the BEM, FEM and the asymptotic solution is found. The BEM is

also applied to solve the rough surface contact problem. The contact area distribution and the
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average interfacial gap distribution are explored in details. As an observation tool, BEM shows

that (i) the rough surface only in contact with the rigid flat at numerous elliptical/circular re-

gions when the applied load/nearly complete contact is vanishing and (ii) when the real area of

contact is close to the nominal contact area, the non-contact area consists of numerous ellipti-

cal/circular (half) “cracks” with certain trapped volumes. The above observation can be served

as the foundations upon which the statistical model at early contact (Chapter 4) and at nearly

complete contact (Chapter 5) are built.
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Chapter 4

Statistical Models of Early Contact

At early contact where the applied load/real area of contact is vanishing, the contact between a

nominally flat rough surface and a rigid flat only occurs at individual regions with nearly ellipti-

cal/circular shape on the higher asperities. A direct observation of the contact area distribution

by BEM at the early contact is shown in Fig. 3.9(a). In this chapter, statistical models of early

contact, proposed in the past literatures, are systematically studied.

4.1 Introduction

It is commonly accepted that the first statistical model was developed by Greenwood and

Williamson [1] to describe the purely normal contact between a rigid flat and a linear elas-

tic half-space with the nominally flat rough surface of small amplitude on the boundary, see

Fig. 4.1(a). This type of rough surface is also referred to as a nominally flat rough surface and

its height is measured about its mean level. The Young’s modulus and Poisson’s ratio areE and

ν. It is assumed that a uniform normal pressure, p̄, is applied at the far end of the half-space,

respectively. The rigid flat is fixed.

Due to the uneveness of the boundary, the contact between the half-space and rigid flat

does not occur everywhere over z = 0 plane. The nominal contact area is indicated by An and

it is obvious that An →∞. The contact boundary, Γc, consists of multiple contact regions with

different sizes and shapes. The real area of contact is indicated by Ar which is only a small

fraction of An and the fraction is quantified by the contact ratio, A∗, which is defined in Eq.

(1.4).
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Figure 4.1: Schematic representation of the nominally flat rough surface contact problem

One assumption commonly accepted in the statistical model is that Ar is negligibly small

compared with An (i.e., A∗ < 1 ∼ 2%). This assumption stems from two reasons. The

first reason is related to the plastic deformation at the asperity level. The statistical model

is originally developed for the electrical contact and is, later on, widely applied to the other

engineering practices where the application of the metallic materials are dominant. When p̄ is

gradually increased from zero, the higher summits of the rough surfaces are easily deformed

plastically. Thus, the elasticity can only be maintained under the small contact pressure which

results in a negligibly small A∗. This stage is referred to as the early contact.

Another reason is that the assumption of small A∗ enables the decomposition of the rough

surface contact into multiple asperity contact problems, see Fig. 4.1(b). The computational

resource in the 60s to early 90s were not adequate to completely solve the rough surface contact

problem with enough fine details of the roughness on the interface. This approximation is very

essential to the early study of the rough surfaces contact. In the stage of the early contact, the

114



interaction between the rigid flat and the rough surface only occurs on the higher asperities.

Due to the small p̄ and small isolated contacts, the couplings between the contacting asperities

are negligible. Consequently, the original problem is equivalent to the superposition of multiple

normal asperity contact pairs.

Under the action of small p̄, the vertical distance between the rigid flat and the mean level

of the undeformed rough surface is d. The asperity contact pairs can be identified by ξh > d

where ξh is the summit height of the asperity, see Fig. 4.1(c). Commonly, the asperities upon

the roughness are approximated in the parabolic forms, see Section 2.4 for more detail. A

parabolic asperity is uniquely represented by a vector of geometrical parameters: (ξh, κh1 , κ
h
2).

The corresponding contact area,Ai(ξh, κh1 , κ
h
2), and the contact load, Pi(ξh, κh1 , κ

h
2), on a certain

asperity can be determined by the Hertzian contact theory [2, 3] which will be discussed in

detail in next section. It is commonly known that the rough surfaces are random processes,

thus (ξh, κh1 , κ
h
2) is a vector of random variables. Since the geometry of a random process

is indeterministic, the distribution of a certain asperity in a function of (ξh, κh1 , κ
h
2) can be

quantified by the joint probability density function (PDF), Φ(ξh, κh1 , κ
h
2). Then, the ensemble

average of the contact area, Ai, of a single asperity is obtained

〈Ai〉 =

∫ ∞

d

∫ κh2

0

∫ ∞

0

Ai(ξ
h, κh1 , κ

h
2)Φ(ξh, κh1 , κ

h
2)dκh2dκ

h
1dξ

h. (4.1)

Provided that the number of asperities, N , of the rough surface within the nominal contact

area is known, the resultant real area of contact is: Ar(d) = N〈Ai〉 where N is infinite since

An →∞. A more rigorous way is to use the asperity density: η = limAn→∞N/An. Then, the

contact ratio, A∗, can be formulated as [13, 16]:

A∗(d) = ηh
∫ ∞

d

∫ κh2

0

∫ ∞

0

Ai(ξ
h, κh1 , κ

h
2)Φ(ξh, κh1 , κ

h
2)dκh2dκ

h
1dξ

h. (4.2)

Similarly, the external load, p̄, is balanced by the superposition of the asperity contact loads

[13, 16]:

p̄(d) = ηh
∫ ∞

d

∫ κh2

0

∫ ∞

0

Pi(ξ
h, κh1 , κ

h
2)Φ(ξh, κh1 , κ

h
2)dκh2dκ

h
1dξ

h. (4.3)
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If the rough surface is Gaussian process, then the above formulations are equivalent to the BGT

model [14].

In Section 4.2, a brief discussion on the single asperity contact models is given. Different

statistical models are introduced in Section 4.3 by using the different combinations of the single

asperity contact models and the PDFs explored in Section 2.5. The numerical results are shown

in Section 4.4.

4.2 Single Asperity Contact Models

The statistical models at early contact, as well as some other analytical rough surface contact

model, rely on the Hertzian theory to model the elastic contact between the single asperity and

the rigid flat. In this section, the general form of the Hertzian theory, as well as its simplified

forms, are briefly introduced.

4.2.1 Hertzian Elliptical Contact Model

Consider a linear elastic parabolic asperity of which the geometry is defined by Eq. (2.26), see

also the parabolic asperity in Fig. 4.1(c). When it is in purely normal contact with a rigid flat

at a small penetration depth of δ, the applied normal surface displacement, w̄(x, y), within the

contact area is conformed with the shape of the asperity defined in Eq. (2.26):

w̄(x, y) = δ − 1

2
κh1x

2 − 1

2
κh2y

2, (4.4)

and the corresponding pressure distribution has the following parabolic form [2, 3]:

p(x, y) = p0

[
1− (x/a)2 − (y/b)2

]1/2
, (4.5)

where p0 is the maximum pressure. a and b (noting b < a) are the semi-major radius and semi-

minor radius of the contact area. The normal load and the depth of penetration are Pi and δ,

respectively. The inter-relations between the unknowns p0, Pi, a and b are summarized in [3].

For a given penetration, δ, the corresponding contact area, Ai = πab, and the contact load, Pi,
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are [2, 3]:

Ai(δ, κ
h
1 , κ

h
2) =π(κhg)

−1δF 2
1 (e)/F2(e), (4.6)

Pi(δ, κ
h
1 , κ

h
2) =

4

3
E∗(κhg)

−1/2δ3/2F2(e)−3/2, (4.7)

whereE∗ = E/(1−ν2) is the reduced modulus, and κhg =
√
κh1κ

h
2 is the geometrical curvature.

F1(e) and F2(e) are in a function of the eccentricity e =
√

1− b2/a2 and have the following

forms [2, 3]:

F 3
1 (e) =

4

π
e−2(1− e2)3/4

{[
E(e)/(1− e2)−K(e)

]
[K(e)− E(e)]

}1/2
, (4.8)

F2(e) =
2

π
(1− e2)1/4 [F1(e)]−1 K(e), (4.9)

where K(·) and E(·) are complete elliptic integrals of the first and second kind, respectively:

K(e) =

∫ π/2

0

dθ√
1− e2sin(θ)

,

E(e) =

∫ π/2

0

√
1− e2sin(θ)dθ.

The only unknown e can be solved from the following nonlinear relation [3]:

κh1
κh2

=
K(e)− E(e)

E(e)/(1− e2)−K(e)
. (4.10)

A fit solution of e is adapted from the one given by Xu et al [4]:

√
1− e2 = exp

[
0.006709× log2(κh1/κ

h
2) + 0.6692× log(κh1/κ

h
2)
]
. (4.11)

The accuracy of the above empirical solution is confirmed in Fig. 4.2. The above problem is

originally solved by Hertz [2] and it is referred to as the Hertzian elliptical contact model.
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Figure 4.2: Plot of e vs. κh1/κ
h
2 of the empirical solution in Eq. (4.11) and the closed-form

solution in Eq. (4.10).

4.2.2 Hertzian Circular Contact Model

When the principal curvatures are the same, i.e., κh1 = κh2 = κh, the applied normal surface

displacement has an axisymmetric form:

w̄(r) = δ − 1

2
κhr2,

which is defined using cylindrical coordinates where r =
√
x2 + y2. The corresponding asper-

ities with axisymmetric shape are illustrated in Fig. 4.1(c) (with geometric/mean curvature).

For a given penetration δ, the contact area, Ai, and the contact load, Pi, are [3]:

Ai(δ, κ
h) =π(κh)−1δ, (4.12)

Pi(δ, κ
h) =

4

3
E∗(κh)−1/2δ3/2. (4.13)

Unlike the Hertzian elliptical contact model, the Hertzian circular contact model is straight-

forward when δ is known. This is why the Hertzian circular contact model is widely used in the
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statistical contact model, even though the axisymmetric parabolic asperities rarely exist upon

Gaussian surfaces [5].

4.2.3 Hertzian Mildly Elliptical Contact Model (Geometric Curvature)

For a mildly elliptical contact, Johnson [3] found F1(e) and F2(e) in Eqs. (4.8) and (4.9) decay

slowly from unity as
√
κh2/κ

h
1 is increased, see Fig. 4.4 in [3]. Noticing the analogies between

Eqs. (4.6) and (4.12) (also Eqs. (4.7) and (4.13)), the mildly elliptical contact is equivalent to a

circular contact if κh in Eqs. (4.12) and (4.13) is replaced by κhg =
√
κh1κ

h
2 [5], i.e.,

Ai(δ, κ
h
g) =π(κhg)

−1δ, (4.14)

Pi(δ, κ
h
g) =

4

3
E∗(κhg)

−1/2δ3/2. (4.15)

The geometry of such asperity is still axisymmetric with geometric curvature, see Fig. 4.1(c).

4.2.4 Hertzian Mildly Elliptical Contact Model (Mean Curvature)

As κh2/κ
h
1 → 1+, Eq. (2.30) yields κhm ≈ κhg . Replacing κhg in Eqs. (4.14) and (4.15) by

κhm = (κh1 + κh2)/2, the contact area, Ai, and the contact load, Pi, are [6]

Ai(δ, κ
h
m) =π(κhm)−1δ, (4.16)

Pi(δ, κ
h
m) =

4

3
E∗(κhm)−1/2δ3/2. (4.17)

This approximation is expected to be valid when the principal curvatures are mildly different.

Therefore, it is referred to as the Hertzian mildly elliptical contact model.

4.2.5 Remarks

Due to the complexity of the Hertzian elliptical contact theory, two mildly elliptical contact

models are proposed based on the Hertzian circular contact theory. The approximation is ex-

tremely easy to achieve by replacing the curvature κh in the circular contact model with either

the mean curvature κhm or the geometric curvature κhg . This idea can also be used to extend the
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circular adhesive contact model (e.g., the JKR model [7] and the Maugis-Dugdale model [8])

to the elliptical contact. Through the same approximation, the elliptical crack problem can also

be simplified using the penny-shaped crack model. This will be discussed in the next chapter.
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Figure 4.3: The plots of dimensionless contact area, Ai(κh2)2/π, vs. the dimensionless contact
load, Pi(κh2)2/E∗, determined by (1) the Hertzian elliptical contact model, (2) the Hertzian
mildly contact (mean curvature) model and (3) the Hertzian mildly elliptical contact (geometric
curvature) model. The dimensionless penetration, δκh2 , varies within [0, 0.1]. The ratios (κh1/κ

h
2)

considered are 1/3, 1/10 and 1/30. The colored figure is available online.

In the rest of the section, the accuracy of two approximated elliptical models using the

mean curvature and the geometrical curvatures are tested. The relations of dimensionless con-

tact area, Ai(κh2)2/π, to dimensionless contact load, Pi(κh2)2/E∗, determined by different ellip-

tical contact models associated with different κh2/κ
h
1 are shown in Fig. 4.3. Several important

observations are summarized below:

• An obvious gap can be found between two Hertzian mildly elliptical models and the

Hertzian elliptical model. The gap is increased as κh2/κ
h
1 is increased.

• The mildly elliptical model with the geometrical curvature is a better approximation to

the elliptical model than the one using mean curvature.
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4.3 Multi-Asperity Contact Models

As shown in Section 4.1, the contact ratio,A∗, and the average contact pressure, p̄, are related to

the ensemble average of the area, Ai, and load, Pi, of the single contacting asperity. Depending

on the different forms of the asperity contact model and the probability density function, a

series of statistical models are developed in the past literatures. Some representative statistical

models are introduced in this section.

4.3.1 Adapted Greenwood and Williamson (GW) model

In the original GW model, the asperity height is assumed to follow the Gaussian distribution.

Then, the corresponding PDF is only a function of the asperity height, ξh, and is written as:

Φh(ξh) =
1√

2πσhs
exp

[
−
(
ξh −mh

)2

2σhs

]
, (4.18)

where σhs is the root mean square (rms) of the asperity height. mh is the distance between the

mean asperity level and the mean level of the rough surface.

Eqs. (4.12) and (4.13) are used as the single asperity contact model:

Ai(δ) = π(κh)−1δ, (4.19)

Pi(δ) =
4

3
E∗(κh)−1/2(δ)3/2, (4.20)

where δ = ξh−d is the interference between the contacting asperity (ξh > d) and the rigid flat.

Another important assumption made in the original GW model is that all the asperities share

the same radius of curvature (Rh = 1/κh).

Substituting Eqs. (4.19), (4.20) and (4.18) into Eqs. (4.2) and (4.3), the final forms of the

GW model are [1]:

A∗(d) = ηh
∫ ∞

d

Ai(ξ
h − d)Φh(ξh)dξh, (4.21)

p̄(d) = ηh
∫ ∞

d

Pi(ξ
h − d)Φh(ξh)dξh. (4.22)
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A similar statistical model was developed by Zhuravlev [9] almost 20 years before the GW

model. The formulation of A and P is very similarly to Eqs. (4.21) and (4.22) except that two

PDFs are used to model the interaction between two rough surfaces. As we mentioned before

in Section 2.5, the inputs of the GW model can be determined by the McCool’s inputs [10], see

Eqs. (2.43)-(2.46).

Nayak [11] pointed out that the PDF of the asperities in the function of ξh∗ approaches a

Gaussian distribution only when αh → ∞. Thus, instead of using the Gaussian distribution in

Eq. (4.18), it si more accurate that Φh(ξh∗) in Eqs. (4.21) and (4.22) is replaced by the PDF

in Eq. (2.42). As a matter of fact, mh and σhs become redundant in the adapted GW model.

Another reason of using the PDF in Eq. (2.42) is that the dimensionless variables applied to the

original GW model are not consistent with those used in the other statistical models introduced

in the later sections [12].

Replacing Ai, Pi, ηh and Rh in Eqs. (4.21) and (4.22) by Eqs. (4.12), (4.13), (2.43) and

(2.45) , we have the final form of the adapted GW model:

A∗(d∗) =

√
π

16
√

3

√
αh
∫ ∞

d∗

(
ξh∗ − d∗

)
Φh(ξh∗)dξh∗, (4.23)

p̄(d∗) =
E∗

9
√

2(π)3/4
(αh)3/4

√
mh

2

∫ ∞

d∗

(
ξh∗ − d∗

)3/2
Φh(ξh∗)dξh∗, (4.24)

where d∗ = d/
√
mh

0 is the dimensionless surface separation. Defining the dimensionless pres-

sure: p̄∗ = p̄/
√
mp

0 and using the identity in Eq. (2.52), i.e., mp
0 = 1

2
(E∗)2mh

2 , we can rewrite

Eq. (4.24) as:

p̄∗(d∗) =
1

9(π)3/4
(αh)3/4

∫ ∞

d∗

(
ξh∗ − d∗

)3/2
Φh(ξh∗)dξh∗. (4.25)

It is obvious that the relation of A∗ to d∗, as well as p̄∗ to d∗, only depend on the bandwidth

parameter αh.

This adapted GW model is very similar to the one proposed by Carbone [13] except that

the radius of the asperities are still constant instead of a function of ξh in Carbone’s model.
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4.3.2 The Nayak-Bush Model

Bush [6] developed a statistical model by using the Hertzian spherical contact model in Eqs.

(4.16) and (4.17) along with the PDF, Φh(ξh∗, κh∗m ), in Eq. (2.40):

A∗(d∗) =ηh
∫ ∞

d∗

∫ ∞

0

Ai(ξ
h − d, κhm)Φh(ξh∗, κh∗m )dκh∗m dξ

h∗,

p̄(d∗) =ηh
∫ ∞

d∗

∫ ∞

0

Pi(ξ
h − d, κhm)Φh(ξh∗, κh∗m )dκh∗m dξ

h∗.

Replacing Ai, Pi and ηh in the above equations by Eqs. (4.12), (4.13) and (2.43), the final

forms of the Nayak-Bush model are as follows:

A∗(d∗) =
1

6
√

3

√
αh
∫ ∞

d∗

∫ ∞

0

(
ξh∗ − d∗

)
(κh∗m )−1Φh(ξh∗, κh∗m )dκh∗m dξ

h∗, (4.26)

p̄∗(d∗) =
2
√

2

9
√

3π
(αh)3/4

∫ ∞

d∗

∫ ∞

0

(
ξh∗ − d∗

)3/2
(κh∗m )−1/2Φh(ξh∗, κh∗m )dκh∗m dξ

h∗. (4.27)

4.3.3 The Greenwood Model

Greenwood [5] combined the Hertzian mildly parabolic contact, in Eqs. (4.14) and (4.15), and

the PDF, Φh(ξh∗, κh∗g ), in Eq. (2.41), to form the following statistical model:

A∗(d∗) =ηh
∫ ∞

d∗

∫ ∞

0

Ai(ξ
h − d, κhg)Φh(ξh∗, κh∗g )dκh∗g dξ

h∗,

p̄(d∗) =ηh
∫ ∞

d∗

∫ ∞

0

Pi(ξ
h − d, κhg)Φh(ξh∗, κh∗g )dκh∗g dξ

h∗.

Replacing Ai, Pi and ηh in the above equations by Eqs. (4.14), (4.15) and (2.43), the final

forms of the Greenwood model are obtained:

A∗(d∗) =
1

6
√

3

√
αh
∫ ∞

d∗

∫ ∞

0

(
ξh∗ − d∗

)
(κh∗g )−1Φh(ξh∗, κh∗g )dκh∗g dξ

h∗, (4.28)

p̄∗(d∗) =
2
√

2

9
√

3π
(αh)3/4

∫ ∞

d∗

∫ ∞

0

(
ξh∗ − d∗

)3/2
(κh∗g )−1/2Φh(ξh∗, κh∗g )dκh∗g dξ

h∗. (4.29)
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4.3.4 Bush, Gibson and Thomas (BGT) Model

Bush et al. [14] developed the original BGT model based on a PDF in the function of the as-

perity height, ξh, and the semi-major and semi-minor radius of the bearing area of the asperity.

In order to have the consistent formulations with the previous statistical models, the following

BGT model utilizes the PDF in Eq. (2.39) along with the Hertzian elliptical contact model

proposed in Eqs. (4.6) and (4.7):

A∗(d∗) =ηh
∫ ∞

d∗

∫ κh∗2

0

∫ ∞

0

Ai(ξ
h − d, κh1 , κh2)Φh(ξh∗, κh∗1 , κ

h∗
2 )dκh∗2 dκ

h∗
1 dξ

h∗,

p̄(d∗) =ηh
∫ ∞

d∗

∫ κh∗2

0

∫ ∞

0

Pi(ξ
h − d, κh1 , κh2)Φh(ξh∗, κh∗1 , κ

h∗
2 )dκh∗2 dκ

h∗
1 dξ

h∗,

where κh∗1 ≤ κh∗2 .

Replacing Ai, Pi and ηh in the above equations by Eqs. (4.6), (4.7) and (2.43) into the

above equations, the final forms of an equivalent BGT model are obtained:

A∗(d∗) =
1

6
√

3

√
αh
∫ ∞

d∗

∫ κh∗2

0

∫ ∞

0

(
ξh∗ − d∗

)
(κh∗1 κ

h∗
2 )−1/2F 2

1 (e)/F2(e)Φh(ξh∗, κh∗1 , κ
h∗
2 )dκh∗2 dκ

h∗
1 dξ

h∗,

(4.30)

p̄∗(d∗) =
2
√

2

9
√

3π
(αh)3/4×

∫ ∞

d∗

∫ κh∗2

0

∫ ∞

0

(
ξh∗ − d∗

)3/2
(κh∗1 κ

h∗
2 )−1/4F

−3/2
2 (e)Φh(ξh∗, κh∗1 , κ

h∗
2 )dκh∗2 dκ

h∗
1 dξ

h∗.

(4.31)

where e can be determined by the fit shown in Eq. (4.11).
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4.3.5 Asymptotic BGT Model when d∗ is Large

An important asymptotic relation between A∗ and p̄∗, as well as d∗ and p̄∗, was originally

obtained by Bush et al. [13, 14] when d∗ is large:

A∗ =
1

4
erfc

(
d∗√

2

)
, (4.32)

p̄ = E∗
√
mh

2

2
√

2π

1

d∗
exp

(
−d
∗2

2

)
. (4.33)

According to the asymptotic expansion of erfc(x) [13]:

erfc(x) =
exp(−x2)

x
√
π

∞∑

n=0

(−1)n
(2n− 1)!!

(2x2)n
,

where (2n − 1)!! is the double factorial. For a very large dimensionless separation, d∗, Eq.

(4.33) becomes

p̄ =
E∗
√
mh

2

4
√
π

erfc
(
d∗√

2

)
.

Substituting the above identity into Eq. (2.53), we have

p̄∗ =
1

2
√

2
√
π

erfc
(
d∗√

2

)
. (4.34)

An alternative derivation of the asymptotic BGT model can follow the so-called “GW modified”

model proposed by Carbone [13]. GW modified model is revisited in Chapter 4 to derive the

asymptotic relations between Ā∗ and p̄∗, as well as ḡ∗ and p̄∗, at the nearly complete contact

stage.

Combining the asymptotic relations, Eqs. (4.32) and (4.34), we have the most important

form of the asymptotic BGT model

A∗ =

√
π

2
p̄∗, (4.35)

which implies a linear relation between A∗ and p̄∗ which is independent of the roughness when

d∗ is very large.
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4.4 Numerical Results

In this section, the numerical results of the statistical models, namely, (i) the GW model, (ii)

the Nayak-Bush model, (iii) the Greenwood model and (iv) the BGT model are compared

with each others. Except for the adapted GW model, the other statistical models involve high-

dimensional integration, especially the BGT model. The Gauss quadrature [15], commonly

used in the numerical integration in the FEM/BEM, is applied. The line, area and volume

integrals applied to the statistical models are briefly discussed below:

Line integral In the adapted GW model and the asymptotic BGT model, the line integrals

in A∗ and p̄∗ have the common form as follows:

∫ ∞

d∗
f(ξh∗)dξh∗.

Using the change of variable: x = 1/ξh∗, the integral with the finite limit is achieved:

∫ 1/d∗

0

1

x2
f(x)dx

The domain, x ∈ [0, 1/d∗], is divided intoNx line elements and the integral within each element

is achieved by using the Gauss quadrature with four integral points [15]:

∫ x2

x1

f(x)dx =
x2 − x1

2

∫ 1

−1

f

(
x2 − x1

2
x+

x2 + x1

2

)
dx,

=
x2 − x1

2

4∑

i=1

wif

(
x2 − x1

2
xi +

x2 + x1

2

)
(4.36)

where the Gaussian quadrature abscissae and weight can be found in [15].

Double integral In the Nayak-Bush model and the Greenwood model, the double integrals

in A∗ and p̄∗ have the common form as follows:

∫ ∞

d∗

∫ ∞

0

f(ξh∗, κ)dκdξh∗,
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where κ can be either κh∗m or κh∗g . Using the change of variables: x = 1/ξh∗ and y = exp(−κ),

the integral with the finite limit is achieved:

∫ 1/d∗

0

∫ 1

0

1

x2y
f(x, y)dydx.

The domain, (x, y) ∈ [0, 1/d∗]×[0, 1], is divided intoNx×Ny rectangular elements. The double

integral in each rectangular element is calculated by using Gauss quadrature in y direction first

and then x direction:

∫ x2

x1

∫ y2

y1

f(x, y)dydx =
(x2 − x1)(y2 − y1)

4

4∑

i=1

4∑

j=1

wiwjf

(
x2 − x1

2
xi +

x2 + x1

2
,
y2 − y1

2
yj +

y2 + y1

2

)
. (4.37)

Volume integral In the BGT model, the volume integrals in A∗ and p̄∗ have the common

form as follows: ∫ ∞

d∗

∫ κh∗2

0

∫ ∞

0

f(ξh∗, κh∗1 , κ
h∗
2 )dκh∗2 dκ

h∗
1 dξ

h∗,

Using the change of variables: x = 1/ξh∗, y = κh∗1 /κ
h∗
2 and z = exp(−κh∗2 ), the inetgral with

the finite limit is achieved:

∫ 1/d∗

0

∫ 1

0

∫ 1

0

− ln(z)

x2z
f(x, y, z)dzdydx.

The domain, (x, y, z) ∈ [0, 1/d∗]× [0, 1]× [0, 1], is divided into Nx×Ny×Nz brick elements.

The volume integral in each rectangular element is calculated as:

∫ x2

x1

∫ y2

y1

∫ z2

z1

f(x, y, z)dzdydx =
(x2 − x1)(y2 − y1)(z2 − z1)

8

4∑

i=1

4∑

j=1

4∑

k=1

wiwjwkf

(
x2 − x1

2
xi +

x2 + x1

2
,
y2 − y1

2
yj +

y2 + y1

2
,
z2 − z1

2
zk +

z2 + z1

2

)
. (4.38)

To illustrate the validity of the numerical results solved by the Gauss quadrature proposed

above, the numerical results of (1) the Nayak-Bush model, (2) the Greenwood model and (3)
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the BGT model are compared with that reported by Carbone and Bottiglione [16] in Table. 4.1

and Table. 4.2. In the adapted GW model: Nx = 1000. In the Nayak-Bush model and the

Greenwood model: Nx = 1000 and Ny = 1000. In the BGT model: Nx = 50, Ny = 50

and Nz = 50. An excellent agreement is found except for one possible typo in Carbone and

Bottiglione’s results (see d∗ = 1.5 in the column of BGT model).

Table 4.1: The values of A∗ and
√
π/2 p̄∗ associated with the dimensionless surface separation

d∗ determined by the BGT and the Greenwood model. Note that p̄/(E∗
√
mh

2/π) used in [16]
is exactly

√
π/2 p̄∗. The mismatch is highlighted in red and one obvious difference could be a

typo in [16].

d∗ BGT Model The Greenwood Model
A∗ √

π/2 p̄∗ A∗ √
π/2 p̄∗

Dissertation [16] Dissertation [16] Dissertation [16] Dissertation [16]
αh = 2

0 1.644× 10−1 1.644× 10−1 2.270× 10−1 2.270× 10−1 1.674× 10−1 1.674× 10−1 2.218× 10−1 2.218× 10−1

0.5 1.080× 10−1 1.080× 10−1 1.368× 10−1 1.368× 10−1 1.098× 10−1 1.098× 10−1 1.339× 10−1 1.339× 10−1

1 6.039× 10−2 6.039× 10−2 7.102× 10−2 7.102× 10−2 6.129× 10−2 6.129× 10−2 6.967× 10−2 6.967× 10−2

1.5 2.750× 10−2 2.750× 10−2 3.060× 10−2 3.600× 10−2 2.785× 10−2 2.785× 10−2 3.010× 10−2 3.010× 10−2

2 9.940× 10−3 9.940× 10−3 1.066× 10−2 1.066× 10−2 1.004× 10−2 1.004× 10−3 1.052× 10−2 1.052× 10−2

2.5 2.824× 10−3 2.825× 10−3 2.962× 10−3 2.962× 10−3 2.848× 10−3 2.848× 10−3 2.931× 10−3 2.931× 10−3

3.0 6.301× 10−4 6.301× 10−4 6.519× 10−4 6.519× 10−4 6.341× 10−4 6.341× 10−4 6.463× 10−4 6.463× 10−4

αh = 10

0 2.040× 10−1 2.040× 10−1 3.680× 10−1 3.680× 10−1 2.079× 10−1 2.089× 10−1 3.588× 10−1 3.588× 10−1

0.5 1.174× 10−1 1.174× 10−1 1.950× 10−1 1.950× 10−1 1.195× 10−1 1.195× 10−1 1.902× 10−1 1.902× 10−1

1 5.809× 10−2 5.809× 10−2 8.940× 10−2 8.940× 10−2 5.912× 10−2 5.912× 10−2 8.730× 10−2 8.730× 10−2

1.5 2.415× 10−2 2.415× 10−2 3.471× 10−2 3.471× 10−2 2.456× 10−2 2.456× 10−2 3.393× 10−2 3.393× 10−2

2 8.269× 10−3 8.269× 10−3 1.120× 10−2 1.120× 10−2 8.403× 10−2 8.403× 10−3 1.096× 10−2 1.096× 10−2

2.5 2.297× 10−3 2.297× 10−3 2.956× 10−3 2.956× 10−3 2.333× 10−3 2.333× 10−3 2.896× 10−3 2.896× 10−3

3.0 5.120× 10−4 5.120× 10−4 6.308× 10−4 6.308× 10−4 5.194× 10−4 5.194× 10−4 6.188× 10−4 6.188× 10−4

Table 4.2: The values of A∗ and
√
π/2 p̄∗ associated with the dimensionless surface separation

d∗ determined by the Nayak-Bush model.

d∗ αh = 2 αh = 10

A∗ √
π/2 p̄∗ A∗ √

π/2 p̄∗

Dissertation [16] Dissertation [16] Dissertation [16] Dissertation [16]

0 1.449× 10−1 1.449× 10−1 2.089× 10−1 2.089× 10−1 1.785× 10−1 1.785× 10−1 3.361× 10−1 3.361× 10−1

0.5 9.593× 10−2 9.593× 10−1 1.266× 10−1 1.266× 10−1 1.030× 10−1 1.030× 10−1 1.785× 10−1 1.785× 10−1

1 5.425× 10−2 5.425× 10−2 6.624× 10−2 6.624× 10−2 5.121× 10−2 5.121× 10−2 8.209× 10−2 8.209× 10−2

1.5 2.507× 10−2 2.507× 10−2 2.881× 10−2 2.881× 10−2 2.139× 10−2 2.139× 10−2 3.198× 10−2 3.198× 10−2

2 9.210× 10−3 9.210× 10−3 1.014× 10−2 1.014× 10−2 7.367× 10−3 7.367× 10−3 1.036× 10−2 1.036× 10−2

2.5 2.657× 10−3 2.657× 10−3 2.844× 10−3 2.844× 10−3 2.059× 10−3 2.069× 10−3 2.745× 10−3 2.745× 10−3

3.0 6.003× 10−4 6.003× 10−4 6.307× 10−4 6.307× 10−4 4.617× 10−4 4.617× 10−4 5.883× 10−4 5.883× 10−4

According to Section 4.3, the relation A∗ to d∗ (also p̄∗ to d∗) only depends on αh. Fig.

4.4 illustrates the relation of A∗ to p̄∗ determined by numerous statistical models where αh = 2

(Fig. 4.4(a)) and αh = 10 (Fig. 4.4(b)) with d∗ ∈ [0, 3]. When αh = 2, the relations predicted

by all the statistical models (except for the adapted GW model) are almost identical (A∗ <
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Figure 4.4: Plots of A∗ vs. p̄∗ associated with (a) αh = 2 and (b) αh = 10.

(a) (b)

d
∗

p̄∗

d
∗

p̄∗
10

−3
10

−2
10

−1
0

0.5

1

1.5

2

2.5

3

 

 

Adapted GW model
Nayak−Bush model
Greenwood model
BGT model
Asymptotic BGT model

10
−3

10
−2

10
−1

0

0.5

1

1.5

2

2.5

3

 

Adapted GW model
Nayak−Bush model
Greenwood model
BGT model
Asymptotic BGT model

Figure 4.5: Plots of d∗ vs. p̄∗ associated with (a) αh = 2 and (b) αh = 10.

0.02). When αh = 10, all the statistical models obviously deviate from the asymptotic BGT

model. The corresponding relations of d∗ to p̄∗ are shown in Fig. 4.5. Good agreement between

the asymptotic BGT model and the rest of the statistical models can be observed, especially at

higher range of p̄∗. The slope of A∗ vs. p̄∗ curve, κ = dA∗/dp̄∗, is plotted against p̄∗ in Fig.

4.6. When αh = 2, all the statistical models, except for the adapted GW model, are gradually

approaching the limit predicted by the asymptotic BGT model. The mismatch of the slope of

the adapted GW model is also reflected in Fig. 4.4(a). When αh = 10, all the statistical models

have the tendency of deviating from the asymptotic limit, see Fig. 4.4(b). The overall value
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of κ is decreased as αh is increased. According to Yastrebov et al., [17, 18], approaching the

asymptotic limit is a very slow procedure where d∗ →∞.
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Figure 4.6: Plots of κ vs. p̄∗ associated with (a) αh = 2 and (b) αh = 10.

4.5 Conclusions

In this chapter, a general frame of the statistical model of early contact is briefly introduced in

the beginning. The average contact pressure is so small that the rough surface contact problem

can be decomposed into numerous asperity normal contact problems. The Hertzian elliptical

contact model and two Hertzian mildly elliptical contact models are introduced as the asperity

contact models. The agreement between the mildly elliptical contact model and the elliptical

model is deteriorated as the curvature ratio κh2/κ
h
1 increases. After combining the asperity con-

tact models with the appropriate PDFs, four statistical models, namely, the adapted GW model,

the Nayak-Bush model, the Greenwood model and the BGT model, are systematically intro-

duced. Unlike the statistical models introduced in past literatures, the relation, A∗ vs. d∗, as

well as the dimensionless p̄∗ vs. d∗, of all statistical models are found to be only dependent

on the bandwidth parameter, αh. The line, area and volume integrals involved in the statis-

tical models are solved by the Gauss quadrature. The accuracy of the numerical integrals is

confirmed by the comparison with the data reported by Carbone and Bottiglione [13].
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Chapter 5

Statistical Models of Nearly Complete Contact

In Chapter 4, the statistical models of early contact in the past literatures are studied systemati-

cally. Unlike Chapter 4, the stage of the nearly complete contact where the real area of contact

is nearly the same as the nominal contact is explored in the current chapter. At this stage, the

non-contact area consists of numerous non-contact regions of elliptical/circular shape. Each of

the non-contact region can be visualized as an elliptical/circular (half) “cracks”. This hypoth-

esis is supported by the direct observation of the contact area distribution, Fig. 3.9(d), and the

interfacial distribution, Fig. 3.10(d).

5.1 Introduction

The statistical model of early contact is extensively studied ever since the pioneering work of

Zhuravlev [1] and Greenwood and Williamson [2]. Up till recently, Xu et al. [3] proposed a

general statistical model which can be applied to another extreme of the rough surface contact,

i.e., the nearly complete contact. At this stage, the real area of contact is almost identical to the

nominal contact area, i.e., A∗ → 1. On the contact interface, the non-contact area is composed

of numerous no-contact regions which are visualized as “islands” surrounded by the “sea” of

contact area, see Fig. 5.1. From Figs. 3.9(d) and Fig. 3.10(d), it is expected that the non-contact

regions are approximately elliptical and circular.

The contact pressure distribution, p(x, y), at nearly complete contact within the contact

area can be approximated by the contact pressure, pc(x, y), at complete contact where the entire

rough boundary, z = −h(x, y), is in contact with the rigid flat. In the complete contact, the
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Figure 5.1: Schematic representation of the distributions of the contact area and the non-contact
area within a finite rectangular region. Reprinted from International Journal of Solids and
Structures, Xu, Y., Jackson, R.L., and Marghitu, D.B., Statistical model of nearly complete
elastic rough surface contact, 51, pp.1078, 2014, with permission from Elsevier.

normal displacement of the boundary is known as: w̄(x, y) = h(x, y) +C where C is the rigid

body displacement due to the average pressure p̄. Assuming that (i) the boundary z = −h(x, y)

is smooth up to the class C1, i.e., the derivatives ∂h/∂x and ∂h/∂y exist and are continuous

everywhere, and (ii) the local slopes are several order of magnitude smaller than the unity, then

the rough half-space can be approximated as a half-space. Therefore, the contact pressure,

pc(x, y), at complete contact can be formulated by Eq. (2.47) [20, 21]. Since the contact is

adhesionless, p̄ of the complete contact should satisfy1:

p̄ ≥ |min(pc)|.

Fig. 5.2(a) schematically illustrates the deformed contact interface, as well as the contact

pressure distribution, p(x, y), at the nearly complete contact when (p̄− |min(pc)|)→ 0−. Fig.

1Many analytical models raised up the concern about whether a complete contact (perfect seal) can be achieved
bewteen the rough surfaces under a finite p̄. A popular point of view is that p̄ under complete contact is infinite
(e.g., Manners [4]; Ciavarella et al. [5]; Persson [6]; Manners and Greenwood [7]; Jackson [8]). This unexpectedly
high pressure may be caused by the idealization of the rough surface using various models (e.g., rough surfaces
with exponential auto-correlation [4], Weierstrass-Mandelbrot function [5] and fractal surfaces with prescribed
PSD [6–8]). A recent theoretical study by Kudish et al [9] has shown that a rough surface can be completely
flattened under a finite p̄ if it is smooth up to class C2, i.e., the second order derivatives of h(x, y) exist and
continuous everywhere.
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5.2(b) shows the complete contact under the same average pressure p̄ and the contact pressure

would be

p1(x, y) = p̄+ pc(x, y), (5.1)

if the complete contact is achieved under sufficient adhesion, see Fig. 5.2(b). Two contact pres-

sure distributions, namely, p(x, y) and p1(x, y), are exactly the same over the entire interface

except at the vicinity of the non-contact regions. In order to achieve the traction-free boundary

condition inside the non-contact regions in Fig. 5.2(a), the pressurized crack problem shown in

Fig. 5.2(c) is superposed to the complete contact problem in Fig. 5.2(b). In the crack problem,

numerous flat cracks, which are pressurized by the normal traction p2(x, y) = −p1(x, y), are

embedded inside an infinite body on z = 0 plane. Due to the symmetry of the crack problem,

only the upper half (z > 0) is illustrated in Fig. 5.2(c).

Based on the decomposition of the contact problem shown in Fig. 5.2, it is clear that the

distribution of the non-contact regions is correlated with that of the tensile portions of p1(x, y)

and this correlation is clearly illustrated in Fig. 5.3(a). recalling the definition of “pressure

surface” in the beginning of Section 2.6, the above correlation can be rephrased as follows:

the distribution of the non-contact regions can be correlated with that of the asperities of the

“pressure surface” which are higher than p̄, see Fig. 5.3(b).

According to the definition of the asperity in Section. 2.4, the geometry of a parabolic

asperity can be uniquely represented by a vector of random variables: (ξp, κp1, κ
p
2)

If the size of non-contact region (crack size)Ai(ξp, κ
p
1, κ

p
2) and the trapped volume Vi(ξp, κ

p
1, κ

p
2)

are known, then the non-contact ratio 1 − A∗ and the average interfacial gap ḡ under a certain

p̄ can be obtained by following the statistical models of early contact (see Chapter 4):

1− A∗(p̄) = ηp
∫ ∞

p̄

∫ κp2

0

∫ ∞

0

Ai(ξ
p, κp1, κ

p
2)Φp(ξp, κp1, κ

p
2)dκp2dκ

p
1dξ

p. (5.2)

ḡ(p̄) = ηp
∫ ∞

p̄

∫ κp2

0

∫ ∞

0

Vi(ξ
p, κp1, κ

p
2)Φp(ξp, κp1, κ

p
2)dκp2dκ

p
1dξ

p. (5.3)

The integrals in Eqs. (5.2) and (5.3) represent the ensemble average of the area and the trapped

volume of a single non-contact region, respectively. The validity of Eqs. (5.2) and (5.3) implies
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Figure 5.2: Decomposition of the (a) nearly complete contact into (b) a complete contact and
(c) pressurized cracks problem. Adapted from International Journal of Solids and Structures,
Xu, Y., Jackson, R.L., and Marghitu, D.B., Statistical model of nearly complete elastic rough
surface contact, 51, pp. 1078, 2014, with permission from Elsevier.
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Figure 5.3: (a) Correlation between the distributions of the asperity of pc(x, y) and the crack;
(b) Correlation between the distribution of the asperity of −pc(x, y) and the crack. Reprinted
from International Journal of Solids and Structures, Xu, Y., Jackson, R.L., and Marghitu, D.B.,
Statistical model of nearly complete elastic rough surface contact, 51, pp. 1078, 2014, with
permission from Elsevier.

that the neighboring non-contact regions are distantly located so that each non-contact region

(pressurized crack) can be studied individually and their results can be superposed.

The statistical characterization of the “pressure surface” has already been addressed in

Section 2.6. The pressurized crack problem is studied in Section 5.2. The final formulation of

various statistical models associated with different joint PDFs and crack models are given in

Section 5.3. The Persson model and its relation to the statistical models of the nearly complete

contact is discussed in detail in Section. 5.4. Numerical results of some selected cases solved

by the statistical models and the Persson model are compared in Section 5.5.

5.2 Single Pressurized Crack Model

The decomposition of the contact problem at the vicinity of a single non-contact region is

illustrated in Fig. 5.4. The contact pressure and the deformed interface at the vicinity of a

non-contact region are shown in Fig. 5.4(a). In the complete contact (Fig. 5.4(b)), the vicinity

of the non-contact region is subjected to p1(x, y). Similar to the geometry of the asperity of the

rough surface discussed in Eq. (2.26), the geometry of the asperity of the “pressure surface”
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Figure 5.4: Schematic representation of the decomposition at the vicinity of the single non-
contact region. The cross-section area is along the major axis. Adapted from International
Journal of Solids and Structures, Xu, Y., Jackson, R.L., and Marghitu, D.B., Statistical model
of nearly complete elastic rough surface contact, 51, pp. 1078, 2014, with permission from
Elsevier.

can also be formulated in the parabolic form:

p1(x, y) = −p0 +
κp1
2
x2 +

κp2
2
y2, (5.4)
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where (κp1, κ
p
2) are two principle curvatures κp1 < κp2. From Section 5.1, it is obvious that

p0 = ξp − p̄. To enable the stress-free boundary condition within the elliptical non-contact

region in Fig. 5.4(a), we need to superpose a pressurized elliptical crack problem, which is

shown in Fig. 5.4(c). The crack is embedded in an infinite space and lies on z = 0 plane with

its center at the origin. The infinite space in Fig. 5.4(c) is stress-free at far end. The upper

and lower crack surface are subjected to the normal traction: p2(x, y) = −p1(x, y) within the

elliptical region Ω:

Ω = {(x, y, 0)|x = aρ cos(φ), y = bρ sin(φ), 0 ≤ ρ < 1, 0 ≤ φ < 2π} , (5.5)

where

ρ =

√(x
a

)2

+
(y
b

)2

.

a and b are the semi-major radius and semi-minor radius of the ellipse, see Fig. 5.5. Due to the

symmetry of the problem about the plane z = 0, only the upper half of the crack is shown in

Fig. 5.4(c). In Section 5.2.1, the general pressurized elliptical problem is solved analytically.

2a

2b
x

y

P

P1

�n

s

Figure 5.5: Schematic representation of a elliptical crack.

The crack area and the trapped volume inside the elliptical crack are derived in the closed-

forms. To further simplify the solutions, two pressurized penny-shaped crack problems are

proposed where the crack surfaces are subjected to the axisymmetric p2(r) with the mean and
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geometrical curvature κpg and κpm. This simplification is very similar to that used in the asperity

contact discussed in Section 4.2.

5.2.1 Elliptical Crack

The pressurized elliptical crack problems under various forms of p2(x, y) have been solved by

many researchers (Green and Sneddon [10], Kassir and Sih [11], Shah and Kobayashi [12],

Sneddon [13], Martin [14], Atroshchenko [15], etc). In this section, the methodology and the

results of Martin [14] are briefly introduced.

Due to the asymmetry of the elliptical crack and the normal traction, the mode-I stress in-

tensity factor (SIF) is varied with φ on the crack front, i.e.,KI(φ). Let P = (a cos(φ), b sin(φ), 0)

and P1 = (aρ cos(φ), bρ sin(φ), 0) be the points on the crack front and outside (ρ > 1) the crack

region Ω, respectively, see Fig. 5.5. Assuming P1 lies on the normal vector of the ellipse pass-

ing the point P and the distance between P1 and P is s, then the mode-I SIF2 can be defined

as [13, 14]:

KI(φ) = lim
s→0+

√
2πsσzz(aρ cos(φ), bρ sin(φ), 0),

=(ab)1/2
[
a2 sin2(φ) + b2 cos2(φ)

]−1/4
lim
ρ→1+

[
(ρ2 − 1)1/2σzz(aρ cos(φ), bρ sin(φ), 0)

]
,

(5.6)

where σzz is the normal stress components perpendicular to xy plane.

Using the polynomial form proposed by Krenk [16], the boundary conditions: σzz(x, y, 0) =

−p(x, y) inside Ω (ρ < 1) and w(x, y, 0) = 0 outside Ω (ρ > 1) are automatically satis-

fied. Then, σzz(x, y, 0) outside Ω (ρ > 1) and the upper/lower crack opening displacement

g(x, y) = w(x, y, 0) inside Ω (ρ < 1) can be solved in an inverse manner.

The mode-I SIF due to the traction p(x, y) is then (see Eqs. (7.2) and (7.10) in [14])

KI(φ) =
√
π
[
a2 sin2(φ) + b2 cos2(φ)

]1/4
{

p0

E(e)

(a
b

)1/2

− 8

15

(
b

a

)1/2

[B0(e) +B2(e) cos(2φ)]

}
,

(5.7)
2Eq. (5.6) is different from the definition in [14] by a multiplier of

√
π.
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where e is the eccentricity of the elliptical crack:

e =

√
1−

(
b

a

)2

.

E(e) is the complete elliptical integral of the second kind. B0(e) and B2(e) are in the function

of e only:

B0(e) =
1

8Ω(e)

(
κp1a

2 + κp2b
2
)

[3Ω(e) + 2Ic00(e)Ic22(e)] /Ic00(e)+

1

4

(
κp1a

2 − κp2b2
)
Ic02(e), (5.8)

B2(e) =
1

8Ω(e)

[(
κp1a

2 + κp2b
2
)
IC02 +

(
κp1a

2 − κp2b2
)
Ic00(e)

]
, (5.9)

where

Ω = Ic00(e)Ic22(e)− Ic02(e)Ic20(e).

Ic00(e), Ic22(e), Ic02(e) and Ic20(e) are the functions of eccentricity, e, only [14]:

Ic00(e) = 2E(e), (5.10)

Ic02(e) = Ic20(e) =





2
3e2

[(2− e2)E(e)− 2(1− e2)K(e)] where e ∈ (0, 1],

0 where e = 0.

(5.11)

Ic22(e) =





1
15e4

[(14e4 + 16e2 − 16)E(e) + 8(2− e2)(1− e2)K(e)] where e ∈ (0, 1],

π
2

where e = 0,

(5.12)

where K is the complete elliptical integral of the first kind.

Based on the statistical model of nearly complete contact discussed in Section. 5.1, the

random variables (p0 = p − p̄, κp1, κ
p
2) are known for each crack problem. The objective of

this section is to determine the associated semi-minor radius b and semi-major radius a, as well

as the crack area, Ai, and the trapped volume, Vi. For the penny-shaped crack, two types of

boundary conditions are proposed by Johnson et al. [20], namely, (1) zero SIF: KI = 0 and (2)
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g = 0, ∂g/∂r = 0 at the crack front. This is shown by Xu et al. [3,23] that these two boundary

conditions result in the same crack radius. In the rest of the section, the zero SIF condition is

adopted to solve the pressurized crack problem. In the Section 5.2.6, the later conditions are

examined.

At the contact edges (crack fronts), the contact pressure decays to zero as long as no

adhesive attraction and geometrical singularity exist. Thus, it is natural to expect that KI = 0

regardless of φ. For a non-trivial solution of a and b, we have the following two relations:

B2(e) = 0, (5.13)

p0

E(e)

(a
b

)1/2

− 8

15

(
b

a

)1/2

B0(e) = 0. (5.14)

According to Eq. (5.13), the nonlinear relation of the κp1/κ
p
2 to e can be determined ex-

plicitly from Eqs. (5.9) and (5.13):

κp1
κp2

= (1− e2)
[
(2e2 − 1)E(e) + (1− e2)K(e)

]
/
[
(1 + e2)E(e)− (1− e2)K(e)

]
. (5.15)

It is interesting to notice that the eccentricity, e, of the elliptical crack depends only on the

κp1/κ
p
2. An empirical solution of e in the function of κp1/κ

p
2 can be obtained through the curve-

fit:
√

1− e2 = exp
[
−0.00681× log2(κp1/κ

p
2) + 0.3953× log(κp1/κ

p
2)
]
. (5.16)

The good agreement between Eqs. (5.15) and (5.16) can be found when they are plotted as

shown in Fig. 5.6.

According to Eq. (5.14), the area of the elliptical crack, A = πab, can be determined as:

Ai(p0, κ
p
1, κ

p
2) = 3π(κpg)

−1p0F1(e), (5.17)

where

F1(e) = 5

[
3

2
+
Ic00(e)Ic22(e)

Ω(e)
− Ic02(e)

]−1 [√
κp1/κ

p
2 +

√
κp2/κ

p
1(1− e2)

]−1

. (5.18)
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2 by Eqs. (5.15) and (5.16).

Note that e can be determined by Eq. (5.15) or (5.16). A plot of F1(e) against e is shown in

Fig. 5.7.

Additionally, the closed-form solution of the (upper) crack opening displacement3 [14] is

also available:

g(x, y) = g(ρ) =
2b

9E(e)E∗

[
9p0 −

1

2

(
κp1a

2 + κp2b
2
)

(1 + 2ρ2)

]√
1− ρ2. (5.19)

The corresponding trapped volume Vi can be determined by

Vi =

∫ b

0

g(r/b)C(r)dr, (5.20)

where C(r) is the perimeter of the ellipse (r: semi-minor radius) concentric to the elliptical

crack front:

C(r) =
4r√

1− e2
E(e). (5.21)

3Martin [14] only gave the general form of w(x, y, 0+). The final form of w(x, y, 0+) due to the parabolic
form of p(x, y) was given by Martin [14].
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Substituting Eqs. (5.21) and (5.19) into Eq. (5.20) and integrating, we have

Vi =
8ab2

3E∗

[
p0 −

1

10

(
κp1a

2 + κp2b
2
)]
. (5.22)

Substituting Eq. (5.17) into the above equation, we can obtain the final form of Vi:

Vi(p0, κ
p
1, κ

p
2) =

16
√

3

5E∗
(κpg)

−3/2p
5/2
0 F2(e), (5.23)

where

F2(e) =
5

2
(1− e2)1/4F1(e)3/2

{
1− 3

10
F1(e)

(
1− e2

)−1/2
[√

κp1/κ
p
2 +

√
κp2/κ

p
1(1− e2)

]}
.

(5.24)

A plot of F2(e) can be found in Fig. 5.7. The discussion of F1(e) and F2(e) in Fig. 5.7 can be

found in Section 5.2.6.
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5.2.2 Penny-Shaped Crack

When a → b, the elliptical crack is degraded to a penny-shaped crack. Due to the symmetry

of the penny-shaped crack, the pressurized penny-shaped crack problem has been extensively

studied (e.g., Sneddon [17], Barenblatt [18], Sneddon and Lowengrub [19]). Green’s function

can be used to calculate the mode-I SIF [3, 7, 18, 20]. Sneddon’s solution [17] is available

to calculate the (upper) crack opening displacement w(x, y, 0+). An alternative is to find the

asymptotic behavior of the pressurized elliptical crack when e → 0+, i.e., a → b. The asymp-

totic analysis is also served as a validation of the pressurized elliptical model. In the rest of this

section, the latter method is used and the results are exactly the same as the Green’s function

used in Xu et al. [3].

Since E(0) = K(0) = π/2 as e→ 0, Eq. (5.15) is degraded to κp1 = κp2 = κp. Substituting

e = 0 and κp1 = κp2 = κp into Eq. (5.7), we can have

KI =
2
√
b√
π

(
p0 −

1

3
κpb2

)
, (5.25)

which is the same as that formulated using the Green’s function (see Eq. (13) in [3]4).

Substituting e = 0 and κp1 = κp2 = κp into Eq. (5.19), the (upper) crack opening displace-

ment is

g(ρ) =
4b

9πE∗
(
9p0 − κpb2 − 2κpb2ρ2

)√
1− ρ2, (5.26)

which is the same as Eq. (B.1) in [3] based on the Sneddon’s solution [17, 20].

As e → 0, F1(0) → 1 and F2(0) → 1. According to Eqs. (5.17) and (5.23), the area of

penny-shaped crack and the corresponding trapped volume of a penny-shaped crack are

Ai(p0, κ
p) = 3π(κp)−1p0, (5.27)

Vi(p0, κ
p) =

16
√

3

5E∗
(κp)−3/2p

5/2
0 , (5.28)

which are the same as Eq. (17) and Eq. (25) in [3], respectively.

4The curvature used in Eq. (13) in [3] is half of the corresponding curvature in Eq. (5.25).
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5.2.3 Mildly Elliptical Crack (Geometric Curvature)

Comparing Eqs. (5.27) and (5.28) of the penny-shaped crack with Eqs. (5.17) and (5.23) of

the elliptical one, we may find that F1(e) and F2(e) in Eqs. (5.17) and (5.23) are the only

corrective terms when κp1 < κp2. According to Fig. 5.7, F1(e) and F2(e) deviate from the unity

as
√
κp1/κ

p
2 is gradually decreased from unity. Following the approximation used in Section

4.2.3, the corresponding crack size and the trapped volume of a mildly elliptical crack can be

approximated by:

Ai(p0, κ
p
g) = 3π(κpg)

−1p0, (5.29)

Vi(p0, κ
p
g) =

16
√

3

5E∗
(κpg)

−3/2p
5/2
0 . (5.30)

Note that Eq. (5.29) is the same as Eq. (16) in [3] and Eq. (5.30) is equivalent to Eq.

(24) in [3] as long as κp1 → κp2. In [3], the solutions (e.g., the SIF, KI , and the crack opening

displacement, g(r)) of the penny-shaped crack are directly transformed to the solutions of the

elliptical crack by replacing r with ρ =
√
x2/a2 + y2/b2. Consequently, Eqs. (16) and (24)

in [3] are also an approximate solution only valid for the mildly elliptical crack.

5.2.4 Mildly Elliptical Crack (Mean Curvature)

For a Gaussian rough surface, Greenwood [22] showed that the hemi-spherical asperity (κh1 =

κh1) is nearly impossible to occur and two principle curvatures of nearly all asperities should be

different. Since the “pressure surface” is Gaussian as long as the corresponding rough surface is

Gaussian [3]. Therefore, nearly all the cracks are elliptical and are pressurized by the parabolic

normal traction with different principle curvatures, κp1 < κp2. Following the simplification

applied to the Hertzian contact theory, a mildly elliptical crack model can be proposed based on

the penny-shaped crack model where κp is replaced by the mean curvature: κpm = (κp1 +κp2)/2,

Ai(p0, κ
p
m) = 3π(κpm)−1p0, (5.31)

Vi(p0, κ
p
m) =

16
√

3

5E∗
(κpm)−3/2p

5/2
0 . (5.32)
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5.2.5 Comparisons

The crack area and the trapped volume are normalized as Aiκ
p
2/(πE

∗) and Vi(κ
p
2)3/2/(E∗)3/2.

The relation between the dimensionless Ai and Vi associated with different κp1/κ
p
2 are shown in

Fig. 5.8. Some important observations are summarized below:

• As κp1/κ
p
2 is decreased, the elliptical and the mildly elliptical crack models start to deviate

from the (nearly) penny-shaped crack model (κp1/κ
p
2 = 1/1.2) with different paces. The

elliptical crack model deviates more aggressively than the mildly elliptical crack models.

• The mildly elliptical crack models are good approximations to the elliptical crack model

only within a narrow range of κp1/κ
p
2 ≈ [1, 1.2]. This can be explained by the stronger

non-linearity, i.e., Vi ≈ O(A
5/2
i ). Recalling the Hertzian contact discussed in Section

4.2, Hertzian contact does not have such a strong non-linearity between Ai and Pi, i.e.,

Pi ≈ O(A
3/2
i ).

• Compared with the mildly elliptical crack with the mean curvature, the mildly elliptical

crack with the geometrical curvature is a relatively better approximation to the elliptical

crack model.

5.2.6 Remarks

In Section 5.2, the crack area, as well as the trapped volume, are determined based on the fact

that the mode-I SIF, KI(φ), should be zero everywhere on the crack front. In this remark, we

shall focus on another boundary condition mentioned earlier. Johnson et al. [20] pointed out

that the crack should be closed smoothly on the crack front i.e., g(ρ = 1) = 0 and ∂g/∂ρ|ρ−1 =

0. The first condition (g(ρ = 1) = 0) is automatically satisfied according to Eq. (5.19). In

order to have ∂g/∂ρ|ρ=1 = 0, the terms in side the square bracket in front of the singular term:

(1− ρ2)−1/2 in Eq. (5.19) should be vanishing. After some manipulations, an expression of the

crack area A similar to Eq. (5.17) is obtained:

A = 3π(κpg)
−1p0F3(e), (5.33)

147



0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Elliptical contact: 

Elliptical contact: 

Elliptical contact: 

Mildly contact (geometric curvature): 

Mildly contact (geometric curvature): 

Mildly contact (geometric curvature): 

Mildly contact (mean curvature): 

Mildly contact (mean curvature): 

Mildly contact (mean curvature): 

κp
1/κ

p
2 = 1/1.2

κp
1/κ

p
2 = 1/1.6

= 1/2κp
1/κ

p
2

κp
1/κ

p
2

κp
1/κ

p
2

κp
1/κ

p
2

= 1/1.2

= 1/1.6

= 1/2

κp
1/κ

p
2

κp
1/κ

p
2

κp
1/κ

p
2

= 1/1.2

= 1/1.6

= 1/2

A
iκ

p 2
/(

π
E

∗ )

Vi(κ
p
2)

3/2/(E∗)3/2
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where

F3(e) = 2(1− e2)−1/2
[√

κp1/κ
p
2 +

√
κp2/κ

p
1(1− e2)

]−1

. (5.34)

Eq. (5.17) and Eq. (5.33) are not the same since F1(e) 6= F3(e).

readers may already notice that the trapped volume determined by Eq. (5.33) would be

negative if κp1/κ
p
2 → 0. This is confirmed by the plots of F1(e) and F2(e) in Fig. 5.7. F2(e)

is monotonically decreased from unity when κp1 = κp2 towards negative infinity as κp1/κ
p
2 → 0.

Since the elliptical crack is subjected to p2(x, y) which is a mixture of compressive (at the

central part) and the tensile (close to the crack front) traction, the negative trapped volume at

small ratio of κp1/κ
p
2 = 0 is a sure sign that the penetration occurs between the upper and lower

crack surfaces. Since the crack surface contact is not included in the current elliptical crack

model (neither do any available elliptical crack models), the current elliptical crack model is

ill-defined. This is the main reason why KI(φ) = 0 and ∂g/∂ρ|ρ=1 = 0 cannot be satisfied
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simultaneously. If the crack surface contact is included, the resulting crack area may be more

complicated than an ellipse.

For the penny-shaped crack (a → b), KI = 0 and ∂g/∂r|r=b = 0 can be satisfied simul-

taneously (see Johnson et al. [20], Xu et al. [3] and Greenwood [23]). Due to the ill-defined

nature of the current elliptical crack model, only the penny-shaped crack model and the mildly

elliptical models with mean and geometric curvatures are used in the statistical model of nearly

complete contact. According to Fig. 5.8, this compromise may be a source of error to the

statistical models developed in the next section.

5.3 Multi-Cracks Contact Model

Similar to the multi-asperity contact model in Section 4.3, this section is named as the “multi-

cracks contact model” to emphasize the core concept of the statistical model in which the non-

contact area and the average interfacial gap are the superposition of the corresponding results

of the crack problems. Depending on the various forms of PDFs shown in Section 2.5 and

different crack models discussed in Section 5.2, totally three statistical models are proposed.

All statistical models of early contact, except for the BGT model, have an equivalent model at

nearly complete contact. The failure of adaptation of the BGT model at the nearly complete

contact is because the current elliptical crack model discussed in Section 5.2.1 is ill-defined.

5.3.1 Adapted Greenwood-Williamson (GW) model

Similar to the adapted GW model at early contact (see Section. 4.3.1), the asperities of the

“pressure surface” are also assumed to share the same radius: Rp = 1/κp. Thus, using the

penny-shaped crack model in Eqs. (5.27) and (5.28) and PDF in Eq. (2.42), Eq. (5.2) and (5.3)

can be rewritten as:

1− A∗(p̄∗) = ηp
∫ ∞

p̄∗
Ai(ξ

p − p̄, κp)Φp(ξp∗)dξp∗, (5.35)

ḡ(p̄∗) = ηp
∫ ∞

p̄∗
Vi(ξ

p − p̄, κp)Φp(ξp∗)dξp∗, (5.36)
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where ηp and κp(= 1/Rp) can be determined McCool’s solutions in Eqs. (2.43) and (2.45)

based on the moments, mp
n, of the “pressure surface”. Defining the dimensionless variable:

ḡ∗ = ḡ/
√
mh

0 , and replacing Ai, Vi, ηp and κp by Eqs. (5.27), (5.28), (2.43) and (2.45), the

final forms of the adapted GW model are obtained as follows:

1− A∗(p̄∗) =

√
3

16

√
π
√
αp
∫ ∞

p̄∗
(ξp∗ − p̄∗)Φp(ξp∗)dξp∗, (5.37)

ḡ∗(p̄∗) =
3

20
√

2
(π)−1/4(αp)1/4(αh)−1/2

∫ ∞

p̄∗
(ξp∗ − p̄∗)5/2Φp(ξp∗)dξp∗. (5.38)

5.3.2 The Nayak-Bush Model

Similar to the Nayak and Bush model of early contact (see Section. 4.3.2), the asperity of the

“pressure surface” is assumed to be axisymmetric with the summit curvature κpm. Using the

mildly elliptical crack model in Section. 5.2.4 and the joint PDF, Φp(ξp∗1 , κ
p∗
m ), in Eq. (2.40),

Eq. (5.2) and (5.3) can be rewritten as [3]:

1− A∗(p̄∗) = ηp
∫ ∞

p̄∗

∫ ∞

0

Ai(ξ
p − p̄, κpm)Φp(ξp∗, κp∗m )dκp∗mdξ

p∗, (5.39)

ḡ(p̄∗) = ηp
∫ ∞

p̄∗

∫ ∞

0

Vi(ξ
p − p̄, κpm)Φp(ξp∗, κp∗m )dκp∗mdξ

p∗. (5.40)

Substituting Ai, Vi and ηp (Eqs. (5.27), (5.28) and (2.43)) into the above equations, the final

forms of the Nayak-Bush model are obtained as follows:

1− A∗(p̄∗) =
1

2
√

3

√
αp
∫ ∞

p̄∗

∫ ∞

0

(ξp∗ − p̄∗)(κp∗m )−1Φp(ξp∗, κp∗m )dκp∗mdξ
p∗, (5.41)

ḡ∗(p̄∗) =
4
√

3

15π
(αp)1/4(αh)−1/2

∫ ∞

p̄∗

∫ ∞

0

(ξp∗ − p̄∗)5/2(κp∗m )−3/2Φp(ξp∗, κp∗m )dκp∗mdξ
p∗.

(5.42)

5.3.3 The Greenwood Model

Similar to the Greenwood model of early contact (see Section. 4.3.3), the asperities of the

“pressure surface” are assumed to be mildly elliptical, i.e., κp1/κ
p
2 → 1. Using the mildly
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elliptical crack in Section 5.2.3 and the joint PDF, Φp(ξp∗, κp∗g ), in Eq. (2.41), then Eq. (5.2)

and (5.3) can be rewritten as [3]:

1− A∗(p̄∗) = ηp
∫ ∞

p̄∗

∫ ∞

0

Ai(ξ
p − p̄, κpg)Φp(ξp∗, κp∗g )dκp∗g dξ

p∗, (5.43)

ḡ(p̄∗) = ηp
∫ ∞

p̄∗

∫ ∞

0

Vi(ξ
p − p̄, κpg)Φp(ξp

∗
, κp∗g )dκp∗g dξ

p∗. (5.44)

Substituting Ai, Vi and ηp (Eqs. (5.29), (5.30) and (2.43)) into the above equations, the final

forms of GW model are obtained as follows:

1− A∗(p̄∗) =
1

2
√

3
(αp)1/2

∫ ∞

p̄∗

∫ ∞

0

(ξp∗ − p̄∗)(κp∗g )−1Φp(ξp∗, κp∗g )dκp∗g dξ
p∗, (5.45)

ḡ∗(p̄∗) =
4
√

3

15π
(αp)1/4(αh)−1/2

∫ ∞

p̄∗

∫ ∞

0

(ξp∗ − p̄∗)5/2(κp∗g )−3/2Φp(ξp∗, κp∗g )dκp∗g dξ
p∗.

(5.46)

Eqs. (5.45) and 5.46 are equivalent to the ones derived by Xu et al. [3]. In their original

formulation, the principle curvatures are used as the random variables.

5.3.4 The Ciavarella Asymptotic Model

Carbone [43] proposed a statistical model to solve the rough surface contact at early stage.

Carbone model was extended by Ciavarella [44, 45] to obtain the asymptotic relation between

A∗ and p̄∗ when p̄∗ is very large. In this section, the Ciavarella asymptotic solution is revisited

in a different approach and the same asymptotic relation between ḡ∗ and p̄∗ is also obtained.

The Carbone model is very similar to the Nayak-Bush except that the PDF of the asper-

ity only depends on the summit height, ξh∗. Therefore, the statistical expectation of the di-

mensionless mean asperity curvature with the dimensionless summit height ξh∗, i.e., κh∗m (ξh∗),

determined by Nayak [47] is utilized:

κh∗m (ξh∗) =

∫∞
0
κh∗mΦh(ξh∗, κh∗m )dκh∗m∫∞

0
Φh(ξh∗, κh∗m )dκh∗m

. (5.47)
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The closed form of κh∗m (ξh∗) can be found in [43, 47]. Similarly, the statistical expectation of

κp∗m (ξp∗) has the same expression with different superscript.

Following the Nayak-Bush model of nearly complete contact, the non-contact ratio and

the average interfacial gap can be formulated as

1− A∗(p̄∗) =
1

2
√

3

√
αp
∫ ∞

p̄∗
(ξp∗ − p̄∗) [κp∗m (ξp∗)]−1 Φp(ξp∗)dξp∗, (5.48)

ḡ∗(p̄∗) =
4
√

3

15π
(αp)1/4(αh)−1/2

∫ ∞

p̄∗
(ξp∗ − p̄∗)5/2 [κp∗m (ξp∗)]−3/2 Φp(ξp∗)dξp∗. (5.49)

As ξp∗ is very large, then asymptotic expressions of Φp(ξp∗) and κp∗m (ξp∗) are [43]

Φp(ξp∗) ≈ 3
√

3√
2π

(ξp∗)2

αp
exp

[
−(ξp∗)2

2

]
, (5.50)

κp∗m (ξp∗) ≈ ξp∗√
αp
. (5.51)

Substituting the above asymptotic expressions into Eqs. (5.48) and (5.49), we can have

1− A∗(p̄∗) =
3

2
√

2π

∫ ∞

p̄∗
ξp∗ (ξp∗ − p̄∗) exp

[
−(ξp∗)2

2

]
dξp∗, (5.52)

ḡ∗(p̄∗) =
12

5
√

2(π)3/2
(αh)−1/2

∫ ∞

p̄∗
(ξp∗)1/2 (ξp∗ − p̄∗)5/2 exp

[
−(ξp∗)2

2

]
dξp∗. (5.53)

Using the change of variable, Eq. (5.52) can be simplified to [43]

1− A∗(p̄∗) =
3

4
erfc

(
p̄∗√

2

)
. (5.54)

5.4 The Persson Model

Persson and his co-workers successfully applied the Persson model [6] which he originally

developed for the sliding contact of a viscoelastic rubber against a rough rigid flat to many

aspects of tribology, i.e., seal [25–27, 35], rough interface lubrication [28–31], heat transfer

between rough interfaces [29], adhesive contact [32–35], rubber friction [36], etc. For the
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nominally flat rough surface contact, the Persson model yields a strikingly simple but still

qualitatively accurate form of the real area of contact [7] and the average interfacial gap [32].

Starting from the probability of the pressure at complete contact, Persson derived a diffu-

sion equation of the probability of the contact pressure. Due to the unusual mathematical format

and the mechanics symbols used in Persson’s original work [6], many researchers find it hard

to understand. Thus, an equivalent diffusion equation derived by Manners and Greenwood [7]

are used instead:
∂P

∂(mp
0)

=
1

2

∂2P

∂p2
, (5.55)

where the probability density of the contact pressure, p, is denoted by P . The Persson model is

referred to as a multi-scale model because it quantitatively describes the evolution of the PDF

of the contact pressure as more higher frequency scales are included. Let us use the fractal

surface associated with the PSD in Eq. (2.18) as an example. Then, for a fixed upper and lower

frequency limits: ks and kl, the expression of mp
0 is (see Eq. (2.56))

mp
0 = (E∗)2 1

8

(2π)3C

1−H
(
κ2−2H
s − κ2−2H

l

)
.

If kl is fixed, more higher frequency scales are included in the diffusion equation if the magni-

fication ratio: ξ = ks/kl becomes larger. Thus, mp
0 is a measure of the multi-scale nature of the

rough surface. As mp
0 →∞, it is a sign that all frequency scales are included in the multi-scale

model5.

The initial conditions of diffusion equation (Eq. (5.55)) when applied to the nominally

rough surface contact are proposed by Persson [6] as

P (∀p,mp
0 = 0) =δ(p− p̄), (5.56)

P (p = 0,∀mp
0) =0. (5.57)

5The statistical models, thus, can also be considered as multi-scale model since the moments depend on ks and
kl.
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where δ(•) is the Dirac function. The largest wavelength of current rough boundary is infinite,

i.e., kl = 0. According Eq. (2.56), as mp
0 → 0, then ks → kl = 0 and the rough boundary

turns to be a flat: z = 0. As a matter of fact, the contact pressure distribution is uniform:

p(x, y) = p̄ and this is exactly described by Eq. (5.56). In the meantime, another initial

condition, Eq. (5.57), implies that P (p,mp
0) is the probability density of the positive contact

pressure within the contact area, Ωc, only. However, the validity of this initial conditions are

still under debate [37–41].

Eq. (5.55), together with the initial conditions (Eqs. (5.56) and (5.57)), has a unique

solution [6, 7]

P (p,mp
0) =

1√
2πmp

0

{
exp

[
−(p− p̄)2

2mp
0

]
− exp

[
−(p+ p̄)2

2mp
0

]}
, (5.58)

which is the difference between a Gaussian distribution and its mirror about p = 0. The contact

ratio, A∗, can be evaluated by integrating Eq. (5.58) over p ∈ [0,∞] [7]:

1− A∗(p̄∗) = erfc
(
p̄∗√

2

)
, (5.59)

where erfc(•) is the complementary error function. The average interfacial gap, ḡ, can be

determined based on the elastic energy due to the applied traction [32], see Appendix E for

more detail.

As p̄ is increased to infinity, then the second exponential term in Eq. (5.58) is vanishing

and the PDF is degraded to the Gaussian distribution. In the Persson model, the complete

contact only occurs when p̄ reaches infinity, see Eq. (5.59). This is a sign that the contact

pressure at complete contact follows Gaussian distribution. Manners and Greenwood [7] found

the diffusion equation (Eq. (5.55)) is automatically satisfied if the contact pressure is Gaussian.

Therefore, the corresponding rough interface should not only be a self-affine fractal, but also

a Gaussian surface. Recalling the statistical model at nearly complete contact discussed in

Section 5.1, the contact pressure at complete contact is Gaussian process and the statistical

models proposed in Section 5.3 are only valid at the nearly complete contact. This similarity
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inspired the following exploration on the analogy between the Persson model and the statistical

models of nearly complete contact:

Comparing Eq. (5.54) with Eq. (5.59), the non-contact ratio of the statistical model is

exactly the same as the Persson model except for the different coefficients in front of erfc(•)

[44–46]. Since erfc(p̄∗ = 0) = 1, then A∗ in Eq. (5.59) satisfies A∗(p̄∗ = 0) = 0 while Eq.

(5.54) does not. It is clear from this asymptotic analysis that the Persson model is fundamentally

equivalent to the statistical model at nearly complete contact. The difference is caused by

the initial condition Eq. (5.57) which guarantees that the Persson model is also qualitatively

reasonable at the lower load range, specially A∗(p̄∗ = 0) = 0. However, this is achieved by

sacrificing the accuracy.

5.5 Numerical Results

In this section, the analytical models discussed in the previous sections, namely, (i) the adapted

GW model, (ii) the Nayak-Bush model, (iii) the Greenwood model of the nearly complete

contact (iv) the Ciavarella asymptotic model and (v) the Persson model are compared with

each other. For the relation between the contact ratio, A∗, and the contact pressure, p̄∗, all the

aforementioned models only rely on the band-width parameter, αp, except for the asymptotic

model where a roughness-independent relation is obtained. Thus, two representative rough

surfaces with αp = 2 and αp = 10 are used in the comparison. Similarly, the relations ḡ∗

to p̄∗ of the statistical models rely on αp and αh only, except for the asymptotic model where

the corresponding relation only relies on αh. However, the Persson model for the average

interfacial gap, see Appendix A., relies onH , ks and kl. Thus, the comparisons of the relation of

ḡ∗ to p̄∗ are only restricted to the statistical models of nearly complete contact. More numerical

results related to the Persson model of the average interfacial gap can be found in Chapter E.

The line and double integrals involved in the statistical models are determined by the Gauss

quadrature shown in Section. 4.4.

Fig. 5.9(a-b) show theA∗ to p̄∗ relation of all the analytical models associated with αp = 2

and αp = 10. When αp = 2, all the analytical models are almost identical at higher load range

when αp = 2, except for the adapted GW model, see Fig. 5.9(a). When αp = 10 (Fig.
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5.9(b)), the Ciavarella aymptotic model deviates from the rest of the statistical models. In both

cases (αp = 2 and 10), the Persson model overestimates (underestimates) the non-contact area

(contact area). The results of statistical models are dispersed with the lower bound and upper

bound predicted by the Greenwood model and the asymptotic model, respectively. Fig. 5.9(c-

d) shows ḡ∗ to p̄∗ relation of all the statistical models. Similar trends shown in Fig. 5.9(a-b)

are repeated in Fig. 5.9(c-d). The Ciavarella asymptotic model shows more dramatic deviation

from the rest of the statistical model. This may be explain by the fact that the asymptotic model

is only valid at a larger load.
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Figure 5.9: Plots of the relations A∗ to p̄∗ (a-b) and ḡ∗ to p̄∗ (c-d) determined by the statistical
models and the Persson model. αp = 2 (a, c) and αp = 10 (b, d). αh = 2.
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5.6 Conclusions

In this chapter, a general frame of the statistical model of nearly complete contact is given in

details. The rough surface contact at the nearly complete range is decomposed into a complete

contact and an infinite body embedded by numerous coplanar pressurized elliptical cracks. The

elliptical crack model, two mildly elliptical crack models and the penny-shaped crack model

are given. It is found that the elliptical crack model without crack surface contact is ill-defined.

Thus, only the penny-shaped crack model and two mildly elliptical crack model are valid.

Combining the crack models with the suitable PDFs, four statistical models are discussed.

The Persson model is briefly discussed and the analogy between the Persson model and the

statistical model of nearly complete contact is explored in detail. The analogy implies that the

accuracy of the Persson model at the range of nearly complete contact is sacrificed in order to

achieve the boundary condition A∗(p̄∗ → 0) = 0. The relation A∗ vs. p̄∗, as well as ḡ∗ vs. p̄∗,

predicted by the statistical models and the Persson model are given.
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Chapter 6

Statistical Models of Nearly Complete Adhesive Contact

In this chapter, the statistical models of nearly complete contact is extended to include the

adhesion between the rough surface and the rigid flat. Inspired by Chapter 5, the non-contact

area in the nearly complete adhesive contact can be divided into numerous (half) adhesive

“cracks”. The statistical modeling used in Chapter 5 is adopted in this chapter. One major

difference is the hysteresis at the adhesive crack level and the rough surface contact level.

6.1 Introduction

Adhesion is referred to as the attraction between the contact interfaces due to the surface energy.

The study of the adhesive contact received considerable attention in the 1970s resulting in two

classic models, namely, the JKR model [1] (after Johnson, Kendall and Roberts) and the DMT

model [2] (after Derjaguin, Muller and Toporov). These models were proposed for the adhesive

spherical contact. Tabor [3] successfully explained the difference between the JKR and DMT

model by a new parameter:

µ =

[
Rw2

(E∗)2z3
0

]1/3

,

which is commonly referred to as Tabor’s parameter. R is the effective radius of the contact

pair. w is the surface energy. z0 is the equilibrium separation of the atoms. The JKR model

is valid for the case with low µ, i.e., the sphere is stiff with a small radius and low surface

energy. The adhesive contacts associated with low µ are said to be in the JKR limit. On

the contrary, the adhesive contacts associated with high µ are considered in the DMT limit in

which the sphere is soft with large radius and high surface energy. After finding the analogy
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between the adhesive contact and the fracture mechanics [4], Maugis [5] proposed the Maugis-

Dugdale model resorting to the concepts of the fracture mechanics, e.g., Griffith crack [6],

Barenblatt cohesive crack [7], J-integral [8], etc. The Maugis-Dugdale model is capable of

transitioning from the DMT limit to the JKR limit as the Maugis parameter (similar to the

Tabor’s parameter) is monotonically increased from zero to infinity. Several improved adhesive

models have also been proposed [9–11]. A complete adhesion map of the spherical contact is

proposed by Johnson and Greenwood [12] and a detailed review of the historical development

of the adhesive asperity contact theory is done by Barthel [13].

The study of the rough surface adhesive starts from the pioneering work of Fuller and

Tabor [14] where the Hertzian contact theory in the GW model is replaced by the JKR model.

Similarly, the other statistical models combining the GW model with other adhesive asperity

contact models are proposed (e.g., the DMT model in [15]; Maugis-Dugdale model in [16,17];

double Hertzian model [9] in [18]). Since the roughness has the multi-scale structure, the

multi-scale model is also applied to study the effect of the multi-scale nature on the adhesive

contact [21–23]. For a better accuracy, the numerical models play a major role in exploring

the rough adhesive contact [24–29]. Recently, a contact mechanics challenge for the adhesive

rough surface contact was launched by Müser and Dapp [30]. The results of various analytical

models and numerical results are compared with each other in [31].

At early contact, the attractive force between the rough surfaces is hard to detect and has

a negligible effect on the contact status. This is because the adhesion between the surfaces are

progressively broken down by the roughness and only exist on the tips of the asperities [14,32].

However, the effect of adhesion would be dominant at the case of nearly complete contact since

the real area of contact is nearly identical to the nominal contact area [33, 34]. In this chapter,

the adhesive rough surface contact in the loading and unloading stage is modeled using the

statistical approach with the special focus on the stage of nearly complete contact.

In order to simplify the adhesive contact modeling at the nearly complete stage, two major

assumptions are introduced:

• Assumption 1. the short range repulsive stress within the contact area is replaced by the

hard wall repulsion, i.e., only the contact pressure is taken into consideration;
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• Assumption 2. the long range adhesive stress at the non-contact area is approximated by

a band of an adhesive zone close to the contact edge. The intensity of the adhesive stress,

σ0, is uniform within the adhesive zone and this is referred to as the Dugdale model [5].

Following the decomposition of the non-adhesive rough contact in Section 5.1, the adhe-

sive nearly complete contact is the superposition of a complete contact problem and an infinite

body embedded by the coplanar adhesive cracks on the z = 0 plane. Fig. 5.2 for the non-

adhesive problem can be reused to illustrate the decomposition of the coresponding adhesive

problem. According to the assumption 1 listed above, the contact pressure, p(x, y), within the

contact area does not altered significantly, except at the contact boundary, by the adhesive stress

at the non-contact area. The contact pressure at complete contact, p1(x, y), is exactly the same

as that in Eq. (5.1). Upper surface of each adhesive crack shown in Fig. 5.2(c) is subjected to

p2(x, y), as well as the uniform adhesive stress of the intensity σ0. It is expected that the area

of each non-contact region, Ai, and the corresponding trapped volume Vi are smaller than that

of the non-adhesive case. The non-contact ratio, A∗, and the average interfacial gap, ḡ, can be

formulated using the statistical approach by Eqs. (5.2) and (5.3). The detailed expressions of

A∗ and ḡ for each model will be given after various adhesive crack models are discussed.

6.2 Penny-Shaped Adhesive Crack Models

As it is mentioned in Chapter 5, nearly all the non-contact regions are elliptical. In order to

reduce the complexity of the presentation, the simpler penny-shaped adhesive crack is studied

first. Starting from the penny-shaped adhesive crack model, the elliptical adhesive crack model

is approximated in a same manner as that in the elliptical asperity contact model (Section 4.2)

and the non-adhesive elliptical crack model (Section 5.2). In this section, an analysis similar to

that applied by Maugis [5, 36] to the adhesive Hertzian contact is adjusted in the study of the

adhesive crack model. Thus, the adhesive crack model studied in this section is also referred to

as the Maugis-Dugdale model.

A schematic representation of a penny-shaped adhesive crack is shown in Fig. 6.1. The

upper and lower crack surfaces are subjected to an axisymmetric normal traction as follows
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Figure 6.1: Schematic representation of a penny-shaped cohesive crack embedded in an elastic
infinite body with uniform adhesive stress within the adhesive zone: r ∈ [c, b]. The crack
surfaces are subjected to p(r). Only the state of stresses acting on z > 0 part are shown. The
discontinuity of p(r) at r = c is due to the superposition of the uniform adhesive stress.

(κp1 = κp2 = κp):

p(r) =





p0 −
κp

2
r2 r ≤ c,

p0 − σ0 −
κp

2
r2 c < r ≤ b,

(6.1)

where a discontinuous point can be found at r = c due to the uniform adhesive (positive) stress

of the Dugdale model. As a matter of fact, the upper/lower crack opening displacement (COD),

g(r), is also discontinuous at r = c. The original Maugis-Dugdale model [5] of Hertzian

contact also suffers the discontinuity of the normal surface displacement outside the contact

area and it can be avoided by the double-Hertzian model proposed by Greenwood and Johnson

[9]. Similarly, the discontinuous COD may be fixed by using a continuous adhesive law.

The Dugdale model is the simplest one among all the adhesive laws [37] and is proposed

originally for the small scale yielding at the vicinity of the tip of the plane crack [38]. The

adhesive zone in the penny-shaped crack is an annular region with an outer and inner radius, b

and c, respectively (Fig. 6.1). A constant adhesive stress is distributed over the annular region.
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According to Barenblatt [5, 7, 36], this adhesive stress should be the theoretical stress:

σ0 = 1.03
w

z0

, (6.2)

if the Lennard-Jones (LJ) potential is used. w is the surface energy which is assumed to be

constant over the adhesive crack surfaces. z0 is the equilibrium separation of the atoms. Theo-

retically, the Young’s modulus can be determined based on the LJ potential [36]:

σ0 = 0.06E. (6.3)

The validity of using the Dugdale model to approximate the LJ potential is confirmed in the

spherical contact [20, 39], in the cylindrical contact [40] and in the slightly wavy plane contact

[41]. Additionally, Barthel [13] pointed out that the finer details of the adhesive law have a

minor effect on the adhesive contact system.

Next, a new group of dimensionless variables is defined below:

p∗ =p0/

[
π2(E∗)2w2κp

72

]1/5

, b∗ = b/

[
81πE∗w

16(κp)2

]1/5

,

m =c/b, G∗ = G/w. (6.4)

Similarly, the corresponding crack area, Ai, and the trapped volume, Vi, are normalized by

A∗i = Ai/

[
81πE∗w

16(κp)2

]2/5

, V ∗i = Vi/

[
3w

2κp

]
. (6.5)

A dimensionless variable similar to Tabor’s parameter [3] is defined below:

σ∗0 = σ0/

[
π2(E∗)2w2κp

72

]1/5

. (6.6)

As it will be shown in the rest of the section, the adhesive crack transits from the non-adhesive

limit to the JKR limit as σ∗0 varies monotonically from 0 to∞.

167



6.2.1 Non-Adhesive Limit

In the non-adhesive limit where w is vanishing, Tabor’s parameter, σ∗0 , approaches 0. Recalling

Eq. (5.25), the requirement of the zero singularity at the crack tip results in (see Eq. (5.25))

p0 =
1

3
κpb2. (6.7)

The crack area and the trapped volume are already developed in Eqs. (5.27) and (5.28) and are

rewritten below for the readers’ convenience:

Ai = 3π(κp)−1p0,

Vi =
16
√

3

45
π(p0)5/2.

Substituting the dimensionless groups in Eqs. (6.4) and (6.5) into the above three equations,

the dimensionless forms of p0, Ai and Vi are

p∗ =
3

2
(b∗)2, (6.8)

A∗i =
2

3
πp∗, (6.9)

V ∗i =
16
√

3

45
π(p∗)5/2. (6.10)

In the original Maugis-Dugdale model [5], as the Tabor’s parameter is decreased, the

asymptotic contact area and the contact load approach the DMT limit which is slightly different

from the Hertzian theory (non-adhesive limit). Similarly, the DMT limit of Ai and Vi may also

exist in the adhesive crack model. The derivation of the DMT limit in the Hertzian contact

[2, 5, 42] relies on the assumption that (i) the cohesion zone is extended to infinity and (ii) the

interfacial gap (outside the contact area) and the contact pressure (inside the contact area) are

the same as that in the Hertzian theory. Then the total load in the DMT limit is lower than that

in Hertzian contact theory by an amount equaling the adhesive force outside the contact area.

Since the adhesive zone only covers a finite region, only the second assumption can be applied
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to the adhesive crack problem and it results in the same Ai and Vi as that in the non-adhesive

limit. Therefore, the DMT limit is the same as the non-adhesive limit in the adhesive crack

model.

6.2.2 JKR Limit

In the adhesive contact, the concept of the JKR limit is referred to as the contact status where

the adhesive zone outside the contact area is vanishing [1]. In the fracture mechanics, the

edges of the adhesive contact in the JKR limit is equivalent to the Griffith crack [4, 6] where

the singularity of the normal stress is allowed. Due to the vanishing of the adhesion zone, the

normal traction on the crack surfaces is degraded into p(r) = p0 −
κp

2
r2 where r ≤ b and the

corresponding SIF is [33]:

KI =
2
√
b√
π

(p0 −
1

3
κpb2). (6.11)

The strain energy release rate of a Griffith crack is (only upper portion is taken into considera-

tion) [33]

G = w =
K2
I

2E∗
. (6.12)

Combining Eq. (6.11) and (6.12), the crack radius can be solved from the following nonlinear

equation [33]

p0 =
1

3
κpb2 +

√
πE∗w

2b
. (6.13)

Substituting the dimensionless group in Eq. (6.4) into Eq. (6.13), the governing equation1 of

the JKR limit is obtained:

p∗ =
3

2
(b∗)2 +

√
2

b∗
. (6.14)

The minimum value of p∗ is can be found from dp∗/db∗ = 0:

p∗min =
3

2

(√
2

6

)4/5

+
√

2

(√
2

6

)−1/5

≈ 2.3602. (6.15)

1Eq. (6.14) can be adapted into

3

2
t5 − p∗t+

√
2 = 0 where t =

√
b∗,

and solved by the polynomial solver for the radius b∗.
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Substituting the dimensionless group in Eq. (6.4), the dimensionless strain energy release rate,

G∗, in the JKR limit is

G∗ =
1

8
b∗
[
2p∗ − 3(b∗)2

]2
. (6.16)

For the fixed load condition (p∗ is constant) and p∗ > p∗min, the stability of the adhesive crack in

the JKR limit is governed by dG∗/db∗ ≤ 0, i.e.,

3(b∗)2

2
≤ p∗ ≤ 15(b∗)2

2
, (6.17)

and the adhesive crack becomes unstable if the above criterion is not satisfied.

The dimensionless crack area can be determined based on the definition after b∗ is solved

from Eq. (6.14):

A∗i = π(b∗)2. (6.18)

The interfacial gap, g(r), in the JKR limit can be determined in Case I as shown in the Appendix

B as:

g(r) =
4

πE∗

[
p0 −

1

9
κp(2r2 + b2)

]
. (6.19)

The trapped volume, Vi, is obtained after the integration of g(r) over the area of the open crack

in the polar coordinates:

Vi =
8

3E∗
b3

[
p0 −

1

5
κpb2

]
, (6.20)

and, after the normalization using the dimensionless group in Eq. (6.4), the dimensionless

trapped volume is:

V ∗i = 2π(b∗)3

[
p∗ − 9

10
(b∗)2

]
. (6.21)

6.2.3 Maugis-Dugdale Model

The Maugis-Dugdale model represents the adhesive crack varying between the JKR limit and

the non-adhesive limit. The adhesive crack schematically shown in Fig. 6.1 can be decomposed

into a adhesive crack in the JKR limit and a penny-shaped crack subjected to the uniform tensile

stress, σ0, within the adhesive zone, r ∈ [c, b]. According to the analytical solutions tabulated
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in Appendix D, The normal stress, σzz(r), COD, g(r), and the stress intensity factor (SIF), KI ,

can be obtained through the use of superposition:

KI =
2√
πb

[
p0b−

κp

3
b3 − σ0

√
b2 − c2

]
, (6.22)

σzz(r ≥ b) =
b

π

KI√
r2 − b2

− 2

π
(p0 −

κp

2
r2)tan−1

(
b√

r2 − b2

)
−

σ0

π
tan−1

(
r2 − 2b2 + c2

2
√
b2 − c2

√
r2 − b2

)
− bκp

π

√
r2 − b2 +

σ0

2
, (6.23)

g(r ≤ b) =
4

πE∗

{√
b2 − r2

[
p0 −

1

9
κp(2r2 + b2)

]
− σ0

∫ b

max(r,c)

√
t2 − c2

√
t2 − r2

dt

}
. (6.24)

The adhesive crack must satisfy:

• Condition 1. vanishing singularity at crack tip [7]: KI = 0. This requirement also

enables the continuity of the normal stress at the vicinity of the crack tip: σzz(r → b+) =

σzz(r → b−).

• Condition 2. crack equilibrium2:G = σ0g(c) = w.

Substituting Eqs. (6.22) and (6.24) into the above two conditions result in the following two

governing equations:

p0b−
1

3
κpb3 − σ0

√
b2 − c2 = 0, (6.26)

4

πE∗
σ0

{√
b2 − c2

[
p0 −

1

9
κp(2c2 + b2)

]
− σ0(b− c)

}
− w = 0. (6.27)

Note that Eqs. (6.26) and (6.27) are independent [5], i.e., the normal stress continuity can be

maintained even though the crack is unstable. This important observation will be used later.

2The same form has been derived by Maugis [5] using J-integral [8]. However, the original J-integral is only
valid for the plane crack. An alternative way is to starting from the definition of the surface energy [9]:

w =

∫ ∞

0

σzz(g)dg ≈
∫ max(g)

0

σzz(g)dg =

∫ c

a

σzz(r)
dg

dr
dr = σ0g(c), (6.25)

where σzz(r < c) = 0 and σzz(c ≤ r ≤ a) = σ0. Here we assume max (uz) could be treated as infinitely large
comparing with the equilibrium separation, z0.
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Substituting the dimensionless group in Eqs. (6.4) and (6.6) into Eqs. (6.26) and (6.27),

the normalized forms of two governing equations are:

3

2
(b∗)2 + σ∗0

√
1−m2 − p∗ = 0, (6.28)

1

2

√
1−m2(2m2 + 1)(b∗)3 −

[
p∗
√

1−m2 − (1−m)σ∗0

]
b∗ +

1

σ∗0
= 0. (6.29)

Similar to the JKR limit, the governing equations of the Maugis-Dugdale model are non-linear,

too. For a given p∗, the unknowns b∗ and m are dependent on Tabor’s parameter, σ∗0 . Generally,

b∗ and m in the above set of dimensionless equations have the maximum of two real roots.

For a fixed load condition (i.e., p∗ is constant), the stability of the adhesive crack in the

static equilibrium can be determined based on the Griffith’s crack theory [6], i.e., stable crack

for ∂G∗/∂b∗ ≤ 0 and unstable crack for ∂G∗/∂b∗ > 0 where G∗ can be obtained from Eq.

(6.29):

G∗ = σ∗0

[
p∗
√

1−m2 − (1−m)σ∗0

]
b∗ − 1

2
σ∗0
√

1−m2(2m2 + 1)(b∗)3, (6.30)

and

(
∂G∗

∂b∗

) ∣∣∣∣
p∗

=σ∗0

[
p∗
√

1−m2 − (1−m)σ∗0

]
+ σ∗0b

∗
[
σ∗0 − p∗

m√
1−m2

]
∂m

∂b∗
−

3

2
σ∗0
√

1−m2(2m2 + 1)(b∗)2 +
1

2
σ∗0

m√
1−m2

∂m

∂b∗
(2m2 + 1)(b∗)3 −

2σ∗0m
√

1−m2(b∗)3∂m

∂b∗
, (6.31)

where the partial derivatives
∂m

∂b∗
is directly obtained from Eq. (6.28)

∂m

∂b∗
=

3b∗

m(σ∗0)2

[
p∗ − 3

2
(b∗)2

]
. (6.32)

The dimensionless crack area, A∗i , follows the same form in the JKR limit, see Eq. (6.18).

The trapped volume is determined based on the interfacial gap, g(r), in Eq. (6.24). The closed

form evaluation of the last integral in Eq. (6.24) can be found in Eqs. (D.12) and (D.13) in
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Appendix D. Therefore, the simplest form of the trapped volume is formulated below:

Vi =
8

3E∗
b3

[
p0 −

1

5
κpb2

]
− 4σ0b

3

3πE∗

[√
1−m2 +m3F3(m)

]
, (6.33)

where

F3(m) =m+m−1 −
√
m−2 − 1− 2 + 3

∫ 1

m

k−4 [E(ϕ2, k)− E(k)− F(ϕ2, k) + K(k)] dk +

3

∫ 1

m

k−2 [F(ϕ2, k)−K(k)] dk. (6.34)

The calculation of Vi involves the integral of the incomplete/complete elliptic integral with

respect to the modulus. Very few closed-form solution can be found in the past literature [43].

Therefore, the Gauss quadrature is used.

Consequently, the dimensionless trapped volume, V ∗i , is

V ∗i = 2π(b∗)3

[
p∗ − 9

10
(b∗)2

]
− (b∗)2σ∗0

[√
1−m2 +m3F3(m)

]
. (6.35)

The first term on the right hand side of Eq. (6.35) is the same as the dimensionless volume, V ∗i ,

in the JKR limit, see Eq. (6.10). The second term is related to the loss of volume due to the

adhesive traction.

6.2.4 Full Adhesion Limit: c = 0

The Maugis-Dugdale transition discussed above implicitly assumes that the adhesion zone is

restricted within the annulus: 0 < c ≤ r ≤ b [44, 45]. As c→ 0 (m→ 0+), the adhesive zone

is extended to the entire crack surface and it is referred to as the full adhesion limit. This limit

can only occur in the adhesive crack since the crack radius is finite and has nothing to do with

the DMT limit because Tabor’s parameter, σ∗0 , is not necessarily vanishing. If the continuity of

the normal stress is still held, then the dimensionless crack size, b∗, can be directly solved from

Eq. (6.28):

b∗ =

√
2

3
(p∗ − σ∗0) =

[
2

3
(p∗ − σ∗0)

]2/3

, (6.36)
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where p∗ ≥ 1. When σ∗0 is small, the full adhesion limit approaches the non-adhesive limit

shown in Eq. (6.8).

G∗ can be obtained by substituting m = 0 and Eq. (6.36) into Eq. (6.30):

G∗ = σ∗0

[
2

3
(p∗ − σ∗0)

]3/2

. (6.37)

Since ∂G∗/∂b∗ = 3σ∗0(b∗)2 > 0, the static equilibrium of the cohesive crack cannot maintained

in the full adhesion limit. Therefore, the adhesive crack in the full adhesion limit is in closure

(G∗ > 1), in propagation (G∗ < 1) and in the static equilibrium (G∗ = 1). As it is mentioned

earlier that Eqs. (6.28) and (6.29) are coupled, the unstable crack would not affect condition

zero KI represented by Eq. (6.36).

6.3 Penny-Shaped Adhesive Crack Models - Numerical Results

The solutions, b∗ andm, solved from the system of equations, Eqs. (6.28) and (6.29), and in the

full cohesion limit are illustrated in Figs. 6.2 and 6.3 associated with different p∗ and Tabor’s

parameter, σ∗0 . The loading stage of the adhesive crack is related to the loading stage of the

rough surface contact where the dimensionless radius of adhesive crack, b∗, and the dimension-

less pressure, p∗, monotonically decreases. Similarly, b∗ and p∗ increases monotonically in the

unloading stage of the adhesive crack. Only one loading-unloading cycle are illustrated in Figs.

6.2 and 6.3. For the sake of clarity, Figs. 6.2(a) and 6.3(a) associated with σ∗0 = 5 are used

as the representative results of the evolution of b∗ and m since all the important branches are

visible. The rest of the figures associated with lower values of σ∗0 will be explained later.

The entire loading stage (marked by the solid line with an arrow) can be divided into four

branches, namely, A-G, G-B, B-C and C-D. In the A-G branch, non-negative roots of Maugis-

Dugdale model (b∗ and m) are unique and decreases monotonically with the decreasing of p∗.

The A-G branch is stable since ∂G∗/∂b∗ ≤ 0 (see also the legend in Figs. 6.2(a) and 6.3(a)).

When p∗ < p∗G, the Maugis-Dugdale model has dual (non-negative) roots, namely, the branches

G-B and E-B. The loading stage follows branch G-B since (1) it is a stable branch and (2) b∗, as

well as m, is continuous at point G. At point B, a negative perturbation of p∗ at p∗ = p∗B results
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in the snap-in, i.e., an instantaneous closure of the adhesive crack within the B-C branch where

p∗ is kept constant. Within the C-D branch, the adhesive crack remains closed, see Fig. 6.2(a),

and the adhesive zone is instantaneously extended to the entire crack surface, see Fig. 6.3(a).

The entire unloading stage can be divided into four branches, namely, D-E, E-F, F-G and

G-A. The adhesive crack remains closed within the D-E branch until point E is reached where

the adhesive crack is nucleated. The corresponding p∗ at E can be solved analytically from the

full cohesion limit:

p∗E = σ∗0. (6.38)

Along the E-F branch, the adhesive crack is propagating (G∗ < 1) with m = 0 until point F is

reached. F is the intersection of the full cohesion limit and the unstable branch of the Maugis-

Dugdale transition. Therefore, the root, p∗ = p∗F , results in G∗ = 1 in the full cohesion limit

and p∗F is available in the closed-form:

p∗F = σ∗0 +
3

2
(σ∗0)−2/3. (6.39)

Because point F is instable, the pull-off occurs, i.e., the adhesive crack is propagating instan-

taneously where p∗ is kept constant within the branch F-G. This instable propagation stops at

the next stable stage at point G of the Maugis-Dugdale model. After point G (p∗ > p∗G), the

unloading and loading stages are reversible since it is in the static equilibrium. Consequently,

the hysteresis/energy dissipation of the adhesive crack associated with σ∗0 = 5 occurs within

p∗ ∈ [p∗B, p
∗
F ].

When σ∗0 = 2, the unstable points B and F are approaching to each other in Fig. 6.2(b).

At the unstable point B, an instantaneous jump onto the full adhesion limit (instead of a snap-

in) occurs. Following the C-E branch, the crack is completely closed when p∗ < p∗E . The

unloading stage follows the same branches in Fig. 6.2(a) and 6.3(a). It is obvious that the

energy dissipation only occurs within a smaller range, see Fig. 6.2(b). The decrease of the

hysteresis range is confirmed in the rest of the figures in Fig. 6.2 where σ∗0 is even smaller. This

trend shows that Tabor’s parameter, σ∗0 , is correlated with the hysteresis/energy dissipation of

the single adhesive crack.
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Figure 6.4: The dual roots of the Maugis-Dugdale transition when p∗ = p∗F . The dashed curve
is associated with b∗. The colored figure is available online.

When σ∗0 = 1, the instantaneous jump at points B and F can still be visualized in the

detailed plot in Fig. 6.2(c). However, as σ∗0 is decreased to 0.5, the points B, C, F and G are

visually coincident, see Fig. 6.2(d). To investigate the validity of this observation, a program is

developed to find the possible dual (non-negative) roots at points F and G (i.e., b∗F , b
∗
G,mF and

mG) at p∗ = p∗F and the corresponding results are in Fig. 6.4. Since the full cohesion limit is

applied at F, see Fig. 6.3, then mF = 0. The absolute difference, |b∗F − b∗G| and mG are plotted

against σ∗0 . As σ∗0 decreases from 10 to 0.01, the dual roots, b∗F and b∗G, as well as mF and

mF , still exist with a decreasing difference. It is expected that the difference of the dual roots

becomes zero when σ∗0 → 0 (the rigorous proof is currently not available). According to Rolle’s

theorem, the unstable point B exists (e.g., b∗B ∈ [b∗F , b
∗
G] and mB ∈ [mF ,mG]). Therefore, the

instantaneous jump always occurs at point B regardless of σ∗0 > 0. As the surface energy w

approaches zero, it is expected, from the trend observed in Figs. 6.2, that (b∗, p∗) at B, C, F

and G are infinite and the reversible portion of the Mangis-Dugdale model is vanishing. This

irregular phenomenon is due to the fact that b∗ and p∗ are normalized by w. If the dimensional

variables are used, the loading-unloading cycle should be reversible with points, B, C, F and G,

at (0, 0).
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Important observations of the hysteresis loading-unloading loop of the adhesive crack are

summarized blow:

Loading stage:

1. the snap-in (instantaneous closure) of the adhesive crack occurs when p∗ = min(p∗B, σ
∗
0);

2. the instantaneous jump onto the full cohesion limit occurs if p∗ = p∗c and p∗B > p∗E .

Unloading stage:

1. the adhesive crack has hysteresis loading-unloading cycle as long as the unloading stage

starts at p∗ < p∗B;

2. the unloading and loading stages are reversible within [p∗F ,∞] after the instantaneous

jump at p∗ = p∗F from the full cohesion limit to the Maugis-Dugdale transition.

It should be noticed that the unloading stages, illustrated in Figs. 6.2 and 6.3, all start from

p∗ = 0. If the adhesive crack is unloaded at a positive minimum, p∗D > 0, we may have the

following three possibilities:

• p∗D < p∗E: the adhesive crack is unloaded from closure and the unloading stage follows

the same path in Fig. 6.2 (i.e., D-E-F-G-A);

• p∗E < p∗D < p∗B: the cohesive crack is unloaded from a positive size in the cohesion limit

and follows by the unloading path: D-F-G-A.

• p∗D ≥ p∗B: the adhesive crack is unloaded with a finite crack size followed by a reversible

unloading stage, i.e., loading-unloading cycle is no longer hysteresis .

After the removal of the redundant roots in Fig. 6.2, b∗ vs. p∗ curves associated with

different σ∗0 , as well as the non-adhesive (DMT) limit and the JKR limit, are illustrated in Fig.

6.5(a) (loading stage) and Fig. 6.5(b) (unloading stage). Note that the unloading stage starts

after p∗ reaches zero. It is clear that the Maugis-Dugdale model has the tendency to approach

the non-adhesive (DMT) limit and the JKR limit as σ∗0 → 0 and σ∗0 →∞.
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The corresponding A∗ vs. p∗ curves, as well as the asymptotic solutions when σ∗0 → 0 and

σ∗0 → ∞, are plotted in Fig. 6.6. As σ∗0 increases, A∗ vs. p∗ transits from the non-adhesive

(DMT) limit to the JKR limit. Similar transition can be observed for V ∗i vs. p∗ in Fig. 6.7.
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6.4 Elliptical Crack

In the previous chapters, an approximation to the Hertzian elliptical contact based on the

Hertzian circular theory is demonstrated. For a mildly elliptical asperity (κh1 is close to κh2),

two Hertzian mildly elliptical contact models are proposed by replacing the curvature, κh, in

the Hertzian circular contact model with the mean curvature, κhm, and the geometric curvature,

κhg , respectively. Similarly, this approximation is applied to the elliptical non-adhesive crack.

For an elliptical adhesive crack, two mildly elliptical adhesive crack models are proposed

based on the penny-shaped adhesive model. The curvature, κp, used in Eqs. 6.26 and 6.27,

is replaced by the geometric curvature, κpg =
√
κp1κ

p
2, and the mean curvature, κpm = (κp1 +

κp2)/2, respectively. Following Section 6.2, the dimensional b, Ai and Vi associated with the

geometric/mean curvature can be numerically solved in a same manner.

6.5 Multi-Cracks Contact Model

Following the non-adhesive statistical models discussed in Section 5.3, totally four adhesive

statistical models of nearly complete contact can be developed depending on the types of ad-

hesive crack models and the PDFs which are tabulated in Table. 6.1. For each adhesive rough
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contact model, a corresponding non-adhesive model can be found in the previous chapter. Ex-

cept for the forms of Ai and Vi, the formulation of the contact ratio, A∗, and the dimensionless

average interfacial gap, ḡ∗, are exactly the same.

Table 6.1: Four adhesive statistical models with different crack models and PDFs.
Models Adhesive crack model PDF

Adapted GW model Penny-shaped model Φp(ξp∗)
Nayak-Bush model Mildly elliptical model (mean curvature) Φp(ξp∗, κp∗m )
Greenwood model Mildly elliptical model (geometric curvature) Φp(ξp∗, κp∗g )

Asymptotic model Penny-shaped model Φp(ξp∗)

For the sake of simplicity, only the adapted GW model are developed below.

6.5.1 Adapted GW Model

The statistical model of the adhesive rough contact is built upon the non-adhesive one discussed

in Chapter 5.3.1 and the adapted GW model with adhesion is:

1− A∗(p̄∗) = ηp
∫ ∞

p̄∗
Ai(ξ

p − p̄, κp, σ0

E∗
)Φp(ξp∗)dξp∗, (6.40)

ḡ∗(p̄∗) =
1√
mh

0

ηp
∫ ∞

p̄∗
Vi(ξ

p − p̄, κp, σ0

E∗
)Φp(ξp∗)dξp∗. (6.41)

From the governing equations, Eqs. (6.4) and (6.5), the unknowns, b andm, are only dependent

on (ξp− p̄, κp, σ0/E
∗) and so doAi and Vi. The asperity density, ηp, and the constant curvature,

κp, can be calculated based on McCool’s solution in Eqs. (2.43) and (2.45) with a different

superscript “p”:

ηp =
1

6
√

3π

mp
4

mp
2

, (6.42)

κp =
8

3

(
π

mp
4

)−1/2

. (6.43)

The only difference between the adhesive and non-adhesive models is the single crack area

and the corresponding trapped volume. In the previous section, the crack area and the trapped
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volume are derived in the following dimensionless forms:

A∗i = Ai/

[
81πE∗w

16(κp)2

]2/5

, V ∗i = Vi/

(
3w

2κp

)
.

Note that the adhesive crack model is driven by the dimensionless pressure, p∗ = (ξp −

p̄)/
[
π2(E∗)2w2κp

72

]1/5

, see Eq. (6.4). This normalization is different from that used in the non-

adhesive contact model where ξp∗ = ξp/
√
mp

0. A transformation between p∗ and ξp∗ is found

below:

p∗ = (ξp∗ − p̄∗)C, (6.44)

where the constant C is

C =
√
mp

0/

[
π2(E∗)2w2κp

72

]1/5

. (6.45)

Consequently, the non-adhesive formulations shown above can be easily adapted to the follow-

ing general forms when the dimensionless forms of Ai and Vi are used:

1− A∗(p̄∗) = C1

∫ ∞

p̄∗
A∗i (σ

∗
0, p
∗)Φp(ξp∗)dξp∗, (6.46)

ḡ∗(p̄∗) = C2

∫ ∞

p̄∗
V ∗i (σ∗0, p

∗)Φp(ξp∗)dξp∗, (6.47)

where

C1 = ηp
[

81πE∗w

16(κp)2

]2/5

, (6.48)

C2 =
ηp√
mh

0

3w

2κp
. (6.49)

Due to the snap-in of the adhesive cracks and the hysteresis occurs in the unloading stage,

the above general form should be rewritten in the loading and unloading stage, separately. A

similar adhesive model in the JKR limit including the loading-unloading hysteresis is recently

proposed by Ciavarella et al. [34].

Loading stage

In the loading stage, A∗i and V ∗i are zero due to the snap-in of the adhesive crack when p∗ ≤
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p∗L = min(p∗B, σ
∗
0) (for example, Fig. 6.2(a)). Consequently, p∗L should be used as the lower

bound of the integrals in the statistical model since A∗i and V ∗i are zero when p∗ < p∗L. As a

matter of fact, final forms of 1− A∗ and ḡ∗ in the loading stage are

1− A∗(p̄∗) = C1

∫ ∞

p∗L/C+p̄∗
A∗i (σ

∗
0, p
∗)Φp(ξp∗)dξp∗, (6.50)

ḡ∗(p̄∗) = C2

∫ ∞

p∗L/C+p̄∗
V ∗i (σ∗0, p

∗)Φp(ξp∗)dξp∗, (6.51)

where the lower bound of ξp∗ is determined based on Eq. (6.44).

Once the maximum load p̄∗ = p̄∗max is reached at the end of the loading stage, each adhesive

crack enters the unloading stage with different p∗. Then, the non-contact ratio in Eq. (6.46) can

be rewritten as:

1−A∗(p̄∗max) = C1




∫ p∗B/C+p̄∗max

p̄∗max

A∗i (σ
∗
0, p
∗)Φp(ξp∗)dξp∗

︸ ︷︷ ︸
irreversible portion

+

∫ ∞

p∗B/C+p̄∗max

A∗i (σ
∗
0, p
∗)Φp(ξp∗)dξp∗

︸ ︷︷ ︸
reversible portion


 .

(6.52)

A similar formulation can also be obtained for ḡ∗. The cracks involved in the first integral of

Eq. (6.52) are closed after snap-in. Therefore, the first integral is zero. Similarly, the remainder

of the cracks (in the second integral of Eq. (6.52)) are still opened and governed by the Maugis-

Dugdale model. The reason why the first and second term on the right hand side of Eq. (6.52)

are named the “irreversible portion” and the “reversible portion”, respectively, is given below.

Unloading stage

In the unloading stage, the dimensionless average contact pressure, p̄∗, monotonically decreases

from p̄∗max. According to the summary of the observation generalized in the end of Section 6.3,

the cracks unloaded from the close status and open status have the irreversible and reversible

loading-unloading cycle, respectively. This is the main reason that the first and second integral

are referred to as the “irreversible portion” and “reversible portion”.

In order to track the reversible cracks in the unloading stage, the integral limits of the

corresponding integral are the same as that in the “reversible portion” in Eq. (6.52). The rest

of the adhesive cracks are all irreversible. Then, the corresponding non-contact ratio in the
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unloading stage becomes

1− A∗(p̄∗) = C1

[∫ p∗B/C+p̄∗max

p∗E/C+p̄∗
A∗i (σ

∗
0, p
∗)Φp(ξp∗)dξp∗ +

∫ ∞

p∗B/C+p̄∗max

A∗i (σ
∗
0, p
∗)Φp(ξp∗)dξp∗

]
.

(6.53)

A∗i in the first integral of Eq. (6.53) remains zero when p∗ < p∗E and is solved by the Maugis-

Dugdale model when p∗ > p∗F . A∗i in the second integral should be solved by the Maugis-

Dugdale model alone. Since part of the cracks in the first integrals are either in closure or in

the full cohesion limit and the corresponding value of A∗i in the unloading stage is lower than

that in the loading stage, see Figs. 6.2 and 6.6. This is a clear sign that the non-contact ratio,

1− A∗, in the unloading stage is less than that in the loading stage.

Similarly, the average interfacial gap in the unloading stage can be written as:

ḡ∗(p̄∗) = C2

[∫ p∗B/C+p̄∗max

p∗E/C+p̄∗
V ∗i (σ∗0, p

∗)Φp(ξp∗)dξp∗ +

∫ ∞

p∗B/C+p̄∗max

V ∗i (σ∗0, p
∗)Φp(ξp∗)dξp∗

]
.

(6.54)

Up till now, the adhesive contact model is built in the loading and unloading stage based

on the adapted GW model in the non-adhesive limit. However, it is not clear which inputs have

the major effect on the results, namely, A∗ and ḡ∗ for a given dimensionless pressure, p̄∗. In the

rest of the section, the parameters used in the above statistical models, namely, σ∗0 , C, C1, C2,

are reorganized and the multi-scale nature of the Tabor’s parameter, σ∗0 , is also explored.

In order to simplify the formulation, three dimensionless moments of the “pressure sur-

face” are defined:

mp∗
i = mp

i /(E
∗)2, i = 0, 2, 4. (6.55)

As shown in Section 6.3, σ∗0 is an indicator showing (i) how hysteresis the loading-

unloading cycle of the adhesive crack is and (ii) the status of adhesive contact towards the

non-adhesive limit and JKR limit. At the first glance, σ∗0 may only be used for the single crack

just like the Tabor’s parameter for the single asperity contact. However, κp (Eq. (6.43)) in σ∗0

is a multi-scale parameter since (i) mp
4 is related to the rough surface and (ii) it depends on
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the scales included in the roughness (Eq. (2.58)). Thus, σ∗0 is also dependent of the roughness

and the same conclusion is also drawn by Ciavarella [33] using the statistical model with the

adhesive crack in the JKR limit.

Substituting κp (Eq. (6.43)) into the dimensionless σ∗0 in Eq. (6.4), we can get the follow-

ing form

σ∗0 =

(
3√
π

)3/5

(z0)−2/5
( σ0

E∗

)3/5

(mp∗
4 )−1/10. (6.56)

The transformation scale, C, (Eq. (6.45)) can be expanded similarly:

C =

(
3√
π

)3/5

(z0)−2/5
( σ0

E∗

)−2/5
√
mp∗

0 (mp∗
4 )−1/10. (6.57)

Substituting Eq. (6.57), ηp (the form is similar to Eq. (2.43) with different superscript: p) and

κp (Eq. (6.43)), then the constant, C1, in front of the integral of A∗ becomes

C1 =

√
3

8π
(6π2)2/5(z0)2/5

( σ0

E∗

)2/5

(mp∗
2 )−1(mp∗

4 )3/5. (6.58)

Similarly, C2 is reformulated as:

C2 =

√
3

32
√
π
z0

( σ0

E∗

)
(mp∗

2 )−1
√
mp∗

4 m
h
0 . (6.59)

Now it is clear that, for a given dimensionless pressure, p̄∗, (i) the non-contact ratio 1 − A∗

depends on mp∗
0 , mp∗

2 , mp∗
4 , z0 and

σ0

E∗
and (ii) the average interfacial gap ḡ∗ depends on mp∗

0 ,

mp∗
2 , mp∗

4 , mh∗
0 , z0 and

σ0

E∗
. In the non-adhesive case, 1− A∗ only depends on αp and ḡ∗ on αp

and αh.

6.6 Numerical Results

In this section, the adhesive rough surface contact between a Gaussian surface and a rigid flat

is studied using the statistical model proposed in Section 6.5.1. The moments of the Gaussian

surfaces are given in Table. 6.2 where αh = αp = 2. Ideally, the theoretical strength is only

6% of the Young’s modulus, E, according to the LJ potential, see Eq. (6.3). In the practice,
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however, the theoretical strength is less then 6% of the Young’s modulus because of the defects

and roughness on the interfaces. For the most of the engineering material, E∗ ≈ E. Three

different values of
σ0

E∗
are used, namely, 1/20, 1/50 and 1/100. The adhesive contact status in

the non-adhesive limit (σ∗0 → 0), JKR limit (σ∗0 →∞) are also explored.

Table 6.2: Moments of rough surface

mh
0 [m2] mh

2 mh
4 [1/m2] mh

6 mp∗
0 mp∗

2 mp∗
4

8.35× 10−19 2× 10−4 9.58× 1010 6.67× 1025 1× 10−4 3.19× 1010 2× 1025
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Figure 6.8: One loading-unloading cycle of (a) the non-contact ratio, 1−A∗, and (b) the average
interfacial gap, ḡ∗, associated with different p̄∗max = 2, 3 and 4. The colored figure is available
online.

Consider a fixed σ0/E
∗ = 1/20. If the adhesive rough contact is unloaded at different

maximum p̄∗ at the loading stage: p∗max = 2, 3, 4, the loading portions of 1 − A∗ and ḡ∗

are partially overlapped, see Fig. 6.8. The unloading portions of associated with p̄∗max = 4

are different from the rest and it consists two distinct regions. At larger p̄∗, the non-contact

ratio, in Fig. 6.8(a), increases relatively slow due to the fact that the reversible portion in Eq.

(6.53) are negligible. A large portion of cracks are still in closure or in the full adhesion limit

where the non-contact area is lower than that of the Maugis-Dugdale regime. As more and
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more cohesive cracks are nucleated at lower p̄∗, the increase of non-contact ratio 1 − A∗ is

accelerated. The above reasoning can be used to explained the similar phenomenon for ḡ∗ in

Fig. 6.8(b). No accelerated unloading portions are observed associated with p̄∗max = 2 and 3

because the reduction of p̄∗ from p̄∗max is not sufficient. We can also notice that all loading-

unloading curves of adhesive rough contact lie under the non-adhesive limit. This is a sign that

the statistical model proposed in Section 6.5.1 reasonably captures the increase of contact ratio

due to the adhesion.
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Figure 6.9: (a) The non-contact ratio, 1− A∗, and the average interfacial gap, ḡ∗, of the rough
surface #1 associated with various σ0/E

∗ = 1/20, 1/50, 1/100 in the loading stage. Black
dashed line indicates non-adhesive limit results. Dashed line with other color represents the
results in the JKR limit.

If the unloading stage starts from p̄∗ = p̄∗ = 4 and σ0/E
∗ decreases from 1/20 to 1/100,

we should expect to see the corresponding non-contact ratio, 1−A∗, and the average interfacial

gap, ḡ∗, predicted by the adhesive statistical model should gradually approach the non-adhesive

limit results due to the reduction of the surface energy. This is confirmed in Fig. 6.9 for loading

stage and Fig. 6.10 for unloading stage. For each value of σ0/E
∗, the corresponding 1 − A∗

and ḡ∗ in the JKR limit are also given in Figs. 6.9 and 6.10. The results in the JKR limit are

calculated based on the work of Ciavarella et al. [48]. Contrary to the non-adhesive limit, the

results of statistical model gradually deviate from the JKR limit. Additionally, we may notice

that the results of unloading stage are more dramatically affected by the changing of σ0/E
∗.
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Figure 6.10: (a) The non-contact ratio, 1−A∗, and the average interfacial gap, ḡ∗, of the rough
surface #1 associated with various σ0/E

∗ = 1/20, 1/50, 1/100 in the unloading stage. Black
dashed line indicates non-adhesive limit results. Dashed line with other color represents the
results in the JKR limit.

Finally, the hysteresis loop of the adhesive rough surface contact in one loading-unloading

cycle associated with different σ0/E
∗ are plotted in Fig. 6.11. The dissipated energy in one

loading-unloading cycle can be estimated by the subtraction of the area underneath the loading

(solid lien) and unloading (dashed line) stages in Fig. 6.11(b). It is reasonable to see that, as

σ0/E
∗ decreases, the dissipated energy becomes nearly vanishing.

6.7 Conclusions

In this chapter, the single penny-shaped adhesive crack is modeled first similar to the Maugis-

Dugdale model in the adhesive Hertzian contact. The corresponding Tabor’s parameter, σ∗0 ,

which enables the adhesive crack to transit from the non-adhesive (DMT) limit to the JKR

limit as σ∗0 is varied from 0 to ∞. Unlike the adhesive Hertzian contact, the cohesion may

extended to the entire crack surface and it is referred to as the full cohesion limit. The hysteresis

loop of the crack area and the trapped volume in the loading-unloading cycle of the adhesive

cycle is studied. It is found that a strong hysteresis loop is associated with a high Tabor’s

parameter, σ∗0 . The elliptic crack can be approximated by the penny-shaped crack using either

the geometric curvature or the mean curvature. The adhesive adapted GW model at nearly

complete contact is developed using the penny-shaped adhesive crack to predict the non-contact
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Figure 6.11: One loading-unloading cycle of (a) the non-contact ratio, 1 − A∗, and the
average interfacial gap, ḡ∗, of the rough surface #1 associated with various σ0/E

∗ =
1/20, 1/50, 1/100.

ratio and the average interfacial gap. For the fixed equilibrium separation of atoms, z0, and

bandwidth parameter, αh and αp, the numerical results shows that the stickiness of the rough

surface is governed by σ0/E
∗, mp∗

0 and mp∗
4 . Either one of the parameters: p∗0 and C can be

used to predict the stickiness of the rough surface contact.
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Chapter 7

Comparison of the Statistical Models with the Numerical Models

In this chapter, a comprehensive comparison is performed between (1) the statistical models

of early contact, (2) the statistical models of nearly complete contact, (3) the Persson model

and (4) the BEM where the adhesion is not included. Similar comparisons have been done by

many researchers, e.g., Hyun et al. [1], Campañá and Müser [2], Jackson and Green et al. [3],

Putignano et al. [4], Yastrebov et al. [5,6], etc. However, the roughness either generated by the

algorithm (e.g., [1]) or measured by the profilometry (e.g., [3]) cannot guarantee that the rough

surface is isotropic, Gaussian and fractal at the same time. One such rough surface generation

algorithm is developed in Section 7.1. This algorithm is further tested in Section 7.2 to show

the Gaussianity and the isotropy of the generated rough surfaces. After a brief discussion of

the inputs (e.g., the loading history, roughness data and the statistical parameters) of the BEM,

statistical models and the Persson model in Section 7.3, the comparisons between the predicted

values of A∗ and ḡ∗ are given in Section 7.4. The discussion and the conclusion are given in

Section 7.5 and 7.6.

7.1 Rough Surface Generation

In many rough surface contact models, e.g., the finite element (FE) model [1], the boundary

element (BE) model [7] and Jackson-Streator model [8], the contact interface is modeled as

rough boundary. The rough surface is either measured by the profilometer or created by the

computer simulation. Many rough surface algorithms are proposed in the past literatures (e.g.,

Weierstrass-Mandelbrot (WM) function [9], successive random midpoint [10], Hu and Ton-

der [11] and Wu [12]). The researchers prefer to generate the rough surfaces by the computer
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simulation since the statistical parameters of the generated rough surfaces are controllable. An-

other reason is that it can quickly generate multiple surfaces which are statistically similar,

i.e., the corresponding moments, mh
n, are the same. Since rough surfaces are a random pro-

cess, the statistically similar surfaces have an infinite number of realizations. For a controlled

manufacturing process, the engineering surfaces of the same parts of the products may also be

statistically similar.

In this section, an algorithm of generating rough surfaces, recently developed by Xu and

Jackson [15], is introduced in detail. This algorithm can guarantee that the generated surfaces

are approximately isotropic, Gaussian and fractal. This is motivated by the objective of this

chapter to compare different analytical models which are built upon certain restrictions of rough

surfaces. The statistical models need the rough surface to be isotropic and Gaussian. The

Persson model requires the surface to be fractal. The new approach is developed based on the

algorithms proposed by Hu and Tonder [11] and Wu [12].

The fractal and the isotropy can be satisfied if we assume that the rough surface has the

axisymmetric power spectrum density (PSD) shown in Eq. (2.18) where kl = kr. The values of

ks and kl in (2.18) are directly assigned. The constant, C, in the PSD represents the amplitude

of the roughness and can be indirectly assigned by prescribing mh
2 (see Eq. (2.22)):

C =
4(1−H)mh

2

(2π)3
[
k2−2H
s − k2−2H

l

] . (7.1)

In order to guarantee that h(x, y) is Gaussian, the rough surface is initialized by a Gaussian sur-

face, h0(x, y), generated by the Gaussian generator. Then, through the following convolution:

h(x, y) =

∫ ∞

−∞

∫ ∞

−∞
f(x− x′, y − y′)h0(x′, y′)dx′dy′, (7.2)

and h(x, y) should also be Gaussian [11]. Applying the Fourier transform in Eqs. (2.1) and

(2.2) to the above convolution, we have

F [h](kx, ky) = F [f ](kx, ky)F [h0](kx, ky). (7.3)
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Resorting to Eq. (2.9), the absolute value of the transfer function can be determined as:

|F [f ](kx, ky)| =
√
Sh(kx, ky)/S[h0](kx, ky). (7.4)

In order to utilize the inverse Fourier transform to reconstruct the rough surface, h(x, y), the

spectrum of f(x, y) has the following complex form [12]:

F [f ](kx, ky) = |F [f ](kx, ky)| [cos(θ) + i sin(θ)] , (7.5)

where θ is the random phase varied between 0 and 2π. Since h(x, y) is real, F [f ](kx, ky) must

follow Hermitian symmetry1, i.e.,

F [f ](−kx,−ky) = conj (F [f ](kx, ky)) ,

where conj(•) is the complex conjugate operator.

7.2 Isotropy and Gaussianity of Rough Surfaces and the Corresponding “Pressure Sur-

face”

Table 7.1: 17 surface groups.

Case Group # kl[1/m] ks[1/m] H Case Group # kl[1/m] ks[1/m] H

1

1 16 64 0.8

3

9 1 64 0.8
2 16 128 0.8 10 1 128 0.8
3 16 256 0.8 11 1 256 0.8
4 16 512 0.8 12 1 512 0.8

2

5 4 64 0.8

4

13 4 128 0.1
6 4 128 0.8 14 4 128 0.3
7 4 256 0.8 15 4 128 0.5
8 4 512 0.8 16 4 128 0.7

17 4 128 0.9

1|F [f ](kx, ky)| is symmetric about axes: kx = 0 and ky = 0. In Wu’s paper [12], Hermitian symmetry is
achieved by forcing the random phase, θ(kx, ky), in Hermitian symmetry.
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In the previous section, an algorithm of rough surface generation is proposed. Theoreti-

cally, the rough surface, as well as the corresponding “pressure surface”, should be isotropic,

fractal and Gaussian. The fractal surface is satisfied for each realization since the PSD in Eq.

(2.18) is explicitly embedded in the surface generation algorithm. In this section, the isotropy

and the Gaussianity of the generated rough surfaces and the corresponding “pressure surface”

are explored.

(a) (b)

(c) (d)

(kl = 16, ks = 64, H = 0.8)

(kl = 1, ks = 64, H = 0.8)

(kl = 16, ks = 512, H = 0.8)

(kl = 1, ks = 512, H = 0.8)
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z[m]
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Figure 7.1: Plots of one realization of the surface group (a) #1, (b) #4, (c) #9 and (d) #12.
The colored figure is available online.

Because the generated rough surfaces are used in the BEM and all computational resources

have limited memory, the number of sampling points is restricted to Nx ×Ny = 1024 × 1024

in this chapter. The x- and y-intervals of the sampling points are held constant. The sampling

lengths in the x and y axes are Lx = 1 and Ly = 1, respectively. The moment, mp∗
0 = mp

0/E
∗,

is set to a constant 1 × 10−4 (equivalently, mh
2 = 2 × 10−4). The reason for this assignment

is that the root mean square (rms) slope should be small so that the domain can be reasonably

approximated by a half-space which is a fundamental assumption in the BEM model proposed
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in Chapter 3. The rough surfaces are generated based on the PSD in Eq. (2.18) where kr = kl.

Therefore, one parameter combination (kl, ks, H) uniquely represents one rough surface group

which contains an infinite number of statistically similar realizations due to the random phase

introduced in the spectrum.

A total of 17 rough surface groups associated with different (kl, ks, H) are generated, see

Table 7.1. Those groups are divided into four cases. Each case contains multiple groups where

only one variable in (kl, ks, H) is changed and the other two are held constant. In cases 1− 3,

the upper cut-off wavenumber is changed associated with constant ks and H . In case 4, only H

is changed. For each surface group, 1000 surfaces are generated. The corresponding “pressure

surfaces” are determined by FFT based on Eq. (2.47). Figs. 7.1(a-d) illustrates four rough

surfaces from surface groups #1, #4, #9 and #12, respectively.

7.2.1 Isotropy

The isotropy of a surface means that the statistics are identical along any direction [17, 18].

In this study, the isotropy is examined based on the similarity of the mean moments (over

1000 realizations) measured in the x and y directions. The corresponding standard deviations

are calculated to show the dispersions of the moments over 1000 surfacess. The moments are

numerically calculated based on the definitions in Eq. (2.13):

m
h(p)
n0 =

〈(
∂(n/2)h

∂x(n/2)

)2
〉

n = 0, 2, 4, 6 · · · (for x), (7.6)

m
h(p)
0n =

〈(
∂(n/2)h

∂y(n/2)

)2
〉

n = 0, 2, 4, 6 · · · (for y), (7.7)

where the derivatives of order n at calculated using the central differentiation of the corre-

sponding derivatives of order n − 1. Only the moments essential to the statistical models are

calculated, namely, mh
n (n = 2, 4, 6) and mp∗

n (n = 2, 4).

Table 7.2 shows the average values and the std of the mh
n0 and mh

0n (n = 2, 4, 6) of 17

rough surfaces. The differences between mh
n0 and mh

0n are insignificant comparing their mean

values. The corresponding std of the moments are less than the mean value, at least, by one
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Table 7.2: Moments of rough surfaces of 17 rough surface groups

Group # mh
20 mh

02 mh
40[m−2] mh

04[m−2] mh
60[m−4] mh

06[m−4]

1 1.97× 10−4 1.97× 10−4 9.00 9.02 6.59× 105 6.59× 105

±6.47× 10−8 ±6.62× 10−8 ±0.0028 ±1.39 ±410.87 ±393.61
2 1.91× 10−4 1.91× 10−4 27.01 26.97 6.94× 106 6.94× 106

±5.09× 10−8 ±5.07× 10−8 ±0.0057 ±2.74 ±2.46× 103 ±2.41× 103

3 1.73× 10−4 1.73× 10−4 78.90 79.85 5.43× 107 5.43× 107

±3.67× 10−8 ±3.58× 10−8 ±0.011 ±5.49 ±1.16× 104 ±1.19× 104

4 1.35× 10−4 1.35× 10−4 172.77 172.97 1.20× 108 1.20× 108

±2.52× 10−8 ±2.47× 10−8 ±0.014 ±8.48 ±1.62× 104 ±1.56× 104

5 2.00× 10−4 2.00× 10−4 5.92 5.88 4.19× 105 4.19× 105

±8.44× 10−8 ±8.32× 10−8 ±0.0019 ±0.87 ±253.58 ±260.08
6 1.94× 10−4 1.94× 10−4 20.48 20.44 5.23× 106 5.23× 106

±6.47× 10−8 ±6.28× 10−8 ±0.0043 ±2.07 ±1.85× 103 ±1.81× 103

7 1.79× 10−4 1.79× 10−4 66.15 66.10 4.49× 107 4.49× 107

±4.66× 10−8 ±4.66× 10−8 ±0.0088 ±4.54 ±9.56× 103 ±9.86× 103

8 1.43× 10−4 1.43× 10−4 151.37 151.35 1.05× 108 1.05× 108

±3.55× 10−8 ±3.45× 10−8 ±0.01 ±7.73 ±1.39× 104 ±1.38× 104

9 2.05× 10−4 2.05× 10−4 4.90 4.91 3.47× 105 3.47× 105

±1.07× 10−7 ±1.00× 10−7 ±0.0016 ±0.69 ±210.45 ±209.32
10 1.99× 10−4 1.99× 10−4 17.94 17.93 4.58× 106 4.58× 106

±8.35× 10−8 ±8.20× 10−8 ±0.0039 ±1.84 ±1.58× 103 ±1.56× 103

11 1.73× 10−4 1.73× 10−4 79.90 79.85 5.43× 107 5.43× 107

±3.67× 10−8 ±3.58× 10−8 ±0.011 ±5.49 ±1.16× 104 ±1.19× 104

12 1.49× 10−4 1.49× 10−4 141.29 141.45 9.83× 107 9.83× 107

±4.54× 10−8 ±4.66× 10−8 ±0.012 ±6.93 ±1.33× 104 ±1.27× 104

13 1.86× 10−4 1.86× 10−4 43.30 43.32 1.32× 107 1.32× 107

±3.83× 10−8 ±3.91× 10−8 ±0.0087 ±4.66 ±4.26× 103 ±4.34× 103

14 1.87× 10−4 1.87× 10−4 37.95 38.12 1.11× 107 1.11× 107

±4.08× 10−8 ±4.18× 10−8 ±0.0079 ±4.01 ±3.79× 103 ±3.62× 103

15 1.90× 10−4 1.90× 10−4 31.55 31.49 8.83× 106 8.83× 106

±4.61× 10−8 ±4.66× 10−8 ±0.0068 ±3.28 ±3.02× 103 ±3.02× 103

16 1.93× 10−4 1.93× 10−4 24.26 24.29 6.41× 106 6.41× 106

±5.74× 10−8 ±5.79× 10−8 ±0.0055 ±2.52 ±453.48 ±2.22× 103

17 1.96× 10−4 1.96× 10−4 16.78 16.79 4.12× 106 4.12× 106

±7.68× 10−8 ±6.97× 10−8 ±0.0037 ±1.64 ±1.49× 103 ±1.26× 103

order of magnitude. It is clear that the similarities between mh
n0 and mh

0n (n = 2, 6) exist not

only in the average sense, but also for each surface. The std of mh
04 is surprisingly larger than

that of mh
40 by three order of magnitude and the reason is not clear. This difference may result

in a slight difference between mh
04 and mh

40 of each surface

Table 7.3 shows the average values and the std of the mp∗
n0 and mp∗

0n (n = 2, 4) of 17 rough

surfaces. The std of mp∗
04 is just one order of magnitude less than the mean value which may

result in differences between mp∗
04 and mp∗

40 in some surfaces. The similarities between the mp∗
n0

and mp∗
0n (n = 2, 4) are obvious in the average sense.
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Table 7.3: Moments of “pressure surface” of 17 rough surface groups.

Group # mp∗
20[m−2] mp∗

02[m−2] mp∗
40[m−4] mp∗

04[m−4]

1 2.98 2.98 2.04× 105 2.05× 105

±8.62× 10−4 ±8.62× 10−4 ±59.42 ±3.56× 104

2 2.98 2.98 2.37× 106 2.36× 106

±8.62× 10−4 ±8.62× 10−4 ±464.04 ±2.80× 105

3 23.08 23.08 2.68× 107 2.68× 107

±0.0028 ±0.0028 ±3.09e3 ±2.10× 106

4 36.05 36.05 1.95× 108 1.95× 108

±0.0027 ±0.0027 ±1.57e4 ±1.07× 107

5 1.96 1.96 1.30× 105 1.29× 105

±5.88× 10−4 ±5.89× 10−4 ±38.98 ±2.27× 104

6 6.59 6.59 1.78× 106 1.78× 106

±0.0013 ±0.0013 ±349.18 ±2.10× 105

7 19.11 19.11 2.22× 107 2.22× 107

±0.0023 ±0.0023 ±2.55e3 ±1.74× 106

8 31.59 31.59 1.71× 108 1.71× 108

±0.0025 ±0.0023 ±1.41e4 ±9.71× 106

9 1.62 1.62 1.08× 105 1.08× 105

±4.85× 10−4 ±4.80× 10−4 ±32.32 ±1.75× 104

10 5.77 5.77 1.56× 106 1.56× 106

±0.0011 ±0.0011 ±310.56 ±1.85× 105

11 23.08 23.08 2.68× 107 2.68× 107

±0.0028 ±0.0028 ±3.09× 103 ±2.10× 106

12 29.49 29.49 1.59× 108 1.60× 108

±0.0022 ±0.0022 ±1.29× 104 ±8.73× 106

13 13.83 13.83 4.55× 106 4.55× 106

±0.0025 ±0.0025 ±853.19 ±5.45× 105

14 12.14 12.14 3.83× 106 3.84× 106

±0.0022 ±0.0023 ±751.55 ±4.63× 105

15 10.12 10.12 3.03× 106 3.02× 106

±0.0019 ±0.0019 ±606.88 ±3.62× 105

16 7.80 7.80 2.19× 106 3.02× 106

±0.0015 ±0.0015 ±453.48 ±3.62× 105

17 5.41 5.41 1.40× 106 1.40× 106

±0.0011 ±0.0011 ±280.11 ±1.62× 105

As a summary, the isotropy of the generated rough surface and the corresponding “pressure

surface” can not be satisfied strictly in each surface associated with the same PSD. However,

the isotropy is achieved in an average sense.
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7.2.2 Gaussianity

In the statistical models developed in Chapters 4 and 5, the frequently used joint PDFs of the

asperity are

Φh(p)(ξh(p)∗), Φh(p)(ξh(p)∗, κh(p)∗
m ), Φh(p)(ξh(p)∗, κh(p)∗

g ) and Φh(p)(ξh(p)∗, κh(p)∗
1 , κ

h(p)∗
2 ).

where ξh(p), κh(p)
m and κh(p)

g are the asperity height, mean and geometrical asperity curvature of

the rough surface (“pressure surface”), respectively. More detailed description of these random

variable can be found in Section 2.4. The corresponding closed-form solutions can be found

in Eqs. (2.42), (2.41), (2.40) and (2.39), respectively. In this section, the Gaussianity of the

generated rough surface is checked by the similarity between the PDFs of the generated rough

surface/“pressure surface” and the corresponding closed-form solutions. The asperities in the

rough surface and the “pressure surface” are identified using the eight-nearest-neighbors [19]

which states that an asperity has the maximum height among all of its eight nearest sampling

points. However, the comparisons between the joint PDFs with more than one random variable

are hard to illustrate. For the sake of the simplicity, only the PDFs of the asperity, Φh(p)(ξh(p)∗)

and Φh(p)(κ
h(p)∗
m ), of the generated rough surface are compared with that of the Gaussian sur-

face. The closed-form of Φh(ξh∗) can be found in Eq. (2.42). The closed-form of Φh(κh∗m ) for

the Gaussian surface is derived by Greenwood [20]:

Φ(κh∗m ) =
3

2
√
π

{[
3(κh∗m )2 − 2

]
exp

[
−3

4
(κh∗m )2

]
+ 2 exp

[
−9

4
(κh∗m )2

]}
, (7.8)

and the PDF of the “pressure surface” can be easily adapted by replacing the superscript “h”

by “p”.

Additionally, to evaluate if the surface is Gaussian process, the moments of the generated

rough surface and the corresponding “pressure surface” are compared with the closed-form

solutions: Eqs. (2.21) - (2.24) and Eqs. (2.56) - (2.58). If the generated rough surface is strictly

Gaussian, then the moments of the generated rough surface and the corresponding “pressure

surface” should be identical with the closed-form solutions. The moments, mh(p)
n (n > 0), of
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the generated rough surfaces are the mean value of the corresponding moments in the x and y

directions.

Three comparisons are illustrated below. The first comparison is related to the PDFs of the

surface groups #1−#4 in case 1 shown in Table 7.1, where only the upper cut-off wavenumber

is changed. The second one is related to the PDFs of the surface groups #1, #5 and #9 where

only the lower cut-off wavenumber is changed. The final comparison is related to the PDFs of

the surface groups #13−#17 in case 4 where the Hurst dimension, H , is changed.

Changing ks
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Figure 7.2: The probability density distribution of the rough surface height and the “pressure
surface” magnitude of surface group #1.

The rough surface height and the corresponding “pressure distribution” magnitude should

follow the Gaussian distribution and it is confirmed in Fig. 7.2 for surface group #1 where

(kl, ks, H) = (16, 64, 0.8). The agreement is not only in the average sense but also may be in

each surface, at least in three surfaces shown in Fig. 7.2. Similar agreement is also found in the

other three surface groups (#2−#4).

From the cheering results shown in Fig. 7.2, we may expect that the good agreement

should also exist for the asperity height and asperity mean curvature distributions. In Fig.

7.3(a-b) where ks = 64, Φh(κh∗m ) and Φ(κhm) have a good agreement with the closed-form
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Figure 7.3: The probability density distribution of the asperity height, ξh∗, and asperity mean
curvature, ξp∗, of the rough surface group #1 (a-b) and #4 (c-d).

solutions in an average sense. The corresponding probability density distributions of three se-

lected surfaces in surface group #1 oscillate about the closed-form solutions. As ks increases

to 512 in Fig. 7.3(c-d), the probability density distributions of three generated surfaces nearly

converge into one master distribution with insignificant oscillation. This implies that the disper-

sions of Φh(κhm) and Φ(κhm) over 1000 surfaces become insignificant with higher upper cut-off

wavenumber ks. However, the agreement between the mean probability densities and the cor-

responding closed-form solutions are deteriorated. According to the other surface groups in

case 1, the good agreement of the probability density distribution is gradually deteriorated as

ks is increased from 64 to 512, especially for that of the asperity curvature. All the above

phenomenons are repeated in Fig. 7.4 for the “pressure surface”. The deteriorations of the
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Figure 7.4: The probability density distribution of the asperity height, ξh∗, and asperity mean
curvature, ξp∗, of the “pressure surface” in the rough surface group #1 (a-b) and #4 (c-d). The
colored figure is available online.

agreement between the probability density distribution are also observed in case 2 and 3 where

only ks is monotonically increased. The mean curvature distributions, Φh(κ
h∗(p∗)
m ), are more

sensitive to the change of ks

Due to its complexity, the joint PDFs of the generated rough surface and the “pressure

surface” are not compared with the corresponding closed-form solutions. The agreement be-

tween the joint PDFs can still be examined indirectly by checking the agreements between the

moments of the generate rough surface/“pressure surface” and the corresponding closed-form

solutions. Th eresults of surface groups #1−#4 are tabulated in Table 7.4. Except for the sur-

face group #1, the moments of the other rough surface groups do not have a good agreement
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Table 7.4: Moments of the rough surface and the “pressure surface” in groups #1− 4. “Num”
means the mean values of the generated rough surface.

Group #
mh

0 [m2] mh
2 mh

4 [m−2] mh
6 [m−4]

Eq. (2.21) Num Eq. (2.22) Num Eq. (2.23) Num Eq. (2.24) Num
1 1.19× 10−8 1.20× 10−8 2.00× 10−4 1.97× 10−4 9.16 9.01 6.97× 105 6.59× 105

2 7.35× 10−9 7.44× 10−9 2.00× 10−4 1.91× 10−4 28.44 26.99 8.42× 106 6.94× 106

3 4.81× 10−9 4.87× 10−9 2.00× 10−4 1.73× 10−4 96.40 79.38 1.14× 108 5.43× 107

4 3.29× 10−9 3.32× 10−9 2.00× 10−4 1.35× 10−4 344.88 172.87 1.62× 109 1.20× 108

Group #
mp∗

0 mp∗
2 [m−2] mp∗

4 [m−4]
Eq. (2.56) Num Eq. (2.57) Num Eq. (2.58) Num

1 1.00× 10−4 1.00× 10−4 3.05 2.98 2.09× 105 2.05× 105

2 1.00× 10−4 1.00× 10−4 9.48 8.69 2.53× 106 2.37× 106

3 1.00× 10−4 1.00× 10−4 32.13 23.08 3.41× 107 2.69× 107

4 1.00× 10−4 1.00× 10−4 114.96 36.05 4.87× 108 1.95× 108

with the corresponding closed-form solution and the agreement deteriorates as ks increases.

The differences are more significant for the higher order moments (e.g., mh
6) associated with

higher order derivatives of asperity height. The deteriorations of the agreement between the

moments are also observed for surface groups in case 2 and 3 where only ks monotonically in-

creases. In a summary, Figs. 7.3 and 7.4 and Table 7.4 imply that the generated rough surfaces

are no longer a Gaussian process at higher upper cut-off wavenumber ks.

The non-Gaussian asperity height/mean curvature distribution of generated rough surfaces

associated with higher ks is due to the fact that the sampling resolution, ∆ (x/y-interval of the

sample points), is not dominantly larger than the shortest wavelength (1/ks). If ∆ → 1/ks,

then each asperity is sampled with an insufficient number of sampling points. The asperity

height and the mean curvature can not be measured accurately. Due to the insufficient number

of sampling points on each asperity, the profile of each asperity is equivalently smoothed with

a smaller mean curvature. This may be the reason why the higher probability density of the

generated rough surfaces in Figs. 7.3(d) and 7.4(d) are associated with the smaller curvature,

see Figs. 7.3(d) and 7.4(d). By increasing the sampling numbers, Xu and Jackson [15] showed

that the mismatch of the asperity height/mean curvature distribution may be relieved.
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Figure 7.5: The probability density distributions of the rough surface height and the “pressure
surface” magnitude of surface group #5 and #9.

Table 7.5: Moments of the rough surface and the “pressure surface” in groups #1, #5 and #9.
“Num” means the mean values of the generated rough surface.

Group #
mh

0 [m2] mh
2 mh

4 [m−2] mh
6 [m−4]

Eq. (2.21) Num Eq. (2.22) Num Eq. (2.23) Num Eq. (2.24) Num
1 1.19× 10−8 1.20× 10−8 2.00× 10−4 1.97× 10−4 9.16 9.01 6.97× 105 6.59× 105

5 7.70× 10−8 8.37× 10−8 2.00× 10−4 1.91× 10−4 6.02 5.90 4.43× 105 4.19× 105

9 5.91× 10−7 1.02× 10−6 2.00× 10−4 1.73× 10−4 4.99 4.91 3.67× 105 3.47× 105

Group #
mp∗

0 mp∗
2 [m−2] mp∗

4 [m−4]
Eq. (2.56) Num Eq. (2.57) Num Eq. (2.58) Num

1 1.00× 10−4 1.00× 10−4 3.05 2.98 2.09× 105 2.05× 105

5 1.00× 10−4 1.01× 10−4 2.01 1.96 1.33× 105 1.30× 105

9 1.00× 10−4 1.00× 10−4 1.66 1.62 1.10× 105 1.08× 105
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Figure 7.6: The probability density distribution of the asperity height, ξh∗, and asperity mean
curvature, κh∗m , of the rough surface group #5 (a-b) and #9 (c-d).

Changing kl

In order to explore the effect of the lower cut-off frequency on the Guassianity of the generated

rough surface, three rough surfaces, namely, the surface groups #1 (kl = 16), #5 (kl = 4)

and #9 (kl = 1), are selected where ks = 128 and H = 0.8 are fixed. The probability density

distributions of the surface height with kl = 4 shown in Fig. 7.5(a) slightly deviate from the

Gaussian distribution at the vicinity of h = 0. When kl = 1, the probability density distribution

shown in Fig. 7.5(c) completely deviates from the Gaussian distribution not only for each sur-

face but also in the average sense. Recalling the probability density distribution with kl = 16
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Figure 7.7: The probability density distribution of the asperity height, ξh∗, and asperity mean
curvature, κp∗m , of the “pressure surface” in the rough surface group #5 (a-b) and #9 (c-d).

in Fig. 7.2(a), we can expect that the probability density distributions of the surface heights (ei-

ther in an average sense or in each realization) gradually deviate from the Gaussian distribution.

Surprisingly, the probability density distributions of the “pressure surface” magnitude shown in

Fig. 7.5(b) and Fig. 7.5(d) have a good agreement with the Gaussian distribution not only in an

average sense but also for each surface, regardless of kl. Two reasons govern this unexpected

mismatch. As kl decreases to the unity, more and more lower frequency (longer wavelength)

components are introduced. Recalling the PSD of the generated rough surface in Eq. (2.18),

the lower frequency components are associated with higher PSD. It is those higher values of

PSD within the lower frequency range that result in a non-Gaussian distribution of the rough

surface. Since the Gaussian surface can be regarded as being the sum of an infinite number
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of infinitesimally small, uncorrelated, sinusoidal waves [18], the bias of the PSD (square of

the amplitude of the sinusoidal components) towards the lower frequency components causes

infinitesimally small amplitudes only occur within the higher frequency range. The above ex-

planations may not be true for the “pressure surface”, since the corresponding PSD, Sp(k), is

different (see Eq. (2.48)):

Sp(k) =





Ck−2H k ∈ [kl, ks),

0 otherwise.
(7.9)

It is obvious that the slope of Sp vs. k is less than that of Sh vs. k, especially when H is

vanishing. Consequently, the Gaussianity of the “pressure surface” magnitude is less sensitive

to the change of kl. This insensitiveness is confirmed in Fig. 7.5(b) and Fig. 7.5(d) where

kl = 4 and 1, respectively. In Fig. 7.5(d), only an insignificant mismatch is found at the

vicinity of p = 0.

The asperity height distribution of the rough surface also has a mismatch with the closed-

form solution associated with lower kl, see Fig. 7.6(a) and 7.6(c). The worst agreement is

observed in Fig. 7.6(c) when kl = 1. This is a direct consequence due to the non-Gaussian

distribution of the rough surface shown in Figs. 7.5(a) and 7.5(c). The good match of the

asperity mean curvature distribution of the generated rough surface can be found in Fig. 7.6(b)

and Fig. 7.6(d). The good agreement can also be observed in Fig. 7.7(a-d) for the asperity

height and the mean curvature of the “pressure surface” because of its unbiased PSD. The

comparisons shown above are also consistent with the moments in Table 7.5 where mh
0 is the

only moment which has an obvious mismatch.

As a summary, the overall effect of reducing lower cut-off wavenumber kl is to deteriorate

the Gaussianity of the rough surface and the “pressure surface”. The distribution of the surface

height and the asperity height of the roughness is more sensitive to the changing of kl then that

of the “pressure surface” due to the biased PSD, Sh(k). The mean curvature distribution, as

well as the higher derivatives distribution, of both the roughness and the “pressure surface” are

nearly invariant of ks.
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Figure 7.8: The probability density distributions of the rough surface height and the “pressure
surface” magnitude of surface group #13 and #17.

In order to explore the effect of H on the Gaussianity of the generated rough surface and

the “pressure surface”, the upper and lower cut-off wavenumbers are fixed: ks = 128 and

kl = 4. The Hurst dimension, H , has a minor effect on the Gaussianity of the generated rough

surface and the corresponding “pressure surface” in the average sense as H is changed from

0.1 to 0.9, see Figs. 7.8(a-d), 7.9(a-d), 7.10(a-d). The Gaussianity of the “pressure surface” is

nearly insensitive to H , as shown in Figs. 7.8(b,d), 7.9(b,d), 7.10(b, d), but with a deteriorate

trend with increasing H . Similar observations can also be found associated with the rough

surface group with H = 0.3, 0.5 and 0.7. The existing mismatch is mainly contributed by the

212



0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

Greenwood, 2006
Mean
Realization #1
Realization #2
Realization #3

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

Greenwood, 2006
Mean
Realization #1
Realization #2
Realization #3

P
ro

b
ab

il
it
y

d
en

si
ty

P
ro

b
ab

il
it
y

d
en

si
ty

P
ro

b
ab

il
it
y

d
en

si
ty

P
ro

b
ab

il
it
y

d
en

si
ty

κh∗
mξh∗

κh∗
mξh∗

(a) (b)

(c) (d)

Greenwood, 2006
Mean
Realization #1
Realization #2
Realization #3

Greenwood, 2006
Mean
Realization #1
Realization #2
Realization #3

Figure 7.9: The probability density distribution of the asperity height, ξh∗, and asperity mean
curvature, ξp∗, of the rough surface group #13 (a-b) and #17 (c-d).

relatively low kl = 128 and relatively high ks. The comparisons of the moments are tabulated

in Table 7.6 and it indicates a negligible effect of H on the moments.

Remarks

After the parameter study in the above sections, a rule of thumb can be generalized on how to

generate a nearly Gaussian surface using the surface generation algorithm proposed in Section

7.1:

kl �
1

Lx(y)

and ks �
1

∆x(y)

=
Nx(y)

Lx
. (7.10)
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Figure 7.10: The probability density distribution of the asperity height, ξh∗, and asperity mean
curvature, ξp∗, of the “pressure surface” in rough surface group #13 (a-b) and #17 (c-d).

The first criterion relieves the biased PSD through removing the longer wavelength compo-

nents. This is very essential to the Gaussianity of the surface and asperity height distribution.

The latter criterion guarantees that the single asperities and the other local features are suffi-

ciently sampled. This criterion is a key requirement of the Gaussianity of the mean curvature

distribution and the other higher order derivatives distribution.

Based on the above criterion, the only (nearly) Gaussian surfaces among all 17 surface

groups are rough surface groups #1 and #2. Unfortunately, the comparisons associated with

the statistical models, the Persson model and BEM in many articles [1–6], do not check the

isotropy and the Gaussianity of the rough surface. This may be result an unreasonable conclu-

sion when the criterion in Eq. (7.10) is not satisfied.
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Table 7.6: Moments of the rough surface and the “pressure surface” in groups #13−17. “Num”
means the mean values of the generated rough surface.

Group #
mh

0 [m2] mh
2 mh

4 [m−2] mh
6 [m−4]

Eq. (2.21) Num Eq. (2.22) Num Eq. (2.23) Num Eq. (2.24) Num
13 5.58× 10−9 5.70× 10−9 2.00× 10−4 1.86× 10−4 46.05 43.31 1.63× 107 1.32× 107

14 1.02× 10−8 1.06× 10−8 2.00× 10−4 1.87× 10−4 40.27 38.04 1.37× 107 1.11× 107

15 1.98× 10−8 2.09× 10−8 2.00× 10−4 1.90× 10−4 33.38 31.52 1.08× 107 8.83× 106

16 3.85× 10−8 4.14× 10−8 2.00× 10−4 1.93× 10−4 25.59 24.28 7.80× 107 6.41× 106

17 2.44× 10−7 7.71× 10−8 2.00× 10−4 1.96× 10−4 17.63 16.79 4.98× 106 4.12× 106

Group #
mp∗

0 mp∗
2 [m−2] mp∗

4 [m−2]
Eq. (2.56) Num Eq. (2.57) Num Eq. (2.58) Num

13 1.00× 10−4 1.00× 10−4 15.35 13.83 4.88× 106 4.55× 106

14 1.00× 10−4 1.00× 10−4 13.42 12.14 4.10× 106 3.84× 106

15 1.00× 10−4 1.00× 10−4 11.13 10.12 3.24× 106 3.03× 106

16 1.00× 10−4 1.00× 10−4 8.53 7.80 2.34× 106 2.19× 106

17 1.00× 10−4 1.01× 10−4 5.88 5.41 1.49× 106 1.40× 106

7.3 A Brief Description of All Models

All the analytical and numerical models compared in this chapter are briefly introduced in this

section.

Rough Surfaces According to the rule of thumb proposed in Eq. 7.10 and 17 rough

surface groups tabulated in Table 7.1, only 50 surfaces from rough surface groups #1 and

#2, respectively, are selected randomly as the inputs of various statistical models, the Persson

model and Polonsky and Keer model. In Section 7.2, we have shown that a generated rough

surface can never be exactly Gaussian surface. In order to have consistent rough interfaces in

both the statistical models and the Polonsky and Keer model, the bandwidth parameters, αh

and αp, used as the sole inputs of the statistical models should be evaluated from the generated

Gaussian surfaces, i.e., the rough surface groups: #1−#2 [15].

Table 7.7: Bandwidth parameters, αh and αp, of the rough surface groups #1 and #2.

Group # αh αp

1 2.7861± 0.2144 2.3146± 0.2144
2 5.4853± 0.2787 3.1357± 0.1854

215



Boundary Element Model The Polonsky and Keer model with periodic boundary con-

ditions is selected. The reason is explicitly explained by Xu and Jackson [15]. The Polonsky

and Keer model is driven by the dimensionless average contact pressure, p̄∗ = p̄/
√
mp

0, which

monotonically increases from 0 to 4 where complete contact is almost achieved. The entire

loading history is divided into three stages, namely, (i) the early contact stage: p̄∗ ∈ (0, 0.2],

(ii) the medium stage: p̄∗ ∈ (0.2, 2] and (ii) the nearly complete contact stage: p̄∗ ∈ (2, 4].

A specific number of sub-steps have been assigned to each stage, namely, n1 = 30, n2 = 45

and n3 = 20. The loading histories at early contact and the nearly complete contact are uni-

formly discretized and the loading step in the medium stage is gradually increased. An explicit

expression of the discretized loading history, p̄∗, of n = n1 + n2 + n3 sub-steps below:

p̄∗i =





i∆1, 0 < i ≤ n1

exp [ln(0.2) + ∆2(i− n1)] , n1 < i ≤ n1 + n2

2 + ∆3(i− n1 − n2), n1 + n2 < i ≤ n

(7.11)

where ∆1 = 0.067, ∆2 = 0.0512 and ∆3 = 0.1. The minimum p̄∗ is 0.065 and, based on

the asymptotic BGT model in Eq. (4.35), the corresponding minimum contact ratio is A∗ ≈

0.0814. When the average contact pressure, p̄∗, is below 0.065, only a few asperities are in

contact with the rigid flat. Due to an insufficient number of contacting asperities and insufficient

number of nodes within each asperity contact area [1], the estimation of the contact ratio, A∗,

and the average interfacial gap, ḡ∗ based on the BEM results cannot be accurate. Similarly,

this conclusion is also true when p̄∗ is extremely high [16] where each non-contact region is

not sufficient sampled. The contact ratio is determined by the ratio of the number of nodes

associated with positive pressure to the total number of nodes. The average interfacial gap is

determined by Eq. (3.36). The convergence of the average interfacial gap, the contact pressure,

and the contact area at each load stage is determined by the criterion consisting of Eqs. (3.47),

(3.48), (3.49) and (3.51) given in Section 3.7.3. The contact ratio and the average interfacial

gap are the mean value over the corresponding results of 50 surfaces. The error bar is used to

represent the standard deviation of these 50 surfaces.
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Statistical Models of Early Contact The statistical models of early contact, namely, (i)

the adapted GW model (see Section. 4.3.1), (ii) the Nayak-Bush model (Section. 4.3.2), (iii) the

Greenwood model (Section. 4.3.3), (iv) the BGT model (Section. 4.3.4) and (v) the asymptotic

BGT model (Section. 4.3.4), are driven by the dimensionless surface separation, d∗ = d/
√
mh

0 .

The surface separation monotonically decreases from 3 to 0 within 65 steps with constant step-

size, i.e.,

d∗i = 3− 0.0469× (i− 1), i = 1, ..., 65.

The outputs of the statistical models are p̄∗ and the contact ratio A∗. At early contact where

p̄∗ → 0+, the average interfacial gap is approximately the same as the surface separation, i.e.,

ḡ∗ ≈ d∗ [15].

Statistical Models of Nearly Complete Contact The statistical models of nearly com-

plete contact, namely, (i) the adapted GW model (Section. 5.3.1), (ii) the Nayak-Bush model

(Section. 5.3.2), (iii) the Greenwood model (Section. 5.3.3) and (iv) the Ciavarella asymptotic

model (Section. 5.3.4), are driven by the dimensionless average contact pressure, p̄∗, which

monotonically increases from p̄∗ = 0 to p̄∗ = 4 within 65 substeps:

p̄∗i = 0.625× (i− 1), i = 1, ..., 65.

Persson’s model The Persson model for the real area of contact (Eq. (5.59)) and the

average interfacial gap discussed in Appendix E are used.

7.4 Numerical Results

7.4.1 Overall Results

In this section, the results of the statistical models at the early contact and the nearly complete

contact are compared with that of the Polonsky and Keer model. The objective is to show

(i) their accuracies within the load range: p̄∗ ∈ [0, 4], and (ii) the limitations of two types of

statistical models. For the sake of a clear presentation, only the Greenwood model and the

asymptotic BGT models are selected among all the analytical models.
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Figure 7.11: The contact ratio, A∗, vs. the dimensionless contact pressure, p̄∗, throughout the
entire loading history. Surface group (a) #1 (kl, ks, H) = (16, 64, 0.8) and (b) #2 (kl, ks, H) =
(16, 128, 0.8).
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Figure 7.12: The average interfacial gap, ḡ∗, vs. the dimensionless contact pressure, p̄∗,
throughout the entire loading history. Surface group (a) #1 (kl, ks, H) = (16, 64, 0.8) and
(b) #2 (kl, ks, H) = (16, 128, 0.8).

Commonly, the statistical models of early contact are only considered valid when the

contact ratio is infinitesimally small and it is confirmed in Fig. 7.11(a-b). The Greenwood

model of early contact and the asymptotic BGT model gradually deviate from the BEM results

as A∗ increases from zero. The relation, A∗ vs. p̄∗, of the Greenwood model and the BEM

results seem to converge to a linear relation predicted by the asymptotic BGT when A∗(or p̄∗)
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is vanishing. It will be shown in Section 7.4.2 that the slopes are not exactly the same. As p̄∗

further increases, the asymptotic BGT model, as well as the Greenwood model of early contact,

would eventually predict the complete contact under an extremely low p̄∗. The Greenwood

model of nearly complete contact shown in Fig. 7.11 does not have a good prediction at the

early contact stage and the medium stage, especially the contact ratio does not converge to

zero when p̄∗ → 0. At the nearly complete contact stage (p̄∗ > 2), the Greenwood model has

an excellent agreement with the Polonsky and Keer model through the entire nearly complete

contact stage.

10 -2 10 -1 100

10 -6

10 -4

10 -2

100

Averate interfacial gap
RMS gap/interference within contact area

10 -2 10 -1 100

10 -6

10 -4

10 -2

100

ḡ
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Figure 7.13: The plots of average interfacial gap, ḡ∗, and the root mean square gap/interference
within the contact area. Surface group (a) #1 (kl, ks, H) = (16, 64, 0.8) and (b) #2
(kl, ks, H) = (16, 128, 0.8). The colored figure is available online.

Similar observations are found in Fig. 7.12 where two types of the statistical models

have a good agreement with the Polonsky and Keer model at the early and nearly complete

contact stages, respectively. Noticing that the surface group #2 is less Gaussian (see Table.

7.4), the prediction of the Greenwood model at nearly complete contact becomes less accurate

compared with the BEM results and it is shown in Figs. 7.11 and 7.12. As mentioned in Chapter

3, the zero interference/gap cannot be satisfied exactly at the contacting points in the BEM. The

mean average interfacial gap, ḡ∗, of two rough surface groups are found to be several order of

magnitude larger than the root mean square (rms) gap within the contact area throughout the

entire loading history, see Fig. 7.13. This shows that the predictions of ḡ∗ by the BEM are not

affected by the numerical error within the contact area.
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7.4.2 Early Contact
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Figure 7.14: The contact ratio, A∗, vs. the dimensionless contact pressure, p̄∗, at the early
contact stage. Surface group (a) #1 (kl, ks, H) = (16, 64, 0.8) and (b) #2 (kl, ks, H) =
(16, 128, 0.8). The predictions of Polonsky and Keer model are plotted with the error bar which
is negligibly small in the figure.
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Figure 7.15: The contact ratio, A∗, vs. the dimensionless contact pressure, p̄∗, at the early
contact stage. Surface group (a) #3 (kl, ks, H) = (16, 256, 0.8) and (b) #4 (kl, ks, H) =
(16, 512, 0.8). The predictions of Polonsky and Keer model are plotted with the error bar which
is negligibly small in the figure.

The stage of the early contact is restricted within p̄∗ ∈ [0, 0.2]. A comprehensive compari-

son of the contact ratio and average interfacial gap predicted by the BEM, statistical model and

the Persson model is rare in the literature, except for the work done by Yastrebov et al. [5] in
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which only the contact ratio is discussed. The (joint) probability density function of the rough

surfaces used in the current study has better approximation to that of a Gaussian surface and

this better approximation makes the comparison fair for the statistical models. Additionally,

more statistical models are joined the comparison.

The asymptotic BGT model has an excellent agreement with the Polonsky and Keer model

throughout the entire range of the early contact stage for both surface groups, see Fig. 7.14(a-

b). The contact ratio, A∗, shown in Fig. 7.14 predicted by the Persson model and the other

statistical models are underestimated. Similar observation has also been reported by Yastrebov

et al. [5]. The other statistical models quickly deviate from the Polonsky and Keer model as

p̄∗ increases from zero. As ks increases, the agreement between the Polonsky and Keer model

and the other statistical models (except for the asymptotic BGT model) deteriorates. This is

related to the fact that the Gaussianity of the generated rough surfaces become worse when

ks increases. This postulation is confirmed by Fig. 7.15 in which ks of the generated rough

surface further increases to (a) 256 and (b) 512. The Persson model, however, is invariant of

the change of ks and has a better prediction of A∗ when rough surface is non-Gaussian. For

a Gaussian rough surface, the statistical models may have a better accuracy than the Persson

model. The comparison of the instantaneous slope, κ, of A∗ vs. p̄∗ curves shown in Fig. 7.16

also support the above postulation where k predicted by the statistical models are closer to

the BEM results in Fig. 7.16(a). As p̄∗ further decreases to zero, κ of the advanced statistical

models (e.g., the BGT model, the Greenwood model and the Nayak-Bush model) will converge

to the asymptotic BGT model. The Polonsky and Keer model may not be able to have the

same trend since the contacting points are not sufficiently sampled, unless the rough surface is

sampled with finer resolution. This is a clear sign that a more Gaussian rough surface would

result in a closer agreement between the contact ratios predicted by the BEM and the statistical

models. Additionally, as pointed out by Yastrebov et al. [5,6], the contact ratio calculated based

on the positive contact pressure is overestimated. This fact may also help to bring the BEM and

the statistical model even closer.

Unfortunately, the prediction of the average interfacial gaps, ḡ∗, by the statistical models

do not have a good agreement with the BEM results, even when p̄∗ is small. The disagreement
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Figure 7.16: The derivative κ = ∂A∗/∂p̄∗ vs. the dimensionless contact pressure, p̄∗, at the
early contact stage. Surface group (a) #1 (kl, ks, H) = (16, 64, 0.8) and (b) #2 (kl, ks, H) =
(16, 128, 0.8).
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Figure 7.17: The contact ratio, ḡ∗, vs. the dimensionless contact pressure, p̄∗, at the early
contact stage. Surface group (a) #1 (kl, ks, H) = (16, 64, 0.8) and (b) #2 (kl, ks, H) =
(16, 128, 0.8).

is contributed by the two factor: (1) the generated rough surface used in the BEM is not suffi-

ciently sampled and (2) the approximation of the average interfacial gap, i.e., ḡ∗ ≈ d̄∗, is not

accurate within the given range of p̄∗. It is expected to have a better agreement within a vanish-

ing p̄∗. However, the BEM may not be valid in this extreme case since the contacting asperities

in the BEM may not be sampled sufficiently. Noticing that the Persson model is completely

different from the results of the BEM and statistical models.
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7.4.3 Nearly Complete Contact
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Figure 7.18: The contact ratio, A∗, vs. the dimensionless contact pressure, p̄∗, at the
nearly complete contact stage. Surface group (a) #1 (kl, ks, H) = (16, 64, 0.8) and (b) #2
(kl, ks, H) = (16, 128, 0.8).
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Figure 7.19: The contact ratio, A∗, vs. the dimensionless contact pressure, p̄∗, at the early
contact stage. Surface group (a) #3 (kl, ks, H) = (16, 256, 0.8) and (b) #4 (kl, ks, H) =
(16, 512, 0.8).

The stage of the nearly complete contact is restricted to p̄∗ ∈ [2, 4]. The Ciavarella asymp-

totic model, the Nayak-Bush model and the Greenwood model have an excellent agreement

with the Polonsky and Keer model in Fig. 7.18. The adapted GW model and the Persson model

overestimate the non-contact ratio, 1 − A∗. Compared with the corresponding results at early
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Figure 7.20: The average interfacial gap, ḡ∗, vs. the dimensionless contact pressure, p̄∗, at the
nearly complete contact stage. Surface group (a) #1 (kl, ks, H) = (16, 64, 0.8) and (b) #2
(kl, ks, H) = (16, 128, 0.8).
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Figure 7.21: The average interfacial gap, ḡ∗, vs. the dimensionless contact pressure, p̄∗, at the
nearly complete contact stage. Surface group (a) #3 (kl, ks, H) = (16, 256, 0.8) and (b) #4
(kl, ks, H) = (16, 512, 0.8).

contact in Figs. 7.14 and 7.15, the predictions of 1 − A∗ by the Nayak-Bush model and the

Greenwood model shown in Figs. 7.18 and 7.19 are nearly insensitive to the deterioration of

the Gaussianity as ks increases from 64 to 512. Accuracy of the adapted GW model and the

Ciavarella asymptotic models are improved when ks increases and decreases, respectively. The

Persson model overestimates 1 − A∗ in all four cases in Figs. 7.18 and 7.19 regardless of ks.
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The predictions of ḡ∗ by all the statistical models shown in Fig. 7.20 are not in a good agree-

ment with the BEM results for two rough surface groups. In Figs. 7.20 and 7.21, the Persson

model underestimates the predictions of ḡ∗ by nearly one order of magnitude for all four rough

surface groups. Unlike the predictions of the contact ratio, the predictions of ḡ∗ by statistical

models are highly sensitive to the deterioration of the Gaussianity of the rough surface. In Figs.

7.20 and 7.21, the BEM results of ḡ∗ gradually deviate from the predictions of the statistical

model as ks increases from 64 to 512. This phenomenon is confirmed by Figs. 7.21(a-b) for

the rough surface groups associated with ks = 256 and ks = 512.

7.5 Discussions

In Section 7.4, the numerical results of 1 − A∗ and ḡ∗ predicted by the BEM (Polonsky and

Keer model), the statistical models and the Persson model are compared with each other. The

most important observation is that the agreement between the Polonsky and Keer model and

the statistical models relies strongly on the Gaussianity of the generated rough surface (in an

average sense). Within the given load range, the statistical models deviate more from the BEM

results if the Gaussianity of the generated rough surfaces used in the BEM is deteriorated.

This trend repeatedly appears more or less in the predictions of A∗, ḡ∗ and κ at early contact

and the predictions of 1 − A∗ and ḡ∗ at the nearly complete contact. In other words, this

trend implies that the statistical models are more accurate when the rough surface is more

Gaussian. However, in the real world, the roughness from the engineering surfaces are not

strictly Gaussian [13, 14], nor are the generated rough surfaces by the algorithm developed

in this chapter. Consequently, it is always expected to have a mismatch between the BEM

results and the statistical models even within its suggested range of application, unless the

non-Gaussian statistical models are proposed.

The numerical results of the Polonsky and Keer model are just an approximation associ-

ated with the discretized rough interface which is nearly Gaussian. A rigorous comparison may

need an infinite number of sampling points. As shown by Yastrebov et al. [6], the prediction

of A∗ is gradually converged as the total number of sampling points increases from 256× 256

to 4096 × 4096 and the changing of A∗ is insignificant when number of sampling points are
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higher. This convergent trend may also be true for ḡ∗. Thus, more accurate BEM results can

be achieved when a larger number of sampling points are used. Recalling the BEM results of

1 − A∗ associated with ascending ks shown in Figs. 7.18-7.21, the standard deviation of the

BEM results (over 50 surfaces) gradually decreases as more higher frequency components are

introduced. A similar descending trend can be found in the BEM results (A∗ and ḡ∗) in the en-

tire loading range. The introduction of the higher frequency components reduces the dispersion

of the contact results of different realizations. Because real rough surfaces are always rough

down to the atomic scale, the corresponding statistically similar rough surfaces may achieve

nearly the same contact ratio, A∗, and the average interfacial gap, ḡ∗.

The Persson model claimed to be accurate at the nearly complete contact [21]. From the

comparison with the statistical models and the BEM, however, A∗ and ḡ∗ are underestimated

by the Persson model at early (Figs. 7.14 and 7.17) and nearly complete contact (Figs. 7.18

and 7.20). Similar conclusions are also drawn by Xu and Jackson [15]. The Persson model (for

contact ratio) has been shown in Section 5.3.4 that it is very similar to the asymptotic form of

the statistical model at nearly complete contact with a different constant. This different constant

can guarantee the contact ratio, A∗, in Persson’s model decays to zero when p̄∗ is vanishing and

this boundary condition cannot be satisfied in the statistical models of nearly complete contact,

see Fig. 7.11. Based on this reason, the Persson model at early contact is just an approximation

and it is not surprise why ḡ∗ vs. p̄∗ predicted by the Persson model is completely off. More

detailed reasons why the Persson model overestimate the contact ratio can be found in the

Sections 5.3.4 and 5.4.

The last point discussed in the section is related to the application of the statistical models

to the real world applications. The statistical model of early contact, especially the GW model

[22], is very popular in the industry and the academy to predict the contact ratio. Most of the

time, the statistical models, especially the GW model [22], are misused since the rough surface

is not Gaussian [13,14]. As shown in Figs. 7.14 and 7.15, a less Gaussian rough surface results

in a significant underestimate of A∗ by the statistical model at the early contact. This is also

true for the statistical models of nearly complete contact. For the non-Gaussian surface, the

corresponding PDF may not have the closed-form solutions as shown in Section 2.5. However,
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the framework of the statistical models (mainly due to Greenwood and Williamson [22]) should

be invariant of the types of the rough surface even though it is originally designed for the

Gaussian process. To overcome the difficulty brought by the non-Gaussian surface in the real

world, the PDF can be evaluated numerically for each rough surface and the same frameworks

discussed in Sections 4.1 and 5.1 can be followed to obtain the final solutions.

In the real world, the contact ratio, A∗, is usually between a vanishing value and the unity.

The limited application ranges (A∗ → 0 and A∗ → 1) for the statistical models at early contact

and the nearly complete contact prevent its application to the real world rough contact problems.

In the next chapter, a curve-fit solution of the contact ratio, A∗, based on the statistical model

of nearly complete contact is developed. This curve-fit solution is valid for the entire loading

history, i.e., from the first touch to the complete contact.

7.6 Conclusions

In this chapter, the validity of the statistical models developed in Chapter 4 and 5 are conpre-

hensively tested at the stages of early contact and nearly complete contact, respectively. The

roughness input of the BEM is generated by a new algorithm which can guarantee the rough

surface is nearly isotropic, fractal and Gaussian at the same time. According to the test done in

Section 7.2 for 17 generated rough surface groups (each contains 1000 surfaces), the isotropy

and the Gaussianity are nearly satisfied in an average sense by the generated rough surface if

the rule of thumb proposed in Eq. (7.10) is satisfied. Two generated rough surface groups are

used for the later comparison. The Persson model does not have a good agreement with the

BEM at the early and nearly complete contact. The statistical models and the Persson model

at early contact only have a closed agreement with the BEM for A∗ and ḡ∗ when p̄∗ is vanish-

ing. The statistical models at nearly complete contact, especially the Greenwood model and

the Nayak-Bush model, have excellent agreement with the BEM for A∗ throughout the entire

nearly complete contact stage. The average interfacial gap, ḡ∗, predicted by the statistical model

at nearly complete contact gradually deviates from the BEM as the Gaussianity is deteriorated

through the introduction of the higher frequency components. A similar phenomenon is also
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observed at the early contact for A∗ and ḡ∗. This trend implies that a better agreement of ḡ∗ can

be achieved if a better Gaussianity of the generated rough surface can be achieved.
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Chapter 8

A Complete Statistical Model for Contact Ratio

8.1 Motivation

In the previous chapter, the validity of the statistical models at the early and nearly complete

contact are confirmed by the Polonsky and Keer model (i.e., BEM). The predictions of the con-

tact ratio by the statistical models and the BEM have a good agreement. However, these two

types of statistical models can only predict the asymptotic contact ratio when p̄∗ is infinitesi-

mally small and very large, see Fig. 7.11. As p̄∗ enters the intermediate range from the early

contact stage, the framework under which the statistical models are developed is no longer

valid because of the asperity coalescence [1, 2] and the asperity interaction [3–7]. Asperity

coalescence is due to the finite distance between the neighboring contacting asperities. As p̄∗

increases, the neighboring contacting asperities are coalesced into larger contact patches with

irregular shapes. The asperity interaction is referred to the coupling between the neighboring

contacting asperities due to the elasticity of the substrate. Because of the asperity coalescence

and the asperity interaction, each contacting asperity can no longer be studied individually and

the final real area of contact and the contact load can no longer be expressed as the superposition

of the corresponding results of single asperity contact.

Similar conclusions can also be drawn for the statistical models at the nearly complete

contact when p̄∗ enters the intermediate range from the nearly complete contact stage. Due to

the finite distance between the neighboring pressurized cracks, the crack coalescence occurs

to form the non-contact patches with irregular shapes. Additionally, each pressurized crack

cannot be modeled individually due to the crack interaction. Therefore, the non-contact area
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and the trapped volume cannot be expressed as the superposition of the corresponding results

of pressurized cracks.

Some efforts are dedicated to extend the statistical models at early contact to the inter-

mediate load range through including the asperity coalescence [1, 2] and the asperity interac-

tion [3–7]. Among those efforts, some can directly applied to the statistical models at nearly

complete contact. In this chapter, an alternative approach is followed to improve the accuracy

of the contact ratio predicted by the statistical models within the intermediate range of p̄∗. Here,

we assume the rough interface is isotropic, Gaussian and self-affine fractal. A curve-fit equa-

tion based on the BEM results and the statistical models of nearly complete contact is found

to bridge two asymptotic solutions of contact ratio at early complete contact (A∗ → 0+) and

nearly complete contact (A∗ → 1−), respectively.

8.2 Generated Rough Surfaces

For the validity of the BEM results, the rough surfaces used in the BEM should all be isotropic

and Gaussian at the same time. This may be achieved by the surface generation algorithm

developed in the previous chapter as long as the following rule of thumb is satisfied:

kl �
1

Lx(y)

and ks �
1

∆x(y)

=
Nx(y)

Lx
. (8.1)

In Chapter 7, 17 rough surface groups (each consists of 1000 surfaces) show an excellent

isotropy in an average sense, see Table. 7.2 and Table. 7.3. However, only two out of 17

rough surface groups are found to be Gaussian in an average sense1. In this chapter, ten more

Gaussian rough surface groups (#18−#27) are generated and the important parameters used

in the surface generation are tabulated in Table 8.4.

The mean PDFs of each surface group, e.g., Φh(p)(ξh∗(p∗)) and Φh(p)(κ
h∗(p∗)
m ), show good

agreement with that of the Gaussian process. The mean moments of each rough surface group

1A rough surface group is considered to be Gaussian if the average PDFs, Φh(p)(ξh∗(p∗)) and Φh(p)(κ
h∗(p∗)
m ),

with one random variable have good agreement with that of a Gaussian process, Eqs. (2.42) and (7.8). The
accuracy of the PDFs with multiple random variables can be indirectly checked through the comparisons of the
moments.
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Table 8.1: Ten Gaussian surface groups.

Group # kl[1/m] ks[1/m] H Nx ×Ny Group # kl[1/m] ks[1/m] H Nx ×Ny

18 16 64 0.1 1024× 1024 23 16 128 0.1 2048× 2048
19 16 64 0.3 1024× 1024 24 16 128 0.3 2048× 2048
20 16 64 0.5 1024× 1024 25 16 128 0.5 2048× 2048
21 16 64 0.7 1024× 1024 26 16 128 0.7 2048× 2048
22 16 64 0.9 1024× 1024 27 16 128 0.9 2048× 2048

Table 8.2: Mean moments and bandwidth parameter of the rough surface group over 1000
realizations. “Num” means the mean values of the generated rough surface.

Group #
mh

0 [m2] mh
2 mh

4 [m−2] αh

Eq. (2.21) Num Eq. (2.22) Num Eq. (2.23) Num Eq. (2.25) Num

18 7.75× 10−9 7.79× 10−9 2.00× 10−4 1.96× 10−4 12.46 12.27 2.41 2.50
19 8.74× 10−9 8.81× 10−9 2.00× 10−4 1.96× 10−4 11.56 11.39 2.53 2.60
20 9.89× 10−9 9.99× 10−9 2.00× 10−4 1.97× 10−4 10.61 10.47 2.63 2.70
21 1.12× 10−8 1.13× 10−8 2.00× 10−4 1.97× 10−4 9.64 9.52 2.70 2.77
22 1.26× 10−8 1.28× 10−8 2.00× 10−4 1.98× 10−4 8.68 8.57 2.74 2.81
23 2.94× 10−9 2.95× 10−9 2.00× 10−4 1.96× 10−4 47.06 46.24 3.46 3.55
24 3.79× 10−9 3.81× 10−9 2.00× 10−4 1.96× 10−4 42.21 41.63 4.00 4.11
25 4.95× 10−9 4.99× 10−9 2.00× 10−4 1.97× 10−4 36.98 36.41 4.56 4.68
26 6.46× 10−9 6.53× 10−9 2.00× 10−4 1.98× 10−4 31.27 30.89 5.05 5.16
27 8.33× 10−9 8.43× 10−9 2.00× 10−4 1.98× 10−4 25.66 25.37 5.34 5.44

Table 8.3: Mean moments and the bandwidth parameter of the corresponding “pressure sur-
face” over 1000 realizations. “Num” means the mean values of the generated rough surface.

Group #
mp∗

0 mp∗
2 [m−2] mp∗

4 [m−4] αp

Eq. (2.56) Num Eq. (2.57) Num Eq. (2.58) Num Eq. (2.59) Num

18 1.00× 10−4 1.00× 10−4 4.15 4.03 3.32× 105 3.25× 105 1.92 2.00
19 1.00× 10−4 1.00× 10−4 3.85 3.75 2.97× 105 2.91× 105 2.00 2.08
20 1.00× 10−4 1.00× 10−4 3.54 3.44 2.61× 105 2.57× 105 2.09 2.17
21 1.00× 10−4 1.00× 10−4 3.21 3.13 2.26× 105 2.22× 105 2.19 2.27
22 1.00× 10−4 1.00× 10−4 2.89 2.82 1.92× 105 1.89× 105 2.30 2.38
23 1.00× 10−4 1.00× 10−4 15.69 15.26 4.99× 106 4.88× 106 2.03 2.10
24 1.00× 10−4 1.00× 10−4 14.01 13.70 4.30× 106 4.23× 106 2.17 2.25
25 1.00× 10−4 1.00× 10−4 12.30 11.99 3.59× 106 3.53× 106 2.37 2.46
26 1.00× 10−4 1.00× 10−4 10.42 10.18 2.87× 106 2.83× 106 2.64 2.73
27 1.00× 10−4 1.00× 10−4 8.55 8.37 2.20× 106 2.16× 106 3.00 3.10

are numerically determined and compared with the corresponding closed-form solutions (Eqs.

(2.21-2.23)) in Table 8.2. Similarly, the mean moments of the corresponding pressure surfaces
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are also tabulated together with the closed-form solutions (Eqs. (2.56-2.58)) in Table 8.3.

The standard deviations of the moments and bandwidth parameters are negligible compared

with the corresponding mean values. Comparing Tables 8.2 and 8.3 with Tables 7.4 and 7.6

reported in Chapter 7, we can conclude that a significant improvement of the Gaussianity of

the generated rough surface can be achieved in the average sense if the rule of thumb in Eq.

(7.10) is adopted. However, minor differences can still be found in all the moments and the

bandwidth parameter in Tables 8.2 and 8.3. This indicates that the mean PDFs of multiple

random variables of the generated rough surface are slightly different from that of the Gaussian

process. This inaccuracy may be insignificant in the current study since the difference shown

in Tables 8.2 and 8.3 are at least one order of magnitude smaller than the corresponding values.

8.3 BEM Results
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Figure 8.1: Mean contact ratio, A∗, vs. the dimensionless pressure, p̄∗ = p̄/
√
mp

0, for all 10
rough surface groups. (a) Full plot and (b) detailed plot at a certain intermediate pressure. The
colored figure is available online.

The BEM results of A∗ and ḡ∗ associated with 10 rough surface groups (each consists 50

surfaces) are solved by the Polonsky and Keer model. Fig. 8.1(a) illustrates that the mean

A∗ vs. p̄∗ relations associated with 10 rough surface groups are converged into a master curve

which is nearly insensitive to the changes of the statistics of the rough surface groups. Similar
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Figure 8.2: The distribution of the maximum dispersion of A∗ among 10 rough surface groups

observations have been reported previously by many authors [8–11]. However, minor differ-

ences between the curves can still be observed with a finer scale in Fig. 8.1(b). For a fixed

upper cut-off wavenumber, ks, the contact ratio decreases as the increase of Hurst dimension,

H . However, a larger ks (rough surface groups #23 − #27) may result in more dramatic de-

crease of A∗ against the increase of H . For the fixed pressure, p̄∗, the dispersion of the contact

ratio, A∗, among ten rough surface groups is quantified by the absolute difference between the

maximum and minimum A∗. Define the relative dispersion of A∗ at a fixed p̄∗ as the ratio

of the dispersion to the mean A∗ of 10 rough surface groups. The distribution of the relative

dispersion of A∗ is illustrated in Fig. 8.2. Two interesting observations are summarized below:

1. The prediction of A∗ is relatively sensitive to the change of the mean statistics of the

rough surface groups at light and intermediate load range (p̄∗ < 2);

2. The contact ratio, A∗, is nearly independent of the mean statistics of the rough surface

groups at nearly complete contact range (p̄∗ ≥ 2);

3. The relative dispersion of A∗ is at least one order of magnitude less than the unity

throughout the entire range of p̄∗.

The slight change of A∗ among 10 rough surface groups may also due to the ranges of the

statistics of the rough surface and the corresponding “pressure surface” in Tables 8.2 and 8.3
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which do not cover a large span of order of magnitudes. As readers may already notice at the

beginning of this section that the difference of each rough surface group is mainly due to the

different Hurst dimension H if the number of sampling points is fixed to either 1024 × 1024

or 2048 × 2048. Changing of H is a compromising procedure in order to achieve the overall

Gaussianity of each generated rough surface group. Recalling the observations in Chapter 7,

the Gaussianity of each rough surface group, in an average sense, is only insensitive to the

change of H . According to the rule of thumb in Eq. (7.10), the choices of kl and ks are related

to the sampling length, Lx(Ly), and the number of sampling points, Nx(Ny), respectively.

Additionally, the ratio of ks/kl is greatly maximized to include more frequency components

in each realization. Therefore, for a fixed number of sampling points, ks and kl are fixed. As

a matter of fact, for a larger span of the statistics and the bandwidth parameters, the “safest”

approach is to increase the number of sampling points. However, if the sampling points are

larger than 2046 × 2046, an unrealistic amount of computational time (50 surfaces for each

rough surface group) and memory usage will be experienced inevitably. In the future, the

numerical results associated with larger number of sampling points are needed to prove whether

a master curve can be used to represent A∗ vs. p̄∗ of a Gaussian rough surface with various

statistics.

On a contrary, the relations of the average interfacial gap, ḡ∗, vs. p̄∗ associated with 10

rough surface groups do not converge into a master curve, see Fig. 8.3(a). The log-log plot in

Fig. 8.3(a) gives a delusion that the dispersion of ḡ∗ is dramatic at the light load stage. From

the plot of the relative dispersion of ḡ∗ in Fig. 8.3(b), we may found that the dispersion of

ḡ∗ is more severe at heavy load range. However, the overall relative dispersion is larger than

the unity which indicates that the relation ḡ∗ vs. p̄∗ strongly depends on the statistics of the

Gaussian rough surface.

8.4 Results of Statistical Models

The above observations can, more or less, be confirmed also by the results of the statistical

model of early and of nearly complete contact. Only the Greenwood models of the early contact

and of the nearly complete contact are used as a representative model. The Greenwood model of
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Figure 8.3: (a) Mean average interfacial gap, ḡ∗ = ḡ/
√
mh

0 , vs. the dimensionless pressure,
p̄∗ = p̄/

√
mp

0, for all 10 rough surface groups and (b) the distribution of the maximum disper-
sion of ḡ∗ among 10 rough surface groups

the early contact only relies on the bandwidth parameter, αh, and a sequence of values are used:

αh = 2, 5, 10, 50, 100. The Greenwood model of the nearly complete contact only relies on

the bandwidth parameters, αh and αp. A sequence of values of αp = 2, 5, 10, 50, 100 is used

while αh = 2.

In light load condition as shown in Fig. 8.4(a), especially when p̄∗ → 0, the curves of A∗

vs. p̄∗ associated with various αh quickly deviates from each other. For ḡ∗ vs. p̄∗, the dramatic

dispersion does not occur, especially at lower αh, see Fig. 8.4(b). This is consistent with Figs.

8.1 and 8.2.

In heavy load condition, the relation of 1 − A∗ to p̄∗ is nearly independent of the change

of αp, see Fig. 8.5(a). This is consistent with that observed in Figs. 8.1 and 8.2. In Fig. 8.5(b),

it is shown that the extent of the dispersion of ḡ∗ is more significant than 1− A∗.

8.5 Curve-Fit Solution of A∗

In this section, a possible curve-fit solutions of the contact ratio, A∗, based on the statistical

models at nearly complete contact and the BEM results are proposed.
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Figure 8.4: Results of Greenwood model at early contact associated with different αh =
2, 5, 10, 50 and 100.
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The contact ratio of the Greenwood model is used as an example (see Eq. (5.45)) and is

rewritten below:

A∗(p̄∗) = 1− 1

2
√

3
(αp)1/2

∫ ∞

p̄∗

∫ ∞

0

(ξp∗ − p̄∗)(κp∗g )−1Φp(ξp∗, κp∗g )dκp∗g dξ
p∗.

where the PDF, Φp(ξp, κp∗g ), is available in Eq. (2.41). Let I(p̄∗) represents the contact ratio

predicted by the Greenwood model. A piece-wise function is proposed to approximate the
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BEM results:

A∗(p̄∗) =





I(p̄∗)f(p̄∗) p̄∗ ∈ [0, 2],

I(p̄∗) p̄∗ ∈ (2,∞).

(8.2)

The strategy of the above curve-fit is to use the Greenwood model “as is” in the range of nearly

complete contact: p̄∗ ∈ [2,∞]. In the lower range, the Greenwood model is corrected by

f(p̄∗) = a exp(b p̄∗) + c exp(d p̄∗). (8.3)

This function is a summation of two exponential functions of p̄∗ and it does not depends on the

statistics of the rough surface. The number of free variables (i.e., a, b, c and d) can be reduced

through the following boundary conditions:

• A∗(p̄∗ → 0)→ 0;

• A∗(p̄∗ → 2)→ I(2).

The former condition requires the vanish of contact ratio, A∗, at zero load and it results in a =

−c. The latter condition achieves the continuity at p̄∗ = 2 and requires c = 1/ (exp(2d)− exp(2b)).

Now, only two free variables are left (i.e., c and d). Recalling the asymptotic BGT model at

early contact, the asymptotic derivative ∂A∗/∂p̄∗ at p̄∗ = 0 is
√
π/2. Unfortunately, this bound-

ary condition cannot be achieved with the given function f above, but may be work with the

other form of f . However, more constraints may cause the failure of the curve-fit procedure

using the optimization. Fortunately, the corresponding slope of the curve-fit solution is fairly

close to
√
π/2 in Fig. 8.6(b).

The curve fitting toolbox in MATLABr is used to find b and d for all ten groups and

the curve-fit results are tabulated in Table 8.4. The inputs (i.e., αh and αp) of the Greenwood

model of each surface group are from Tables 8.2 and 8.3. The BEM results of the contact ratio

associated with all ten rough surface groups are illustrated in Fig. 8.1(a) and A∗ vs. p̄∗ is nearly

independent of the statistics of the rough surface groups, at least for all ten rough surface

groups. This invariance is also shown in the curve-fitting variables: a = −1.913 ± 0.0332,

b = 1.130 ± 0.0301 and c = −0.0490 ± 0.0128. The curve-fit A∗ has an excellent match
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Figure 8.6: (a) The contact ratio of rough surface group #27 predicted by the curve-fit solution
and the BEM; (b) the slope, ∂A∗/∂p̄∗, of rough surface group #27 predicted by the curve-fit
solution, the BEM and the asymptotic BGT model.

with the corresponding BEM result throughout the entire range of load for all 10 groups and

the comparison associated with the surface group #27 can be found in Fig. 8.6(a). The slope,

∂A∗/∂p̄∗, is also illustrated in Fig. 8.6(b). The asymptotic slope of the curve-fit result is close

to
√
π/2.

Table 8.4: Ten Gaussian surface groups.

Group # b c d Group # b c d

18 −1.923 1.160 −0.062 23 −1.870 1.169 −0.065
19 −1.924 1.150 −0.058 24 −1.863 1.156 −0.059
20 −1.931 1.138 −0.053 25 −1.873 1.133 −0.049
21 −1.943 1.123 −0.047 26 −1.897 1.103 −0.037
22 −1.959 1.108 −0.040 27 −1.949 1.065 −0.021

8.6 Conclusions

In the previous section, a curve-fit function, Eq. (8.2), based on the Greenwood model at nearly

complete contact is found to calculate the contact ratio throughout the entire loading range from

the initial touch till the first complete contact. This does not mean that the usage of Eq. (8.2) is

only restricted to the Greenwood model. The other statistical model at nearly complete contact

may also benefit from the general form of curve-fit function to achieve a better accuracy at
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lower load range. Recalling the form of the curve-fit function in Eq. (8.2), it is assumed to be

dependent on the dimensionless pressure, p̄∗, and is independent of the roughness. From the

curve-fit results tabulated in Table 8.4, the variations of the curve-fit parameters (i.e., b, c and

d) have insignificant standard deviations for 10 rough surface groups and the above hypothesis

is confirmed. However, care is needed for the application of the curve-fit function since it is

only based upon a small groups of rough surface covering a finite range of the statistics of

the rough surfaces. Since the contact ratio formulation of the Greenwood model only relies

on the bandwidth parameter, αp, we may expect that the curve-fit function associated with the

parameters in Table 8.4 are only valid for small bandwidth parameter αp < 3. For higher αp,

the curve-fit solution needs further validation.

242



References

[1] Eid, H. and Adams, G.G., 2007. An elasticplastic finite element analysis of interacting

asperities in contact with a rigid flat. Journal of Physics D: Applied Physics, 40(23),

p.7432.

[2] Afferrante, L., Carbone, G. and Demelio, G., 2012. Interacting and coalescing Hertzian

asperities: a new multiasperity contact model. Wear, 278, pp.28-33.

[3] Zhao, Y., Chang, L., 2001. A model of asperity interactions in elasticplastic contact of

rough surfaces. ASEM Journal of Tribology, 123, pp.857864.

[4] Ciavarella, M., Greenwood, J.A., Paggi, M., 2008. Inclusion of interaction in the Green-

wood and Williamson contact theory. Wear 265, pp.729734.

[5] Yeo, C.D., Katta, R.R., Lee, J. and Polycarpou, A.A., 2010. Effect of asperity interac-

tions on rough surface elastic contact behavior: Hard film on soft substrate. Tribology

International, 43(8), pp.1438-1448.

[6] Chandrasekar, S., Eriten, M. and Polycarpou, A.A., 2013. An improved model of asperity

interaction in normal contact of rough surfaces. ASME Journal of Applied mechanics,

80(1), p.011025.

[7] Yashima, S., Romero, V., Wandersman, E., Frétigny, C., Chaudhury, M.K., Chateau-

minois, A. and Prevost, A.M., 2015. Normal contact and friction of rubber with model

randomly rough surfaces. Soft Matter, 11(5), pp.871-881.

[8] Hyun, S. and Robbins, M.O., 2007. Elastic contact between rough surfaces: Effect of

roughness at large and small wavelengths. Tribology International, 40(10), pp.1413-1422.

243
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Appendix A

Kelvin’s Fundamental Solutions

In this appendix, the Kelvin’s solution of a half-space with the boundary z = 0 is given in
detail. The normal vector of z = 0 and the normal derivative ∂ρ/∂n are

n = [0, 0,−1],
∂ρ

∂n
= η/ρ. (A.1)

Thus, all the fundamental solutions of Eqs. (3.3) and (3.4) used in Eq. (3.11) are simplified and
listed below:

u∗13 =
1

16π(1− ν)G
(ξ − x)ηρ−3,

u∗23 =
1

16π(1− ν)G
(ζ − y)ηρ−3,

u∗33 =
1

16π(1− ν)G

[
(3− 4ν)ρ−1 + η2ρ−3

]
,

p∗11 =
−1

8π(1− ν)

[
(1− 2ν)ηρ−3 + 3ηρ−5(ξ − x)2

]
,

p∗22 =
−1

8π(1− ν)

[
(1− 2ν)ηρ−3 + 3ηρ−5(ζ − y)2

]
,

p∗33 =
−1

8π(1− ν)

[
(1− 2ν)ηρ−3 + 3η3ρ−5

]
,

p∗12 = p∗21 =
−3

8π(1− ν)
ηρ−5(ξ − x)(ζ − y),

p∗13 =
−1

8π(1− ν)

[
3η2ρ−5(ξ − x)− (1− 2ν)ρ−3(ξ − x)

]
,

p∗31 =
−1

8π(1− ν)

[
3η2ρ−5(ξ − x) + (1− 2ν)ρ−3(ξ − x)

]
,

p∗23 =
−1

8π(1− ν)

[
3η2ρ−5(ζ − y)− (1− 2ν)ρ−3(ζ − y)

]
,

p∗32 =
−1

8π(1− ν)

[
3η2ρ−5(ζ − y) + (1− 2ν)ρ−3(ζ − y)

]
. (A.2)
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For the convenience of the later derivation, the Fourier transform of the above fundamental
solutions about ξ′ = ξ − x and ζ ′ = ζ − y are also tabulated below:

F [u∗13] =
−ikxη

8(1− ν)Gk
e−2πkη,

F [u∗23] =
−ikyη

8(1− ν)Gk
e−2πkη,

F [u∗33] =
1

16π(1− ν)G
[(3− 4ν)/k + 2πη] e−2πkη,

F [p∗11] =

[
−1

2
+

π

2(1− ν)

k2
x

k
η

]
e−2πkη,

F [p∗22] =

[
−1

2
+

π

2(1− ν)

k2
y

k
η

]
e−2πkη,

F [p∗33] =

[
−1

2
− π

2(1− ν)
kη

]
e−2πkη,

F [p∗12] = F [p∗21] =
π

2(1− ν)

kxky
k

ηe−2πkη,

F [p∗13] =

[
πi

2(1− ν)
kxη −

i(1− 2ν)

4(1− ν)

kx
k

]
e−2πkη,

F [p∗31] =

[
πi

2(1− ν)
kxη +

i(1− 2ν)

4(1− ν)

kx
k

]
e−2πkη,

F [p∗23] =

[
πi

2(1− ν)
kyη −

i(1− 2ν)

4(1− ν)

ky
k

]
e−2πkη,

F [p∗32] =

[
πi

2(1− ν)
kyη +

i(1− 2ν)

4(1− ν)

ky
k

]
e−2πkη. (A.3)

The evaluation of the Kelvin’s solutions in the frequency domain is based on the analogy be-
tween the 2D Fourier transform and the Hankel transform. More detail can be found in the
appendix in [1].

246



References

[1] Sneddon, I.N., 1964. The use of transform methods in elasticity. Air Force Office of Sci-

entific Research, United States Air Force.

247



Appendix B

Periodic Point Load Kernel

In this appendix, a half-space (z ≥ 0) is subjected to a λx- and λy− periodic, unit, normal,
point load acting on the boundary, z = 0. If one repeatable lies at (x, y), then the corresponding
normal traction, p(ξ, ζ), can be expressed by

p(x, y) = δ(ξ − x, ζ − y), (B.1)

where δ(x, y) is a two dimensional periodic Dirac function and can be expressed using an
infinite double Fourier series [1]:

δ(x, y) = a00+
∞∑

m=1

∞∑

n=1

amn cos
(

2πm

λx
x

)
cos
(

2πn

λy
y

)
+ (B.2)

∞∑

m=1

∞∑

n=1

bmn sin
(

2πm

λx
x

)
sin
(

2πn

λy
y

)
.

Referring to the above expression, it is obvious that δ(x, y), as well as the applied traction,
p(x, y), are indeed δx- and δy- periodic.

According to the following identities:

a00 =
1

λxλy

∫ λx

0

∫ λy

0

δ(x, y)dxdy, (B.3)

amn =
4

λxλy

∫ λx

0

∫ λy

0

δ(x, y)cos
(

2πm

λx
x

)
cos
(

2πn

λy
y

)
dxdy, (B.4)

bmn =
4

λxλy

∫ λx

0

∫ λy

0

δ(x, y)sin
(

2πm

λx
x

)
sin
(

2πn

λy
y

)
dxdy, (B.5)

1 =

∫ λx

0

∫ λy

0

p(x, y)dxdy, (B.6)

then
a00 =

1

λxλy
, amn =

4

λxλy
, bmn = 0, (B.7)
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and the applied normal traction in Eq. (B.1), is rewritten as:

p(x, y) =
1

λxλy

{
1 + 4

∞∑

m=1

∞∑

n=1

cos
[

2πm

λx
(x− ξ)

]
cos
[

2πn

λy
(y − ζ)

]}
. (B.8)

From the Westergaard’s solution, Johnson et al. [2] found that if the half-space is subjected
to a bi-sinusoidal normal traction on z = 0, i.e.,

p(x, y) = p∗cos
(

2πm

λx
x

)
cos
(

2πn

λy
y

)
, (B.9)

then the corresponding normal displacement of z = 0 is

w̄(x, y) =
p∗

πE∗
√
m2/λ2

x + l2/λ2
y

cos
(

2πm

λx
x

)
cos
(

2πn

λy
y

)
. (B.10)

Applying the above correspondence and neglecting the rigid body displacement caused
by the mean normal traction, the resultant normal displacement, w(x, y), due to the periodic
point load on z = 0 in Eq. (B.1) can be expressed w(ξ, ζ) = K(ξ − x, ζ − y)δ(x, y) where
K(ξ − x, ζ − y) is

K(x, y) =
4

λxλy

∞∑

m=1

∞∑

n=1

1√
m2/λ2

x + n2/λ2
y

cos
[

2πm

λx
x

]
cos
[

2πn

λy
y

]
. (B.11)

Unlike the non-periodic influence function, the periodic version in an infinite double Fourier
series.
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Appendix C

Revisit Barber’s Theorem

Considering a rigid punch with arbitrary shape in contact with a half-space on z = 0 boundary
under the external load P , Barber [1] gave proofs to a series of important theorems. Some
theorems are listed below:

Theorem C.1. The maximum normal surface displacement occurs in the regions where the
contact pressures are compressive.

This is established based on the analogy between the potential theory and contact mechan-
ics.

Theorem C.2. The contact area, Ar, and the contact pressure at each point within it monoton-
ically increase with the increase of the load P .

Barber [1] claimed that the above theorem should not be restricted to the case where the
contact area is a simply connected region. Thus, the above theorem can be adapted for the
contact between an infinite rigid flat and a half-space with nominally flat rough boundary:

Theorem C.3. The contact ratio, A∗, and the contact pressure at each point within it mono-
tonically increase with the increase of the average contact pressure, p̄.

In this appendix, we would like to extend Theorem C.3 to cover the following statement:

Theorem C.4. The average interfacial gap, ḡ, is monotonically decreased with the increase of
p̄.

Proof. A corollary of Theorem C.1 states that a contacting point would never be out-of-contact
as long as p̄ is monotonically increased.Assuming p̄ is increased by δp̄, the contact region
Γc is enlarged into Γ′c where Γc ⊂ Γ′c. According to Theorem C.1, the differential pressure,
δp, within Γ′c is compressive everywhere. According to Eq. (3.21), the differential normal
displacement δw̄ is positive everywhere within the boundary Γ. On one hand, Theorem C.1
implies that δw̄ inside Γc are the same, i.e., δw̄|Γc = δ. On the other hand, Theorem C.3
requires δw̄ outside Γc should be less than δ, i.e.,

〈δw̄〉 < δ.
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According to Eq. (3.36), the change of the average interfacial gap is

δḡ = 〈h− w̄ − δw̄〉|Γ′c − 〈h− w̄ − δw̄〉 − 〈h− w̄〉|Γ′c + 〈h− w̄〉
= −δ + 〈δw̄〉
< 0 (C.1)
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Appendix D

Sneddon’s Solutions for the Pressurized Penny-Shaped Crack

Consider a penny-shaped crack embedded inside an infinite body. The cylindrical coordinates,
rθz, are chosen with the origins located at the center of the crack. The crack surfaces are
parallel to the z = 0 plane. The boundaries at the infinity are stress-free. The radius of the
crack is a and the crack surfaces are subjected to the axisymmetric normal traction, p(r). The
state of stress and the displacement components are solved analytically by Sneddon [1]. The
normal stress, σzz(r ≥ a), in front of the crack tip and the crack surface normal displacements,
uz(r ≤ a), have the following forms [2, 3]:

σzz(r) =
2

π

[
g(a)√
r2 − a2

−
∫ a

0

g′(t)dt√
r2 − t2

]
, (D.1)

uz(r) =
4

πE∗

∫ a

r

g(t)dt√
t2 − r2

. (D.2)

where

g(t) =

∫ t

0

sp(s)√
t2 − s2

, (D.3)

g′(t) =p(0) + t

∫ t

0

p′(s)ds√
t2 − s2

. (D.4)

The corresponding stress intensity factor1 (SIF), KI , is

KI =
2√
πa

∫ a

0

rp(r)dr√
a2 − r2

. (D.5)

The above elementary solutions are applied to solve the following pressurized crack problems.
Case I: Parabolic Normal Traction Consider p(r) of the following form:

p(r) = p0 −
κ

2
r2.

1The stress intensity factor is defined as follows: KI = limr→a+ σzz(r)
√

2π(r − a)
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Then, σzz(r), uz(r) and KI are

σzz(r) =
2

π

[
(p0a− 1

3
κa3)√

r2 − a2
− (p0 −

κ

2
r2)tan−1

(
a√

r2 − a2

)
− aκ

2

√
r2 − a2

]
, (D.6)

uz(r) =
4

πE∗
√
a2 − r2

[
p0 −

1

9
κ(2r2 + a2)

]
, (D.7)

KI =2

√
a

π
(p0 −

κ

3
a2). (D.8)

Case II: Constant Normal Traction near the Crack Tip Consider p(r) of the following
form:

p(r) =

{
p0 c < r ≤ a,

0 r ≤ c.

The responses of σzz(r), uz(r) and KI are2:

σzz(r) =
2

π

p0

√
a2 − c2

√
r2 − a2

− 1

2
p0 +

p0

π
tan−1

(
r2 − 2a2 + c2

2
√
a2 − c2

√
r2 − a2

)
, (D.9)

uz(r) =
4

πE∗

∫ a

max(r,c)

p0

√
t2 − c2dt√
t2 − r2

, (D.10)

KI =
2√
πa
p0

√
a2 − c2. (D.11)

For r < c, the crack opening displacement is

uz(r) =
2KI

E∗
√
πa

√
a2 − r2 +

4p0c

πE∗
[E(ϕ1, r/c)− E(r/c)] , (D.12)

where ϕ1 = sin−1(c/a). E(ϕ, k) and K(k) are incomplete and complete elliptic integral of the
second kind, respectively. For r ≥ c, the crack opening displacement is

uz(r) =
2KI√
πaE∗

√
a2 − r2+

4p0r

πE∗
[E(ϕ2, c/r)− E(c/r)]− 4p0

πE∗
r2 − c2

r
[F(ϕ2, c/r)−K(c/r)] ,

(D.13)
where ϕ2 = sin−1(c/r). F(ϕ, k) and K(k) are incomplete and complete elliptic integral of the
first kind, respectively.

Case III: Constant Normal Traction This case is a special case of case II where c = 0
and the response of σzz(r), uz(r) and KI can be obtained from the elementary solutions [3]:

σzz(r) =
2p0

π

[
a√

r2 − a2
− sin−1

(a
r

)]
(D.14)

uz(r) =
4

πE∗
p0

√
a2 − r2, (D.15)

KI =2

√
a

π
σ0. (D.16)

2Similar results can be found in pp. 178-179 in [3] but with typos in Eq. (3.128).
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Appendix E

The Persson Model of Average Interfacial Gap

Persson [2] studied the average interfacial gap, ḡ, between an elastic half-space and a rough
rigid surface and he gave the following form of the average pressure, p̄, in the function of ḡ:

p̄ = − 1

An

∂Uel
∂ḡ

, (E.1)

where Uel is the elastic energy under p̄ (the contribution from the rigid body motion is ne-
glected). In order to use the consistent variables throughout the whole study, we gave a brief
derivation using the new variables.

Following the contact theory of Persson [1,2], Uel can be approximated over the frequency
domain1:

Uel = E∗π2Anγ

∫ ks

kl

k2S[h](k)A∗(p̄, k)dk, (E.2)

where γ is an empirical parameter. S[h](k) is the axisymmetric PSD shown in Eq. (2.18).
A∗(p̄, k) is contact ratio under p̄ where the upper cut-off frequency of PSD in Eq. (2.18) is
k ≤ ks. A simple form of A∗(p̄, k) is available from Eq. (5.59) [3]:

A∗(p̄, k) =
2√

2πmp
0(k)

∫ p̄

0

exp
[
−(p− p̄)2

2mp
0(k)

]
dp, (E.3)

where mp
0(k) is the spectral moment, mp

0, where upper cut-off frequency is k. Substituting Eq.
(2.18) (with kl = kr) into Eq. (2.56) results in the closed-form solution:

mp
0(k) = (E∗)2 1

8

(2π)3C

1−H
[
k−2(H−1) − k−2(H−1)

l

]
. (E.4)

Substitute Eq. (E.2) into Eq. (E.1), we can have:

p̄ = − 1

An

∂Uel
∂p̄

∂p̄

∂ḡ
. (E.5)

1The constant in front of the integral is different from the original formulation due to the different form of
Fourier transform pair.
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Rearranging the above equation, we can have the following concise form of ḡ:

ḡ =

∫ p̄

∞
−1

p̄

∂Uel
∂p̄′

dp̄′

p̄′
. (E.6)

Substituting Eq. (E.2) and (E.3) into the above equation, we can have the final form of ḡ∗ =
ḡ/
√
mh

0

ḡ∗ =
E∗π2γ√
mh

0

∫ kl

ks

k2S[h](k)
2√

2πmp
0(k)

dk

∫ ∞

p̄

1

p̄′
exp

[
−(p̄′)2/ (2mp

0(k))
]
dp̄′. (E.7)

The usage of empirical parameter, γ, implies that the elastic energy store in the contact region
is, generally, less than the average elastic energy at complete contact. At nearly complete
contact, however, these two energies should be close and γ ≈ 1 [2]. A careful analysis of Eq.
(E.7) we should be able to identify that the relation of ḡ∗ to p̄∗ only relies on H , ks and kl.

0 1 2 3 4 5 6
-10

-8

-6

-4

-2

0

2

Persson’s model (Persson, 2007)

Persson’s model (Eq. (E.7))

p̄
/
E

∗

ḡ∗

Figure E.1: Recreation of the relation of the dimensionless average interfacial gap, ḡ/
√
mh

0 ,
to the dimensionless contact pressure, p̄/E∗, in a log-log plot in [2]. The lower and upper
cut-off frequencies are: 2πkl = 1 × 104[m−1] and 2πks = 7.8 × 109[m−1]. Hurst dimension
is H = 0.8. Surface root mean square roughness is

√
mh

0 = 6[µm]. γ = 1. Reprinted
from Tribology International, Xu, Y., and Jackson, R.L., Statistical model of nearly complete
elastic rough surface contact - comparison with numerical solutions, 105, pp. 290, 2017, with
permission from Elsevier.
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