Combining Ability of Channel Catfish, *Ictalurus punctatus*, Females and Blue Catfish, *I. furcatus*, Males for Early Growth, Growth Variation, Disease Resistance, and Carcass Yield of their Progeny

by

Ramjie Yusop Odin

A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

> Auburn, Alabama December 16, 2017

Keywords: combining ability, hybrid catfish, genetic variance component

Copyright 2017 by Ramjie Yusop Odin

Approved by

Rex A. Dunham, Chair, Professor, School of Fisheries, Aquaculture, and Aquatic Sciences Donald Allen Davis, Professor, School of Fisheries, Aquaculture, and Aquatic Sciences Charles Y. Chen, Professor, Department of Crop, Soil and Environmental Sciences Jeffery Scott Terhune, Associate Professor, School of Fisheries, Aquaculture, and Aquatic Sciences

Abstract

The hybrid between channel catfish (*I. punctatus*) females and blue catfish (*I. furcatus*) males is considered the best catfish genotype for commercial catfish farming due to their faster growth rate, better survival rate, disease resistance, better carcass yield and seinability. However, the hybrid is not a panacea, and genetically improved hybrids might be developed by improving the parent species, especially by selecting for female channel catfish and male blue catfish that have increased combining abilities. Reciprocal recurrent selection for the parent species could be conducted to improve traits of the hybrid progeny, however estimation of general combining ability (GCA) and specific combining ability (SCA) is necessary to determine the feasibility and the best approach to the reciprocal recurrent selection.

Twenty channel catfish females and twelve blue catfish males were crossed in a 20 x12 factorial mating design, but an unbalanced design resulted as only 40 families had adequate hatch. The 40 hybrid families were evaluated for their early performance traits in three different rearing systems at two ages. The body weight, weight gain, coefficient of variation (CV) in body weight, survival rate from natural *Aeromonas hydrophila* infection, and dressout percentage were analyzed to estimate genetic component variances.

The estimates for variance of combining ability showed that variance for early growth of hybrid catfish in all the three rearing systems at two ages was significantly (P<0.05) affected by the additive gene actions attributable to the channel catfish female parent. The genetic effects controlling the CV in body weight when hybrids were reared in flow-through system was

additive gene actions However, when the hybrids were further reared in recirculating system, the CV became attributable to dominant gene actions. The resistance of hybrid catfish to *Aeromonas hydrophila* was significantly affected by the additive gene effects of the blue catfish male parent. The dressout percentage of hybrid catfish was affected by the dominant gene actions attributable to the specific cross of channel and blue catfish parents. Overall, the combining abilities indicate that reciprocal recurrent selection for early traits appears to have potential to improve the performance of F1 hybrid catfish.

Dedication

To my dearest Ama and Ina

My sibs: Rajia, Jehan, Riaz, Hanie, and Nizhar

My little angels: Jannan, Rheanor, Jibran, Rashdan, and Razana

Odin and Yusop Family

Acknowledgments

This research project would not have been possible without the support of many people. My appreciation and thanks to those who have helped along the way and influenced the ideas and insights that made this endeavor a success;

I would like to convey gratitude to the US Fulbright Program and the Philippine – American Educational Foundation for this great opportunity to pursue my academic program in Auburn University. A heartfelt thanks to my academic adviser, Dr. Rex A. Dunham, who was very helpful, motivating, and encouraging. My deepest gratitude for his assistance, support and guidance and for providing me with research assistantship grant. My appreciation also to my committee members, Dr. Donald Allen Davis, Dr. Charles Y. Chen, and Dr. Jeffery Scott Terhune whose suggestions helped improve this manuscript;

My sincerest appreciation goes to my lab mates, Ahmed A., Ahmed E., Karim, Khoi, Sheng, Tracy, Nermeen, Rhoda, Chia Chen, Zhi, Dan, David, Max, Dalton, Will, Kamal, Nathan, Dom, Alex, and Zach for the gift of friendship and for allowing me to learn with them.

I am genuinely grateful to my brothers and sisters from Auburn Islamic Center for their unconditional overwhelming support all throughout my stint in Auburn.

I also wish to express love and gratitude to my family for their understanding and endless love. Those who supported me in any way during the completion of the study also deserve appreciation;

Above all, the Almighty ALLAH, for the knowledge, wisdom and life.

V

Table of Contents

Abstractii
Dedication iv
Acknowledgmentsv
List of Tables
List of Illustrationsx
List of Abbreviationsxiv
Chapter 1 General Introduction and Literature Review
Introduction1
Current Status of the Catfish Industry2
Quantitative Genetics and Its Application to Catfish Production2
Combining Ability: Concepts and Principles11
References15
Chapter 2 General and Specific Combining Ability for Early Performance Traits of Channel
Catfish (Ictalurus punctatus) Female x Blue Catfish (I. furcatus) Male F1 Hybrid
Progeny
Introduction
Materials and Methods29
Results
Discussion64

Conclusion	
References	74
Appendix	

List of Tables

Chapter 2

- Table 2. 4 The population means and phenotypic standard deviations (SD) for coefficient of variation (CV) in body weight of channel catfish (Ictalurus punctatus) female × blue catfish (I. furcatus) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing and recirculating system for additional 245 days of separate tank rearing. 50

- Table 2. 9 The population mean, phenotypic standard deviation (SD), and mean squares (MS) for the Type 3 Mixed Procedure analysis of variance of the factorial mating design component of channel catfish (Ictalurus punctatus) female × blue catfish (I. furcatus) male F1 hybrid progeny test and error mean squares for the dressout percentage of channel catfish female × blue catfish male hybrid catfish after additional 245-day communal rearing in split-pond.

List of Illustrations

Chapter 2

Figure 2. 1	Lay-out of factorial mating design used to cross twenty channel catfish (I. punctatus) females with twelve blue catfish (I. furcatus) males. The 40 hybrid families obtained are highlighted with red
Figure 2. 2	Ratio of estimates of GCA variance components for dam and sire, SCA variance components for cross, and error variance components for early growth in terms of final body weight (Wt) of channel catfish (Ictalurus punctatus) female \times blue catfish (I. furcatus) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing, recirculating system for additional 245 days of separate tank rearing, and split-pond for additional 245 days of communal rearing
Figure 2. 3	The channel catfish (Ictalurus punctatus) female (dam) general combining ability estimates for final average body weight of channel catfish (I. punctatus) female \times blue catfish (I. furcatus) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing. GCA estimates in red font are significantly different among others (P<0.05, t-test). 43
Figure 2. 4	Early growth in terms of final average body weight by parental dam strain of channel catfish (Ictalurus punctatus) female × blue catfish (I. furcatus) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing, recirculating system for additional 245 days of separate tank rearing, and split-pond for additional 245 days of communal rearing. Hybrid genotypes in the same rearing system with the same superscript letter are not significantly different (P>0.05, Tukey-Kramer Test). For genetic types in the communal split-pond, the mean comparison was done following Scheffe Test
Figure 2. 5	Ratio of estimates of GCA variance components for dam and sire, SCA variance components for cross, and error variance components for body weight gain of channel catfish (Ictalurus punctatus) female \times blue catfish (I. furcatus) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing, and split-pond for additional 245 days of communal rearing
Figure 2. 6	The channel catfish (Ictalurus punctatus) female (dam) general combining ability estimates for final average body weight of channel catfish (I. punctatus) female \times blue catfish (I. furcatus) male F1 hybrid progeny in recirculating system for

Х

additional 245 days of separate tank rearing. GCA estimates in red font are	
significantly different among others (P<0.05, t-test).	45

- Figure 2. 11 Early growth in terms of body weight and body weight gain by parental sire strain of channel catfish (Ictalurus punctatus) female × blue catfish (I. furcatus) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing. Hybrid genotypes in the same rearing system with the same superscript letter are not significantly different (P>0.05, Tukey-Kramer Test). For genetic types in the communal split-pond, the mean comparison was done following Scheffe Test. 49
- Figure 2. 12 Ratio of estimates of GCA variance components for dam and sire, SCA variance components for cross, and error variance components for coefficient of variance (CV) in body weight of channel catfish (Ictalurus punctatus) female × blue catfish (I. furcatus) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing and recirculating system for additional 245 days of separate tank rearing.
- Figure 2. 13 The channel catfish (Ictalurus punctatus) female (dam) general combining ability estimates for coefficient of variance (CV) in body weight of channel catfish (I. punctatus) female × blue catfish (I. furcatus) male F1 hybrid progeny in flow-

	hrough system for 311 days of separate tank rearing. GCA estimates in red font are ignificantly different among others (P<0.05, t-test)
c: p: g:	Coefficient of variance (CV) in body weight by parental dam strain of channel atfish (Ictalurus punctatus) female × blue catfish (I. furcatus) male F1 hybrid rogeny in flow-through system for 311 days of separate tank rearing. Hybrid enotypes in the same rearing system with the same superscript letter are not ignificantly different (P>0.05, Tukey-Kramer Test)
m b re	The channel catfish (Ictalurus punctatus) female (dam) x blue catfish (I. furcatus) nale (sire) specific combining ability estimates for coefficient of variance (CV) in ody weight of channel catfish female \times blue catfish male F1 hybrid progeny in ecirculating system for additional 245 days of separate tank rearing. GCA estimates n red font are significantly different among others (P<0.05, t-test)
c: p H	Coefficient of variance (CV) in body weight by parental cross genotype of channel atfish (Ictalurus punctatus) female \times blue catfish (I. furcatus) male F1 hybrid rogeny in recirculating system for additional 245 days of separate tank rearing. Hybrid genotypes in the same rearing system with the same superscript letter are not ignificantly different (P>0.05, Tukey-Kramer Test)
ci	Ratio of estimates of GCA variance components for dam and sire, SCA variance omponents for cross, and error variance components for the early survival of hannel catfish (Ictalurus punctatus) female × blue catfish (I. furcatus) male F1 ybrid progeny from natural Aeromonas hydrophila infection
fc fu	The blue catfish (Ictalurus furcatus) male (sire) general combining ability estimates or the early survival of channel catfish (I. punctatus) female \times blue catfish (I. urcatus) male F1 hybrid progeny from natural Aeromonas hydrophila infection. GCA estimates in red font are significantly different among others (P<0.05, t-test).58
m SI FE	Early resistance of channel catfish (I. punctatus) female × blue catfish (I. furcatus) nale F1 hybrid progeny to natural Aeromonas hydrophila infection in terms of urvival rate by parental sire strain of hybrid catfish. Hybrid genotypes in the same earing system with the same superscript letter are not significantly different P>0.05, Tukey-Kramer Test)
e: (]	The channel catfish (Ictalurus punctatus) female (dam) general combining ability stimates for the early survival of channel catfish (I. punctatus) female \times blue catfish I. furcatus) male F1 hybrid progeny from natural Aeromonas hydrophila infection. GCA estimates in red font are significantly different among others (P<0.05, t-test).59
m SI re	Early resistance of channel catfish (I. punctatus) female \times blue catfish (I. furcatus) hale F1 hybrid progeny to natural Aeromonas hydrophila infection in terms of urvival rate by parental dam strain of hybrid catfish. Hybrid genotypes in the same earing system with the same superscript letter are not significantly different P>0.05, Tukey-Kramer Test)

- Figure 2. 24 Dressout percentage by parental cross genotype of channel catfish (Ictalurus punctatus) female × blue catfish (I. furcatus) male F1 hybrid progeny after additional 245-day communal rearing in split-pond. Hybrid genotypes in the same rearing system with the same superscript letter are not significantly different (P>0.05, Tukey-Kramer Test).

List of Abbreviations

- AU Auburn University
- GCA General Combining Ability
- SCA Specific Combining Ability
- REML Restricted Estimation of Maximum Likelihood
- BLUP Best Linear Unbiased Prediction
- LHRHa Luteinizing Hormone Releasing Hormone analogue

CHAPTER ONE

General Introduction and Literature Review

Aquaculture has always been considered as a sustainable food producing sector that can address the increasing demand for food of the increasing human population. The world aquaculture production continued to grow in 2015, reaching 106 million tonnes (live weight) with an estimated value of US\$157 billion, contributing 45.3 percent (%) of the total world fish production (Zhou 2017). Although there is an overall increase in the aquaculture production, which can be attributed to the increasing demand for food fish from around the world, the production in developed countries such as the USA, Japan, Korea, and various European countries has declined the past few years. The importation of fish from developing countries where production costs are relatively low is seen as a major reason for this decline.

The channel catfish (*Ictalurus punctatus*), which is mostly produced in the southern parts of the United States, accounted for up to 68% of the total aquaculture production in the USA at its peak in 2003. Since that time, the US industry has been greatly affected by the importation of catfish from other countries (NOAA 2016). The cheaper price, \$1.50-\$2 per pound, of the imported catfish than the American variety of catfish is attracting most of the US consumers. The imports account for 80% of all U.S. sales of frozen catfish and catfish-like fillet products. Over the last 10-13 years, the US catfish industry has declined to more than 50% of its production (Hanson and Sites, 2015). During the past decade, the 40% of the catfish farms were lost. Factors that can be considered to have contributed to this crisis in the catfish industry are competition

with cheap imports, which now have more than 50% of the US catfish market, increasing production costs and fish disease control (Wagner et al. 2002, FAO 2011).

The current levels of aquaculture production of important food fish like catfish have been attained through improved hatchery and grow-out culture techniques, disease diagnosis and treatments and application of genetics and biotechnology. Several genetic enhancement programs for catfish have been examined such as strain selection, intraspecific crossbreeding, mass selection, and interspecific hybridization (Yant et al. 1975; Green et al. 1979; Dunham and Smitherman 1984). The hybrid between channel catfish females and blue catfish (*I. furcatus*) males was found to have exceptional heterotic growth (Giudice 1966) and at commercial densities, its growth, feed conversion ratio (FCR) (Yant et al. 1976; Li et al. 2004), survival, disease resistance (Ella 1984; Wolters et al. 1996; Dunham et al. 2008; Arias et al. 2012), dressout percentage and fillet yield (Yant 1975; Chappell 1979; Huang et al. 1994; Argue et al. 2003; Bosworth et al. 2004; Bosworth 2012) and seinability (Yant et al. 1976; Chappell 1979; Dunham and Argue 1998) were found to be superior to that of the channel and blue catfish (Dunham 2011). The Auburn University has played an important role in developing the farming techniques for hybrid catfish in the US (Dunham and Perera 2014). An increasing number of catfish farmers are utilizing hybrid catfish, which has been a key component that has allowed the catfish industry to survive and perhaps becomes stronger in the future. In 2014, about 200 million hybrid catfish fry were produced and now the industry has shifted to a majority hybrid catfish industry with 50-70% of all production and processing accounted to hybrid catfish (Multistate Research Project 2015).

Current Status of the Catfish Industry

Catfish growers of food fish, stockers, and fingerlings and fry in the US had sales of US\$361 million in 2015 which is 3% higher than in previous year, and 96% of these catfish were produced in Mississippi, Alabama, Arkansas, and Texas (National Agricultural Statistics Service (NASS) 2016). The total food size sales also increase to 4% during 2015 from its previous year and 95.9% of these were directly sold to processors. The sales of stockers in 2015 was US\$8.20 million which was 8% lower than the previous year while the sales of fingerlings and fry in 2015 was US\$7.69 million, which was 25% lower than 2014. The direct sales of stockers to other catfish grow-out producers decreased by 3% in 2015 from the previous year. The number of broodfish was down 10%, production and survival of fingerlings and stockers declined almost 30% from 2015-2016, resulting in a decrease in total hectares used for production of broodfish, fingerlings, and stockers and a decrease in sales of fingerlings and stockers (NASS 2016)

Seed production is an important component of hybrid catfish industry. It is vital that attention be given to boosting the production of quality broodfish, and quality fingerlings and stockers to augment catfish sales and strengthen the industry.

Quantitative Genetics and Its Application to Catfish Production

Geneticists have been successful in producing and improving performance traits of plants and animals through selective breeding. Traits which are of economic importance include growth performance, survival, disease resistance, tolerance to myriad of environmental stressors, harvestability, and processing characteristics. Such traits are usually controlled by actions of multiple genes. The work of Galton and Pearson in 1880-1900 resulted in many of the basic statistical tools (such as regression and correlation) that led to the development of methods for

the analyses of important quantitative traits (Stanton 2001). The formal beginning of this field started with the treatment of the inheritance of quantitative characters, which showed how explicit Mendelian genetic models of inheritance could account for the resemblance in continuous traits between relatives (Fisher 1918). Fisher's findings introduced the powerful statistical method of analysis of variance (ANOVA), which is now applied widely even outside the field of quantitative genetics. Thus, many of the basic statistical tools we used today were first introduced and developed for quantitative genetics.

The important performance and production traits of catfish which, are usually recorded per individual and are referred to as phenotype are the bases of quantification of the multiple genes for the desired traits. Information from such records are statistically analyzed to select for the best performing fish in a breeding program. Breeding programs require data collection and data analysis to determine if the phenotypic goal can be achieved through selection or crossbreeding and hybridization (Tave 1993).

Quantitative phenotypes exhibit continuous variation, requiring analyses and partitioning of phenotypic variance into independent components. Phenotypic variance (V_P) reflects the sum of genetic variance (V_G), environmental variance (V_E), and the genetic environmental interaction variance (V_{GxE}).

$$\mathbf{V}_{\mathbf{P}} = \mathbf{V}_{\mathbf{G}} + \mathbf{V}_{\mathbf{E}} + \mathbf{V}_{\mathbf{G}\mathbf{x}\mathbf{E}}$$

The V_G , V_E , and V_{GxE} are equally important and critical from a commercial stand point. Partitioning of phenotypic variation into genetic and environmental components permits breeders to make decisions for resource allocation and response to selection (Hallauer and Miranda 1981; Hill et al. 1998). A breeding program is designed to exploit and maximize available genetic variance through the use of its main components: additive variance (V_A) , dominance variance (V_D) , and epistatic variance (V_I) .

$$V_G = V_A + V_D + V_I$$

Because of the difficulty to exploit and measure the epistatic variance, breeders assume its non-existence. And so, V_A and V_D are considered the two most important genetic components. Additive variance is attributed to additive effects which are related to the heritability of various traits and consequently are the basis for selection (Tave 1993). When additive effects influence a continuous trait, choosing those organisms presenting the best performing traits as broodstock should result in the overall improvement of the offspring (Lutz 2001). Dominance variance (V_D) describes the variance associated with dominance genetic effects, which are expressed based on combinations of specific alleles, or combinations of individuals, strains or species that carry those alleles. Dominance effects are the basis of genetic improvement from hybridization and crossbreeding and are expressed as heterosis, commonly described as hybrid vigor, increased performance of hybrids or crossbred individuals over that of the parental lines (Hallauer and Miranda 1988).

Other genetic components, such as maternal and strain effects include both additive and dominance effects. Maternal effect is the source of variance attributed to the maternal genotype and phenotype and the environment it provides for the offspring (Falconer and McKay 1996). It can therefore be both environmental and genetic in origin. It reflects the differences in either environment or genetic merit of the female parent on the performance of her progeny (Wilham 1980). In fish and shellfish, maternal effects are related to variation in egg size and quality, which results in variation in hatching and survival during the early stage of growth and development. In channel catfish, egg size was found to affect its early growth rate (Reagan and

Conley 1977). Maternal effects on growth of brown trout, *Salmo trutta fario* (Vandeputte et al. 2002), rainbow trout, *Onchorhynchus mykiss* (Henryon et al. 2002), hybrid striped bass, *Morone chrysops* \times *Morone saxatilis* (Wang et al. 2006) and Atlantic cod, *Gadus morhua* (Tosh et al. 2010) decline as the progeny age.

The strain effects of parents on a myriad of traits such as body weight, growth rate, survival, reproduction traits, sexual maturity, immunological parameters and disease resistance of their progeny have been reported in aquaculture species like salmonids (Kanis et al. 1976; Refstie et al. 1977; Gunnes and Gjedrem 1978; Jonasson 1996; Unwin et al. 2003), rainbow trout (Kincaid 1981; Okamoto et al. 1993; Overturf et al. 2003; Quinton et al. 2004), striped bass, *Morone saxatilis* (Jacobs et al. 1999), tilapia, *Oreochromis niloticus* (Eknath et al. 1993; Macaranas et al. 1997), common carp, *Cyprinus carpio L.* (Vandeputte et al. 2004), rohu, *Labeo rohita* (Reddy et al. 2002) and catfish (Dunham and Smitherman 1984; Smitherman and Dunham 1985; Dunham et al. 1987; Rezk et al. 2003; Bosworth et al. 2004; Dunham et al. 2014a, 2014b).

Quantitative genetics research has greatly impacted production of other farm animals through improved breeding since the 1930s until today (Wolters and Tiersch 2004). Channel catfish genetics and breeding began in the late 1960s and early 1970s (Dunham and Smitherman 1987). The realized response to selection in fish has been much higher than in farm animals (Gjerde 1986; Dunham et al. 2001). Catfish genetic improvement has been projected to be larger than other farm animals in terms of potential for increased food production efficiency from 2000 to 2030 (Smith 1991).

Selective breeding programs have been conducted for channel catfish to improve its growth as length and weight, time of spawning, viability, disease resistance, dressout percentage (El-Ibiary et al. 1976; El-Ibiary and Joyce 1978; Reagan 1979; Dunham 1981; Bondari 1983,

Dunham and Smitherman 1983, 1985; Dunham et al. 1987; Rezk 1993; Dunham and Brummett 1999; Rezk et al. 2003; Small 2005; Gima et al. 2014). The initial genetic enhancement programs conducted for catfish were strain selection, intraspecific crossbreeding, mass selection, and interspecific hybridization (Yant et al. 1976; Green et al. 1979; Dunham and Smitherman 1983a, 1983b).

Dunham and Smitherman (1984) first documented the origin, history, breeding and performance traits of various channel catfish strains used by university, state, federal, and private hatcheries in the US. During 80's, channel catfish, blue catfish, white catfish (*I. catus*), and flathead (*Pylodictus olivaris*) and the major catfish species in the US. The channel catfish was the primary species propagated because it has superior culture traits. This species grows faster and has more disease resistance than other species. They are native to the Mississippi-Missouri river system southward into northeastern Mexico, but their range has been expanded through introductions to almost all parts of North America where there are suitable waters. The blue catfish has relatively uniform growth and body conformation, high dressing percentage, and high vulnerability to seining. They native to the main channels of the Mississippi River and its major tributaries from Minnesota and South Dakota southward into Mexico. The white catfish have poor bacterial resistance and poor dressout percentage and are more difficult to catch during seining. They are native to lower reaches of coastal streams from Delaware and New Jersey south into Florida, including a few streams entering the Gulf of Mexico. The flathead catfish which are native to large rivers of the Mississippi, Missouri, and Ohio basins, and south into Mexico were only used for sport fishing before.

A strain is a population of fish within a single species that has the same history, the same origin and has at least one trait or a suite of traits that make it unique or make it different from other strains (Dunham 2011). The National Fish Strain Registry for catfish contains important and substantial information on the broodfish strains of channel catfish, blue catfish, and white catfish and their history, origin, behavior, reproduction, disease resistance, availability and other important traits (Kincaid et al. 2000). Strain evaluation and selection is the first step to any genetic improvement program (Dunham 2011). Basically, the best performing domestic strains of catfish are selected. In channel catfish, variation in strains was reported for growth, disease resistance, body conformation, dressing percentage, vulnerability to angling and seining, age of maturity, time of spawning, fecundity and egg size (Dunham and Smitherman 1984; Smitherman and Dunham 1985). Strains have a major impact on the success and ultimate outcome of all genetic enhancement programs. Channel catfish strains affected the production, meat yield and quality traits of channel catfish female x blue catfish male hybrids (Bosworth et al. 2004). In addition, the strain of parent species was also reported to affect the level of heterosis/ performance for growth (Dunham et al. 1987; Dunham et al. 2014a), vulnerability to angling (Dunham et al. 1986), survival and sexual dimorphism (Dunham et al. 2014a) and tolerance to low dissolved oxygen (Dunham et al. 2014b) observed in channel catfish x blue catfish hybrids. Variability in production of hybrid catfish due to the strain effects of channel and blue catfish parents used was also observed for growth rate and processing yield traits (Bosworth et al. 1998).

Selection is the classical method of screening, selecting, and breeding of better performing individuals and/or groups to improve desirable quantitative or production traits. The two basic types of selection are individual or mass (where individuals are selected based on their own performance) and family selection (where individuals are selected based on the mean

performance of their family). Combined selection can also be done where best performing individuals are selected from the best performing families. Realized response to selection in fish is generally very high compared with what has been obtained in farm animals (Gjerde 1986; Dunham et al. 2001). Like in other fish species, selection was also reported to improve growth rate in catfish (Dunham and Perera 2014). Selection has improved the body weight of channel catfish by 12-20% with one or two generations of mass selection (Bondari 1983; Dunham and Smitherman 1983a; Smitherman and Dunham 1985; Dunham and Brummet 1999;). Selection has been successful in all eight lines of channel catfish that were evaluated, and the fastest growing strains yielded the fastest-growing select lines (Smitherman and Dunham 1985). The best select line grew twice as fast as average strains of channel catfish (Burch 1986). Responses to one generation of selection in Rio Grande, Marion, and Kansas strains of channel catfish were reported to improve body weight of catfish by 17%, 18%, and 12%, respectively (Dunham and Smitherman 1983a, 1983b), suggesting the importance of strain effects in selective breeding programmes. After three generations of selection, growth rate of channel catfish was improved by 20–30% when grown in ponds (Rezk 1993) and four generations of selection in Kansas strain resulted in a 55% improvement in growth rate (Padi 1995). The selective breeding research made a larger impact in the 1990s through the mid-2000s by commercial farms taking the results and applying them to their own brood stock rather than through release of improved germplasm from research institutions (USDA 2003; Steeby and Wagner 2006; Dunham and Perera 2014). Improved selected lines were developed. Some farmers have employed their own crossbreeding programs to enhance performance or to avoid inbreeding. By 2005, 70% of the catfish industry was utilizing selected fish that were a result of Auburn research or were developed following the program demonstrated by Auburn (Dunham and Perera 2014).

Intraspecific crossbreeding is the mating of unrelated individuals of the same species (Dunham 2011). Dunham and Smitherman (1985) reported the effects of crossbreeding between the two channel catfish strains to increase their growth and reproductive performance. The goal of crossbreeding and hybridization is to produce progeny that performs better than the existing parents. The two selection programs in crossbreeding and hybridization with little genetic issues are recurrent selection (which is selection of purebred parental line based on its performance) and reciprocal recurrent selection (which is selection of parents based on the hybrid progeny performance) (Bosworth and Waldbieser 2014).

Another genetic enhancement program with the goal of producing heterosis is interspecific hybridization. Hybrids between the seven-major species of North American catfish (*Ictalurids*) were first evaluated in 1966 (Giudice 1966; Dupree and Green 1969; Chappell 1979; Dunham and Smitherman 1984; Masser and Dunham 2012). Giudice (1966) indicated that the cross between channel catfish female and blue catfish male showed increased growth and production compared to channel catfish. This hybrid has shown superior characteristics (heterosis) for many traits such as faster growth 20 - 100% (Giudice 1966; Dunham et al. 1987, 1990; Dunham and Brummet 1999; Argue et al. 2003; Brown et al. 2011), especially at high densities, 15-20% better feed conversion (Yant et al. 1976; Li et al. 2004), 50- 100% higher tolerance to low oxygen levels (Dunham and Smitherman 1984), increased resistance to many common diseases, especially bacterial (Ella 1984; Wolters et al. 1996; Dunham et al. 2008; Arias et al. 2012), higher dress-out percentage (Yant 1975; Bosworth et al. 2004; Bosworth 2012) and increased harvestability by seining (Dunham and Argue 1998) and vulnerability to angling (Tave et al. 1981; Dunham et al. 1986).

Combining Ability: Concepts and Principles

Combining ability is defined as the estimation of the genetic value of the parents/cross on based on the performance of their progeny in some definite mating design (Allard 1960). Since this is measured by progeny testing it can be used in reciprocal recurrent selection. This concept was introduced in 1942, and was originally developed and applied in corn breeding (Sprague and Tatum 1942). This has also been widely adopted in plant breeding to determine genetic components influencing agronomic traits. Combining ability has also been adopted in aquaculture species like hybrid striped bass (*Morone chrysops × Morone saxatilis*) (Wang et al. 2006), sea bass (*Dicentrarchus labrax L.*) (Saillant et al. 2006), common carp (Vandeputte et al. 2004; Su et al. 2013), blunt snout bream, *Megalobrama amblycephala* (Luo et al. 2014), channel catfish (Wolters and Johnson 1995), hybrid catfish (Bosworth and Waldbieser 2014; Drescher 2017) and tilapia (Lutz et al. 2016).

There are two types of combining ability. The first is the general combining ability (GCA) which measures the additive genetic effects of the parent. This is simply the breeding value of a parent. The second is the specific combining ability (SCA), which measures the dominance genetic effect of the cross. This is the genetic value of a cross. Sprague and Tatum (1942) defined GCA as the average performance of an individual parent in a series of hybrid combinations. They defined SCA as those cases in which certain hybrid combinations perform better or poorer than would be expected on the basis of the average performance of the parental inbred lines. Parents showing a high average combining ability in crosses are considered to have good GCA, while if their potential to combine well is bounded to a particular cross, they are considered to have good SCA.

From a statistical point of view, the GCA is a main effect and the SCA is an interaction effect (Kulembeka et al. 2012). Based on Sprague and Tatum (1942), GCA is the activity of genes which are largely additive in their effects as well as additive × additive interactions (Griffing 1956). Specific combining ability is regarded as an indication of loci with dominance variance (non-additive effects) and all the three types of epistatic interaction components if epistasis were present. They include additive × dominance and dominance × dominance interactions.

The concept of GCA has been effectively used in crop and livestock breeding for more than 70 years (Sprague and Tatum 1942; Shikano et al. 2000; Adebambo 2011; Wang et al. 2014). This is an effective tool used in selection of elite parents based on the performance of their progenies, usually the F1 but it has also been used in F2 and later generations (Fn) (Fasahat et al. 2016). A low GCA value, positive or negative, shows that the mean of a parent in crossing with the other does not vary largely from the population mean. In contrast, a high GCA value shows that the parental mean is superior or inferior to the population mean. This indicates a potent evidence of desirable gene flow from parents to offspring at high intensity and represents information regarding the concentration of predominantly additive genes (Franco et al. 2001). A high GCA estimate indicates higher heritability and less environmental effects. It may also result in less gene interactions and higher achievement in selection (Topal et al. 2004; Chigeza et al. 2014). One of the main features of the elite parent with high GCA effect is its large adaptability. A parent good in per se performance may not necessarily produce better hybrids when used in hybridization (Allard 1960; Shukla and Pandey 2008). One parent of the worst combination could make the best combination if the other parent was selected properly (Bao et al. 2009).

The impact of SCA is decreased when genetically broad testers or increased number of testers are used in a mating design (Hallauer and Miranda 1988). Selection of parents based only on the SCA effect have limited value in breeding programs. Therefore, SCA effect should be used in combination with a high performing hybrid, favorable SCA estimates, and involving at least one parent with high GCA estimates (Franco et al. 2001; Joshi et al. 2004; Makanda et al. 2010).

The varying patterns of performance of crosses based on SCA have also revealed the gene actions involved in the expression of the traits. High SCA effects resulting from crosses where both parents have good GCA estimates may be ascribed to additive \times additive gene action (Dey et al. 2014). The high SCA effects derived from crosses of parents with good \times poor GCA estimates (Milić et al. 2011; Dey et al. 2014) may be attributed to favorable additive effects of the parent with good GCA and epistatic effects of parent with poor GCA. High SCA effects manifested by both parents having poor \times poor GCA (Dey et al. 2014) may be due to dominance \times dominance type of non-allelic gene interaction producing over dominance. Predominance of non-additive effects has been reported for inheritance of pod yield and related traits in groundnut under salinity stress in which there were cross combinations with high SCA effects arising from parents with good GCA, and another set of crosses with high SCA effects arising from both parents with good GCA effects (Azad et al. 2014).

Among the three commonly used mating designs/techniques (diallel, line x tester, and North Carolina design) for estimation of combining ability, the North Carolina (NC II) designs proposed by Comstock and Robinson (1952), which is defined as a class of factorial mating designs or schemes where certain groups of parents are designated male (factor 1) and others female (factor 2) in crosses could be the most appropriate technique for estimating GCAs in hybrid catfish since

the parents are interspecific. Hence, the GCA of individual maternal and paternal parent should be estimated. Hallauer (2007) suggested the NC II as a preferable design, which can make use of a larger number of parents resulting in a fewer crosses generated than a diallel mating design. The NC II mating design is a factorial experiment that measures the variance of male and female main effects and male \times female interaction effects (Comstock and Robinson 1952). According to Hallauer & Miranda (1988), male and female main effects, and the male \times female interaction effects in a NC II mating design are equivalent to the GCA and the SCA effects in a diallel. The main difference between a diallel and NC II is that there are two independent estimates for the GCA effects in the NC II, which is an advantage of the NC II over the diallel. Two independent estimates of GCA allow determination of maternal effects and calculation of heritability based on male variance, which is free from maternal effects. Another advantage is that the NC II can handle more parents and produce fewer crosses than the diallel. This is achieved by dividing parents into sets as described by Hallauer and Miranda (1988). Because fish species exhibit reproduction singularities especially, high fecundity, easy in vitro fertilization in many species, NC II is an efficient mating design can be used for inference of genetic parameters. In fact, this design has been applied in fish species (Dupont-Nivet et al. 2002; Dupont-Nivet et al. 2006; Bosworth and Waldbieser 2014), hybrid striped bass (Wang et al. 2006), sea bass, Dicentrarchus labrax L. (Saillant et al. 2006), and carp (Vandeputte et al. 2004). This design has also been used to increase effective number of breeders in fish hatcheries (Busack and Knudsen 2007). Since catfish have high fecundity and have external fertilization which allows access and handling of gametes from male and female parents, the use of NC II mating design to estimate additive (GCA) and dominance (SCA) genetic effects is possible.

References

- Adebambo, A.O. 2011. Combining abilities among four breeds of chicken for feed efficiency variation: a preliminary assessment for chicken improvement in Nigeria. Tropical Animal Health and Production 43:1465-1466.
- Allard, R.W. 1960. Principles of Plant Breeding, John Wiley and Sons Inc, New York, USA.
- Argue, B.J., Z. Liu, and R.A. Dunham. 2003. Dress-out and fillet yields of Channel Catfish, *Ictalurus punctatus*, Blue Catfish, *I. furcatus*, and their F1, F2 and backcross hybrids. Aquaculture 228:81–90.
- Arias, C.R., W. Cai, E.J. Peatman, and S.A. Bullard. 2012. Catfish hybrid *Ictalurus punctatus* × *I. furcatus* exhibits higher resistance to columnaris disease than the parental species. Diseases of Aquatic Organisms 100:77–81.
- Azad, M.A.K., M. Shah-E-Alam, M.A. Hamid, M.Y. Rafii, and M.A. Malek. 2014. Combining ability of pod yield and related traits of groundnut (*Arachis hypogaea L.*) under salinity stress. The Scientific World Journal 589586:1-7.
- Bao, Y., S. Wang, X. Wang, Y. Wang, X. Li, et al. 2009. Heterosis and combining ability for major yield traits of a new wheat germplasm Shannong 0095 derived from Thinopyrum intermedium. Agricultural Sciences in China 8(6):753-760.
- Bondari, K., 1983. Response to bidirectional selection for body weight in channel catfish. Aquaculture 33, 73–81.
- Bosworth, B.G. 2012. Effects of winter feeding on growth, body composition, and processing traits of co-cultured blue catfish (*Ictalurus furcatus*), channel catfish (*I. punctatus*) and channel catfish × blue catfish hybrids. National American Journal of Aquaculture 74:553–559.
- Bosworth, B.G. and G. Waldbieser. 2014. General and specific combining ability of male blue catfish (*Ictalurus furcatus*) and female channel catfish (*Ictalurus punctatus*) for growth and carcass yield of their F1 hybrid progeny. Aquaculture 420–421:147–153.
- Bosworth, B.G., W.R. Wolters, J.L. Silva, R.S. Chamul, and S. Park. 2004. Comparison of production, meat yield, and meat quality traits of NWAC 103 line channel catfish (*Ictalurus punctatus*), Norris line channel catfish, and channel catfish female × blue catfish male (*I. furcatus*) F1 hybrids. National American Journal of Aquaculture 66:177– 183.
- Bosworth, B.G., W.R. Wolters, J.L. Silva, R.S. Chamul, and S. Park. 2004. Comparison of production, meat yield, and meat quality traits of NWAC 103 line channel catfish (*Ictalurus punctatus*), Norris line channel catfish, and channel catfish female × blue

catfish male (*I. furcatus*) F1 hybrids. National American Journal of Aquaculture 66:177–183.

- Brown, T., J. Chappell, and C. Boyd. 2011. A commercial-scale, in-pond raceway system for Ictalurid catfish production. Aquacultural Engineering 72-79.
- Burch, E.P. 1986. Heritabilities for body weight, feed consumption and feed conversion and the correlations among these traits in channel catfish, *Ictalurus punctatus*. Master's Thesis. Auburn University, Auburn, Alabama.
- Busack, C., and C. M. Knudsen. 2007. Using factorial mating designs to increase the effective number of breeders in fish hatcheries. Aquaculture 273:24–32.
- Chappell, J.A. 1979. An evaluation of twelve genetic groups of catfish for suitability in commercial production. Doctoral Dissertation. Auburn University, Auburn, Alabama.
- Chigeza, G., K. Mashingaidze, and P. Shanahan. 2014. Advanced cycle pedigree breeding in sunflower. II: combining ability for oil yield and its components. Euphytica 195(2):183-195.
- Comstock, R.E., and H.F. Robinson. 1952. General vs. specific combining ability in single crosses of corn. A breeding procedure designed to make maximum use of both general and specific combining ability. Journal of American Society of Agronomy 41:360–367.
- Dey, S.S., N. Singh, R. Bhaatia, C. Parkash, and C. Chandel. 2014. Genetic combining ability and heterosis for important vitamins and antioxidant pigments in cauliflower (*Brassica oleracea var. botrytis L.*). Euphytica 195(2):169-181.
- Drescher, D. 2017. Combining ability of channel catfish (*Ictalurus punctatus*) females and blue catfish (*I. furcatus*) males for tolerance of low oxygen. Master's Thesis. Auburn University, Auburn, Alabama.
- Dunham, R. A. 2011. Aquaculture and fisheries biotechnology: genetic approaches, 2nd edition. CAB International, Cambridge, MA, USA.
- Dunham, R. A., and D. A. Perera. 2014. The history of the aquaculture genetics program at Auburn University. Aquaculture 420–421:3–7.
- Dunham, R. A., and R. O. Smitherman. 1984. Ancestry and breeding of channel catfish in the United States. Circular 273. Alabama Agricultural Experiment Station, Auburn University, AL.
- Dunham, R.A. 1981. Response to selection and realized heritability for body weight in three strains of channel catfish grown in earthen ponds. Doctoral Dissertation, Auburn University, Alabama.

- Dunham, R.A., A.C.R. Ramboux, and D.A. Perera. 2014a. Effect of strain on the growth, survival and sexual dimorphism of channel × blue catfish hybrids grown in earthen ponds. Aquaculture 420–421, S20–S24.
- Dunham, R.A., A.C.R. Ramboux, and D.A. Perera. 2014b. Effect of strain on tolerance of low dissolved oxygen of channel × blue catfish hybrids. Aquaculture 420–421, S25–S28.
- Dunham, R.A., and B.J. Argue. 1998. Seinability of Channel Catfish, Blue Catfish, and F1, F2, F3 and backcross hybrids in earthen ponds. Progressive Fish-Culturist 60:214–220.
- Dunham, R.A., and R.E. Brummett. 1999. Response of two generations of selection to increased body weight in channel catfish, *Ictalurus punctatus* compared to hybridization with blue catfish, *I. furcatus*, males. Journal of Applied Aquaculture 9:37–45.
- Dunham, R.A., and R.O. Smitherman, R.O., 1983b. Response to selection and realized heritability for body weight in three strains of channel catfish, *Ictalurus punctatus*, grown in earthen ponds. Aquaculture 33:88–96.
- Dunham, R.A., and R.O. Smitherman. 1983a. Crossbreeding channel catfish for improvement of body weight in earthen ponds. Growth 47:97–103.
- Dunham, R.A., and R.O. Smitherman. 1985. Improved growth rate, reproductive performance and disease resistance of crossbred and selected catfish from AU-M and AU-K lines. Circular 279. Alabama Agricultural Experiment Station, Auburn University, AL.
- Dunham, R.A., and Smitherman, R.O., 1987. Genetics and breeding of catfish. Southern Cooperative Series Bulletin 325, Southern Regional Research Project S-168. Alabama Agricultural Experiment Station, Auburn University, Alabama.
- Dunham, R.A., G.M. Umali, R. Beam, A.H. Kristanto, and M. Trask. 2008. Comparison of production traits of NWAC103 Channel Catfish, NWAC103 Channel Catfish × Blue Catfish hybrids, Kansas select 21 Channel Catfish, and Blue Catfish grown at commercial densities and exposed to natural bacterial epizootics. North American Journal of Aquaculture 70:98–106.
- Dunham, R.A., K. Majumdar, E. Hallerman, G. Hulata, G. Mair, D. Bartley, M. Gupta, Z. Liu, N. Pongthana, P. Rothlisberg, and G. Horstweeg-Schwark. 2001. Status of aquaculture genetics and prospects for the third millenium. Proceedings Conference on Aquaculture in the Third Millenium, Bangkok 129–157.
- Dunham, R.A., R.E. Brummett, M.O. Ella, and R.O. Smitherman. 1990. Genotype-environment interactions for growth of Blue, Channel, and hybrid catfish in ponds and cages at varying densities. Aquaculture 85:143–151.
- Dunham, R.A., R.O. Smitherman, and R.K. Goodman. 1987. Comparison of mass selection, crossbreeding, and hybridization for improving growth of Channel Catfish. Progressive Fish-Culturist 49:293–296.

- Dunham, R.A., R.O. Smitherman, R. Goodman, and P. Kemp. 1986. Comparison of strains, crossbreeds and hybrids of channel catfish for vulnerability to angling. Aquaculture 57:193–201.
- Dupont-nivet, M., M. Vandeputte, and B. Chevassus. 2002. Optimization of factorial mating designs for inference on heritability in fish species:361–370.
- Dupont-nivet, M., M. Vandeputte, P. Haffray, and B. Chevassus. 2006. Effect of different mating designs on inbreeding , genetic variance and response to selection when applying individual selection in fish breeding programs 252:161–170.
- EI-Ibiary, H.M., and J.A. Joyce. 1978. Heritability of body size traits, dressing weight, and lipid content in channel catfish. Journal of Animal Science 47:82–88.
- El-Ibiary, H.M., J.W. Andrews, J.A. Joyce, J.W. Page, and H.L. Deloach. 1976. Sources of variations in body size traits, dressout weight, and lipid content in channel catfish, *Ictalurus punctatus*. Transactions of the American Fisheries Society 105:267–272.
- Eknath, A.E., M.M. Tayamen, M.S. Palada-de Vera, J.C. Danting, R.A. Reyes, E.E. Dionisio, J.B. Capili, H.L. Bolivar, T.A. Abella, A.V. Circa, H.B. Bentsen, B. Gjerde, T. Gjedrem, and R.S.V. Pullin, 1993. Genetic improvement of farmed tilapias: the growth performance of eight strains of *Orechromis niloticus* tested in different farm environments. Aquaculture 111:171-188.
- Ella, M.O. 1984. Genotype-environment interactions for growth rate of Blue, Channel, and hybrid catfish grown at varying stocking densities. Master's Thesis. Auburn University, Auburn, Alabama.
- Fahasat, P., A. Rajabi, J. M. Rad, and J. Derera. 2016. Principles and Utilization of Combining Ability in Plant. Biometrics and Biostatistics International Journal 4(1):1–24.
- Falconer, D.S. and T.F.C. McKay. 1996. Introduction to quantitative genetics. 4th edition. Longman, Essex, England.
- FAO. 2011. United States of America. National Aquaculture Sector Overview Fact Sheets. In FAO Fisheries and Aquaculture Department, Rome.
- Fisher, R.A. 1918. The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh 52:399-433.
- Franco, M.C., S.T. Cassini, V.R. Oliveira, C. Vieira, S.M. Tsai, et al. 2001. Combining ability for nodulation in common bean (Phaseolus vulgaris L.) genotypes from Andean and Middle American gene pools. Euphytica 118(3):265-270.

- Gima, M. E., A. Gima, A. Hutson, A. Chaimongkol, R. Beam, D. A. Perera, and R. A. Dunham. 2014. Realized heritability and response to selection for fecundity, hatching rate and fry / Kg for channel catfish females (*Ictalurus punctatus*) induced to ovulate and fertilized with blue cat fi sh (*Ictalurus furcatus*) males for the production of hybri. Aquaculture 420–421:S36–S41.
- Giudice, J.J. 1966. Growth of Blue × Channel catfish hybrid as compared to its parent species. Progressive Fish-Culturist 28:142–145.
- Gjerde, B. 1986. Growth and reproduction in fish and shellfish. Aquaculture 57:37–55.
- Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing system. Australian Journal of Biological Science 9:463-493.
- Gunnes, K., and T. Gjedrem. 1978. Selection experiments with salmon IV. Growth of Atlantic salmon during two years in the sea. Aquaculture 15:19-33.
- Hallauer, A.R. 2007. History contribution and future of quantitative genetics in plant breeding: Lessons from maize. Crop Science 47:4-19.
- Hallauer, A.R., and J.B. Miranda. 1981. Quantitative genetics in maize breeding. Iowa State University Press, Ames.
- Hallauer, A.R., and J.B. Miranda. 1988. Quantitative genetics in maize breeding, 2nd edition. Iowa State University Press, Ames, IA, USA.
- Hanson T., and D. Sites. 2015. 2014 U.S. Catfish Database. USDA National Agricultural Statistics Service (NASS), Mississippi Agricultural Statistics Service (MASS).
- Hill, J., H.C. Becker, and P.M.A. Tigerstedt. 1998. Quantitative and ecological aspects of plant breeding. Chapman and Hall, UK, London.
- Huang, Y.W., R.T. Lowell, and R.A. Dunham. 1994. Carcass characteristics of Channel and hybrid catfish, and quality changes during refrigerated storage. Journal of Food Sciences 59:64–66.
- Jacobs, J.M., S. Lindell, W.V. Heukelem, E.M. Hallerman, and E.M. Harrell. 1999. Strain evaluation of striped bass (*Morone saxatilis*) under controlled conditions. Aquaculture 173:171-177.
- Jonasson, J. 1996. Selection experiments on Atlantic salmon ranching. II. Variation among release sites and strains for return rate, body weight and ratio of grilse to total return. Aquaculture 144:277-294.

- Joshi, S.K., S.N. Sharma, D.L. Singhania, and R.S. Sain. 2004. Combining ability in the F1 and F2 generations of diallel cross in hexaploid wheat (*Triticum aestivum L. em. Thell*). Hereditas 141(2):115-121.
- Kanis, E., T. Refstie, and T. Gjedrem. 1976. A genetic analysis of egg, alevin and fry mortality in salmon (*Salmo salar*), sea trout (*Salmo trutta*) and rainbow trout (*Salmo gairdneri*). Aquaculture 8:259-268.
- Kincaid, H.L. 1981. Trout Salmon Registry. FWS/NFC-L/81–1. US Fish and Wildlife Service, Kearneysville, West Virginia.
- Kincaid, H.K., L.J. Mengel, and S. Brimm. 2000. National fish strain registry catfish. Species tables of reported strains and broodstocks. Publication NFSR-C, U.S. Fish and Wildlife Service and U.S. Geological Survey, Wellsboro, Pennsylvania, USA.
- Kulembeka, H.P., M. Ferguson, L. Herselman, E. Kanju, G. Mkamilo, et al. 2012. Diallel analysis of field resistance to brown streak disease in cassava (*Manihot esculenta Crantz*) landraces from Tanzania. Euphytica 187(2):277-288.
- Li, M.H., E.H. Robinson, B.B. Manning, D.R. Yant, N.G. Chatakondi, B.G. Bosworth, and W.R. Wolters. 2004. Comparison of the Channel Catfish, *Ictalurus punctatus*, (NWAC103 strain) and the Channel × Blue catfish, *I. punctatus* × *I. furcatus*, F1 hybrid for growth, feed efficiency, processing yield, and body composition. Journal of Applied Aquaculture 15:63–71.
- Luo, W., C. Zeng, S. Yi, N. Robinson, W. Wang, and Z. Gao. 2014. Heterosis and combining ability evaluation for growth traits of blunt snout bream (*Megalobrama amblycephala*) when crossbreeding three strains. China Science Bulletin 59(9):857-864.
- Lutz, C.G. 2001. Practical genetics for aquaculture. Fishing News Books, Blackwell Scientific Publications, Iowa State Press, USA.
- Lutz, C.G., A.M. Armas-Rosales, and A.M. Saxton. 2010. Genetic effect influencing in six varieties of tilapia (*Oreochromis*) and their reciprocal crosses. Aquaculture Research 41(11):e770-e780.
- Macaranas, J.M., P.B. Mather, S.N. Lal, T. Vereivalu, M. Lagibalavu, and M.F. Capra. 1997. Genotype and environment: A comparative evaluation of four tilapia stocks in Fiji. Aquaculture 150:11-24.
- Makanda, I., P. Tongoona, J. Derera, J. Sibiya, and P. Fato. 2010. Combining ability and cultivar superiority of sorghum germplasm for grain yield across tropical low- and mid-altitude environments. Field Crops Research 116:75-85.

Milić, D., S. Katić, Đ. Karagić, J. Gvozdanović-Varga, S. Petrović, and J. Boćanski. 2011. Genetic control of agronomic traits in alfalfa (*M. sativa ssp. sativa L.*). Euphytica 182(1):25-33.

Multistate Research Project. 2015. Hybrid catfish production and performance 1031:1-2.

National Agricultural Statistic Service (NASS). 2016. Catfish Processing Report.

- National Oceanic and Atmospheric Administration (NOAA). Fisheries of the United States. 2015. http://www.st.nmfs.noaa.gov/commercial-fisheries/fus/fus15/.
- Okamoto, N., T. Tayaman, M. Kawanobe, N. Fujiki, Y. Yasuda, and T. Sano. 1993. Resistance of a rainbow trout strain to infectious pancreatic necrosis. Aquaculture 117:71–76.
- Overturf, K., M.T. Casten, S.L. LaPatra, C. Rexroad III, and R.W. Hardy. 2003. Comparison of growth performance, immunological response and genetic diversity of five strains of rainbow trout (*Oncorhynchus mykiss*). Aquaculture 217:93-176.
- Padi, J.N. 1995. Response and correlated responses to four generations of selection for increased body weight in the Kansas strain channel catfish, *Ictalurus punctatus*, grown in earthen ponds. Master's Thesis. Auburn University, Auburn, Alabama.
- Quinton, C.D., L.R. McKay, and I. McMillan. 2004. Strain and maturation effects on female spawning time in diallel crosses of three strains of rainbow trout (*Oncorhynchus mykiss*). Aquaculture 234:99-110.
- Reagan, R.E. 1979. Heritabilities and genetic correlations of desirable commercial traits in channel catfish. Mississippi Agriculture and Forestry Experiment Station Resource Report. Stoneville, Mississippi.
- Reagan, R.E., and C.M. Conley. 1977. Effect of egg diameter on growth of channel catfish. Progressive Fish-Culturist 39:133–134.
- Reddy, P.V.G.K., B. Gjerde, S.D. Tripathi, R.K. Jana, K.D. Mahapatra, S.D. Gupta, J.N. Saha, M. Sahoo, S. Lenka, P. Govindassamy, M. Rye, and T. Gjedrem. 2002. Growth and survival of six stocks of rohu (*Labeo rohita, Hamilton*) in mono and polyculture production systems. Aquaculture 203:239-250.
- Refstie, T., T.E. Steine, and T. Gjedrem. 1977. Selection experiments with salmon. II. Proportion of Atlantic salmon smoltifying at 1 year of age. Aquaculture 10:231-242.
- Rezk, M.A. 1993. Response and correlated responses to three generations of selection for increased body weight in channel catfish, *Ictalurus punctatus*, grown in earthen ponds. Doctoral Dissertation, Auburn University, Alabama.

- Rezk, M. A., R. O. Smitherman, J. C. Williams, A. Nichols, H. Kucuktas, and R. A. Dunham. 2003. Response to three generations of selection for increased body weight in channel catfish, *Ictalurus punctatus*, grown in earthen ponds. Aquaculture 228:69–79.
- Saillant, E., M. Dupont-Nivet, P. Haffray, and B. Chatain. 2006. Estimates of heritability and genotype–environment interactions for bodyweight in sea bass (*Dicentrarchus labrax L.*) raised under communal rearing conditions. Aquaculture 254:139–147.
- Shikano, T., M. Nakadate, and Y. Fujio. 2000. An experimental study on strain combinations in heterosis in salinity tolerance of the guppy *Poecilia reticulate*. Fisheries Science 66(4):625-632.
- Shukla, S.K., and M.P. Pandey. 2008. Combining ability and heterosis over environments for yield and yield components in two-line hybrids involving thermosensitive genic male sterile lines in rice (*Oryza sativa L*.). Plant Breeding 127(1):28-32.
- Small, B.C. 2006. Improvements in channel catfish growth after two generations of selection and comparison of performance traits among channel catfish, blue catfish, and hybrid catfish fingerlings in an aquarium rack system. North American Journal of Aquaculture 68:92– 98.
- Smitherman, R.O., and R.A. Dunham. 1985. Genetics and breeding. *in* C.S. Tucker, editor. Channel catfish culture. Developments in Aquaculture and Fisheries Science 15. Elsevier Science Publishing Company Inc., Amsterdam.
- Sprague, G.F., and L.A. Tatum 1942. General vs. specific combining ability in single crosses of corn. Journal of American Society of Agronomy 34:923–932.
- Stanton, J.M. 2001. Galton, Pearson, and the peas: A brief history of linear regression for statistics instructors. Journal of Statistics Education 9(3).
- Steeby, J.A., and B.A. Wagner. 2006. Broodstock trends in the southeastern U.S. catfish industry. Abstract Catfish Research Symposium. Catfish Farmers of America, Annual Meeting 2006. San Antonio, TX, USA.
- Su, S., P. Xu, and X. Yuan. 2013a. Estimates of combining ability and heterosis for growth traits in a full diallel cross of three strains of common carp , *Cyprinus carpio L*. African Journal of Biotechnology 12(22):3514–3521.
- Tave, D. 1993. Genetics for fish hatchery managers. 2nd edition. New York: Van Nodtrand. Reinhold 212-213.
- Tave, D., A. McGinty, J. A. Chappell, and R. O. Smitherman. 1981. Relative harvestability by angling of Blue Catfish, Channel Catfish, and their reciprocal hybrids. North American Journal of Aquaculture 1:73–76.

- Topal, A., C. Aydın, N. Akgun, and M. Babaoglu. 2004. Diallel cross analysis in durum wheat (*Triticum durum Desf.*): identification of best parents for some kernel physical features. Field Crops Research 87:1-12.
- Tosh, J.J., A.F. Garber, E.A. Trippel, and J.A.B. Robinson. 2010. Genetic, maternal, and environmental variance components for bodyweight and length of Atlantic cod at 2 points in life. Journal of Animal Science 88:3513–3521.
- Unwin, M.J., M.T. Kinnison, N.C. Boustead, and T.P. Quinn. 2003. Genetic control over survival in Pacific salmon (*Oncorhynchus spp.*): experimental evidence between and within populations of New Zealand Chinook salmon (*O. tshawytscha*). Canadian Journal of Fisheries and Aquatic Sciences60:1-11.
- USDA, 2003. Catfish 2003 part 1: reference of fingerling catfish health and production practices in the United States, 2003. USDA.APHIS.VS.CEAH, Fort Collins, CO, USA.
- Vandeputte, M.K., E. Quillet, and B. Chevassus. 2002. Early development and survival in brown trout (*Salmo trutta fario L*.). Indirect effects of selection for growth rate and estimation of genetic parameters. Aquaculture 204:435–445.
- Vandeputte, M.K., S. Mauger, M. Dupont-Nivet, D. De Guerry, M. Rodina, D. Gela, D. Vallod,
 B. Chevassus, and O. Linhart. 2004. Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (*Cyprinus carpio L*.).
 Aquaculture 235:223–236.
- Wagner, B.A., D.J. Wise, L.H. Khoo, and J.S. Terhune. 2002. The epidemiology of bacterial diseases in food-size channel catfish. Journal of Aquatic Animal Health 14:263–272.
- Wang, B., W. Gu, H. Gao, G. Hu, and R. Yang. 2014. Longitudinal genetic analysis for growth traits in the complete diallel cross of rainbow trout (*Oncorhynchus mykiss*). Aquaculture 430:173-178.
- Wang, X., K.E. Ross, E. Saillant, D.M. Gatlin III, and J.R. Gold. 2006. Quantitative genetics and heritability of growth-related traits in hybrid striped bass (*Morone chrysops × Morone saxatilis*). Aquaculture 261:535–545.
- Wilham, R.L. 1980. Problems in estimating maternal effects. Livestock Production Science 7:405–418.
- Wolters, W. R., and M. R. Johnson. 1995. Analysis of a diallel cross to estimate effects of crossing on resistance to enteric septicemia in channel catfish, *Ictalurus punctatus*. Aquaculture 137(1–4):263–269.
- Wolters, W. R., and T. R. Tiersch. 2004. Genetics and breeding. Pages 95–128 *in* C.S. Tucker, and J.A. Hargreaves, editor. Biology and culture of channel catfish. Elsevier B.V. Amsterdam, The Netherlands.

- Wolters, W.R., D.J. Wise, and P.H. Klesius. 1996. Survival and antibody response of Channel Catfish, Blue Catfish and Channel Catfish female × Blue Catfish male hybrids after exposure to *Edwardsiella ictaluri*. Journal of Aquatic Animal Health 8:249–254.
- Yant, D. 1975. Production of hybrid blue *Ictalurus furcatus* (Lesueur) male, channel *I. punctatus* (Rafinesque) female catfish and channel catfish in earthen ponds. Master's Thesis. Auburn University, Alabama.
- Yant, D.R., R.O. Smitherman, and O.L. Green. 1976. Production of hybrid (Blue × Channel) catfish and Channel Catfish in ponds. Proceedings of the Southeast Association of the Fish and Game Commission 29:82–86.
- Zhou, W. 2017. An overview of recently published global aquaculture statistics. FAO Aquaculture Newsletter No. 56 (April):6-8.

CHAPTER TWO

Introduction

Catfish has been the leading aquaculture commodity in the US for 3-4 decades. However, in the past years few years, US catfish production has suffered decline because of increased production costs and failure to compete with imported cheap catfish, resulting in a significant decrease in the number of catfish farms and US catfish sales (USDA 2013).

The hybrid catfish from crossing the channel catfish female and blue catfish male ($C \times B$) can help address the problems of the ailing catfish industry. The hybrid catfish is preferred for its faster growth (Giudice 1966; Yant et al. 1976; Dunham et al. 1987, 1990, 2008; Dunham and Brummett 1999; Argue et al. 2003; Li et al. 2004; Brown et al. 2011), better FCR (Yant et al. 1976; Li et al. 2004), tolerance to low dissolved oxygen (Dunham et al. 1983), increased bacterial disease resistance diseases (Ella 1984; Wolters et al. 1996; Dunham et al. 2008; Arias et al. 2012), uniformity in size and shape (Yant et al. 1976; Dunham et al. 1982; Brooks et al. 1982a, 1982b), high dressout percentage and fillet yield (Yant 1975; Chappell 1979; Huang et al. 1994; Argue et al. 2003; Bosworth et al. 2004; Bosworth 2012), increased harvestability (Yant et al. 1976; Chappell 1979; Dunham and Argue 1998), and angling vulnerability (Tave et al. 1981; Dunham et al. 1986).

Currently, approximately 70% of catfish production and processing is hybrid catfish in the US catfish industry (Nagaraj Chatakondi, USDA-ARS, personal communication). However,

the performance of hybrid catfish varies due to parental strain and individual genetic effects (Dunham et al. 1987; Bosworth et al. 1998; Bosworth et al. 2004; Dunham et al. 2014a, 2014b).

Currently, a small number of catfish hatcheries produce most of the hybrid fingerlings, which are sold to numerous independent grow-out catfish farmers (Bosworth and Waldbieser, 2014). The hybrid catfish is not a panacea, and the early performance of the F1 C×B hybrid catfish during the fry and fingerling stage can be affected by infectious diseases and parasites (Silverstein et al. 2008; Beecham et al. 2011; Griffin et al. 2014). The early growth of the F1 C×B hybrid fingerlings has production implications. The ultimate goal is to grow fry to fingerlings and fingerlings to food fish as quickly as possible, preferably within a year for a single-batch cropping. Tucker and Robinson (1990) suggested that the optimum fingerling size for single-batch cropping in the case of channel catfish is a 30-40 g per fish. Pomerleau and Engle (2005) reported that stocking larger fingerlings significantly (P<0.05) increased the total yield, net yield, final weight, final length and FCR of catfish. Larger fingerlings grow faster to market-size. However, these fingerlings are more expensive as they require more space and time to produce. Hence, production of an F1 C×B hybrid catfish fingerling with a desirable early growth performance traits would be an important goal for selective breeding programs.

Reciprocal recurrent selection which is the selection of purebred parents based on the hybrid progeny performance offers great promise to genetically improve the desirable traits of hybrid catfish. To achieve this purpose, information about the combining ability of the parents and their performance in hybrid combination is a prerequisite to develop the most efficient and effective breeding plans (Salem and Ali 2012). Griffing (1956) proposed the partition of the total genetic variation into general combining ability (GCA) of the parents and specific combining ability (SCA) of the crosses. Sprague and Tatum (1942) defined GCA as the average

performance of the parental lines in hybrid combinations while SCA as the performance of a combination of parents in a specific cross. The estimation of GCA and SCA has been widely used for developing the corn breeding program and has been applied to various breeding programs for plants and animals including fish (Wolters and Johnson 1995; Vandeputte et al. 2004; Saillant et al. 2006; Wang et al. 2006; Lutz et al. 2010; Su et al. 2013a; Bosworth and Waldbieser 2014; Luo et al. 2014; Drescher 2017).

However, there are very few analyses of GCA and SCA for economic traits of catfish such as growth and carcass yield of market size F1 hybrid catfish (Bosworth and Waldbieser 2014), oxygen tolerance (Drescher 2017) and resistance to enteric septicemia in channel catfish (Wolters and Johnson 1995).

Bosworth and Waldbieser (2014) reported that GCA of the parental dam was more important in controlling the carcass yield and harvest weight of F1 hybrids. Similarly, GCA was also found important in the expression of traits pertaining to the tolerance of hybrid catfish to low dissolved oxygen (Drescher 2017) and resistance to enteric septicemia in Norris and Marion x Kansas strains of channel catfish (Wolters and Johnson 1995). These results suggest the potential of combining ability estimation for selection to improve the desired traits of catfish.

Combining ability estimation is considered useful indirect criterion for selecting elite parents. With this, general and specific combining abilities are important indicators for expressing the potential value of catfish parents that can produce consistently better performing F1 hybrid catfish. The GCA and SCA variances provide estimation for additive and non-additive gene action, respectively (Falconer 1989). The exploration and estimation of such gene actions can be used to select for elite parent lines and produce improved F1 hybrid catfish.

Although, the channel blue hybrid catfish is genetically superior to the parent species, it could be further improved for growth rate, disease resistance and dressout percentage. Additionally, a recent industry problem is variable growth by hybrids and a partial solution to that problem could be from genetic selection. To determine the potential for genetically improving these traits for hybrid catfish, the combining abilities of the parent species must be estimated. No research has been conducted yet to determine and estimate the combining abilities for early performance traits of F1 hybrid catfish. In the current study, the GCA and SCA effects of parental channel catfish and blue catfish to the performance of their F1 hybrid progeny was estimated following NC II factorial mating design of Hallauer (2007).

The objectives of this research were to estimate the GCA and SCA for the early performance traits of channel catfish female x blue catfish male F1 hybrid progeny such as: a) body weight, and body weight gain; b) coefficient of variation in body weight; c) resistance to *Aeromonas hydrophila*, and; d) dressout percentage. Additionally, the individual combining abilities of the parents were determined. The genetic variance components for early performance traits of hybrids during an initial 311 days of tank rearing in a flow-through system, and after an additional 245 days of tank rearing in a recirculating system and communal rearing in split-pond were determined. The best parental genotypes with high GCA and best parental cross with high SCA that produce superior performing hybrid catfish were identified. This research will be beneficial to improving the selection and breeding programs for hybrid catfish production.

Materials and Methods

Experimental fish

Twenty females from nine strains of channel catfish were crossed with twelve males from four strains of blue catfish to produce F1 C×B hybrid catfish progeny. The nine strains of female channel catfish were Tishomingo, AR, Kansas Select, Kansas Random, ARMK, Kansas × Thompson, Rio Grande, Thompson, and mixed strains. The four strains of male blue catfish were D&B, Rio Grande, D&B × Rio Grande, and Tombigbee. These fish were maintained at the Fish Genetics Unit, E.W. Shell Fisheries Research Center, Auburn University, Alabama. All procedures involving the handling and treatment of fish in this study were approved by the Auburn University Institutional Animal Care and Use Committee (AU-IACUC).

The twenty channel catfish females (dams) were from nine strains. The strains used included Kansas Random which originated from Ninnescah River in 1911, and is the oldest domestic strain of channel catfish (Dunham and Smitherman 1984). This strain was randomly bred and has the traits increased resistance to disease, rapid growth, and late sexual maturity. Kansas Select, a line derived from Kansas random that has been selected for body weight for eight generations. AR line which was derived from the crossbreeding of Auburn and Rio Grande strains followed by 6 generations of mass selection for body weight. Traits of this line include spawning late in the season. ARMK, was initiated by producing a 4-way crossbreed (Auburn X Rio Grande) X (Marion X Kansas) followed by 6 generations of mass selection, these fish are also late spawners. Thompson strain originated from the Yazoo River, MS, and on-farm selection was conducted for several traits including body size, disease resistance, and early spawning. Tishomingo strain originated from the Tishomingo federal hatchery in Oklahoma. Kansas X Thompson was a F1 crossbreed between Kansas random females and Thompson males. Rio

Grande a single surviving wild female of a collection of 50 fish from the Rio Grande River, Texas. Traits of individuals of this strain collected 40 years ago included high dress out percentage, susceptibility to disease, slow growth, large sexual dimorphism for body weight, high fecundity, small egg size, and maturity at two years of age. Mix strain was initiated by the mixing of multiple strains.

The twelve blue catfish males (sires) were from four strains. These included: Tombigbee (TBB), which originated from the Tombigbee River. Rio Grande was from the Rio Grande River in Texas, and has distinctive spots on the entire body. D&B originating from D&B Fish Farms in Crockett, TX and, were selected for small head size (Dunham and Smitherman 1984). DxR was an F1 crossbreed between D&B females and Rio Grande males.

Matings

Twenty channel catfish females were crossed with twelve blue catfish males following a complete factorial mating design in May 2015. Maternal half-sib, paternal half-sib, and full-sib families of F1 C×B hybrid catfish progeny were produced. However, due to poor survival of some crosses, 40 families were obtained resulting in an unbalanced design (Fig. 2.1).

Spawning procedures

Sexually mature male blue catfish with large muscular heads were selected and sacrificed by cranial percussion. The testes were surgically excised and macerated in 0.9% salt solution to produce sperm suspensions. The suspensions were stored in plastic tubes and refrigerated.

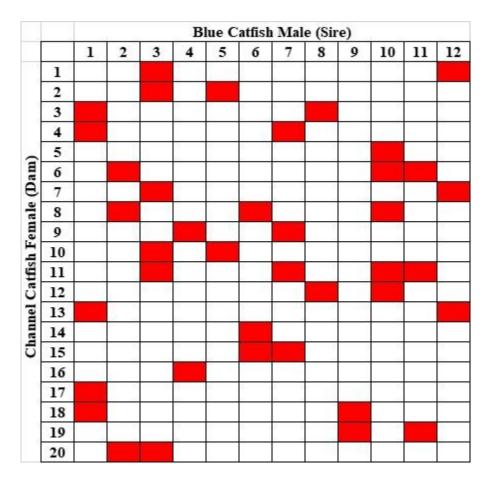


Figure 2. 1 Lay-out of factorial mating design used to cross twenty channel catfish (*I. punctatus*) females with twelve blue catfish (*I. furcatus*) males. The 40 hybrid families obtained are highlighted with red.

The females with the classic signs of readiness for spawning, including a soft, distended belly and a genital opening that is red and swollen (Dunham and Masser 2012; Su et al. 2013b) were selected for hormone induced ovulation. These females were injected with luteinizing hormone analog (LHRHa) at 100 μ g/kg via intraperitoneal implants and were placed in spawning bags (the same as ¼-inch mesh laundry bags) suspended in holding vats with flow-through water and aeration. The dissolved oxygen was maintained above 5 mg/L and the water temperature at 26-30°C. The females were checked for ovulation (presence of eggs released and sticking in their bags) about 36-72 hours after hormone injection. Females that had ovulated were anesthetized with 150 parts per million (ppm) of buffered 100ppm tricaine methane sulfonate (MS-222), rinsed with hatchery water, and dried with towel. Through application of abdominal pressure, the eggs were hand stripped and placed into a stainless pan coated with vegetable oil to prevent the eggs from sticking to the pan. Eggs from each female were divided equally into aliquots based on the number of males for the factorial mating design and placed in a pan coated with vegetable oil. Sperm solution from each male was mixed with each aliquot of eggs. Hatchery water was then added to activate the fertilization. The fertilized egg masses were moved to a trough to allow them to water harden for 15-20 minutes. After this, the eggs were moved to another trough with egg baskets and fry catchers. Fry catchers made of fine mesh nylon netting were used to prevent the newly hatched fry from escaping outside the basket.

Fish husbandry

After the eggs hatched, 210 fry from each family were stocked in three replicate 60cm x 30cm x 50cm glass aquaria at a stocking density of 70 fry per aquarium with flow-through water and aeration. The water quality parameters were maintained at flow rate of 4 L/minute, water temperature at 26 – 28°C and dissolved oxygen at >5 mg/L with the use of air diffusers. Each aquarium was labeled with the family information. The fry were initially fed the Purina® AquaMax® powdered starter diet containing 50% protein until they reached 2.5cm in size. From 2.5-3.8 cm the fish were fed Purina® AquaMax® 100 diet containing 50% protein, from 3.8-5 cm they were fed Purina® AquaMax® 200 containing 50% protein, and from 5-7.6 cm Purina® AquaMax® 300 containing 50% protein. Fish were fed *ad libitum* daily. After 311 days of separate tank rearing in flow-through system, all fish were injected individually with a PIT tag (model MiniHPT8, 8.4mm, 132.2 kHz ISO FDX-B; Biomark, Boise, Idaho) into the mid-section of the abdomen.

For the next 245 days of rearing, 50% of the fish from each family were stocked and reared in a communal split-pond system with total area of 526 square-meter, depth of 1.5 meter, and volume of 789 cubic-meter. The remaining 50% of the fish from each family were kept in their original separate aquaria tank. The flow-through aquaria system was then converted into a recirculating aquaria system to allow additional 245 days rearing of fish in separate tanks. The fish in separate tanks were fed with Purina® AquaMax® 300 containing 50% protein while the fish in communal split-pond were fed *ad libitum* with 32% protein floating catfish pellets from Alabama Catfish Feedmill, LLC for 245 days.

Dissolved oxygen, ammonia, nitrite, pH, hardness, alkalinity and temperature were monitored and recorded throughout the two phases of the experiment period. Water quality parameters were maintained at their optimum levels, whereas, DO was >5mg/L, ammonia was <1 mg/L, nitrite was <0.05 mg/L, pH was between 6 and 7, hardness was between 40 and 70 mg/L, alkalinity was between 40 and 80 mg/L.

Natural infection from Aeromonas hydrophila

A natural *Aeromonas hydrophila* infection occurred during the second month of the initial 311-day rearing in the flow-through system, and lasted for 20 days. During that infection period, mortality was observed across the hybrid families. The causative agent for this infection was confirmed to be the non-virulent strain (AL-01) of the *Aeromonas hydrophila* following PCR analysis of the putative *Aeromonas* isolates obtained from the moribund fish samples.

Data gathering and analyses

After 311 days of separate tank rearing in flow-through system, data pertaining to early growth in terms of final body weight and body weight gain, coefficient of variation in size in

terms of body weight, and survival from *A. hydrophila* natural infection were gathered and recorded. After 245 days of additional tank rearing in the recirculating system and the communal split-pond rearing, body weight, weight gain, and dressout percentage in the communal split-pond system were measured. All data were analyzed to estimate the general and specific combining ability for the early performance traits of the hybrids in three different intensive rearing systems.

The following formulas were used to calculate the performance traits:

- a) Weight Gain (GW) = Final body weight (W_f) initial body weight (W_i);
- b) Specific Growth Rate (SGR) = $[(LnW_f LnW_i) / no. of days)] \times 100$

c) Coefficient of Variation (CV) = (Standard deviation of W_f / mean W_f) x 100 (Note: The calculation of the CV in size was only possible for hybrid catfish families that were reared in separate tanks which served as replicate units in the flow-through and recirculating system and not for those hybrids reared in only one communal split-pond.)

- d) Survival (%) = (Number of surviving fish / initial number of fish) x 100
- e) Actual dressout percentage ($DrO_A\%$) = (Dressout weight/Body weight) x 100
- f) Corrected dressout percentage $(DrO_C\%) = DrO_A\%$ [(body weight mean weight per family) x *b*-value between $DrO_A\%$ and body weight based on sex per family)] (Note: The *b*-value mentioned above was calculated using LINEST function in Microsoft Excel 2016).

In this study, the dressout weight is the weight of the gutted fish without the head, fins, and tail. The early dressout percentage of the F1 C×B hybrid catfish was corrected for the effects of gender and family variability. Patterns of sexually dimorphic growth and carcass yield have

been reported for hybrid catfish (Argue et al. 2003; Bosworth 2012), and channel catfish and blue catfish (Argue et al. 2003; Bosworth et al. 2004). The calculation of the *b*-value was done following the syntax for LINEST function in Microsoft Excel below:

b-value = LINEST (y_values, x_values)

Where, y_values is the dressout percentages of hybrids based on sex per family, x_values is the body weight of hybrids based on sex per family.

The statistical model I used as a genetic relationship matrix for the analysis of the early performance traits is stated below as suggested by Becker (1984) for factorial mating designs:

$$Y_{ijk} = \mu + S_i + D_j + (S \times D)_{ij} + e_{ijk}$$

Where, Y_{ijk} is the trait value for the mth hybrid progeny, μ is the overall mean, S_i is the random effect of the ith sire, D_j is the random effect of the jth dam, $(S \times D)_{ij}$ is the random effect of the cross between the ith sire and jth dam, and e_{ijk} is the random error.

The variance components are stated below following the genetic model II of Becker (1984):

$$\sigma^{2}s = cov_{hs(S)}$$

$$\sigma^{2}_{D} = cov_{hs(D)}$$

$$\sigma^{2}_{SD} = cov_{fs} - (cov_{hs(S)} + cov_{hs(D)})$$

$$\sigma^{2}_{e} = \sigma^{2}_{T} - cov_{fs}$$

Where, the variance components of sire (σ^2_S) and dam (σ^2_D) are equal to the covariance of half sibs (hs) of the sire groups and dam groups, respectively. The dam component also contains the maternal effect. The component for the cross (σ^2_{SD}) is the covariance of the full sibs (fs) minus the sum of the half sibs covariance from dams and sires. The variance for random error (σ^2_e) contains the remainder of the genetic variance and environmental variance. Given that this experiment had unbalanced data with missing values for some crosses, the Restricted Estimation of Maximum Likelihood (REML) was used as the standard procedure to estimate the genetic variance components for random effects of sire, dam, and cross and the associated variance-covariance matrix. The missing data were assumed to be random. The Best Linear Unbiased Predictors (BLUP) of individual sires, dams, and cross, and their standard errors were generated with Mixed Procedure of SAS (version 9.4, SAS, Cary, NC) to determine estimates of GCAs of sires, dams, and SCAs of crosses. All analyses were made at P=0.05.

The factorial mating design is an experiment that measures the variance of the male and female effects and the male x female interaction effects (Comstock and Robinson 1948). To evaluate the relative importance of the GCA and SCA effects, either of these effects must be significant (P<0.05). If both the GCA and SCA effects are not significant, then epistatic gene effects are responsible for the expression of the traits (Fehr 1993). According to Hallauer and Miranda (1988), male and female effects are equivalent to GCA effects for sire and dam, respectively, whereas, the male x female interaction effects are equivalent to SCA effects. For an unbalanced factorial mating design, the significance of these effects can be determined with the mean squares generated in the Type 3 Mixed Procedure of analyses of variance.

The estimate of combining ability using factorial mating design (NC II) determines the additive and non-additive components of genetic variance which are appropriate selection methods for selecting parents for efficient hybridization programs that can improve economically important quantitative characteristics. In this mating design, the GCA variances for sires and dams are equivalent to the sire and dam additive genetic variances, respectively; and the SCA variance is equivalent to the cross' dominant genetic variance (Cotterill et al. 1986). The highest

variance component was considered the most important genetic effect as it determines the type of gene action involved in the control and expression of the traits.

When the values of GCA and SCA variances are relatively close, the method of Longin et al. (2013) can be used to determine the importance of the SCA. Whereas, if $\frac{\sigma^2 SCA}{\sigma^2 GCAdam + \sigma^2 GCAsire} < 0.5$, the impact of SCA can be ignored.

Parents and/or cross from the more important genetic variance component were selected as best combiners based on their GCA and/or SCA estimates. The value of GCA or SCA estimates predicts the phenotypic deviation of the progeny to the overall population mean phenotype, whereas, the highest positive or negative estimates of GCAs or SCAs will most likely give the best or the worst performance traits. The strains of pooled parental sires, dams, or crosses from the more important genetic variance component were subjected to one-way analysis of variance using the GLM Procedure followed by Tukey-Kramer Test to compare their performance means. The Tukey-Kramer procedure has fared extremely well in Monte Carlo studies (Dunnett 1980). It is the modified version of Tukey's "Honestly Significant Difference Test (HSD)" that can be used for unequal sample sizes. Hayter (1989) describe Tukey-Kramer as a more powerful method than the Bonferroni, Sidak or Scheffé for pairwise comparison. The Scheffé Test is more flexible compared to the Tukey's HSD and can be also used for unequal sample size (Scheffé 1999). However, it has a low statistical power. This was only used as 2nd option next to Tukey-Kramer in this study to compare all possible pairs of means. The Scheffé Test was done for mean comparison with no significant difference result after Tukey-Kramer. Parental genotypes with best performance traits would be considered for selection.

RESULTS

Early Growth Performance Traits

The population means and phenotypic standard deviations for the early growth

performance traits of the 40 hybrid catfish families in three different intensive rearing systems at

two ages are presented in Table 2.1.

Table 2. 1 The population means and phenotypic standard deviations (SD) for final body weight (Wt) and body weight gain of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing, recirculating system for additional 245 days of separate tank rearing, and split-pond for additional 245 days of communal rearing.

Rearing System	Age (days)	Trait	Population mean	Phenotypic SD
Flow-through system (initial 311-day separate tank rearing)	311	Final Body Wt (g)	9.74 g	3.19
Recirculating system	55(Final Body Wt (g)	91.25 g	36.21
(additional 245-day separate tank rearing)	556	Body Wt Gain (g)	80.26 g	33.26
Split-pond		Final Body Wt (g)	194.21 g	94.07
(additional 245-day communal rearing)	556	Body Wt Gain (g)	184.21 g	92.12

The early growth performance in terms of final average body weight and body weight gain were analyzed following REML/BLUP joint analyses based on the genetic relationship matrix to calculate the mean squares from the analyses of variance (Table 2.2), the variance components (Table 2.3) and the variance components ratio (Fig. 2.2, 2.5) and estimates for GCAs of sire and dam and/or SCAs of crosses (Fig. 2.3, 2.6, 2.7, 2.9, 2.10, 2.11). The mean comparison of parental strains after analyses of variance through GLM Procedure using Tukey-Kramer Test are presented in Figures 2.4 and 2.8.

Table 2. 2 Mean squares (MS) for the Type 3 Mixed Procedure analyses of variance of the factorial mating design component of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny test and error mean squares for final body weight (Wt) and body weight gain of channel catfish female \times blue catfish male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing, recirculating system for additional 245 days of separate tank rearing, and split-pond for additional 245 days of communal rearing.

Rearing System	Age	Trait	Source of variation				
iteaning by stem	(days)	That	Dam	Sire	Dam x Sire	Error MS	
Flow-through system (initial 311-day separate tank rearing)	211	d.f.	19	11	9	67	
	311	Final Body Wt (g)	14.70 *	5.75 ^{ns}	9.32 ^{ns}	5.16	
Recirculating system (additional 245-day separate tank rearing)	556	d.f.	19	11	8	677	
		Final Body Wt (g)	5059.56 *	3028.11*	908.11 ^{ns}	1064.29	
		Body Wt Gain (g)	4087.45 *	2463.53 *	760.56 ^{ns}	918.06	
Split-pond (additional 245-day communal rearing)		d.f.	18	11	7	1480	
	556	Final Body Wt (g)	66867 *	85175 *	7699.88 ^{ns}	7315.98	
		Body Wt Gain (g)	62384 *	80256 *	6579.16 ^{ns}	7054.49	

After ANOVA *F*-test: * = p < 0.05, and ns = p > 0.05

d.f. = degree of freedom.

Table 2. 3 Estimates of general combining ability variance for dam (σ^2 GCA_d) and sire (σ^2 GCA_s) and specific combining ability variance (σ^2 E) and corresponding standard errors for final body weight (Wt) and body weight gain of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing, recirculating system for additional 245 days of separate tank rearing, and split-pond for additional 245 days of communal rearing.

Rearing system	Age	Trait	Genetic parameter estimates				
	(days)		$\sigma^2 GCA_d \ (\pm SE)$	$\sigma^2 GCA_s (\pm SE)$	$\sigma^2 SCA (\pm SE)$	σ^{2}_{E}	
Flow-through system (initial 311-day separate tank rearing)	311	Final Body Wt	3.25 (2.30)	0.91 (0.92)	0.99 (1.28)	5.13	
Recirculating system (additional 245-day separate tank rearing)	556	Final Body Wt	222.83 (124.68)	85.43 (68.21)	20.7 (56.32)	1060.16	
	550	Body Wt Gain	156.44 (99.42)	60.69 (56.34)	25.85 (54.75)	914.56	
Split-pond		Final Body Wt	1463.21 (587.61)	1388.25 (663.43)	0	7322.73	
(additional 245-day communal rearing)	556	Body Wt Gain	1320.19 (532.95)	1293.47 (619.75)	0	7056.66	

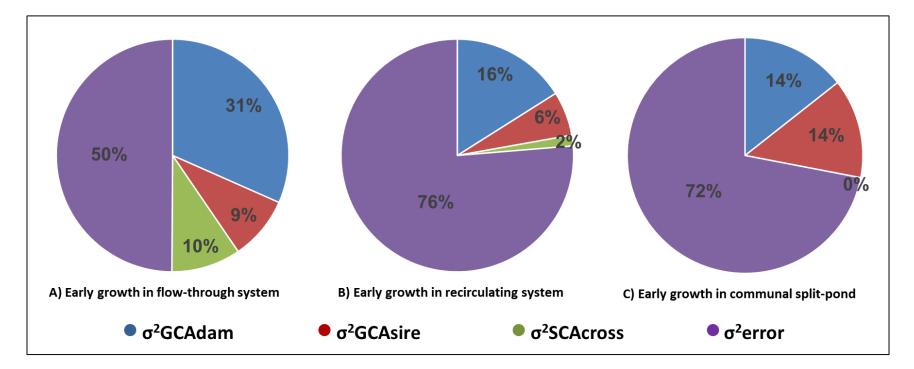


Figure 2. 2 Ratio of estimates of GCA variance components for dam and sire, SCA variance components for cross, and error variance components for early growth in terms of final body weight (Wt) of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing, recirculating system for additional 245 days of separate tank rearing.

In all the three different intensive rearing systems, the mean squares of hybrid progeny showed significant differences (P<0.05, Table 2.2) for early growth in terms of final body weight and body weight gain in weight, indicating significant family effects, dam effects, sire effects and sometimes interactions. After the initial 311-day separate tank rearing of the hybrids in flow-through system, the mean square of GCA effect of the dam for final body weight was significant (P<0.05) indicating the importance of additive gene effects for this trait. The ratio of the combining ability variance components (Table 2.3, Fig. 2.2) also revealed that the largest component for the final body weight trait was the GCA variance for dam which is indicative of the dam effects having the most influence. The GCA effects of the dam revealed that the female parents 17 and 18 had the highest (P<0.05, Fig. 2.3) positive GCA estimates, 3.52 and 2.53, respectively, for early final average body weight, indicating that their progeny would most likely have a better early growth performance traits in terms of early final body weight when reared in separate tanks in flow-through system. Furthermore, the strains of the dam for the final body weight trait were found to be significantly different (P<0.05). Hybrid progeny of KxTh crossbred dams had the highest (P<0.05, Fig.2.4) mean body weight (17.95 g) compared to all other dam genotypes except Thompson strain that had the second highest (11.73 g) in the flow-through system during the initial 311-day separate tank rearing. The Thompson strain hybrids were not different (P>0.05) to all other dam type hybrids.

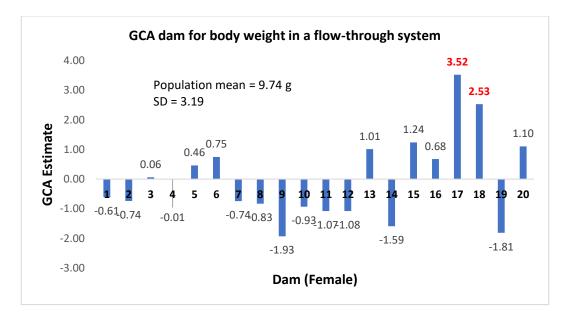


Figure 2. 3 The channel catfish (*Ictalurus punctatus*) female (dam) general combining ability estimates for final average body weight of channel catfish (*I. punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing. GCA estimates in red font are significantly different among others (P<0.05, *t*-test).

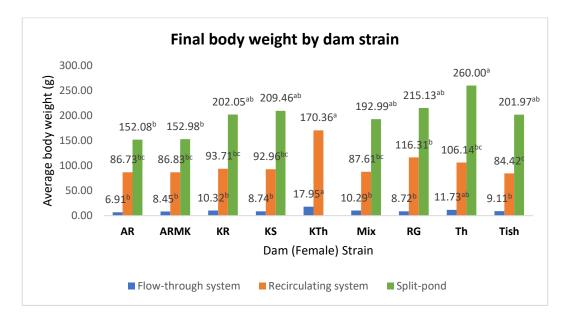


Figure 2. 4 Early growth in terms of final average body weight by parental dam strain of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing, recirculating system for additional 245 days of separate tank rearing, and split-pond for additional 245 days of communal rearing. Hybrid genotypes in the same rearing system with the same superscript letter are not

significantly different (P>0.05, Tukey-Kramer Test). For genetic types in the communal splitpond, the mean comparison was done following Scheffe Test.

The mean squares of the final average body weight and body weight gain for the GCA effects of dam and sire parents were significant (P<0.05, Table 2.2) after the additional 245-day separate tank rearing in the recirculating system, indicating genetic variability contributed by the male and female parents. The ratio of the combining ability variance components (Table 2.3 showed that the largest component is the GCA variance for dam indicating that final average body weight (Fig. 2.2) and body weight gain (Fig. 2.5) traits were mostly controlled by the additive gene effects attributed to the dam parents. The GCA effects of the dam revealed that parent 17 gave the best (P<0.05, Fig. 2.6) estimate for final average body weight at 46.51 and body weight gain at 36.04 (Fig. 2.7), which would mean that its hybrid progeny would most likely gain better performance for these two traits compared to other parental dams. The dam parent 17 is a good combiner to produce hybrid catfish with better early growth performance in recirculating system. Hybrid progeny of KxTh crossbred dams strain had the highest (P<0.05, Fig. 2.4) final average body weight, 170.36 g, and highest body weight gain, 146.28 g, (P<0.05, Figure 2.8) followed by the RG hybrid type for these two traits. The RG hybrid type, however, was found not significantly different (P>0.05, Fig 2.4, 2.8) to all other parental dam strains for final average body weight and body weight gain.

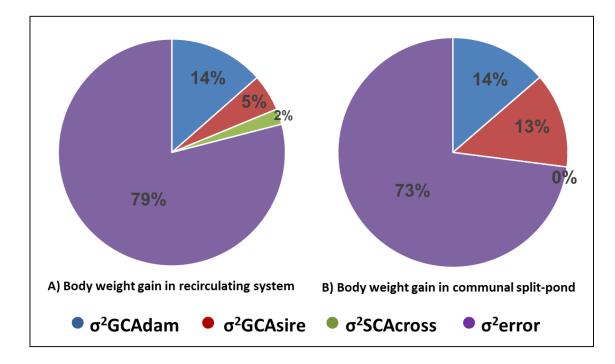


Figure 2. 5 Ratio of estimates of GCA variance components for dam and sire, SCA variance components for cross, and error variance components for body weight gain of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing, and split-pond for additional 245 days of communal rearing.

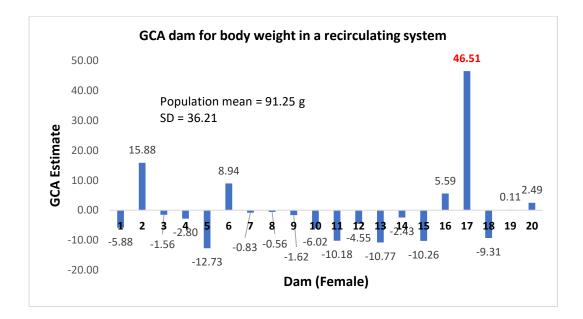


Figure 2. 6 The channel catfish (*Ictalurus punctatus*) female (dam) general combining ability estimates for final average body weight of channel catfish (*I. punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing. GCA estimates in red font are significantly different among others (P<0.05, *t*-test).

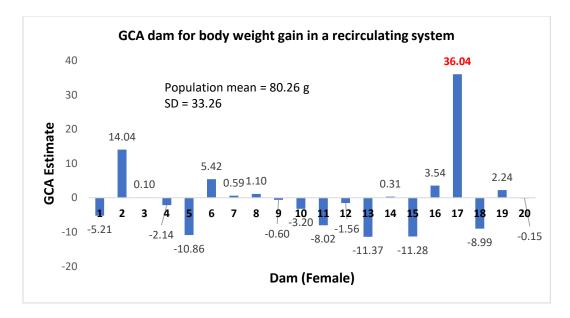


Figure 2. 7 The channel catfish (*Ictalurus punctatus*) female (dam) general combining ability estimates for body weight gain of channel catfish (*I. punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing. GCA estimates in red font are significantly different among others (P<0.05, *t*-test).

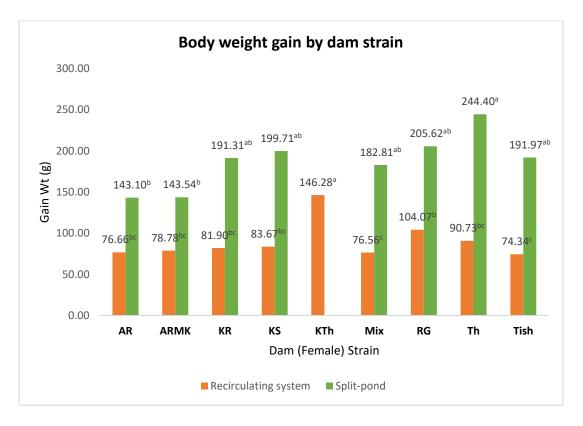


Figure 2. 8 Early growth in terms of body weight gain by parental dam strain of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating

system for additional 245 days of separate tank rearing, and split-pond for additional 245 days of communal rearing. Hybrid genotypes in the recirculating system with the same superscript letter are not significantly different (P>0.05, Tukey-Kramer Test). For genetic types in the communal split-pond, the mean comparison was done following Scheffe Test.

The mean squares for final average body weight and body weight gain after the additional 245-day rearing of hybrid catfish in the communal split-pond were significant (P<0.05, Table 2.2) for the GCA effects of the male and female parents, indicating that the additive gene effects were contributed by the male and female parents. The combining ability variance components ratio (Table 2.3, Fig. 2.2, 2.5) revealed that the largest additive gene effects controlling the two traits were attributed almost equally to both the dam and sire parents. The dam parents 13, 18, and 6 had the best (P<0.05) positive GCA estimates for final average body weight at 60.49, 57.88, and 46.35, respectively (Fig. 2.9) and for body weight gain at 57.45, 53.53, and 43.41, respectively (Fig. 2.10). The sire parents 10 and 1 had the best (P < 0.05) positive GCA estimates for final average body weight at 58.78 and 53.99, respectively (Fig. 2.9) and for body weight gain at 56.52 and 52.65, respectively (Fig. 2.10). The hybrid progeny of these dams and sires should have better early growth traits. Hybrids from Thompson dams had the highest observed early final average body weight (260.00 g, Fig. 2.4) and body weight gain (244.40 g, Fig. 2.8), while AR and ARMK hybrids had the lowest values. Hybrid progeny of KxTh crossbred dams strain was not included in the analyses for final average body weight and body weight gain of F1 hybrid catfish in communal split-pond because this group was not stocked in the pond. Hybrids from DR crossbred sires had the highest observed final average body weight (242.61 g, Fig. 2.11) and body weight gain (244.40 g, Fig. 2.11), followed by the RG hybrids. The TBB and DB hybrids gave the lowest final body weight and body weight gain in communal split-pond.

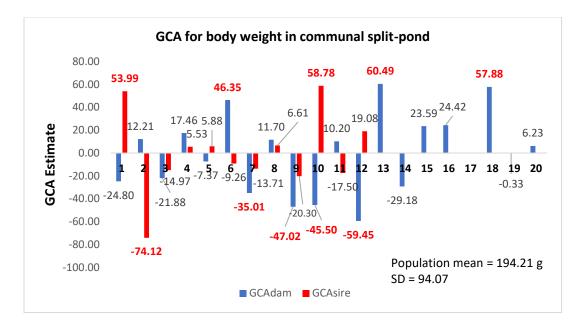


Figure 2. 9 The channel catfish (*Ictalurus punctatus*) female (dam) and blue catfish (*I. furcatus*) male (sire) general combining ability estimates for final mean body weight of channel catfish (*I. punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing. GCA estimates in red font are significantly different among others (P<0.05, *t*-test).

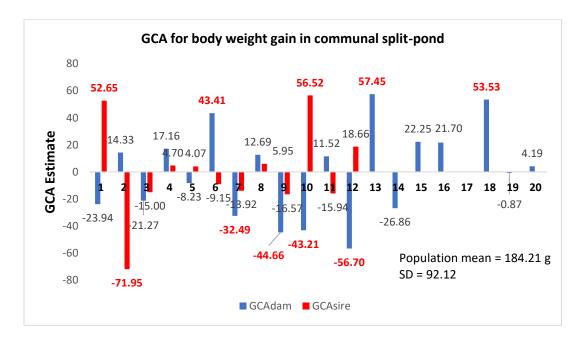


Figure 2. 10 The channel catfish (*Ictalurus punctatus*) female (dam) and blue catfish (*I. furcatus*) male (sire) general combining ability estimates for body weight gain of channel catfish (*I. punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing. GCA estimates in red font are significantly different among others (P<0.05, *t*-test).

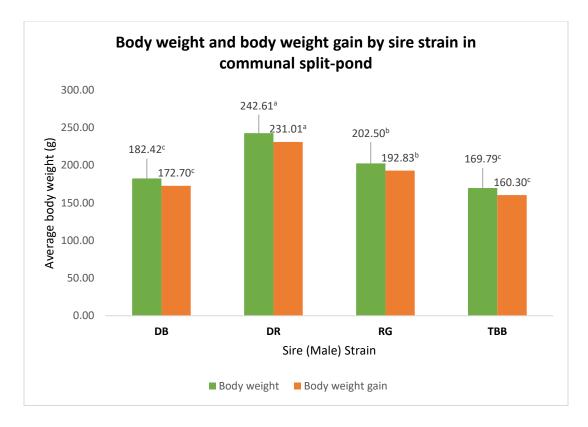


Figure 2. 11 Early growth in terms of body weight and body weight gain by parental sire strain of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing. Hybrid genotypes in the same rearing system with the same superscript letter are not significantly different (P>0.05, Tukey-Kramer Test). For genetic types in the communal split-pond, the mean comparison was done following Scheffe Test.

Coefficient of Variation in Size

The population means and phenotypic standard deviations for CV in size in terms of body weight of the 40 hybrid catfish families reared in separate tanks in flow-through and recirculating system are shown in Table 2.4.

The coefficients of variation in body weight were analyzed following REML/BLUP joint analyses based on the genetic relationship matrix to calculate for the mean squares from the analyses of variance (Table 2.5), the variance components (Table 2.6), the variance components ratio (Fig. 2.12) and estimates for GCAs of sire and dam and/or SCAs of crosses (Figures 2.13,

2.15). The mean comparison of parental strains after analysis of variance through GLM Procedure using Tukey-Kramer Test are presented in Figures 2.14 and 2.16.

Table 2. 4 The population means and phenotypic standard deviations (SD) for coefficient of variation (CV) in body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing and recirculating system for additional 245 days of separate tank rearing.

Rearing System	Age (days)	Population mean	Phenotypic SD
Flow-through system (initial 311-day separate tank rearing)	311	28.24	8.96
Recirculating system (additional 245-day separate tank rearing)	556	30.05	14.69

Table 2. 5 Mean squares (MS) for the Type 3 Mixed Procedure analyses of variance of the factorial mating design component of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny test and error mean squares for coefficient of variation (CV) in body weight of channel catfish female \times blue catfish male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing and recirculating system for additional 245 days of separate tank rearing.

Rearing System	Age		Source of variation				
	(days)		Dam	Sire	Dam x Sire	Error	
Flow-through system		d.f.	19	11	8	66	
(initial 311-day separate tank rearing)	311	MS	230.54 *	31.07 ^{ns}	34.5 ^{ns}	22.81	
Recirculating system		d.f.	19	11	7	41	
(additional 245-day separate tank rearing)	556	MS	401.36 *	365.56 *	380.68 *	126.04	
After ANOVA F-test:	p>0.05	d.f. = deg	ree of freedom.				

Table 2. 6 Estimates of general combining ability variance for dam (σ^2 GCA_d) and sire (σ^2 GCA_s) and specific combining ability variance (σ^2 SCA), error variance (σ^2_E) and corresponding standard errors for coefficient of variation (CV) in body weight of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing and recirculating system for additional 245 days of separate tank rearing.

Dearing system	Age	Genetic parameter estimates					
Rearing system	(days)	$\sigma^2 GCA_d \\ (\pm SE)$	$\sigma^2 GCA_s$ (± SE)	$\sigma^2 SCA \\ (\pm SE)$	σ^{2}_{E}		
Flow-through system (initial 311-day separate tank rearing)	311	83.83 (31.08)	1.79 (3.35)	2.65 (4.56)	22.46		
Recirculating system (additional 245-day separate tank rearing)	556	21.18 (37.27)	0	46.65 (56.74)	159.10		

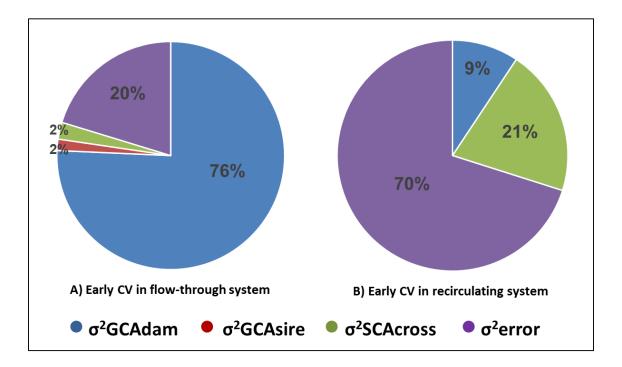


Figure 2. 12 Ratio of estimates of GCA variance components for dam and sire, SCA variance components for cross, and error variance components for coefficient of variance (CV) in body weight of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid

progeny in flow-through system for 311 days of separate tank rearing and recirculating system for additional 245 days of separate tank rearing.

The mean squares of coefficient of variation in body weight was significant (P<0.05) only for the GCA effects of the dam for the hybrid catfish after the initial 311-day separate tank rearing in flow-through system (Table 2.5), indicating importance of additive gene effects of the female parent. The combining ability variance components ratio (Fig. 2.12) revealed that the CV in body weight trait of the hybrid progeny reared in separate tanks in flow-through system was controlled by the additive gene effects attributed to the dam parents. For CV, the best GCA estimate would be the lowest negative value if one were selecting for uniformity. Parental dam 9 had the best or most negative (P<0.05, Fig. 2.13) GCA estimate. The hybrid progeny of this dam would likely have a very low coefficient of variation in body weight compared to hybrids from other dam types (Fig. 2.14). The parental dam strain with the lowest CV (0.20) was AR strain. However, the AR strain was not significantly different from other dam genotypes except KxTh.

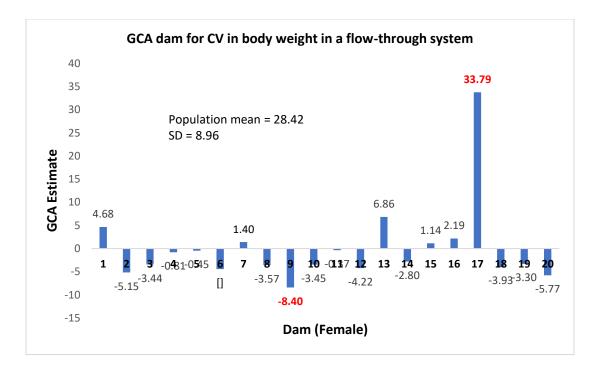


Figure 2. 13 The channel catfish (*Ictalurus punctatus*) female (dam) general combining ability estimates for coefficient of variance (CV) in body weight of channel catfish (*I. punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing. GCA estimates in red font are significantly different among others (P<0.05, *t*-test).



Figure 2. 14 Coefficient of variance (CV) in body weight by parental dam strain of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing. Hybrid genotypes in the same rearing

system with the same superscript letter are not significantly different (P>0.05, Tukey-Kramer Test).

For CV in body weight of the hybrids reared for an additional 245 days in separate tanks in recirculating system, significant differences (P<0.05, Table 2.5) were found on the mean squares of CV in body weight for the GCA effects of the dam, sire, and dam-sire cross suggesting the variability in the genetic materials of this trait. The largest variance component ratio (Fig. 2.12) was found for the SCA which suggests the presence of heterosis and the importance of dominance and epistatic gene effects from the cross in controlling this trait. The SCA effects revealed that the crosses 15x6, 2x3, and 18x1 had the best SCA estimates at -4.72, -4.52, and -4.40, respectively (Fig. 2.15). The hybrid progeny of these crosses will have very low variation in terms of body weight. The cross RGxDB gave the lowest CV of 13.69 which was not different (P>0.05) to all other crosses except to ARMKxDB (Fig. 2.16).

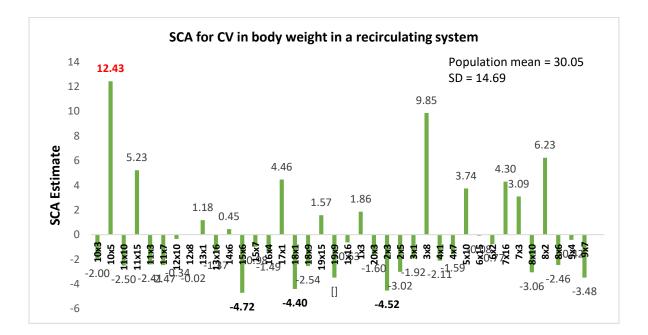


Figure 2. 15 The channel catfish (*Ictalurus punctatus*) female (dam) x blue catfish (*I. furcatus*) male (sire) specific combining ability estimates for coefficient of variance (CV) in body weight of channel catfish female \times blue catfish male F1 hybrid progeny in recirculating system for

additional 245 days of separate tank rearing. GCA estimates in red font are significantly different among others (P<0.05, *t*-test).

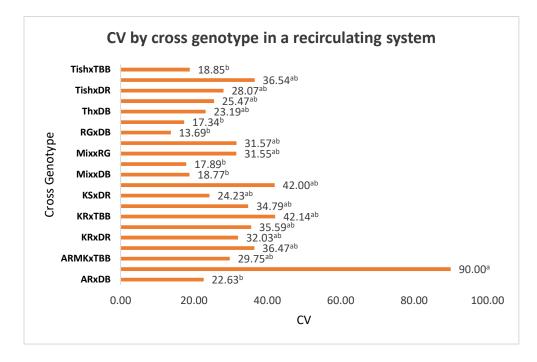


Figure 2. 16 Coefficient of variance (CV) in body weight by parental cross genotype of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing. Hybrid genotypes in the same rearing system with the same superscript letter are not significantly different (P>0.05, Tukey-Kramer Test).

Early Resistance to Aeromonas hydrophila Infection

During the initial 311 days of rearing of the 40 hybrid catfish families in separate tanks in the flow-through system, mortality was observed due to natural *Aeromonas hydrophila* infection. The population mean and phenotypic standard deviation for the survival rate of hybrid catfish after *A. hydrophila* infection are presented in Table 2.7. The survival rates of the hybrids were analyzed following REML/BLUP joint analyses based on the genetic relationship matrix to calculate for the mean squares from the analysis of variance (Table 2.7), the variance components (Table 2.8) and the variance components ratio and estimates for GCAs of sire and dam and/or SCAs of crosses

(Fig. 2.17, 2.18, 2.20). The mean comparison of parental strains after analysis of variance through

GLM Procedure using Tukey-Kramer Test are presented in Figures (2.19, 2.21).

Table 2. 7 The population mean, phenotypic standard deviation (SD), and mean squares (MS) for the Type 3 Mixed Procedure analysis of variance of the factorial mating design component of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny test and error mean squares for the survival rate of channel catfish female × blue catfish male hybrid catfish after a natural Aeromonas hydrophila infection.

Trait	Population	Phenotypic		Source of Variation				
	mean (%)	n (%) SD		dam	sire	dam x sire	Error	
Survival rate from natural	83.67%	22.76						
Aeromonas			d.f.	19	11	9	67	
hydrophila infection			MS	670.19 *	915.12 *	527.96 ^{ns}	314.11	

After ANOVA *F*-test: * = p < 0.05, and ns = p > 0.05

d.f. = degree of freedom.

Table 2. 8 Estimates of general combining ability variance for dam (σ^2 GCA_d) and sire (σ^2 GCA_s) and specific combining ability variance (σ^2 SCA), error variance (σ^2_E) and corresponding standard errors for the survival rate of channel catfish (*Ictalurus punctatus*) female × blue catfish (I. furcatus) male F1 hybrid progeny after a natural Aeromonas hydrophila infection.

m 1.	Genetic parameter estimates						
Trait	$\sigma^2 GCA_d$ (± SE)	$\sigma^2 GCA_s$ (± SE)	$\sigma^2 SCA$ (± SE)	σ^{2} E			
Survival rate from natural <i>Aeromonas hydrophila</i> infection	63.76 (53.55)	109.08 (64.65)	0	335.28			

The mean squares of the survival rate of hybrid catfish from natural A. hydrophila infection was significant (P<0.05, Table 2.7) for the GCA effects of the dam and sire parents indicating the importance of additive gene effects. The combining ability variance components ratio (Table 2.8, Fig. 2.17) revealed that the early resistance of hybrids to natural A. hydrophila infection is controlled largely (almost double) by the additive gene effects attributed to the sire parent. Parental sire 7 had the best highest positive GCA estimate of 7.29 (Fig. 2.18), which suggests that its hybrid progeny will likely have better early resistance to *A. hydrophila*. The hybrid progeny of TBB, DB, and RG sires had the highest survival rates (P<0.05, Fig. 2.19) after natural *Aeromonas* infection at 90.89, 90.81, and 86.43%, respectively. The hybrid progeny from DxR crossbred sires had the lowest survival rate at 64.08%.

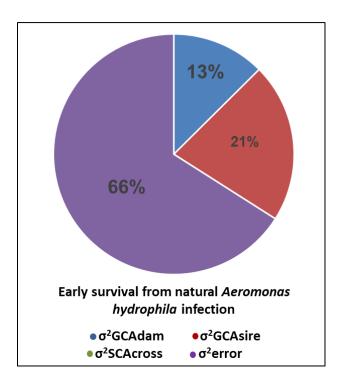


Figure 2. 17 Ratio of estimates of GCA variance components for dam and sire, SCA variance components for cross, and error variance components for the early survival of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny from natural *Aeromonas hydrophila* infection.

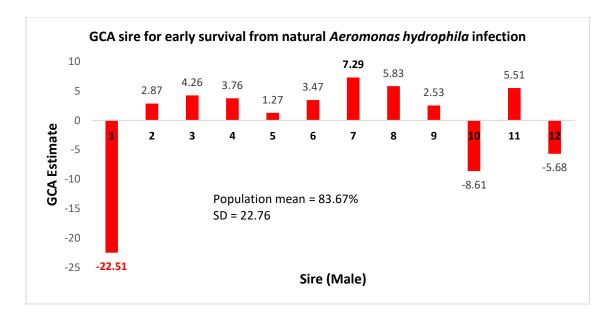


Figure 2. 18 The blue catfish (*Ictalurus furcatus*) male (sire) general combining ability estimates for the early survival of channel catfish (*I. punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny from natural *Aeromonas hydrophila* infection. GCA estimates in red font are significantly different among others (P<0.05, *t*-test).

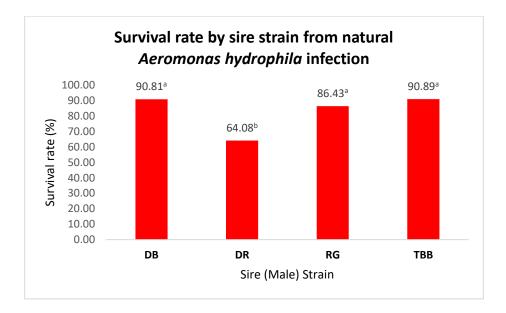


Figure 2. 19 Early resistance of channel catfish (*I. punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny to natural *Aeromonas hydrophila* infection in terms of survival rate by parental sire strain of hybrid catfish. Hybrid genotypes in the same rearing system with the same superscript letter are not significantly different (P>0.05, Tukey-Kramer Test).

Since the GCA effects of the dam were also significant (P<0.05, Table 2.7) as revealed by the mean squares for the survival rate of hybrid catfish from natural *A. hydrophila* infection, the additive genetic effects of the dam cannot be ignored. In terms of GCA estimates for this trait, parental dam 3 had the best highest positive GCA estimate of 5.64 (Fig. 2.20), suggesting that its hybrid progeny will have better resistance to *A. hydrophila* infection. The survival rate of hybrid progenies of all nine dam genotypes did not differ significantly for *A. hydrophila* infection except for KxTh crossbred dams.

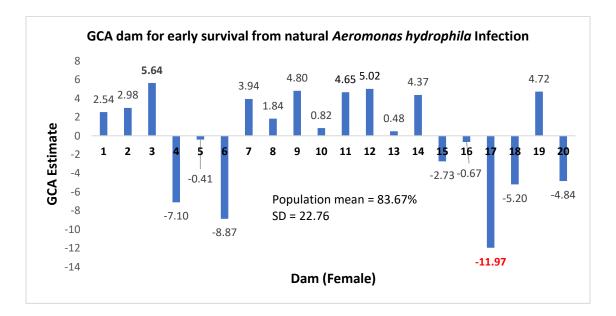


Figure 2. 20 The channel catfish (*Ictalurus punctatus*) female (dam) general combining ability estimates for the early survival of channel catfish (*I. punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny from natural *Aeromonas hydrophila* infection. GCA estimates in red font are significantly different among others (P<0.05, *t*-test).

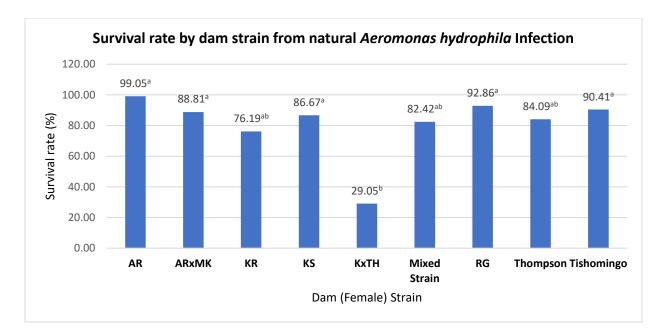


Figure 2. 21 Early resistance of channel catfish (*I. punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny to natural *Aeromonas hydrophila* infection in terms of survival rate by parental dam strain of hybrid catfish. Hybrid genotypes in the same rearing system with the same superscript letter are not significantly different (P>0.05, Tukey-Kramer Test).

Dressout Percentage

The dressout percentage of the hybrid catfish was determined after the additional 245-day communal rearing in split-pond. The population mean and phenotypic standard deviation for the dressout percentage of the hybrid catfish are presented in Table 2.9. The mean squares from the analysis of variance (Table 2.9), the variance components (Table 2.10), the variance components ratio and estimates for GCAs of sire and dam and/or SCAs of crosses (Figures 2.22, 2.23). The mean comparison of the cross genotypes after analysis of variance through GLM Procedure using Tukey-Kramer Test is presented in Figures (2.24).

Table 2. 9 The population mean, phenotypic standard deviation (SD), and mean squares (MS) for the Type 3 Mixed Procedure analysis of variance of the factorial mating design component of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny test and error mean squares for the dressout percentage of channel catfish female \times blue catfish male hybrid catfish after additional 245-day communal rearing in split-pond.

	-	Population Phenotypic			Source of	Variation				
	mean (%)	SD		dam	sire	dam x sire	error			
Dressout	58.90%	2.73								
Percentage			d.f.	15	10	4	262			
			MS	26.09 *	30.51 *	5.72 ^{ns}	5.66			

After ANOVA *F*-test: * = p < 0.05, and $^{ns} = p > 0.05$

d.f. = degree of freedom.

Table 2. 10 Estimates of general combining ability variance for dam (σ^2 GCA_d) and sire (σ^2 GCA_s) and specific combining ability variance (σ^2 SCA), error variance (σ^2_E) and corresponding standard errors for the dressout percentage of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny after additional 245-day communal rearing in splitpond.

T		Genetic param	eter estimates	
Trait	$\sigma^2 GCA_d$ (± SE)	$\sigma^2 GCA_s$ (± SE)	$\sigma^2 SCA$ (± SE)	σ^{2}_{E}
Dressout Percentage	0.12 (0.70)	0.41 (0.48)	1.32 (0.92)	5.67

The mean squares of the dressout percentage of the hybrid catfish was found significant (P<0.05, Table 2.9) for the GCA effects of the dam and sire parents. However, the combining ability variance components ratio (Table 2.10, Fig. 2.22) revealed that the most important component that controls this trait is the SCA variance indicating presence of heterosis and dominance and epistatic gene effects of the cross. The cross 11x10 had the best SCA estimate, 1.76 (P<0.05, Fig. 2.23). The other crosses that also had high SCA estimates were 4x7 and 2x5.

These three crosses involved parents that are good combiners (i.e., good GCA x good GCA), indicating the concentration of positive alleles, additive x additive gene action, and interaction of favorable genes from both parents in each cross. The hybrid progeny of these three crosses with their high SCA estimates will likely have better dressout percentage. The cross RGxDB gave the highest mean, 61.57%, which was significantly better (P<0.05, Fig. 2.24) than the 3 crosses with the lowest means. TishxDR, 60.87%, and KSxDR, 60.44%, had the next highest means.

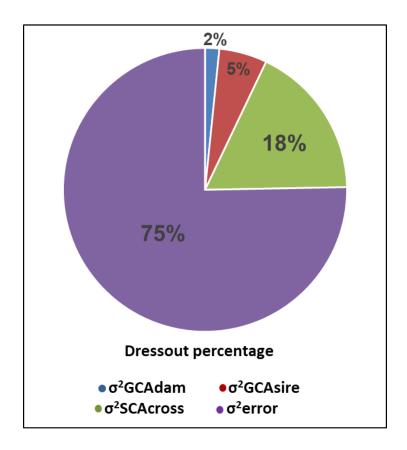


Figure 2. 22 Ratio of estimates of GCA variance components for dam and sire, SCA variance components for cross, and error variance components for the dressout percentage of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny after additional 245-day communal rearing in split-pond.

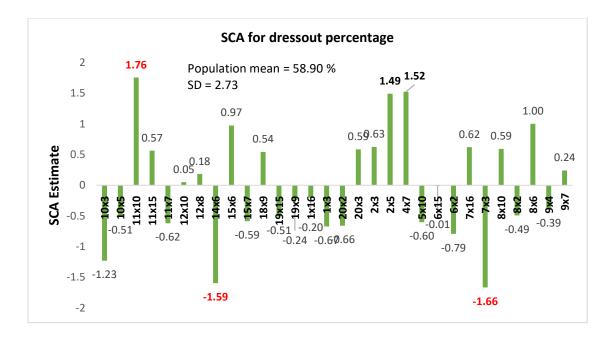


Figure 2. 23 The channel catfish (*Ictalurus punctatus*) female (dam) x blue catfish (*I. furcatus*) male (sire) specific combining ability estimates for the dressout percentage of channel catfish female × blue catfish male F1 hybrid progeny after additional 245-day communal rearing in split-pond. GCA estimates in red font are significantly different among others (P<0.05, *t*-test).

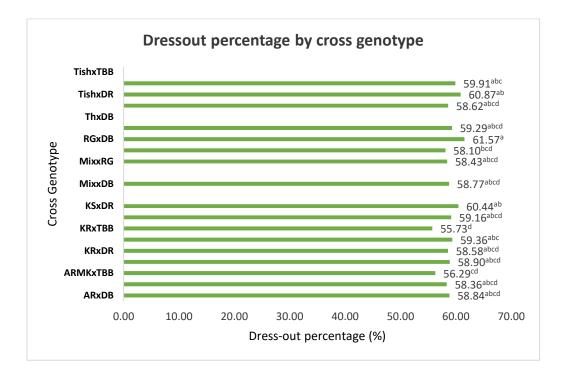


Figure 2. 24 Dressout percentage by parental cross genotype of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny after additional 245-day communal rearing in split-pond. Hybrid genotypes in the same rearing system with the same superscript letter are not significantly different (P>0.05, Tukey-Kramer Test).

Discussion

Application of hybrid catfish is increasingly prevalent due to their faster growth rate, better survival rate, disease resistance, tolerance of low oxygen, carcass yield and seinability. However, hybrid catfish performance could be further improved through reciprocal recurrent selection if GCA and/or SCA are of sufficient magnitude. In the current study, dam GCA had the strongest influence on early growth (body weight) in aquaria. Over time the percentage of variance due to genetics decreased, and after the hybrid progeny were transferred to ponds, the dam and sire GCAs equalized. Similar results were obtained when growth rate was measured as weight gain. Coefficient of variation for body weight was most strongly influenced by dam GCA in the flow-through system, and shifted more to control by SCA as the fish continued to grow in the recirculating system. Sire GCA followed by dam GCA had the strongest genetic influence on hybrid fry resistance to *Aeromonas hydrophila*. SCA was the strongest genetic component for dressout percentage.

Bosworth and Waldbieser (2014) estimated the GCA and SCA variances for growth and carcass yield in hybrid catfish of market-size. The dam GCA for body weight was the strongest factor, however, when maternal effects are accounted for dam and sire GCAs were likely equivalent. In the current study, dam GCA had the strongest influence on early growth (body weight) in aquaria, especially at the initial stage in the flow-through system. SCA was detectable at this time. Over time the percentage of variance due to genetics decreased, and after the hybrid progeny were transferred to ponds, the dam and sire GCAs equalized. The relative influence of dam additive gene effects, sire additive gene effects and dominance shifted in the 3 environments or times evaluated indicative of either genotype-environment interactions or genotype-age interactions. The pond result, the environment used by Bosworth and Waldbieser (2014), with

fish more similar in size to that experiment, resulted in almost identical results, equivalency of sire and dam GCA. However, one difference may be more maternal effects in the study of Bosworth and Waldbieser (2014).

The similarity in the results for body weight between the current study and that of Bosworth and Waldbieser (2014) is significant as they utilized different strains than the current study, suggesting that the genetics of variable hybrid performance are similar across different strains and lines of channel catfish and blue catfish. Thus, a standard breeding program to improve growth rate of hybrid catfish should be applicable industry wide, just as selection for increased body weight of channel catfish was effective in all strains of channel catfish evaluated (Dunham 2011).

Our results and those of Bosworth and Waldbieser (2014) indicate that when hybrid progeny are grown in ponds, selection for channel catfish female and blue catfish male body weight should result in faster growing hybrid progeny. That prediction was not accurate after four generations of selection for body weight in Kansas strain channel catfish (Jeppsen 1995), as hybrids from control females grew at the same rate as hybrids from selected females. However, it was accurate after eight generations of selection for body weight in Kansas strain as hybrid fingerlings from selected females grew faster than hybrids from control females (Makhubu 2014; Alsaqufi 2015). The explanation for the change over a 4-generation period is not clear, however, allele frequency changes would be expected between generations, and this could explain the variable results. The dam GCA suggests that the selection of channel catfish females for body weight should result in faster growing hybrids, and this will need to be verified in multiple populations to determine the generality of this prediction.

The relative importance of the GCAs and SCA were similar when growth rate was measured as body weight or weight gain. Although the type of gene action was changing over time or by environment, this suggests that genetic ranking was staying the same and genotypeenvironment interactions were minimal. However, this conclusion is not correct. If the dam GCA of individual females is examined, the females with the highest GCA changes for different environments and as the hybrid progeny increase in size. Thus, strong genotype-environment or genotype-age interactions occurred or both.

Size variation of hybrid catfish grown in the catfish industry at high density has become a problem. At low density, the hybrid is a very uniform growing fish (Dunham et al. 1982), however, at high density there is great increase in body weight variability (Ramboux 1990). The coefficient of variation for body weight of hybrid catfish, in regard to combining ability variance differed between the two aquaria rearing systems. The GCA variance for dam was more predominant compared to SCA during the initial 311 days in the flow-through system indicating additive gene effects controlling this trait, whereas the SCA variance became twice as large as dam GCA when hybrids were reared for an additional 245 days in the recirculating system indicating dominance gene effects having greater influence for this trait. Hybrids produced by the KxTh crossbred dams had the largest CV for body weight. This is not surprising as the crossbred females should have a high level of heterozygosity, and should produce a large variety of gametes from a genetic standpoint. Additionally, linkage disequilibrium could contribute to the variability (Christiansen 1989; Slatkin 2008) of hybrid offspring from these crossbred females.

Can channel catfish dams be selected to produce hybrid progeny that grow faster and exhibit more uniform growth. The results from the fry growth in flow through aquaria indicate

that this would be difficult. Dams with the highest GCA for body weight tended to have also have high GCA for CV, and those with low GCA for body weight also had low GCA for CV, indicating selection of fast growing hybrid fingerlings would also increase variability, and selection for uniform growth would also decrease growth.

The top three crosses with desirable negative SCA estimates for CV in body weight were 15x6 (Tishomingo x DB), 2x3 (RG x TBB), and 18x1 (Mix strains x DR). These top 3 crosses all belonged to different strains, thus there were no dramatic strain effects for SCA of CV. However, crosses from dam strains containing the greatest lineage of RG strain tended to have the most uniform growth. The SCA effects of the three desirable crosses, influenced by both additive and dominance genetic variation (Eisen et al. 1983), suggests the potential for improving CV through selection for specific pairs.

In the case of early resistance of F1 hybrid catfish to *Aeromonas hydrophila* natural infection, the sire GCA had more impact than the dam GCA, and the SCA was zero, indicating that additive gene effects were important, but not dominance. Although the GCA values among individual sires were not statistically different, nine sires had positive GCA estimates for this trait, and three sires had relatively low negative GCA estimates. The hybrid progeny from the sire strains DB, TBB, and RG, had the best survival, approximately 90%. The hybrid progeny from the DxR crossbred sires had the poorest survival rate, 64%. Similar to what was observed with F1 KxTh crossbred dams, hybrids from the F1 crossbred males had poor survival related performance. One expectation would be that there might be positive maternal effects from crossbred dams, but the opposite was true. Perhaps, linkage disequilibrium (Christiansen 1989; Slatkin 2008) resulted in lowered overall fitness in the hybrid progeny from these intraspecific F1 parents. It should be beneficial to combine the best alleles from multiple strains or lines, but

the results from the current study suggest that multiple generations may be needed for potential negative effects from linkage disequilibrium dissipate before beneficial effects from selecting in the more diverse genetic background be realized.

Parental sires with best GCA values among the better performing strains can likely be used to improve the early resistance trait of hybrid catfish to *Aeromonas hydrophila* infection through selection. Future studies that would employ controlled disease challenges on the hybrid catfish (at different ages) that are generated from a full factorial mating design would be very informative in exploring the genetic components responsible for the expression of this trait. Combining abilities for measurable parameters in the immune system that are genetically correlated with disease resistance may also be conducted to allow indirect selection for improved disease resistance of hybrid catfish.

The family variability could be attributed to the combination effect of strain differences. The largest genetic variance component for dressout percentage was the SCA variance which indicates the presence of heterosis and dominance gene effects of the specific cross. Bosworth and Waldbieser (2014) found the opposite result with maternal effects and dam GCA being much more influential than SCA. There are many potential explanations as there were several differences in the two studies. Different strains were used, and processing technology was different. In the current study, the fish were much smaller and the dressout percentage much smaller. Thus, many factors, genetic, environmental and genotype-environment interactions are possible explanations of the opposite results of the two studies.

Based on the SCA values, the cross 11x10 had the best significant positive SCA estimate for dressout. The other crosses that also gave relatively high and positive SCA estimates are 4x7 and 2x5. These three crosses involved parents with good x good GCA parental

combinations indicating the concentration of positive alleles and interaction of favorable genes from both parents in each cross. The high SCA effects of these crosses with both parents that are good general combiners also suggest additive x additive gene action (Dey et al. 2014; Verma and Srivastava 2004). The results in this study were consistent with the conclusion of Cotterill et al. (1986), where crossing parents with best GCA estimates would usually produce outstanding progeny, even when dominance variance equals additive variance. Sire strain effects were also evident for dressout percentage. When paired comparisons are made with the same dam strain, but varying sire strain, hybrids from the TBB blue catfish consistently had the lowest dressout percentage and those from RG blue catfish had the highest. Combining parental lines with desirable high GCA values and cross genotypes would likely result in inheritable genetic gains for improving the dressout percentage of hybrid catfish. Additionally, cross genotypes that exhibit heterosis for dressout can also be selected as in common beans, heterosis and SCA are highly correlated (de Fátima Machado et al. 2002). Future research can be conducted on catfish to confirm this correlation. Future research should also determine the relationship of the early dressout percentage of F1 hybrid catfish to the dressout percentage of hybrids at the more typical market-size. If valid, selection and prediction of hybrids with better dressout done at the early age would save time and money. The current data is also relevant from the standpoint that there are a few markets that prefer small fish.

For most traits assessed in this study, the GCA variance of the parental dams were relatively larger compared to the GCA variance of the parental sires and the SCA. Several studies on fish species such as hybrid catfish (Bosworth and Walbieser 2014; Drescher 2017), hybrid striped bass (*Morone chrysops* × *Morone saxatilis*) (Wang et al. 2006), sea bass (*Dicentrarchus labrax L*.) (Saillant et al. 2006), and carp (*Cyprinus carpio L*.) (Vandeputte et al. 2004), after analyses of their

factorial matings also revealed greater degrees of additive variance (GCA) than the dominance variance (SCA). Bosworth and Waldbieser (2014) reported a confounding effect to genetic variance resulting to greater magnitude of additive variance due to greater genetic variation in the channel catfish females, which was supported by microsatellite data that showed high polymorphism in the channel catfish females used and low level of polymorphism in the blue catfish used in their study. The females used in their study were a mixture of fish from different strains from commercial farms with large breeding populations and therefore expected to be more polymorphic. The blue catfish they used in their study were from a single strain of fish obtained from a commercial farm and therefore expected to be of low level of polymorphism. Hence, the magnitude of additive variance in their study was greater in favor of channel catfish females than the blue catfish males. This is assuming that the quantity of additive variation is correlated with the quantity of microsatellite variation. However, alternative explanations exist as the microsatellites do not distinguish between additive and dominance genes and expression. The use of a population made from many strains could also result in a large amount of dominance effects, raising the impact of SCA. Also, significant additive variation can exist even in highly inbred lines (Chan 1971), thus GCA could be of great importance even in the case of limited microsatellite variability.

In the current study, the genetic variance could not be ascribed to such partitioning of the relative importance of the genetic components because of the explanation above, but also because the effects of high polymorphism were expected to be present in both male and female catfish parents used. The female parents used in this study were a mixture of lines and a crossbreed of channel catfish, indicating that the overall female population could be highly polymorphic. On one hand, the male blue catfish were composed of three strains and a

crossbreed, which could also result in high polymorphism. Thus, the polymorphism of the male and female catfish parents in this study could possibly contribute to the magnitude of additive genetic variance.

In the current study, GCA was the strongest genetic component explaining the genetic variation for most of the traits evaluated. According to Griffing (1956), parents with the highest GCA estimates should generate a population with a higher mean yield. GCA estimates close to zero indicate that the progeny's performance does not differ from the general mean of all crosses. On the other hand, positive or negative estimates indicate that the parent is better or worse than the other parents included in the mating design, as compared to the mean yield of the crosses (Griffing 1956). In this study, the GCA estimates obtained correspond to the frequency of desirable or undesirable alleles of the parents with additive effects for the early growth performance traits of the F1 hybrid catfish. Consequently, parents with higher GCA estimates should generate progeny with the highest mean yield, from which elite parental lines can be selected. However, in the process of choosing elite parents, the highest GCA estimate alone is not sufficient enough if the parents are genetically similar because the population will present a restricted variability thereby reducing the chances to select improved lines. On the other hand, SCA measures the degree of allelic complementation. In this study, the magnitude of SCA variance was greater than the GCA variance for the CV in body weight of hybrids reared in the recirculating system and the dressout percentage of hybrids reared in communal split-pond. This result therefore suggests that selecting the cross from those with desirable SCA estimates along with parents with the highest magnitudes of GCA estimates would be feasible and result in the most effective selective breeding program.

For traits where GCA variances are larger than SCA variances, selection of parents that are good combiners is efficient because the value of the parents can be examined at the F1 generation of its hybrid progeny based from the GCA estimates (Melchinger et al. 1998; Smith et al. 2008). Selected parents of hybrids with good GCA estimates can be reproduced to develop parental lines that are good combiners in producing improved hybrids. The GCA performance of these parental lines can be predicted from the GCAs of their parents because the GCA is controlled by the additive gene effects which are heritable from the parents and can be passed onto the progeny. (Lv et al. 2012). Hence, improvement of the hybrid catfish becomes effective and less costly due to the less time taken to release F1 hybrids with low amount of materials needed in the breeding programs. In the case where SCA variance is more important over GCA variance for some traits, selection of parents/cross for hybrids can be done in later generation of the parental lines until the target traits are improved. (Bao et al. 2009; Ertiro et al. 2013).

As this study was conducted on young, small hybrid catfish, future research should confirm that there is a relationship between the genetic mechanisms at this time point, and that of food size hybrid catfish to ensure that the research has practical application not only to fingerling producers, but also food fish producers and processors. Genotype-environment interactions should also be further explored. Future research could also involve integrating molecular aspects of combining ability. Linkage analysis revealed the contribution of several QTLs to GCA effects and heterosis of agronomic traits in rice and maize which provided the information for dissecting the genetic bases of combining ability (Lv et al. 2012; Qi 2013; Qu 2012; Liu et al. 2015; Zhou et al. 2017). Linkage analysis on both the GCA and SCA effects for each trait could also be conducted to explore and unveil the QTLs of combining abilities for important traits and evaluate how they contribute to the overall performance of hybrid catfish.

Conclusion

The early growth traits of the F1 hybrid catfish were found to be controlled by the additive gene effects attributed to the parental channel catfish females when hybrids were reared in aquaria. However, the additive gene effects from both parental channel catfish females and blue catfish males equalized when hybrids were reared in pond. Alternatively, this could be a size effect as the fish were not reared to equal sizes in the two environments. Additive gene effects of the dam controlling coefficient of variation in body weight declined and dominance gene effects of the cross increased as the fish grew. The early resistance of the F1 hybrid catfish to *Aeromonas hydrophila* natural infection was found to be controlled by the additive gene effects attributed to parental blue catfish males, suggesting the importance of selecting blue catfish males with better GCA estimates to gene affects of the cross in controlling the dressout percentage of the F1 hybrid catfish was revealed. Cross genotypes exhibiting the highest SCA estimates which involved both parents having high x high GCA estimates would generate F1 hybrid catfish with better dressout percentage.

A breeding plan can be developed to improve the early growth, body weight variation, disease resistance and dressout percentage of F1 channel-blue hybrid catfish utilizing GCA and SCA information from this study. Using the GCA/SCA estimates obtained from the combining ability analyses, elite parental and/or cross genotypes capable of producing superior hybrid catfish were identified and performance of hybrid catfish progeny can be predicted. The genetic mechanisms observed should allow reciprocal recurrent selection of channel catfish and blue catfish to develop high yielding parental lines and hybrids that would be beneficial to the catfish industry.

References

- Alsaqufi, A.S. 2015. Approaches to improve production and performance of channel catfish (*Ictalurus punctatus*) female x blue catfish (*I. furcatus*) male hybrid catfish. Doctoral Dissertation. Auburn University, Auburn, Alabama.
- Argue, B.J., Z. Liu, and R.A. Dunham. 2003. Dress-out and fillet yields of Channel Catfish, *Ictalurus punctatus*, Blue Catfish, *I. furcatus*, and their F1, F2 and backcross hybrids. Aquaculture 228:81–90.
- Arias, C.R., W. Cai, E.J. Peatman, and S.A. Bullard. 2012. Catfish hybrid *Ictalurus punctatus* × *I. furcatus* exhibits higher resistance to columnaris disease than the parental species. Diseases of Aquatic Organisms 100:77–81.
- Bao, Y., S. Wang, X. Wang, Y. Wang, X. Li, et al. 2009. Heterosis and combining ability for major yield traits of a new wheat germplasm Shannong 0095 derived from *Thinopyrum intermedium*. Agricultural Sciences in China 8(6):753-760.
- Becker, W.A. 1984. Manual of Quantitative Genetics. Academic Enterprises, Pullman, Washington.
- Beecham, R.V., M.J. Griffin, S.B. LaBarre, D.J. Wise, M. J. Mauel, L.M.W. Pote, and C. D. Minchew. 2011. The effects of proliferative gill disease on the blood physiology of channel catfish, blue catfish, and channel x blue catfish hybrid fingerlings. North American Journal of Aquaculture 72:213-218.
- Bosworth, B.G. 2012. Effects of winter feeding on growth, body composition, and processing traits of co-cultured blue catfish (*Ictalurus furcatus*), channel catfish (*I. punctatus*) and channel catfish × blue catfish hybrids. National American Journal of Aquaculture 74:553–559.
- Bosworth, B.G., and G. Waldbieser. 2014. General and specific combining ability of male blue catfish (*Ictalurus furcatus*) and female channel catfish (*Ictalurus punctatus*) for growth and carcass yield of their F1 hybrid progeny. Aquaculture 420–421:147–153.
- Bosworth, B.G., W.R. Wolters, D.J. Wise, and M.H. Li. 1998. Growth, feed conversion, fillet proximate composition and resistance to *Edwardsiella ictaluri* of channel catfish, *Ictalurus punctatus* (Rafinesque), blue catfish, *Ictalurus furcatus* (Lesueur), and their reciprocal Fl hybrids fed 25% and 45% protein diets. Aquaculture Research 29:251-257.
- Bosworth, B.G., W.R. Wolters, J.L. Silva, R.S. Chamul, and S. Park. 2004. Comparison of production, meat yield, and meat quality traits of NWAC 103 line channel catfish (*Ictalurus punctatus*), Norris line channel catfish, and channel catfish female × blue catfish male (*I. furcatus*) F1 hybrids. National American Journal of Aquaculture 66:177–183.

- Brooks, M.J., R.O. Smitherman, J.A. Chappell, and R.A. Dunham. 1982a. Sex-weight relations in Blue, Channel, and White catfishes: implications for brood stock selection. Progressive Fish-Culturist 44:105–106.
- Brooks, M.J., R.O. Smitherman, J.A. Chappell, J.C. Williams, and R.A. Dunham. 1982b. Length variation in species and hybrid populations of Blue, Channel and White catfishes.
 Proceedings of the South East Association of the Fish and Game Commission 36:190–195.
- Brown, T.W., J.A. Chappell, and C.E. Boyd. 2011. A commercial-scale, in pond raceway system for ictalurid catfish production. Aquaculture Engineering 44:72–79.
- Chan, M.T. 1971. Experience with the determination of realized heritability in the tilapia *(Tilapia mossambica)*. Genetica 7:53-59.
- Chappell, J.A. 1979. An evaluation of twelve genetic groups of catfish for suitability in commercial production. Doctoral Dissertation. Auburn University, Auburn, Alabama.
- Christiansen, F.B. 1989. Linkage equilibrium in multi-locus genotypic frequencies with mixed selfing and random mating. Theoretical Population Biology 35:307-336.
- Comstock, R.E., and H.F. Robinson. 1948. The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. Biometrics 4:254–266.
- Cotterill, P.P., C.A. Dean, and G. Van Wyk. 1986. Additive and dominance genetic effects in *Pinus pinaster, P. radiata* and *P. elliottii* and some implications for breeding strategy. Silvae Genetica 36:221–231.
- de Fátima Machado, C., J. B. dos Santos, G. H. de Sousa Nunes, and M. A. Patto Ramalho. 2002. Choice of common bean parents based on combining ability estimates. Genetics and Molecular Biology 25(2):179–183.
- Dey, S.S., N. Singh, R. Bhaatia, C. Parkash, and C. Chandel. 2014. Genetic combining ability and heterosisfor important vitamins and antioxidant pigments in cauliflower (*Brassica oleracea var. botrytis L.*). Euphytica 195(2):169-181.
- Drescher, D. 2017. Combining ability of channel catfish (*Ictalurus punctatus*) females and blue catfish (*I. furcatus*) males for tolerance of low oxygen. Master's Thesis. Auburn University, Auburn, Alabama.
- Dunham, R. A. 2011. Aquaculture and Fisheries Biotechnology: Genetic Approaches, 2nd edition. CAB International, Cambridge, MA, USA.

- Dunham, R.A., A.C.R. Ramboux, and D.A. Perera. 2014a. Effect of strain on the growth, survival and sexual dimorphism of channel × blue catfish hybrids grown in earthen ponds. Aquaculture 420–421, S20–S24.
- Dunham, R.A., A.C.R. Ramboux, and D.A. Perera. 2014b. Effect of strain on tolerance of low dissolved oxygen of channel × blue catfish hybrids. Aquaculture 420–421, S25–S28.
- Dunham, R.A., and B.J. Argue. 1998. Seinability of Channel Catfish, Blue Catfish, and F1, F2, F3 and backcross hybrids in earthen ponds. Progressive Fish-Culturist 60:214–220.
- Dunham, R.A., and M. Masser. 2012. Production of Hybrid Catfish. Southern Regional Aquaculture Center Publication Number, 190.
- Dunham, R.A., and R.E. Brummett. 1999. Response of two generations of selection to increased body weight in Channel Catfish, *Ictalurus punctatus* compared to hybridization with Blue Catfish *I. furcatus*. Journal of Applied Aquaculture 3:211–222.
- Dunham, R. A., and R. O. Smitherman. 1984. Ancestry and breeding of channel catfish in the United States. Circular 273. Alabama Agricultural Experiment Station, Auburn University, AL.
- Dunham, R.A., G.M. Umali, R. Beam, A.H. Kristanto, and M. Trask. 2008. Comparison of production traits of NWAC103 Channel Catfish, NWAC103 Channel Catfish × Blue Catfish hybrids, Kansas select 21 Channel Catfish, and Blue Catfish grown at commercial densities and exposed to natural bacterial epizootics. North American Journal of Aquaculture 70:98–106.
- Dunham, R.A., R.E. Brummett, M.O. Ella, and R.O. Smitherman. 1990. Genotype-environment interactions for growth of Blue, Channel, and hybrid catfish in ponds and cages at varying densities. Aquaculture 85:143–151.
- Dunham, R.A., R.O. Smitherman, and C. Webber. 1983. Relative tolerance of Channel × Blue hybrid and Channel catfish to low oxygen concentrations. Progressive Fish-Culturist 45:55–56.
- Dunham, R.A., R.O. Smitherman, and R.K. Goodman. 1987. Comparison of mass selection, crossbreeding, and hybridization for improving growth of Channel Catfish. Progressive Fish-Culturist 49:293–296.
- Dunham, R.A., R.O. Smitherman, M.J. Brooks, M. Benchakan, and J.A. Chappell. 1982. Paternal predominance in reciprocal Channel-Blue hybrid catfish. Aquaculture 29:389– 396.
- Dunham, R.A., R.O. Smitherman, R.K. Goodman, and P. Kemp. 1986. Comparison of strains, crossbreeds, and hybrids of Channel Catfish for vulnerability to angling. Aquaculture 57:193–201.

- Dunnett, C.W. 1980. Pairwise multiple comparisons in the unequal variance case. Journal of the American Statistical Association 75:796-800.
- Eisen, E.J., G. Horstgen-Schwark, A.M. Saxton, and T.R. Bandy. 1983. Genetic interpretation and analysis of diallel crosses with animals. Theoretical and Applied Genetics 65:17-23.
- Ella, M.O. 1984. Genotype-environment interactions for growth rate of Blue, Channel, and hybrid catfish grown at varying stocking densities. Master's Thesis. Auburn University, Auburn, Alabama.
- Ertiro, B.T., H. Zeleke, D. Friesen, M. Blummel, and A.S. Twumasi. 2013. Relationship between the performance of parental inbred lines and hybrids for food-feed traits in maize (*Zea mays L.*) in Ethiopia. Field Crops Research 153:86-93.
- Falconer, D.S. 1989. Introduction to quantitative genetics. 3rd edition. Oliver & Boyd. London.
- Fehr, W.R. 1993. Principles of cultivar development: development of hybrid cultivars. Macmillan Publishing Company, New York, USA.
- Giudice, J.J. 1966. Growth of Blue × Channel catfish hybrid as compared to its parent species. Progressive Fish-Culturist 28:142–145.
- Griffin, M.J., S.R. Reichley, L.H. Khoo, T.E. Greenway, C.C. Mischke, and D.J. Wise. 2014. Comparative susceptibility of Channel Catfish, Blue Catfish, and their hybrid cross to experimental challenge with *Bolbophorus damnificus* (Digenea: Bolbophoridae) cercariae. Journal of Aquatic Animal Health 2:96-9.
- Griffing, B .1956. Concept of general and specific combining ability in relation to diallel crossing system. Australian Journal of Biological Science 9:463-493.
- Hallauer, A.R., and J.B. Miranda. 1988. Quantitative genetics in maize breeding, 2nd edition. Iowa State University Press, Ames, IA, USA.
- Hayter, A.J. 1989. Pairwise comparisons of generally correlated means. Journal of the American Statistical Association 84:208-213.
- Huang, Y.W., R.T. Lowell, and R.A. Dunham. 1994. Carcass characteristics of Channel and hybrid catfish, and quality changes during refrigerated storage. Journal of Food Sciences 59:64–66.
- Jeppsen, T. 1995. Comparison of performance of channel catfish, *Ictalurus punctatus*, female x blue catfish, *I. furcatus*, male hybrids from Kansas select and Kansas random dams. Master's Thesis, Auburn University, Auburn, Alabama.

- Li, M.H., E.H. Robinson, B.B. Manning, D.R. Yant, N.G. Chatakondi, B.G. Bosworth, and W.R. Wolters. 2004. Comparison of the Channel Catfish, *Ictalurus punctatus*, (NWAC103 strain) and the Channel × Blue catfish, *I. punctatus* × *I. furcatus*, F1 hybrid for growth, feed efficiency, processing yield, and body composition. Journal of Applied Aquaculture 15:63–71.
- Liu, C., G. Song, Y. Zhou, X. Qu, Z. Guo, Z. Liu, D. Jiang, and D. Yang. 2015. OsPRR37 and Ghd7 are the major genes for general combining ability of DTH, PH and SPP in rice. Scientific Reports 5:12803.
- Longin, C. F. H., M. Gowda, J. Mühleisen, E. Ebmeyer, E. Kazman, R. Schachschneider, J. Schacht, M. Kirchhoff, Y. Zhao, and J. C. Reif. 2013. Hybrid wheat: Quantitative genetic parameters and consequences for the design of breeding programs. Theoretical and Applied Genetics 126(11):2791–2801.
- Luo, W., C. Zeng, S. Yi, N. Robinson, W. Wang, and Z. Gao. 2014. Heterosis and combining ability evaluation for growth traits of blunt snout bream (*Megalobrama amblycephala*) when crossbreeding three strains. China Science Bulletin 59(9):857-864.
- Lutz, C.G., A.M. Armas-Rosales, and A.M. Saxton. 2010. Genetic effect influencing in six varieties of tilapia (*Oreochromis*) and their reciprocal crosses. Aquaculture Research 41(11):e770-e780.
- Lv, A.Z., H. Zhang, Z. Zhang, Y. Tao, B. Yue, et al. 2012. Conversion of the statistical combining ability into a genetic concept. Journal of Integrative Agriculture 11:43-52.
- Makhubu, N.P. 2014. Genotype-environment interactions for growth, survival, sexual dimorphism and seinability for different genetic types of channel catfish (*Ictalurus punctatus*) \bigcirc x blue catfish (*I. furcatus*) \bigcirc cultured in three environments. Master's Thesis. Auburn University, Auburn, Alabama.
- Melchinger, A., W. Schmit, and H.H. Geiger. 1998. Comparison of testcrosses from F2 and first backcross populations in maize. Crop Science 28(5):743-749.
- Pomerleau, S., and C.R. Engle. 2005. An economic comparison of producing catfish, (*Ictalurus punctatus*), stockers with either 9-, 11-, or 13-cm fingerlings. Journal of Applied Aquaculture 17:61-73.
- Qi, H. 2013. Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines. Theoretical and Applied Genetics 126:369–377.
- Qu, Z. 2012. QTL mapping of combining ability and heterosis of agronomic traits in rice backcross recombinant inbred lines and hybrid crosses. Public Library of Science One 7:e28463.

- Ramboux, A. 1990. Evaluation of four genetic groups of channel-blue catfish hybrids grown in earthen ponds. Doctoral Dissertation, Auburn University, Alabama.
- Saillant, E., M. Dupont-Nivet, P. Haffray, and B. Chatain. 2006. Estimates of heritability and genotype–environment interactions for bodyweight in sea bass (*Dicentrarchus labrax L.*) raised under communal rearing conditions. Aquaculture 254:139–147.
- Salem A.H., and M.A. Ali. 2012. Combining ability for sunflower yield contributing characters and oil content over different water supply environments. Journal of American Science 8:227-233.
- SAS 9.4, SAS Institute Inc. NC, USA.

Scheffé, H. 1999. The analysis of variance. Wiley, New York, USA.

- Silverstein, P.S., B.G. Bosworth, and P.S. Gaunt. 2008. Differential susceptibility of blue catfish, *Ictalurus furcatus* (Valenciennes), channel catfish, *I. punctatus* (Rafinesque), and blue×channel catfish hybrids to channel catfish virus. Journal of Fish Diseases 31:77–79.
- Slatkin, M. 2008. Linkage disequilibrium understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics 9(6):477-485.
- Smith, J.S.C., T. Hussain, E.S. Jones, G. Graham, D. Podlich, et al. 2008. Use of doubled haploids in maize breeding: implications for intellectual property protection and genetic diversity in hybrid crops. Molecular Breeding 22(1):51-59.
- Sprague, G.F., and L.A. Tatum 1942. General vs. specific combining ability in single crosses of corn. Journal of American Society of Agronomy 34:923–932.
- Su, B., D.A. Perera, Y. Zohar, E. Abraham, J. Stubblefield, M. Fobes, R. Beam, B. Argue, C. Ligeon, J. Padi, P. Waters, G. Umali-Maceina, N. Chatakondi, A. Kristanto, A. Hutson, C. Templeton, J. Ballenger, A. Chaimongkol, A. Gima, M. Gima, A. Zuberi, D.M. Lambert, S. Kim, M. Mandour, and R.A. Dunham. 2013. Relative effectiveness of carp pituitary extract, luteinizing hormone releasing hormone analog (LHRHa) injections and LHRHa implants for producing hybrid catfish fry. Aquaculture 372-375: 133–136.
- Su, S., P. Xu, and X. Yuan. 2013a. Estimates of combining ability and heterosis for growth traits in a full diallel cross of three strains of common carp , *Cyprinus carpio L*. African Journal of Biotechnology 12(22):3514–3521.
- Tave, D., A. McGinty, J. A. Chappell, and R. O. Smitherman. 1981. Relative harvestability by angling of Blue Catfish, Channel Catfish, and their reciprocal hybrids. North American Journal of Aquaculture 1:73–76.
- Tucker, C.S., and E.H. Robinson. 1990. Channel Catfish Farming Handbook. Van Nostrand Reinhold, New York, New York, USA.

USDA, National Agricultural Statistic Service. 2013. Catfish Production Report.

- Vandeputte, M.K., S. Mauger, M. Dupont-Nivet, D. De Guerry, M. Rodina, D. Gela, D. Vallod,
 B. Chevassus, and O. Linhart. 2004. Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (*Cyprinus carpio L*.).
 Aquaculture 235:223–236.
- Verma, O.P., and H.K. Srivastava. 2004. Genetic component and combining ability analyses in relation to heterosis for yield and associated traits using three diverse rice-growing ecosystems. Field Crops Research 88:91-102.
- Wang, X., K.E. Ross, E. Saillant, D.M. Gatlin III, and J.R. Gold. 2006. Quantitative genetics and heritability of growth-related traits in hybrid striped bass (*Morone chrysops × Morone saxatilis*). Aquaculture 261:535–545.
- Wolters, W. R., and M. R. Johnson. 1995. Analysis of a diallel cross to estimate effects of crossing on resistance to enteric septicemia in channel catfish, *Ictalurus punctatus*. Aquaculture 137(1–4):263–269.
- Wolters, W.R., D.J. Wise, and P.H. Klesius. 1996. Survival and antibody response of Channel Catfish, Blue Catfish and Channel Catfish female × Blue Catfish male hybrids after exposure to *Edwardsiella ictaluri*. Journal of Aquatic Animal Health 8:249–254.
- Yant, D.1975. Production of hybrid blue *Ictalurus furcatus* (Lesueur) male, channel *I. punctatus* (Rafinesque) female catfish and channel catfish in earthen ponds. Master's Thesis, Auburn University, Alabama.
- Yant, D.R., R.O. Smitherman, and O.L. Green. 1976. Production of hybrid (Blue × Channel) catfish and Channel Catfish in ponds. Proceedings of the Southeast Association of the Fish and Game Commission 29:82–86.
- Zhou, H., D. Xia, J. Zeng, G. Jiang, and Y. He. 2017. Dissecting combining ability effect in a rice NCII-III population provides insights into heterosis in *indica-japonica* cross. Rice 10:39. DOI 10.1186/s12284-017-0179-9.

APPENDIX

Appendix Table 1 The Type 3 Mixed Procedure of analysis of variance for final body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing.

	Type 3 Analysis of Variance								
		Sum of	Mean		Error	Erro	F		
Source	DF	Squares	Square	Expected Mean Square	Term	r DF	Value	Pr > F	
Dam	19	279.28982	14.699464	Var(Residual) +	MS(Residua	67	2.85	0.0008	
				Q(dam,dam*sire)	1)				
Sire	11	63.226235	5.747840	Var(Residual) +	MS(Residua	67	1.11	0.3643	
				Q(sire,dam*sire)	1)				
dam*sir	9	83.893658	9.321518	Var(Residual) + Q(dam*sire)	MS(Residua	67	1.81	0.0830	
e					1)				
Residual	67	345.57193	5.157790	Var(Residual)			•	•	

Appendix Table 2 REML estimation of variance components for final body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing.

Covariance Parameter Estimates								
			Standard	Z				
Cov Parm	Ratio	Estimate	Error	Value	Pr > Z			
Dam	0.6336	3.2529	2.2970	1.42	0.0784			
Sire	0.1765	0.9061	0.9232	0.98	0.1632			
Cross	0.1928	0.9896	1.2827	0.77	0.2202			
Residual	1.0000	5.1337	0.8795	5.84	<.0001			

Appendix Table 3 GCA/SCA estimates with corresponding T-test (P=0.05) for final body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing.

]	Estimates			
		Standar			
Parents/	Estimat	d	D	t Valu	Pr >
Cross	e	Error	F	e	t
DAM 1	-0.6084	1.0893	67	-0.56	0.578
					3
DAM 10	-0.9338	1.0948	67	-0.85	0.396
					7
DAM 11	-1.0748	0.9205	67	-1.17	0.247
					1
DAM 12	-1.0783	1.0994	67	-0.98	0.330
					2
DAM 13	1.0104	1.3024	67	0.78	0.440
	1.500.0	1 20 11		1.00	6
DAM 14	-1.5882	1.3041	67	-1.22	0.227
	1.00.65	1.0001	< -		5
DAM 15	1.2365	1.0891	67	1.14	0.260
DANG	0.6755	1 40 50		0.15	3
DAM 16	0.6755	1.4950	67	0.45	0.652
DANG 17	2 5200	1 2005	(7	0.72	8
DAM 17	3.5208	1.2905	67	2.73	0.008
DAM 18	2 5 2 9 7	1.0027	67	2.31	1
DAM 18	2.5287	1.0937	67	2.51	0.023
DAM 19	-1.8133	1.1041	67	-1.64	0.105
DAM 19	-1.0155	1.1041	07	-1.04	0.105
DAM 2	-0.7383	1.0948	67	-0.67	0.502
DANI 2	-0.7383	1.0940	07	-0.07	0.502
DAM 20	1.1038	1.1146	67	0.99	0.325
DAM 20	1.1050	1.11+0	07	0.77	0.525
DAM 3	0.06081	1.1760	67	0.05	0.958
	0.00001	1.1700	07	0.05	9
DAM 4	_	1.0794	67	-0.01	0.989
	0.01384		~.	5.01	8
DAM 5	0.4615	1.2904	67	0.36	0.721
				2.2.0	7
DAM 6	0.7492	1.0299	67	0.73	0.469
		-			5
DAM 7	-0.7404	1.0893	67	-0.68	0.499
					1
DAM 8	-0.8300	0.9708	67	-0.85	0.395
					6

	Ι	Estimates			
		Standar			
Parents/	Estimat	d	D	t Valu	Pr >
Cross	e	Error	\mathbf{F}	e	t
DAM 9	-1.9278	1.1013	67	-1.75	0.084
					6
SIRE 1	1.6254	0.7222	67	2.25	0.027
					7
SIRE 10	0.4315	0.6981	67	0.62	0.538
					6
SIRE 11	-0.3219	0.7448	67	-0.43	0.666
					9
SIRE 12	0.3077	0.7840	67	0.39	0.696
					0
SIRE 2	-0.6001	0.7543	67	-0.80	0.429
			51	0.00	1
SIRE 3	-0.3063	0.6766	67	-0.45	0.652
Since C	0.5005	0.0700	07	0.10	2
SIRE 4	_	0.8387	67	-0.11	0.910
	0.09421	0.0507	07	0.11	9
SIRE 5	0.09421	0.8094	67	0.11	0.916
SIRE 5	0.00527	0.0074	07	0.11	0.710
SIRE 6		0.7656	67	-0.09	0.930
SINE	0.06679	0.7050	07	-0.09	0.930
SIRE 7	-0.3870	0.7116	67	-0.54	0.588
SIKE /	-0.3870	0.7110	07	-0.54	0.388
SIRE 8	-0.3471	0.8311	67	-0.42	0.677
SINE 0	-0.3471	0.0311	07	-0.42	
SIRE 9	-0.3265	0.8061	67	-0.40	6 0.686
SIKE 9	-0.3203	0.8001	07	-0.40	0.080
10.2	-0.7634	0.8870	67	0.96	•
10x3	-0.7034	0.8870	67	-0.86	0.392
10.5	0 4702	0.9021	67	0.54	5
10x5	0.4793	0.8931	67	0.54	0.593
11-10	0.2696	0.9696	67	0.21	0.758
11x10	0.2686	0.8686	67	0.31	0.758
	0.0044	0.0702	(7	1.01	2
11x11	-0.8844	0.8723	67	-1.01	0.314
11	0.4590	0.0250	(7	0.40	0 (22)
11x3	0.4580	0.9259	67	0.49	0.622
447	0.1602	0.0701		0.10	4
11x7	-0.1692	0.8701	67	-0.19	0.846
12.10	0.06707	0.0007		0.00	4
12x10	0.06707	0.8896	67	0.08	0.940
12.0	0.2051	0.0070		0.44	1
12x8	-0.3951	0.8958	67	-0.44	0.660
					6

]	Estimates			
		Standar			
Parents/	Estimat	d	D	t Valu	Pr >
Cross	e	Error	F	e	t
13x1	0.4634	0.9379	67	0.49	0.622 9
13x12	-0.1560	0.9389	67	-0.17	0.868 6
14x6	-0.4832	0.9198	67	-0.53	0.601
15x6	0.4739	0.8917	67	0.53	0.596
15x7	- 0.09767	0.8897	67	-0.11	0.912 9
16x4	0.2055	0.9463	67	0.22	0.828 7
17x1	1.0712	0.9180	67	1.17	0.247 4
18x1	0.3648	0.8897	67	0.41	0.683 1
18x9	0.4046	0.8947	67	0.45	0.652 6
19x11	0.2094	0.8920	67	0.23	0.815 1
19x9	-0.7611	0.8945	67	-0.85	0.397 8
1x12	0.00503 7	0.8914	67	0.01	0.995 5
1x3	-0.1901	0.8868	67	-0.21	0.830 9
20x2	-0.3758	0.9069	67	-0.41	0.679 9
20x3	0.7116	0.8919	67	0.80	0.427 7
2x3	0.1616	0.8870	67	0.18	0.856 0
2x5	-0.3862	0.8931	67	-0.43	0.666 8
3x1	0.00245 9	0.9011	67	0.00	0.997 8
3x8	0.01604	0.9358	67	0.02	0.986 4
4x1	-0.1265	0.8888	67	-0.14	0.887 2
4x7	0.1223	0.8895	67	0.14	0.891 0

]	Estimates			
		Standar			
Parents/	Estimat	d	D	t Valu	Pr >
Cross	e	Error	F	e	t
5x10	0.1404	0.9180	67	0.15	0.878
					9
6x10	-0.3326	0.9286	67	-0.36	0.721
					4
6x11	0.3233	0.8833	67	0.37	0.715
					5
6x2	0.2372	0.8837	67	0.27	0.789
					2
7x12	0.4870	0.8914	67	0.55	0.586
					7
7x3	-0.7122	0.8868	67	-0.80	0.424
					8
8x10	0.3278	0.8738	67	0.38	0.708
					7
8x2	-0.5167	0.8776	67	-0.59	0.558
					0
8x6	-	0.8782	67	-0.07	0.942
	0.06361				5
9x4	-0.3084	0.8960	67	-0.34	0.731
					8
9x7	-0.2781	0.8904	67	-0.31	0.755
					8

Appendix Table 4 ANOVA for mean performance by parental strains following GLM Procedure for final body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing.

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	8	305.583505	38.197938	4.98	<.0001
Error	98	751.570970	7.669092		
Corrected Total	106	1057.15447			
		5			

Appendix Table 5 Mean comparison of performance by parental strains using Tukey-Kramer Test for final body weight of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing.

Tukey-Kramer Comparison Lines for Least Squares Means of dam							
LS-means with the same letter are not significantly different.							
		wt		LSMEAN			
		LSMEAN	dam	Number			
	А	17.946667	5	5			
	А						
В	А	11.730000	8	8			
В							
В		10.318462	3	3			
В							
В		10.285217	6	6			
В							
В		9.110741	9	9			
В							
В		8.738889	4	4			
В							
В		8.721667	7	7			
В							
В		8.445000	2	2			
В							
В		6.908333	1	1			

Note: Dam strain 1 – AR; 2 – ARMK; 3 – KR; 4 – KS; 5 – KTh; 6 – Mix; 7 RG; 8 – Thompson; 9 - Tishomingo

Appendix Table 6 The Type 3 Mixed Procedure of analysis of variance for final body weight of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

	Type 3 Analysis of Variance									
Source	DF	Sum of Squares	Mean Square	Expected Mean Square	Error Term	Error DF	F Value	Pr > F		
dam	19	96132		Var(Residual) + Q(dam,dam*sire)	MS(Residual)	677	4.75	<.0001		
sire	11	33309		Var(Residual) + Q(sire,dam*sire)	MS(Residual)	677	2.85	0.0012		
dam*sire	8	7264.878620	908.109828	Var(Residual) + Q(dam*sire)	MS(Residual)	677	0.85	0.5560		
Residual	677	720521	1064.28561 8	Var(Residual)	•	•	•	•		

Appendix Table 7 REML estimation of variance components for final body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

	Covariance Parameter Estimates								
		Standard Z							
Cov Parm	Ratio	Estimate	Error	Value	Pr > Z				
dam	0.2102	222.83	124.68	1.79	0.0370				
sire	0.0805	85.4252	68.2055	1.25	0.1052				
cross	0.0195	20.6986	56.3180	0.37	0.3566				
Residual	1.0000	1060.16	57.3733	18.48	<.0001				

Appendix Table 8 GCA/SCA estimates with corresponding T-test (P=0.05) for final body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

	Estimates								
		Standar							
Parents/	Estimat	d		t Valu	Pr >				
Cross	e	Error	DF	e	t				
DAM 1	-5.8803	7.5527	677	-0.78	0.436				
					5				
DAM 10	-6.0247	8.2881	677	-0.73	0.467				
					5				
DAM 11	-	5.5604	677	-1.83	0.067				
	10.1791				6				
DAM 12	-4.5508	6.5838	677	-0.69	0.489				
					7				
DAM 13	_	7.7604	677	-1.39	0.165				
	10.7686				7				
DAM 14	-2.4328	9.9062	677	-0.25	0.806				
					1				
DAM 15	-	7.3960	677	-1.39	0.165				
	10.2612				8				
DAM 16	5.5880	10.3220	677	0.54	0.588				
21111110	0.0000	10.0220	011	0.01	4				
DAM 17	46.5104	8.7521	677	5.31	<.000				
	10.2101	0.7521	077	5.51	1				
DAM 18	-9.3132	7.1152	677	-1.31	0.191				
	7.5152	7.1152	077	1.51	0.171				
DAM 19	0.1124	7.6187	677	0.01	0.988				
	0.1121	7.0107	077	0.01	0.200				
DAM 2	15.8794	8.2216	677	1.93	0.053				
	15.0771	0.2210	077	1.75	8				
DAM 20	2.4863	8.3499	677	0.30	0.766				
D/1101 20	2.4005	0.5477	077	0.50	0.700				
DAM 3	-1.5614	7.4637	677	-0.21	0.834				
Dimi	1.5014	7.4037	077	0.21	4				
DAM 4	-2.7999	7.3786	677	-0.38	0.704				
	2.1999	1.5700	077	0.50	5				
DAM 5	_	7.9134	677	-1.61	0.108				
Dimi	12.7271	7.7154	0//	1.01	0.100				
DAM 6	8.9377	7.6978	677	1.16	0.246				
	0.7577	1.0710	077	1.10	0.240				
DAM 7	-0.8289	7.5527	677	-0.11	0.912				
	0.0207	1.5521	077	0.11	0.712				
DAM 8	-0.5627	6.4654	677	-0.09	0.930				
	-0.3027	0.4034	0//	-0.03	0.930				
					1				

Parents/ CrossEstimat eStandar dCrosseErrorDFDAM 9-1.62378.1159677	t Valu e	Pr >
Cross e Error DF	e	Pr >
	-	
DAM 9 -1.6237 8.1159 677	0.00	t
	-0.20	0.841
		5
SIRE 1 13.9749 5.4988 677	2.54	0.011
		3
SIRE 10 5.0489 5.1000 677	0.99	0.322
		5
SIRE 11 - 5.5812 677	-1.99	0.046
11.1101		9
SIRE 12 -2.9743 6.3798 677	-0.47	0.641
		2
SIRE 2 -3.1889 6.1763 677	-0.52	0.605
		8
SIRE 3 2.1881 5.3719 677	0.41	0.683
		9
SIRE 4 4.3505 7.6694 677	0.57	0.570
		7
SIRE 5 0.4893 7.9336 677	0.06	0.950
		8
SIRE 6 -2.7782 6.4419 677	-0.43	0.666
		4
SIRE 7 -5.9728 5.3763 677	-1.11	0.267
		0
SIRE 8 7.8346 6.4767 677	1.21	0.226
		8
SIRE 9 -7.8621 6.4893 677	-1.21	0.226
		1
-1.1834 4.3637 677	-0.27	0.786
10x3		3
0.6238 4.4582 677	0.14	0.888
10x5 0.0250 4.4502 077		8
11x10 0.6036 4.1365 677	0.15	0.884
11110		0
-4.1875 4.1574 677	-1.01	0.314
11x11 4.1075 4.1574 077		2
11x2 1.1967 4.3002 677	0.28	0.780
11x3		9
11x7 1.4418 4.1407 677	0.35	0.727
11x7		8
-1.0314 4.2062 677	-0.25	0.806
12x10		4
0.6087 4.2714 677	0.14	0.886
12x8		7

Estimates									
		Standar							
Parents/	Estimat	d		t Valu	Pr >				
Cross	e	Error	DF	e	t				
13x1	-0.3765	4.3349	677	-0.09	0.930 8				
13x12	-0.6238	4.3621	677	-0.14	0.886				
14x6	-0.2260	4.4297	677	-0.05	0.959 3				
15x6	0.5316	4.4076	677	0.12	0.904 0				
15x7	-1.4848	4.3141	677	-0.34	0.730				
16x4	0.5191	4.4379	677	0.12	0.906 9				
17x1	4.3204	4.4087	677	0.98	0.327 5				
18x1	0.4187	4.2762	677	0.10	0.922 0				
18x9	-1.2838	4.3098	677	-0.30	0.765 9				
19x11	0.6317	4.3281	677	0.15	0.884 0				
19x9	-0.6212	4.3240	677	-0.14	0.885 8				
1x12	-0.2247	4.3405	677	-0.05	0.958 7				
1x3	-0.3215	4.3027	677	-0.07	0.940 5				
20x2	1.1679	4.4530	677	0.26	0.793 2				
20x3	-0.9370	4.3688	677	-0.21	0.830 2				
2x3	1.9803	4.3612	677	0.45	0.649 9				
2x5	-0.5052	4.4580	677	-0.11	0.909 8				
3x1	-1.4346	4.3143	677	-0.33	0.739 6				
3x8	1.2896	4.3953	677	0.29	0.769 3				
4x1	0.4582	4.3169	677	0.11	0.915 5				
4x7	-0.7183	4.3173	677	-0.17	0.867 9				

Estimates							
		Standar					
Parents/	Estimat	d		t Valu	Pr >		
Cross	e	Error	DF	e	t		
5x10	-1.1822	4.3950	677	-0.27	0.788		
5/10					0		
6x11	0.8639	4.3217	677	0.20	0.841		
UNII					6		
6x2	-	4.3423	677	-0.01	0.993		
072	0.03365				8		
7x12	0.1279	4.3405	677	0.03	0.976		
//12					5		
7x3	-0.2048	4.3027	677	-0.05	0.962		
785					0		
8x10	2.8334	4.2132	677	0.67	0.501		
0110					5		
8x2	-1.9069	4.2623	677	-0.45	0.654		
0X2					7		
8x6	-0.9788	4.2949	677	-0.23	0.819		
oxo					8		
9x4	0.5351	4.4387	677	0.12	0.904		
384					1		
0.47	-0.6859	4.3554	677	-0.16	0.874		
9x7					9		

Appendix Table 9 ANOVA for mean performance by parental strains following GLM Procedure for final body weight of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	8	145211.943	18151.4928	16.20	<.0001
Error	707	792052.295	1120.3003		
Corrected Total	715	937264.237			

Appendix Table 10 Mean comparison of performance by parental strains using Tukey-Kramer Test for final body weight of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

Tukey-Kramer Comparison Lines for Least Squares Means of dam							
LS-means with the same letter are not significantly different.							
		wt		LSMEAN			
		LSMEAN	dam	Number			
	А	170.3611	5	5			
	В	116.3095	7	7			
	В						
С	В	106.1364	8	8			
С	В						
С	В	93.7065	3	3			
С	В						
С	В	92.9576	4	4			
С	В						
С	В	87.6129	6	6			
С	В						
С	В	86.8250	2	2			
С	В						
C C C C C C C C C C C C C C C C C C C	В	86.7273	1	1			
С							
С		84.4196	9	9			
The LINES display does not reflect all significant comparisons. The							
followin	g additional p	airs are signif	icantly diff	erent: (7,6)			

Note: Dam strain 1 – AR; 2 – ARMK; 3 – KR; 4 – KS; 5 – KTh; 6 – Mix; 7 RG; 8 – Thompson; 9 - Tishomingo

Appendix Table 11 The Type 3 Mixed Procedure of analysis of variance for body weight gain of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

	Type 3 Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	Expected Mean Square	Error Term	Error DF	F Value	Pr > F	
dam	19	77662	4087.453408	Var(Residual) + Q(dam,dam*sire)	MS(Residual)	677	4.45	<.0001	
sire	11	27099	2463.530809	Var(Residual) + Q(sire,dam*sire)	MS(Residual)	677	2.68	0.0022	
dam*sire	8	6084.486762	760.560845	Var(Residual) + Q(dam*sire)	MS(Residual)	677	0.83	0.5776	
Residual	677	621526	918.059091	Var(Residual)	•	•	•		

Appendix Table 12 REML estimation of variance components for body weight gain of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

Covariance Parameter Estimates							
		Standard Z					
Cov Parm	Ratio	Estimate	Error	Value	Pr > Z		
dam	0.1711	156.44	99.4165	1.57	0.0578		
sire	0.0664	60.6901	56.3441	1.08	0.1407		
cross	0.0283	25.8533	54.7523	0.47	0.3184		
Residual	1.0000	914.56	49.5005	18.48	<.0001		

Appendix Table 13 GCA/SCA estimates with corresponding T-test (P=0.05) for body weight gain of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

Estimates								
		Standar						
Parents/	Estimat	d		t Valu	Pr >			
Cross	e	Error	DF	e	t			
DAM 1	-5.2105	6.8687	677	-0.76	0.448			
					4			
DAM 10	-3.2010	7.5143	677	-0.43	0.670			
					2			
DAM 11	-8.0232	5.1024	677	-1.57	0.116			
					3			
DAM 12	-1.5576	6.0759	677	-0.26	0.797			
					7			
DAM 13	-	7.0551	677	-1.61	0.107			
D + D + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +	11.3735	0.000.0		0.0.4	4			
DAM 14	0.3124	8.8226	677	0.04	0.971			
D 4 3 4 4 5		6 0001		1.55	8			
DAM 15	-	6.8081	677	-1.66	0.098			
DANG	11.2753	0.0714	~~~	0.20	2			
DAM 16	3.5377	9.0714	677	0.39	0.696			
DAM 17	26.0275	7.05.47	(77	4.52	/			
DAM 17	36.0375	7.9547	677	4.53	<.000			
DAM 18		6.5014	677	-1.38	0.167			
DAM 10	-8.9922	0.3014	077	-1.30	0.107			
DAM 19	2.2359	6.9241	677	0.32	0.746			
DAM I)	2.2355	0.7241	077	0.52	0.740 Q			
DAM 2	14.0387	7.4621	677	1.88	0.060			
DANI 2	17.0307	7.7021	077	1.00	0.000			
DAM 20	-0.1454	7.5726	677	-0.02	0.984			
	0.1101	1.5720	077	0.02	0.201			
DAM 3	0.1025	6.8400	677	0.01	0.988			
	0.1020	010100	0	0101	0			
DAM 4	-2.1393	6.7517	677	-0.32	0.751			
					5			
DAM 5	_	7.3213	677	-1.48	0.138			
	10.8634				3			
DAM 6	5.4239	7.0063	677	0.77	0.439			
					1			
DAM 7	0.5919	6.8687	677	0.09	0.931			
					3			
DAM 8	1.0981	5.8969	677	0.19	0.852			
					3			

		Estimates			
		Standar			
Parents/	Estimat	d		t Valu	Pr >
Cross	e	Error	DF	e	t
DAM 9	-0.5973	7.3830	677	-0.08	0.935
					5
SIRE 1	10.6884	4.9066	677	2.18	0.029
					7
SIRE 10	3.7095	4.6289	677	0.80	0.423
					2
SIRE 11	-8.7648	5.0658	677	-1.73	0.084
					1
SIRE 12	-2.6356	5.6573	677	-0.47	0.641
					4
SIRE 2	-1.7333	5.5326	677	-0.31	0.754
					2
SIRE 3	2.1749	4.7785	677	0.46	0.649
					1
SIRE 4	2.8325	6.6075	677	0.43	0.668
					3
SIRE 5	0.9457	6.8522	677	0.14	0.890
	012 107	0.0022	011	0.11	3
SIRE 6	-2.1950	5.7094	677	-0.38	0.700
SILL 0	2.1750	5.7071	011	0.50	8
SIRE 7	-5.5191	4.8563	677	-1.14	0.256
	5.5171	1.0505	011	1.1.1	2
SIRE 8	7.1018	5.8130	677	1.22	0.222
	,	0.0100	011	1.22	2
SIRE 9	-6.6050	5.7753	677	-1.14	0.253
	0.0020	0.1100	011	1.1.1	0.233
	-1.2740	4.7665	677	-0.27	0.789
10x3	1.2710		011	0.27	3
	0.7450	4.9355	677	0.15	0.880
10x5	017 10 0		0	0110	1
	1.1408	4.4483	677	0.26	0.797
11x10	111 100		0	0.20	7
	-5.2384	4.4702	677	-1.17	0.241
11x11	0.2001		011	1.17	0. <u>-</u> 11 7
	1.2756	4.6915	677	0.27	0.785
11x3	1.2750		511	0.27	8
	1.4961	4.4474	677	0.34	0.736
11x7	1.1701		011	0.01	7
	-1.3269	4.5290	677	-0.29	0.769
12x10	1.5207	1.5270	011	0.27	6.705
	1.0695	4.6359	677	0.23	0.817
12x8	1.0075	T.0337	011	0.23	0.017
					0

		Estimates			
		Standar			
Parents/	Estimat	d		t Valu	Pr >
Cross	e	Error	DF	<u>e</u>	t
13x1	-1.4866	4.7328	677	-0.31	0.753 5
13x12	-0.3930	4.7799	677	-0.08	0.934 5
14x6	0.05162	4.8689	677	0.01	0.991 5
15x6	0.1335	4.8575	677	0.03	0.978 1
15x7	-1.9968	4.6899	677	-0.43	0.670 4
16x4	0.5846	4.8814	677	0.12	0.904 7
17x1	5.9555	4.8279	677	1.23	0.217 8
18x1	1.2470	4.6396	677	0.27	0.788 2
18x9	-2.7330	4.6956	677	-0.58	0.560 7
19x11	0.4501	4.7281	677	0.10	0.924 2
19x9	- 0.08063	4.7155	677	-0.02	0.986 4
1x12	-0.6471	4.7510	677	-0.14	0.891 7
1x3	-0.2140	4.6854	677	-0.05	0.963 6
20x2	1.6797	4.9289	677	0.34	0.733 4
20x3	-1.7038	4.7767	677	-0.36	0.721 4
2x3	2.6622	4.7619	677	0.56	0.576 3
2x5	-0.3422	4.9351	677	-0.07	0.944 7
3x1	-1.9388	4.6912	677	-0.41	0.679 5
3x8	1.9558	4.8377	677	0.40	0.686 1
4x1	0.7761	4.7108	677	0.16	0.869
4x7	-1.1296	4.7126	677	-0.24	0.810 6

	Estimates								
		Standar							
Parents/	Estimat	d		t Valu	Pr >				
Cross	e	Error	DF	e	t				
5x10	-1.7953	4.8005	677	-0.37	0.708 5				
6x11	1.0546	4.7170	677	0.22	0.823				
6x2	-0.1582	4.7514	677	-0.03	0.973 4				
7x12	- 0.08269	4.7510	677	-0.02	0.986 1				
7x3	0.1805	4.6854	677	0.04	0.969 3				
8x10	3.5615	4.5568	677	0.78	0.434 7				
8x2	-2.2599	4.6243	677	-0.49	0.625 2				
8x6	-1.1202	4.6725	677	-0.24	0.810 6				
9x4	0.6220	4.9027	677	0.13	0.899 1				
9x7	-0.7207	4.7553	677	-0.15	0.879 6				

Appendix Table 14 ANOVA for mean performance by parental strains following GLM Procedure for body weight gain of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	8	104729.284	13091.1604	13.49	<.0001
Error	707	686109.444	970.4518		
Corrected Total	715	790838.728			

Appendix Table 15 Mean comparison of performance by parental strains using Tukey-Kramer Test for body weight gain of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

Tukey-K	Tukey-Kramer Comparison Lines for Least Squares Means of dam								
LS-me	LS-means with the same letter are not significantly different.								
		gw	gw						
		LSMEAN	dam	Number					
	А	146.2778	5	5					
			_						
	В	104.0714	7	7					
	B								
С	В	90.7273	8	8					
С	В								
С	В	83.6695	4	4					
С	В								
С	В	81.9000	3	3					
С	В								
С	В	78.7750	2	2					
С	В								
С	В	76.6591	1	1					
C									
C C C C C C C C C C C C C C C C C C C		76.5605	6	6					
С									
С		74.3357	9	9					

Appendix Table 16 The Type 3 Mixed Procedure of analysis of variance for final body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing.

	Type 3 Analysis of Variance									
		Sum of				Error				
Source	DF	Squares	Mean Square	Expected Mean Square	Error Term	DF	F Value	Pr > F		
dam	18	1203607	66867	Var(Residual) + Q(dam,dam*sire)	MS(Residual)	1480	9.14	<.0001		
sire	11	936922	85175	Var(Residual) + Q(sire,dam*sire)	MS(Residual)	1480	11.64	<.0001		
dam*sire	7	53899	7699.882732	Var(Residual) + Q(dam*sire)	MS(Residual)	1480	1.05	0.3922		
Residual	1480	10827647	7315.977758	Var(Residual)			•			

Appendix Table 17 REML estimation of variance components for final body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing.

Covariance Parameter Estimates									
			Standard	Z					
Cov Parm	Ratio	Estimate	Error	Value	Pr > Z				
Dam	0.1998	1463.21	587.61	2.49	0.0064				
Sire	0.1896	1388.25	663.43	2.09	0.0182				
Cross	0	0		•					
Residual	1.0000	7322.73	268.69	27.25	<.0001				

Appendix Table 18 GCA/SCA estimates with corresponding T-test (P=0.05) for final body weight of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing.

	Estimates								
		Standar							
Parents/	Estimat	d		t Valu	Pr >				
Cross	e	Error	DF	e	t				
DAM 1	-	15.2140	1480	-1.63	0.103				
	24.7995				3				
DAM 10	-	15.2412	1480	-2.99	0.002				
	45.4955				9				
DAM 11	10.2043	12.1881	1480	0.84	0.402				
					6				
DAM 12	-	14.5064	1480	-4.10	<.000				
	59.4547				1				
DAM 13	60.4941	21.2309	1480	2.85	0.004				
					4				
DAM 14	-	17.1418	1480	-1.70	0.088				
	29.1778				9				
DAM 15	23.5872	14.4909	1480	1.63	0.103				
					8				
DAM 16	24.4196	28.3809	1480	0.86	0.389				
D + D = 10		1	1 1 0 0		7				
DAM 18	57.8824	17.7588	1480	3.26	0.001				
D 4 3 4 4 0	0.0001	1.1.5000	1 400	0.00	1				
DAM 19	-0.3281	14.5993	1480	-0.02	0.982				
DANG	10 0001	15.0525	1 400	0.77	1				
DAM 2	12.2091	15.9535	1480	0.77	0.444				
DAM 20	6 0070	15 0001	1 4 0 0	0.41	2				
DAM 20	6.2279	15.2221	1480	0.41	0.682				
DAM 2		25.0204	1400	0.95	5				
DAM 3	-	25.8394	1480	-0.85	0.397				
DAM 4	21.8796	16.9670	1400	1.04	$\frac{3}{0.200}$				
DAM 4	17.4613	16.8679	1480	1.04	0.300				
DAM 5	-7.3654	18.6712	1480	-0.39	0.693				
DAM 5	-7.3034	10.0712	1400	-0.39	0.093				
DAM 6	46.3458	14.6558	1480	3.16	0.001				
DANIO	40.3438	14.0556	1400	5.10	0.001				
DAM 7		15.0933	1480	-2.32	0.020				
	35.0115	15.0755	1-00	-2.32	0.020				
DAM 8	11.6990	12.9791	1480	0.90	0.367				
	11.0770	12,7771	1100	0.70	5				
DAM 9	_	14.8313	1480	-3.17	0.001				
	47.0187	11.0010	1100	5.17	0.001 6				
L	1,10107		I		0				

		Estimates			
		Standar			
Parents/	Estimat	d		t Valu	Pr >
Cross	e	Error	DF	e	t
SIRE 1	53.9887	19.4715	1480	2.77	0.005
					6
SIRE 10	58.7832	14.2127	1480	4.14	<.000
					1
SIRE 11	-	14.0829	1480	-1.24	0.214
CIDE 12	17.5024	167250	1400	1 1 4	1
SIRE 12	19.0782	16.7352	1480	1.14	0.254 5
SIRE 2		14.7094	1480	-5.04	<.000
SINE 2	74.1187	17.7077	1400	-5.04	<.000 1
SIRE 3	-	14.5224	1480	-1.03	0.302
·	14.9721				0.00 <u>2</u> 7
SIRE 4	5.5255	17.8006	1480	0.31	0.756
					3
SIRE 5	5.8792	17.1939	1480	0.34	0.732
					4
SIRE 6	-9.2582	15.1569	1480	-0.61	0.541
		12 0005	1400	0.00	4
SIRE 7	- 13.7118	13.9885	1480	-0.98	0.327
SIRE 8	6.6053	17.4065	1480	0.38	0.704
SINE	0.0055	17.4005	1400	0.50	0.704 4
SIRE 9	_	16.6829	1480	-1.22	0.223
	20.2970				9
10x3	0	•			
10x5	0	•	•		
11x10	0	•	•		
11x11	0	•	•		
11x3	0	•	•	•	•
11x7	0		•	•	•
12x10	0	•	•	•	•
12x8	0	•	•	•	•
13x1	0	•	•		
13x12	0	•	•		
14x6	0	•	•		•
15x6	0	•	•		
15x7	0		•	•	•
16x4	0	•	•	•	•
18x1	0	•	•	•	•
18x9	0		•	•	•
19x11	0	•	•	•	•

	Estimates								
		Standar							
Parents/	Estimat	d		t Valu	Pr >				
Cross	e	Error	DF	e	t				
19x9	0	•	•	•					
1x12	0	•	•	•					
1x3	0	•	•	•					
20x2	0	•							
20x3	0	•							
2x3	0	•							
2x5	0								
3x1	0								
4x1	0		•						
4x7	0								
5x10	0		•						
6x11	0		•						
6x2	0		•						
7x12	0		•						
7x3	0		•	•					
8x10	0		•	•					
8x2	0			•					
8x6	0		•	•					
9x4	0			•					
9x7	0	•							

Appendix Table 19 ANOVA for mean performance by parental strains following GLM Procedure for final body weight of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing.

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	7	533951.04	76278.72	8.94	<.0001
Error	150 9	12880632.6 1	8535.87		
Corrected Total	151 6	13414583.6 5			

Appendix Table 20 Mean comparison of performance by parental strains using Scheffe Test for final body weight of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing.

Means with the same letter are not									
	significantly different. Scheffe Grouping Mean N dam								
	A	260.00	5	8					
	А								
В	А	215.13	78	7					
В	А								
В	А	209.46	148	4					
В	А								
В	А	202.05	239	3					
В	А								
В	А	201.97	497	9					
В	А								
В	А	192.99	321	6					
В									
В		152.98	104	2					
В									
В		152.08	125	1					

Appendix Table 21 The Type 3 Mixed Procedure of analysis of variance for body weight gain of channel catfish (<i>Ictalurus punctatus</i>)
female \times blue catfish (<i>I. furcatus</i>) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing.

	Type 3 Analysis of Variance										
Sum ofMeanErrorF											
Source	DF	Squares	Square	Expected Mean Square	Term	DF	Value	Pr > F			
dam	18	1122919	62384	Var(Residual) + Q(dam,dam*sire)	MS(Residua l)	1480	8.84	<.0001			
sire	11	882814	80256	Var(Residual) + Q(sire,dam*sire)	MS(Residua l)	1480	11.38	<.0001			
dam*sire	7	46054	6579.159764	Var(Residual) + Q(dam*sire)	MS(Residua l)	1480	0.93	0.4800			
Residual	1480	10440639	7054.486114	Var(Residual)	•		•	•			

Appendix Table 22 REML estimation of variance components for body weight gain of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing.

Covariance Parameter Estimates									
			Standard	Z					
Cov Parm	Ratio	Estimate	Error	Value	Pr > Z				
Dam	0.1871	1320.19	532.95	2.48	0.0066				
Sire	0.1833	1293.47	619.75	2.09	0.0184				
Cross	0	0		•					
Residual	1.0000	7056.66	258.91	27.26	<.0001				

Appendix Table 23 GCA/SCA estimates with corresponding T-test (P=0.05) for body weight gain of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing.

		Estimates	5		
		Standar			
Parents/	Estimat	d		t Valu	Pr >
Cross	e	Error	DF	e	t
DAM 1	-	14.6870	1480	-1.63	0.103
	23.9430				3
DAM 10	-	14.7060	1480	-2.94	0.003
	43.2113				4
DAM 11	11.5210	11.7401	1480	0.98	0.326
					6
DAM 12	-	14.0044	1480	-4.05	<.000
	56.7031				1
DAM 13	57.4523	20.5523	1480	2.80	0.005
DANGES	*	4 4 70 41	1.400	4	3
DAM 14	-	16.5961	1480	-1.62	0.105
	26.8623	1 1 0 0 10	1 4 9 9	1 70	7
DAM 15	22.2547	14.0060	1480	1.59	0.112
	21 5010	07.00.00	1.400	0.50	3
DAM 16	21.7013	27.3263	1480	0.79	0.427
DAN(10	52 5225	17 1000	1 4 0 0	0.11	2
DAM 18	53.5325	17.1902	1480	3.11	0.001
DAM 10	0.9600	14 1011	1490	0.06	9
DAM 19	-0.8690	14.1011	1480	-0.06	0.950
DAM 2	14.3252	15.4061	1480	0.93	0.352
DANI Z	14.3232	13.4001	1460	0.95	0.552
DAM 20	4.1863	14.7245	1480	0.28	0.776
DAM 20	4.1005	14.7243	1460	0.20	0.770
DAM 3		24.9317	1480	-0.85	0.393
DAM 5	21.2656	24.7317	1400	-0.85	8
DAM 4	17.1634	16.3409	1480	1.05	0.293
	17.1054	10.5407	1400	1.05	0.275
DAM 5	-8.2298	18.0817	1480	-0.46	0.649
	0.2270	10.0017	1100	0.10	1
DAM 6	43.4050	14.1753	1480	3.06	0.002
2111110	1011000	1 111/00	1100	2.00	2
DAM 7	_	14.5680	1480	-2.23	0.025
	32.4871			0	9
DAM 8	12.6917	12.5112	1480	1.01	0.310
_					5
DAM 9	_	14.3326	1480	-3.12	0.001
	44.6623	_			9

Parents/ Cross Estimat e Standar Error t Valu DF Pr > e SIRE 1 52.6480 18.9098 1480 2.78 0.005 SIRE 10 56.5157 13.7779 1480 4.10 <.000 SIRE 11 52.6480 13.6651 1480 -1.17 0.243 SIRE 12 18.6552 16.2407 1480 1.15 0.250 SIRE 12 18.6552 16.2407 1480 -5.03 <.000 SIRE 3 - 14.2898 1480 -5.03 <.000 71.9454 - - 0 3 SIRE 4 4.6961 17.2947 1480 0.27 0.786 14.9984 - - 0 - 0 0 SIRE 4 4.6961 17.2947 1480 0.24 0.807 SIRE 5 4.0668 16.6793 1480 -0.62 0.533 SIRE 6 -9.1548 14.7101 1480 0.35 0.725			Estimates	6		
Cross e Error DF e t SIRE 1 52.6480 18.9098 1480 2.78 0.005 4 SIRE 10 56.5157 13.7779 1480 4.10 <.000 1 SIRE 11 - 13.6651 1480 -1.17 0.243 6 SIRE 12 18.6552 16.2407 1480 1.15 0.250 9 SIRE 12 18.6552 16.2407 1480 -1.07 0.243 -9 SIRE 3 - 14.2898 1480 -5.03 <.000 -107 0.286 SIRE 4 4.6961 17.2947 1480 0.27 0.786 SIRE 5 4.0668 16.6793 1480 0.24 0.807 SIRE 6 -9.1548 14.7101 1480 0.62 0.533 SIRE 7 - 13.5653 1480 0.35 0.725 3 13.9157 - - . . .				-		
SIRE 1 52.6480 18.9098 1480 2.78 0.005 SIRE 10 56.5157 13.7779 1480 4.10 <.000 SIRE 11 - 13.6651 1480 -1.17 0.243 15.9389 - 16.2407 1480 1.15 0.250 SIRE 12 18.6552 16.2407 1480 1.15 0.250 9 SIRE 2 - 14.2898 1480 -5.03 <.000 71.9454 - 1 1.07 0.286 SIRE 3 - 14.0598 1480 -1.07 0.286 SIRE 4 4.6961 17.2947 1480 0.27 0.786 SIRE 5 4.0668 16.6793 1480 0.24 0.807 SIRE 6 -9.1548 14.7101 1480 -0.62 0.533 SIRE 7 - 13.5653 1480 -1.03 0.305 13.9157 <th>Parents/</th> <th>Estimat</th> <th>d</th> <th></th> <th>t Valu</th> <th>Pr ></th>	Parents/	Estimat	d		t Valu	Pr >
Image: state index in the state index	Cross	e	Error	DF	e	t
SIRE 10 56.5157 13.7779 1480 4.10 <.000 SIRE 11 - 13.6651 1480 -1.17 0.243 15.9389 - 14.2898 1480 -1.17 0.243 SIRE 12 18.6552 16.2407 1480 1.15 0.250 SIRE 2 - 14.2898 1480 -5.03 <.000 71.9454 - 14.0598 1480 -1.07 0.286 14.9984 - 14.0598 1480 0.27 0.786 14.9984 - - 0 3 3 SIRE 4 4.6961 17.2947 1480 0.24 0.807 SIRE 5 4.0668 16.6793 1480 0.24 0.807 SIRE 6 -9.1548 14.7101 1480 0.62 0.533 SIRE 7 - 13.5653 1480 0.35 0.725 13.9157 - 1 3 0.725 3 SIRE 8 5.9452 16.9186 1480 0.35 0.725 3	SIRE 1	52.6480	18.9098	1480	2.78	0.005
Image: stress of the						4
SIRE 11 - 13.6651 1480 -1.17 0.243 SIRE 12 18.6552 16.2407 1480 1.15 0.250 SIRE 12 18.6552 16.2407 1480 1.15 0.250 SIRE 2 - 14.2898 1480 -5.03 <.000 71.9454 - 14.0598 1480 -5.03 <.000 SIRE 3 - 14.0598 1480 -1.07 0.286 14.9984 - - 0.27 0.786 SIRE 4 4.6961 17.2947 1480 0.27 0.786 SIRE 5 4.0668 16.6793 1480 0.24 0.807 SIRE 6 -9.1548 14.7101 1480 -0.62 0.533 SIRE 7 - 13.5653 1480 -1.03 0.305 13.9157 - 16.1963 1480 0.35 0.725 SIRE 8 5.9452 16.9186 1480 0.35 0.725 3 0 10x3 0	SIRE 10	56.5157	13.7779	1480	4.10	<.000
15.9389 6 SIRE 12 18.6552 16.2407 1480 1.15 0.250 9 14.2898 1480 -5.03 <.000 71.9454 1 14.0598 1480 -5.03 <.000 SIRE 3 14.0598 1480 -1.07 0.286 14.9984 1 3 3 3 SIRE 4 4.6961 17.2947 1480 0.27 0.786 18.6552 4.0668 16.6793 1480 0.24 0.807 0 1 14.80 0.24 0.807 4 SIRE 5 4.0668 16.6793 1480 0.24 0.807 0 13.9157 1480 -0.62 0.533 8 SIRE 7 13.5653 1480 -1.03 0.305 13 13.9157 1 1480 0.35 0.725 3 SIRE 8 5.9452 16.9186 1480 -1.02 0.306 16.5737 16.1963 1480 -1.02 0.306 11 10x5						-
SIRE 12 18.6552 16.2407 1480 1.15 0.250 SIRE 2 14.2898 1480 -5.03 <.000 71.9454 14.0598 1480 -1.07 0.286 14.9984 17.2947 1480 0.27 0.786 SIRE 3 17.2947 1480 0.27 0.786 SIRE 4 4.6961 17.2947 1480 0.24 0.807 SIRE 5 4.0668 16.6793 1480 0.24 0.807 SIRE 6 -9.1548 14.7101 1480 -0.62 0.533 SIRE 7 13.5653 1480 -1.03 0.305 13.9157 1 1480 -0.62 0.533 SIRE 8 5.9452 16.9186 1480 0.35 0.725 3 1 1 1480 -1.02 0.306 16.5737 1 1 3 1 1 1 10x5 0 11x10 0 <	SIRE 11	-	13.6651	1480	-1.17	-
SIRE 2 - 14.2898 1480 -5.03 <.000	CIDE 12		16 2407	1 4 9 0	1 15	-
SIRE 2 - 14.2898 1480 -5.03 <.00 11 - 14.0598 1480 -1.07 0.286 14.9984 - 14.0598 1480 -1.07 0.286 33 SIRE 4 4.6961 17.2947 1480 0.27 0.786 SIRE 5 4.0668 16.6793 1480 0.24 0.807 SIRE 6 -9.1548 14.7101 1480 -0.62 0.533 SIRE 7 - 13.5653 1480 -1.03 0.305 13.9157 - 13.5653 1480 -1.02 0.306 SIRE 8 5.9452 16.9186 1480 -1.02 0.306 16.5737 - 13 3 3 3 3 SIRE 9 - 16.1963 1480 -1.02 0.306 10x3 0 11x10 0 11x3 0 12x10 0	SIKE 12	18.6552	16.2407	1480	1.15	
71.9454 14.0598 1480 -1.07 0.286 14.9984 3 SIRE 4 4.6961 17.2947 1480 0.27 0.786 SIRE 5 4.0668 16.6793 1480 0.24 0.807 SIRE 5 4.0668 16.6793 1480 0.24 0.807 SIRE 6 -9.1548 14.7101 1480 -0.62 0.533 SIRE 7 - 13.5653 1480 -1.03 0.305 13.9157 - 13.5653 1480 -1.03 0.305 13.9157 - 1 14.80 -0.62 0.533 SIRE 8 5.9452 16.9186 1480 0.35 0.725 3 13.9157 - 1 3 0 . . . SIRE 8 5.9452 16.9186 1480 -1.02 0.306 . . . 10x3 0 11x10 0 	SIDE 2		1/ 2808	1/180	5.03	,
SIRE 3 - 14.0598 1480 -1.07 0.286 3 3 3 3 3 3 SIRE 4 4.6961 17.2947 1480 0.27 0.786 SIRE 5 4.0668 16.6793 1480 0.24 0.807 SIRE 6 -9.1548 14.7101 1480 -0.62 0.533 SIRE 7 - 13.5653 1480 -1.03 0.305 13.9157 1 1480 -0.62 0.533 SIRE 8 5.9452 16.9186 1480 0.35 0.725 3 1 1480 -1.02 0.306 3 16.5737 16.1963 1480 -1.02 0.306 16.5737 1 3 3 3 3 10x3 0 11x10 0 11x3 0 12x10 0 13x1	SINE 2	- 71 9454	14.2090	1460	-5.05	
14.9984 3 SIRE 4 4.6961 17.2947 1480 0.27 0.786 SIRE 5 4.0668 16.6793 1480 0.24 0.807 SIRE 6 -9.1548 14.7101 1480 0.24 0.807 SIRE 6 -9.1548 14.7101 1480 -0.62 0.533 SIRE 7 - 13.5653 1480 -1.03 0.305 13.9157 1 1480 0.35 0.725 SIRE 8 5.9452 16.9186 1480 0.35 0.725 SIRE 9 - 16.1963 1480 -1.02 0.306 16.5737 - - - - - 10x3 0 11x10 0 11x11 0 11x10 0 12x10 0	SIRE 3		14 0598	1480	-1.07	-
SIRE 4 4.6961 17.2947 1480 0.27 0.786 SIRE 5 4.0668 16.6793 1480 0.24 0.807 SIRE 6 -9.1548 14.7101 1480 -0.62 0.533 SIRE 7 - 13.5653 1480 -1.03 0.305 13.9157 1 1480 0.35 0.725 SIRE 8 5.9452 16.9186 1480 0.35 0.725 SIRE 9 - 16.1963 1480 -1.02 0.306 16.5737 - - - . . . 10x3 0 11x10 0 11x10 0 11x10 0 11x10 0 12x8		14.9984	11.0570	1100	1.07	-
SIRE 5 4.0668 16.6793 1480 0.24 0.807 SIRE 6 -9.1548 14.7101 1480 -0.62 0.533 8 SIRE 7 - 13.5653 1480 -1.03 0.305 8 SIRE 8 5.9452 16.9186 1480 0.35 0.725 3 SIRE 9 - 16.1963 1480 -1.02 0.306 16.5737 - - 3 3 SIRE 9 - 16.1963 1480 -1.02 0.306 16.5737 - - 10x5 0 11x10 0 11x11 0 11x10 0 11x1 0 . <th>SIRE 4</th> <th></th> <th>17.2947</th> <th>1480</th> <th>0.27</th> <th>0.786</th>	SIRE 4		17.2947	1480	0.27	0.786
SIRE 6 -9.1548 14.7101 1480 -0.62 0.533 SIRE 7 - 13.5653 1480 -1.03 0.305 13.9157 1 1480 0.35 0.725 SIRE 8 5.9452 16.9186 1480 0.35 0.725 SIRE 8 5.9452 16.1963 1480 -0.2 0.306 16.5737 - 16.1963 1480 -1.02 0.306 16.5737 - 1 3 3 10x3 0 11x10 0 11x1 0 11x7 0 12x8 0 13x12 0 15x6 0 15x7 0 						0
SIRE 6 -9.1548 14.7101 1480 -0.62 0.533 SIRE 7 - 13.5653 1480 -1.03 0.305 13.9157 1 1480 0.35 0.725 SIRE 8 5.9452 16.9186 1480 0.35 0.725 SIRE 8 5.9452 16.9186 1480 -0.62 0.306 10x3 0 10x3 0 11x10 0 11x10 0 11x10 0 11x3 0 12x10 0 13x1 0 	SIRE 5	4.0668	16.6793	1480	0.24	0.807
SIRE 7 - 13.5653 1480 -1.03 0.305 13.9157 1 1 1 1 1 1 SIRE 8 5.9452 16.9186 1480 0.35 0.725 3 SIRE 9 - 16.1963 1480 -1.02 0.306 3 SIRE 9 - 16.1963 1480 -1.02 0.306 16.5737 1 3 3 10x3 0 11x10 0 11x11 0 11x3 0 11x7 0 12x8 0 13x12 0 15x6 0 . . <th></th> <th></th> <th></th> <th></th> <th></th> <th>4</th>						4
SIRE 7 - 13.5653 1480 -1.03 0.305 13.9157 1 1 1 1 1 1 SIRE 8 5.9452 16.9186 1480 0.35 0.725 3 SIRE 9 - 16.1963 1480 -1.02 0.306 3 10x3 0 10x5 0 11x10 0 .	SIRE 6	-9.1548	14.7101	1480	-0.62	0.533
13.9157 1 1 SIRE 8 5.9452 16.9186 1480 0.35 0.725 3 1 1 1 1 1 3 SIRE 9 - 16.1963 1480 -1.02 0.306 16.5737 1 3 3 3 10x3 0 11x10 0 11x10 0 11x10 0 11x10 0 11x3 0 12x8 0 13x12 0 15x6 0 . .						-
SIRE 8 5.9452 16.9186 1480 0.35 0.725 SIRE 9 - 16.1963 1480 -1.02 0.306 16.5737 - - 3 10x3 0 . . . 10x5 0 . . . 11x10 0 . . . 11x11 0 . . . 11x3 0 . . . 11x7 0 . . . 12x10 0 . . . 13x1 0 . . . 13x12 0 . . . 15x6 0 15x7 0 	SIRE 7	-	13.5653	1480	-1.03	0.305
SIRE 9 - 16.1963 1480 -1.02 0.306 16.5737 3 3 3 3 3 10x3 0 . <	CIDE 0		16.0106	1 4 0 0	0.25	1
SIRE 9 - 16.1963 1480 -1.02 0.306 3 10x3 0 . </th <th>SIRE 8</th> <th>5.9452</th> <th>16.9186</th> <th>1480</th> <th>0.35</th> <th>_</th>	SIRE 8	5.9452	16.9186	1480	0.35	_
16.5737 3 10x3 0 . . . 10x5 0 11x10 0 11x11 0 11x3 0 11x7 0 12x10 0 13x1 0 13x12 0 15x6 0 15x7 0 	SIDE 0		16 1063	1/180	1.02	
10x3 0 10x5 0 11x10 0 11x11 0 11x3 0 11x3 0 11x7 0 12x10 0 12x8 0 13x1 0 13x12 0 15x6 0 15x7 0 	SINE 9	-	10.1905	1400	-1.02	
10x5 0 11x10 0 11x11 0 11x3 0 11x3 0 11x7 0 12x10 0 12x8 0 13x1 0 13x12 0 15x6 0 15x7 0 	10x3	_				5
11x10 0 11x11 0 11x3 0 11x3 0 11x3 0 11x7 0 12x10 0 12x8 0 13x1 0 13x12 0 15x6 0 15x7 0 16x4 0 						
11x11 0 11x3 0 11x7 0 12x10 0 12x8 0 13x1 0 13x12 0 15x6 0 15x7 0 16x4 0 						
11x3 0 11x7 0 12x10 0 12x8 0 13x1 0 13x12 0 14x6 0 15x7 0 16x4 0 						
11x7 0 12x10 0 12x8 0 13x1 0 13x12 0 14x6 0 15x6 0 16x4 0 						
12x10 0 12x8 0 13x1 0 13x12 0 14x6 0 15x6 0 15x7 0 16x4 0 				•		•
13x1 0 13x12 0 14x6 0 15x6 0 15x7 0 16x4 0 	12x10	0		•		
13x12 0 14x6 0 15x6 0 15x7 0 16x4 0 	12x8	0		•		
14x6 0 15x6 0 15x7 0 16x4 0 	13x1	0	•			
15x6 0 15x7 0 16x4 0 	13x12	0	•			
15x6 0 . . . 15x7 0 16x4 0 	14x6	0	•			
15x7 0 .		0				
	15x7	0				
	16x4	0				
LOXL U	18x1	0				
18x9 0	18x9	0				
19x11 0		0				

Estimates									
		Standar							
Parents/	Estimat	d		t Valu	Pr >				
Cross	e	Error	DF	e	t				
19x9	0	•		•	•				
1x12	0	•		•	•				
1x3	0	•		•	•				
20x2	0	•		•	•				
20x3	0	•	•	•	•				
2x3	0	•		•	•				
2x5	0								
3x1	0			•					
4x1	0	•		•					
4x7	0	•		•					
5x10	0	•		•					
6x11	0	•		•					
6x2	0	•		•	•				
7x12	0								
7x3	0	•			•				
8x10	0								
8x2	0				•				
8x6	0				•				
9x4	0				•				
9x7	0								

Appendix Table 24 ANOVA for mean performance by parental strains following GLM Procedure for body weight gain of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing.

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	7	515345.82	73620.83	9.00	<.0001
Error	150 9	12350203.0 1	8184.36		
Corrected Total	151 6	12865548.8 3			

Appendix Table 25 Mean comparison of performance by parental strains using Scheffe Test for body weight gain of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in split-pond for additional 245 days of communal rearing.

Means with the same letter are not significantly different.								
Scheffe Grouping Mean N								
	А	244.40	5	8				
	А							
В	А	205.62	78	7				
В	А							
В	А	199.71	148	4				
В	А							
В	А	191.97	497	9				
В	А							
В	А	191.31	239	3				
В	А							
В	А	182.81	321	6				
В								
В		143.54	104	2				
В								
В		143.10	125	1				

Appendix Table 26 The Type 3 Mixed Procedure of analysis of variance for coefficient of variation in body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing.

	Type 3 Analysis of Variance										
Source	DF	Sum of Squares		Expected Mean Square	Error Term	Error DF	F Value	Pr > F			
dam	19	4380.200908	230.536890	Var(Residual) + Q(dam,dam*sire)	MS(Residual)	66	10.11	<.0001			
sire	11	341.735121	31.066829	Var(Residual) + Q(sire,dam*sire)	MS(Residual)	66	1.36	0.2121			
dam*sire	8	276.019249	34.502406	Var(Residual) + Q(dam*sire)	MS(Residual)	66	1.51	0.1699			
Residual	66	1505.60	22.812053	Var(Residual)	•		•				

Appendix Table 27 REML estimation of variance components for coefficient of variation in body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing.

	Covariance Parameter Estimates								
			Standard	Z					
Cov Parm	Ratio	Estimate	Error	Value	Pr > Z				
dam	3.7327	83.8272	31.0813	2.70	0.0035				
sire	0.07975	1.7910	3.3471	0.54	0.2963				
cross	0.1178	2.6454	4.5594	0.58	0.2809				
Residual	1.0000	22.4578	3.8466	5.84	<.0001				

Appendix Table 28 GCA/SCA estimates with corresponding T-test (P=0.05) for coefficient of variation in body weight of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing.

	Estimates									
		Standar								
Parents/	Estimat	d	D	t Valu	Pr >					
Cross	e	Error	F	e	t					
DAM 1	4.6814	3.0538	66	1.53	0.130					
					1					
DAM 10	-3.4484	3.0614	66	-1.13	0.264					
					1					
DAM 11	-0.3669	2.7089	66	-0.14	0.892					
					7					
DAM 12	-4.2204	3.0698	66	-1.37	0.173					
					8					
DAM 13	6.8620	3.8395	66	1.79	0.078					
					5					
DAM 14	-2.7981	3.7015	66	-0.76	0.452					
					4					
DAM 15	1.1446	3.0548	66	0.37	0.709					
					1					
DAM 16	2.1887	4.7876	66	0.46	0.649					
					1					
DAM 17	33.7885	3.6748	66	9.19	<.000					
					1					
DAM 18	-3.9315	3.0570	66	-1.29	0.202					
D / D / D		2 0 - 1 1		1.05	9					
DAM 19	-3.2957	3.0744	66	-1.07	0.287					
		0.0.444		1 10	6					
DAM 2	-5.1492	3.0614	66	-1.68	0.097					
DANGO	5 5 6 5 0	2 21 20		1.7.4	3					
DAM 20	-5.7670	3.3130	66	-1.74	0.086					
DAM 2	2 4250	2 2200	~	1.02	4					
DAM 3	-3.4358	3.3209	66	-1.03	0.304					
DAN(4	0.0147	2 0 2 0 1	((0.27	6					
DAM 4	-0.8147	3.0391	66	-0.27	0.789					
DAM 5	0.4401	26012	66	0.12	0.002					
DAM 5	-0.4491	3.6843	66	-0.12	0.903					
DAM 6	-4.4154	3.0695	66	-1.44	<u>4</u> 0.155					
DANIU	-4.4134	5.0095	00	-1.44	0.155					
DAM 7	1.3993	3.0538	66	0.46	0.648					
	1.3773	5.0558	00	0.40	0.048					
DAM 8	-3.5701	2.7928	66	-1.28	0.205					
	-3.3701	2.1720	00	-1.20	0.205					
L					0					

	I	Estimates			
		Standar			
Parents/	Estimat	d	D	t Valu	Pr >
Cross	e	Error	F	<u>e</u>	t
DAM 9	-8.4022	3.0661	66	-2.74	0.007
SIRE 1	0.6935	1.1823	66	0.59	0.559
	0.0755	1.1025	00	0.57	5
SIRE 10	1.4358	1.1577	66	1.24	0.219
					3
SIRE 11	0.2093	1.1763	66	0.18	0.859
	0.5550	1.2100		0.46	4
SIRE 12	0.5552	1.2198	66	0.46	0.650 5
SIRE 2	-0.7100	1.1965	66	-0.59	0.555
SINE 2	-0.7100	1.1703	00	-0.53	0.555
SIRE 3	-0.2080	1.1164	66	-0.19	0.852
_			-	-	8
SIRE 4	-0.2640	1.2745	66	-0.21	0.836
					6
SIRE 5	-0.1649	1.2394	66	-0.13	0.894
SIRE 6	0.2717	1 2120	"	-0.31	6 0.760
SIKE 0	-0.3717	1.2129	66	-0.31	0.760
SIRE 7	-0.2955	1.1398	66	-0.26	0.796
	0.2700	111090	00	0.20	2
SIRE 8	-0.3317	1.2546	66	-0.26	0.792
					3
SIRE 9	-0.5481	1.2350	66	-0.44	0.658
	0.2404	1 5029	"	0.22	0.819
10x3	-0.3494	1.5238	66	-0.23	0.819
	0.2406	1.5244	66	0.16	0.875
10x5					1
11x10	0.7460	1.4869	66	0.50	0.617
11X10					5
11x11	0.03531	1.4874	66	0.02	0.981
	0.2002	1 5522	(1	0.10	1
11x3	-0.2893	1.5533	66	-0.19	0.852
	-0.5036	1.4866	66	-0.34	0.735
11x7	0.0000	1.1000	50	0.01	9
12v10	0.3011	1.5254	66	0.20	0.844
12x10					2
12x8	-0.4343	1.5260	66	-0.28	0.776
					9

Estimates								
		Standar						
Parents/	Estimat	d	D	t Valu	Pr >			
Cross	e	Error	F	e	t			
13x1	-0.2300	1.5800	66	-0.15	0.884 7			
13x12	0.4465	1.5801	66	0.28	0.778 4			
14x6	- 0.08830	1.6049	66	-0.06	0.956 3			
15x6	0.6002	1.5251	66	0.39	0.695 2			
15x7	-0.5640	1.5248	66	-0.37	0.712 6			
16x4	0.06907	1.6077	66	0.04	0.965 9			
17x1	1.0663	1.6048	66	0.66	0.508 7			
18x1	0.7037	1.5255	66	0.46	0.646 1			
18x9	-0.8278	1.5260	66	-0.54	0.589 3			
19x11	-0.1223	1.5256	66	-0.08	0.936 4			
19x9	0.01826	1.5258	66	0.01	0.990 5			
1x12	-0.5820	1.5241	66	-0.38	0.703 8			
1x3	0.7297	1.5236	66	0.48	0.633 6			
20x2	-0.3736	1.5668	66	-0.24	0.812			
20x3	0.1916	1.5574	66	0.12	0.902 5			
2x3	0.3217	1.5238	66	0.21	0.833 5			
2x5	-0.4842	1.5244	66	-0.32	0.751 8			
3x1	- 0.05267	1.5579	66	-0.03	0.973 1			
3x8	- 0.05576	1.5673	66	-0.04	0.971 7			
4x1	-0.4630	1.5245	66	-0.30	0.762			
4x7	0.4373	1.5246	66	0.29	0.775			

	Estimates								
		Standar							
Parents/	Estimat	d	D	t Valu	Pr >				
Cross	e	Error	F	e	t				
5x10	-	1.6048	66	-0.01	0.993				
3710	0.01417				0				
6x11	0.3960	1.5251	66	0.26	0.795				
0.11					9				
6x2	-0.5354	1.5252	66	-0.35	0.726				
0X2					7				
7x12	0.9556	1.5241	66	0.63	0.532				
/X12					8				
7x3	-0.9114	1.5236	66	-0.60	0.551				
785					8				
8x10	1.0879	1.4952	66	0.73	0.469				
9X10					4				
8x2	-0.1398	1.4960	66	-0.09	0.925				
0X2					8				
8x6	-1.0608	1.4962	66	-0.71	0.480				
0X0					8				
9x4	-0.4590	1.5260	66	-0.30	0.764				
584					5				
0.47	0.1938	1.5255	66	0.13	0.899				
9x7					3				

Appendix Table 29 ANOVA for mean performance by parental strains following GLM Procedure for coefficient of variation in body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing.

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	8	0.53794931	0.06724366	21.72	<.0001
Error	96	0.29726650	0.00309653		
Corrected Total	104	0.83521581			

Appendix Table 30 Mean comparison of performance by parental strains using Tukey-Kramer Test for coefficient of variation in body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in flow-through system for 311 days of separate tank rearing.

Kramer Comp		xey- r Least Square	es Means of dam			
•		-	icantly different.			
	cv LSMEAN dam					
Α	0.68062432	5	5			
В	0.32076927	8	8			
В						
В	0.29084218	9	9			
В						
В	0.28137894	3	3			
В						
В	0.27611228	6	6			
В						
В	0.25900928	4	4			
В						
В	0.25653502	2	2			
В						
В	0.23849914	7	7			
В						
В	0.20307101	1	1			
-	•	0	cant comparisons. ly different: (9,1)			

Appendix Table 31 The Type 3 Mixed Procedure of analysis of variance for coefficient of variation in body weight of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

	Type 3 Analysis of Variance									
Source	DF	Sum of Squares		Expected Mean Square	Error Term	Error DF	F Value	Pr > F		
dam	19	7625.773812	401.356516	Var(Residual) + Q(dam,dam*sire)	MS(Residual)	41	3.18	0.0009		
sire	11	4021.114628	365.555875	Var(Residual) + Q(sire,dam*sire)	MS(Residual)	41	2.90	0.0065		
dam*sire	7	2664.769003	380.681286	Var(Residual) + Q(dam*sire)	MS(Residual)	41	3.02	0.0118		
Residual	41	5167.79	126.043691	Var(Residual)	•	•				

Appendix Table 32 REML estimation of variance components for coefficient of variation in body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

Covariance Parameter Estimates								
			Standard	Z				
Cov Parm	Ratio	Estimate	Error	Value	$\mathbf{Pr} > \mathbf{Z}$			
dam	0.1331	21.1784	37.2660	0.57	0.2849			
sire	0	0						
cross	0.2932	46.6488	56.7361	0.82	0.2055			
Residual	1.0000	159.10	44.1313	3.61	0.0002			

Appendix Table 33 GCA/SCA estimates with corresponding T-test (P=0.05) for coefficient of variation in body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

	Estimates								
		Standar							
Parents/	Estimat	d	D	t Valu	Pr >				
Cross	e	Error	F	e	t				
DAM 1	0.5588	4.0186	41	0.14	0.890				
					1				
DAM 10	4.7344	4.1081	41	1.15	0.255				
					8				
DAM 11	-0.9771	3.6067	41	-0.27	0.787				
					8				
DAM 12	-0.1630	3.9083	41	-0.04	0.966				
					9				
DAM 13	-	4.2069	41	-0.02	0.983				
	0.08875				3				
DAM 14	0.2030	4.3866	41	0.05	0.963				
					3				
DAM 15	-2.5861	4.0456	41	-0.64	0.526				
					2				
DAM 16	-0.6762	4.3866	41	-0.15	0.878				
					2				
DAM 17	2.0262	4.1964	41	0.48	0.631				
					8				
DAM 18	-3.1508	4.0456	41	-0.78	0.440				
					5				
DAM 19	-0.8703	4.0186	41	-0.22	0.829				
					6				
DAM 2	-3.4252	4.0456	41	-0.85	0.402				
					1				
DAM 20	-0.7279	4.3866	41	-0.17	0.869				
					0				
DAM 3	3.6011	4.0456	41	0.89	0.378				
					6				
DAM 4	-1.6795	4.0186	41	-0.42	0.678				
					2				
DAM 5	1.6985	4.1964	41	0.40	0.687				
					8				
DAM 6	-0.3871	3.9617	41	-0.10	0.922				
					6				
DAM 7	3.3553	4.1081	41	0.82	0.418				
					8				
DAM 8	0.3246	3.6928	41	0.09	0.930				
					4				

]	Estimates			
		Standar			
Parents/	Estimat	d	D	t Valu	Pr >
Cross	e	Error	F	e	t
DAM 9	-1.7700	4.0456	41	-0.44	0.664
					0
SIRE 1	0				
SIRE 10	0				
SIRE 11	0				
SIRE 12	0	•			
SIRE 2	0	•			
SIRE 3	0				
SIRE 4	0	•			
SIRE 5	0	•	•		
SIRE 6	0			•	
SIRE 7	0		•	•	•
SIRE 8	0	•	•	•	•
SIRE 9	0	•	•	•	•
	-2.0029	5.6634	41	-0.35	0.725
10x3	2.002	0.0001	•••	0.00	4
	12.4312	6.0890	41	2.04	0.047
10x5	12.1012	0.00070	•••	2.0.	7
	-2.5028	5.2743	41	-0.47	0.637
11x10	2.3020	5.2715		0.17	6.057
	5.2250	5.2743	41	0.99	0.327
11x11	5.2250	5.2715	11	0.77	0.327
	-2.4054	6.0643	41	-0.40	0.693
11x3	2.1001	0.0010	•••	0.10	0.0 <i>7</i>
	-2.4691	5.2743	41	-0.47	0.642
11x7	2.1091	5.2715		0.17	2
	-0.3384	5.3454	41	-0.06	0.949
12x10	0.5501	0.0101		0.00	8
	_	5.3454	41	-0.00	0.996
12x8	0.02065	0.0101		0.00	9
	1.1776	6.0942	41	0.19	0.847
13x1	1.1770	0.0712		0.17	0.017
	-1.3731	6.0942	41	-0.23	0.822
13x12	1.5751	0.0712	11	0.23	9
	0.4471	6.1037	41	0.07	0.942
14x6	0.11/1	0.1007	. 1	0.07	0.742
	-4.7154	6.0858	41	-0.77	0.442
15x6	1.7134	0.0050	11	0.77	9
	-0.9808	5.3787	41	-0.18	0.856
15x7	-0.7000	5.5707	71	-0.10	0.850
	-1.4894	6.1037	41	-0.24	0.808
16x4	-1.+074	0.1037	41	-0.24	0.808
					4

Estimates								
		Standar						
Parents/	Estimat	d	D	t Valu	Pr >			
Cross	e	Error	F	e	t			
17x1	4.4630	5.4161	41	0.82	0.414 7			
18x1	-4.3958	5.3787	41	-0.82	0.418 5			
18x9	-2.5444	6.0858	41	-0.42	0.678 1			
19x11	1.5697	5.6504	41	0.28	0.782 6			
19x9	-3.4866	5.6504	41	-0.62	0.540 6			
1x12	-0.6326	5.6504	41	-0.11	0.911 4			
1x3	1.8635	5.6504	41	0.33	0.743 2			
20x2	-1.6033	6.1037	41	-0.26	0.794 1			
20x3	-4.5245	5.3787	41	-0.84	0.405 1			
2x3	-3.0200	6.0858	41	-0.50	0.622 4			
2x5	-1.9224	5.3787	41	-0.36	0.722 6			
3x1	9.8543	6.0858	41	1.62	0.113 1			
3x8	-2.1103	5.6504	41	-0.37	0.710 7			
4x1	-1.5890	5.6504	41	-0.28	0.779 9			
4x7	3.7413	5.4161	41	0.69	0.493 6			
5x10	- 0.08137	5.3583	41	-0.02	0.988 0			
6x11	-0.7713	5.6422	41	-0.14	0.891 9			
6x2	4.3020	6.0890	41	0.71	0.483 9			
7x12	3.0886	5.6634	41	0.55	0.588 5			
7x3	-3.0572	5.2943	41	-0.58	0.566 8			
8x10	6.2275	5.2943	41	1.18	0.246 3			

Estimates									
		Standar							
Parents/	Estimat	d	D	t Valu	Pr >				
Cross	e	Error	F	e	t				
8x2	-2.4553	5.2943	41	-0.46	0.645				
082					3				
8x6	-0.4198	6.0858	41	-0.07	0.945				
0X0					3				
0.4	-3.4790	5.3787	41	-0.65	0.521				
9x4					4				

Appendix Table 34 ANOVA for mean performance by parental cross following GLM Procedure for coefficient of variation in body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	20	7324.18037	366.20902	2.23	0.0092
Error	58	9512.73205	164.01262		
Corrected Total	78	16836.9124			
		2			

Appendix Table 35 Mean comparison of performance by parental cross using Tukey-Kramer Test for coefficient of variation in body weight of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny in recirculating system for additional 245 days of separate tank rearing.

Kran	Tukey- Kramer Comparison Lines for Least Squares Means of Parental Cross									
LS-	means with the s	ame letter are no	t significantly	v different.						
		cv		LSMEAN						
		LSMEAN	Cross	Number						
	А	89.99541	ARMKxDB	12						
	А									
В	А	42.14426	KRxTBB	19						
В	А									
В	А	41.99625	KThxDR	2						
В	А									
В	А	36.53805	TishxRG	13						
В	А									

<u>Cross</u> LS-means with the same letter are not significantly different.								
L0-1	neans with the			LSMEAN				
		LSMEAN	Cross	Number				
В	А	36.46542		16				
В	А							
<u> </u>	A	35.59495	KRxRG	18				
В	A							
B	A	34.78819	KSxDB	20				
B	A							
B	A	32.03125	KRxDR	17				
B	A	02100120		1,				
B	A	31 56692	MixxTBB	6				
B	A	51.50072		C				
B	A	31 54520	MixxRG	5				
B	A	51.51520						
B	A	29 74938	ARMKxTB	15				
D	1 1	29.11930	B	10				
В	Α							
B	A	28.07211	TishxDR	11				
B	A							
B	A	25.46654	TishxDB	10				
B	A							
В	А	24.22536	KSxDR	21				
В	А							
В	А	23.18816	ThxDB	9				
В								
В		22.62508	ARxDB	1				
В								
В		18.84733	TishxTBB	14				
В								
В		18.77399	MixxDB					
В								
В		17.88942	MixxDR	4				
В								
В		17.34018	RGxTBB	8				
В								
В		13.68837	RGxDB	,				
The LI	NES display doe	es not reflect all sig	gnificant comp	arisons. The				

Appendix Table 36 The Type 3 Mixed Procedure of analysis of variance for survival rate of channel catfish (<i>Ictalurus punctatus</i>)
female \times blue catfish (<i>I. furcatus</i>) male F1 hybrid progeny from natural <i>Aeromonas hydrophila</i> infection.

	Type 3 Analysis of Variance								
		Sum of				Error			
Source	DF	Squares	Mean Square	Expected Mean Square	Error Term	DF	F Value	Pr > F	
dam	19	12734	670.185319	Var(Residual) + Q(dam,dam*sire)	MS(Residual)	67	2.13	0.0122	
sire	11	10066	915.116399	Var(Residual) + Q(sire,dam*sire)	MS(Residual)	67	2.91	0.0034	
dam*sire	9	4751.611118	527.956791	Var(Residual) + Q(dam*sire)	MS(Residual)	67	1.68	0.1110	
Residual	67	21045	314.106132	Var(Residual)	•	•	•		

Appendix Table 37 REML estimation of variance components for survival rate of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny from natural *Aeromonas hydrophila* infection.

Covariance Parameter Estimates								
		Standard Z						
Cov Parm	Ratio	Estimate	Error	Value	Pr > Z			
dam	0.1902	63.7632	53.5457	1.19	0.1169			
sire	0.3253	109.08	64.6532	1.69	0.0458			
cross	0	0		•				
Residual	1.0000	335.28	53.0717	6.32	<.0001			

Appendix Table 38 GCA/SCA estimates with corresponding T-test (P=0.05) for survival rate of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny from natural *Aeromonas hydrophila* infection.

Estimates								
		Standar						
Parents/	Estimat	d	D	t Valu	Pr >			
Cross	e	Error	F	e	t			
DAM 1	2.5436	5.9755	67	0.43	0.671			
					7			
DAM 10	0.8185	6.0172	67	0.14	0.892			
					2			
DAM 11	4.6496	5.2101	67	0.89	0.375			
					4			
DAM 12	5.0202	6.0903	67	0.82	0.412			
					7			
DAM 13	0.4764	6.9063	67	0.07	0.945			
					2			
DAM 14	4.3685	6.7570	67	0.65	0.520			
					2			
DAM 15	-2.7308	5.9508	67	-0.46	0.647			
					8			
DAM 16	-0.6678	7.4238	67	-0.09	0.928			
					6			
DAM 17	-	6.6694	67	-1.80	0.077			
	11.9721				2			
DAM 18	-5.2013	6.0152	67	-0.86	0.390			
					3			
DAM 19	4.7178	6.0835	67	0.78	0.440			
					8			
DAM 2	2.9751	6.0172	67	0.49	0.622			
					6			
DAM 20	-4.8381	6.0697	67	-0.80	0.428			
					2			
DAM 3	5.6405	6.3495	67	0.89	0.377			
					5			
DAM 4	-7.1048	5.8837	67	-1.21	0.231			
					5			
DAM 5	-0.4136	6.6661	67	-0.06	0.950			
					7			
DAM 6	-8.8653	5.7783	67	-1.53	0.129			
					7			
DAM 7	3.9399	5.9755	67	0.66	0.511			
					9			
DAM 8	1.8398	5.4473	67	0.34	0.736			
					6			

Estimates									
		Standar							
Parents/	Estimat	d	D	t Valu	Pr >				
Cross	e	Error	F	e	t				
DAM 9	4.8039	6.1049	67	0.79	0.434				
					1				
SIRE 1	-	5.9158	67	-3.80	0.000				
CIDE 10	22.5061	E 7524	(7	1.50	3				
SIRE 10	-8.6100	5.7534	67	-1.50	0.139				
SIRE 11	5.5067	6.2921	67	0.88	0.384				
SINE II	5.5007	0.2921	07	0.88	0.384				
SIRE 12	-5.6789	6.7959	67	-0.84	0.406				
	5.0707	0.1757	07	0.01	3				
SIRE 2	2.8739	6.4566	67	0.45	0.657				
					7				
SIRE 3	4.2565	5.5364	67	0.77	0.444				
					7				
SIRE 4	3.7607	7.6520	67	0.49	0.624				
					7				
SIRE 5	1.2749	7.0887	67	0.18	0.857				
	2.4662	6 10 50		0.54	8				
SIRE 6	3.4663	6.4253	67	0.54	0.591				
SIRE 7	7.2911	5.8804	67	1.24	4 0.219				
SIKE /	1.2911	3.0004	07	1.24	0.219				
SIRE 8	5.8336	7.6141	67	0.77	0.446				
	0.0000	,	07	0.,,	3				
SIRE 9	2.5314	7.0516	67	0.36	0.720				
					7				
10x3	0		•						
10x5	0			•	•				
11x10	0	•	•	•	•				
11x11	0	•	•	•					
11x3	0	•	•	•					
11x7	0	•	•	•					
12x10	0	•		•					
12x8	0	•		•					
13x1	0	•	•	•					
13x12	0	•	•	•					
14x6	0	•		•					
15x6	0	•		•					
15x7	0	•		•	•				
16x4	0			•	•				
17x1	0	•		•	•				

Estimates									
		Standar							
Parents/	Estimat	d	D	t Valu	Pr >				
Cross	e	Error	F	e	t				
18x1	0	•	•	•					
18x9	0	•							
19x11	0	•	•						
19x9	0	•	•	•	•				
1x12	0	•	•	•	•				
1x3	0	•	•	•	•				
20x2	0		•	•					
20x3	0	•	•	•	•				
2x3	0		•	•					
2x5	0		•	•					
3x1	0		•	•					
3x8	0	•	•	•	•				
4x1	0	•	•	•	•				
4x7	0	•	•	•	•				
5x10	0	•	•	•					
6x10	0	•	•	•	•				
6x11	0		•	•					
6x2	0		•	•					
7x12	0	•	•	•	•				
7x3	0	•	•	•					
8x10	0	•	•	•	•				
8x2	0	•	•	•	•				
8x6	0	•	•	•					
9x4	0	•	•	•	•				
9x7	0	•		•					

Appendix Table 39 ANOVA for mean performance by parental strains following GLM Procedure for survival rate of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny from natural *Aeromonas hydrophila* infection.

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	3	13434.9601	4478.32005	11.12	<.0001
		6			
Error	103	41468.8854	402.61054		
		8			
Corrected Total	106	54903.8456			
		4			

Appendix Table 40 Mean comparison of performance by parental strains using Tukey-Kramer Test for survival rate of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny from natural *Aeromonas hydrophila* infection.

Tukey-								
Kramer Cor	Kramer Comparison Lines for Least Squares Means of Sire							
LS-means with	ith the same letter	are not signi	ificantly different.					
			LSMEAN					
	aer LSMEAN	Sire	Number					
А	90.89312	4	4					
А								
А	90.81245	1	1					
А								
А	86.42813	3	3					
В	64.07923	2	2					

Note: Sire strain 1 – DB; 2 – DR; 3 – RG; 4 – TBB

Appendix Table 41 The Type 3 Mixed Procedure of analysis of variance for dressout percentage of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny.

	Type 3 Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	Expected Mean Square	Error Term	Error DF	F Value	Pr > F	
dam	15	391.32244 8	-	Var(Residual) + Q(dam,dam*sire)	MS(Residua l)	262	4.61	<.0001	
sire	10	305.08823 1	30.508823	Var(Residual) + Q(sire,dam*sire)	MS(Residua l)	262	5.39	<.0001	
dam*sire	4	22.861745	5.715436	Var(Residual) + Q(dam*sire)	MS(Residua l)	262	1.01	0.4028	
Residual	262	1482.90	5.659907	Var(Residual)	•	•	•		

Appendix Table 42 REML estimation of variance components for dressout percentage of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny.

Covariance Parameter Estimates							
			Standard	Z			
Cov Parm	Ratio	Estimate	Error	Value	Pr > Z		
dam	0.02144	0.1215	0.6955	0.17	0.4307		
sire	0.07248	0.4108	0.4763	0.86	0.1942		
cross	0.2337	1.3244	0.9241	1.43	0.0759		
Residual	1.0000	5.6669	0.4956	11.43	<.0001		

Appendix Table 43 GCA/SCA estimates with corresponding T-test (P=0.05) for dressout percentage of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny.

		Estimates			
		Standar			
	Estimat	d		t Valu	Pr >
Label	e	Error	DF	e	t
DAM 1	-	0.3315	262	-0.24	0.809
	0.07989				7
DAM 10	-0.1592	0.3315	262	-0.48	0.631
					5
DAM 11	0.1562	0.3241	262	0.48	0.630
					2
DAM 12	0.02149	0.3321	262	0.06	0.948
					4
DAM 14	-0.1463	0.3395	262	-0.43	0.667
					0
DAM 15	0.03570	0.3314	262	0.11	0.914
					3
DAM 18	0.04995	0.3398	262	0.15	0.883
					2
DAM 19	-	0.3319	262	-0.21	0.836
	0.06872				1
DAM 2	0.1943	0.3315	262	0.59	0.558
					2
DAM 20	-	0.3323	262	-0.02	0.984
	0.00668				0
DAM 4	0.1398	0.3406	262	0.41	0.681
				0.4.4	9
DAM 5	-	0.3393	262	-0.16	0.871
DANKS	0.05502	0.001.6	0.60	0.00	3
DAM 6	-	0.3316	262	-0.22	0.824
DAME	0.07372	0.0015	262	0.00	2
DAM 7	-	0.3315	262	-0.29	0.773
DAMO	0.09561	0.2242	262	0.21	$\frac{2}{0.755}$
DAM 8	0.1013	0.3243	262	0.31	0.755
DAMO		0.2221	262	0.04	1
DAM 9	-	0.3321	262	-0.04	0.967
SIDE 14	0.01368	0.4070	262	1 1 2	$\frac{2}{0.2(1)}$
SIRE 10	0.5586	0.4968	262	1.12	0.261
SIDE 11	0.01202	0.5100	262	0.03	9
SIRE 11	0.01382	0.5190	262	0.03	0.978
SIRE 12	0 1200	0.5482	262	0.24	<u>8</u> 0.811
51RE 12	0.1308	0.3482	202	0.24	
					6

		Estimates			
		Standar			
	Estimat	d		t Valu	Pr >
Label	e	Error	DF	e	t
SIRE 2	-0.6028	0.5231	262	-1.15	0.250
					2
SIRE 3	-0.7293	0.4795	262	-1.52	0.129
	0.1011	0 70 77		0.01	5
SIRE 4	-0.1214	0.5865	262	-0.21	0.836
SIRE 5	0.2050	0.5482	262	0.56	0.577
SIKE 5	0.3059	0.3482	262	0.56	0.377
SIRE 6	0.1187	0.5195	262	0.23	0.819
SINE	0.1107	0.5175	202	0.23	0.017
SIRE 7	0.1739	0.5003	262	0.35	0.728
	5.2107	5.0000		0.00	4
SIRE 8	0.05690	0.5865	262	0.10	0.922
					8
SIRE 9	0.09479	0.5485	262	0.17	0.862
					9
10x3	-1.2289	0.7414	262	-1.66	0.098
					6
10x5	-0.5059	0.7749	262	-0.65	0.514
	1 7550	0 7 4 7 9	262	2.25	4
11x10	1.7558	0.7478	262	2.35	0.019
	0.5659	0.7586	262	0.75	6 0.456
11x11	0.3039	0.7580	202	0.75	0.430
	-0.6189	0.7492	262	-0.83	0.409
11x7	0.010)	0.7.172	202	0.02	5
	0.05080	0.7497	262	0.07	0.946
12x10					0
12x8	0.1835	0.7942	262	0.23	0.817
1280					5
14x6	-1.5941	0.7635	262	-2.09	0.037
	0.0-0.0	0 - 400		1.00	8
15x6	0.9749	0.7608	262	1.28	0.201
	0.5959	07515	262	0.70	0.426
15x7	-0.5858	0.7515	262	-0.78	0.436
	0.5444	0.7775	262	0.70	0.484
18x9	0.5444	0.1113	202	0.70	0.484
	-0.5102	0.7607	262	-0.67	0.503
19x11	0.0102	0.7007	-02	0.07	0.000
10-0	-0.2388	0.7746	262	-0.31	0.758
19x9		-			1
L	1				-

Estimates							
		Standar					
	Estimat	d		t Valu	Pr >		
Label	e	Error	DF	e	t		
1x12	-0.2003	0.7749	262	-0.26	0.796 2		
1x3	-0.6704	0.7414	262	-0.90	0.366 7		
20x2	-0.6591	0.8260	262	-0.80	0.425 6		
20x3	0.5862	0.7419	262	0.79	0.430 2		
2x3	0.6259	0.7414	262	0.84	0.399 3		
2x5	1.4922	0.7749	262	1.93	0.055 2		
4x7	1.5233	0.8203	262	1.86	0.064 4		
5x10	-0.5997	0.7529	262	-0.80	0.426 5		
6x11	- 0.01109	0.7608	262	-0.01	0.988 4		
6x2	-0.7924	0.7628	262	-1.04	0.299 8		
7x12	0.6221	0.7749	262	0.80	0.422 9		
7x3	-1.6642	0.7414	262	-2.24	0.025 6		
8x10	0.5941	0.7477	262	0.79	0.427 5		
8x2	-0.4922	0.7604	262	-0.65	0.518 0		
8x6	1.0021	0.7583	262	1.32	0.187 5		
9x4	-0.3913	0.7941	262	-0.49	0.622 6		
9x7	0.2422	0.7512	262	0.32	0.747 4		

Appendix Table 44 ANOVA for mean performance by parental cross following GLM Procedure for dressout percentage of channel catfish (*Ictalurus punctatus*) female × blue catfish (*I. furcatus*) male F1 hybrid progeny.

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	16	384.033369	24.002086	3.71	<.0001
Error	275	1778.67454 9	6.467907		
Corrected Total	291	2162.70791 7			

Appendix Table 45 Mean comparison of performance by parental cross using Tukey-Kramer Test for dressout percentage of channel catfish (*Ictalurus punctatus*) female \times blue catfish (*I. furcatus*) male F1 hybrid progeny.

Tuke	ey-Kramer (Comparis		or Least Squar	es Means o	f Parental
	IS moone	with the a	Cro omo lottor d	ss are not signifi	antly diffa	ront
	L5-means v	with the s	ame letter a	dress LSMEA		LSMEA N
					Cross	Number
		А		61.56575	RGxDB	5
		А				
В		А		60.87204	TishxDR	8
В		А				
В		А		60.44303	KSxDR	17
В		А				
В		А	С	59.91281	TishxRG	10
В		А	С			
В		А	С	59.35864	KRxRG	14
В		А	С			
В	D	А	С	59.29353	RGxTBB	6
В	D	А	С			
В	D	А	С	59.15804	KSxDB	16
В	D	А	С			
В	D	А	С	58.90101	KRxDB	12
В	D	А	С			
В	D	А	С	58.84092	ARxDB	1
В	D	А	С			
В	D	А	С	58.76714	MixxDB	2
В	D	А	С			
В	D	А	С	58.61534	TishxDB	7
В	D	А	С			
В	D	А	С	58.58214	KRxDR	13

Tuke	y-Kramer	Comparis		or Least Squar	es Means of	Parental		
	Cross LS-means with the same letter are not significantly different.							
				dress LSMEA		LSMEA N		
				Ν	Cross	Number		
В	D	А	C					
В	D	А	С	58.42555	MixxRG	3		
В	D	А	С					
В	D	А	С	58.35914	ARMKxD B	9		
В	D		С					
В	D		С	58.10218	MixxTBB	4		
	D		С					
	D		С	56.29161	ARMKxT BB	11		
	D							
	D			55.73371	KRxTBB	15		