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RF bipolar and CMOS are both important in RFIC applications. Modeling of noise pro-

vides critical information in the design of RF circuits. Unfortunately, available compact models

for both RF bipolar and CMOS, are typically not applicable for the GHz frequency range. In this

dissertation, a new technique of simulating the spatial distribution of microscopic noise contri-

bution to the input noise current, voltage, and their correlation is presented, and applied to both

RF SiGe HBT transistor and RF MOSFET transistor.

For RF SiGe HBT transistor, bipolar transistor noise modeling and noise physics are exam-

ined using microscopic noise simulation. Transistor terminal current and voltage noises result-

ing from velocity fluctuations of electrons and holes in the base, emitter, collector, and substrate

are simulated using the new technique proposed, and compared with modeling results. Major

physics noise sources in bipolar transistor are qualitatively identified. The relevant importance

as well as model-simulation discrepancy is analyzed for each physical noise source.

Moreover, the RF noise physics and SiGe profile optimization for low noise are explored

using microscopic noise simulation. A higher Ge gradient in a noise critical region near the EB
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junction, together with an unconventional Ge retrograding in the base to keep total Ge content

below stability, when optimized, can lead to significant noise improvement without sacrificing

peak cutoff frequency and without any significant high injection cutoff frequency rolloff degra-

dation.

For RF MOSFET transistor, RF noise of 50 nm Leff CMOS is simulated using hydrody-

namic noise simulation. Intrinsic noise sources for the Y- and H- noise representations are ex-

amined and models of intrinsic noise sources are proposed. The relations between the Y- and

H- noise representations for MOSFETs are examined, and the importance of correlation for both

representations is quantified. The H- noise representation has the inherent advantage of a more

negligible correlation, which makes circuit design and simulation easier.

The extrinsic gate resistance is important as well as the intrinsic drain noise current for

noise modeling of scaled MOSFET. Accurately extract the gate resistance becomes an important

issue. The frequency and bias dependence of the effective gate resistance are explained by

considering the effect of gate-to-body capacitance, gate to source/drain overlap capacitances,

fringing capacitances, and Non-Quasi-Static (NQS) effect. A new method of separating the

physical gate resistance and the NQS channel resistance is proposed.

Finally, drain current excess noise factors in CMOS transistors are examined as a function

of channel length and bias. The technology scaling are discussed for different processes. Using

standard linear noisy two-port theory, a simple derivation of noise parameters is presented. The

results are compared with the well known Fukui’s empirical FET noise equations. Experimental

data are used to evaluate the simple model equations. New figures-of-merit for minimum noise

figure is proposed.
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CHAPTER 1

INTRODUCTION

Wireless communications have been thrived in the last decade, due to tremendously increas-

ing demand for information need for connectivity. The rapid development of personal communi-

cation systems, such as cellular phones, cordless phones, GPS (global positioning system), and

WLAN (wireless local area network), have aroused considerable interests in high frequency de-

vices. The RFICs (radio frequency integrated-circuits) designs are among the most demanding

design tasks. The recent bipolar and CMOS technologies provide relatively high cutoff frequen-

cies (fT ). The RFICs have been the primary domain for modern bipolar and CMOS applications

in GHz frequency range.

RF bipolar and CMOS are both important in RFIC applications. RF bipolar device is known

for its low noise, low power consumption, high reliability and better thermal management, hence

it can be used as the first stage LNA (low noise amplifier) of RF transceiver design. RF CMOS

device is known for its high speed and high level of integration, therefore it is perfect for large-

scale digital applications in RF transceiver design. Accurate models are critical in order to reduce

design cycles and to achieve first-time success in implementation. Unfortunately, available com-

pact models for both RF bipolar and CMOS, are typically not applicable for the GHz frequency

range.

Modeling of noise provides critical information in the design of RF circuits. Lack of un-

derstanding of RF device noise presents a substantial barrier to the design of RF circuits. It is

extremely inevitable procedure to understand the physical origin of broadband noise and incor-

porate in the noise modeling of RF devices.
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1.1 RF Noise

Noise can be defined as “everything except desired signal”. Noise sources that can be

reduced or eliminated using good shield system is called Artificial noise. For example, the noise

sources that interfering with broadcasting signal for radio and TV. On the other hand, noise

sources that is inherent in the system or devices itself and is irreducible is called Fundamental

noise. For example, the snow pictures in analog TV sets. Fundamental noise is random yet

can be statistically characterized. There are several types of fundamental noise sources: thermal

noise, shot noise, flicker noise, and generation-recombination noise (G-R noise).

In RF bipolar and MOSFET transistors, thermal noise and shot noise are the main noise

sources. Flicker noise is negligible in RF noise modeling, since its 1/f characteristic. G-R

noise is much smaller than flicker noise, and can be generally neglected. Therefore we will not

discuss flicker noise and G-R noise in this work. We will focus on thermal noise and shot noise

in RF bipolar and MOSFET transistors.

1.1.1 Thermal Noise

A thermally-excited carrier in a conductor undergoes a random walk Brownian motion via

collisions with the lattice of the conductor. As a result it produces fluctuations in the terminal

characteristics. In 1927, Johnson discovered that the noise power spectrum of a conductor is

independent of its material and the measurement frequency. He also found that noise power

spectrum is determined only by the temperature T and electrical resistance R under thermal

2



equilibrium:

< v2
n > = Svn∆f, (1.1)

Svn = 4kTR, (1.2)

< i2n > = Sin∆f, (1.3)

Sin =
4kT
R

, (1.4)

where Svn and Sin are the power spectral density of vn and in, respectively. k is the Boltzmann

constant. Thermal noise is also called Johnson noise or Nyquist noise.

1.1.2 Shot Noise

Shot noise refers to the fluctuations associated with the dc current IDC flow across a poten-

tial barrier. Shot noise is white noise, and is described as

< i2n >= 2qIDC∆f. (1.5)

Two conditions are required for shot noise to occur: a flow of direct current and a potential

barrier over which the carriers are extracted. In RF bipolar devices, base current shot noise and

collector current shot noise are considered for the intrinsic device. In RF MOSFET transistors,

shot noise dominates the noise characteristics only when the device is in the subthreshold region

owing to the carrier transport in this region.
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1.2 Noise Parameters

Signal-to-noise ratio describes the ratio of useful signal power and the unwanted noise

power. When a combination of signal and noise go through a noisy two-port network, as shown

in Fig. 1.1, both the signal and unwanted noise will be amplified at the same factor. In addition,

the two-port network adds its own noise. Therefore, the signal-to-noise ratio becomes smaller

after a noisy two-port network. Noise factor F is defined as the signal-to-noise ratio at the input

divided by the signal-to-noise ratio at the output.

F =
Si/Ni

So/No
, (1.6)

it defines noise figure NF according to

NF = 10log10(F ). (1.7)

It is a useful measure of the amount of noise added by the noisy two-port network. [10]

The noise figure of a two-port network is determined by the source admittance Ys = Gs +

jBs, and the noise parameters of the circuit, including the minimum noise figure NFmin, the noise

resistance Rn, and the optimum source admittance Yopt = Gopt + jBopt, through [11]

F = Fmin +
Rn

Gs

∣

∣Ys − Yopt
∣

∣

2
, (1.8)

NFmin = 10log10(Fmin). (1.9)
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Figure 1.1: Illustration of definition of noise figure for a noisy two-port.

1.2.1 Minimum Noise Figure NFmin

The minimum noise figure NFmin is a very important parameter for noise. As self-explained

in its name, NFmin determines the minimum noise figure for a noisy two-port network. NF

reaches its minimum NFmin when Ys = Yopt. It indicates the attribute of the noisy two-port. The

lowest possible NFmin is accordingly desired. For RF bipolar transistor and MOSFET transistor,

NFmin is dependent on both bias and frequency.
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1.2.2 Noise Resistance Rn

The noise resistance Rn determines the sensitivity of noise figure to deviations from Yopt. A

small Rn is desired to alleviate the deviations. For RF bipolar transistor and MOSFET transistor,

Rn is frequency independent. Rn is only dependent on bias.

1.2.3 Optimum Source Admittance Yopt

The optimum source admittance Yopt determines the source admittance where NF reaches

its minimum. The value of Yopt indicates the “noise matching” source admittance for minimum

noise figure, which normally differs from the “gain matching” source admittance for maximum

power transfer. Yopt has a real part of Gopt and an imaginary part of Bopt. For RF bipolar transistor

and MOSFET transistor, Gopt and Bopt are dependent on both bias and frequency.

1.3 RF Bipolar Transistor Compact Noise Modeling

The noise of an RF bipolar device can be considered as a lumped base resistance with

thermal noise voltage Svb,v
∗
b
, connected to an intrinsic transistor with an input noise current Sib,i

∗
b

and an output noise current Sic,i
∗
c
, as shown in Fig. 1.2. At low injection, the noise of the lumped

base resistance can be modeled as 4kTrb [1].

1.3.1 Lumped Base Resistance

It is possible to separate current crowding effects from all the effects that play a role in the

intrinsic transistor [1]. This means the intrinsic transistor noise model is independent of base

resistance and current crowding. All the current crowding effects are taken care of by a branch

that contains the base resistance as shown in Fig. 1.3 [1]. The resulting noise current associated
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Figure 1.2: RF Bipolar transistor noise modeling.

with the lumped base resistance is no longer 4kTrb, instead [1] showed,

<(yR) = 1/rb.SiR,i
∗
R
=

4kT
rb

+
10
3
qIB. (1.10)

At low injection, where IB contribution can be neglected, 4kTrb can still be used to describe the

noise of the lumped base resistance. At high injection, the noise of the lumped base resistance is

dominated by 10
3 qIB [1].

The intrinsic transistor noise modeling is separated from the lumped base resistance branch.

Accurate noise modeling for the intrinsic transistor is needed. Different noise models have dif-

ferent expressions for the input noise current, the output noise current, and their correlation for

the intrinsic transistor, as will be detailed below.
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Figure 1.3: Equivalent circuit proposed for the intrinsic transistor together with the resistance of
the pinched base [1].

1.3.2 SPICE Model

The SPICE model as shown in Fig. 1.4, is the essence of noise modeling in major CAD

tools. The noise physics accounted for include: base resistance thermal noise Svb,v
∗
b
, and base

current shot noise 2qIB, and collector current shot noise 2qIC for the intrinsic transistor.
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Figure 1.4: SPICE model for RF bipolar transistor.

In SPICE model, the noise of the intrinsic transistor is described by

Sib,i
∗
b
= 2qIB, (1.11)

Sic,i
∗
c
= 2qIC , (1.12)

Sic,i
∗
b
= 0. (1.13)

Since the input noise current and the output noise current are both shot noise, they are only

bias dependent, and do not depend on frequency. Moreover, the input and output noise currents

are not correlated to each other in this model. This approach is used by SPICE Gummel-Poon,

VBIC, Mextram, and Hicum models. The accuracy of such compact noise modeling, however,

becomes worse at higher current densities required for high speed [3]. At high frequency or

high current densities, the base and collector current noises are no longer shot like, and their

correlation can becomes appreciable [12], as will detailed in chapter 4.

9



1.3.3 van Vliet Model

About 30 years ago, van Vliet proposed a general noise model in three-dimensional junction

device of arbitrary geometry using transport noise theory for low injection [13]. The structure

of the model is the same as the intrinsic transistor shown in Fig. 1.2. The van Vliet model is

derived from rigorous microscopic noise theory of minority carrier transportation in the base

region. Different from the SPICE model, the input noise current of van Vliet model is frequency

dependent, which comes from the intrinsic Y parameter Y int
11 . Moreover, the input noise current

and the output noise current are correlated to each other. The correlation term is related to the

intrinsic Y parameters Y int
12 and Y int

21 , hence both bias and frequency dependent. In van Vliet

model, the noise of the intrinsic transistor at low injection is described by

Sib,i
∗
b
= 4kT<(Y int

11 ) − 2qIB, (1.14)

Sic,i
∗
c
= 2qIC + 4kT<(Y int

22 ), (1.15)

Sic,i
∗
b
= 2kT (Y int

21 + Y int∗
12 ) − 2qIC . (1.16)

The noise of the intrinsic transistor is obtained from dc currents and ac Y-parameters, and no

additional parameter is required.

For a simple small signal model of the intrinsic bipolar transistor as shown in Fig. 1.5,

Y int
11 = gbe + jω(Cbe + Ccb), (1.17)

Y int
12 = −jωCcb, (1.18)

Y int
21 = gme

−jωτ − jωCcb, (1.19)

Y int
22 = jωCcb, (1.20)
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where gbe is the input conductance, gm is the transconductance, Cbe is the EB capacitance, Ccb is

the CB capacitance, and go is the output conductance. τ is the second-order time delay owing to

the transcapacitance. Since

IB ≈
gbe
kT/q

, (1.21)

IC ≈
gm

kT/q
. (1.22)

(1.16) can be further derived to

Sic,i
∗
b
= 2kT (gme−jωτ ) − 2qIC , (1.23)

= 2qIC
(

e−jωτ − 1
)

. (1.24)

Although the van Vliet model does not consider the CB space-charge-region (SCR) effect in its

derivation, the correlation equation has included the carrier transport delay term as will discussed

in the section 1.3.4.

 

 

+ 

-

+ 

- 
Cbe vbegbeV1

I1 I2

V2

Ccb

-jωτ
  

m               beg  e     v

Figure 1.5: The small-signal equivalent circuit for intrinsic bipolar device.
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At low frequency where τ ≈ 0, (1.14), (1.15) and (1.16) reduce to their low frequency

expressions:

Sib,i
∗
b
= 2qIB, (1.25)

Sic,i
∗
c
= 2qIC , (1.26)

Sic,i
∗
b
= 0, (1.27)

which are the same as the SPICE model expressions.

As will be discussed in details in chapter 4, the van Vliet model describes RF bipolar tran-

sistor noise well in low injection. For high current density, however, the van Vliet model for

the low injection cannot accurately model the noise in the transistor. In [13], extra modification

parameters are introduced for high current density based on low injection results. For example,

Sib,i
∗
b
= A(4kT<(Y int

11 ) − 2qIB), (1.28)

where A is a modification factor. This provides us a way leading to a new noise model for bipolar

transistor as discussed in chapter 4.

1.3.4 Time-delay and Phase-delay Model

Time-delay noise model is proposed by M. Rudolph in 1999 using common-emitter con-

figuration, as shown in Fig. 1.6 [2]. The noise contributions of the input and output current

sources i′c and i"c related to the collector current IC are caused by the same electrons. The elec-

tron noise sources injected from the emitter into the base, cross the CB junction, and then reach
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the collector. Therefore the correlation of these sources is given by a time delay e−jωτ , i.e.,

i"c = i′ee
−jωτ , (1.29)

i′c = i′e − i"c, (1.30)

= i"c
(

ejωτ − 1
)

. (1.31)

Therefore Si˜c,i
′∗
c

, Si"c,i
"∗
c

, and their correlation are

Si"c,i
"∗
c
= 2qIC , (1.32)

Si′c,i
′∗
c
= Si"c,i

"∗
c

∣

∣ejωτ − 1
∣

∣

2
= 2qIC

∣

∣ejωτ − 1
∣

∣

2
, (1.33)

Si′c,i
"∗
c
= Si"c,i

"∗
c

(

ejωτ − 1
)

= 2qIC
(

ejωτ − 1
)

. (1.34)

The noise current source related to the base current Ib is assumed not to correlated with the

others [2]. Therefore the input noise current Sib,i
∗
b
, the output noise current Sic,i

∗
c
, and their

correlation Sic,i
∗
b

for time-delay model are

Sib,i
∗
b
= 2qIB + 2qIC

∣

∣1 − ejωτ
∣

∣

2
, (1.35)

Sic,i
∗
c
= 2qIC , (1.36)

Sic,i
∗
b
= 2qIC

(

e−jωτ − 1
)

. (1.37)

The phase-delay noise model is proposed by G.F. Niu in 2001 using common-base con-

figuration [3]. The essence of the phase-delay noise model is shown in Fig. 1.7. The collector

current shows shot noise only because the electron current being injected into the collector-base
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Figure 1.6: Time-delay noise model in [2].

junction from the emitter already has shot noise. The emitter current short noise consists of

two parts, Sine,i
∗
ne

= 2qIC , due to the electron injection into the base, and Sipe,i
∗
pe

= 2qIB, due

to the hole injection into the emitter. The electron injection process and the hole injection pro-

cess are independent of each other and hence not correlated. The transition of electrons across

the collector-base junction, which is usually reverse biased, is a drift process, causing a delay

version of the emitter electron injection induced shot noise,

inc = inee
−jωτn , (1.38)

where τn is the transit time associated with the transport of emitter-injected electron shot noise

current, which includes both the transit time in the base and the transit time in the CB junction.
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Figure 1.7: Phase-delay noise model in [3].

In common-base configuration model, the noise sources associated with the collector and

emitter currents, ic and ie, are used,

Sic,i
∗
c
= Sinc,i

∗
nc
= 2qIC , (1.39)

Sie,i
∗
e
= Sine,i

∗
ne
+ Sipe,i

∗
pe
= 2qIC + 2qIB, (1.40)

Sie,i
∗
c
= 2qICejωτn . (1.41)

Common-base noise sources ic and ie can be easily converted to common-emitter noise sources

ib and ic by equivalent circuit analysis

Sib,i
∗
b
= Sie,i

∗
e
+ Sic,i

∗
c
− 2<(Sic,i

∗
e
), (1.42)

Sic,i
∗
c
= Sic,i

∗
c
, (1.43)

Sic,i
∗
b
= Sic,i

∗
e
− Sic,i

∗
c
. (1.44)
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Therefore (1.39) – (1.41) can be converted to the common-emitter version using (1.42) – (1.44)

Sib,i
∗
b
= 2qIE + 2qIC − 4qIC<

(

ejωτn
)

, (1.45)

Sic,i
∗
c
= 2qIC , (1.46)

Sic,i
∗
b
= 2qIC

(

e−jωτn − 1
)

. (1.47)

(1.45) can be further simplified to

Sib,i
∗
b
= 2qIB + 4qIC − 4qIC<

(

ejωτn
)

, (1.48)

= 2qIB + 2qIC
[

2 − 2<
(

ejωτn
)]

, (1.49)

= 2qIB + 2qIC
∣

∣1 − ejωτn
∣

∣

2
, (1.50)

Note that if τ = τn, (1.50), (1.46), and (1.47) are the same as (1.35), (1.36), and (1.37). Al-

though derived from different angle, the time-delay model and phase-delay model ultimately

give the same noise model expressions. At low frequency, the time-delay model and phase-delay

model can be further simplified to,

Sib,i
∗
b
= 2qIB, (1.51)

Sic,i
∗
c
= 2qIC , (1.52)

Sic,i
∗
b
= 0, (1.53)

which are the same as the SPICE model expressions.
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1.4 RF MOSFET Transistor Compact Noise Modeling

1.4.1 Gate and Drain Noise currents Modeling

The thermal noise of a MOSFET originates from the thermal noise sources in the channel

as illustrated in Fig. 1.8, leading to drain thermal noise current Sid,i
∗
d

and induced gate thermal

noise current Sig ,i
∗
g

through capacitive coupling to the gate. Since both Sid,i
∗
d

and Sig ,i
∗
g

are ag-

itated by the thermal noise sources in the channel, they are correlated, and the correlation are

imaginary due to the capacitive nature. This noise representation with gate noise current, drain

noise current, and their correlation, as shown in Fig. 1.9, is called Y- noise representation as will

further introduced in chapter 2.

Figure 1.8: Thermal noise in MOSFETs [4].
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Figure 1.9: MOSFET noise model using gate noise current, drain noise currents, and their cor-
relation.

1.4.1.1 van der Ziel Model

Based on the fact that the MOSFET is a modulated resistor, capacitively coupled to the

gate, van der Ziel has proposed a thermal noise model for MOSFETs using impedance field

method [14] [15]. This well-known van der Ziel model are widely used in MOSFET noise

modeling. The drain noise current, induced gate noise current, and their correlation are modeled

as [15],

Sid,i
∗
d
= γgd0 · 4kTgd0, (1.54)

Sig ,i
∗
g
= β4kTgg, (1.55)

gg = η
ω2C2

gs

gd0
, (1.56)

c =
Sig ,i

∗
d

√

Sid,i
∗
d
Sig ,i

∗
g

= jx. (1.57)
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Here gd0 is the zero Vds output conductance, gg is the input conductance, and Cgs is the gate-to-

source capacitance. γgd0 , β, η and x are model parameters. γgd0 =
2
3 , β = 4

3 , η = 1
5 and x = 0.395

for long channel device in saturation region [15]. For short channel device, however, these model

parameters deviate from their long channel value, and become bias dependent, as will discussed

in chapter 6.

1.4.1.1 Klaassen-Prins Equation

Klaassen and Prins [16] have derived an equation to calculate the noise of a device using the

local channel conductivities of the device. The so called Klaassen-Prins equation is extensively

used to calculate the noise for long channel MOSFETs [17] [18] [6] [19]. The quasi-static dc

differential equation for current Id of a device is [16] [20],

Id = g(V (x))
dV (x)
dx

, (1.58)

where g(V (x)) is the local channel conductivity and V (x) is the difference in electron quasi-

Fermi potential in the inversion layer and the hole quasi-Fermi potential in the bulk at position

x. For a very simple MOSFET,

g(V (x)) = µCoxW (Vgs − Vth − V (x)), (1.59)

= WµQ′
I (x), (1.60)

where Vgs is the gate-source voltage, Vth is the threshold voltage, W is the width of the device,

µ is the mobility, and Cox is the oxide capacitance per unit area. Q′
I (x) is the local inversion
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charge, whose integration over area gives the total inversion charge QI ,

QI =
∫L

0
WQ′

I (x)dx. (1.61)

(1.59) shows that g(V (x)) is the highest near the source, and the lowest dear the drain.

The derivation of drain noise current can be best illustrated in Fig. 1.10. For the noise

segment from x to x+∆x, a small voltage contribution vn(x) is added on top of V (x). The noise

voltage also leads to a change in the dc current through the device, with boundary condition

vn(x)|x=0,L = 0 for input and output ac short ended condition [16] [20].

Id + ∆id = g[V (x) + vn(x)]
d

dx
(V (x) + vn(x)) + in(x), (1.62)

=
[

g(V (x)) +
dg(V (x))
dV (x)

vn(x)
](

dV (x)
dx

+
dvn(x)
dx

)

+ in(x), (1.63)

= g(V (x))
dV (x)
dx

+ g(V (x))
dvn(x)
dx

+
dg(V (x))

dx
vn(x) +

dg(V )
dV

vn(x)
dvn(x)
dx

+ in(x).

(1.64)

Here

g[V (x) + vn(x)] =
[

g(V (x)) +
dg(V (x))
dV (x)

vn(x)
]

(1.65)

is used. Substituting (1.58) in (1.64), and

g(V (x))
dvn(x)
dx

+
dg(V (x))

dx
vn(x) =

d

dx
(g(V (x))vn(x)), (1.66)
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∆id, the fluctuation in Id, is

∆id =
d

dx
(g(V (x))vn(x)) + in(x), (1.67)

0 L

channel

��

��

noisy
section

S DId

g(V(x))

Id+∆ id

V(x)+vn(x) V(x+∆ x)+vn(x+∆ x)
x x+∆ x

in(x)

x x+∆ x

∆ x

Figure 1.10: Illustration of drain noise current derivation.

Integrating both sides of (1.67), we have [16] [20],

∆idL =
∫L

0

d

dx
(vn(x))g(V (x))dx +

∫L

0
in(x) · dx, (1.68)

=
∫L

0
in(x) · dx, (1.69)
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since

∫L

0

d

dx
(vn(x))g(V (x))dx = vn(x)g(V (x))|L0 = g(V (L))vn(L) − g(V (0))vn(0) = 0, (1.70)

Therefore the noise fluctuation in Id is,

∆id =
1
L

∫L

0
in(x) · dx. (1.71)

∆id has a zero average ∆id = 0, and the noise spectral density is [16] [20],

Sid,i
∗
d
=

∆id,∆i
∗
d

∆f
=

1
L2

∫L

0

∫L

0
in(x), i∗n(x′) · dxdx′. (1.72)

For in(x), we have [16] [17],

in(x), i∗n(x′) = 4kTg(V (x))∆fδ(x − x′), (1.73)

where δ is the Dirac delta function. The drain thermal noise current is then found by substituting

(1.73) into (1.72),

Sid,i
∗
d
=

4kT
L2

∫L

0
g(V (x)) · dx. (1.74)

From (1.58), we have

dx =
g(V (x))

Id
dV (x). (1.75)
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Substituting into (1.74), we have [16] [17] [18] [20] [21] [22] [23],

Sid,i
∗
d
=

4kT
L2Id

∫Vd

0
g2(V ) · dV . (1.76)

(1.76) is known as Klaassen-Prins equations for thermal noise of a long channel MOSFET.

(1.74) can be also expanded using (1.60),

Sid,i
∗
d
=

4kT
L2

∫L

0
WµQ′

I (x)dx, (1.77)

=
4kT
L2

µQI . (1.78)

(1.78) is used in models like BSIM.

For long channel device, the drain current Id in saturation region is

Id =
µW Cox

L
·

1
2
V 2
gt, (1.79)

where Vgt = Vgs − Vth. Substituting (1.59) and (1.79) into (1.76),

Sid,i
∗
d
=

4kT
L2Id

∫Vgt

0
µ2W 2C2

ox(Vgt − V )2 · dV , (1.80)

=
4kT
L2

2L

µWCoxV
2
gt

· µ2W 2C2
ox ·

1
3

(Vgt − V )3
∣

∣

∣

∣

Vgt

0
, (1.81)

= 4kT ·
2
3
·
µW Cox

L
Vgt, (1.82)

= 4kT ·
2
3
gd0. (1.83)
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with

gd0 =
µW Cox

L
Vgt. (1.84)

(1.83) is the same as (1.54) in van der Ziel model for long channel device operating in saturation

region.

1.4.1.3 Velocity Saturation in Short Channel Devices

In case of velocity saturation effects play a role, the general expression of noise source

in(x), (1.73), becomes [21] [24] [25] [20],

Sin(x),in(x)∗ = 4kTg0
Dn(E)
Dn(0)

, (1.85)

where g0(x) = qµ0n(x)WL is the zero-field channel conductivity, n(x) is the electron con-

centration at position x, Dn(0) = kTµ0/q is the diffusion coefficient at zero electric field at

the ambient temperature T . The velocity saturation make effects via the scalar noise diffusion

coefficient Dn(E),

Dn(E) =
µn(E)kT

q
. (1.86)

[20] and [6] argue that it is incorrect to take explicit carrier heating into account by using

a temperature Te > T in (1.85) and (1.86) since Dn(E) has already taken into account all

nonequilibrium effects.
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Moreover, consider the velocity saturation effects for short channel device, (1.60) becomes

[20],

g(V (x)) = Wµ0Q
′
I (x)

1

1 + µ0
vsat

dV (x)
dx

, (1.87)

=
g0(V (x))

1 + 1
Esat

dV (x)
dx

, (1.88)

where Esat = vsat
µ0

is the saturation electric field, and g0(V (x)) = Wµ0Q
′
I (x). Therefore dc

current for velocity saturation becomes,

Id =
g0(V (x))

1 + 1
Esat

dV (x)
dx

dV (x)
dx

. (1.89)

Integration on both sides gives,

Id =
1

1 + Vds
EsatL

·
1
L

∫Vds

0
g0(V )dV , (1.90)

=
1

1 + Vds
EsatL

Id0, (1.91)

where Id0 is the Id without velocity saturation effect. Similar derivation are performed, and the

resulting drain noise current for velocity saturation is [20],

Sid,i
∗
d
=

4kT
IdL2

1
(

1 + Vds
EsatL

)2

∫Vds

0
g2

0 (V )dV , (1.92)

[4] showed that this improved Klaassen-Prins equation has properly accounted for the velocity

saturation effects.
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In the case of channel length modulation, the conductivity g(V (x)) in the pinch-off region

is low compared to that in the channel, which is shown in (1.59). From the improved Klaassen-

Prins equation (1.92), the contribution of the pinch-off region can be neglected [26] [4]. How-

ever, the effective gate length Leff should be used instead of L in (1.92) [26] [4].

1.4.1.4 BSIM4 Channel Thermal Noise Model

There are two channel thermal noise models in BSIM4, as shown in Fig. 1.11 [5]. One is

charge-based model by selecting tnoiMod=0. The drain noise current is given by

Sid,i
∗
d
=

4kTµeff

L2
eff

|Qinv| ·NTNOI, (1.93)

which is essentially the same as (1.78). Here the parameter NTNOI is introduced for more

accurate fitting of short-channel devices.

Figure 1.11: Schematic for BSIM4 channel thermal noise modeling [5].

The other is the holistic model by selecting tnoiMod=1. In this thermal noise model, all

the short-channel effects and velocity saturation effect are automatically included. In addition,

a source thermal noise voltage vd is used to contribute to the induced gate noise with partial
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correlation to the channel thermal noise, as shown in Fig. 1.11 (b). The source noise voltage is

given by

Svd,v
∗
d
= 4kTθ2

tnoi

Vdseff

Id
, (1.94)

and

θtnoi = RNOIB

[

1 + TNOIB · Leff

(

Vgteff

EsatLeff

)2
]

, (1.95)

where RNOIB = 0.37 is model parameter. The drain noise current is given by

Sid,i
∗
d
= 4kT

Vdseff

Id
[Gds + βtnoi(Gm + Gmbs)]2, (1.96)

and

βtnoi = RNOIA

[

1 + TNOIA · Leff

(

Vgteff

EsatLeff

)2
]

, (1.97)

where RNOIB = 0.577 is model parameter.

However, BSIM4 noise model is not accurate. Fig. 1.12 shows comparison of Sid,i
∗
d

for the

data and BSIM holistic model for the gate length of 0.18 µm device. Device width of 10 µm,

and the number of fingers is 8. Data is obtained from Georgia Institute of Technology. Fig. 1.13

shows the noise parameters for the data and BSIM model. The results from BSIM model deviate

from the data. A more accurate noise modeling is needed.
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Figure 1.13: Comparison of noise parameters for the data and BSIM holistic model for 0.18 µm
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1.4.2 Gate Noise Voltage and Drain Noise Current Modeling

vh

ih

Figure 1.14: MOSFET noise model: Pospieszalski model

Different from gate and drain noise current representation, another widely accepted noise

model in the GaAs community is the Pospieszalski model, which is based on the hybrid repre-

sentation, as shown in Fig. 1.14 [27]. While the gate current noise in the van der Ziel model is

frequency dependent and correlated to drain current noise, the Pospieszalski model uses an input

voltage noise source Svh,v
∗
h
, which is frequency independent. An output noise current ih is used

in Pospieszalski model. Svh,v
∗
h

is proportional to the non-quasi-statistic channel resistance Rgs.

Sih,i
∗
h

is proportional to the output conductance gds. Gate temperature Tg and drain temperature

Td are used in the model, function as coefficients as in van der Ziel model. Further, this model
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assumes that two noise sources have negligible correlation

Svh,v
∗
h
= 4kTgRgs, (1.98)

Sih,i
∗
h
= 4kTdgds, (1.99)

Svh,i
∗
h
= 0. (1.100)

Further investigations showed that this assumption is well satisfied in GaAs devices. However,

no study has shown that it is valid for MOSFET devices. In this dissertation, Pospieszalski model

is successfully applied to MOSFET devices in chapter 6.

1.4.3 Role of Gate Resistance

The gate resistance Rg is associated with a thermal noise voltage of 4kTRg . This gate

thermal noise voltage is equivalent to an input noise current, an output noise current and a cor-

relation, as shown in Fig. 1.15,

Sig ,i
∗
g
= 4kTRg|Y11|2 = 4kTRg(ωCgs)2, (1.101)

Sid,i
∗
d
= 4kTRg|Y21|2 = 4kTRgg

2
m, (1.102)

Sig ,i
∗
d
= j4kTRgωgmCgs, (1.103)

c =
Sig ,i

∗
d

√

Sig ,i
∗
g
Sid,i

∗
d

= j1. (1.104)

(1.101) shows that the gate resistance leads to a gate noise current that proportional to f2, and

behaves like the induced gate noise. This gate resistance related gate noise current overwhelms

the induced gate noise for short channel devices. (1.102) shows that the gate resistance also leads

to a drain noise current. The gate resistance related gate and drain noise currents are correlated
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as shown in (1.103). This indicates that reduction of the gate resistance Rg is really important

for obtain low noise in MOSFET.

Figure 1.15: Role of gate resistance noise to gate noise current, drain noise current, and their
correlation.

Although a metal silicide is added to the polysilicon gate to decrease its resistance, wide

devices with short channels might still show a significant gate resistance. The gate resistance

Rg consists of several parts: the resistance of the vias between metal1 and silicided polysilicon,

the effective resistance of the silicide, and the contact resistance between silicide and polysilicon

[28]. For a single polysilicon gate finger connected with both sides [6],

Rg =
1

12
Rsh

W

L
+

1
2
Rsh

Wext

L
+

1
2
Rvia

Nvia
+

ρcon
WL

, (1.105)

where Rsh is the silicide sheet resistance, Rvia is the resistance of the metal1-to-polysilicon via,

Nvia is the number of such vias, ρcon is the silicide-to-polysilicon specific contact resistance. W ,

L, and Wext are depicted in Fig. 1.16. The factor 12 accounts for the distributed nature of the

gate resistance and the use of contacts on both sides of the gate.
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Figure 1.16: Schematic layout of a single gate finger, showing the meaning of W , Wext, and L

in (1.105) [6].

Narrow fingers, double-sided contacting, guard ring and abundant contacting lead to reduc-

tion in Rg . Using multiple devices in parallel to obtain larger devices is also a way to reduce

Rg [4]. The width of finger, however, is optimized at 1 µm for 90 nm technology node tran-

sistor [29]. Further reduction in the width of finger does not further reduce Rg . It is generally

accepted that the drain current noise and the gate resistance thermal noise are the dominant RF

noise sources of interest in scaled CMOS [30]. Since Rg is important especially for short channel

devices, accurate extraction of Rg plays a big role in compact noise modeling of modern CMOS,

which will be detailed addressed in chapter 7.

Fukui first proposed a set of empirical NFmin, Rn and Yopt equations for FETs based on

his observation of experimental data on MESFETs [31] [32] [33], which involve an empirical

Fukui’s noise figure coefficient Kf , and other “constants,” and transistor gate resistance Rg and

transconductance gm. The noise figure coefficient has since been frequently used as a figure-of-

merit for comparing different technologies [34] [35] [36] [37] [38]. Recently, various equations

of NFmin, Rn and Yopt have been derived for CMOS with varying assumptions, by neglecting gate

resistance noise and/or induced gate noise [39] [40] [41], and by assuming a bias independent

ratio of γgd0 to γgm , which is problematic as detailed in chapter 8.
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1.5 Dissertation Contributions

The following chapters provide detailed information about RF bipolar and CMOS noise in

terms of device physics. To achieve these goals, this dissertation tackles various areas including

microscopic noise simulation, Ge profile optimization in SiGe HBT device, noise characteriza-

tion, and compact noise modeling.

Chapter 1 gives an introduction of definitions and classifications of RF device noise and

noise parameters. Review of RF bipolar and CMOS noise models and the intrinsic noise sources

in RF bipolar and CMOS devices is also given in chapter 1.

Chapter 2 introduces different noise representations for a linear noisy two-port network.

The transformation matrices to other noise representations are given. Techniques of adding or

de-embedding a passive component to a linear two-port network are discussed. Noise sources

de-embedding for both MOSFET and SiGe HBT are given as examples which are repeatedly

used later in this dissertation.

Chapter 3 presents a new technique of simulating the spatial distribution of microscopic

noise contribution to the input noise current, voltage, and their correlation. The technique is first

demonstrated on a 50 GHz SiGe HBT. The spatial distributions by base majority holes, base

minority electrons, and emitter minority holes are analyzed, and compared to the compact noise

model. This technique is also applied to a 120 GHz MOSFET transistor. The spatial distribution

of drain noise current, gate noise current, and their correlation are analyzed.

Chapter 4 examines bipolar transistor noise modeling and noise physics using microscopic

noise simulation. Transistor terminal current and voltage noises resulting from velocity fluctu-

ations of electrons and holes in the base, emitter, collector, and substrate are simulated using

a new technique proposed in chapter 3, and compared with modeling results. Major physics
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noise sources in bipolar transistor are qualitatively identified. The relevant importance as well

as model-simulation discrepancy is analyzed for each physical noise source.

Chapter 5 explores the RF noise physics and SiGe profile optimization for low noise using

microscopic noise simulation. A higher Ge gradient in a noise critical region near the EB junc-

tion reduces impedance field and hence minimum noise figure. A higher Ge gradient near the EB

junction, together with an unconventional Ge retrograding in the base to keep total Ge content

below stability, when optimized, can lead to significant noise improvement without sacrificing

peak fT and without any significant high injection fT rolloff degradation.

In chapter 6, RF noise of 50 nm Leff CMOS is simulated using hydrodynamic noise simula-

tion. Intrinsic noise sources for the Y- and H- noise representations are examined and models of

intrinsic noise sources are proposed. The relations between the Y- and H- noise representations

for MOSFETs are examined, and the importance of correlation for both representations is quan-

tified. The theoretical values of H- noise representation model parameters are derived for the first

time for long channel devices. The H- noise representation correlation is shown theoretically to

have a zero imaginary part. The H- noise representation has the inherent advantage of a more

negligible correlation, which makes circuit design and simulation easier. Chapter 6 also exper-

imentally extracts the H-representation noise sources using noise parameters measured on 0.25

µm RF CMOS devices. A simple yet effective model is proposed to model the H-representation

noise sources as a function of bias. Excellent modeling results are achieved for all of the noise

parameters up to 26 GHz, at all biases.

The gate resistance is important as well as the drain noise current for noise modeling of

scaled MOSFET. Accurately extract the gate resistance becomes an important issue. Chapter 7

explains the frequency and bias dependence of the effective gate resistance by considering the
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effect of gate-to-body capacitance, gate to source/drain overlap capacitances, fringing capac-

itances, and Non-Quasi-Static (NQS) effect. A new method of separating the physical gate

resistance and the NQS channel resistance is proposed. Separating the gate-to-source parasitic

capacitances from the gate-to-source inversion capacitance is found to be necessary for accurate

modeling of all of the Y-parameters.

Chapter 8 examines the differences between the gd0 and gm referenced drain current excess

noise factors in CMOS transistors as a function of channel length and bias. The technology

scaling are discussed for 0.25 µm process, 0.18 µm process and 0.12 µm process. Using standard

linear noisy two-port theory, a simple derivation of noise parameters is presented. The results

are compared with the well known Fukui’s empirical FET noise equations. Experimental data

on a 0.18 µm CMOS process are measured and used to evaluate the simple model equations.

New figures-of-merit for minimum noise figure is proposed. The amount of drain current noise

produced to achieve one GHz fT is shown to fundamentally determine the noise capability of

the intrinsic transistor.

Finally Chapter 9 concludes the work in this dissertation.
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CHAPTER 2

NOISE NETWORK ANALYSIS AND DE-EMBEDDING

This chapter introduces different noise representations for a linear noisy two-port network.

The transformation matrices to other noise representations are given. Techniques of adding or

de-embedding passive components to a linear two-port network are discussed. For example,

the open-short de-embedding procedure is needed for measurement data to move the reference

plane to the device terminals. Noise sources de-embedding for both MOSFET and SiGe HBT

are given as examples which are repeatedly used later in this dissertation.

2.1 Noise Representations

A noisy two-port network can be described by a noiseless two-port network with input

noise voltages or currents, and output noise voltages or currents. In general, there are four

noise representations, including chain noise representation, Y- noise representation, Z- noise

representation, and H- noise representation.

2.1.1 Chain Noise Representation (ABCD- Noise Representation)

Chain noise representation, or ABCD- noise representation, describes the noise of a two-

port network with an input noise voltage va, an input noise current ia, and their correlation, as

shown in Fig. 2.1. The power spectral densities (PSD) of va, ia, and their correlation are Sva,v
∗
a
,
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Sia,i
∗
a
, and Sia,v

∗
a
, respectively. The chain noise matrix is defined as

CA =







Sva,v
∗
a

Sva,i
∗
a

Sia,v
∗
a

Sia,i
∗
a






(2.1)

va

ia

Noiseless
Two-Port

 Y
V1

I1

V2

I2

+

_

+

_

Noisy
Two-Port

Figure 2.1: The chain noise representation of a linear noisy two-port network.

Chain noise representation is the most convenient because it is directly related to the noise

parameters NFmin, Rn and Yopt = Gopt+jBopt by [11]. The noise factor for a noisy linear two-port

as shown in Fig. 2.2 is [42] [43]

F =
Si/Ni

So/No
,

=
No

GpNi
, (2.2)

=
Ni +N ′

i

Ni
, (2.3)

= 1 +
N ′

i

Ni
, (2.4)
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where Gp = So/Si is the power gain of the two-port, Ni is the input noise power delivered to the

noisy two-port due to source noise current is, and N ′
i is the noise power delivered to the noisy

two-port due to va and ia.

va

ia

Noiseless
Two-Port

 Y
V1

I1

V2

I2

+

_

+

_

is
Zs

Zi

in+in'

ZL

Figure 2.2: Noisy linear two-port network.

If Zi denotes the input admittance of the two-port shown in Fig. 2.2, the noise current

delivered by the source to the noise free two-port is

in = −is
Zs

Zi +Zs
, (2.5)

and

Ni =< in, i
∗
n > <(Zi), (2.6)

=< is, i
∗
s >

∣

∣

∣

∣

Zs

Zi +Zs

∣

∣

∣

∣

2

<(Zi), (2.7)

= 4kTGs
|Zs|2

|Zi +Zs|2
<(Zi)∆f, (2.8)

where Zs is the source impedance, and Ys = 1/Zs is the source admittance with a real part of

Gs and an imaginary part of Bs. The noise current delivered to the noise free two-port by the
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correlated noise voltage and noise current of the noisy two-port is

i′n = −va
1

Zi +Zs
− ia

Zs

Zi +Zs
, (2.9)

and

N ′
i =< i′n, i

′∗
n > <(Zi), (2.10)

=

[

< va, v
∗
a >

1
|Zi +Zs|2

+ < ia, i
∗
a >

∣

∣

∣

∣

Zs

Zi +Zs

∣

∣

∣

∣

2

+ 2<
(

< ia, v
∗
a >

Zs

|Zi +Zs|2

)

]

<(Zi),

(2.11)

=
[

Sva,v
∗
a
+ Sia,i

∗
a
|Zs|2 + 2<

(

Sia,v
∗
a
Zs

)] 1
|Zi +Zs|2

<(Zi)∆f. (2.12)

Substituting (2.8) and (2.12) in (2.4),

F = 1 +
Sva,v

∗
a
+ Sia,i

∗
a
|Zs|2 + 2<

(

Sia,v
∗
a
Zs

)

4kTGs|Zs|2
, (2.13)

= 1 +
Sva,v

∗
a
|Ys|2 + Sia,i

∗
a
+ 2<

(

Sia,v
∗
a
Y ∗
s

)

4kTGs
, (2.14)

Let Sia,v
∗
a
= Gu + jBu, we have

F = 1 +
Sva,v

∗
a
|Gs + jBs|2 + Sia,i

∗
a
+ 2< ((Gu + jBu)(Gs − jBs))

4kTGs
, (2.15)

= 1 +
Sva,v

∗
a
(G2

s + B2
s ) + Sia,i

∗
a
+ 2(GuGs + BuBs)

4kTGs
. (2.16)
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To find out the optimum Bs to minimize noise factor F , δF
δBs

= 0,

2Sva,v
∗
a
Bs + 2Bu

4kTGs
= 0, (2.17)

hence the optimum source susceptance Bopt is

Bopt = −
Bu

Sva,v
∗
a

. (2.18)

To find out the optimum Gs to minimize noise factor F , δF
δGs

= 0,

−Sia,i
∗
a
+ G2

sSva,v
∗
a
− B2

sSva,v
∗
a
− 2BuBs = 0, (2.19)

Substituting Bs = Bopt in,

−Sia,i
∗
a
+ G2

sSva,v
∗
a
+

B2
u

Sva,v
∗
a

= 0, (2.20)

hence the optimum source conductance Gopt is

Gopt =

√

√

√

√

Sia,i
∗
a

Sva,v
∗
a

−
B2
u

S2
va,v

∗
a

. (2.21)

Substituting Gs and Bs using their optimum values Gopt and Bopt in (2.16), the minimum noise

factor Fmin is

Fmin = 1 +

√

Sva,v
∗
a
Sia,i

∗
a
− B2

u + Gu

2kT
. (2.22)
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Note that Gu = <(Sia,v
∗
a
), and Bu = =(Sia,v

∗
a
), the noise parameters NFmin, Rn, Gopt, and

Bopt finally are [43]

Fmin = 1 +

√

Sva,v
∗
a
Sia,i

∗
a
− [=(Sia,v

∗
a
)]2 +<(Sia,v

∗
a
)

2kT
, (2.23)

= 1 + 2Rn

(

Gopt +
<(Sia,v

∗
a
)

Sva,v
∗
a

)

, (2.24)

NFmin = 10 log10(Fmin), (2.25)

Rn =
Sva,v

∗
a

4kT
, (2.26)

Gopt =

√

Sia,i
∗
a

Sva,v
∗
a

−
[=(Sia,v

∗
a
)

Sva,v
∗
a

]2

, (2.27)

Bopt = −
=(Sia,v

∗
a
)

Sva,v
∗
a

, (2.28)

where < and = stand for the real and the imaginary parts of a factor, respectively.

Solved from (2.24), (8.17), 8.18, and (8.19), the chain noise representation parameters

Sva,v
∗
a
, Sia,i

∗
a
, and Sia,v

∗
a
, can be obtained using the noise parameters NFmin, Rn and Yopt by [11],

Sva,v
∗
a
= 4kTRn, (2.29)

Sia,i
∗
a
= 4kTRn

∣

∣Yopt
∣

∣

2
, (2.30)

Sia,v
∗
a
= 2kT (Fmin − 1) − 4kTRnYopt, (2.31)

or in the format of noise matrix,

CA = 4kT







Rn
Fmin−1

2 − RnY
∗
opt

Fmin−1
2 − RnYopt Rn|Yopt|2






. (2.32)
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2.1.2 Y- Noise Representation

The Y- noise representation describes the noise of a two-port network with an input noise

current i1, an output noise current i2, and their correlation, as shown in Fig. 2.3. The PSD’s of i1,

i2, and their correlation are Si1,i
∗
1
, Si2,i

∗
2
, and Si2,i

∗
1
, respectively. The Y- noise matrix is defined

as

CY =







Si1,i
∗
1

Si1,i
∗
2

Si2,i
∗
1

Si2,i
∗
2






(2.33)

The output of microscopic noise simulation tool TAURUS are Y- noise representation parameters

[44]. Y- noise representation is also commonly used in compact noise modeling of both RF

bipolar and MOSFET transistors, as detailed later in section 1.3.2 and 1.4.1.

I2

Noiseless
Two-Port

Y

I1

V2
i1 i2V1

Noisy
Two-Port

Figure 2.3: The Y- noise representation of a linear noisy two-port network.

Conversions between the chain noise representation parameters and the Y- noise represen-

tation parameters can be derived as follows. We denote Y as total admittance matrix. The ac
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I − V relations including noise for the representations shown in Fig. 2.1 and Fig. 2.3 are







I1 − ia

I2






=







Y11 Y12

Y21 Y22






·







V1 − va

V2






, (2.34)







I1 − i1

I2 − i2






=







Y11 Y12

Y21 Y22






·







V1

V2






. (2.35)

Equating the noise terms of the two representations for both I1 and I2, we find the relations

between (i1, i2) and (va, ia),

i1 = ia − Y11va, (2.36)

i2 = −Y21va, (2.37)

and

va = −
1
Y21

i2, (2.38)

ia = i1 −
Y11

Y21
i2, (2.39)

where Y11 and Y21 are elements of Y matrix. Therefore, the Y- noise representation parameters

Si1,i
∗
1
, Si2,i

∗
2
, and Si2,i

∗
1
, can be derived using the chain noise representation parameters Sva,v

∗
a
,
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Sia,i
∗
a
, and Sia,v

∗
a

as

Si1,i
∗
1
= Sia,i

∗
a
+ |Y11|2Sva,v

∗
a
− 2<(Y ∗

11Sia,v
∗
a
), (2.40)

Si2,i
∗
2
= |Y21|2Sva,v

∗
a
, (2.41)

Si2,i
∗
1
= Y21Y

∗
11Sva,v

∗
a
− Y21S

∗
ia,v

∗
a
. (2.42)

Alternatively, the chain noise representation parameters Sva,v
∗
a
, Sia,i

∗
a
, and Sia,v

∗
a
, can be derived

using the Y- noise representation parameters Si1,i
∗
1
, Si2,i

∗
2
, and Si2,i

∗
1

as

Sva,v
∗
a
=

1
|Y21|2

Si2,i
∗
2
, (2.43)

Sia,i
∗
a
= Si1,i

∗
1
+

∣

∣

∣

∣

Y11

Y21

∣

∣

∣

∣

2

Si2,i
∗
2
− 2<

(

Y11

Y21
Si2,i

∗
1

)

, (2.44)

Sia,v
∗
a
=

Y11

|Y21|2
Si2,i

∗
2
−

1
Y ∗

21

S∗
i2,i

∗
1
. (2.45)

2.1.3 Z- Noise Representation

The Z- noise representation describes the noise of a two-port network with an input noise

voltage v1, an output noise voltage v2, and their correlation, as shown in Fig. 2.4. The PSD’s

of v1, v2, and their correlation are Sv1,v
∗
1
, Sv2,v

∗
2
, and Sv1,v

∗
2
, respectively. The Z- noise matrix is

defined as

CZ =







Sv1,v
∗
1

Sv1,v
∗
2

Sv2,v
∗
1

Sv2,v
∗
2






(2.46)

The output of microscopic noise simulation tool DESSIS are Z- noise representation parameters

[45]. The simulation results in this work are done using DESSIS.
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Two-Port

Figure 2.4: The Z- noise representation of a linear noisy two-port network.

Conversions between the chain noise representation parameters and the Z- noise represen-

tation parameters can be derived as follows. The ac I − V relations including noise for the

representations shown in Fig. 2.1 and Fig. 2.4 are







I1 − ia

I2






=







Y11 Y12

Y21 Y22






·







V1 − va

V2






, (2.47)







I1

I2






=







Y11 Y12

Y21 Y22






·







V1 − v1

V2 − v2






. (2.48)

Equating the noise terms of the two representations for both I1 and I2, we find the relations

between (v1, v2) and (va, ia),

v1 = va −
Y22

Y11Y22 − Y12Y21
ia, (2.49)

v2 =
Y21

Y11Y22 − Y12Y21
ia, (2.50)
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and

va = v1 +
Y22

Y21
v2, (2.51)

ia =
Y11Y22 − Y12Y21

Y21
v2. (2.52)

Therefore, the Z- noise representation parameters Sv1,v
∗
1
, Sv2,v

∗
2
, and Sv1,v

∗
2
, can be derived using

the chain noise representation parameters Sva,v
∗
a
, Sia,i

∗
a
, and Sia,v

∗
a

as

Sv1,v
∗
1
= Sva,v

∗
a
+

∣

∣

∣

∣

Y22

Y11Y22 − Y12Y21

∣

∣

∣

∣

2

Sia,i
∗
a
− 2<

(

Y22

Y11Y22 − Y12Y21
Sia,v

∗
a

)

, (2.53)

Sv2,v
∗
2
=

∣

∣

∣

∣

Y21

Y11Y22 − Y12Y21

∣

∣

∣

∣

2

Sia,i
∗
a
, (2.54)

Sv1,v
∗
2
=

Y ∗
21

Y ∗
11Y

∗
22 − Y ∗

12Y
∗

21

S∗
ia,v

∗
a
−

Y22Y
∗

21

|Y11Y22 − Y12Y21|2
Sia,i

∗
a
. (2.55)

Alternatively, the chain noise representation parameters Sva,v
∗
a
, Sia,i

∗
a
, and Sia,v

∗
a
, can be derived

using the Z- noise representation parameters Sv1,v
∗
1
, Sv2,v

∗
2
, and Sv1,v

∗
2

as

Sva,v
∗
a
= Sv1,v

∗
1
+

∣

∣

∣

∣

Y22

Y21

∣

∣

∣

∣

2

Sv2,v
∗
2
+ 2<

(

Y ∗
22

Y ∗
21

Sv1,v
∗
2

)

, (2.56)

Sia,i
∗
a
=

∣

∣

∣

∣

Y11Y22 − Y12Y21

Y21

∣

∣

∣

∣

2

Sv2,v
∗
2
, (2.57)

Sia,v
∗
a
=

Y ∗
22(Y11Y22 − Y12Y21)

|Y21|2
Sv2,v

∗
2
+

Y11Y22 − Y12Y21

Y21
S∗
v1,v

∗
2
. (2.58)

2.1.4 H- Noise Representation

The H- noise representation describes a noisy two-port network with an input noise voltage

vh, an output noise current ih, and their correlation, as shown in Fig. 2.5. The PSD’s of vh, ih,
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and their correlation are Svh,v
∗
h
, Sih,i

∗
h
, and Svh,i

∗
h
, respectively. The H- noise matrix is defined as

CH =







Svh,v
∗
h

Svh,i
∗
h

Sih,v
∗
h

Sih,i
∗
h






(2.59)

H- noise representation is popular for compact noise modeling of GaAs MESFETs and HEMTs.

As we will show in chapter 6, the H- noise representation is also advantageous for CMOS tran-

sistors. Therefore we are more concerned with the conversions between Y- noise representation

parameters and H- noise representation parameters.

vh

Noiseless
Two-Port

 Y
V1

I1

V2

I2

+

_

+

_

Noisy
Two-Port

ih

Figure 2.5: The H- noise representation of a linear noisy two-port network.

The I − V relations including noise in Fig. 2.3 and Fig. 2.5 are given by:







I1 − i1

I2 − i2






=







Y11 Y12

Y21 Y22






·







V1

V2






, (2.60)







I1

I2 − ih






=







Y11 Y12

Y21 Y22






·







V1 − vh

V2






. (2.61)
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Solving (2.60) and (2.61), i1 and i2 are related to vh and ih as

i1 = −Y11vh (2.62)

i2 = ih − Y21vh, (2.63)

and

vh = −
1
Y11

i1 (2.64)

ih = i2 −
Y21

Y11
i1. (2.65)

Therefore, the Y- noise representation parameters Si1,i
∗
1
, Si2,i

∗
2
, and Si1,i

∗
2
, can be derived

using the H- noise representation parameters Svh,v
∗
h
, Sih,i

∗
h
, and Sih,v

∗
h

as

Si1,i
∗
1
= |Y11|2Svh,v

∗
h
, (2.66)

Si2,i
∗
2
= Sih,i

∗
h
+ |Y21|2Svh,v

∗
h
− 2<(Y21Svh,i

∗
h
), (2.67)

Si1,i
∗
2
= Y11Y

∗
21Svh,v

∗
h
− Y11Svh,i

∗
h
. (2.68)

Alternatively, the H- noise representation parameters Svh,v
∗
h
, Sih,i

∗
h
, and Sih,v

∗
h
, can be derived

using the Y- noise representation parameters Si1,i
∗
1
, Si2,i

∗
2
, and Si1,i

∗
2

as

Svh,v
∗
h
=

1
|Y11|2

Si1,i
∗
1
, (2.69)

Sih,i
∗
h
= Si2,i

∗
2
+

∣

∣

∣

∣

Y21

Y11

∣

∣

∣

∣

2

Si1,i
∗
1
− 2<(

Y21

Y11
Si1,i

∗
2
), (2.70)

Svh,i
∗
h
=

Y ∗
21

|Y11|2
−

1
Y11

Si1,i
∗
2
. (2.71)
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2.2 Transformation to Other Noise Representations

The ABCD-, Y-, Z-, and H- noise representations can be transformed to another by the

matrix operation:

C ′ = T · C · T †, (2.72)

where C and C ′ are the original and resulting noise correlation matrices respectively, T is the

transformation matrix given in Table 2.1, and T † is the transpose conjugate of T . The ABCD, Y,

Z and H two-port network parameters are used in Table 2.1. The conversion of ABCD, Y, Z and

H parameters are given in Table 2.2.

Original Representation
CY CZ CA CH

C ′
Y

[

1 0
0 1

] [

Y11 Y12

Y21 Y22

] [

−Y11 1
−Y21 0

] [

−Y11 0
−Y21 1

]

C ′
Z

[

Z11 Z12

Z21 Z22

] [

1 0
0 1

] [

1 −Z11

0 −Z21

] [

1 −Z12

0 −Z22

]

C ′
A

[

0 A12

1 A22

] [

1 −A11

0 −A21

] [

1 0
0 1

] [

1 A12

0 A22

]

C ′
H

[

−h11 0
−h21 1

] [

1 −h12

0 −h22

] [

1 −h11

0 −h21

] [

1 0
0 1

]

Table 2.1: Transformation matrices to calculate other noise representations
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Y Z A H S

Y

Y11

Y12

Y21

Y22

Z22
∆Z−Z12
∆Z−Z21
∆Z
Z11
∆Z

A22
A12
−∆A
A12
−1
A12
A11
A12

1
h11
−h12
h11
h21
h11
∆H
h11

Y0
1−S11+S22−∆S
1+S11+S22+∆S

Y0
−2S12

1+S11+S22+∆S
Y0

−2S21
1+S11+S22+∆S

Y0
1+S11−S22−∆S
1+S11+S22+∆S

Z

Y22
∆Y−Y12
∆Y−Y21
∆Y
Y11
∆Y

Z11

Z12

Z21

Z22

A11
A21
∆A
A21

1
A21
A22
A21

∆H
h22
h12
h22
−h21
h22

1
h22

Z0
1+S11−S22−∆S
1−S11−S22+∆S

Z0
2S12

1−S11−S22+∆S
Z0

2S21
1−S11−S22+∆S

Z0
1−S11+S22−∆S
1−S11−S22+∆S

A

−Y22
Y21
−1
Y21
−∆Y
Y21−Y11
Y21

Z11
Z21
∆Z
Z21

1
Z21
Y22
Z21

A11

A12

A21

A22

−∆H
h21
−h11
h21
−h22
h21
−1
h21

1+S11−S22−∆S
2S21

Z0
1+S11+S22+∆S

2S21
Y0

1−S11−S22+∆S
2S21

1−S11+S22−∆S
2S21

H

1
Y11−Y12
Y11
Y21
Y11
∆Y
Y11

∆Z
Z22
Z12
Z22−Z21
Z22

1
Z22

A12
A22
∆A
A22
−1
A22
A21
A22

h11

h12

h21

h22

Z0
1+S11+S22+∆S
1−S11+S22−∆S

2S12
1−S11+S22−∆S

2S21
1−S11+S22−∆S

Y0
1−S11−S22+∆S
1−S11+S22−∆S

S

Y0(Y0−Y11+Y22)−∆Y
Y0(Y11+Y22+Y0)+∆Y

−2Y12Y0
Y0(Y11+Y22+Y0)+∆Y

−2Y21Y0
Y0(Y11+Y22+Y0)+∆Y
Y0(Y0+Y11−Y22)−∆Y
Y0(Y11+Y22+Y0)+∆Y

Z0(Z11−Z22−Z0)+∆Z
Z0(Z11+Z22+Z0)+∆Z

2Z12Z0
Z0(Z11+Z22+Z0)+∆Z

2Z21Z0
Z0(Z11+Z22+Z0)+∆Z
Z0(Z22−Z11−Z0)+∆Z
Z0(Z11+Z22+Z0)+∆Z

A11+A12/Z0−A21/Z0−A22
A11+A12/Z0+A21/Z0+A22

2∆A
A11+A12/Z0+A21/Z0+A22

2
A11+A12/Z0+A21/Z0+A22
−A11+A12/Z0−A21/Z0+A22
A11+A12/Z0+A21/Z0+A22

h11−h22−1+∆H
h11+h22+1+∆H

2h12
h11+h22+1+∆H

−2h21
h11+h22+1+∆H
h11−h22−1−∆H
h11+h22+1+∆H

S11

S12

S21

S22

∆Y = Y11Y22 − Y12Y21, ∆Z = Z11Z22 −Z12Z21, ∆H = h11h22 − h12h21, ∆A = A11A22 − A12A21.

Table 2.2: Conversions between two-port network parameters.

2.3 Adding Noisy Passive Components to a Noisy Two-Port Network

If the noise of the intrinsic two-port network is known, in order to calculate the noise of

a complex network, one needs to start from the noise of the intrinsic two-port network, then

procedurally add the noise of other noisy passive components to the intrinsic, which is called

the “adding” procedure. Reversely speaking, if the noise of a complex network is known, one

needs to remove the noise of each noisy passive component to calculate the noise of the intrinsic

network, which is called the “de-embedding” procedure. Both the two-port network parameters

and noise parameters are involved in either the adding procedure or the de-embedding procedure.

Here only the adding procedure is discussed. The de-embedding procedure is just a reverse
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process. Basically, there are two kinds of cases to add noisy passive components to a noisy

two-port network.

In transistor noise modeling, the raw data measured includes pad and interconnect. One

common case is to add noisy passive components in parallel with a two-port network, as shown

in Fig. 2.6. The added noisy passive components are denoted as Y1, Y2, and Y3, with thermal

noise current of 4kT<(Y1), 4kT<(Y2), and 4kT<(Y3), respectively.

I2

Noiseless
Two-Port

Y

I1

V2
i1 i2V1 Y1 Y3

Y2

Ytotal

4kTReY1 4kTReY3

4kTReY2

Figure 2.6: Adding noisy passive components parallel to a linear noisy two-port network.

The Y-parameter matrix of the noisy two-port network is denoted as Y . The Y-parameter

matrix of after adding the passive components is

Y total = Y +







Y1 + Y2 −Y2

−Y2 Y3 + Y2






(2.73)
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Denote the input and output noise currents of the Y- noise representation after adding the passive

components as i′1 and i′2. The I − V relations including noise is Fig. 2.6 are given by:







I1 − i1 − Y1V1 − iY1 − Y2(V2 − V1) − iY2

I2 − i2 − Y3V2 − iY3 + Y2(V2 − V1) + iY2






=







Y11 Y12

Y21 Y22






·







V1

V2






, (2.74)







I1 − i′1

I2 − i′2






=







Y total
11 Y total

12

Y total
21 Y total

22






·







V1

V2






, (2.75)

(2.76)

where

SiY1 ,i
∗
Y1
= 4kT<(Y1), (2.77)

SiY2 ,i
∗
Y2
= 4kT<(Y2), (2.78)

SiY3 ,i
∗
Y3
= 4kT<(Y3). (2.79)

Equating the noise terms for both I1 and I2, we find the relations between (i1, i2) and (i′1, i
′
2),

i′1 = i1 + iY1 + iY2 , (2.80)

i′2 = i2 + iY3 − iY2 , (2.81)
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and

Si′1,i
′∗
1
= Si1,i

∗
1
+ 4kT<(Y1) + 4kT<(Y2), (2.82)

Si′2,i
′∗
2
= Si2,i

∗
2
+ 4kT<(Y3) + 4kT<(Y2), (2.83)

Si′1,i
′∗
2
= Si1,i

∗
2
− 4kT<(Y2), (2.84)

or in the format of noise matrix

C total
Y = CY + 4kT · <







Y1 + Y2 −Y2

−Y2 Y3 + Y2






, (2.85)

where CY is the Y- noise matrix for the noisy two-port, and C total
Y is the Y- noise matrix after

adding the passive components to the noisy two-port.

The other common case is to add noisy passive components in series with the two-port

network terminals, as shown in Fig. 2.7. The added noisy passive components are denoted as Z1,

Z2, and Z3, with thermal noise voltage of 4kT<(Z1), 4kT<(Z2), and 4kT<(Z3), respectively.

The Z-parameter matrix of the noisy two-port network is denoted as Z. The Z-parameter

matrix of after adding the passive components is

Ztotal = Z +







Z1 +Z2 Z2

Z2 Z3 +Z2






(2.86)
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Figure 2.7: Adding noisy passive components in series with a linear noisy two-port network.

Denote the input and output noise currents of the Z- noise representation after adding the passive

components as v′1 and v′2. The I − V relations including noise is Fig. 2.7 are given by:







V1 − v1 −Z1I1 − vZ1 −Z2(I1 + I2) − vZ2

V2 − v2 −Z3I2 − vZ3 +Z2(I1 + I2) + vZ2






=







Z11 Z12

Z21 Z22






·







I1

I2






, (2.87)







V1 − v′1

V2 − v′2






=







Ztotal
11 Ztotal

12

Ztotal
21 Ztotal

22






·







I1

I2






, (2.88)

(2.89)
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where

SvZ1 ,v
∗
Z1

= 4kT<(Z1), (2.90)

SvZ2 ,v
∗
Z2

= 4kT<(Z2), (2.91)

SvZ3 ,v
∗
Z3

= 4kT<(Z3). (2.92)

Equating the noise terms for both V1 and V2, we find the relations between (v1, v2) and (v′1, v
′
2),

v′1 = v1 + vZ1 + vZ2 , (2.93)

v′2 = v2 + vZ3 + vZ2 , (2.94)

and

Sv′1,v
′∗
1
= Sv1,v

∗
1
+ 4kT<(Z1) + 4kT<(Z2), (2.95)

Sv′2,v
′∗
2
= Sv2,v

∗
2
+ 4kT<(Z3) + 4kT<(Z2), (2.96)

Sv′1,v
′∗
2
= Sv1,v

∗
2
+ 4kT<(Z2), (2.97)

or in the format of noise matrix

C total
Z = CZ + 4kT · <







Z1 +Z2 Z2

Z2 Z3 +Z2






, (2.98)

where CZ is the Z- noise matrix for the noisy two-port, and C total
Z is the Z- noise matrix after

adding the passive components to the noisy two-port.
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2.4 Open/Short De-embedding

The equivalent circuit diagram used for open-short de-embedding method is shown in

Fig. 2.8, including both the parallel parasitics Yp1, Yp2, Yp3, and the series parasitics ZL1, ZL2

and ZL3 surrounding the transistor [7]. Denote the S-parameters of the measurement as Smeas,

the S-parameters of the open de-embedding structure as Sopen, and the S-parameters of the short

de-embedding structure as Sshort. Using the relations between Y- and S- parameters in Table 2.2,

the Y-parameters of the measurement, the open and short de-embedding structure, Ymeas, Yopen

and Yshort are obtained. Open and short de-embedding are performed for both Y-parameters and

noise parameters to move the reference plane to the device terminals. The resulting Y-parameters

and noise parameters are for the transistor. The MATLAB programming for Y-parameters and

noise parameters open-short de-embedding is given in Appendix A.

Figure 2.8: Equivalent circuit diagram used for open-short de-embedding method, including
both the parallel parasitics Yp1, Yp2, Yp3, and the series parasitics ZL1, ZL2 and ZL3 surrounding
the transistor [7].
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2.4.1 Open De-embedding of Y-parameters and Noise Parameters

The Y-parameter for the open de-embedded transistor Yod is [7]

Yod = Ymeas − Yopen. (2.99)

The short de-embedding structure also needs to be open de-embedded. The Y-parameter for the

open de-embedded short de-embedding structure Yos is [7]

Yos = Yshort − Yopen. (2.100)

Denote the noise parameters for measurement as NFmin, Rn and γopt, where

γopt =
Y0 − Yopt

Y0 − Yopt
. (2.101)

Yopt can be thus obtained by γopt as

Yopt = Y0
1 − γopt

1 + γopt
. (2.102)

The chain noise representation matrix of the measurement CA,meas can be thus obtained using

(2.32). To perform open-short de-embedding, CA,meas needs to be transformed to the Y-noise

representation matrix CY,meas using (2.72),

CY,meas = TA−Y · CA,meas · T
†
A−Y , (2.103)
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and TA−Y is given by Table 2.1:

TA−Y =







−Y meas
11 1

−Y meas
21 0






, (2.104)

where Y meas
11 and Y meas

21 are elements of Ymeas matrix. Therefore, the Y- noise representation

matrix for open de-embedded transistor CY,od is

CY,od = CY,meas − 4kT<[Yod]. (2.105)

2.4.2 Short De-embedding of Y-parameters and Noise Parameters

The Z-parameter for the short de-embedded transistor Z is [7]

Z = Zod −Zos, (2.106)

where Zod and Zos are Z-parameter matrices of the open de-embedded transistor and the short

de-embedding structure, respectively. Zod and Zos are obtained from Yod and Yos using Table 2.2.

For short de-embedding of the noise parameters, we need to start with the Z-noise repre-

sentation matrix of the open de-embedded transistor CZ,od,

CZ,od = TY−Z · CY,od · T
†
Y−Z , (2.107)
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and TY−Z is given by Table 2.1:

TY−Z =







Zod
11 Zod

12

Zod
21 Zod

22






, (2.108)

where Zod
11 , Zod

12 , Zod
21 , and Zod

22 are elements of Zod matrix. The Z-noise representation matrix

of the open-short de-embedded transistor CZ is thus obtained,

CZ = CZ,od − 4kT<[Zos]. (2.109)

Fig. 2.9 – Fig. 2.16 show the bias and frequency dependence of the noise parameters NFmin,

Rn, and Yopt of raw measurement data, open de-embedding, and open-short de-embedding data.

The results show that the short de-embedding is important for noise parameters de-embedding,

and cannot be neglected.

2.4.3 Problems Encountered in MATLAB Programming for Open-Short De-embedding

The open-short de-embedding process is realized in MATLAB. The conversions of differ-

ent noise representations can be accomplished using MATLAB matrices operation. However,

unexpected imaginary part are obtained for some elements in the matrix which should be real

numbers theoretically. Here, measurement data of 0.12 µm process measured in IBM is used as

an example. Vgs = 0.685 V, Vds = 1.5 V. At f = 28 GHz, CA for raw data is

CA =







0.39291636000000 0.01285241162005 − 0.02039784627097i

0.01285241162005 + 0.02039784627097i 0.00166866364322






.

(2.110)
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Figure 2.9: NFmin v.s. frequency. IDS = 148 µA/µm. VDS = 1 V.

The very first step is to transform chain noise representation matrix CA to Y- noise representation

matrix CY using (2.103). The transform matrice T is

T =







−0.02092695425297 − 0.06129572408422i 1

−0.06717448393087 + 0.14736069526087i 0






. (2.111)

When realizing (2.103) in MATLAB, if the following code is used,

CA = [Sva, Siava’; Siava, Sia];

T = [-Y11, 1; -Y21, 0]; T_conjtrans = T’;

CY = T * CA * T_conjtrans;

Si1 = CY(1,1); Si2 = CY(2,2); Si1i2 = CY(1,2);
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Figure 2.10: NFmin v.s. IDS normalized by size of device. f = 10 GHz. VDS = 1 V.

the resulting Si1 is (0.00278463150577 - 0.00000000000000i), with neglegible imaginary part,

which is theoretically wrong. The origin of the problem lies in the complex number operation

in MATLAB. Let x be a complex number, and y be a real number. In MATLAB programming,

x*x’*y gives a real number. However, x*y*x’ gives a complex number with an imaginary part.

Although the produced imaginary part is negligible for one step of calculation, the induced error

cannot be neglected after multiple steps of similar operations. For example, the resulting the

open-short de-embedded NFmin for the transistor using matrix operation is (1.45838190834363

+ 0.01511935061286i), which has considerable imaginary part. Therefore MATLAB matrix

operation cannot be directly used. Instead, detailed operations for each element of a matrix are

applied:

CA = [Sva, Siava’; Siava, Sia];

T = [-Y11, 1; -Y21, 0]; T_conjtrans = T’;
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Figure 2.11: Rn v.s. frequency. IDS = 148 µA/µm. VDS = 1 V.

CY(1,1) = (abs(T(1,1)))^2*CA(1,1) + (abs(T(1,2)))^2*CA(2,2)...

+ 2*real(T_conjtrans(1,1)*T(1,2)*CA(2,1));

CY(1,2) = T(1,1)*T_conjtrans(1,2)*CA(1,1)+T(1,2)*T_conjtrans(1,2)*CA(2,1)...

+T(1,1)*T_conjtrans(2,2)*CA(1,2)+T(1,2)*T_conjtrans(2,2)*CA(2,2);

CY(2,1) = CY(1,2)’;

CY(2,2) = (abs(T(2,1)))^2*CA(1,1) + (abs(T(2,2)))^2*CA(2,2)...

+ 2*real(T_conjtrans(2,2)*T(2,1)*CA(1,2));

Si1 = CY(1,1); Si2 = CY(2,2); Si1i2 = CY(1,2);

The resulting Si1 is 0.00278463150577, which has no imaginary part. After multiple steps, the

open-short de-embedded NFmin for the transistor is 1.45574769257762, which is slightly lower

than the real part of the result using matrix operation.
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Figure 2.12: Rn v.s. IDS normalized by size of device. f = 10 GHz. VDS = 1 V.

2.5 Transistor Internal Noise De-embedding

MOSFET transistor ig and id noise de-embedding procedure and SiGe HBT transistor ib

and ic noise de-embedding procedure are discussed in this section. The techniques are repeatedly

used in later chapters of this dissertation.

2.5.1 MOSFET Transistor ig and id Noise De-embedding

The equivalent circuit of the transistor is shown in Fig. 2.17. Here Rg is the gate electrode

resistance, and Rs and Rd are the source and drain series resistances. Rg , Rs and Rd all have

the usual 4kTR thermal noise voltage. Rgs is the non-quasi-static (NQS) channel resistances.

gds is the output conductance. gm is transconductance. Cgs and Cgd are the gate to source and

gate to drain capacitances. Cdb is the drain to body junction capacitance, and Rdb is the body
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Figure 2.13: Gopt v.s. frequency. IDS = 148 µA/µm. VDS = 1 V.

resistance of the drain to body junction. Rdb has the usual 4kTR thermal noise. The equivalent

circuit parameters are extracted using the method described in [9]. Note that Rgs, and gds do not

have the usual 4kTR thermal noise. Instead, ig and id, the Y-noise representation parameters,

are used to describe all of the noise from the intrinsic transistor.

Here we choose to define ig and id as the Y-representation input and output noise current

for the level II block shown in Fig. 2.17. The level II block consists of Rg , Cgs, the gm controlled

source and gds, and is the core part for noise modeling. The level I block is defined as the

combination of the level II block with the branch of Cgd, and the branch of Cdb and Rdb. Next

we need to extract the power spectral densities (PSD) of ig , id, and their correlation, which we
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Figure 2.14: Gopt v.s. IDS normalized by size of device. f = 10 GHz. VDS = 1 V.

denote as SII
ig ,i

∗
g
, SII

id,i
∗
d
, and SII

ig ,i
∗
d
. They can also be written using matrix notation as:

CYII

4
=







SII
ig ,i

∗
g

SII
ig ,i

∗
d

SII
id,i

∗
g

SII
id,i

∗
d






, (2.112)

where CYII is also referred to as the Y-representation noise matrix for the level II block.

Firstly, the thermal resistances outside of the level I block, Rg , Rs and Rd, need to be

removed. Denote the Z-parameters of the level I block as ZI , which is related to Z as

ZI = Z −Z1, (2.113)
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Figure 2.15: Bopt v.s. frequency. IDS = 148 µA/µm. VDS = 1 V.

where

Z1 =







Rs + Rg Rs

Rs Rs + Rd






. (2.114)

Using the open-short de-embedded transistor Z- noise representation matrix CZ , the Z- noise

representation matrix of the level I block CZI is

CZI = CZ − 4kT<[Z1]. (2.115)

The next step is to remove the branch of Cgd, and the branch of Cdb and Rdb to obtain the

Y- noise representation matrix of the level II block CYII . Y-parameters matrix of the level I block

YI can be obtained from ZI using Table 2.2. Therefore Y-parameters matrix of the level II block
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YII is,

YII = YI − Y1, (2.116)

Y1 =







jωCgd −jωCgd

−jωCgd jωCgd +
jωCdb

1+jωCdbRdb






. (2.117)

The Y-representation noise matrix for the level I block, CYI can be obtained from CZI as,

CYI = TZ−Y · CZI · TZ−Y †, (2.118)
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and TZ−Y is given by Table 2.1:

TZ−Y =







Y I
11 Y I

12

Y I
21 Y I

22






, (2.119)

where Y I
11, Y I

12, Y I
21, and Y I

22 are elements of YI matrix. Therefore the Y- noise representation

matrix of the level II CYII is

CYII = CYI − 4kT<[Y1]. (2.120)
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Thus, the ig and id noise currents of MOSFET transistor are finally de-embedded from

measurement data,

SII
ig ,i

∗
g
= CYII (1, 1), (2.121)

SII
id,i

∗
d
= CYII (2, 2), (2.122)

SII
ig ,i

∗
d
= CYII (1, 2). (2.123)

Fig. 2.18 – Fig. 2.20 shows the bias dependence of Y- noise current sources for the whole

transistor and the intrinsic transistor for 0.24 µm gate length MOSFET transistor. W = 4 µm,

number of finger Nf is 128. The gate resistance Rg is extracted using the advanced parameter

extraction method in chapter 7. Rg = 0.6 Ω. Both the input and output Y- noise representa-

tion currents decreases after deembedding to the intrinsic device. The imaginary part of their

correlation is also less for the intrinsic device.

2.5.2 SiGe HBT Transistor ib and ic Noise De-embedding

The process of SiGe HBT transistor ib and ic noise de-embedding is similar to the pro-

cedures in section 2.5.1. The thermal noise of a SiGe HBT transistor is simulated using 2-D

DESSIS v9.0 simulation tool [45]. The output of DESSIS simulation tool is the Y- parame-

ter and the Z- noise representation parameters Sv1,v
∗
1
, Sv2,v

∗
2

and Sv2,v
∗
1

(Sv1,v
∗
2

for DESSIS v7.0).

Firstly we are interested in calculating the noise parameters NFmin, Rn and Yopt, which inevitably

involves the calculation of chain noise representation parameters Sva,v
∗
a
, Sia,i

∗
a
, and Sia,v

∗
a

from Z-

noise representation parameters.
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Figure 2.18: Y- noise representation input noise current for the whole and the intrinsic MOSFET
transistor.

Denote Y- parameters of the output of DESSIS simulation as Y , the Z- noise representation

matrix of the output of DESSIS simulation as CZ . The chain noise representation matrix CA is

CA = TZ−A · CZ · T †
Z−A, (2.124)

and TZ−A is given by Table 2.1:

TZ−A =







1 −A12

0 −A21






, (2.125)
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Figure 2.19: Y- noise representation output noise current for the whole and the intrinsic MOS-
FET transistor.

where A12 and A21 are elements of ABCD matrix A, which can be converted from Y using

Table 2.2. The noise parameters NFmin, Rn and Yopt can then be obtained using (2.24) – (8.19)

directly.

Secondly, we are interested in ib and ic noise currents of SiGe HBT transistor. The equiv-

alent circuit for the simulated SiGe HBT transistor is the same as Fig. 1.2 in chapter 1, which

includes base resistance rb with usual 4kTR thermal noise voltage, and the intrinsic transistor

whose noise is described using Y- noise representation parameters Sib,i
∗
b
, Sic,i

∗
c

and Sic,i
∗
b
.
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Figure 2.20: Y- noise representation correlation for the whole and the intrinsic MOSFET tran-
sistor.

Through circuit analysis, Fig. 1.2 and Fig. 2.1 show







I1 − ib

I2 − ic






=







Y int
11 Y int

12

Y int
21 Y int

22






·







V1 − vb − I1rb

V2






, (2.126)







I1 − ia

I2






=







Y11 Y12

Y21 Y22






·







V1 − va

V2






. (2.127)

Y11, Y12, Y21 and Y22 are Y- parameters for the whole transistor Y that includes both rb and the

intrinsic transistor. Y int
11 , Y int

12 , Y int
21 and Y int

22 are elements of the intrinsic transistor Y- parameters

matrix Yint . The intrinsic Y- parameters Yint relates to whole Y- parameters Y as,

Y int
11 =

Y11

1 − Y11rb
, (2.128)

Y int
12 =

Y12

1 − Y11rb
, (2.129)

Y int
21 =

Y21

1 − Y11rb
, (2.130)

Y int
22 =

Y22

1 − Y11rb
−

rb(Y11Y22 − Y12Y21)
1 − Y11rb

. (2.131)
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From (2.126), we have,

I1 = ib + Y int
11 (V1 − vb) − I1rbY

int
11 + Y int

12 V2, (2.132)

=
ib

1 + Y int
11 rb

+
Y int

11

1 + Y int
11 rb

(V1 − vb) +
Y int

12

1 + Y int
11 rb

V2, (2.133)

=
ib

1 + Y int
11

+ Y11(V1 − vb) + Y12V2, (2.134)

and

I2 = ic + Y int
21 (V1 − vb − I1rb) + Y int

22 V2. (2.135)

Substituting (2.134) in (2.135),

I2 = ic + Y int
21 (V1 − vb) −

Y int
21 ibrb

1 + Y int
11 rb

− Y int
21 Y11(V1 − vb)rb − Y int

21 Y12V2rb + Y int
22 V2, (2.136)

= ic + Y int
21 (1 − Y11rb)(V1 − vb) − Y21ibrb + V2(Y int

22 − Y12Y
int

21 rb), (2.137)

= ic + Y21(V1 − vb) − Y21ibrb + V2

[

Y22

1 − Y11rb
−

rb(Y11Y22 − Y12Y21)
1 − Y11rb

−
Y12Y21rb
1 − Y11rb

]

, (2.138)

= ic + Y21(V1 − vb) − Y21ibrb + Y22V2. (2.139)
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From (2.127), we have,

I1 = ia + Y11(V1 − va) + Y12V2, (2.140)

I2 = Y21(V1 − va) + Y22V2. (2.141)

(2.141)-(2.139), we have

va = vb −
ic
Y21

+ ibrb. (2.142)

(2.140)-(2.134), and using the result of (2.142), we have

ia =
ib

1 + Y int
11 rb

+ Y11(va − vb), (2.143)

=
ib

1 + Y int
11 rb

−
Y11

Y21
ic + Y11ibrb, (2.144)

= ib −
Y11

Y21
ic. (2.145)

Finally, Fig. 1.2 can be transformed to the form of the chain noise representation Fig. 2.1,

va = vb + ibrb −
1
Y21

ic, (2.146)

ia = ib −
Y11

Y21
ic, (2.147)

= ib −
ic
h21

, (2.148)
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where

h21 =
Y21

Y11
=

Y int
21

Y int
11

= hint21 . (2.149)

The resulting Sva,v
∗
a
, Sia,i

∗
a

and Sia,v
∗
a

are

Sva,v
∗
a
= Svb,v

∗
b
+

1
|Y21|2

Sic,i
∗
c
+ Sib,i

∗
b
r2
b − 2<(

rb
Y21

Sic,i
∗
b
), (2.150)

Sia,i
∗
a
= Sib,i

∗
b
+

∣

∣

∣

∣

Y11

Y21

∣

∣

∣

∣

2

Sic,i
∗
c
− 2<

(

Y11

Y21
Sic,i

∗
b

)

, (2.151)

Sia,v
∗
a
=

Y11

|Y21|2
Sic,i

∗
c
+ Sibrb −

1
Y ∗

21

S∗
ic,i

∗
b
−

rb
h21

Sic,i
∗
b
. (2.152)

On the contrary, Fig. 1.2 can be transformed from the form of the chain noise representation

Fig. 2.1,

ic = −Y internal
21 (va − vb − iarb), (2.153)

= −
Y21

1 − Y11rb
(va − vb − iarb), (2.154)

ib = ia − Y internal
11 (va − vb − iarb), (2.155)

=
1

1 − Y11rb
ia −

Y11

1 − Y11rb
(va − vb). (2.156)
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The resulting Sib,i
∗
b
, Sic,i

∗
c

and Sic,v
∗
b

are

Sib,i
∗
b
=

1
|1 − Y11rb|2

(Sia,i
∗
a
+ |Y11|2(Sva,v

∗
a
− 4kTrb) − 2<(Y ∗

11Sia,v
∗
a
)), (2.157)

Sic,i
∗
c
= |

Y21

1 − Y11rb
|2(Sva,v

∗
a
− 4kTrb + Sia,i

∗
a
r2
b − 2rb<Sia,v

∗
a
), (2.158)

Sic,i
∗
b
=

1
|1 − Y11rb|2

(Y21rbSia,i
∗
a
+ Y21Y

∗
11(Sva,v

∗
a
− 4kTrb) − Y21S

∗
ia,v

∗
a
− Y21Y

∗
11rbSia,v

∗
a
).

(2.159)

The base resistance rb for each bias is determined using semi-circle fitting method [46]. Plot

=(h11) versus <(h11), fit the data using a semi-circle, rb is determined using the high frequency

intercept with the <(h11) axis. Using (2.157) – (2.159), the ib and ic noise currents of SiGe HBT

transistor are thus obtained.

Fig. 2.21 and Fig. 2.22 shows Y- noise current sources for the whole transistor and the

intrinsic transistor for DESSIS simulation results of 8HP 0.12 × 1 µm2 SiGe HBT transistor

at 40 GHz. Both the input noise current and output noise current become less for the intrinsic

device. The absolute value of Y- noise representation correlation decreases after de-embedding

to the intrinsic device.

2.6 Importance of Terminal Series Resistances to Noise parameters

The gate electrode resistance Rg for MOSFET transistors, or the base resistance rb for SiGe

HBT transistors is the input series resistance to the intrinsic device. The input series resistance

is the most important for noise parameters, since its thermal noise contribution is amplified by

the two-port network. On the contrary, the output series resistance is the least important for
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Figure 2.21: Y- noise representation input and output noise currents for the whole and the intrin-
sic SiGe HBT transistor.
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Figure 2.25: Gopt vs IDS with and without Rg , Rs and Rd at 5 GHz.
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Figure 2.26: Bopt vs IDS with and without Rg , Rs and Rd at 5 GHz.
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noise parameters. The drain electrode resistance Rd for MOSFET transistors and the collector

resistance rc for SiGe HBT transistors are the output series resistance to the intrinsic device.

The source electrode resistance Rs for MOSFET transistors, or the emitter resistance re for

SiGe HBT transistors, contributes thermal noise to the input terminal, the output terminal, and

their correlation. Therefore they are less important for noise parameters compared to the input

series resistance.

Fig. 2.23 shows NFmin simulated at 5 GHz versus IDS . We find that Rs is the major reason

for the increase of NFmin compared to the intrinsic NFmin, yet it is a function of the Rg and Rs

values. Fig. 2.24 shows Rn vs IDS , and Fig. 2.25 and Fig. 2.26 show Gopt and Bopt vs IDS at 5

GHz.

2.7 Summary

Different noise representations for a linear noisy two-port network are introduced. The

transformation matrices to other noise representations are given for ABCD-, Y-, Z-, and H-

noise representations. Techniques of adding or de-embedding a passive component to a linear

two-port network are discussed. Noise sources de-embedding for both MOSFET and SiGe HBT

are given for repeatedly use in later chapters.
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CHAPTER 3

MICROSCOPIC NOISE CONTRIBUTIONS

This chapter presents a new technique of simulating the spatial distribution of microscopic

noise contribution to the input noise current, voltage, and their correlation. The technique is

demonstrated on a 50 GHz SiGe HBT. A strong “noise crowding” effect is observed in the

spatial distribution of noise concentrations due to base majority holes. The spatial distributions

by base majority holes, base minority electrons, and emitter minority holes are analyzed, and

compared to the compact noise model. This technique is also applied to a 120 GHz MOSFET

transistor. The spatial distribution of drain noise current, gate noise current, and their correlation

are analyzed.

3.1 Introduction

One of the key concerns in optimizing SiGe HBTs is to minimize noise, which requires

methods of simulating transistor noise parameters for a given device design. One method is

to simulate transistor s-parameters, extract parameters of an equivalent circuit, and then calcu-

late the noise parameters using a circuit-level transistor noise model [47]. The accuracy of this

method is limited by the accuracy of the transistor noise model used. The other method is micro-

scopic noise simulation. The terminal voltage noise is obtained by summing the responses of the

terminal voltage to carrier velocity fluctuations, and hence current density fluctuations at each

grid cell, which is the basic element for equation solutions, using Shockley’s impedance field

approach [48], which has recently become available in TCAD tools. The results of microscopic

noise simulation are typically given by the spatial distribution of either the open circuit noise
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voltages or the short circuit noise currents. For comparison with measurements, however, the

input noise current ia and the input noise voltage va for a chain representation shown in Fig. 2.1

in chapter 2 are the most convenient [47] [10]. The spectral densities of ia, va and ia, v
∗
a directly

relate to circuit-level noise parameters: minimum noise figure NFmin, noise resistance Rn, and

the optimal source admittance Yopt by (2.24) – (8.19) in chapter 2.

This chapter presents a new technique of simulating the spatial distribution of microscopic

noise contributions to the input noise current, voltage and their correlation, and results obtained

on a 50 GHz SiGe HBT technology [49]. The technique facilities the identification of major

noise sources within the transistor physical structure, leading to device-level optimization, such

as doping profile, Ge profile, and/or device layout, with respect to the noise parameters.

3.2 Microscopic Noise Simulation

Shockley’s impedance field approach is illustrated in Fig. 3.1 [48]. Velocity fluctuation

(thermal agitation of carriers) causes current density fluctuation δIn/p(r). Current density fluc-

tuations at each location propagate towards the contact through Zn/p(r, rContact). Noise voltage

fluctuation results at each contact with δV (rContact) [45].

The local noise source CSi are proportional to carrier density and diffusivity,

Cn
Si

= 4qnDn, (3.1)

C
p
Si

= 4qpDp, (3.2)

where superscripts n and p denote electron and hole respectively. CSi has a unit of A2/Hz/cm3.

n and p are electron and hole concentrations. Dn and Dp are electron and hole diffusivity, re-

spectively. The impedance field ˜Z(r, rContact) from local noise source to terminal noise voltage
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( ) Contactpn rrZ ,

( ) rI pnδ 

( ) ContactrVδ

Figure 3.1: Impedance field method

is,

˜Zn(r, rContact) =
1
q
∆rZn(r, rContact), (3.3)

˜Zp(r, rContact) =
1
q
∆rZp(r, rContact), (3.4)

where subscripts n and p denote electron and hole respectively. | ˜Zn(r, rContact)|2 and | ˜Zp(r, rContact)|2

have a unit of V2/A2.
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The terminal noise voltage power spectral density is obtained by integrating the “noise

concentration” over the device volume,

Sv =
∫

Ω
CSvdΩ, (3.5)

=
∫

Ω
Cn
Sv
dΩ +

∫

Ω
C

p
Sv
dΩ, (3.6)

Cn
Sv

= ˜Zn(r, rContact)Cn
Si
˜Z∗
n (r, rContact), (3.7)

C
p
Sv

= ˜Zp(r, rContact)C
p
Si
˜Z∗
p (r, rContact), (3.8)

where CSv is the “concentration,” or volume density of Sv, and has a unit of V2/Hz/cm3.

3.3 New Technique: Microscopic Noise Contribution of Chain Noise Representation Pa-

rameters

Consider the transistor as a noisy linear two port. The open circuit noise voltage parameters

are obtained by integrating the “noise concentration” over the device volume

Sn =
∫

Ω
CSndΩ, (3.9)

where n is v1, v
∗
1 , v2, v

∗
2 , or v1, v

∗
2 . For instance, CSv1 ,v

∗
1

is the “concentration,” or volume den-

sity of Sv1,v
∗
1
, and has a unit of V2/Hz/cm3. CSv1 ,v

∗
1
, CSv2 ,v

∗
2

and CSv1 ,v
∗
2

are solved in TCAD

tools including DESSIS [45] and TAURUS [44]. In principle, the boundary conditions can be

modified to directly solve for the “concentration” of the chain representation noise parameters

Sva,v
∗
a
, Sia,i

∗
a

and Sia,v
∗
a
. This, however, has not been implemented in TCAD tools. We propose

here an alternative that uses postprocessing of CSv1 ,v
∗
1
, CSv2 ,v

∗
2

and CSv1 ,v
∗
2
, and requires no code
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development by TCAD vendors. The impedance representation noise parameters Sv1,v
∗
1
, Sv2,v

∗
2

and Sv1,v
∗
2

can be transformed to the chain representation noise parameters Sva,v
∗
a
, Sia,i

∗
a

and Sia,v
∗
a

using transformation matrix in Table 2.1 in chapter 2 [43],

CA = TZ−A · CZ · T †
Z−A, (3.10)







Sva,v
∗
a

Sva,i
∗
a

Sia,v
∗
a

Sia,i
∗
a






= TZ−A ·







Sv1,v
∗
1

Sv1,v
∗
2

Sv2,v
∗
1

Sv2,v
∗
2






· T †

Z−A, (3.11)

and

TZ−A =







1 −A11

0 −A21






, (3.12)

where A11 and A21 are elements of the ABCD parameter matrix A.

An inspection of (3.11) shows that the transform is linear. Substituting Sv1,v
∗
1
, Sv2,v

∗
2

and

Sv1,v
∗
2

expressed in the integral form of (3.9) into (3.11), the concentration of the chain represen-

tation noise parameters, CSva,v
∗
a
, CSia,i

∗
a
, and CSia,v

∗
a

are obtained as







CSva,v
∗
a

CSva,i
∗
a

CSia,v
∗
a

CSia,i
∗
a






= TZ−A ·







CSv1 ,v
∗
1

CSv1 ,v
∗
2

CSv2 ,v
∗
1

CSv2 ,v
∗
2






· T †

Z−A. (3.13)

Integration of CSva,v
∗
a
, CSia,i

∗
a
, and CSia,v

∗
a

over the whole device gives the transistor Sva,v
∗
a
, Sia,i

∗
a

and Sia,v
∗
a
, respectively.
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3.4 Spatial Distribution of Microscopic Noise Contributions in RF SiGe HBT Transistor

The technique is applied to noise analysis of a 50 GHz SiGe HBT [49]. DESSIS from ISE

is used for noise simulation. The device structure is constructed based on device layout. The

doping and Ge profiles were determined using SIMS. A set of physical models suitable for HBT

simulation were selected, and the model coefficients were calibrated to reproduce the measured

dc I − V characteristics and high frequency s-parameters. The carrier noise temperature is

assumed to be the same as the lattice temperature. The DESSIS simulation input deck and

TECPLOT mcr file can be found in B.1 in Appendix B.

3.4.1 Input Noise Voltage Sva,v
∗
a

Fig. 3.2 shows the spatial distribution of the input noise voltage concentration, CSva,v
∗
a
. The

transistor is biased at a relatively low JC of 0.1 mA/µm2, and the operating frequency is 2 GHz.

Observe that CSva,v
∗
a

is the highest in the SiGe base, indicating that transistor Sva,v
∗
a

mainly comes

from the SiGe base. This provides guidelines to development of better circuit-level transistor

noise model. That is, the noise sources originate from the EB junction.

To identify the individual contributions from electrons and holes, the spatial distributions of

the CSva,v
∗
a

due to electrons and holes are plotted in Figs. 3.3 and 3.4, respectively. It can be seen

that the electron contributions mainly come from the minority electrons in the base, and the hole

contributions mainly come from the majority holes in the base. The CSva,v
∗
a

due to electrons is

nearly uniform along the x-direction inside the neutral base. However, the CSva,v
∗
a

due to holes is

highly nonuniform along the x-direction, indicating a strong “noise crowding” effect. The CSva,v
∗
a

due to holes decreases from the emitter periphery towards the emitter center. The overall CSva,v
∗
a
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Figure 3.2: 2D distribution of the total noise concentration CSva,v
∗
a

at 2 GHz. JC=0.1 mA/µm2.

is relatively uniform along the emitter width direction, simply because the electron contribution

dominates (73%).

However, as JC increases to 0.5 mA/µm2, the hole contribution to CSva,v
∗
a

becomes more

dominant, and counts for 60% of the total Sva,v
∗
a
. This results in considerable crowding of the

total CSva
, as shown in Fig. 3.5. Interestingly, the electron contribution to CSva,v

∗
a

remains uniform

laterally inside the neutral base, despite the higher JC and hence more severe dc and ac current

crowding effect. The crowding in the hole contribution becomes stronger as JC increases.

A logical and interesting question is how the microscopic noise simulation results compare

to circuit-level compact noise modeling results. We consider here the SPICE noise model used

in [47] and [10] as introduced in chapter 1. The base current shot noise 2qIB, the collector

current shot noise 2qIC , and the thermal noise 4kTrb are accounted for using the equivalent

circuit shown in Fig. 1.4. The compact noise model is lumped in nature, and does not take into
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Figure 3.3: 2D distribution of electron noise concentration CSva,v
∗
a

at 2 GHz. JC=0.1 mA/µm2.

account distributive effects. Roughly speaking, the 2qIC collector current shot noise results from

minority electrons in the base, the 2qIB base current shot noise results from minority holes in

the emitters [50], and the 4kTrb base resistance thermal noise results from the majority holes in

the neutral base. Sva,v
∗
a

is then obtained by taking SPICE model equations (1.11) – (1.13) into

(2.150) derived in chapter 2 [47] [12],

Sva,v
∗
a
=

2qIC
|Y21|2

+ 2qIBr2
b + 4kTrb, (3.14)

Qualitatively, the compact model captures the two major contributors to Sva,v
∗
a
, base major-

ity holes, and base minority electrons. Furthermore, the simulated majority hole contribution is

equal to 4kTrb, provided that rb is extracted from h11 [46]. However, the electron contribution,

2qIC/|Y21|2, differs from microscopic results by 16% at JC=0.1 mA/µm2, and 7% at JC=0.5

mA/µm2. This is clearly caused by the lumped nature of the compact noise model, which cannot
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Figure 3.4: 2D distribution of hole noise concentration CSva,v
∗
a

at 2 GHz. JC=0.1 mA/µm2.

take into account 2D distributive effect. The results suggest that 2D distributive effect should be

modeled to obtain more accurate Sva,v
∗
a
.

3.4.2 Input Noise Current Sia,i
∗
a

Fig. 3.6 – Fig. 3.8 show the spatial distribution of CSia,i
∗
a
, as well as the individual contribu-

tions from electrons and holes, respectively. JC=0.1 mA/µm2. Most of the electron contribution

comes from the base minority electrons. While for the hole contribution, both the emitter mi-

nority holes and the base majority holes are important. The hole contribution to Sia,i
∗
a

increases

from 63% to 81% of the total Sia,i
∗
a

as JC increases from 0.1 to 0.5 mA/µm2. Sia,i
∗
a

is given by

taking SPICE model equations (1.11) – (1.13) into (2.151) [47] [12],

Sia,i
∗
a
= 2qIB +

2qIC
|h21|2

, (3.15)
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Figure 3.5: 2D distribution of the total noise concentration CSva,v
∗
a

at 2 GHz. JC=0.5 mA/µm2.

Observe that the compact model does not have any contribution from the majority holes in the

base, which is significant according to noise simulation results. On the other hand, the simulated

electron contribution to Sia,i
∗
a
, is well predicted by 2qIC/|h21|2, within 5% accuracy. The hole

contribution to Sia,i
∗
a
, however, is overestimated by 2qIB by as high as 16% at JC=0.5 mA/µm2.

3.4.3 Input Noise Voltage and Current Correlation Sia,v
∗
a

Fig. 3.9 shows the real part of CSia,v
∗
a

at JC = 0.1 mA/µm2. The simulation results show that

the electron contribution mainly comes from the base minority electrons, and the hole contribu-

tion mainly comes from the emitter minority holes. Fig. 3.10 shows the imaginary part of CSia,v
∗
a
.

Its electron contribution also mainly comes from the base minority electrons. The hole contribu-

tion, however, mainly comes from the base majority holes and shows a strong “noise crowding”

90



X (µm)

Y
(µ

m
)

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.1

0.2

0.3

0.4

0.5

0.6

Sia Conc. (A2/Hz/cm3)

8.9130E-12
7.1989E-12
5.4849E-12
3.7709E-12
2.0568E-12
3.4281E-13

total contribution
(electron+hole)

E

B

C

JC=0.1 mA/µm2

Figure 3.6: 2D distribution of noise concentration CSia,i
∗
a

at 2 GHz. JC=0.1 mA/µm2.

effect. However, the total CSia,v
∗
a

is dominated by the base electron contribution, which counts for

87% of the total <(Sia,v
∗
a
) and 95% of the total =(Sia,v

∗
a
). As JC increases to 0.5 mA/µm2, the

electron contribution for CSia,v
∗
a

becomes less dominant, and counts for 63% of the total <(Sia,v
∗
a
)

and 81% of the total =(Sia,v
∗
a
).

The input noise voltage and current correlation Sia,v
∗
a

is predicted by taking SPICE model

equations (1.11) – (1.13) into (2.152) [47] [12],

Sia,v
∗
a
= 2qIC

Y11

|Y21|2
+ 2qIBrb, (3.16)

Note that the compact model does not have any hole contribution at all, which can be important

according to noise simulation. For <(Sia,v
∗
a
), the electron contribution predicted by (3.16) devi-

ates from noise simulation by 14% at JC=0.1 mA/µm2, and by 4% at JC = 0.5 mA/µm2. For

=(Siav
∗
a
), the deviation is 9% and 69% at JC = 0.1 and 0.5 mAµm2, respectively. A significant
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Figure 3.7: 2D distribution of electron contribution to noise concentration CSia,i
∗
a

at 2 GHz.
JC=0.1 mA/µm2.

source of deviation is due to the hole contribution, which does not exist in the compact model,

but can become important at higher JC .
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Figure 3.8: 2D distribution of hole contribution to noise concentration CSia,i
∗
a

at 2 GHz. JC=0.1
mA/µm2.
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Figure 3.9: 2D distribution of the total noise concentration <(CSia,v
∗
a
) at 2 GHz. JC=0.1

mA/µm2.
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Figure 3.10: 2D distribution of the total noise concentration =(CSia,v
∗
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3.5 Spatial Distribution of Microscopic Noise Contributions in RF MOSFET Transistor

The technique is applied to noise analysis of a 50nm Leff MOSFET transistor. The device

structure is constructed based on reported 90 nm CMOS literature and the ITRS roadmap. dc

I − V , Y-parameters, and noise parameters are simulated using hydrodynamic transport models.

The simulator used is DESSIS 9.0 from ISE [45]. The Lombardi surface mobility model and the

default carrier energy relaxation time is used. The simulated I − V and gm characteristics are

comparable to reported data on 90 nm CMOS devices with similar structures. The transistor has

a 70 nm poly gate length, a 46 nm metallurgical channel length, and an effective oxide thickness

of 1.2 nm. The channel doping is retrograded from the surface toward the bulk, and halos are

used for suppressing short channel effect.

Different from section 3.4, the new technique is applied to obtain the noise concentration of

Y-noise representation parameters including gate noise current Sig ,i
∗
g
, drain noise current Sid,i

∗
d
,

and their correlation Sig ,i
∗
d
. The impedance representation noise parameters Sv1,v

∗
1
, Sv2,v

∗
2

and

Sv1,v
∗
2

can be transformed to the Y -noise representation parameters Sig ,i
∗
g
, Sid,i

∗
d

and Sig ,i
∗
d

using

transformation matrix in Table 2.1 in chapter 2 [43],

CY = TZ−Y · CZ · T †
Z−Y , (3.17)







Sig ,i
∗
g

Sig ,i
∗
d

Sid,i
∗
g

Sid,i
∗
d






= TZ−Y ·







Sv1,v
∗
1

Sv1,v
∗
2

Sv2,v
∗
1

Sv2,v
∗
2






· T †

Z−Y , (3.18)

and

TZ−Y =







Y11 Y12

Y21 Y22






, (3.19)
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where Y11, Y12, Y21 and Y22 are elements of the Y parameter matrix Y .

An inspection of (3.18) shows that the transform is linear. Substituting Sv1,v
∗
1
, Sv2,v

∗
2

and

Sv1,v
∗
2

expressed in the integral form of (3.9) into (3.18), the concentration of the chain represen-

tation noise parameters, CSig ,i
∗
g
, CSid,i

∗
d
, and CSig ,v

∗
d

are obtained as







CSig ,i
∗
g

CSig ,i
∗
d

CSid,i
∗
g

CSid,i
∗
d






= TZ−Y ·







CSv1 ,v
∗
1

CSv1 ,v
∗
2

CSv2 ,v
∗
1

CSv2 ,v
∗
2






· T †

Z−Y . (3.20)

Integration of CSig ,i
∗
g
, CSid,i

∗
d
, and CSig ,v

∗
d

over the whole device gives the transistor Sig ,i
∗
g
, Sid,i

∗
d

and Sig ,i
∗
d
, respectively.

3.5.1 Gate Noise Current Sig ,i
∗
g

Fig. 3.11 and Fig. 3.12 show the spatial distribution of CSig ,i
∗
g

at 5 GHz. Vds = 1 V and Vgs

= 0.5 V and 1 V. CSig ,i
∗
g

is the highest near the source side under the gate, and increases with

increasing Vgs.

3.5.2 Drain Noise Current Sid,i
∗
d

Fig. 3.13 and Fig. 3.14 show the spatial distribution of CSid,i
∗
d

at 5 GHz. Vds = 1 V and

Vgs = 0.5 V and 1 V. Similar to CSig ,i
∗
g
, CSid,i

∗
d

is the highest near the source side under the gate.

Moreover, another peak value of CSid,i
∗
d

occurs near the interface of the bulk and the source.

CSid,i
∗
d

increases with increasing Vgs.
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Figure 3.11: 2-D gate noise current concentration CSig ,i
∗
g

at 5 GHz. Vds = 1 V. Vgs = 0.5 V.
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Figure 3.12: 2-D gate noise current concentration CSig ,i
∗
g

at 5 GHz. Vds = 1 V. Vgs = 1 V.
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Figure 3.13: 2-D drain noise current concentration CSid,i
∗
d

at 5 GHz. Vds = 1 V. Vgs = 0.5 V.
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Figure 3.14: 2-D drain noise current concentration CSid,i
∗
d

at 5 GHz. Vds = 1 V. Vgs = 1 V.
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Figure 3.15: 2-D real part of noise current correlation concentration <(CSig ,i
∗
d
) at 5 GHz. Vds =

1 V. Vgs = 0.5 V.
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Figure 3.16: 2-D real part of noise current correlation concentration <(CSig ,i
∗
d
) at 5 GHz. Vds =

1 V. Vgs = 1 V.
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Figure 3.17: 2-D imaginary part of noise current correlation concentration =(CSig ,i
∗
d
) at 5 GHz.

Vds = 1 V. Vgs = 0.5 V.
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Figure 3.18: 2-D imaginary part of noise current correlation concentration =(CSig ,i
∗
d
) at 5 GHz.

Vds = 1 V. Vgs = 1 V.
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3.5.3 Drain and Gate Noise Current Correlation Sig ,i
∗
d

Fig. 3.15 – Fig. 3.18 show the spatial distribution of <(CSig ,i
∗
d
) and =(CSig ,i

∗
d
) at 5 GHz. Vds

= 1 V and Vgs = 0.5 V and 1 V. <(CSig ,i
∗
d
) is quite small compared to =(CSig ,i

∗
d
). The overall

integration of <(CSig ,i
∗
d
) is negative for both Vgs’. =(CSig ,i

∗
d
) is the highest near the source side

under the gate. Another peak value of =(CSig ,i
∗
d
) occurs near the interface of the bulk and the

source. =(CSid,i
∗
d
) increases with increases with increasing Vgs.

3.6 Summary

We have presented a new technique of simulating the spatial distribution of microscopic

noise contribution to the input noise current, voltage, as well as their cross-correlations. The

technique is first demonstrated on a 50 GHz SiGe HBT. The spatial contributions by base ma-

jority holes, base minority electrons, and emitter minority holes are analyzed, and compared to

results from a compact noise model. A strong crowding effect is observed in the spatial distribu-

tion of noise concentrations due to base majority holes. The results suggest that 2D distributive

effect needs to be taken into account in future compact noise model development.

The technique is also applied to a 46 nm Leff MOSFET transistor. The spatial distribution

of the Y- noise representation parameters CSig ,i
∗
g
, CSid,i

∗
d
, <(CSig ,i

∗
d
) and =(CSig ,i

∗
d
) are analyzed.

The region under the gate near the source side is the most important for all of the Y- noise

representation parameters.
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CHAPTER 4

BIPOLAR NOISE MODELING

This chapter examines bipolar transistor noise modeling and noise physics using micro-

scopic noise simulation. Transistor terminal current and voltage noises resulting from velocity

fluctuations of electrons and holes in the base, emitter, collector, and substrate are simulated us-

ing a new technique, and compared with modeling results. Major physics noise sources in bipolar

transistor are qualitatively identified. The relevant importance as well as model-simulation dis-

crepancy is analyzed for each physical noise source. The results are then used to propose a new

noise model.

4.1 Introduction

Mixed-signal and RFIC design demands compact transistor models that can accurately

model not only the dc and ac parameters, but also transistor noise parameters, including mini-

mum noise figure NFmin, optimal source (noise matching) admittance Yopt, and noise resistance

Rn. NFmin, Yopt and Rn are fundamentally determined by the input noise voltage and current for

the chain representation of a noisy linear two-port, as shown in Fig. 2.1 in chapter 2. Fig. 1.4 in

chapter 1 shows the essence of SPICE noise modeling in major CAD tools. The noise physics ac-

counted for include: base resistance thermal noise, base current shot noise, and collector current

shot noise, all of which are essentially macroscopic approximations of the microscopic diffusion

noise due to velocity fluctuations of electrons and holes. Fig. 4.1 shows the chain noise param-

eters comparison of measured data from IBM and compact noise model at JC = 0.01 mA/µm2.

The compact noise modeling is good for low current density. The accuracy of such compact
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noise modeling, however, becomes worse at higher current densities required for high speed [3].

Fig. 4.2 shows the chain noise parameters comparison of measured data and compact noise

model at JC = 0.63 mA/µm2. The compact model deviates from the measured data, and the

difference increases dramatically with increasing frequency. An improvement on the compact

noise model becomes necessary for high current density and high frequency.
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Figure 4.1: Chain noise parameter: measured vs compact model. JC=0.01 mA/µm2.

However, measured data itself cannot give us an efficient way to improve the compact

noise model, in the reason that the measured data cannot give us detailed information about

different noise sources in the device. Microscopic noise simulation available in recent years

makes it possible to have a close look of device noise from the structure level. By comparing

the chain noise parameters at high JC of 0.65 mA/µm2, as shown in Fig. 4.3, we observed that
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Figure 4.2: Chain noise parameter: measured v.s. compact model, JC=0.63 mA/µm2.

the simulation result complies to the measured data with a much better trend, which makes it

feasible to examine the compact noise model with the microscopic noise simulation results.

By means of microscopic noise simulation and the technique in chapter 3, this chapter

examines the noise physics accounted for in the noise model. Regional contribution analysis are

performed to verify the origins of noise in the device and compared to compact noise model, and

resulted from an effort to improve bipolar transistor noise modeling.

4.2 Technical Approach

4.2.1 Microscopic Input Noise Concentration

In microscopic noise simulation, the two-port open circuit noise voltage parameters Sv1,v
∗
1
,

Sv2,v
∗
2

and Sv1,v
∗
2

are obtained by integrating the “noise concentration” CSv1 ,v
∗
1
, CSv2 ,v

∗
2
, and CSv1 ,v

∗
2
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Figure 4.3: Chain noise parameter: simulation v.s. compact model, JC=0.65 mA/µm2..

over the device volume. CSv1 ,v
∗
1
, CSv2 ,v

∗
2
, and CSv1 ,v

∗
2

are solved in TCAD tools, including TAURUS

[44] and DESSIS [45]. Each noise concentration consists of an electron contribution and a hole

contribution, which account for electron and hole velocity fluctuations, respectively,







CSv1 ,v
∗
1

CSv1 ,v
∗
2

CSv2 ,v
∗
1

CSv2 ,v
∗
2






=







Ce
Sv1 ,v

∗
1

Ce
Sv1 ,v

∗
2

Ce
Sv2 ,v

∗
1

Ce
Sv2 ,v

∗
2






+







Ch
Sv1 ,v

∗
1

Ch
Sv1 ,v

∗
2

Ch
Sv2 ,v

∗
1

Ch
Sv2 ,v

∗
2






, (4.1)

where superscripts e and h stand for electron and hole contributions, respectively. The “noise

concentration” for the chain representation, CSia,i
∗
a
, CSva,v

∗
a
, and CSia,v

∗
a

and their electron and
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hold contributions can then be obtained using the technique proposed in chapter 3 [51].
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, (4.2)
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Ch
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Ch
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· T †
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where TZ−A is the transform matrix from Z- noise representation to chain noise representation as

in (3.12). Integration of CSia,i
∗
a
, CSva,v

∗
a
, and CSia,v

∗
a

over the whole device gives transistor Sia,i
∗
a
,

Sva,v
∗
a

and Sia,v
∗
a
. The electron and hole contributions of Sia,i

∗
a
, Sva,v

∗
a

and Sia,v
∗
a

are obtained

similarly.

4.2.2 Macroscopic Input Noise

Through noise circuit analysis, Fig. 1.4 can be transformed to the form of Fig. 2.1 by (3.14),

(3.15), and (3.16) derived in chapter 3 [12]. The resulting Sva,v
∗
a
, Sia,i

∗
a

and Sia,v
∗
a

are

Sva,v
∗
a
=

2qIC
|Y21|2

+ 2qIBr2
b + 4kTrb, (4.5)

Sia,i
∗
a
= 2qIB +

2qIC
|h21|2

, (4.6)

Sia,v
∗
a
= 2qIC

Y11

|Y21|2
+ 2qIBrb, (4.7)

where h21 = Y21/Y11. The Y parameters are for the whole transistor that includes both rb and

the intrinsic transistor.
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4.2.3 Microscopic and Macroscopic Connections

Physically speaking, the 4kTrb terms in the model equations account for velocity fluctu-

ations of holes in the base. One can therefore compare the 4kTrb related terms in the model

equations with the integration of the hole contribution of the noise concentration in the base.

Similarly, the 2qIB terms account for emitter minority hole velocity fluctuation, and the 2qIC

terms account for base minority electron velocity fluctuation [50]. Thus, connections between

compact noise model and microscopic noise simulation can be established for Sva,v
∗
a
, Sia,i

∗
a

and

Sia,v
∗
a
, as shown in Table 4.1. Here the superscripts e and h stand for electron and hole contribu-

tions, respectively.

Model Simulation
Se
va,v

∗
a

2qIC/|Y21|2
∫

base C
e
Sva,v

∗
a
dΩ

Sh
va,v

∗
a

2qIBr2
b

∫

emitter C
h
Sva,v

∗
a
dΩ

4kTrb
∫

base C
h
Sva,v

∗
a
dΩ

Se
ia,i

∗
a

2qIC/|h21|2
∫

base C
e
Sia,i

∗
a
dΩ

Sh
ia,i

∗
a

2qIB
∫

emitter C
h
Sia,i

∗
a
dΩ

Se
ia,v

∗
a

2qICY11/|Y21|2
∫

base C
e
Sia,v

∗
a
dΩ

Sh
ia,v

∗
a

2qIBrb
∫

emitter C
h
Sia,v

∗
a
dΩ

Table 4.1: Connections between noise modeling and simulation for Sva,v
∗
a
, Sia,i

∗
a

and Sia,v
∗
a
.

4.3 Chain Representation Parameters

Noise simulation is performed for a 50 GHz SiGe HBT from 1 to 20 GHz using DESSIS

[49]. The emitter area AE=0.5×1µm2. The doping and Ge profiles were determined using

SIMS. A set of physical models suitable for HBT simulation were selected, and the model co-

efficients were calibrated to reproduce measured dc I − V characteristics and high frequency
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s-parameters. The carrier noise temperature is assumed to be the same as the lattice temperature.

The simulated CSv1 ,v
∗
1
, CSv2 ,v

∗
2
, and CSv1 ,v

∗
2

are converted to CSia,i
∗
a
, CSva,v

∗
a
, and CSia,v

∗
a

using (3.13).

Their electron and hole contributions are converted using (4.3) and (4.4). We now examine the

modeling results using the simulation results as a reference. No attempt is made to “tune” the

noise simulation to match measured noise data, which will require careful de-embedding of par-

asitics not included in the simulated structure. The simulated bias and frequency dependences,

however, still qualitatively match measured data, for all noise parameters.

4.3.1 Sva,v
∗
a
, Sia,i

∗
a

and Sia,v
∗
a

Fig. 4.4 (a) compares the modeled and simulated Sva,v
∗
a
, Se

va,v
∗
a

and Sh
va,v

∗
a

for JC=0.01

mA/µm2. The electron contribution Se
va,v

∗
a

dominates over the hole contribution Sh
va,v

∗
a
. Note

that the model slightly underestimates Se
va,v

∗
a
, and significantly underestimates Sh

va,v
∗
a
. The sim-

ulated Se
va,v

∗
a

and Sh
va,v

∗
a

are both frequency dependent. Despite inaccurate modeling of Sh
va,v

∗
a
,

the total Sva,v
∗
a

is well modeled, because of the dominance of Se
va,v

∗
a
. At a higher JC of 0.65

mA/µm2, however, the hole contribution dominates over the electron contribution, as shown in

Fig. 4.4 (b). An inspection of Figs. 4.4 (a) and (b) immediately shows that with increasing JC ,

Se
va,v

∗
a

decreases, while Sh
va,v

∗
a

stays about the same. The model underestimates Sh
va,v

∗
a
, and over-

estimates Se
va,v

∗
a
. Observe that the simulated Sh

va,v
∗
a

is frequency dependent, while the modeled

Sh
va,v

∗
a

(4kTrb) is frequency independent.

Noise concentration contours at 2 GHz are shown for Ce
Sva,v

∗
a

and Ch
Sva,v

∗
a

in Figs. 4.5 and

4.6, respectively. JC=0.65 mA/µm2. Observe that both Ce
Sva,v

∗
a

and Ch
Sva,v

∗
a

are the highest in

the SiGe base, indicating that transistor Sva,v
∗
a

mainly comes from the SiGe base. This provides

guidelines to future noise model development, that is, the transistor noise mainly originates from
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Figure 4.4: Sva,v
∗
a
, Se

va,v
∗
a
, and Sh

va,v
∗
a

vs frequency at (a) JC=0.01 mA/µm2. (b) JC=0.65

mA/µm2.

the EB junction. This contradicts the conventional wisdom that the collector current shot noise

originates from passage of electrons through the reverse biased CB junction. In the intrinsic

base, and along the x-direction, Ce
Sva,v

∗
a

is uniform, while Ch
Sva,v

∗
a

is highly nonuniform, and shows

a strong “base noise crowding” effect.

Fig. 4.7 (a) shows the integrals of Ce
Sva,v

∗
a

in the base, emitter, collector, and p-substrate,

together with the 2qIC related term in the model. JC=0.65 mA/µm2. Note that the model ac-

counts for only the base contribution, which is reasonable, since the simulated base electron

contribution overwhelmingly dominates over other electron contributions. The 2qIC descrip-

tion, however, overestimates Se
va,v

∗
a
, and thus a better description is required. Fig. 4.7 (b) shows

the integrals of Ch
Sva,v

∗
a

in the base, emitter, collector, and p-substrate. Also shown are the 2qIB
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Figure 4.5: 2D distribution of Ce
Sva,v

∗
a

at 2 GHz, JC=0.65 mA/µm2.

(emitter holes) and 4kTrb (base holes) related terms accounted for in the model. The collector

and substrate hole noises are indeed negligible. The noise from the base majority holes domi-

nates over the noise from the emitter minority holes. The base majority hole noise contribution

is more than predicted by 4kTrb, and frequency dependent as well. The noise from the emitter

minority holes increases with frequency, and is underestimated by 2qIB related term.

Fig. 4.8 (a) compares modeled and simulated Sia,i
∗
a
, Se

ia,i
∗
a
, and Sh

ia,i
∗
a

for JC=0.01 mA/µm2.

Se
ia,i

∗
a

increases with frequency and is slightly underestimated by the model. Sh
ia,i

∗
a

increases dra-

matically with frequency, and is significantly underestimated. At a higher JC of 0.65 mA/µm2,

however, the Se
ia,i

∗
a

discrepancy between model and simulation becomes much more pronounced,
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Figure 4.6: 2D distribution of Ch
Sva,v

∗
a
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as shown in Fig. 4.8 (b). Thus, for Sia,i
∗
a
, 2qIC is not a good description for base minority elec-

tron noise. Like for Sh
va,v

∗
a
, the frequency dependence for Sh

ia,i
∗
a

is not accounted for in the model.

Sh
ia,i

∗
a

dominates at lower frequencies, while Se
ia,i

∗
a

becomes dominant at higher frequencies.

Fig. 4.9 (a) shows the integrals of Ce
Sia,i

∗
a

in the base, emitter, collector, and p-substrate.

JC=0.65 mA/µm2. The model only accounts for the base electron contribution, a 2qIC/|h21|2

term. Like for other noise parameters, the base minority electron contribution for Se
ia,i

∗
a

is poorly

modeled by the 2qIC related term. Fig. 4.9 (b) shows the regional contributions of Sh
ia,i

∗
a
. The

model accounts for only the emitter hole contribution through the 2qIB term. Even though the

collector and substrate hole contributions are indeed negligible, the base hole contribution is not

negligible at higher frequencies. This emitter contribution constitutes the main discrepancy for

the total Sh
ia,i

∗
a

between modeling and simulation, and shows frequency dependence.
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Figure 4.7: Regional contributions of Se
va,v

∗
a

(a) and Sh
va,v

∗
a

(b) at JC=0.65 mA/µm2.

Similar analysis is performed for Sia,v
∗
a
. The results also show that the noise from the

base minority electrons is poorly described by the model. Similar problems exist with 4kTrb

description of the base hole noise, and 2qIC description of the base minority electron noise.

4.3.2 NFmin, Yopt and Rn

NFmin, Yopt and Rn are obtained from Sva,v
∗
a
, Sia,i

∗
a

and Sia,v
∗
a

by (2.24) – (8.19) derived in

chapter 2 [11].

To compare the impact of electron and hole noise on circuit-level noise parameters, we

examine NFe
min and NFh

min, defined as the NFmin that the transistor would have when only electron

velocity or only hole velocity fluctuates, respectively. NFe
min is obtained by substituting Se

va,v
∗
a
,

Se
ia,i

∗
a

and Se
ia,v

∗
a

into (2.24). NFh
min is obtained similarly. Since NFmin is not a linear function
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of Sva,v
∗
a
, Sia,i

∗
a

and Sia,v
∗
a
, NFmin 6= NFe

min + NFh
min. Y e

opt is similarly defined and obtained from

substituting Se
va,v

∗
a
, Se

ia,i
∗
a

and Se
ia,v

∗
a

into (8.18) and (8.19). Like NFmin, Yopt 6= Y e
opt + Y h

opt.

Since Rn = Sva,v
∗
a
/4kT , which is a linear function, Rn = Re

n+Rh
n . The problems with Sva,v

∗
a

modeling directly translate into Rn inaccuracy as shown in Fig. 4.10 (a). At low JC , NFmin and

NFe
min are well described by the model since Sva,v

∗
a
, Sia,i

∗
a

and Sia,v
∗
a

are well modeled at this

bias. At high JC , which is shown in Fig. 4.10 (b), however, they are both overestimated, and the

discrepancies increase dramatically with frequency. NFh
min is poorly modeled at high JC . Note

that the frequency dependence of NFh
min is not modeled.

Similarly, Yopt is well modeled at low bias. However, at JC=0.65 mA/µm2, neither Yopt

nor Y e
opt or Y h

opt is well modeled, as shown in Figs. 4.11 (a) and (b). The discrepancies increase

with frequency. Again, the frequency dependence of Y h
opt is not accounted for by the model. The
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Figure 4.9: Regional contribution of Se
ia,i

∗
a

(a) and Sh
ia,i

∗
a

(b) at JC=0.65 mA/µm2.

discrepancies of Rn, NFmin and Yopt are all fundamentally caused by the inaccurate modeling of

Sva,v
∗
a
, Sia,i

∗
a

and Sia,v
∗
a
. In particular, the description of base minority electron noise using 2qIC

is clearly responsible for the inaccuracy of the electron contributions, and the description of base

majority hole noise using 4kTrb is responsible for the inaccuracy of the hole contributions.

4.4 Intrinsic Base and Collector Noise

As we have discussed above, the main noise sources are from base electrons, base holes,

and emitter holes. The integrations of Ce
Sva,v

∗
a
, Ce

Sia,i
∗
a

and Ce
Sia,v

∗
a

in base region are transformed to

intrinsic transistor SBE
ib,i

∗
b
, SBE

ic,i
∗
c

and SBE
ic,i

∗
b

by (2.157), (2.158) and (2.159) derived in chapter 2. The

superscript BE represents the contribution from base electrons. Similarly, we obtain intrinsic
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transistor Sib,i
∗
b
, Sic,i

∗
c

and Sic,i
∗
b

from base holes with superscript BH and from emitter holes with

superscript EH . In the compact model, SEH
ib,i

∗
b

is modeled as 2qIB, Sib,i
∗
b

from base region are

not counted for. SBE
ic,i

∗
c

is modeled as 2qIC , Sic,i
∗
c

from base and emitter holes are not modeled.

Sib,i
∗
b

and Sic,i
∗
c

are not correlated to each other. Thus the connections between compact noise

model and microscopic noise simulation can be established for Sib,i
∗
b
, Sic,i

∗
c

and Sic,i
∗
b

as shown

in Table 4.2. Y int
11 , Y int

12 , Y int
21 and Y int

22 are elements of intrinsic transistor Y parameter matrix Yint.

Sib,i
∗
b

Sic,i
∗
c

Sic,i
∗
b

SPICE model 2qIB 2qIC 0
van Vliet model 4kT<Y int

11 − 2qIB 4kT<Y int
22 + 2qIC 2kT (Y int

21 + Y int∗
12 ) − 2qIC

Table 4.2: SPICE model and van Vliet model for intrinsic transistor Sib,i
∗
b
, Sic,i

∗
c

and Sic,i
∗
b
.
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Fig. 4.12 (a) shows Sib,i
∗
b

and its contributions SBE
ib,i

∗
b
, SBH

ib,i
∗
b

and SEH
ib,i

∗
b
, respectively at a low

JC of 0.01 mA/µm2. Sib,i
∗
b

is dominated by SEH
ib,i

∗
b

and well modeled by 2qIB at low frequency.

However, as frequency increases, SBE
ib,i

∗
b

and SBH
ib,i

∗
b

increases dramatically and become dominant.

Moreover, SEH
ib,i

∗
b

increases with frequency and can not be well modeled by 2qIB at high fre-

quencies. Fig. 4.12 (b) shows Sib,i
∗
b

and its contributions at a higher bias of JC=0.65 mA/µm2.

Similarly, Sib,i
∗
b

is dominated by emitter holes at lower frequencies and by base electrons and

holes, which are not counted for in the compact noise model, at higher frequencies. This sug-

gests that the compact noise model for Sib,i
∗
b

should be improved by grasping the frequency

dependence at high frequency range for both high and low JC’s.
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Figure 4.12: Regional contributions of internal input noise current Sib,i
∗
b

(a) JC=0.01 mA/µm2.
(b) JC=0.65 mA/µm2.

Besides the compact noise model, the simulated intrinsic transistor input and output noise

currents are also compared with van Vliet noise model as introduced in chapter 1 [13]. The van

Vliet model equations are given in (1.14), (1.15), and (1.16).

Fig. 4.12 shows that 4kT<(Y int
11 ) − 2qIB grasp the frequency dependence at both low and

high JC’s. However, it is more close to the overall hole contribution SEH
ib,i

∗
b
+ SEH

ib,i
∗
b

than for the

total Sib,i
∗
b
. The base electron contribution SEH

ib,i
∗
b

is only important at high JC , yet there has not

been a good model for it.

Fig. 4.13 (a) shows Sic,i
∗
c

and its contributions from base electrons, base holes and emitter

holes at JC=0.01 mA/µm2. At this bias, Sic,i
∗
c

is dominated by base electrons, which is slightly
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underestimated by 2qIC . As JC increases to 0.65 mA/µm2 as shown in Fig. 4.13 (b), contri-

bution from base holes becomes comparable to that from base electrons, and both of them are

decreasing with frequency. Contribution from emitter holes is totally negligible at both biases.

Apparently, Sic,i
∗
c

which is modeled by base minority electrons complies with simulation results

well at low bias. However, at high bias, noise from majority carriers in the base plays an impor-

tant role and makes total Sic,i
∗
c

deviates from 2qIC . This deviation was also claimed at high bias

in [52]. However, [52] made the wrong comparison. It compared 2qIC with the output noise

current of the whole transistor, that can be expressed as,

Si2,i
∗
2
= 2qIC + 4kTrb|Y21|2 + 2qIBrb|Y21|2, (4.8)

which has already included the hole contribution as shown in Fig. 4.14. Moreover, in low in-

jection the apparent deviation from the compact model for drift diffusion noise in low bias as

claimed in [52] is not observed in our study.

Similar to Sib,i
∗
b

analysis, comparison of Sic,i
∗
c

and 4kT<Y int
22 + 2qIC is also shown in

Fig. 4.13. the van Vliet model does not show any improvement to the frequency dependence

of SBE
ic,i

∗
c
. Further, the base hole contribution SBH

ic,i
∗
c

needs to be modeled at high JC . The emitter

hole contribution SEH
ic,i

∗
c

is negligible at both biases.

Fig. 4.15 and Fig. 4.16 shows the correlation term Sic,i
∗
b

at low and high JC , respectively.

In the compact noise model Sic,i
∗
c

and Sib,i
∗
b

have no correlation. The simulation result, however,

Fig. 4.15 shows that Sic,i
∗
b

is negligible at low frequency but noneligible at high frequency at low

JC . <Sic,i
∗
b

is positive and slightly dominated by <SBH
ic,i

∗
b

over <SBE
ic,i

∗
b
, which has a negative sign.

=Sic,i
∗
b

and its contributions are all negative. =SBE
ic,i

∗
b

slightly dominates over =SBH
ic,i

∗
b
. SEH

ic,i
∗
b

is

negligible. At high JC , as shown in Fig. 4.16, Sic,i
∗
b

can not be neglected for the whole frequency
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Figure 4.13: Regional contributions of internal output noise current Sic,i
∗
c

(a) JC=0.01 mA/µm2.
(b) JC=0.65 mA/µm2.

span. Both <Sic,i
∗
b

and =Sic,i
∗
b

are dominated by their base hole contribution at low frequency.

SBH
ic,i

∗
b

and SBE
ic,i

∗
b

are comparable at high frequencies. SEH
ic,i

∗
b

can still be neglected.

Comparison of Sic,i
∗
b

and 2kT (Y int
21 +Y int∗

12 )− 2qIC is also shown in Fig. 4.15 and Fig. 4.16.

At low bias, the van Vliet model grasps the frequency dependence of Sic,i
∗
b
, yet slightly underes-

timates both the real and the imaginary part. Its imaginary part is more close to =SBE
ic,i

∗
b
. At high

bias, however, the van Vliet model deviated from Sic,i
∗
b

a lot. Hence, compared to compact noise

model, [13] has its advantage of better frequency dependence description at low JC , where mi-

nority carrier noise dominates. However, as JC increases, where majority carrier noise becomes

comparable to minority carrier noise, [13] does not do a better job than the compact noise model.
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4.5 Summary

We have examined bipolar transistor noise modeling for each physical noise source using

microscopic noise simulation. Regional analysis is performed for the chain representation noise

parameters. The base majority hole noise contribution is shown to be larger than modeled using

4kTrb and frequency dependent for all noise parameters. The 2qIB related terms underestimates

the emitter hole noise, especially for higher frequencies. The base minority electron contribution

is poorly modeled by the 2qIC related terms for all noise parameters, particularly for higher JC

required for high speed. Further, regional analysis for intrinsic transistor input and output noise

current is performed. The input noise current consists not only the emitter hole contribution

corresponding to 2qIB, but also the base electron and hole contribution which are frequency
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Figure 4.15: Regional contributions of internal noise current correlation Sic,i
∗
b
. JC=0.01

mA/µm2. (a) <Sic,i
∗
b
. (b) =Sic,i

∗
b
.

dependent and should be counted for especially at high frequencies. At higher JC , the output

noise current consists not only the base electron contribution corresponding to 2qIC , but also the

base hole contribution that not counted for in the compact noise model. Moreover, the frequency

dependence of base electron contribution is not described. The correlation term which is not

modeled in the compact noise model should be considered for higher JC and higher frequency.

This chapter also compared the intrinsic transistor input and output noise current with a

noise model that derived from the transport theory of density fluctuations that applies to three

dimensional device. The comparison shows that this model has a better description of frequency
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Figure 4.16: Regional contributions of internal noise current correlation Sic,i
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dependence than the compact noise model at low bias. However, as for higher JC , it has no

advantage over the compact noise model.
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CHAPTER 5

SIGE PROFILE OPTIMIZATION FOR LOW NOISE

This chapter explores the RF noise physics and SiGe profile optimization for low noise

using microscopic noise simulation. A higher Ge gradient in a noise critical region near the

EB junction reduces impedance field and hence minimum noise figure. A higher Ge gradient

near the EB junction, together with an unconventional Ge retrograding in the base to keep total

Ge content below stability, when optimized, can lead to significant noise improvement without

sacrificing peak fT and without any significant high injection fT rolloff degradation.

5.1 Introduction

RF noise is an important aspect of RF devices as it sets the sensitivity of a wireless re-

ceiver. At a given technology generation, the base resistance is primarily limited by the max-

imum amount of base dopants that can be kept in place after device fabrication, and hence

limited by thermal cycle. SiGe profile, however, can be optimized to reduce minimum noise

figure [53] [54]. In previous work, the profile optimization was made by simulating device y-

parameters, and then calculating the minimum noise figure NFmin using a set of approximate

noise modeling equations [54] [55]. Those equations rely on simplified equivalent circuit, and

simplified noise source description, which become less valid at higher RF frequencies [12],

particularly for scaled devices with higher speed. In some cases, unphysical noise results are

obtained, preventing a meaningful optimization.

The purpose of this work is to investigate SiGe HBT noise physics and related SiGe profile

optimization using a more physical approach – microscopic noise simulation. Using techniques
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described in chapter 3, we can calculate the transistor equivalent input noise current or voltage

as integration of their corresponding noise concentration, in the same way the total number of

electrons is calculated as integration of electron concentration. This enables us to examine how

SiGe profile affects the input noise current or voltage, the noise concentration profile, the local

noise source, as well as the propagation of local noise source towards the input, which we address

below. The results are then used to optimize SiGe profile for low noise under constant SiGe film

stability constraint. We use here a hypothetical SiGe HBT structure similar to those 200 GHz

HBTs reported in the literature [56] [57].

5.2 SiGe Profile Impact

From the power spectral densities of the input noise current, voltage, and their correlation

as Sia,i
∗
a
, Sva,v

∗
a

and Sia,v
∗
a
, the minimum noise figure NFmin, the noise resistance Rn, and optimum

source admittance Yopt are given (2.24) – (8.19) in chapter 2. We first examine how SiGe pro-

file affects NFmin, Sva,v
∗
a
, Sia,i

∗
a
, <(Sia,v

∗
a
) and =(Sia,v

∗
a
) using two “conventional” sample SiGe

profiles shown in Fig. 5.1 (a). Profile I has a constant Ge gradient in the base. Compared to

profile I, profile II has a higher Ge gradient near the EB junction, but a flat Ge fraction near the

CB junction to not create any Ge retrograding inside the base. Profile II has 33% more total Ge.

Noise simulations are then performed using DESSIS [45], from 1 to 60 GHz, across a wide bias

range. Energy balance equations are solved to account for non-equilibrium transport in these

scaled devices. The DESSIS simulation input deck and MATLAB programming are given in

B.2 and B.3 in Appendix B.

Fig. 5.1 (b) shows the Gummel curves of the two profiles. The base current density JB is

the same for both profiles, as expected, because of identical emitter structure. Profile II gives
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higher collector current density JC , and hence higher β. fT is also slightly higher for profile II,

as shown in Fig. 5.2. A peak fT over 200 GHz is reached at JC = 10 mA/µm2. Fig. 5.3 shows

NFmin versus JC at 40 GHz. A clear improvement of NFmin can be observed for profile II. Gopt

is less for profile II. Profile I and II have similar Rn and Bopt.
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Figure 5.1: (a) Ge profile I and II. (b) Gummel curves for profile I and II.

5.2.1 Distributive Transit Time Analysis

Distributive transit time analysis as a function of JC are performed to find out the reason

of fT improvement. Details of distributive transit time analysis can be found in [10]. The

spatial distribution of the total transit time is simulated, in terms of the so called differential

transit time τdiff . In an ideal 1-D bipolar transistor, at any position x, τdiff (x) · ∆x represents the

local contribution to the total transit time due to minority carrier charge storage from depth x to

(x + ∆x). τdiff has a unit of ps/µm, and its integration from emitter to collector gives the total

transit time τec [10]. The cutoff frequency fT is related to τec by fT = 1/2πτec.
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Fig. 5.4 shows the simulated differential transit time τdiff profile for Ge profile I and II for

JC = 2 mA/µm2. The τdiff profile improvement of Ge profile II over profile I mainly lies in

the emitter and the base. Since the emitter of profile I and II are the same, the improvement of

τdiff of profile II in the emitter is the result of improved dc current gain β, which is induced by

the additional Ge in the base of profile II. The improvement of τdiff of profile II in the base is

the result of the enhanced Ge gradient of profile II near the emitter-base junction. However, this

improvement is slightly alleviated by the additional τdiff induced by the Ge grading transition of

profile II [58].

126



1 10
0

0.5

1

J
C

    (mA/µm2)

N
F

m
in

   
 (

d
B

)

Profile I
Profile II

1 10
0

5

10

J
C

    (mA/µm2)

R
n
/5

0Ω

Profile I
Profile II

1 10
0

0.5

1

1.5

J
C

    (mA/µm2)

G
o

p
t   

 (
m

S
) Profile I

Profile II

1 10

−0.6

−0.4

−0.2

0

J
C

    (mA/µm2)
B

o
p

t   
 (

m
S

) Profile I
Profile II

40 GHz 

40 GHz 

40 GHz 

40 GHz 

Profile I 

Profile II 
Profile II 

Profile I 

Profile II 

Profile I Profile II 

Profile I 

Figure 5.3: Noise parameters vs JC for profile I and II at 40 GHz.

5.2.2 Input Noise Voltage and Current

As NFmin is determined by Sia,i
∗
a
, Sva,v

∗
a
, and the real and imaginary parts of Sia,v

∗
a
, as shown

in (2.24) in chapter 2, we compare Sia,i
∗
a
, Sva,v

∗
a
, and real and imaginary parts of Sia,v

∗
a

for the

two profiles in Fig. 5.5, as a function of JC , at 40 GHz. The comparisons are similar at other

frequencies. Note that the input noise voltage Sva,v
∗
a

and the imaginary part of the correlation

=(Sia,v
∗
a
) are approximately the same for both profiles in the whole bias range. This explains

similar Rn and Bopt for profile I and II from (8.17) and (8.19) in chapter 2. The input noise

current Sia,i
∗
a
, and the real part of the correlation <(Sia,v

∗
a
), however, are much lower for profile

II. It is not clear if the Sia,i
∗
a

reduction or the <(Sia,v
∗
a
) reduction, or both, is responsible for the

NFmin reduction in profile II. To find this out, we plot the two terms of Fmin − 1 in Fig. 5.6.

An inspection of (2.24) immediately shows that the first term is determined by Sia,i
∗
a
, Sva,v

∗
a

and
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Figure 5.4: 1-D center cut of τdiff for profile I and II. JC = 2 mA/µm2.

=(Sia,v
∗
a
), while the second term is determined by <(Sia,v

∗
a
). The first term clearly dominates

over the second term. Because Sva,v
∗
a

and =(Sia,v
∗
a
) are the same for both profiles, the smaller

input noise current Sia,i
∗
a

is the primary reason for the NFmin reduction in profile II. Similarly, we

find Sia,i
∗
a

is the primary reason for reduction of Gopt in profile II from (8.18) in chapter 2. This

suggests that we can focus on Sia,i
∗
a

in understanding the impact of SiGe profile on NFmin.

5.3 New Approach: Regional Electron and Hole Contributions

Fig. 5.7 shows the regional contributions of Sva,v
∗
a
. “base, n” and “base, p” denote base

electron and hole contributions, respectively. “emitter, n” is used to denote emitter electron

contribution. The collector contribution is negligible. Sva,v
∗
a

is dominated by base electron con-

tribution at low JC , and dominated by base hole contribution at JC higher than 2 mA/µm2. The

base hole contribution is pretty much determined by the base doping, and does not change much
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Figure 5.5: Sia,i
∗
a
, Sva,v

∗
a

and their correlation vs JC . f = 40 GHz.

with bias. The base electron contributions of Sva,v
∗
a

for profile I and II are approximately the

same, despite the Ge profile difference. This is qualitatively consistent with first order noise

models [54].

Fig. 5.8 shows the regional contributions of Sia,i
∗
a
. At lower and moderate JC’s where

NFmin is low, Sia,i
∗
a

is dominated by the base electron contribution, which is responsible for the

reduction of Sia,i
∗
a

for profile II. At lower JC , the emitter hole contribution of Sia,i
∗
a

is negligible

because of the high β, unlike in the 50 GHz HBTs discussed in [55]. Thus, the higher β and

hence smaller 2qIB is not the reason for the reduced Sia,i
∗
a

in profile II at lower JC . At higher JC

near peak fT , however, the emitter hole contribution becomes comparable to the base electron

contribution. The base hole contribution of Sia,i
∗
a

also comes into the picture at high JC . The

base hole contributions of Sia,i
∗
a

are almost the same for the two profiles. The main reason for
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the better noise performance of profile II at low JC of interest to low noise is thus the smaller

base electron contribution of Sia,i
∗
a
.

5.3.1 Noise Critical Region and Ge Profile Impact

We now analyze the spatial distribution of the noise concentration for Sia,i
∗
a

due to electrons

and holes. Using techniques in chapter 3, Sia,i
∗
a

is the volume integration of the input noise

current noise concentration CSia,i
∗
a
, which has electron contribution Cn

Sia,i
∗
a

and hole contribution
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Ch
Sia,i

∗
a
,

Sia,i
∗
a
=
∫

Ω
CSia,i

∗
a
dΩ, (5.1)

=
∫

Ω
Cn
Sia,i

∗
a
dV +

∫

V

C
p
Sia,i

∗
a
dΩ, (5.2)

CSia,i
∗
a
= Cn

Sia,i
∗
a
+ C

p
Sia,i

∗
a
. (5.3)

The input noise current noise concentration has a unit of A2/Hz/cm3. Fig. 5.9 (a) shows the

1-D center cut of the input noise current noise concentrations due to electrons and holes, Cn
Sia,i

∗
a

and C
p
Sia,i

∗
a
. Integration of Cn

Sia,i
∗
a

over volume gives the total input noise current due to electrons.

Similarly, the integration of Cp
Sia,i

∗
a

over volume gives the total input noise current due to holes.

JC = 2 mA/µm2, frequency is 40 GHz. First, the electron contribution dominates over the hole
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Figure 5.8: Comparison of Regional contributions of Sia,i
∗
a
. f=40 GHz.

contribution. It is clear that most of the input noise current comes from near the EB junction,

where Cn
Sia,i

∗
a

is highest. The primary reason for the smaller Sia,i
∗
a

of profile II is its smaller Cn
Sia,i

∗
a

near the EB junction.

The noise concentration is given by the product of a local noise source which is proportional

to carrier density, and the impedance field, which describes noise propagation,

Cn
Sia,i

∗
a
= Cn

Si
|Gn,ia |

2, (5.4)

C
p
Sia,i

∗
a
= C

p
Si
|Gp,ia |

2, (5.5)
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where |Gn,ia |2 and |Gp,ia |2 are the electron and hole impedance field from local noise source to

input noise current concentration, respectively, with a unit of A2/A2. Fig. 5.9 (b) shows 1-D cen-

ter cut of local electron noise current source Cn
Si

, and the electron impedance field |Gn,ia |2. The

Cn
Sia,i

∗
a

difference between the two profiles is clearly dominated by the difference in impedance

field, rather than the local noise source. The fundamental reason for the smaller Sia,i
∗
a

and NFmin

in profile II is thus the reduced base impedance field, which means less noise current produced

at the transistor input (base) for the same amount of local current density fluctuations. Observe

that the high impedance field occurs over 10 nm at the beginning of the neutral base, where Ge

ramps up for both profiles. The higher Ge gradient in profile II in this “noise critical” region

clearly has led to Sia,i
∗
a

and NFmin reduction. To not have any retrograding of Ge in the base,

Ge fraction is kept constant after the Ge peak in profile II, leading to more total Ge, which is

undesired from a SiGe film stability standpoint. A logical question is if the benefit of reduced

impedance field over the 10 nm “noise critical” region can be maintained if Ge is retrograded

after the peak to keep the total Ge content the same. This is indeed the case, and can be used for

SiGe profile optimization at constant stability.

5.4 Optimization Under Constant Stability

We now increase the Ge gradient in the noise critical region where the impedance field for

input noise current is high, while keeping the total Ge content the same to maintain SiGe film

stability. Inevitably, for sufficiently high peak Ge, we are forced to have Ge retrograding in

the base, which is usually avoided in conventional SiGe profile design, as the retrograding can

introduce a retarding field. Inspection of simulation details, however, shows that a retrograding

of Ge can indeed be used in the later part of the base, near the CB junction, without degrading
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for Ge profile I and II. JC = 2 mA/µm2. f = 40
GHz.

fT if designed properly. The falloff of p-type base doping near the CB junction helps in part as

it generates an accelerating field. In this case, profile III has a slightly higher peak Ge fraction.

An optimized profile example using Ge retrograding in the base is given in Fig. 5.11 (a) – profile

III, together with the reference profile – profile I.

Fig. 5.11 (b) compares the Gummel curves of profile I, II and III. JB is the same, and JC

is higher for the optimized profile III. Despite the Ge retrograding in the later part of the base,

profile III shows a higher peak fT than profile I, as shown in Fig. 5.12. The fT rolloff, however,

occurs at a slightly lower JC . The rolloff slope for profile III is similar to that for profile I,

because the smaller Ge retrograding gradient partially offsets the “earlier” retrograding, an effect

different from the SiGe profile design tradeoff discussed in [55]. Fig. 5.13 shows 1-D center cut

of τdiff for profile I, II and III at JC = 2 mA/µm2.

134



10
−20

10
−19

10
−18

C
S

i

n
   

 (
A

2 /H
z/

cm
3 )

Profile I
Profile II

0.15 0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19
0

2

4

6

8

10

12

14

16

18
x 10

9

Depth    (µm)

|G
n

,ia | 2    (A
2/A

2)

J
C

=2 mA/µm2 
f = 40 GHz 

     EB  
Boundary 

        CB    
Boundary      

        noise   
critical region 

Figure 5.10: 1-D center cut of Cn
Si

and |Gn,ia |2 for profile I and II. JC = 2 mA/µm2. f = 40
GHz.

Fig. 5.14 shows 1-D center cut of electron and hole noise concentrations of Sia,i
∗
a
. Profile

III shows lower Cn
Sia,i

∗
a

than profile I in the “noise critical” region, despite the Ge retrograding in

the base required for stability, due to reduced impedance field. In terms of reducing the input

noise current, Profile III is as effective as profile II, which is over stability limit, and does not

have Ge retrograding in the base.

Fig. 5.15 shows NFmin–JC for profile I, II and III at 10 GHz and 60 GHz. Fig. 5.16 shows

NFmin versus frequency for profile I, II and III at JC = 2 and 10 mA/µm2. The overall noise

improvement is about the same as that achieved by profile II, which has 33 % more total Ge and

is over stability limit. With profile III, we have increased fT , β and decreased NFmin without

sacrificing SiGe film stability. The high injection fT rolloff degradation has been kept minimum

by minimizing the gradient of Ge retrograding.
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Figure 5.11: (a) Constant stability Ge profiles: profile I, II and III. (b) Gummel curves for profile
I, II and III.
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5.5 Summary

We have explored RF noise physics in advanced SiGe HBTs using microscopic noise simu-

lation. We have shown that SiGe profile primarily affects the minimum noise figure through the

input noise current, and identified the small region near the EB junction as where most of the

input noise current originates. A higher Ge gradient in this region helps reducing the impedance

field for the input noise current. At constant SiGe film stability, increasing the Ge gradient in

the noise critical region ultimately necessitates retrograding of Ge inside the neutral base, and

the gradient of such Ge retrograding needs to be optimized within stability limit to minimize

high injection fT rolloff degradation. An example of successful SiGe profile optimization using

unconventional Ge retrograding inside the base has been presented.
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CHAPTER 6

MODELING OF INTRINSIC NOISE IN CMOS

In this chapter, RF noise of 50 nm Leff CMOS is simulated using hydrodynamic noise sim-

ulation. Intrinsic noise sources for the Y- and H- noise representations are examined and models

of intrinsic noise sources are proposed. The relations between the Y- and H- noise representa-

tions for MOSFETs are examined, and the importance of correlation for both representations is

quantified. The theoretical values of H- noise representation model parameters are derived for

the first time for long channel devices. The H- noise representation correlation is shown theoret-

ically to have a zero imaginary part. The H- noise representation has the inherent advantage of a

more negligible correlation, which makes circuit design and simulation easier.

The H-representation noise sources are experimentally extracted using noise parameters

measured on 0.25 µm RF CMOS devices. A simple yet effective model is proposed to model the

H-representation noise sources as a function of bias. Excellent modeling results are achieved for

all of the noise parameters up to 26 GHz, at all biases.

6.1 Introduction

Recent CMOS scaling has led to significant RF performance improvement. One of the ma-

jor concerns is RF noise. A popular noise representation for MOSFET is the Y-representation,

which describes the short-circuit input and output noise currents, ig and id, as shown in Fig. 1.9

in section 1.4.1. For GaAs MESFETs and HEMTs, however, the H-representation is more pop-

ular, and is represented by the Pospieszalski model [27], as shown in Fig. 1.14 in section 1.4.2.
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This chapter first investigates the RF noise performance of 50 nm Leff CMOS transistors us-

ing hydrodynamic microscopic noise simulation [59]. The simulation results are then used to

analyze the intrinsic noise sources for the Y- noise representation and the H- noise representa-

tion. This chapter will show that the Y- representation noise sources can be modeled using the

Y-parameters, and the H-representation noise sources can be modeled using the H-parameters.

We will also show that the correlation between noise sources has negligible impact on transistor

noise parameters for both noise representations. This chapter further examines the relationships

between MOSFET Y- and H- noise representations, and derives a set of theoretical equations for

conversion between the two noise models described above. The theoretical values of H- repre-

sentation model parameters are derived for the first time for long channel devices. The H- noise

representation correlation is shown theoretically to have a zero imaginary part. We further show

that the H- noise representation has the inherent advantage of a more negligible correlation for

noise parameter modeling.

6.2 Technical Approach

The device structure is constructed based on reported 90 nm CMOS literature and the ITRS

roadmap. DC I − V , y-parameters, and noise parameters are simulated using hydrodynamic

transport models. The simulator used is DESSIS 9.0 from ISE [45]. The Lombardi surface

mobility model and the default carrier energy relaxation time is used. The simulated I−V and gm

characteristics are comparable to reported data on 90 nm CMOS devices with similar structures.

The simulations are performed from 1 to 40 GHz. The transistor has a 70 nm poly gate length,

a 50 nm metallurgical channel length, and an effective oxide thickness of 1.2 nm. The channel

doping is retrograded from the surface toward the bulk, and halos are used for suppressing short
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channel effect. Due to a limitation of the simulator in handling terminal resistances during noise

simulation, only the intrinsic device is simulated. The terminal resistances are then added to

the intrinsic device through standard linear noise circuit analysis. The error introduced is quite

small when compared to self-consistent mixed-mode device and circuit simulation results. The

DESSIS simulation input deck and MATLAB Programming are given in Appendix C.

6.3 Simulation Results

6.3.1 DC I − V Curves

Fig. 6.1 shows IDS and gm vs Vgs at Vds = 1 V. ID,sat = 1341 µA/µm at Vgs = 1 V. Fig. 6.2

shows the output curves for Vgs = 0.1 – 1 V, with step of 0.1 V.

6.3.2 Noise Parameters

Fig. 6.3 shows NFmin simulated at 5 GHz versus IDS . The simulation is performed for a 2

µm wide finger. The rg value is estimated assuming double side gate contact, and a gate sheet

resistance of 16 Ω/£, which gives 40 Ω lateral resistance. We assume an additional 80 Ω for

other gate resistance components. rs=rd=45 Ω for W = 2 µm is from the ITRS roadmap for 90

nm CMOS (which have Leff between 50 and 70 nm) [60]. Experimental measurement of deep

submicron CMOS noise has proven challenging, which is certainly the case for 90 nm CMOS

processes with below 1 dB NFmin. The measured NFmin for an experimental 90 nm CMOS [8]

is plotted for comparison. The simulated NFmin is still below measurement data. The electrical

channel length difference between the simulated and experimental structures, models of mobility

and microscopic noise source density, uncertainty in terminal resistances and other parasitics in

the test structure could all contribute to the simulation-data discrepancy. We note
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Figure 6.3: Simulation vs data reported in [8]: NFmin at 5 GHz vs IDS .
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that the measured NFmin is dependent on the number of gate fingers [8], which is not the case for

an ideal transistor. This may be another source of data-simulation discrepancy.

According to Fig. 6.3, the minimum of NFmin occurs when IDS is 100-200 µA/µm, which

corresponds to moderate inversion operation, where the cutoff frequency fT is rising rapidly and

near the peak (Fig. 6.4). The overall IDS dependence of NFmin is weak once moderate inversion

occurs. For low-noise amplifiers, the combination of a low NFmin and a high fT at low IDS is

desirable from a power consumption standpoint. Fig. 6.5 and Fig. 6.6 shows Gopt and Bopt at 5

GHz vs IDS and Fig. 6.7 shows Rn at 5 GHz vs IDS . Scaling enables high fT in the moderate

inversion region, and thus lower power CMOS LNA design.
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Figure 6.4: fT vs IDS .
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6.4 Intrinsic Noise Sources and Modeling

In general, two correlated noise sources are required to fully describe the noise behavior of

any linear noisy two port. For each linear two port parameter set (e.g. Y, Z, H, and ABCD),

there is a corresponding set of noise sources. The two noise sources (voltages, currents or a

combination) are in general frequency and bias dependent.

6.4.1 Y-representation Noise Sources

We first consider the noise sources for the Y-parameter set, the gate and drain current noises.

Fig. 6.8 shows Sid,i
∗
d

versus frequency. Sid,i
∗
d

is normalized by 4kTgm as opposed to 4kTgd0, as it

is more relevant for circuit design. Sid,i
∗
d

is nearly frequency independent for frequencies below

fT . At low IDS where LNAs are biased, Sid,i
∗
d
/4kTgm is not too much greater than its long

channel theoretical value (2/3).
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Fig. 6.9 shows Sig ,i
∗
g

normalized by 4kT<(Y11) versus frequency. Sig ,i
∗
g
/[4kT<(Y11)] is

frequency independent, as found in long channel devices. The value of Sig ,i
∗
g
/[4kT<(Y11)] is

close to 4 at lower IDS of interest to LNAs.

The normalized correlation c ≡ Sig ,i
∗
d
/
√

Sig ,i
∗
g
Sid,i

∗
d

shows a negligible real part, as found in

long channel devices (Fig. 6.10). The imaginary part of c is nearly frequency independent.
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Figure 6.10: Normalized correlation c vs frequency.

A simplified yet accurate model for noise sources is desired for circuit design and circuit

simulation. We have shown that Sid,i
∗
d

and Sig ,i
∗
g

can be readily modeled using gm and Y11 in these

50 nm Leff devices, with simple coefficients that are constant for a given bias. The remaining

question is the correlation, which cannot be handled by certain simulators like SPICE. This

correlation can not be neglected for practical purposes in 50 nm Leff CMOS. Figs. 6.11 and 6.12

show the NFmin, Rn and Yopt simulated with and without the correlation. From 10 – 20 GHz, for
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all biases of interest, the difference between the noise parameters obtained with and without the

correlation is noticeable except for Rn.
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Figure 6.11: NFmin and Rn vs frequency, with and without correlation.

6.4.2 H-representation Noise Sources

A linear noisy two port can also be described using the H-parameter set, which involves an

input noise voltage and an output noise current, which are denoted as vh and ih. Note that ih is dif-

ferent from the id discussed above (the output noise current for Y-representation). Even though

the H-representation was not given in the original noise representation standards [43], it has been

successfully used for noise modeling of GaAs MESFETs and HEMTs. The Pospieszalski noise

model [27] falls into this category, which further assumed that vh and ih are uncorrelated.

Through circuit analysis, we convert the noise sources from Y- noise representation to H-

noise representation. Fig. 6.13 shows Svh,v
∗
h

versus frequency. In Pospieszalski’s model, it was
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Figure 6.12: Yopt vs frequency, with and without correlation.

assumed that Svh,v
∗
h

is proportional to the NQS channel resistance rnqs, and therefore frequency

independent. Note that Svh,v
∗
h

is frequency independent as shown in Fig. 6.13, which complies

with the assumption in Pospieszalski’s model.

Svh,v
∗
h

normalized by 4kT<(h11) is shown in Fig. 6.14. This provides a natural way of

modeling Svh,v
∗
h

as long as the small signal model can correctly model h11. We only need to

model the Svh,v
∗
h
/[4kT<(h11)] ratio, which is a constant for a given bias. Svh,v

∗
h
/[4kT<(h11)] ≈

5 at lower IDS , and decreases with increasing IDS as shown in Fig. 6.15.

Fig. 6.16 shows Sih,i
∗
h
/[4kT<(gm)] vs frequency, which is nearly frequency independent.

Fig. 6.17 shows the correlation between vh and ih. Compared to the Y-representation, the cor-

relation for the H-representation is much weaker for all of the biases and frequencies. In this
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Figure 6.13: Svh,v
∗
h

vs frequency.

sense, the H-representation is a better choice, comparing to the correlation for Y-representation

is large and non-negligible.

The NFmin, Rn and Yopt are calculated with and without the correlation for comparison. For

all practical purposes, the impact of the correlation on NFmin, Rn and =(Yopt) is negligible, as

shown in Figs. 6.18. The <(Yopt) shows a visible but small sensitivity to the correlation. This

suggests a new path to compact modeling of noise sources in 50 nm Leff based on h11 and gm.

Only two parameters are needed for modeling noise at each bias, the ratio of Svh,v
∗
h
/[4kT<(h11)].
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h
/[4kT<(h11)] vs frequency.
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Figure 6.17: Correlation of H-representation noise sources vs frequency.
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Figure 6.18: NFmin, Rn and Yopt with and without correlation between vh and ih.
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6.5 Relations Between Y- and H- Noise Representations in MOSFETs

As discussed above, the widely used van der Ziel model [15] describes ig , id and their

correlation for a MOSFET operated in the saturation region as:

Sig ,i
∗
g
= 4kTαig<(Y11), (6.1)

Sid,i
∗
d
= 4kTγidgm, (6.2)

cY
4
=

Sig ,i
∗
d

√

Sig ,i
∗
g
Sid,i

∗
d

= y + jx, (6.3)

where αig , γid , and normalized correlation term cY are model parameters. Depending on pref-

erence, the zero Vds output conductance gd0 is sometimes used instead of gm in (6.2). For long

channel devices, αig = 4/3, γid = 2/3, and cY = j0.4 (y = 0, x = 0.4). For short channel de-

vices, these parameters become bias dependent and deviate from their long channel values, and

there do not exist general expressions for these parameters. However, these parameters remain

frequency independent, and the correlation cY remains imaginary only, or y = 0, because of the

capacitive nature of the channel to gate coupling.

The H- noise representation describe the transistor noise with the An input noise voltage vh

and an output noise current ih. Note that ih is different from the id discussed above. Even though

it has been argued in [61] and [62] that the H- noise representation is inherently unsuitable for

MOSFETs, H- noise representation has been successfully applied the H-representation to noise

modeling in 50 nm MOSFETs using DESSIS simulation, as discussed in previous section in this

chapter [63]. The H- noise representation was further shown to have the advantage of having a

negligible correlation term, which is significant for circuit design [63]. A model for vh and ih
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was also proposed [63]:

Svh,v
∗
h
= 4kTαvh<(h11) (6.4)

Sih,i
∗
h
= 4kTγihgm (6.5)

cH
4
=

Svh,i
∗
h

√

Svh,v
∗
h
Sih,i

∗
h

= a + jb, (6.6)

where αvh , γih , and cH are bias dependent but frequency independent model parameters in gen-

eral. It was also observed that cH is largely real, and more negligible than cY for noise parame-

ters. The reasons for the observations, however, were not understood.

6.5.1 Relations Between Y- and H- Noise Representation Coefficients

Consider the simplified small signal equivalent circuit in Fig. 6.19 for a MOSFET operating

in saturation region. Rgs is the Non-Quasi-Static (NQS) channel resistance, which can be related

to gm through Rgs = 1/(ψgm). ψ = 5 for long channel. An inspection of Fig. 6.19 shows

<(h11) = Rgs, where < stands for taking the real part. The Y-parameter matrix is given by

Y =







j
ωCgs

A +
ω2C2

gsRgs

A 0

gm 0






, (6.7)

where

A = 1 + ω2C2
gsR

2
gs = 1 +

(

ω

ψωT

)2

, (6.8)
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here ωT = gm/Cgs. In practice, ω << ψωT , thus A ≈ 1 and

Y11 ≈ ω2C2
gsRgs + jωCgs. (6.9)

gsR

gsC m   gsg  v
+ 

- 
gsv

+ 

- 

+ 

-
1V 2V

1I
2I

Figure 6.19: Small signal equivalent circuit for intrinsic MOSFET.

Substituting (6.9) into (6.1),

Sig ,i
∗
g
= 4kTθiggm

(

ω

ωT

)2

, (6.10)

where θig = αig/ψ . With Rgs = 1/(ψgm), (6.4) becomes:

Svh,v
∗
h
= 4kTαvh

1
ψgm

= 4kTθvh
1
gm

, (6.11)

where θvh = αvh/ψ .

Using two port noise circuit analysis, we have derived equations for conversions between

the two representations. Substituting (6.7), and (6.1) – (6.3) into (2.69) – (2.71) in section 2.1.4,
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we have

Svh,v
∗
h
= 4kTθ

1
gm

, (6.12)

Sih,i
∗
h
= 4kTgm

(

θ + γid − 2x
√

θγid

)

, (6.13)

= 4kTγihgm,

Svh,i
∗
h
= 4kT (θ − x

√

θγid ) + jy · 4kT
√

θγid . (6.14)

The normalized H-representation correlation cH is defined by,

cH
4
=

Svh,i
∗
h

√

Svh,v
∗
h
Sih,i

∗
h

(6.15)

= a + jb, (6.16)

and a and b are obtained by,

a = <(cH ) =

√
θ − x

√
γid

√

θ + γid − 2x
√

θγid

, (6.17)

b = =(cH ) = y ·
√
γid

√

θ + γid − 2x
√

θγid

. (6.18)

Therefore given Y- noise representation model parameters αig , γid and cY = y + jx, the H- noise

representation model parameters are obtained as:

αvh = αig , (6.19)

γih = θig + γid − 2x
√

θigγid , (6.20)
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a =

√

θig − x
√
γid

√

θig + γid − 2x
√

θigγid

, (6.21)

b =
y
√
γid

√

θig + γid − 2x
√

θigγid

. (6.22)

Since y, the real part of cY , is 0 physically due to capacitive gate to channel coupling, b = 0,

meaning that the corresponding H- noise representation correlation is purely real. As αig = αvh ,

we have θig = θvh . From now on, we will use α and θ for convenience.

For long channel device, αvh = 4/3, γih = 0.6, which is less than γid = 2/3, a = 0.2458,

which is smaller than x = 0.4, and b = 0.

Similarly, substituting (6.7), and (6.4) – (6.6) into (2.66) – (2.68) in section 2.1.4, we have,

Sig ,i
∗
g
=
(

ω

ωT

)2

· 4kTθgm (6.23)

Sid,i
∗
d
= 4kTgm

(

γih + θ − 2a
√

γihθ
)

, (6.24)

= 4kTγidgm,

Sig ,i
∗
d
= j

ω

ωT
· 4kTθgm

[(

1 − a

√

γih
θ

)

− jb

√

γih
θ

]

. (6.25)

The normalized correlation cY is obtained by,

cY
4
=

Sig ,i
∗
d

√

Sig ,i
∗
g
Sid,i

∗
d

(6.26)

= y + jx, (6.27)

160



and x and y are obtained by

x = =(cY ) =

√
θ − a

√

γih
√

γih + θ − 2a
√

γihθ

, (6.28)

y = <(cY ) = b

√

γih
√

γih + θ − 2a
√

γihθ

. (6.29)

Therefore, given H- noise representation parameters, Y- noise representation parameters can be

obtained by

αig = αvh , (6.30)

γid = γih + θ − 2a
√

γihθ, (6.31)

x =

√
θ − a

√
γih

√

γih + θ − 2a
√

γihθ

, (6.32)

y =
b
√
γih

√

γih + θ − 2a
√

γihθ

. (6.33)

Even if cH = 0 (a = 0, b = 0), meaning zero correlation for the H- noise representation, cY still

has an imaginary part according to (6.32) and (6.33)

cY |cH=0 = y + jx = j

√

θ

γih + θ
. (6.34)

6.5.2 Noise Parameters

We now examine the importance of correlation for noise parameter modeling, for Y- and

H- noise representations. The minimum noise figure NFmin, the noise resistance Rn, the real

and imaginary part of the optimal source admittance Gopt and Bopt, are directly determined by
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the chain noise representation parameters Sva,v
∗
a
, Sia,i

∗
a

and Sia,v
∗
a

[11]. We now derive the chain

noise parameters Sva,v
∗
a
, Sia,i

∗
a

and Sia,v
∗
a

using Y- and H- noise representation model parameters.

Substituting (6.1) - (6.3) into (2.43), (2.44), and (2.45) in section 2.1.2, the chain noise

parameters Sva,v
∗
a
, Sia,i

∗
a

and Sia,v
∗
a

can be obtained using Y-representation model parameters by

Sva,v
∗
a
=

1
|Y21|2

Sid,i
∗
d
, (6.35)

= 4kT
1
gm

γid , (6.36)

Sia,i
∗
a
= Sig ,i

∗
g
+

∣

∣

∣

∣

Y11

Y21

∣

∣

∣

∣

2

Sid,i
∗
d
− 2<

(

Y ∗
11

Y ∗
21

Sig ,i
∗
d

)

, (6.37)

= 4kTgm

(

ω

ωT

)2
(

γid + θ − 2x
√

γidθ
)

, (6.38)

Sia,v
∗
a
=

Y11

|Y21|2
Sid,i

∗
d
−

1
Y ∗

21

Sig ,i
∗
d
, (6.39)

= j4kT
ω

ωT

(

γid − x
√

γidθ
)

. (6.40)

Substituting (6.30) - (6.33) into (6.36), (6.38), and (6.40), the chain noise parametersSva,v
∗
a
,

Sia,i
∗
a

and Sia,v
∗
a

can be obtained using H-representation model parameters as well

Sva,v
∗
a
= 4kT

1
gm

(

γih + θ − 2a
√

γihθ
)

, (6.41)

Sia,i
∗
a
= 4kTgm

(

ω

ωT

)2

γih , (6.42)

Sia,v
∗
a
= j4kT

ω

ωT

(

γih − a
√

γihθ
)

. (6.43)

Substituting (6.36), (6.38), and (6.40) in (2.24) – (8.19) in section 2.1.1, the minimum

noise figure NFmin, the noise resistance Rn, the real and imaginary part of the optimal source
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admittance Gopt and Bopt, are derived using Y- noise representation coefficients θ, γid , and x,

NFmin = 10 log10

(

1 + 2
ω

ωT

√

(1 − x2)γidθ
)

, (6.44)

Rn =
γid
gm

, (6.45)

Gopt = gm
ω

ωT

√

(1 − x2)
θ

γid
, (6.46)

Bopt = −gm
ω

ωT

γid − x
√

θγid

γid
. (6.47)

Substituting (6.41), (6.42), and (6.43) in (2.24) – (8.19) in section 2.1.1, NFmin, Rn, Gopt

and Bopt are also derived using H- noise representation coefficients θ, γih , and a,

NFmin = 10 log10

(

1 + 2
ω

ωT

√

(1 − a2)γihθ
)

. (6.48)

Rn =
γih + θ − 2a

√

γihθ

gm
, (6.49)

Gopt = gm
ω

ωT

√

(1 − a2)γihθ

γih + θ − 2a
√

γihθ
, (6.50)

Bopt = −gm
ω

ωT

γih − a
√

θγih

γih + θ − 2a
√

γihθ
. (6.51)

6.6 Importance of Correlations

We now examine the importance of Y- and H- noise representation correlations to noise

parameters NFmin, Rn, Gopt and Bopt. By neglecting cY or cH , (6.44) and (6.48) reduce to

NFmin|cY =0 = 10 log10

(

1 + 2
ω

ωT

√

γidθ

)

, (6.52)

NFmin|cH=0 = 10 log10

(

1 + 2
ω

ωT

√

γihθ

)

. (6.53)
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Neglecting the correlation term will cause overestimation of NFmin for both Y- and H-representation.

Since

x2γidθ − a2γihθ = (γid − γih )θ, (6.54)

and γid is normally greater than γih , cH is more negligible than cY for NFmin.

By neglecting cY or cH , (6.45) and (6.49) reduce to

Rn|cY =0 = Rn, (6.55)

Rn|cH=0 =
γih + θ

gm
. (6.56)

Rn does not change when neglecting cY , i.e., Rn|x=0 = Rn. An inspection of (6.31) shows that

γih + θ − γid = 2a
√

γihθ. Normally a > 0, hence Rn|cH=0 > Rn, therefore neglecting cH will

overestimate Rn.

By neglecting cY or cH , (6.46) and (6.50) reduce to

Gopt|x=0 = gm
ω

ωT

√

θ

γid
, (6.57)

Gopt|a=0 = gm
ω

ωT

√

γihθ

γih + θ
. (6.58)

Gopt|x=0 overestimates Gopt. Since

Gopt|x=0

Gopt|a=0
=

γih + θ
√

γih (γih + θ − 2a
√

γihθ)
, (6.59)
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and,

(γih + θ)2 − [γih (γih + θ − 2a
√

γihθ)] = θ2 + θγih + 2aγih
√

γihθ, (6.60)

> 0, (6.61)

we conclude that Gopt|x=0 > Gopt|a=0. However, it is hard to determine the relationship between

Gopt|a=0 and Gopt theoretically.

By neglecting cY or cH , (6.47) and (6.51) reduce to

Bopt|x=0 = −gm
ω

ωT
, (6.62)

Bopt|a=0 = −gm
ω

ωT

γih
γih + θ

. (6.63)

An inspection of (6.47), (6.62) shows that Bopt|x=0 underestimates Bopt. Moreover, an inspection

of (6.62) and (6.63) shows that Bopt|x=0 < Bopt|a=0. Comparing (6.51) and (6.63), we found that

Bopt|a=0 − Bopt =
a(γih − θ)

√

γihθ

(γih + θ)(γih + θ − 2a
√

γihθ)
. (6.64)

Therefore the difference between Bopt|a=0 and Bopt determined by γih − θ.

It is sufficient to simply define the induced errors by neglecting cY and cH for NFmin, Rn,

Gopt and Bopt to discuss the importance of Y- and H- noise representation correlations to the

noise parameters. Since NFmin is already in dB, we define the induced error of neglecting Y- and

H- noise presentation correlations cY and cH for NFmin as

∆NFmin|cY/H=0 = NFmin|cY/H=0 − NFmin. (6.65)
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∆NFmin is both frequency and bias dependent. ∆Rn, the induced error of neglecting cY and cH

for Rn, is defined as,

∆Rn|cY/H=0 = Rn|cY/H=0 − Rn. (6.66)

An inspection of (6.45), (6.49) and (6.66) shows that the error percentage term ∆Rn/Rn does

not depend on frequency. Similarly, ∆Gopt and ∆Bopt, the induced errors of neglecting cY and

cH for Gopt and Bopt, are defined as,

∆Gopt|cY/H=0 = Gopt|cY/H=0 − Gopt, (6.67)

∆Bopt|cY/H=0 = Bopt|cY/H=0 − Bopt. (6.68)

An inspection of (6.46) and (6.47) shows that the error percentage terms ∆Gopt/Gopt and ∆Bopt/Bopt

do not depend on frequency, although Gopt and Bopt are proportional to frequency.

We now consider the 50 nm Leff NMOS intrinsic device used in this chapter [63]. The

small signal MOSFET model parameters are extracted, and used for deembedding to obtain

the noise parameters of the intrinsic MOSFET shown in Fig. 6.19. Model parameters for both

representations are extracted and used to verify the analytical conversion equations derived.

Fig. 6.20 quantifies the importance of cH and cY to NFminby plotting ∆NFmin vs frequency

for both representations. IDS = 41, 134, 275 and 1341 µA/µm are used, which covers the whole

bias range of interest. With increasing IDS , α decreases from 4.83 to 4.07, ψ decreases from 6.81

to 4.76, θ increases from 0.71 to 0.86, and γid increases from 0.86 to 2.86. The correlation term

x ranges from 0.52 to 0.63. Accordingly, a decreases from 0.4 to 0.04, indicating cH becomes
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more negligible as bias increases. γih increases from 0.70 to 2.08. For all biases and frequencies

of interest, neglecting cH results in little error in NFmin for all the biases and frequencies.
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Figure 6.20: Importance of H- and Y- noise representation correlations: ∆NFmin vs frequency
for 50nm NMOS.

Since Rn does not change with frequency, Fig. 6.21 quantifies the importance of cH and cY

to Rn by plotting the error percentage term ∆Rn/Rn vs IDS for both representations at 5 GHz.

An inspection of (6.45) shows that neglecting cY has no change on Rn, i.e., ∆Rn|cY =0/Rn = 0,

as shown Fig. 6.21. Therefore, Y-noise representation is a better choice for Rn. ∆Rn|cH=0/Rn >

1, indicates that neglecting cH overestimates Rn. Moreover ∆Rn|cH=0/Rn decreases as bias

increases. It shows that cH is still negligible at higher biases for Rn.

Similarly, Fig. 6.22 and Fig. 6.23 quantify the importance of cH and cY to Gopt and Bopt by

plotting the error percentage terms ∆Gopt/Gopt and ∆Bopt/Bopt vs IDS for both representations.
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Figure 6.21: Importance of H- and Y- noise representation correlations: ∆Rn/Rn vs IDS for
50nm NMOS.

Frequency is 5 GHz. Fig. 6.22 shows that cY is not negligible for all biases for Gopt. cH be-

comes negligible as bias increases. At bias of interest IDS = 400 µA/µm, the induced error for

neglecting cH is around 10%. Therefore, H- noise representation is still a good choice at higher

biases for Gopt. Fig. 6.23 shows that the induced error for neglecting cH is practically zero for

all biases. Therefore H- noise representation is a better choice for Bopt.

6.7 Extraction and Modeling of H-Representation RF Noise Sources in CMOS

It has been shown using microscopic noise simulation and simple equivalent circuit deriva-

tion that the H-representation provides certain advantages such as frequency independent noise

sources and negligible correlation [63], thus making easier noise analysis for circuit designers

and noise modeling for device modelers. In this section, we present experimental extraction and
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Figure 6.22: Importance of H- and Y- noise representation correlations: ∆Gopt/Gopt vs IDS for
50nm NMOS.

modeling of the H-representation noise sources in a 0.25 µm RF CMOS process. This section

will show that the extracted input noise voltage and output noise current can be successfully

modeled as simple functions of the channel resistance and transconductance respectively. The

parameters of these functions can be related to the biasing current and voltage in a straightfor-

ward manner. The new model yields excellent agreement with measured noise data, for all of

the noise parameters, including NFmin, Yopt, and Rn, from 2 – 26 GHz, across a wide bias range.

6.7.1 Experimental Extraction

Noise parameters are measured on wafer from 2–26 GHz, using an ATN NP5 system. Open

and short de-embedding are performed for both Y-parameters and noise parameters to move
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Figure 6.23: Importance of H- and Y- noise representation correlations: ∆Bopt/Bopt vs IDS for
50nm NMOS.

the reference plane to the device terminals using techniques in section 2.4. The resulting Y-

parameters and noise parameters are for the transistor, the equivalent circuit of which is shown

in Fig. 6.24. The equivalent circuit parameters are extracted using the method described in [9].

Here we choose to define vh and ih as the H-representation input noise voltage and output noise

current for the level II block shown in Fig. 6.24. The level II block consists of Rgs, Cgs, the gm

controlled source and gds, and is the core part for noise modeling. The level I block is defined

as the combination of the level II block with Cgd, Rgd, Cdb and Rdb. Next we need to extract the

power spectral densities (PSD) of vh, ih, and their correlation, which we denote as SII
vh,v

∗
h
, SII

ih,i
∗
h
,

and SII
vh,i

∗
h
. They can also be written using matrix notation as:

CHII

4
=







SII
vh,v

∗
h

SII
vh,i

∗
h

SII
ih,v

∗
h

SII
ih,i

∗
h






, (6.69)

170



gR

gsC

gsR j
m                gsg  e      v ωτ   -

dsg

/S   B /S   B

G D

+ 

- 
gsv

gdC

dR

+
-

sR

dbC 4 dkTR4 gkTR

4 skTR

level II
level I

*
II

,h  hv  vS *
II

,h  hi  iS
+

gdR

-+ -

dbR

+
- 4 dbkTR

+ -

Figure 6.24: The small signal equivalent circuit model used with H-representation noise sources.

where CHII is also referred to as the H-representation noise matrix for the level II block.

The Y- noise representation parameters matrix for block II, CYII , with elements SII
ig ,i

∗
g
, SII

id,i
∗
d
,

and SII
ig ,i

∗
d
, are obtained using techniques in section 2.5.1. Next, we transform Y- noise represen-

tation matrix CYII to H- noise representation matrix CHII using transform matrix in Table 2.1:

CHII = TY−H · CYII · T
†
Y−H (6.70)

TY−H =







−hII
11 0

−hII
21 1






. (6.71)

6.7.2 Noise Source Modeling

The above extraction is applied to a 128 finger device from a 0.25 µm RF CMOS process

measured in IBM. The designed length is 0.24 µm. The device width is W = 4 µm to minimize

gate resistance. Fig. 6.25 shows the measured and modeled Y-parameters versus frequency at
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Figure 6.25: Data-model comparison of Y-parameter vs frequency at VGS = 1.2 V. VDS = 1.2 V.

VGS = 1.2 V and VDS = 1.2 V. All of the Y-parameters are well modeled. Fig. 6.26 shows the

Y-parameters at 10 GHz as a function of VGS . The biasing current dependence is well modeled

too.

Using the equivalent circuit parameters extracted, the Y-parameters and H-parameters for all

the blocks can be calculated using straightforward linear circuit analysis. The H-representation

noise matrix is then extracted using the procedures described in section 6.7.1. Fig. 6.27 shows

the extracted Svh,v
∗
h

and Sih,i
∗
h

as a function of frequency. VGS = 1.2 V, and VDS = 1.2 V. For

modeling purpose, we have normalized SII
vh,v

∗
h

by 4kTRgs, and normalized SII
ih,i

∗
h

by 4kTgm.

Observe that Svh,v
∗
h

and Sih,i
∗
h

are both frequency independent, which simplifies modeling. Thus,

for a given bias, we can define two coefficients α and β as follows:
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Figure 6.26: Data-model comparison of Y-parameter at f = 10 GHz. VDS = 1.2 V.

SII
vh,v

∗
h

4
= 4kTαRgs, (6.72)

SII
ih,i

∗
h

4
= 4kTγihgm, (6.73)

where we express Svh,v
∗
h

using Rgs, and Sih,i
∗
h

using gm. The α and γih coefficients can then be

extracted for each bias, and modeled as a function of bias, as detailed below.

Fig. 6.28 shows real and imaginary parts of the correlation. The normalized correlation co-

efficient is plotted. The normalized correlation coefficient is defined by CII
vh,ih∗

4
= SII

vh,i
∗
h
/
√

SII
vh,v

∗
h
SII
ih,i

∗
h
.

Overall, the correlation is small. We have compared the noise parameters calculated with and
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Figure 6.27: SII
vh,v

∗
h
/(4kTRgs) and SII

ih,i
∗
h
/(4kTgm) (symbols) vs frequency. VGS = 1.2 V. VDS =

1.2 V.

without the correlation, and observed negligible difference. This is consistent with previous mi-

croscopic noise simulation results [63]. We will thus neglect the correlation in the discussions

that follow.

Fig. 6.29 (a) shows the modeled and extracted NFmin and Rn at VGS = 1.2 V and VDS =1.2

V. Fig. 6.29 (b) shows the corresponding real and imaginary parts of Yopt. The correlation SII
vh,i

∗
h

is assumed to be zero in the modeling. Rn, NFmin, both real and imaginary parts of Yopt are well

fitted up to 26 GHz.

Fig. 6.30 shows extracted α and γih as a function of VGS . For device modeling, we need

to model α and γih as a function of bias. An inspection of experimental extraction data shows

that the bias dependence of α and γih can be modeled through VGS and IDS using the following
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Figure 6.28: CII
vh,i

∗
h

vs frequency, VGS = 1.2 V. VDS = 1.2 V.

proposed equations:

α = α0 + α1 · IDS , (6.74)

and

γih = γih,0 + γih,1 · VGS + γih,2 · VGS
2, (6.75)

where α0, α1, γih,0, γih,1 and γih,2 are technology dependent parameters and can be easily deter-

mined once noise parameters are extracted. IDS has a unit of µA/µm. From noise physics, we

expect these parameters to be independent of channel width, but dependent on channel length

and oxide thickness. For the device used at Vds = 1.2 V, α0 = 0.4068, α1 = 0.0011, γih,0 = 0.1774,
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γih,1 = 1.2974, and γih,2 = 0. The α and γih calculated using (6.74) and (6.75) fit the extracted

data well, as shown in Fig. 6.30.

Note that α, the SII
vh,v

∗
h
/(4kTRgs) ratio, is nearly flat at VGS slightly above Vth, then in-

creases with increasing VGS . However, the SII
vh,v

∗
h
/(4kTRgs) ratio is less than 1 for most biases.

This is different from noise simulation results using Shockley’s impedance field theory [63],

which show that α is larger than 1. On the other hand, γih , the SII
ih,i

∗
h
/(4kTgm) ratio, increases

with increasing bias, which agrees with simulation [63].

Fig. 6.31 (a) shows the measured and modeled NFmin and Rn versus IDS at 10 GHz.

Fig. 6.31 (b) shows real and imaginary parts of Yopt versus IDS at 10 GHz. VDS = 1.2 V.

The correlation SII
vh,i

∗
h

is neglected. Excellent fitting is achieved for all of the noise parameters

across the whole biasing current range.
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Figure 6.31: (a) NFmin and Rn vs IDS ; (b): real and imaginary parts of Yopt vs IDS . f = 10
GHz. VDS = 1.2 V.
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Figure 6.32: (a) NFmin and Rn vs IDS ; (b) real and imaginary parts of Yopt vs IDS . f = 10 GHz.
VDS = 0.2 V.

179



A logical question is if the α and γih equations proposed apply to all of the VDS . In our

measurements, VGS is swept at VDS = 0.2 and 1.2 V. The resulting α0, α1, γih,0, γih,1 and γih,2

from the two different VDS are different for the devices used. It is possible that the α and γih

equations proposed here may be less valid for another RF CMOS process, and new equations

will need to be developed using extracted data.

Fig. 6.32 (a) shows data-model comparison of NFmin and Rn vs IDS at 10 GHz for a VDS =

0.2 V. Fig. 6.32 (b) shows real and imaginary parts of Yopt vs IDS . The α0 = 0.4068, α1 = 0,

γih,0 = 8.0535, γih,1 = −19.5941 and γih,2 = 13.9161 are extracted from Vds = 0.2 V. γih,0 and

γih,2 increases with decreasing Vds, while γih,1 decreases with decreasing Vds. The model fits the

data very well without introducing additional equations.

6.8 Summary

We have presented microscopic RF noise simulation results on 50 nm Leff CMOS devices,

and examined the compact modeling of intrinsic noise sources for both the Y-representation and

the H-representation. The correlation is shown to be smaller for the H-representation than for

the Y-representation. For practical biasing currents and frequencies, the correlation is negligible

for H-representation. Models for the noise sources are suggested.

Furthermore, we have examined the relations between the Y- and H-noise representations

for MOSFETs, and quantified the importance of correlation for both representations. The theo-

retical values of αvh , γih and cH are derived for the first time for long channel devices, αvh = 4/3,

γih = 0.6, a = 0.2458, and b = 0. cH is shown theoretically to have a zero imaginary part.

We further show that Y-representation is a better choice for Rn, and the H-representation has the
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inherent advantage of a more negligible correlation for NFmin, Gopt, and Bopt. Overall, the im-

portance of correlation is much more negligible for H-representation than for Y-representation.

This makes circuit design and simulation easier.

We have presented experimental extraction and modeling of H-representation noise sources

in a 0.25 µm RF CMOS process. Excellent agreement is achieved between modeled and mea-

sured noise data, including all noise parameters, for Vds = 0.2 and 1.2 V, from 2 to 26 GHz. The

results suggest a new path to RF CMOS noise modeling.
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CHAPTER 7

EFFECTIVE GATE RESISTANCE MODELING

Since Rg is important especially for short channel devices, accurate extraction of Rg plays

a big role in compact noise modeling of modern CMOS. This chapter explains the frequency

and bias dependence of the effective gate resistance (real part of h11) by considering the effect of

gate-to-body capacitance, gate to source/drain overlap capacitances, fringing capacitances, and

Non-Quasi-Static (NQS) effect. A new method of separating the physical gate resistance and the

NQS channel resistance is proposed. Separating the gate-to-source parasitic capacitances from

the gate-to-source inversion capacitance is found to be necessary for accurate modeling of all of

the Y-parameters.

7.1 Introduction

Accurate extraction of effective gate resistance Rg,eff is important for RF CMOS modeling,

particularly in noise modeling [64] [65] [66]. The effective gate resistance Rg,eff often refers to

the sum of the gate electrode resistance Rg and the Non-Quasi-Static (NQS) channel resistance

Rnqs, as shown in the small signal equivalent circuit in Fig. 7.1. Rg does not depend on bias or

frequency, while Rnqs depends on bias [67].

Using the equivalent circuit in Fig. 7.1 , Rg,eff = Rg + Rnqs is often extracted from the real

part of h11 (= 1/Y11) [64], which we denote as <(h11). Here < stands for the real part. The

source and drain series resistances Rs and Rd can be de-embedded using values determined from

dc I-V data. The extracted Rg,eff should be independent of frequency, and decrease with increas-

ing Vgs. However, as we show below, measured <(h11) can be strongly frequency dependent,
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Figure 7.1: MOSFET small signal equivalent circuit model.

and does not decrease with Vgs. This was also observed in [68], where <(h11) of experimental

data is strongly frequency dependent from 1 to 4 GHz, particularly at Vgs slightly above thresh-

old voltage, where low-noise amplifiers are biased. Interestingly, the frequency dependence of

<(h11) is much weaker at both Vgs values well below Vth and Vgs values well above Vth. Further-

more, <(h11) is lowest at Vgs values well below Vth and well above Vth, but highest at moderate

Vgs values. These abnormal bias and frequency dependences of <(h11) cannot be explained by

the simple small signal equivalent circuit model in Fig. 7.1.

Fig. 7.2 shows the measured frequency dependence of <(h11) for a 0.18µm single-ended

gate contact CMOS device. Standard open/short de-embedding are performed on the S-parameters

measured using an HP8510C vector network analyzer from 2-20 GHz for a wide bias range. The

standard open/short de-embedding is a sufficient de-embedding method for a frequency range

of 2-20 GHz [69]. The channel width W is 10 µm. The number of fingers Nf is 8. Fig. 7.3

shows the bias dependence of <(h11). <(h11) increases with IDS at lower biases, but decreases

with IDS at higher biases. Moreover, the frequency dependence of <(h11) is the strongest at the

bias corresponding to the <(h11) peaks in Fig. 7.2 . This abnormal bias frequency dependence

of <(h11) has also been observed for devices with Nf = 16 and 32. However, only the device
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with Nf = 8 is shown in this chapter as an example. The physical Rg extracted decreases with

increasing Nf , as expected.
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Figure 7.2: <(h11) vs frequency for 0.18 µm CMOS device, W = 10µm, Nf = 8. Vds=1 V.

Using the small signal model described in Fig. 7.1, we cannot obtain decent data-model

fitting, since the real part of h11 is independent of frequency. One possible way of producing

a frequency dependent <(h11) is to separate Rg and Rnqs using the small signal equivalent cir-

cuit model in [9], which is shown in Fig. 7.4. However, the data-model comparison using the

extraction method in [9], as shown in Fig. 7.5, shows that this model cannot yield a good fit of

the data either. The main difficulty is that Cgd is the primary reason for the frequency depen-

dence of <(h11), while the value of Cgd is determined mainly by Y12, where Y12 is an element of

Y-parameter matrix for the whole device.

This chapter explains the above anomalous frequency and bias dependence of <(h11) in

saturation region where Vds > Vd,sat by including gate-to-body capacitance Cgb, the gate to
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Figure 7.3: <(h11) vs IDS for 0.18 µm CMOS device, W = 10µm, Nf = 8. Vds=1 V.

source/drain overlap capacitance Cov,s and Cov,d, and the gate to source/drain fringing capaci-

tance Cfs and Cfd according to the equivalent circuit shown in Fig. 7.6. Note that Rnqs is part of

the intrinsic transistor, and Rnqs can also be used to model gate induced noise [63]. From a noise

standpoint, Rg has the noise power spectral density of 4kTR, while the noise associated with

Rnqs is described by the induced gate noise current. The bulk resistance component in series

with Cgb becomes important only when Cgb well dominates over other parasitic capacitances,

which is not the case from our extraction. Furthermore, this substrate resistance component is

fairly independent of gate biases, and thus cannot explain the observed behavior. Based on these

considerations, we will neglect the Rsub component in series with Cgb, and will only consider the

substrate resistance component in series with the drain-substrate junction. This method of de-

scribing gate resistance is similar to but different from the gate resistance option 3 in BSIM4 [5].

The key difference is that the gate to body capacitance is placed directly between the G and B, as
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Figure 7.4: CMOS small signal model in [9].

opposed to between G’ and B. The gate-to-body capacitance charging occurs through movement

of majority carriers in the bulk, and thus does not experience the non-quasi-static delay due to

inversion charge formation in the channel. Another difference is that the controling voltage of

the transconductance is the total voltage across the Rnqs and Cgs, and the transconductance term

is gm/(1 + jωτ), which accounts for output NQS and charge partition effects [18]. Cdb is the

drain-to-body junction capacitance , and Csub is the substrate capacitance.

7.2 h11 model

Fig. 7.7 shows the equivalent circuit for the h11 derivation, which is obtained by short-

ing the output of the circuit in Fig. 7.6. Rnqd is negligible for the device used. Rnqs, which

is used to describe the NQS effect in the channel, decreases with increasing Vgs. Cgs is the

inversion charge capacitance that increases with Vgs normally, and slightly decreases with Vgs

due to the polysilicon-gate depletion effect [70] [71]. Cp is the combination of the source side

peripheral capacitance Cperi,s and the drain side peripheral capacitance Cperi,d. Cperi,s includes
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gate-to-body capacitance Cgb, gate-to-source overlap capacitance Cov,s, and gate-to-source fring-

ing capacitance Cfs. Cperi,d includes gate-to-drain overlap capacitance Cov,d, and gate-to-drain

fringing capacitance Cfd,

Cp = Cperi,s + Cperi,d, (7.1)

Cperi,s = Cgb + Cov,s + Cfs, (7.2)

Cperi,d = Cov,d + Cfd. (7.3)

The gate-to-drain capacitance Cgd is negligible in the saturation region. The source/drain series

resistances Rs and Rd can be extracted from dc I-V data, and de-embedded. Rs and Rd are

negligible for the devices used.
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An inspection of Fig. 7.7 gives the intrinsic h11 as

hintr11 = Rnqs +
1

jωCgs
, (7.4)

the real part of which is simply a frequency independent Rnqs, at least to first order, which

decreases with increasing Vgs.

gR

gsCpC

nqsR

intr
11h11h

Figure 7.7: h11 derivation illustration.
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h11 is given by

h11 = Rg +
1

jωCp + 1
Rnqs+ 1

jωCgs

. (7.5)

The real and imaginary parts of h11 are

<(h11) = Rg +
Rnqs

(

1 + Cp

Cgs

)2
+ (ωCpRnqs)2

, (7.6)

=(h11) = −

(

1 + Cp

Cgs

)

+ ω2CgsCpR
2
nqs

(

1 + Cp

Cgs

)2
+ ω2C2

pR
2
nqs

·
1

ωCgs
. (7.7)

For convenience, we define a threshold frequency ω1 as

ω2
1 =

1

10R2
nqs(Cp//Cgs)2

, (7.8)

and another threshold frequency ω2 as

ω2 = 10ω1. (7.9)

If ω < ω1, or ω2R2
nqsC

2
p << (1 + Cp

Cgs
)2, (7.6) reduces to

<(h11) = Rg +
Rnqs

(

1 + Cp

Cgs

)2
, (7.10)
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where (<(h11) − Rg) is independent of frequency. Here we denote the (<(h11) − Rg) value at

zero frequency as R1,

R1 = (<(h11) − Rg)|ω=0 =
Rnqs

(

1 + Cp

Cgs

)2
(7.11)

If ω2R2
nqsC

2
p >> (1 + Cp

Cgs
)2, or ω > ω2, (7.6) and (7.7) reduce to

<(h11) = Rg +
1

ω2C2
pRnqs

, (7.12)

where (<(h11) − Rg) is proportional to 1/ω2.

Since Rg is independent of frequency and bias, the frequency dependence of <(h11) directly

comes from the term (<(h11) − Rg). However, the frequency dependence of <(h11) depends

not only on the frequency dependence of (<(h11) − Rg), but also on the relative importance of

(<(h11) − Rg) compared to Rg . If Rg is much greater than the change of (<(h11) − Rg) over

the used frequency range, a relatively constant <(h11) can still be obtained.

The frequency dependence of (<(h11) − Rg) is illustrated in Fig. 7.8 and Fig. 7.9 in loga-

rithm and linear scales for both x and y axes, respectively. If the working frequency range lies

below ω1, (<(h11) − Rg) is nearly a constant equal to R1 according to (7.10), and independent

of frequency. If the working frequency range lies between ω1 and ω2, the frequency dependence

of (<(h11) −Rg) is the most obvious on a linear scale, decreasing from 0.9R1 at ω1 to 0.1R1 at

ω2. If the working frequency range lies above ω2, (<(h11)−Rg) becomes inversely proportional

to ω2, and decreases rapidly from 0.1R1 at ω2 towards zero. When the working frequency range

is fixed, the decrease of ω1 to ω′
1 will result in more frequencies lying between ω′

1 and ω′
2, as
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shown in Fig. 7.10. At the same time, (7.11) can be rewritten in terms of ω1 as,

R1 =
1

10ω2
1

· C2
pRnqs. (7.13)

Compared to C2
pRnqs, 1

10ω2
1

is the dominant term for R1. Hence, R1 can be considered inversely

proportional to the threshold frequency ω2
1. Therefore, as ω1 decreases to ω′

1, R1 increases as

shown in Fig. 7.10. As a result, in the working frequency range, (<(h11) − Rg) becomes more

frequency dependent, and vice versa.
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Figure 7.8: Frequency dependence of (<(h11) − Rg) in logarithm scale.

If Rnqs(Cp//Cgs) increases with increasing Vgs, ω1 will decrease with increasing Vgs. As

a result, (<(h11) − Rg) becomes more frequency dependent with increasing Vgs. On the other

hand, if Rnqs(Cp//Cgs) decreases with increasing Vgs, ω1 will increase with increasing Vgs. As
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Figure 7.9: Frequency dependence of (<(h11) − Rg) in linear scale.

a result, (<(h11) −Rg) becomes less frequency dependent with increasing Vgs. Next, we extract

equivalent parameters, and use the extraction results to understand the observed <(h11) behavior.

7.3 Parameter Extraction

We extract Rg , Cp, Rnqs and Cgs through the following steps.

1. Determine an initial guess of Rg using semi-circle fitting.

Plot =(h11) versus <(h11), fit the data using a semi-circle, the high frequency intercept

with the <(h11) axis is used as an initial guess of Rg . This is the same as the extraction of

base resistance in bipolar devices [46].

2. Determine initial guesses of Cp, Cgs and Rnqs as follows.
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Figure 7.10: Influence of ω1 on the frequency dependence of (<(h11) − Rg).

From (7.6), we have,

1
<(h11) − Rg

= p2 + ω2 · p1, (7.14)

p1 = C2
pRnqs, (7.15)

p2 =

(

1 + Cp

Cgs

)2

Rnqs
. (7.16)

Moreover, from (7.6) and (7.7), we have,

−
ω=(h11)

<(h11) − Rg
= q2 + ω2 · q1, (7.17)

q1 = CpRnqs, (7.18)

q2 =
1 + Cp

Cgs

CgsRnqs
. (7.19)
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p1 and p2 can be extracted using 1
<(h11)−Rg

vs ω2 plot, and q1 and q2 can be extracted using

− ω=(h11)
<(h11)−Rg

vs ω2 plot at each bias, as shown in Fig. 7.11.
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Figure 7.11: Extraction of p1, p2, q1 and q2 at Vgs = 0.5 V for 0.18 µm device, W =10 µm,
Nf = 8.

From (7.15), (7.16), (7.18), and (7.19), we can solve for Cp, Rnqs and Cgs as,

Cp =
p1

q1
, (7.20)

Rnqs =
q2

1

p1
, (7.21)

Cgs =
1 +

√

1 + 4q1q2

2q2
1q2

· p1. (7.22)

These are our initial guesses of Cp, Rnqs and Cgs.

3. The Cp, Rnqs and Cgs values are refined by fitting <(h11) and =(h11) versus frequency for

each bias. Here the least mean square error method is used for numerical optimization.
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4. (Cov,d + Cfd) is estimated from the intrinsic Y12, Y intr
12 , by

Cov,d + Cfd = −
=(Y intr

12 )

ω
. (7.23)

(Cgb + Cov,s + Cfs) is then determined using (7.1) as

(Cgb + Cov,s + Cfs) = Cp − (Cov,d + Cfd). (7.24)

Fig. 7.12 shows the extracted capacitances for the same device used in Fig. 7.2 including

Cp, Cgs, Cperi,s, and Cperi,d versus Vgs. The gate electrode resistance Rg is 25 Ω. For the Nf =

16 and 32 devices, Rg = 13 and 7 Ω. Fig. 7.12 also shows the extracted Rnqs versus Vgs. Cgs

increases with increasing Vgs at first, then decreases with increasing Vgs after 0.8 V due to the

polysilicon-gate depletion effect [70] [71]. Cp increases with increasing Vgs. Cperi,d is almost

independent of bias, while Cperi,s increases with increasing bias. Rnqs decreases with increasing

Vgs, as expected. Assuming the drain and source-side overlap and fringing capacitances are

approximately symmetric, Cgb can be roughly estimated by (Cperi,s − Cperi,d). Cgb is much

smaller than Cperi,d at lower Vgs, increases with Vgs, and saturates at high Vgs, as expected.

Fig. 7.13 shows ω1, ω2 and R1 vs Vgs calculated using (7.8), (7.9) and (7.11). For most

biases, the measured frequency range of 2-20 GHz lies between ω1 and ω2. As Vgs increases,

ω1 begins to decrease first, at the same time, R1 begins to increase, for reasons detailed in

Section 7.2, indicating that (<(h11) − Rg) becomes more frequency dependent. ω1 reaches

the lowest point at Vgs = 0.6 V, corresponding to the most frequency dependent <(h11) curve

in Fig. 7.2. After that, ω1 begins to increase while R1 begins to decrease as Vgs increases.

Correspondingly, (<(h11) − Rg) becomes less frequency dependent again at higher biases.
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Figure 7.12: Extracted capacitances Cp, Cperi,s, Cperi,d, and Cgs, and extracted Rnqs vs Vgs for
0.18 µm device, W =10 µm, Nf = 8.
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Figure 7.13: ω1, ω2 and R1 vs Vgs for 0.18 µm device. W = 10 µm, Nf = 8.
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7.4 Results and Discussion

Fig. 7.14 compares the modeled and measured <(h11) at several biases as a function of

frequency. The model captures the frequency dependence of the measured <(h11) quite well. At

lower Vgs = 0.4 V, Rnqs = 1178 Ω, the inversion capacitance Cgs = 7.4 fF is much smaller than

Cp = 73 fF, i.e. Cgs << Cp. The threshold frequency ω1 = 6.4 GHz, ω2 = 64 GHz and R1 =

10 Ω. Hence, for a frequency range of 2 GHz to 20 GHz, most of the frequencies lie between

ω1 and ω2, but close to ω1. Accordingly, (<(h11) − Rg) decreases from 9 Ω at 4 GHz to 5 Ω at

20 GHz, as shown in Fig. 7.15. Compared to Rg = 25 Ω, the 4 Ω decrease of (<(h11) − Rg) is

negligible. <(h11) shows only a slight decrease with increasing frequency as can be seen from

Fig. 7.14.
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Figure 7.14: <(h11) vs frequency. Symbols are measurement data. Lines are modeling results.
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Figure 7.15: Modeled (<(h11) − Rg) vs frequency for 0.18 µm device. W = 10 µm, Nf = 8.
Vgs = 0.4, 0.6, and 0.9 V.

At medium Vgs = 0.6 V, Rnqs = 1116 Ω, Cp = 83 fF, and Cgs = 20 fF, Cgs is comparable

to Cp. Compared to Vgs = 0.4 V, ω1 decreases to 2.8 GHz, ω2 decreases to 28 GHz, while R1

increases to 41 Ω. Hence, for a frequency range of 2 GHz to 20 GHz, most of the frequencies lie

between ω1 and ω2, and the frequency dependence is the most obvious. (<(h11)−Rg) decreases

from 40 Ω at 4 GHz, to 7 Ω at 20 GHz, as shown in Fig. 7.15. As Rg = 25 Ω, the overall <(h11)

shows an obvious decrease from 65 Ω at 4 GHz to 32 Ω at 20 GHz as can be seen from Fig. 7.14.

At a higher Vgs of 0.9 V, Rnqs = 703 Ω, Cp = 94 fF, and Cgs = 15 fF, Cgs is comparable

to Cp. Compared to Vgs = 0.6 V, ω1 increases to 5.5 GHz, ω2 increases to 55 GHz, and R1

decreases to 13.5 Ω. Hence, most of the frequencies (2-20 GHz) lie close to ω1. (<(h11) − Rg)

becomes less frequency dependent, and decreases from 13 Ω at 4 GHz to 6 Ω at 20 GHz, as
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shown in Fig. 7.15. As Rg = 25 Ω, <(h11) slightly decreases from 38 Ω at 4 GHz to 31 Ω at 20

GHz as can be seen from Fig. 7.14.

Fig. 7.16 compares the modeled and measured <(h11) at several frequencies as a function

of IDS . The model captures the bias dependence of the measured <(h11) quite well. At 3 GHz,

which is close to the ω1 for most biases, (7.10) holds. At lower Vgs, where Cp >> Cgs, (7.10)

reduces to

<(h11) = Rg +
RnqsC

2
gs

C2
p

. (7.25)

The bias dependence of <(h11) is complicated and not necessarily monotonic, because Rnqs,

Cgs and Cp are all functions of Vgs. Rnqs decreases with increasing Vgs as shown in Fig. 7.12.

Cgs increases with increasing Vgs at lower biases, does not change much with Vgs at medium

biases, and slightly decreases with increasing Vgs at higher biases. Cp slightly increases with

increasing Vgs. From (7.25), we observe that both the bias dependence of Rnqs and the bias

dependence of the Cgs/Cp ratio contribute to the bias dependence of <(h11). Fig. 7.17 shows

the bias dependence of the Cgs/Cp ratio for the device used. Cgs/Cp ratio increases with bias at

low Vgs, since the increase of Cgs is faster than the increase of Cp. At medium Vgs, the Cgs/Cp

ratio changes slightly, since the increases of Cgs and Cp are about the same. At high Vgs, while

Cgs decreases slightly and Cp increases slightly, the Cgs/Cp ratio decreases with increasing bias.

At lower Vgs, if Rnqs is the dominant changing parameter, <(h11) will decrease as Vgs

increases. If the Cgs/Cp ratio is the dominant changing parameter, <(h11) will increase with

Vgs. At medium Vgs, e.g. 0.6 to 0.8 V, where the Cgs/Cp ratio does not change much, and Rnqs

decreases with Vgs, <(h11) begins to decrease slightly with Vgs. At higher Vgs, e.g. 0.9 V, (7.25)
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Figure 7.16: <(h11) vs IDS . Symbols are measurement data. Lines are modeling results.

holds. Rnqs as well as the Cgs/Cp ratio decreases as Vgs increases. Therefore <(h11) is expected

to decrease as Vgs increases at higher Vgs.

Fig. 7.18 and Fig. 7.19 shows the data-model comparison for the Y-parameters at 3 GHz, 5

GHz, 10 GHz, 15 GHz and 20 GHz. Rg and (Cgb+Cov,s+Cfs) are de-embedded to obtain the Y-

parameters of the intrinsic circuit. The parameters of the intrinsic circuit are then extracted using

the method described in [9], with modifications to account for the differences in the transcon-

ductance term. The Y-parameters fit quite well using the proposed method over all biases and at

all frequencies. This suggests that it is necessary to separately consider the (Cgb + Cov,s + Cfs)

and the inversion capacitance Cgs in order to accurately model all of the Y-parameters over all

biases.
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Figure 7.17: Cgs/Cp ratio vs Vgs for 0.18 µm device. W = 10 µm, Nf = 8.

7.5 Length and Width Effects

The anomalous frequency and bias dependence of <(h11) also exist in devices with differ-

ent channel length, as shown in Fig. 7.20. Theoretically, as channel length L decreases, Rnqs

decreases, Cgs decreases, the sum of peripheral capacitances Cp does not change with L, result-

ing in a decrease of R1 and an increase of ω1, and hence less frequency dependence in the Rnqs

related term of <(h11). On the other hand, Rg has one component that increases with decreas-

ing L, and another component that decreases with decreasing L. Therefore, the corresponding

change in Rg with decreasing L depends on which component of Rg dominates. For the devices

shown in Fig. 7.20, Rg is slightly lower for the device with larger L. Therefore, <(h11) is less

frequency dependent for the device with smaller L in Fig. 7.20.

As device width W decreases, theoretically Rnqs increases, however Cgs and Cp decrease,

leading to an increase in R1 but no change in ω1, and hence more frequency dependence in
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Figure 7.18: The real and imaginary parts of Y11 and Y12 vs Vgs for 0.18µm CMOS device. W
= 10 µm, Nf = 8. Symbols are measurement data. Lines are modeling results.

the Rnqs related term of <(h11). On the other hand, with decreasing W , one component of

Rg decreases, while another component of Rg increases. Therefore, the net change in Rg with

decreasing W depends on which component of Rg dominates. If the Rg increase is less than the

increase of R1 with decreasing W , or if Rg decreases with decreasing W , a stronger frequency

dependence in <(h11) can be expected.

As the number of fingers Nf decreases, both Rg and Rnqs increase, and both Cgs and Cp

decrease, leading to an increase in R1 but no change in ω1, and hence a stronger frequency

dependence in the Rnqs related term of <(h11). However, theoretically Rg and R1 increase by

the same percentage with decreasing Nf , resulting in no change in the frequency dependence of

<(h11).
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7.6 Summary

An anomalous frequency dependence and bias dependence of <(h11) is observed. <(h11)

decreases with frequency, and increases with Vgs at low biases. We have shown that both the

frequency dependence and bias dependence can be understood by considering the gate-to-body

capacitance and the parasitic gate-to-source capacitances as capacitances in parallel with the

series combination of the NQS resistance and inversion capacitance Cgs. A new parameter ex-

traction method is developed to separate the physical gate resistance and the NQS channel resis-

tance. The modeling results show excellent agreement with data, and suggest the importance of

modeling NQS effect for RF CMOS even at frequencies well below fT of the technology. The

proposed model parameter extraction method can be used to facilitate MOSFET noise modeling

and more accurate Y-parameter modeling over a wide bias range.

204



CHAPTER 8

EXCESS NOISE FACTORS AND NOISE PARAMETER EQUATIONS FOR RF CMOS

This chapter examines the differences between the gd0 and gm referenced drain current ex-

cess noise factors in CMOS transistors as a function of channel length and bias. The technology

scaling are discussed for 0.25 µm process measured in IBM, 0.18 µm process measured in Geor-

gia Institute of Technology and 0.12 µm process measured in IBM. Using standard linear noisy

two-port theory, a simple derivation of noise parameters is presented. The results are compared

with the well known Fukui’s empirical FET noise equations. Experimental data on a 0.18 µm

CMOS process are measured and used to evaluate the simple model equations. New figures-

of-merit for minimum noise figure is proposed. The amount of drain current noise produced to

achieve one GHz fT is shown to fundamentally determine the noise capability of the intrinsic

transistor.

8.1 Introduction

CMOS has recently become a technology for implementing lost cost RF system due to

its economy of scale and ability to integrate analog, digital and RF functions. For analog and

RF circuits, a deeper understanding of the drain current thermal noise at both the device and

circuit level is required. A primary figure-of-merit used is the so-called drain noise excess noise

factor, defined as Sid,i
∗
d
/4kTgd0, with gd0 being the output conductance at Vds = 0 V, and Sid,i

∗
d

being the power spectral density (PSD) of drain current noise. As gd0 is used as a reference,

we will refer to this as the gd0 referenced excess noise factor, and denote it as γgd0 . For circuit

designers, however, the transconductance at the operating bias, gm, is a better reference for
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defining excess noise factor, and we will refer to this as the gm referenced excess noise factor,

γgm = Sid,i
∗
d
/4kTgm. Here we examine the relationship between γgd0 and γgm using experimental

data, particular its bias and channel length dependence.

Ultimately, from a circuit perspective, we need to establish exactly how circuit level noise

parameters relate to device level parameters, including the minimum noise figure NFmin, the

noise resistance Rn, and the noise matching source admittance Yopt. Fukui’s equations have

been widely used in interpretation, understanding and modeling of noise properties of field-

effect transistors (FETs), first in GaAs FETs and more recently in RF CMOS [34] [35] [36]

[37] [38]. Based on observation of experimental noise parameter data obtained on MESFETs

[31] [32] [33], Fukui first proposed a set of empirical equations for NFmin, Rn, and Zopt. These

equations involve an empirical Fukui’s noise figure coefficient Kf , and other “constants.” Kf

has since been frequently used as a figure-of-merit for comparing the intrinsic noise performance

of different technologies [34] [36]. Recently, various equations of NFmin, Rn and Yopt have been

derived based on linear two-port theories and small signal equivalent circuits [40]. In this chapter,

the noise parameter equations from small signal equivalent circuit derivation are compared with

empirical Fukui’s equations to better understand the physical meanings of the various constants.

Noise measurements are then made on a 0.18µm CMOS process for model evaluation. The

results show that there does not exist a bias or channel length independent Fukui’s noise figure

coefficient for CMOS. The results are then used to develop new figures-of-merit for NFmin.

Experimental data are used to demonstrate the new NFmin figures-of-merit.
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8.2 Excess Noise Factors

The PSD of drain current noise id can be expressed using either γgd0 or γgm

Sid,i
∗
d
=

〈

id, i
∗
d

〉

∆f
= 4kTγgmgm = 4kTγgd0gd0. (8.1)

The two excess noise factors are related by

γgm = γgd0

gd0

gm
. (8.2)

In device modeling, γgd0 is often preferred because it is less bias dependent [72]. Another perhaps

more important reason is that an analytical expression of γgd0 is straightforward to derive using a

drift-diffusion based noise source model, as was done in [15]. Given the weak bias dependence

of γgd0 , the bias dependence of γgm should primarily come from the ratio of gd0/gm.

Fig. 8.1 shows the measured gd0/gm ratio versus Vgs for different channel length from a

0.13 µm process. Similar results are obtained on 0.18 µm process. Vds is chosen at 1.5 V to bias

the device in saturation. Observe in Fig. 8.1 that for long channel devices, gd0 = gm in strong

inversion (high Vgs), γgd0 = γgm , and differentiating γgd0 or γgm does not make a difference.

For short channel lengths of interest, however, the gd0/gm ratio increases linearly with Vgs.

If we assume a bias independent γgd0 , which remains to be verified, we should expect a strong

increase of γgm with Vgs. Optimal biasing and sizing for low-noise amplifier optimization under

the assumption of a bias independent γgm [40] is thus problematic.

With decreasing channel length, velocity saturation makes gm increasingly smaller than its

“long channel” behavior value, while gd0 does not suffer from velocity saturation and remains

close to its long channel behavior, because Vds = 0 V. The gd0/gm ratio thus increases with
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Figure 8.1: Measured ratio of gd0/gm vs Vgs for different channel lengths from a 0.13 µm CMOS
process. Vds = 1.5 V.

decreasing channel length. A calculation of gd0/gm using the BSIM3v3 model equation with

and without velocity saturation confirms the above intuitive explanation.

Fig. 8.2 shows γgd0 and γgm extracted from noise parameter measurements for a 0.18 µm

process. S-parameters and noise parameters were measured using a ATN NP-5B system on wafer

from 2 to 20 GHz, using open short de-embedding. Vds = 1 V. Gate resistance was extracted

from s-parameters, and further de-embedded for calculation of Sid,i
∗
d
. gm is extracted from y-

parameters (converted from s-parameters), and verified to be consistent with that obtained from

derivatives of Ids − Vgs. gd0 is extracted from Ids − Vds data, with a small Vds step of 0.05 V.

Devices with 8, 16 and 32 fingers were measured, and the resulting Sid,i
∗
d

is proportional to the

number of fingers. Note that γgd0 decreases slightly with increasing bias, while γgm increases

with increasing bias at a larger slope.
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8.3 Technology Discussion of Excess Noise Factor

Fig. 8.3 shows IDS vs Vgs in saturation region for gate length of 0.24 µm, 0.18 µm, and

0.12 µm devices. IDS increases with scaling. Fig. 8.4 show cutoff frequency fT vs IDS and Vgs,

respectively. fT increases with decreasing gate length.
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Figure 8.4: fT vs (a) IDS , and (b) Vgs for gate length of 0.24 µm, 0.18 µm, and 0.12 µm devices.

Fig. 8.5 (a) shows Sid,i
∗
d

normalized by (W ·Nf ) vs IDS and Sid,i
∗
d

vs Vgs for gate length

of 0.24 µm, 0.18 µm, and 0.12 µm devices, respectively. Sid,i
∗
d

of 0.12 µm gate length device is
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the highest. The normalized Sid,i
∗
d

increases with scaling. gm normalized by (W ·Nf ) vs IDS is

shown in Fig. 8.5 (b) for gate length of 0.24 µm, 0.18 µm, and 0.12 µm devices. The normalized

gm increases with scaling.
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Figure 8.5: (a) Sid,i
∗
d
, and (b) gm normalized by (W · Nf ) vs IDS for gate length of 0.24 µm,

0.18 µm, and 0.12 µm devices.
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Fig. 8.6 shows γgm and γgd0 vs IDS for gate length of 0.24 µm, 0.18 µm, and 0.12 µm

devices. γgm and γgd0 do not necessarily increase or decrease with scaling, although normalized

Sid,i
∗
d

and gm increase with scaling as shown in Fig. 8.5.
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Figure 8.6: γgm and γgd0 vs IDS for gate length of 0.24 µm, 0.18 µm, and 0.12 µm devices.

8.4 Vds Dependence of Excess Noise Factor

Due to the limitation of measurement data, only gate length of 0.12 µm device and 0.24 µm

device are discussed here.

8.4.1 0.24 µm device, W = 4 µm, Nf = 128.

Fig. 8.7 (a) shows γid and γih vs IDS and Vgs at Vds = 0.2 V and 1.2 V for 0.24 µm device.

W = 4 µm, Nf = 128. γid is similar to but higher than γih for all biases. As Vds increases, both

γid and γih decrease. In section 6.7.1, modeling of γih is discussed for Vds = 0.2 and 1.2 V. γid can
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be similarly modeled.

γid = γid,0 + γid,1 · Vgs + γid,2 · Vgs
2, (8.3)

γid,0 = 8.1166, γid,1 = −19.5604 and γid,2 = 13.7592 for Vds = 0.2 V, and γid,0 = 0.0810,

γid,1 = 1.4981 and γid,2 = 0 for Vds = 1.2 V. Similar to analysis for γih , γid,0 and γid,2 increases

with decreasing Vds, while γid,1 decreases with decreasing Vds.
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Figure 8.7: γid and γih (a) vs IDS , and (b) vs Vgs at Vds = 0.2 V and 1.2 V for 0.24 µm device.
W = 4 µm, Nf = 128.
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8.4.2 0.12 µm Device, W = 5 µm, Nf = 30.

Fig. 8.8 shows IDS vs Vgs at Vds = 1 V and 1.5 V for 0.12 µm device. W = 5 µm, Nf =

30. IDS slightly increases with increasing Vds. Fig. 8.9 shows IDS vs Vds at Vgs = 0.7, 1.0 and

1.5 V. IDS does not increase much with increasing VDS for Vgs = 0.7 and 1.0 V. For Vgs = 1.5

V, IDS increases at lower VDS , then saturates at higher VDS .
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Figure 8.8: IDS vs Vgs at Vds = 1 V and 1.5 V for 0.12 µm device. W = 5 µm, Nf = 30.
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Figure 8.9: IDS vs Vds at Vgs = 0.7, 1.0 and 1.5 V for gate length of 0.12 µm device.
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Fig. 8.10 shows the Sid,i
∗
d
, γgm and γgd0 vs Vgs at Vds = 1 V and 1.5 V. Fig. 8.11 shows the

Sid,i
∗
d
, γgm and γgd0 vs IDS at Vds = 1 V and 1.5 V.
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Figure 8.10: (a) Sid,i
∗
d
, and (b)γgm and γgd0 vs Vgs at Vds = 1 V and 1.5 V for 0.12 µm device. W

= 5 µm, Nf = 30.

Fig. 8.12 (a) shows Sid,i
∗
d

vs Vds at Vgs = 0.7, 1.0 and 1.5 V. Sid,i
∗
d

is almost flat over Vds at

Vgs = 0.7 V. For Vgs = 1.0 and 1.5 V, however, Sid,i
∗
d

increases with increasing Vds. Higher the

Vgs, higher the slope of Sid,i
∗
d

– Vds curve. Fig. 8.12 (b) shows γgd0 vs Vds at Vgs = 0.7, 1.0 and

1.5 V for gate length of 0.12 µm device. γgd0 slightly increases with increasing Vds, and is the
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Figure 8.11: (a) Sid,i
∗
d
, and (b)γgm and γgd0 vs IDS at Vds = 1 V and 1.5 V for 0.12 µm device. W

= 5 µm, Nf = 30.

lowest for Vgs = 1 V. Fig. 8.12 (c) shows γgm vs Vds at Vgs = 0.7, 1.0 and 1.5 V for gate length

of 0.12 µm device. γgm is almost flat over Vds at Vgs = 0.7 and 1.0 V. For Vgs = 1.5 V, however,

γgm decreases in the linear region, then becomes flat in the saturation region.
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Figure 8.12: (a) Sid,i
∗
d
, (b) γgd0 , and (c) γgm vs Vds at Vgs = 0.7, 1.0 and 1.5 V for gate length of

0.12 µm device.
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8.4.3 Simulation Results on 50 nm Leff CMOS

In order to further investigate Vds dependence of Sid,i
∗
d
, γgd0 , and γgm , 50 nm Leff gate length

CMOS simulation results in chapter 6 are used. Fig. 8.13 shows Sid,i
∗
d
, γgd0 , and γgm vs Vgs at Vds

= 0.1 V to 1.0 V with step of 0.1 V. Sid,i
∗
d

and γgd0 increases with increasing Vds. γgm decreases

with increasing Vds.
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Figure 8.13: (a) Sid,i
∗
d
, (b) γgd0 , and (c) γgm vs Vgs at Vds = 0.1 V to 1.0 V with step of 0.1 V for

50 nm Leff CMOS simulation.
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Fig. 8.14 shows Sid,i
∗
d
, γgd0 , and γgm vs IDS at Vds = 0.1 V to 1.0 V with step of 0.1 V. Sid,i

∗
d

vs IDS almost does not change for Vds above 0.3 V.
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Figure 8.14: (a) Sid,i
∗
d
, (b) γgd0 , and (c) γgm vs IDS at Vds = 0.1 V to 1.0 V with step of 0.1 V for

50 nm Leff CMOS simulation.
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Fig. 8.15 shows simulation-model comparison of γgm vs IDS and vs Vgs at Vds = 0.1 V to

1.0 V with step of 0.1 V. γgm is modeled using (8.3). Excellent simulation-model agreement are

obtained. The Vds dependence of the model parameters γid,0, γid,1 and γid,2 are shown in Fig. 8.16.

γid,0 and γid,2 decreases as Vds increases. γid,1 increases as Vds increases. The simulation results

complies with the measurement data analysis for the above 0.24 µm device.
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Figure 8.15: γgm (a) vs IDS , and (b) vs Vgs at Vds = 0.1 V to 1.0 V with step of 0.1 V for 50 nm
Leff CMOS simulation.
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γid,2, γid,1, and γid,0 can be further modeled as function of Vds.

γid,2 = 10[−0.4475(log10 Vds)4−1.7225(log10 Vds)3−2.5302(log10 Vds)2−2.8588(log10 Vds)−0.3274], (8.4)

γid,1 = 10[−0.1552(log10 Vds)4−0.3067(log10 Vds)3−0.2801(log10 Vds)2−0.0093(log10 Vds)+1.5063] − 30, (8.5)

γid,0 = 10[−0.0698(log10 Vds)2−0.6374(log10 Vds)−0.5782]. (8.6)

The calulations using model equations (8.4) – (8.6) are compared to model parameters γid,2, γid,1,

and γid,0 in Fig. 8.16. Excellent agreement has been achieved. Therefore, γgm at certain Vds and

Vgs can be modeled using 14 constant coefficients in (8.4) – (8.6), together with (8.3).
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Figure 8.16: γid,0, γid,1 and γid,2 vs Vds for 50 nm Leff CMOS simulation.
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8.5 Noise Parameter Equations

Fig. 8.17 shows a simplified MOSFET equivalent circuit including gate resistance noise and

drain current noise. The Y matrix of the intrinsic device is denoted by Y intr. We first consider

only the intrinsic MOSFET without Rg , and consider only the drain current noise id.

V1

I2I1

V2
id

- +

Rg
4kTRg

Y

+ 

- 
Cgs

gmvgs

Cgd

vgs

Yintr

Figure 8.17: MOSFET equivalent circuit with drain current noise and gate resistance noise.

We first convert id into va and ia, input voltage and current,

va = −
id

Y intr
21

, (8.7)

ia = −
id

hintr21

. (8.8)

222



For the dashed box in Fig. 8.17,

Y intr
21 ≈ gm, (8.9)

Y intr
11 = jωCi, (8.10)

hintr21 =
Y intr

21

Y intr
11

=
gm

jωCi
=

1
j

fT
f
, (8.11)

where Ci = Cgs + Cgd, and fT is cutoff frequency. The PSDs of va, ia and their correlation are

then obtained as

Sva,v
∗
a
=

< va, v
∗
a >

∆f
=

Sid,i
∗
d

|Y intr
21 |2

≈
Sid,i

∗
d

g2
m

, (8.12)

Sia,i
∗
a
=

< ia, i
∗
a >

∆f
=

Sid,i
∗
d

|hintr21 |2
≈
(

f

fT

)2

Sid,i
∗
d
, (8.13)

Sia,v
∗
a
=

< ia, v
∗
a >

∆f
=

Sid,i
∗
d

|Y intr
21 |2

Y intr
11 ≈ j

f

fT
·
Sid,i

∗
d

gm
. (8.14)

Now we add the gate resistance as shown in Fig. 8.17. The primary effect is an increase in

Sva,v
∗
a
,

Sva,v
∗
a
≈

Sid,i
∗
d

|Y intr
21 |2

+ 4kTRg ≈
Sid,i

∗
d

g2
m

+ 4kTRg. (8.15)
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Sva,v
∗
a
, Sia,i

∗
a
, and Sia,v

∗
a

can then be used to calculate NFmin, Rn and Yopt using standard

equations in [11] as

NFmin = 10 log10



1 +
f

fT

√

Sid,i
∗
d

kT
Rg



 , (8.16)

Rn =
γgm
gm

+ Rg =
Sid,i

∗
d
/4kT

g2
m

+ Rg, (8.17)

Gopt = gm
f

fT
·

√

γgmgmRg

γgm + gmRg
, (8.18)

Bopt = −gm
f

fT
·

γgm
γgm + gmRg

. (8.19)

Zopt = Ropt + jXopt is also calculated from 1/Yopt as

Ropt =
fT
f

√

Rg

γgmgm
=

gm
2πfCi

4kT
Sid,i

∗
d

·
√

Rg, (8.20)

Xopt =
fT
f

·
1
gm

=
1/2π
fCi

, (8.21)

Note that γgm appears directly in the Rn, Ropt, and Xopt expressions. We can also write the NFmin

expression (8.16) by replacing Sid,i
∗
d

with 4kTγgmgm,

NFmin = 10 log10

(

1 + 2
√

γgm
f

fT

√

gmRg

)

. (8.22)
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8.6 Comparison with Fukui’s Equations

Based on experimental data in GaAs MESFETs, Fukui proposed the following empirical

equations [31] [32]

NFmin = 10 log10

(

1 +Kf
f

fT

√

gmRg

)

, (8.23)

Rn =
K2

g2
m

, (8.24)

Ropt = K3

(

1
4gm

+ Rg

)

, (8.25)

Xopt =
K4

fCgs
, (8.26)

where Kf , K2, K3 and K4 were proposed to be bias independent and channel length independent

[31]. Rn was later modified in [33] as

Rn =
Kn

2

gm
, (8.27)

where Kn
2 = 0.8.

An inspection of (8.23) and (8.22) immediately shows:

Kf = 2
√

γgm , (8.28)

which gives a meaning to Fukui’s noise figure coefficient. For long channel device operating in

saturation region (strong inversion), γgm = γgd0 = 2/3 [15], and Kf = 1.633. This is close to the

empirical Kf = 2 in [31] and [32], which was also proposed to be channel length independent

at the minimum NFmin bias point [31]. This is not the case for short channel CMOS, in which
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Kf = 2√γgm becomes strongly bias dependent, as shown in Fig. 8.2. The bias dependence of

γgm is primarily due to the strong bias dependence of gd0/gm in short channel devices, as was

shown in Fig. 8.1. This indicates that there does not exist a bias independent or channel length

independent universal Fukui’s noise figure coefficient for RF CMOS. We therefore cannot use

(8.23) for low-noise optimization, as was done in [31] and [40].

Comparing (8.24), (8.27) and (8.17),

K2 =
Sid,i

∗
d

4kT
= γgmgm, (8.29)

Kn
2 =

Sid,i
∗
d

4kTgm
= γgm (8.30)

for gm related terms. The Rg term was not included in Fukui’s Rn equation because of the low

Rg due to the use of metal gate in MESFETs, but is important for CMOS. Clearly neither Sid,i
∗
d

nor γgm is a constant. Instead, both Sid,i
∗
d

and γgm should be bias and channel length dependent.

A comparison of (8.25) and (8.20) shows that the inverse frequency dependence is not

considered in Fukui’s Ropt equation. A comparison of (8.26) and (8.21) shows

K4 = 1/2π, (8.31)

which is indeed a constant. Note that Cgd was not included in (8.26). Table I summarizes the

“physical meanings” of K1 – K4.

8.7 Model Validation

For validation, we compare measured and simulated noise parameters. Here we use the 8

finger device as an example. S-parameters and noise parameters are measured from 2 to 20 GHz.
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Table 8.1: Comparison of Fukui empirical constants with our derivation.
Empirical equations [31] [32] Our derivation

NFmin Kf = 2 2√γgm
Rn K2

Sid,i
∗
d

4kT = γgmgm
Kn

2 = 0.8 [33] γgm
(Rg not included) (Rg included)

Ropt K3
4g2

m

√
Rg

2πfCiγgm (1+4gmRg )

(f independent) (f dependent)
Zopt K4 1/2π

(Cgd not included) (Cgd included)

Vds is fixed at 1.5V, and Vgs is swept. Rg , gm, and fT are extracted from y-parameters. The Rs

and Rd extracted from dc measurements are negligibly small. Sid,i
∗
d

is extracted from measured

NFmin, Rn, and Yopt through standard noise de-embedding [43] [11].

For each parameter, comparisons are shown in Fig. 8.18 as a function of frequency at a fixed

Vgs of 0.7 V, and then in Fig. 8.19 as a function of bias at a fixed frequency of 5 GHz. Good

model-data correlation is achieved for both bias and frequency dependence of NFmin. A fairly

good correlation between model and data is observed for both bias and frequency dependence

of Rn. Rn is flat over frequency. With increasing Vgs, Rn decreases first and then stays nearly

constant, as expected from (8.17). Fairly good model-data correlation is observed for both bias

and frequency dependence of Gopt. Gopt is positive and linearly increases with frequency, as

expected from (8.18). Gopt is only weakly dependent on Vgs after gm and fT reach their peaks.

A larger discrepancy is observed at higher frequencies, which is related to the use of a simplified

equivalent circuit model. For frequencies below 5 GHz, the intended RF design frequencies for

a 0.18 µm process, the model still works reasonably well over all biases.
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Figure 8.18: Model-data comparison of noise parameters vs frequency. Vgs = 0.7 V, Vds = 1 V.

8.8 Figure-of-Merit for NFmin

An inspection of (8.16) shows that it is the absolute value of the drain current noise Sid,i
∗
d

that fundamentally determines NFmin. The Fukui’s noise figure coefficient, the Kf factor, which

is historically used as a figure-of-merit for comparing the noise figure capability of different

technologies, is less applicable to CMOS, as it is strongly bias dependent through γgm .

Similarly, the γgm excess noise factor cannot be used as a figure-of-merit for measuring the

minimum noise figure capability of a technology, even though it appears in (8.22). The product

of γgm and gm simply leads us back to Sid,i
∗
d
. One can also decompose Sid,i

∗
d

into the product of

γgd0 and gd0, however, it is the Sid,i
∗
d

value that matters.
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Figure 8.19: Model-data comparison of noise parameters vs Vgs, f = 5 GHz, Vds = 1 V.

To propose a figure-of-merit for measuring the intrinsic transistor low noise capability, we

rewrite (8.16) as

Fmin − 1 = f ·KNF ·

√

Wtotal ·Rg

kT
, (8.32)

where KNF is the proposed new figure-of-merit for NFmin

KNF =

√

Sid,i
∗
d
/Wtotal

fT
, (8.33)

and Wtotal is the total device width, Wtotal = W ×Nf . The normalization to Wtotal is made to

make KNF device width independent. The
√

WtotalRg term can be minimized through layout
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techniques, while the KNF factor represents the noise capability of the intrinsic device, and

essentially represents the amount of noise current generated in order to achieve one GHz fT .

Fig. 8.20 show
√

Sid,i
∗
d
/(W · Nf ), fT , and the KNF factor vs log scale IDS and linear

scale IDS respectively for the 0.18 µm process. Similarly, Fig. 8.21 show
√

Sid,i
∗
d
/(W · Nf ),

fT , and the KNF factor vs IDS for the 0.25 µm process, the 0.18 µm process, and the 0.12

µm process. Different normalizations are used to plot all quantities on the same scale. The

same noise measurements were made on the 0.25 µm process and 0.12 µm process, from which

Sid,i
∗
d

was extracted. Observe that with increasing IDS , both fT and Sid,i
∗
d

increase, as expected.

The KNF factor, which is a direct indicator of NFmin, decreases rapidly first as the device turns

on, reaches a minimum at a moderate IDS when Vgs is slightly above threshold voltage. This

corresponds to the bias for minimum NFmin, at which the lowest amount of noise is generated

for one GHz fT , or the same amount of fT is achieved with the least amount of noise.

With technology scaling, both Sid,i
∗
d

and fT increase as shown in Fig. 8.22 (a) and (b).

Only when the fT increase dominates over the Sid,i
∗
d

increase, NFmin improves (decreases) with

scaling. This differs from the conventional wisdom that a higher fT in scaled device directly

leads to improved NFmin, a result from Fukui’s empirical NFmin equation. Fig. 8.22 (c) compares

the KNF factor of the 0.25 µm process, 0.18 µm process and 0.12 µm process. Indeed, the KNF

factor, which directly determines intrinsic device NFmin, decreases (improves) with technology

scaling from 0.25 µm, 0.18 µm to 0.12 µm, because the fT increase with scaling dominates the

drain current noise increase with scaling. The KNF factor does not include the Rg ·Wtotal effect

by design to measure only intrinsic device noise figure. The Rg ·Wtotal term in (8.32), however,

can increase with scaling in a silicided poly gate process, which may ultimately limit overall

device NFmin, as detailed below. In order to compare technologies with different gate material
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or devices with different layout, we define another noise figure-of-merit to include the effect of

Rg ·Wtotal,

KNF,Rg =
1
fT

√

Sid,i
∗
d

kT
Rg = KNF

√

RgWtotal

kT
, (8.34)

and

Fmin = 1 + f ·KNF,Rg . (8.35)

Fig. 8.23 compares the KNF,Rg of three devices, one from the 0.18 µm process with W = 10

µm, Nf = 8, and the other two from the 0.25 µm process with W = 4 µm, Nf = 128, and

the 0.12 µm process with W = 5 µm, Nf = 30. Note that the gate finger width is much larger

for the 0.18 µm device. Rg · Wtotal is 2000 Ωµm for the 0.18 µm device, 307.2 Ωµm for the

0.25 µm device, and 780 Ωµm for the 0.12 µm device. Even though KNF , a measure of the

intrinsic device noise, is smaller in the 0.18 µm device, KNF,Rg and hence NFmin are higher in

the 0.18 µm device, because of the much smaller Rg ·Wtotal. The combination of a smaller gate

length L and a larger gate finger width W results in the higher Rg ·Wtotal in the 0.18 µm device,

despite reduced gate sheet resistance (10.8 Ω/2 for 0.18µm processes, 13.8 Ω/2 for 0.25 µm

processes, and 11.2 Ω/2 for 0.12 µm processes). A smaller finger gate width, e.g. 2 µm, should

be used to decrease KNF,Rg and hence NFmin of the 0.18 µm device.
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Figure 8.20:
√

Sid,i
∗
d
/(W · Nf ), fT , and KNF vs (a) log scale IDS , and (b) linear scale IDS for

the 0.18 µm process, with Sid,i
∗
d

in unit of A2/Hz, W in unit of µm, fT in unit of GHz, and KNF

in unit of A/
√

µmHz3.

232



0 100 200 300 400 500
0

1

2

3

4

x 10
−22

I
DS

    (µA/µm)(S
id

,id
*/(

W
⋅ N

f)
)1/

2 × 
10

−1
0 , f

T
× 

10
−2

3 , a
n

d
 K

N
F

(S
id,id*

/(W⋅ Nf))1/2× 10−10 

K
NF

 

f
T
× 10−23 

L = 0.24 µm, W = 4 µm, Nf = 128 

(a)

0 20 40 60 80 100 120 140 160 180 200
10

−23

10
−22

10
−21

I
DS

    (µA/µm)(S
id

,id
*/(

W
⋅ N

f)
)1/

2 × 
10

−1
0 , f

T
× 

10
−2

3 , a
n

d
 K

N
F

L = 0.18 µm, W = 10 µm, Nf = 8 

(S
id,id*

/(W⋅ Nf))1/2× 10−10 

f
T
× 10−23 

K
NF

 

(b)

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

x 10
−22

I
DS

    (µA/µm)(S
id

,id
*/(

W
⋅ N

f)
)1/

2 × 
10

−1
0 , f

T
× 

10
−2

3 , a
n

d
 K

N
F

(S
id,id*

/(W⋅ Nf))1/2× 10−10 

K
NF

 

f
T
× 10−23 

L = 0.12 µm, W = 5 µm, Nf = 30 

(c)

Figure 8.21:
√

Sid,i
∗
d
/(W · Nf ), fT , and KNF vs IDS for (a) the 0.25 µm process, (b) the 0.18

µm process, and (c) the 0.12 µm process, with Sid,i
∗
d

in unit of A2/Hz, W in unit of µm, fT in

unit of GHz, and KNF in unit of A/
√

µmHz3.
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Figure 8.22: (a)
√

Sid,i
∗
d
/(W · Nf ), (b) fT , and (c) KNF vs IDS comparison between a 0.25 µm

process, a 0.18 µm process, and a 0.12 µm process.
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Figure 8.23: KNF,Rg vs IDS comparison between a 0.18 µm process device with W = 10 µm, a
0.25 µm process device with W = 4 µm, and a 0.12 µm process device with W = 5 µm.

8.9 Summary

The difference between gd0 and gm referenced excess noise factors in CMOS transistors is

examined. The technology scaling are discussed for 0.25 µm process, 0.18 µm process and 0.12

µm process. A simple set of analytical equations for NFmin, Rn and Yopt (or Zopt) is derived.

The equations are compared with Fukui’s empirical noise equations to identify the physical

meanings of various Fukui “constants,” and validated using experimental data. The results show

that there does not exist a bias independent or channel length independent Fukui’s coefficient for

the well known NFmin equation. Instead, the amount of drain current noise produced to achieve

one GHz fT fundamentally determines the NFmin of the intrinsic device, and can be used as

a figure-of-merit to better measure the intrinsic noise figure capability of a technology. With
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technology scaling from 0.25 µm to 0.18 µm, both fT and drain current noise increase. The fT

increase, however, dominates over the drain current noise increase, thus improving the minimum

noise figure of the intrinsic device. Another figure-of-merit is proposed to include the effect of

gate resistance which facilitates layout optimization for low noise and evaluation of the relevant

importance of gate resistance noise with respect to drain current noise in determining NFmin.
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CHAPTER 9

CONCLUSIONS

In this dissertation, detailed information about RF bipolar and CMOS noise in terms of

device physics were provided. To achieve these goals, this dissertation has tackled various areas

including microscopic noise simulation, Ge profile optimization in SiGe HBT device, noise

characterization, and compact noise modeling.

Chapter 1 gave an introduction of definitions and classifications of RF device noise and

noise parameters. Review of RF bipolar and CMOS noise models and the intrinsic noise sources

in RF bipolar and CMOS devices was also given in chapter 1. Different noise representations

for a linear noisy two-port network were introduced in chapter 2. The transformation matri-

ces to other noise representations were given for ABCD-, Y-, Z-, and H- noise representations.

Techniques of adding or de-embedding a passive component to a linear two-port network were

discussed. Noise sources de-embedding for both MOSFET and SiGe HBT were given for re-

peatedly use in later chapters.

In chapter 3, a new technique of simulating the spatial distribution of microscopic noise

contribution to the input noise current, voltage, as well as their cross-correlations were presented.

The technique was first demonstrated on a 50 GHz SiGe HBT. The spatial contributions by base

majority holes, base minority electrons, and emitter minority holes were analyzed, and compared

to results from a compact noise model. A strong crowding effect was observed in the spatial

distribution of noise concentrations due to base majority holes. The results suggest that 2D

distributive effect needs to be taken into account in future compact noise model development.

The technique was also applied to a 46 nm Leff MOSFET transistor. The spatial distribution of
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the Y- noise representation parameters CSig ,i
∗
g
, CSid,i

∗
d
, <(CSig ,i

∗
d
) and =(CSig ,i

∗
d
) were analyzed.

The region under the gate near the source side is the most important for all of the Y- noise

representation parameters.

Bipolar transistor noise modeling for each physical noise source using microscopic noise

simulation were examined in chapter 4. Regional analysis was performed for the chain repre-

sentation noise parameters. The base majority hole noise contribution was shown to be larger

than modeled using 4kTrb and frequency dependent for all noise parameters. The 2qIB related

terms underestimates the emitter hole noise, especially for higher frequencies. The base minor-

ity electron contribution is poorly modeled by the 2qIC related terms for all noise parameters,

particularly for higher JC required for high speed. Further, regional analysis for intrinsic transis-

tor input and output noise current was performed. The input noise current consists not only the

emitter hole contribution corresponding to 2qIB, but also the base electron and hole contribution

which are frequency dependent and should be counted for especially at high frequencies. At

higher JC , the output noise current consists not only the base electron contribution correspond-

ing to 2qIC , but also the base hole contribution that not counted for in the compact noise model.

Moreover, the frequency dependence of base electron contribution is not described. The corre-

lation term which is not modeled in the compact noise model should be considered for higher

JC and higher frequency. Chapter 4 also compared the intrinsic transistor input and output noise

current with a noise model that derived from the transport theory of density fluctuations that

applied to three dimensional device. The comparison showed that this model has a better de-

scription of frequency dependence than the compact noise model at low bias. However, as for

higher JC , it has no advantage over the compact noise model.
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RF noise physics in advanced SiGe HBTs using microscopic noise simulation was explored

in chapter 5. SiGe profile primarily affects the minimum noise figure through the input noise

current, and identified the small region near the EB junction as where most of the input noise

current originates. A higher Ge gradient in this region helps reducing the impedance field for

the input noise current. At constant SiGe film stability, increasing the Ge gradient in the noise

critical region ultimately necessitates retrograding of Ge inside the neutral base, and the gradient

of such Ge retrograding needs to be optimized within stability limit to minimize high injection

fT rolloff degradation. An example of successful SiGe profile optimization using unconventional

Ge retrograding inside the base was presented.

In chapter 6, microscopic RF noise simulation results on 50 nm Leff CMOS devices were

presented, and the compact modeling of intrinsic noise sources for both the Y-representation

and the H-representation were examined. The correlation was shown to be smaller for the H-

representation than for the Y-representation. For practical biasing currents and frequencies, the

correlation is negligible for H-representation. Models for the noise sources were suggested. Fur-

thermore, the relations between the Y- and H-noise representations for MOSFETs were exam-

ined , and the importance of correlation for both representations were quantified. The theoretical

values of αvh , γih and cH were derived for the first time for long channel devices, αvh = 4/3,

γih = 0.6, a = 0.2458, and b = 0. cH is shown theoretically to have a zero imaginary part. It was

further shown that Y-representation is a better choice for Rn, and the H-representation has the

inherent advantage of a more negligible correlation for NFmin, Gopt, and Bopt. Overall, the im-

portance of correlation is much more negligible for H-representation than for Y-representation.

This makes circuit design and simulation easier. Chapter 6 also presented experimental extrac-

tion and modeling of H-representation noise sources in a 0.25 µm RF CMOS process. Excellent
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agreement was achieved between modeled and measured noise data, including all noise param-

eters, for the whole bias range, from 2 to 26 GHz. The results suggest a new path to RF CMOS

noise modeling.

An anomalous frequency dependence and bias dependence of <(h11) was observed in chap-

ter 7. <(h11) decreases with frequency, and increases with Vgs at low biases. It was shown that

both the frequency dependence and bias dependence can be understood by considering the gate-

to-body capacitance and the parasitic gate-to-source capacitances as capacitances in parallel with

the series combination of the NQS resistance and inversion capacitance Cgs. A new parameter

extraction method was developed to separate the physical gate resistance and the NQS channel

resistance. The modeling results showed excellent agreement with data, and suggest the impor-

tance of modeling NQS effect for RF CMOS even at frequencies well below fT of the technol-

ogy. The proposed model parameter extraction method can be used to facilitate MOSFET noise

modeling and more accurate Y-parameter modeling over a wide bias range.

The difference between gd0 and gm referenced excess noise factors in CMOS transistors

was examined in chapter 8. The technology scaling were discussed for 0.25 µm process, 0.18

µm process and 0.12 µm process. A simple set of analytical equations for NFmin, Rn and Yopt

(or Zopt) was derived. The equations were compared with Fukui’s empirical noise equations to

identify the physical meanings of various Fukui “constants,” and validated using experimental

data. The results showed that there does not exist a bias independent or channel length indepen-

dent Fukui’s coefficient for the well known NFmin equation. Instead, the amount of drain current

noise produced to achieve one GHz fT fundamentally determines the NFmin of the intrinsic de-

vice, and can be used as a figure-of-merit to better measure the intrinsic noise figure capability

of a technology. With technology scaling from 0.25 µm to 0.18 µm, both fT and drain current
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noise increase. The fT increase, however, dominates over the drain current noise increase, thus

improving the minimum noise figure of the intrinsic device. Another figure-of-merit is proposed

to include the effect of gate resistance which facilitates layout optimization for low noise and

evaluation of the relevant importance of gate resistance noise with respect to drain current noise

in determining NFmin.
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[9] Andreas Pascht, Markus Gröing, Dirk Wiegner, and Manfred Berroth, “Small-signal and
temperature noise model for MOSFETs,” IEEE Transactions on Microwave Theory and
Techniques, vol. 50, no. 8, pp. 1927–1934, Aug. 2002.

[10] J.D. Cressler and G.F. Niu, Silicon-Germanium heterojunction bipolar transistors, Artech
House, 2003.

[11] H.A. Haus, W.R. Atkinson, W.H. Fonger, W.W. Mcleod, G.M. Branch, W.A. Harris, E.K.
Stodola, W.B. Davenport Jr., S.W. Harrison, and T.E. Talpey, “Representation of noise in
linear twoports,” Proceeding of IRE, vol. 48, pp. 69–74, 1960.

242



[12] Yan Cui, Guofu Niu, and D.L. Harame, “An examination of bipolar transistor noise mod-
eling and noise physics using microscopic noise simulation,” Proceeding of IEEE Bipo-
lar/BiCMOS Circuit and Technology, pp. 225–228, Sept. 2003.

[13] K.M. Van Vliet, “General Transistor Theory of Noise in PN Junction-Like Devices—I.
Three-Dimensional Green’s Function Formulation,” Solid-State Electronics, vol. 15, no.
10, pp. 1033–1053, Oct. 1972.

[14] A. van der Ziel, “Thermal noise in field effect transistors,” Proc. IRE, vol. 50, pp. 1808–
1812, Aug. 1962.

[15] A. van der Ziel, Noise in Solid-State Devices and Circuits, John Wiley & Sons, 1986.

[16] F.M. Klaassen and J. Prins, “Thermal noise of MOS transistors,” Philips Res. Rep., vol.
22, pp. 505–514, 1967.

[17] A. van der Ziel, Noise Sources, Characterization, Measurement, Englewood Cliffs, NJ:
Prentice-Hall, 1970.

[18] Yannis Tsividis, Operation and Modeling of The CMOS Transistor, McGraw-Hill, 2
edition, 1999.

[19] C.H. Chen and M.J. Deen, “High frequency noise of MOSFETs i modeling,” Solid State
Electron, vol. 42, pp. 2069–2081, 1998.

[20] J.C.J. Paasschens, A.J. Scholten, and R. van Langevelde, “Generalizations of the Klaassen-
Prins equation for calculating the noise of semiconductor devices,” IEEE Transactions on
Electron Devices, vol. 52, pp. 2463–2472, Nov. 2005.

[21] F. Bonani and G. Ghione, Noise in Semiconductor Devices, Berlin, Germany: Springer-
Verlag, 2001.

[22] K.M. Van Vliet, A. Friedmann, R.J.J. Zijlstra, A. Gisolf, and A. van der Ziel, “Noise in
single injection diodes. I. A survey of methods,” Journal of Applied Physics, vol. 46, pp.
1804–1813, 1975.

[23] K.M. Van Vliet, A. Friedmann, R.J.J. Zijlstra, A. Gisolf, and A. van der Ziel, “Noise in
single injection diodes. II. Applications,” Journal of Applied Physics, vol. 46, pp. 1814–
1823, 1975.

[24] D.K. Ferry, J.R. Barker, and C. Jacoboni, Physics of Nonlinear Transport in Semiconduc-
tors, New York: Plenum, 1980.

[25] J.P. Nougier, “Fluctuations and noise of hot carriers in semiconductor materials and de-
vices,” IEEE Transactions on Electron Devices, vol. 41, no. 12, pp. 2035–2049, Dec. 1994.

243



[26] C. H. Chen and M. J. Deen, “Channel noise modeling of deep-submicron MOSFETs,”
IEEE Transactions on Electron Devices, vol. 49, no. 8, pp. 1484–1487, Aug. 2002.

[27] M. W. Pospieszalski, “Modeling of noise parameters of MESFET’s and MODFET’s and
their frequency and temperature dependence,” IEEE Transactions on Microwave Theory
and Techniques, vol. 37, no. 9, pp. 508–509, Sept. 1989.

[28] A. Litwin, “Overlooked interfacial silicide-polysilicon gate resistance in MOS transistors,”
IEEE Transactions on Electron Devices, vol. 48, pp. 2179–2181, 2001.

[29] Takaaki Tatsumi, “Geometry Optimization of Sub-100nm Node RF CMOS Utilizing Three
Dimensional TCAD Simulation,” IEEE European Solid-State Device Research Confer-
ence, pp. 319–322, Sept. 2006.

[30] A. Scholten, L.F. Tiemeijer, R. van Langevelde, R.J. Havens, A.T.A. Zegers-van Duijn-
hoven, and V.C. Venezia, “Noise modeling for RF CMOS circuit simulation,” IEEE Trans-
actions on Electron Devices, vol. 50, no. 3, pp. 618–632, Mar. 2003.

[31] Hatsuaki Fukui, “Optimal noise figure of microwave GaAs MESFET’s,” IEEE Transac-
tions on Electron Devices, vol. 26, no. 7, pp. 1032–1037, July 1979.

[32] Hatsuaki Fukui, “Design of microwave GaAs MESFET’s for broad-band low-noise am-
plifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 7, pp.
643–650, July 1979.

[33] Hatsuaki Fukui, “Addendum to “design of microwave GaAs MESFET’s for broad-band
low-noise amplifiers”,” IEEE Transactions on Microwave Theory and Techniques, vol. 29,
no. 10, pp. 1119, Oct. 1981.

[34] M.C. King, M.T. Yang, C.W. Kuo, Yun Chang, and A. Chin, “RF noise scaling trend
of MOSFETs from 0.5 µm to 0.13 µm technology nodes,” IEEE MTT-S International
Microwave Symposium Digest, vol. 1, pp. 9–12, June 2004.

[35] S. Tehrani, V. Nair, C. E. Weitzel, and G. Tam, “The effects of parasitic capacitance on
the noise figure of MESFETs,” IEEE Transactions on Electron Devices, vol. 35, no. 5, pp.
703–706, May 1988.

[36] C. L. Lau, M. Feng, T. R. Lepkowski, G. W. Wang, Y. Chang, and C. Ito, “Half-micrometer
gate-length ion-implanted GaAs MESFET with 0.8-dB noise figure at 16 GHz,” IEEE
Electron Device Letters, vol. 10, no. 9, pp. 409–411, Sept. 1989.

[37] Lawrence E. Larson, “Silicon technology tradeoffs for radio-frequency/mixed-signal
“systems-on-a-chip”,” IEEE Transactions on Electron Devices, vol. 50, no. 3, pp. 683–
699, Mar. 2003.

244



[38] J.-C. Guo and Y.-M. Lin, “A new lossy substrate de-embedding method for sub-100 nm
RF CMOS noise extraction and modeling,” IEEE Transactions on Electron Devices, vol.
53, no. 2, pp. 339–347, Feb. 2006.

[39] C. Enz, “An CMOS transistor model for RF IC design valid in all regions of operation,”
IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 342–359, Jan.
2002.

[40] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge
University Press, Dec. 2003.

[41] Tajinder Manku, “Microwave CMOS–device physics and design,” IEEE Journal of Solid-
State Circuits, vol. 34, no. 3, pp. 277–285, Mar. 1999.

[42] M. Reisch, High-Frequency Bipolar Transistors, Springer, 2003.

[43] H. Hillbrand and P. Russer, “An efficient method for computer aided noise analysis of
linear amplifier networks,” IEEE Transactions on Circuits and Systems, vol. 23, no. 4, pp.
235–238, Apr. 1976.

[44] TAURUS, 2-D Device Simulator, Synopsys.

[45] DESSIS, 2-D Device Simulator, version 9.0, Synopsys.

[46] W.M.C. Sansen and R.G. Meyer, “Characterization and measurement of the base and
emitter resistances of bipolar transistors,” IEEE Journal of Solid-State Circuits, vol. 7,
pp. 492–498, Dec. 1972.

[47] G.F. Niu, W.E. Ansley, S. Zhang, J.D. Cressler, C.S. Webster, and R.A. Groves, “Noise
parameter optimization of UHV/CVD SiGe HBT’s for RF and microwave applications,”
IEEE Transactions on Electron Devices, vol. 46, no. 8, pp. 1589–1598, Aug. 1999.

[48] W. Shockley, J.A. Copeland, and R.P. James, “The impedance field method of noise calcu-
lation in active semiconductor devices,” in Quantum theory of atoms, molecules, and the
solid-state. 1966, pp. 537–563, Academic Press.

[49] D.L. Harame, J.H. Comfort, J.D. Cressler, E.F. Crabbé, J.Y.-C. Sun, B.S. Meyerson, and
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APPENDIX A
MATLAB PROGRAMMING FOR OPEN-SHORT DEEMBEDDING IN CHAPTER 2

correction = 1; % correction = 0: matrix operation; 1: correction

k=1.38e-23;

To=290;

T=295;

dut = load(’DUT_Vgp685_Vd1p5_Fswp_DELSP’);

noise = load(’DUT_Vgp685_Vd1p5_Fswp_DELNP’);

open = load(’DUT_OPEN_840step2_SP.s2p’);

short = load(’DUT_SHORT_840step2_SP.s2p’);

for i=1:17

% S-parameters of the device:

fre(i)=dut(i,1);

mag=dut(i,2);

deg=dut(i,3)/180*pi;

s(1,1)=mag*(cos(deg)+j*sin(deg));

mag=dut(i,4);

deg=dut(i,5)/180*pi;

s(2,1)=mag*(cos(deg)+j*sin(deg));

mag=dut(i,6);

deg=dut(i,7)/180*pi;

s(1,2)=mag*(cos(deg)+j*sin(deg));

mag=dut(i,8);

deg=dut(i,9)/180*pi;

s(2,2)=mag*(cos(deg)+j*sin(deg));

% convert s-parameter to Y parameters

temp=50*((1+s(1,1))*(1+s(2,2))-s(1,2)*s(2,1));

y(1,1)=((1-s(1,1))*(1+s(2,2))+s(1,2)*s(2,1))/temp;

y(1,2)=-2*s(1,2)/temp;

y(2,1)=-2*s(2,1)/temp;

y(2,2)=((1+s(1,1))*(1-s(2,2))+s(1,2)*s(2,1))/temp;

% S-parameters of the open:

mag=open(i,2);

deg=open(i,3)/180*pi;

s(1,1)=mag*(cos(deg)+j*sin(deg));

mag=open(i,4);

deg=open(i,5)/180*pi;

s(2,1)=mag*(cos(deg)+j*sin(deg));
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mag=open(i,6);

deg=open(i,7)/180*pi;

s(1,2)=mag*(cos(deg)+j*sin(deg));

mag=open(i,8);

deg=open(i,9)/180*pi;

s(2,2)=mag*(cos(deg)+j*sin(deg));

% convert s-parameter to Y parameters

temp=50*((1+s(1,1))*(1+s(2,2))-s(1,2)*s(2,1));

y_open(1,1)=((1-s(1,1))*(1+s(2,2))+s(1,2)*s(2,1))/temp;

y_open(1,2)=-2*s(1,2)/temp;

y_open(2,1)=-2*s(2,1)/temp;

y_open(2,2)=((1+s(1,1))*(1-s(2,2))+s(1,2)*s(2,1))/temp;

% S-parameters of the Short:

mag=short(i,2);

deg=short(i,3)/180*pi;

s(1,1)=mag*(cos(deg)+j*sin(deg));

mag=short(i,4);

deg=short(i,5)/180*pi;

s(2,1)=mag*(cos(deg)+j*sin(deg));

mag=short(i,6);

deg=short(i,7)/180*pi;

s(1,2)=mag*(cos(deg)+j*sin(deg));

mag=short(i,8);

deg=short(i,9)/180*pi;

s(2,2)=mag*(cos(deg)+j*sin(deg));

% convert s-parameter to Y parameters

temp=50*((1+s(1,1))*(1+s(2,2))-s(1,2)*s(2,1));

y_short(1,1)=((1-s(1,1))*(1+s(2,2))+s(1,2)*s(2,1))/temp;

y_short(1,2)=-2*s(1,2)/temp;

y_short(2,1)=-2*s(2,1)/temp;

y_short(2,2)=((1+s(1,1))*(1-s(2,2))+s(1,2)*s(2,1))/temp;

% 2. read in noise parameters of DUT

NFmin=noise(i,2);

NFmin_old(i)=NFmin;

NFmin=10^(NFmin/10.);

Rn=noise(i,5)*50;

Rn_old(i)=Rn;

mag=noise(i,3);

deg=noise(i,4)/180*pi;

Gama_opt=mag*(cos(deg)+j*sin(deg));

% convert the Gama_opt to Y_opt

Zopt=50*(1+Gama_opt)/(1.-Gama_opt);
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Yopt=1./Zopt;

re_Yopt_old(i)=real(Yopt);

im_Yopt_old(i)=imag(Yopt);

% 3. Caluculate correlation matrix

Ca_dut(1,1)=Rn;

Ca_dut(1,2)=(NFmin-1)/2-Rn*conj(Yopt);

Ca_dut(2,1)=(NFmin-1)/2-Rn*Yopt;

Ca_dut(2,2)=Rn*abs(Yopt)*abs(Yopt);

Ca_dut=Ca_dut*2*k*To;

% 4. convert the Ca matrix into its Cy correlation matrix

T_dut=[-y(1,1) , 1; -y(2,1), 0];

%----------------------------------------------------------------------------

switch correction

case 0

Cy_dut=T_dut*Ca_dut*(T_dut’);

case 1

% Yan’s correction

T_dut_conj_trans = T_dut’;

Cy_dut(1,1) = (abs(T_dut(1,1)))^2*Ca_dut(1,1) ...

+ (abs(T_dut(1,2)))^2*Ca_dut(2,2)...

+ 2*real(T_dut_conj_trans(1,1)*T_dut(1,2)*Ca_dut(2,1));

Cy_dut(1,2) = T_dut(1,1)*T_dut_conj_trans(1,2)*Ca_dut(1,1)...

+T_dut(1,2)*T_dut_conj_trans(1,2)*Ca_dut(2,1)...

+T_dut(1,1)*T_dut_conj_trans(2,2)*Ca_dut(1,2)...

+T_dut(1,2)*T_dut_conj_trans(2,2)*Ca_dut(2,2);

Cy_dut(2,1) = Cy_dut(1,2)’;

Cy_dut(2,2) = (abs(T_dut(2,1)))^2*Ca_dut(1,1) ...

+ (abs(T_dut(2,2)))^2*Ca_dut(2,2)...

+ 2*real(T_dut_conj_trans(2,2)*T_dut(2,1)*Ca_dut(1,2));

end

%----------------------------------------------------------------------------

% 5. calculate the correlation matrix [Cy_open] of the open dummy structure

Cy_open=2*k*T*real(y_open);

% 6. subtract parallel parasitics from the Y_dut and Y_short

yi_dut=y-y_open;

yi_short=y_short-y_open;

% 7. deembed Cy_DUT from the parallel parasitic

Cyi_dut=Cy_dut-Cy_open;

% 8. convert the yi_dut to Zi_dut and Yi_short to Zi_short

temp=yi_dut(1,1)*yi_dut(2,2)-yi_dut(1,2)*yi_dut(2,1);
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Zi_dut=[yi_dut(2,2), -yi_dut(1,2); -yi_dut(2,1), yi_dut(1,1)];

Zi_dut=Zi_dut/temp;

temp=yi_short(1,1)*yi_short(2,2)-yi_short(1,2)*yi_short(2,1);

Zi_short=[yi_short(2,2),-yi_short(1,2);-yi_short(2,1),yi_short(1,1)];

Zi_short=Zi_short/temp;

% 9. convert the Cyi_dut into Czi_dut

%----------------------------------------------------------------------------

switch correction

case 0

Czi_dut=Zi_dut*Cyi_dut*(Zi_dut’);

case 1

%Yan’s correction

Zi_dut_conj_trans = Zi_dut’;

Czi_dut(1,1) = (abs(Zi_dut(1,1)))^2*Cyi_dut(1,1) ...

+ (abs(Zi_dut(1,2)))^2*Cyi_dut(2,2)...

+2*real(Zi_dut_conj_trans(1,1)*Zi_dut(1,2)*Cyi_dut(2,1));

Czi_dut(1,2) = Zi_dut(1,1)*Zi_dut_conj_trans(1,2)*Cyi_dut(1,1)...

+Zi_dut(1,2)*Zi_dut_conj_trans(1,2)*Cyi_dut(2,1)...

+Zi_dut(1,1)*Zi_dut_conj_trans(2,2)*Cyi_dut(1,2)...

+Zi_dut(1,2)*Zi_dut_conj_trans(2,2)*Cyi_dut(2,2);

Czi_dut(2,1) = Czi_dut(1,2)’;

Czi_dut(2,2) = (abs(Zi_dut(2,1)))^2*Cyi_dut(1,1) ...

+ (abs(Zi_dut(2,2)))^2*Cyi_dut(2,2)...

+ 2*real(Zi_dut_conj_trans(2,2)*Zi_dut(2,1)*Cyi_dut(1,2));

end

%----------------------------------------------------------------------------

%10. calculate correlation matrix Czi_short after

% deembedding parallel parasitic

Czi_short=2*k*T*real(Zi_short);

%11. subtract series parasitics from Zi_dut to get

% Z parameter of the intrinsic transistor

Ztran=Zi_dut-Zi_short;

%12. De-embed Czi_dut from series parasitics to get

% the correlation matrix Cz of the intrinsic transistor

Cz=Czi_dut-Czi_short;

%13. convert the Ztran to its chain matrix Atrans

Atran=[Ztran(1,1), Ztran(1,1)*Ztran(2,2)-Ztran(1,2)*Ztran(2,1);

1, Ztran(2,2)];

Atran=Atran/Ztran(2,1);
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%14. Transform Cz to Ca

Ta=[1, -Atran(1,1); 0, -Atran(2,1)];

%----------------------------------------------------------------------------

switch correction

case 0

Ca=Ta*Cz*(Ta’);

case 1

% Yan’s correction

Ta_conj_trans = Ta’;

Ca(1,1) = (abs(Ta(1,1)))^2*Cz(1,1) + (abs(Ta(1,2)))^2*Cz(2,2)...

+ 2*real(Ta_conj_trans(1,1)*Ta(1,2)*Cz(2,1));

Ca(1,2) = Ta(1,1)*Ta_conj_trans(1,2)*Cz(1,1)...

+Ta(1,2)*Ta_conj_trans(1,2)*Cz(2,1)...

+Ta(1,1)*Ta_conj_trans(2,2)*Cz(1,2)...

+Ta(1,2)*Ta_conj_trans(2,2)*Cz(2,2);

Ca(2,1) = Ca(1,2)’;

Ca(2,2) = (abs(Ta(2,1)))^2*Cz(1,1) + (abs(Ta(2,2)))^2*Cz(2,2)...

+ 2*real(Ta_conj_trans(2,2)*Ta(2,1)*Cz(1,2));

end

%----------------------------------------------------------------------------

%15. calculate the open-short deembedded NFmin, Yopt and Rn

temp=sqrt((Ca(1,1)*Ca(2,2)-(imag(Ca(1,2))^2)));

NFmin_new(i)=log10(1+1/k/T*((real(Ca(1,2)))+temp))*10;

im_NFmin_new(i)=imag(NFmin_new(i));

Yopt_new=(temp+j*imag(Ca(1,2)))/Ca(1,1);

re_Yopt_new(i)=real(Yopt_new);

im_Yopt_new(i)=imag(Yopt_new);

Zopt_new=1./Yopt_new;

mag_Gama_new(i)=abs(-(50-Zopt_new)/(50+Zopt_new));

ang_Gama_new(i)=angle(-(50-Zopt_new)/(50+Zopt_new))/pi*180;

Rn_new(i)=real(Ca(1,1)/2/k/T);

%----------------------------------------------------------------------------

%16. Yan: Calculate Sig, Sid, and correlation

temp=Ztran(1,1)*Ztran(2,2)-Ztran(1,2)*Ztran(2,1);

Ytran=[Ztran(2,2),-Ztran(1,2);-Ztran(2,1),Ztran(1,1)];

Ytran=Ytran/temp;

Ytran_conj_trans = Ytran’;

Cy(1,1) = (abs(Ytran(1,1)))^2*Cz(1,1) ...

+ (abs(Ytran(1,2)))^2*Cz(2,2)...

+2*real(Ytran_conj_trans(1,1)*Ytran(1,2)*Cz(2,1));

Cy(1,2) = Ytran(1,1)*Ytran_conj_trans(1,2)*Cz(1,1)...

+Ytran(1,2)*Ytran_conj_trans(1,2)*Cz(2,1)...

253



+Ytran(1,1)*Ytran_conj_trans(2,2)*Cz(1,2)...

+Ytran(1,2)*Ytran_conj_trans(2,2)*Cz(2,2);

Cy(2,1) = Cy(1,2)’;

Cy(2,2) = (abs(Ytran(2,1)))^2*Cz(1,1) ...

+ (abs(Ytran(2,2)))^2*Cz(2,2)...

+ 2*real(Ytran_conj_trans(2,2)*Ytran(2,1)*Cz(1,2));

Sig(i) = 2*Cy(1,1);

Sid(i) = 2*Cy(2,2);

Sigid(i) = 2*Cy(1,2);

Cigid(i) = Sigid(i)./sqrt(Sig(i).*Sid(i));

%----------------------------------------------------------------------------

%17. Yan: Calculate Svh, Sih, and correlation

Svh(i) = Sig(i)./(abs(Ytran(1,1))).^2;

Sih(i)= Sid(i) + Sig(i).*(abs(Ytran(2,1)./Ytran(1,1))).^2-...

2.*real(Ytran(2,1)./Ytran(1,1).*Sigid(i));

Svhih(i) = conj(Ytran(2,1))./(abs(Ytran(1,1))).^2.*Sig(i) -...

Sigid(i)./Ytran(1,1);

Cvhih(i) = Svhih(i)./sqrt(Svh(i).*Sih(i));

end
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APPENDIX B
DESSIS INPUT DECK AND MATLAB PROGRAMMING FOR SIGE HBT NOISE

SIMULATION

B.1 5HP SiGe HBT

B.1.1 Mesh files

BND file

Oxide "DT" {rectangle[(2.3, 0.648) (2.8, 4.598)]}

Oxide "STI" {rectangle[(2.2, 0.248) (2.8, 0.648)]}

Oxide "STI2" {rectangle[(0.5, 0.248) (1.2, 0.648)]}

PolySi "PolySi" {polygon[(1.25, 0) (1.25, 0.068) (1.45, 0.068) (1.45, 0.148)

(1.95, 0.148) (1.95, 0.068) (2.15, 0.068) (2.15, 0)]}

Oxide "spacer1" {rectangle[(1.25, 0.068) (1.45,0.148)]}

Oxide "spacer2" {rectangle[(1.95, 0.068) (2.15, 0.148)]}

Silicon "Silicon1" {polygon[(0, 0.248) (0, 4.598) (2.3, 4.598) (2.3, 0.648)

(2.2, 0.648) (2.2, 0.248) (2.6, 0.248) (2.6, 0.24)

(0.8, 0.24) (0.8, 0.248) (1.2, 0.248) (1.2, 0.648)

(0.5, 0.648) (0.5, 0.248)]}

Silicon "Silicon2" {rectangle[(0.8, 0.148) (2.6, 0.1646)]}

SiliconGermanium "SiGe" {rectangle[(0.8, 0.1646) (2.6, 0.24)]}

Contact "Collector" {line[(0, 0.248) (0.47, 0.248)]}

Contact "Base1" {line[(0.8, 0.148) (1.2, 0.148)]}

Contact "Base2" {line[(2.2, 0.148) (2.6, 0.148)]}

Contact "Emitter" {line[(1.45, 0) (1.95, 0)]}

Contact "Psubstrate" {line[(0, 4.598) (2.3, 4.598)]}

CMD file

Title "BJT"

Definitions {

# Refinement regions

Refinement "all region"

{

MaxElementSize = (0.2 0.5)

MinElementSize = (0.05 0.05)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "sige"
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{

MaxElementSize = (0.05 0.005)

MinElementSize = (0.02 0.002)

RefineFunction = MaxTransDiff(Variable="xMoleFraction" Value=0.01)

}

Refinement "substrate region1"

{

MaxElementSize = (0.15 0.15)

MinElementSize = (0.08 0.08)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "substrate region2"

{

MaxElementSize = (0.08 0.1)

MinElementSize = (0.03 0.005)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "substrate region3"

{

MaxElementSize = (0.1 0.05)

MinElementSize = (0.05 0.005)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "Oxide_shallow"

{

MaxElementSize = (0.05 0.05)

MinElementSize = (0.02 0.02)

}

Refinement "Oxide_DT"

{

MaxElementSize = (0.1 0.1)

MinElementSize = (0.05 0.05)

}

Refinement "Oxide_spacer"

{

MaxElementSize = (0.04 0.04)

MinElementSize = (0.02 0.01)

}

Refinement "Emitter"

{

MaxElementSize = (0.05 0.02)

MinElementSize = (0.01 0.005)
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RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "eb_junction"

{

MaxElementSize = (0.05 0.02)

MinElementSize = (0.025 0.002)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "cb_junctionup"

{

MaxElementSize = (0.05 0.05)

MinElementSize = (0.01 0.01)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

# Profiles

Constant "psubstrate"

{

Species = "BoronActiveConcentration"

Value = 2e+15

}

Constant "n_epi"

{

Species = "PhosphorusActiveConcentration"

Value = 5e+16

}

AnalyticalProfile "emitter"

{

Function = subMesh1D(datafile = "as.dat"

, Scale = 1,

Range = line[(0 0), (0.598 0)]

)

LateralFunction = Erf(Factor = 0)

}

AnalyticalProfile "collector"

{

Function = subMesh1D(datafile = "phos.xy"

, Scale = 1,

Range = line[(0 0), (0.598 7.6364e+17)]

)

LateralFunction = Erf(Factor = 0)

}
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AnalyticalProfile "n_buried layer"

{

Function = subMesh1D(datafile = "bu_asyan.xy"

, Scale = 1, Range = line[(4.446e-1 1.5363805e+16), (2.720176 1.5363805e+16)]

)

LateralFunction = Erf(Factor=0)

}

AnalyticalProfile "intrinsic base"

{

Function = subMesh1D(datafile = "sims.dat"

, Scale = 1,

Range = line[(0 0), (0.598 0)]

)

LateralFunction = Erf(Factor = 0)

}

Constant "cc"

{ Species = "ArsenicActiveConcentration"

Value = 1e+20

}

Constant "base"

{

Species = "BoronActiveConcentration"

Value = 1e+16

}

Constant "extrinsic base"

{

Species = "BoronActiveConcentration"

Value = 1.5e+19

}

AnalyticalProfile "xMoleBase"

{

Function = subMesh1D(datafile = "xMol10.xy"

, Scale = 1,

Range = line[(0.1646 0), (0.2774 0)]

)

LateralFunction = Erf(Factor = 0)

}

}

Placements {

# Refinement regions

Refinement "all region"
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{

Reference = "all region"

RefineWindow = rectangle [(0 0), (2.6 4.598)]

}

Refinement "substrate region1"

{

Reference = "substrate region1"

RefineWindow = rectangle [(0 0.248), (2.3 4.598)]

}

Refinement "emitter region"

{

Reference = "Emitter"

RefineWindow = rectangle [(1.25 0) (2.15 0.08)]

}

Refinement "sige region"

{

Reference = "sige"

RefineWindow = rectangle [(0.8 0.1646)(2.6 0.2774)]

}

Refinement "eb_junction"

{

Reference = "eb_junction"

RefineWindow = rectangle [(1.2 0.06), (2.6 0.16)]

}

Refinement "cb_junctionup"

{

Reference = "cb_junctionup"

RefineWindow = rectangle [(0 0.14), (2.35 1)]

}

Refinement "substrate region2"

{

Reference = "substrate region2"

RefineWindow = rectangle [(0 0.9), (2.6 1.2)]

}

Refinement "ST1"

{

Reference = "Oxide_shallow"

RefineWindow = rectangle [(0.5 0.24) (1.2 0.69)]

}

Refinement "ST2"

{

Reference = "Oxide_shallow"
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RefineWindow = rectangle [(2.25 0.24) (2.6 0.69)]

}

Refinement "DT"

{

Reference = "Oxide_DT"

RefineWindow = rectangle[(2.3 0.248) (2.6 4.598)]

}

Refinement "spacer1"

{

Reference = "Oxide_spacer"

RefineWindow = rectangle [(1.25 0.068) (1.45 0.148)]

}

Refinement "spacer2"

{

Reference = "Oxide_spacer"

RefineWindow = rectangle [(1.95 0.068) (2.15 0.148)]

}

Refinement "substrate region3"

{

Reference = "substrate region3"

RefineWindow = rectangle [(0 2.5), (2.6 2.65)]

}

Refinement "patch"

{

Reference = "sige"

RefineWindow = rectangle [(0 0.248)(0.8 0.2774)]

}

# Profiles

Constant "psubstrate instance"

{

Reference = "psubstrate"

EvaluateWindow

{

Element = rectangle [(0 2.58), (2.3 4.598)]

DecayLength = 0

}

}

AnalyticalProfile "intrinsic base instance"

{

Reference = "intrinsic base"
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ReferenceElement

{

Element = line [(0.8 0), (2.6 0)]

}

EvaluateWindow

{

Element = rectangle[(0.8 0), (2.6 0.598)]

}

}

Constant "collectorwhole instance"

{

Reference = "n_epi"

EvaluateWindow

{

Element = rectangle [(0 0), (2.8 2.598)]

DecayLength = 0

}

}

AnalyticalProfile "emitter instance"

{

Reference = "emitter"

ReferenceElement

{

Element = line [(1.25 0), (2.15 0)]

}

EvaluateWindow

{

Element = polygon[(1.25 0) (1.25 0.068) (1.45 0.068)

(1.45 0.598) (1.95 0.598) (1.95 0.068)

(2.15 0.068) (2.15 0)]

}

}

AnalyticalProfile "n_buried layer instance"

{

Reference = "n_buried layer"

ReferenceElement

{

Element = line[(0.5 0.4446) (2.3 0.4446)]

}

EvaluateWindow

{

Element = rectangle [(0.5 0.4446)(2.3 2.720176)]
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DecayLength = 0

}

}

AnalyticalProfile "collector instance"

{

Reference = "collector"

ReferenceElement

{

Element = line [(1.35 0), (2.05 0)]

}

EvaluateWindow

{

Element = rectangle[(1.35 0)(2.05 0.598)]

}

}

Constant "extrinsic base left instance"

{

Reference = "extrinsic base"

EvaluateWindow

{

Element = rectangle [(0.8 0.148), (1.35 0.258)]

DecayLength = 0.010

}

}

Constant "extrinsic base right instance"

{

Reference = "extrinsic base"

EvaluateWindow

{

Element = rectangle [(2.05 0.148), (2.6 0.258)]

DecayLength = 0.010

}

}

Constant "Collector contact instance"

{

Reference = "cc"

EvaluateWindow

{

Element=rectangle[(0 0.248)(0.5 2.598)]

}

}

AnalyticalProfile "xMolBase instance"
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{

Reference = "xMoleBase"

ReferenceElement

{

Element = line[(0.8 0.1646) (2.6 0.1646)]

Direction = positive

}

EvaluateWindow

{

Element = polygon[(0.8 0.1646) (0.8 0.248) (1.2 0.248)

(1.2 0.598) (2.2 0.598) (2.2 0.248)

(2.6 0.248) (2.6 0.1646)]

}

}

}

B.1.2 Noise Simulation CMD file

Device BJT {

Electrode {

{ Name="Emitter" Voltage=0 }

{ Name="Base1" Voltage=0 }

{ Name = "Base2" Voltage = 0}

{ Name="Collector" Voltage=0 }

{ Name = "Psubstrate" Voltage = 0}

}

File {

Grid = "msh10_msh.grd"

Doping = "msh10_msh.dat"

Current = "ac10ddall_des.plt"

Plot = "ac10ddall_des.dat"

}

Physics{

Areafactor= 1

EffectiveIntrinsicDensity(BandgapNarrowing( Slotboom) )

Mobility(

PhuMob

Highfieldsaturation

)
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Fermi

Noise ( DiffusionNoise )

}

Physics (material = "Silicon") {

Recombination(

SRH( DopingDependence )

Auger

)

}

Physics (material = "PolySi") {

Recombination(

SRH( DopingDependence )

Auger

)

}

}

*----------------------------------------------------------------------*

*--End of Device{}

*----------------------------------------------------------------------*

Plot {

eDensity hDensity

TotalCurrent/Vector eCurrent/Vector hCurrent/Vector

ElectricField Potential SpaceCharge

Doping DonorConcentration AcceptorConcentration

SRH Auger

eQuasiFermi hQuasiFermi

eEparal hEparal

eMobility hMobility

eVelocity hVelocity

xMoleFraction

BandGap BandGapNarrowing

Affinity

ConductionBand ValenceBand
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}

#NoisePlot {

# AllLNS AllLNVSD AllLNVXVSD GreenFunctions

#}

Math {

Extrapolate

NotDamped=200

Iterations=20

NewDiscretization

Derivatives

RelerrControl

Digits=6

}

File {

Output = "ac10ddall"

ACExtract="ac10ddall"

}

System {

BJT bjt (Base1=1 Base2 = 1 Collector=2 Emitter=0 Psubstrate=0)

Vsource_pset vb (1 0){ dc = 0 }

Vsource_pset vc (2 0){ dc = 0 }

}

Solve {

Coupled{Poisson Electron Hole }

Quasistationary (

InitialStep=0.1 Increment=1.4

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.75}

Goal {Parameter=vb.dc Voltage=0.75}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "17510dd")

newcurrent = "ac10ddbias"

load(fileprefix = "17510dd")

Quasistationary (
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InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.76}

Goal {Parameter=vb.dc Voltage=0.76}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "17610dd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.77}

Goal {Parameter=vb.dc Voltage=0.77}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "17710dd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.78}

Goal {Parameter=vb.dc Voltage=0.78}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "17810dd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.79}

Goal {Parameter=vb.dc Voltage=0.79}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "17910dd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.80}

Goal {Parameter=vb.dc Voltage=0.80}

){

Coupled{Poisson Electron Hole }

266



}

save(fileprefix = "18010dd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.81}

Goal {Parameter=vb.dc Voltage=0.81}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "18110dd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.82}

Goal {Parameter=vb.dc Voltage=0.82}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "18210dd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.83}

Goal {Parameter=vb.dc Voltage=0.83}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "18310dd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.84}

Goal {Parameter=vb.dc Voltage=0.84}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "18410dd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.85}
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Goal {Parameter=vb.dc Voltage=0.85}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "18510dd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.86}

Goal {Parameter=vb.dc Voltage=0.86}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "18610dd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.87}

Goal {Parameter=vb.dc Voltage=0.87}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "18710dd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.88}

Goal {Parameter=vb.dc Voltage=0.88}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "18810dd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.89}

Goal {Parameter=vb.dc Voltage=0.89}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "18910dd")

Quasistationary (
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InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.90}

Goal {Parameter=vb.dc Voltage=0.90}

){

Coupled{Poisson Electron Hole }

}

save(fileprefix = "19010dd")

newcurrent = "ac10ddall"

load(fileprefix = "17510dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints =20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "17610dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "17710dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)
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{Poisson Electron Hole }

load(fileprefix = "17810dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "17910dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "18010dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "18110dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"
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NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "18210dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "18310dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "18410dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "18510dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)
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ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "18610dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "18710dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "18810dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "18910dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear
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Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

load(fileprefix = "19010dd")

ACCoupled (

StartFrequency = 1e9 EndFrequency = 20e9

NumberofPoints = 20 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "ac10ddall"

NoiseExtraction = "ac10ddall"

NoisePlot = "ac10ddall"

)

{Poisson Electron Hole }

}

B.1.3 Tecplot MCR file

Y parameters in this MCR file should be changed according to each bias and frequency.

#!MC 800

$!VarSet |MFBD| = ’/home/tcad2/cuiyan1/cuiyan/Dessis/5hpdop/pmisimu’

$!VarSet |MFBD1| = ’/home/tcad2/cuiyan1/cuiyan/Dessis/5hpdop/mesh’

$!Varset |fsel| = ’10dd10g’

$!Varset |f| = ’jcp25’

#p = total(t), ee, hh

$!Varset |p| = ’t’

$!Varset |num| = ’00’

#other noise model calculation

$!Varset |freq| = 2.00000000000000E+09

$!Varset |omega| =(2*PI*|freq|)

$!Varset |ReY11| = 5.30793553232469E-05

$!Varset |ImY11| = (|omega|*2.40555589212422E-14 )

$!Varset |ReY12| = -1.14676737756815E-06

$!Varset |ImY12| = (-2.13716228513946E-15*|omega|)

$!Varset |ReY21| = 4.08080901277576E-03
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$!Varset |ImY21| = (-3.39993575257787E-14*|omega|)

$!Varset |ReY22| = 4.04802562859283E-06

$!Varset |ImY22| = ( 3.90143182411877E-15*|omega|)

#create 1.plt for Sv1

$!Newlayout

$!READDATASET ’"-ise:lay" "-ise:lc" "|MFBD1|/msh10_msh.grd"

"|MFBD|/ac|fsel||f|_bjt_1_00|num|_acgf_des.dat.gz"’

DATASETREADER = ’DF-ISE Loader’

$!ALTERDATA

EQUATION = ’{tLNVSD} = {LNVSD}’

$!ALTERDATA

EQUATION = ’{Sv1} = {|p|LNVSD}’

$!WRITEDATASET "|MFBD|/1.dat"

INCLUDEGEOM = NO

INCLUDECUSTOMLABELS = NO

VARPOSITIONLIST = [1-2,29]

BINARY = No

USEPOINTFORMAT = Yes

PRECISION = 9

#create 2.plt for Sv2

$!Newlayout

$!READDATASET ’"-ise:lay" "-ise:lc" "|MFBD1|/msh10_msh.grd"

"|MFBD|/ac|fsel||f|_bjt_2_00|num|_acgf_des.dat.gz"’

DATASETREADER = ’DF-ISE Loader’

$!ALTERDATA

EQUATION = ’{tLNVSD} = {LNVSD}’

$!ALTERDATA

EQUATION = ’{Sv2} = {|p|LNVSD}’

$!WRITEDATASET "|MFBD|/2.dat"

INCLUDEGEOM = NO

INCLUDECUSTOMLABELS = NO

VARPOSITIONLIST = [1-2,29]

BINARY = No

USEPOINTFORMAT = Yes

PRECISION = 9

#create 1_2.plt for ReSv12 and ImSv12

$!Newlayout
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$!READDATASET ’"-ise:lay" "-ise:lc" "|MFBD1|/msh10_msh.grd"

"|MFBD|/ac|fsel||f|_bjt_1_2_00|num|_acgf_des.dat.gz"’

DATASETREADER = ’DF-ISE Loader’

$!ALTERDATA

EQUATION = ’{RetLNVXVSD} = {ReLNVXVSD}’

$!ALTERDATA

EQUATION = ’{ImtLNVXVSD} = {ImLNVXVSD}’

$!ALTERDATA

EQUATION = ’{ReSv12} = {Re|p|LNVXVSD}’

$!ALTERDATA

EQUATION = ’{ImSv12} = -{Im|p|LNVXVSD}’

$!WRITEDATASET "|MFBD|/1_2.dat"

INCLUDEGEOM = NO

INCLUDECUSTOMLABELS = NO

VARPOSITIONLIST = [1-2,15-16]

BINARY = No

USEPOINTFORMAT = Yes

PRECISION = 9

#combine Sv1, Sv2, Sv1v2 together

$!NEWLAYOUT

$!READDATASET ’"|MFBD|/1.dat" "|MFBD|/2.dat" "|MFBD|/1_2.dat" ’

READDATAOPTION = NEW

RESETSTYLE = YES

INCLUDEGEOM = NO

INCLUDECUSTOMLABELS = NO

VARLOADMODE = BYNAME

INITIALFRAMEMODE = TWOD

VARNAMELIST = ’"X" "Y" "Sv1" "Sv2" "ReSv12" "ImSv12"’

$!Varset |Dataset| = |Numzones|

$!Varset |Dataset| /= 3

$!alterdata equation = "{h2} = 0"

$!alterdata equation = "{rh12} = 0"

$!alterdata equation = "{ih12} = 0"

$!Loop |dataset|

$!Varset |Source1| = |Loop|

$!Varset |Source1| += |dataset|

$!Varset |Source2| = |Source1|
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$!Varset |Source2| += |dataset|

$!Alterdata [|Loop|] equation = "{h2} = v4[|Source1|]"

$!Alterdata [|Loop|] equation = "{rh12} = v5[|Source2|]"

$!Alterdata [|Loop|] equation = "{ih12} = v6[|Source2|]"

$!endloop

$!varset |Deletezone| = |Dataset|

$!Varset |deletezone| += 1

$!Deletezones [|Deletezone| - |numzones|]

$!alterdata equation = "{Sv2} = {h2}"

$!Alterdata equation = "{ReSv12} = {rh12}"

$!Alterdata equation = "{ImSv12} = {ih12}"

$!WRITEDATASET "|MFBD|/all.dat"

INCLUDEGEOM = NO

INCLUDECUSTOMLABELS = NO

VARPOSITIONLIST = [1-6]

BINARY = no

USEPOINTFORMAT = yes

PRECISION = 9

$!NEWLAYOUT

$!READDATASET ’"|MFBD|/all.dat" ’

READDATAOPTION = NEW

RESETSTYLE = YES

INCLUDEGEOM = NO

INCLUDECUSTOMLABELS = NO

VARLOADMODE = BYNAME

VARNAMELIST = ’"X" "Y" "Sv1" "Sv2" "ReSv12" "ImSv12"’

$!Varset |abs2Y21| = (|ReY21|*|ReY21| + |ImY21|*|ImY21|)

$!Varset |abs2Y22| = (|ReY22|*|ReY22| + |ImY22|*|ImY22|)

$!Varset |Redelta0| = (|ReY11|*|ReY22|-|ImY11|*|ImY22|-|ReY12|*|ReY21|+|ImY12|*|ImY21|)

$!Varset |Imdelta0| = (|ReY11|*|ImY22|+|ReY22|*|ImY11|-|ReY12|*|ImY21|-|ReY21|*|ImY12|)

$!Varset |abs2delta0| = (|Redelta0|*|Redelta0| + |Imdelta0|*|Imdelta0|)

$!Varset |x| = (|Redelta0|*|ReY21|+|Imdelta0|*|ImY21|)

$!Varset |Redelta1| = (|x|/|abs2Y21|)

$!Varset |x| = (|Imdelta0|*|ReY21|-|Redelta0|*|ImY21|)

$!Varset |Imdelta1| = (|x|/|abs2Y21|)

$!Varset |abs2delta1| = (|Redelta1|*|Redelta1|+|Imdelta1|*|Imdelta1|)
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$!Varset |x| = (|ReY22|*|ReY21|+|ImY22|*|ImY21|)

$!Varset |Redelta2| = (|x|/|abs2Y21|)

$!Varset |x| = (|ImY22|*|ReY21|-|ReY22|*|ImY21|)

$!Varset |Imdelta2| = (|x|/|abs2Y21|)

$!Varset |abs2delta2| = (|Redelta2|*|Redelta2|+|Imdelta2|*|Imdelta2|)

$!Varset |x| = (|Redelta0|*|ReY22|+|Imdelta0|*|ImY22|)

$!Varset |Redelta3| = (|x|/|abs2Y21|)

$!Varset |x| = (|Imdelta0|*|ReY22|-|Redelta0|*|ImY22|)

$!Varset |Imdelta3| = (|x|/|abs2Y21|)

#Sva, Sia

$!alterdata

equation = "{Sva} = {Sv1}+|abs2delta2|*{Sv2}+2*({ReSv12}*|Redelta2|+{ImSv12}*|Imdelta2|)"

$!alterdata

equation = "{Sia} = {Sv2}*|abs2delta1|"

$!alterdata

equation = "{ReSiava} = |Redelta1|*{ReSv12}+|Imdelta1|*{ImSv12}+|Redelta3|*{Sv2}"

$!alterdata

equation = "{ImSiava} = |Imdelta1|*{ReSv12}-|Redelta1|*{ImSv12}+|Imdelta3|*{Sv2}"

#Sin1, Sin2

$!Varset |abs2Y11| = (|ReY11|*|ReY11| + |ImY11|*|ImY11|)

$!Varset |abs2Y12| = (|ReY12|*|ReY12| + |ImY12|*|ImY12|)

$!Varset |Rex| = (|ReY11|*|ReY12|+|ImY11|*|ImY12|)

$!Varset |Imx| = (|ImY11|*|ReY12|-|ReY11|*|ImY12|)

$!Varset |Rey| = (|ReY21|*|ReY22|+|ImY21|*|ImY22|)

$!Varset |Imy| = (|ImY21|*|ReY22|-|ReY21|*|ImY22|)

$!Varset |Rez| = (|ReY21|*|ReY11|+|ImY21|*|ImY11|)

$!Varset |Imz| = (|ImY21|*|ReY11|-|ReY21|*|ImY11|)

$!Varset |Rew| = (|ReY22|*|ReY12|+|ImY22|*|ImY12|)

$!Varset |Imw| = (|ImY22|*|ReY12|-|ReY22|*|ImY12|)

$!Varset |Reu| = (|ReY22|*|ReY11|+|ImY22|*|ImY11|)

$!Varset |Imu| = (|ImY22|*|ReY11|-|ReY22|*|ImY11|)

$!Varset |Rev| = (|ReY21|*|ReY12|+|ImY21|*|ImY12|)

$!Varset |Imv| = (|ImY21|*|ReY12|-|ReY21|*|ImY12|)
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$!alterdata

equation = "{Sin1} = |abs2Y11|*{Sv1}+|abs2Y12|*{Sv2} + 2*(|Rex|*{ReSv12}-|Imx|*{ImSv12})"

$!alterdata

equation = "{Sin2} = |abs2Y21|*{Sv1} + |abs2Y22|*{Sv2} + 2*(|Rey|*{ReSv12}-|Imy|*{ImSv12})"

$!alterdata

equation = "{ReSi2i1} = |Rez|*{Sv1} + |Rew|*{Sv2} + |Reu|*{ReSv12}+|Imu|*{ImSv12} + |Rev|*{ReSv12}-|Imv|*{ImSv12}"

$!alterdata

equation = "{ImSi2i1} = |Imz|*{Sv1} + |Imw|*{Sv2} + |Imu|*{ReSv12} -|Reu|*{ImSv12}+|Imv|*{ReSv12} + |Rev|*{ImSv12}"

$!WRITEDATASET "|MFBD|/final|fsel||f||p||num|.dat"

INCLUDEGEOM = NO

INCLUDECUSTOMLABELS = NO

VARPOSITIONLIST = [1-14]

BINARY = no

USEPOINTFORMAT = yes

PRECISION = 9

$!FIELDLAYERS SHOWMESH = NO

$!Fieldlayers showcontour = Yes

$!TWODAXIS YDETAIL{ISREVERSED = YES}

$!GLOBALCONTOUR LEGEND{SHOW = YES}

$!FIELD [1-18] CONTOUR{CONTOURTYPE = FLOOD}

$!ADDONCOMMAND

ADDONID = ’ISE TCAD ADD-on’

COMMAND = ’ORTHOSLICE X 1.75 Frame 001’

$!WRITEDATASET "|MFBD|/1dcut|fsel||f||p||num|.dat"

INCLUDEGEOM = NO

INCLUDECUSTOMLABELS = NO

BINARY = no

USEPOINTFORMAT = yes

PRECISION = 9

$!RemoveVar |MFBD|
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B.2 8HP SiGe HBT

B.2.1 Mesh files

BND file

#8hp 2D structure

Oxide "DT1" {polygon[(2.05, 0.19) (2.05, 0.53) (2.17, 0.53)

(2.17, 4.30) (2.39, 4.30) (2.39, 0.19)]}

Oxide "DT2" {polygon[(-2.05, 0.19) (-2.05, 0.53) (-2.17, 0.53)

(-2.17, 4.30) (-2.39, 4.30) (-2.39, 0.19)]}

Oxide "STI1" {rectangle[(0.35, 0.19) (1.35, 0.53)]}

Oxide "STI2"{rectangle[(-0.35, 0.19) (-1.35, 0.53)]}

Oxide "spacer1" {polygon[(0.06, 0.15) (0.06, 0) (0.36, 0) (0.36, 0.05)

(0.12, 0.05) (0.12, 0.15)]}

Oxide "spacer2" {polygon[(-0.06, 0.15) (-0.06, 0) (-0.36, 0) (-0.36, 0.05)

(-0.12, 0.05) (-0.12, 0.15)]}

PolySi "PolySi" {rectangle[(-0.06, 0.15) (0.06, 0.04)]

}

PolySi "basesi1" {rectangle[(0.12, 0.15) (1.1, 0.05)]}

PolySi "basesi2" {rectangle[(-0.12, 0.15) (-1.1, 0.05)]}

Silicon "Silicon1" {polygon[(0.35, 0.19) (0.35, 0.53) (1.35, 0.53)

(1.35, 0.19) (2.05, 0.19) (2.05, 0.53)

(2.17, 0.53) (2.17, 4.30)

(-2.17, 4.30) (-2.17, 0.53)

(-2.05, 0.53) (-2.05, 0.19) (-1.35, 0.19)

(-1.35, 0.53) (-0.35, 0.53) (-0.35, 0.19)]

}

SiliconGermanium "SiGe" {rectangle[

(1.1, 0.15) (-1.1 0.19) ]}

Contact "Collector1" {line[(1.35, 0.19) (2.05, 0.19)]}

Contact "Collector2" {line[(-1.35, 0.19) (-2.05, 0.19)]}

Contact "Base1" {line[(0.36, 0.05) (1.1, 0.05)]}

Contact "Base2" {line[(-0.36, 0.05) (-1.1, 0.05)]}

Contact "Emitter" {line[(-0.06, 0.04) (0.06, 0.04)]}

Contact "Psubstrate" {line[(2.39, 4.3) (-2.39, 4.3)]}

CMD file

Title "BJT"

Definitions {
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# Refinement regions

Refinement "all region"

{

MaxElementSize = (0.4 0.25)

MinElementSize = (0.2 0.05)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "ccontact"

{

MaxElementSize = (0.15 0.1)

MinElementSize = (0.15 0.05)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "cb1"

{

MaxElementSize = (0.05 0.02)

MinElementSize = (0.025 0.005)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "sige"

{

MaxElementSize = (0.004 0.002)

MinElementSize = (0.002 0.001)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "sige2"

{

MaxElementSize = (0.004 0.004)

MinElementSize = (0.002 0.002)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "sige3"

{

MaxElementSize = (0.008 0.008)

MinElementSize = (0.004 0.004)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "sige4"

{

MaxElementSize = (0.016 0.016)

MinElementSize = (0.008 0.008)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)
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}

Refinement "sige5"

{

MaxElementSize = (0.032 0.032)

MinElementSize = (0.016 0.016)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "sige6"

{

MaxElementSize = (0.064 0.064)

MinElementSize = (0.032 0.032)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "substrate region1"

{

MaxElementSize = (0.3 0.3)

MinElementSize = (0.15 0.15)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "substrate region2"

{

MaxElementSize = (0.15 0.1)

MinElementSize = (0.075 0.04)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=1)

}

Refinement "Oxide_shallow"

{

MaxElementSize = (0.1 0.1)

MinElementSize = (0.05 0.01)

}

Refinement "Oxide_DT"

{

MaxElementSize = (0.2 0.2)

MinElementSize = (0.025 0.01)

}

Refinement "Oxide_spacer"

{

MaxElementSize = (0.015 0.01)

MinElementSize = (0.005 0.01)

}

Refinement "Emitter0"

{
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MaxElementSize = (0.01 0.02)

MinElementSize = (0.002 0.01)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=0.1)

}

Refinement "Emitter1"

{

MaxElementSize = (0.02 0.02)

MinElementSize = (0.01 0.01)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=0.1)

}

Refinement "Emitter2"

{

MaxElementSize = (0.02 0.02)

MinElementSize = (0.02 0.01)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=0.1)

}

Refinement "Emitter3"

{

MaxElementSize = (0.08 0.04)

MinElementSize = (0.04 0.01)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=0.1)

}

# Profiles

Constant "psubstrate"

{

Species = "BoronActiveConcentration"

Value = 1e+15

}

Constant "n_epi"

{

Species = "PhosphorusActiveConcentration"

Value = 1e+16

}

AnalyticalProfile "collector"

{

Function = subMesh1D(datafile = "phos.dat"

, Scale = 1,

Range = line[(0 2.7940971e+15), (3.0 1.1610737e-195)]

)

LateralFunction = Erf(Factor = 0)

}
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AnalyticalProfile "n_buri"

{

Function = subMesh1D(datafile = "asBuri.dat"

, Scale = 1,

Range = line[(0 2.2166889e+8), (3.0 2.4945547e+1)]

)

LateralFunction = Erf(Factor = 0)

}

AnalyticalProfile "emitter"

{

Function = subMesh1D(datafile = "as.dat"

, Scale = 1,

Range = line[(0 1e+21), (3.0 0)]

)

LateralFunction = Erf(Factor = 0)

}

AnalyticalProfile "intrinsic base"

{

Function = subMesh1D(datafile = "boron.dat"

, Scale = 1,

Range = line[(0 9.3631897e-224), (3.0 0)]

)

LateralFunction = Erf(Factor = 0)

}

Constant "cc"

{ Species = "ArsenicActiveConcentration"

Value = 1e21

}

Constant "extrinsic base"

{

Species = "BoronActiveConcentration"

Value = 5e20

}

AnalyticalProfile "xMoleBase"

{

Function = subMesh1D(datafile = "xmolg01.xy"

, Scale = 1,

Range = line[(0 0), (1.18 0)]

)

LateralFunction = Erf(Factor = 0)

}

}
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Placements {

# Refinement regions

Refinement "all region"

{

Reference = "all region"

RefineWindow = rectangle [(-2.39 0), (2.39 4.30)]

}

Refinement "substrate region1"

{

Reference = "substrate region1"

RefineWindow = rectangle [(-2.17 2.30), (2.17 4.30)]

}

Refinement "base region1"

{

Reference = "cb1"

RefineWindow = polygon [(0.12 0.15), (0.12 0.05), (1.1 0.05),

(1.1 0.19), (-1.1 0.19), (-1.1 0.05),

(-0.12 0.05), (-0.12 0.15)]

}

Refinement "emitter region up"

{

Reference = "Emitter2"

RefineWindow = rectangle [(-0.06 0.04), (0.06 0.12)]

}

Refinement "emitter region middle"

{

Reference = "Emitter1"

RefineWindow = rectangle [(-0.06 0.12), (0.06 0.14)]

}

Refinement "emitter region down"

{

Reference = "Emitter0"

RefineWindow = rectangle [(-0.06 0.15), (0.06 0.14)]

}

Refinement "ccontact1"

{

Reference = "ccontact"

RefineWindow = rectangle [(-2.05 0.30)(-1.35 0.53)]

}

Refinement "ccontact2"

{

Reference = "ccontact"

284



RefineWindow = rectangle [(2.05 0.30)(1.35 0.53)]

}

Refinement "sige region6"

{

Reference = "sige6"

RefineWindow = rectangle [(0.5 0.5)(-0.5 0.6)]

}

Refinement "sige region5"

{

Reference = "sige5"

RefineWindow = rectangle [(0.4 0.15)(-0.4 0.50)]

}

Refinement "sige region4"

{

Reference = "sige4"

RefineWindow = rectangle [(0.36 0.15)(-0.36 0.4)]

}

Refinement "sige region3"

{

Reference = "sige3"

RefineWindow = rectangle [(0.14 0.15)(-0.14 0.3)]

}

Refinement "sige region2"

{

Reference = "sige2"

RefineWindow = rectangle [(0.12 0.15)(-0.12 0.21)]

}

Refinement "sige region"

{

Reference = "sige"

RefineWindow = rectangle [(0.08 0.15)(-0.08 0.19)]

}

Refinement "substrate region2"

{

Reference = "substrate region2"

RefineWindow = rectangle [(2.17 2.3), (-2.17 2.7)]

}

Refinement "spacer1"

{

Reference = "Oxide_spacer"

RefineWindow = polygon [(0.36, 0) (0.06, 0) (0.06 0.15) (0.12 0.15)
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(0.12 0.05) (0.36 0)]

}

Refinement "spacer2"

{

Reference = "Oxide_spacer"

RefineWindow = polygon [(-0.36, 0) (-0.06, 0) (-0.06 0.15) (-0.12 0.15)

(-0.12 0.05) (-0.36 0)]

}

Refinement "ST1"

{

Reference = "Oxide_shallow"

RefineWindow = rectangle [(0.35, 0.19) (1.35, 0.53)]

}

Refinement "ST2"

{

Reference = "Oxide_shallow"

RefineWindow = rectangle [(-0.35, 0.19) (-1.35, 0.53)]

}

Refinement "DT1"

{

Reference = "Oxide_DT"

RefineWindow = polygon[(2.05, 0.19) (2.05, 0.53) (2.17, 0.53)

(2.17, 4.30) (2.39, 4.30) (2.39, 0.19)]

}

Refinement "DT2"

{

Reference = "Oxide_DT"

RefineWindow = polygon[(-2.05, 0.19) (-2.05, 0.53) (-2.17, 0.53)

(-2.17, 4.30) (-2.39, 4.30) (-2.39, 0.19)]

}

# Profiles

Constant "psubstrate instance"

{

Reference = "psubstrate"

EvaluateWindow

{

Element = rectangle [(2.17 2.30), (-2.17 4.30)]

DecayLength = 0

}

}

Constant "n_epi instance"
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{

Reference = "n_epi"

EvaluateWindow

{

Element = polygon[(0.35, 0.19) (0.35, 0.53) (1.35, 0.53)

(1.35, 0.19) (2.05, 0.19) (2.05, 0.53)

(2.17, 0.53) (2.17, 2.30)

(-2.17, 2.30) (-2.17, 0.53)

(-2.05, 0.53) (-2.05, 0.19) (-1.35, 0.19)

(-1.35, 0.53) (-0.35, 0.53) (-0.35, 0.19)]

DecayLength = 0

}

}

AnalyticalProfile "collector instance"

{

Reference = "collector"

ReferenceElement

{

Element = line [(-0.12 0.04), (0.12 0.04)]

}

EvaluateWindow

{

Element = rectangle[(-0.12 0.04)(0.12 2.30)]

}

}

AnalyticalProfile "emitter instance"

{

Reference = "emitter"

ReferenceElement

{

Element = line [(-0.06 0.04), (0.06 0.04)]

}

EvaluateWindow

{

Element = rectangle[(-0.06, 0.53) (0.06, 0.04)]

DecayLength = 0

}

}

AnalyticalProfile "intrinsic base instance"

{

Reference = "intrinsic base"

ReferenceElement
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{

Element = line [(-1.1 0.04), (1.1 0.04)]

}

EvaluateWindow

{

Element = rectangle[(-1.1 0.04), (1.1 0.53)]

}

}

Constant "extrinsic base left instance"

{

Reference = "extrinsic base"

EvaluateWindow

{

Element = rectangle [(-0.12 0.05), (-1.1 0.15)]

DecayLength = 0.005

}

}

Constant "extrinsic base right instance"

{

Reference = "extrinsic base"

EvaluateWindow

{

Element = rectangle [(0.12 0.05), (1.1 0.15)]

DecayLength = 0.005

}

}

AnalyticalProfile "n_buried layer instance"

{

Reference = "n_buri"

ReferenceElement

{

Element = line [(-2.17 0.04), (2.17 0.04)]

}

EvaluateWindow

{

Element = polygon[(0.35, 0.04) (0.35, 0.53) (1.35, 0.53)

(1.35, 0.19) (2.05, 0.19) (2.05, 0.53)

(2.17, 0.53) (2.17, 3)

(-2.17, 3) (-2.17, 0.53)

(-2.05, 0.53) (-2.05, 0.19) (-1.35, 0.19)

(-1.35, 0.53) (-0.35, 0.53) (-0.35, 0.04)]

DecayLength = 0
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}

}

Constant "Collector contact instance left"

{

Reference = "cc"

EvaluateWindow

{

Element=rectangle[(-1.35 0.19)(-2.17 1)]

}

}

Constant "Collector contact instance right"

{

Reference = "cc"

EvaluateWindow

{

Element=rectangle[(1.35 0.19)(2.17 1)]

}

}

AnalyticalProfile "xMolBase instance"

{

Reference = "xMoleBase"

ReferenceElement

{

Element = line[(-1.1 0.04) (1.1 0.04)]

Direction = positive

}

EvaluateWindow

{

Element = rectangle[(-1.1 0.04) (1.1 0.19)]

}

}

}

B.2.2 Noise Simulation CMD file

Device BJT {

Electrode {

{ Name="Emitter" Voltage=0 }

{ Name="Base1" Voltage=0 }

{ Name = "Base2" Voltage = 0}

{ Name="Collector1" Voltage=0 }
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{ Name="Collector2" Voltage=0 }

{ Name = "Psubstrate" Voltage = 0}

}

File {

Grid = "msh_msh.grd"

Doping = "msh_msh.dat"

Current = "achdet40g_des.plt"

Plot = "achdet40g_des.dat"

}

Physics{

Areafactor= 1

EffectiveIntrinsicDensity(BandgapNarrowing( Slotboom) )

Mobility(

PhuMob

Highfieldsaturation(CarrierTempDrive)

)

Fermi

Hydrodynamic(eTemp)

Noise ( DiffusionNoise(eTemperature) )

}

Physics (material = "Silicon") {

Recombination(

SRH( DopingDependence )

Auger

)

}

Physics (material = "PolySi") {

Recombination(

SRH( DopingDependence )

Auger

)

}

}

*----------------------------------------------------------------------*

*--End of Device{}

*----------------------------------------------------------------------*
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Plot {

eDensity hDensity

TotalCurrent/Vector eCurrent/Vector hCurrent/Vector

ElectricField Potential SpaceCharge

Doping DonorConcentration AcceptorConcentration

SRH Auger

eQuasiFermi hQuasiFermi

eEparal hEparal

eMobility hMobility

eVelocity hVelocity

xMoleFraction

BandGap BandGapNarrowing

Affinity

ConductionBand ValenceBand

}

#NoisePlot {

# AllLNS AllLNVSD AllLNVXVSD GreenFunctions

#}

Math {

Extrapolate

NotDamped=200

Iterations=20

NewDiscretization

Derivatives

RelerrControl

Digits=6

}

File {

Output = "achdet40g"

ACExtract="achdet40g"

}

System {
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BJT bjt (Base1=1 Base2 = 1 Collector1=2 Collector2=2 Emitter=0 Psubstrate=0)

Vsource_pset vb (1 0){ dc = 0 }

Vsource_pset vc (2 0){ dc = 0 }

}

Solve {

Coupled (Iterations=50) {Poisson }

Coupled { Poisson Electron Hole }

Coupled { Poisson Electron Hole ElectronTemperature}

Quasistationary (

InitialStep=0.025 Increment= 1.4

MinStep=1e-3 MaxStep=0.1

Goal {Parameter=vc.dc Voltage=1.75}

Goal {Parameter=vb.dc Voltage=0.75}

){

Coupled {Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "175hd")

newcurrent = "achdetbias"

load(fileprefix = "175hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.76}

Goal {Parameter=vb.dc Voltage=0.76}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "176hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.77}

Goal {Parameter=vb.dc Voltage=0.77}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "177hd")

Quasistationary (

InitialStep=1 Increment=1
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MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.78}

Goal {Parameter=vb.dc Voltage=0.78}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "178hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.79}

Goal {Parameter=vb.dc Voltage=0.79}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "179hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.80}

Goal {Parameter=vb.dc Voltage=0.80}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "180hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.81}

Goal {Parameter=vb.dc Voltage=0.81}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "181hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.82}

Goal {Parameter=vb.dc Voltage=0.82}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}
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save(fileprefix = "182hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.83}

Goal {Parameter=vb.dc Voltage=0.83}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "183hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.84}

Goal {Parameter=vb.dc Voltage=0.84}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "184hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.85}

Goal {Parameter=vb.dc Voltage=0.85}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "185hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.86}

Goal {Parameter=vb.dc Voltage=0.86}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "186hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.87}

Goal {Parameter=vb.dc Voltage=0.87}
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){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "187hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.88}

Goal {Parameter=vb.dc Voltage=0.88}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "188hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.89}

Goal {Parameter=vb.dc Voltage=0.89}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "189hd")

Quasistationary (

InitialStep=1 Increment=1

MinStep=1e-3 MaxStep=1

Goal {Parameter=vc.dc Voltage=1.90}

Goal {Parameter=vb.dc Voltage=0.90}

){

Coupled{Poisson Electron Hole ElectronTemperature}

}

save(fileprefix = "190hd")

newcurrent = "achdet40g"

load(fileprefix = "175hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g175"
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)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "176hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g176"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "177hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g177"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "178hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g178"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "179hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"
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NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g179"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "180hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g180"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "181hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g181"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "182hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g182"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "183hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)
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ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g183"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "184hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g184"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "185hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g185"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "186hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g186"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "187hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9
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NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g187"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "188hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g188"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "189hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g189"

)

{Poisson Electron Hole ElectronTemperature}

load(fileprefix = "190hd")

ACCoupled (

StartFrequency = 40e9 EndFrequency = 40e9

NumberofPoints = 1 linear

Node(1 2) Exclude(vb vc)

ObservationNode(1 2)

ACExtraction = "achdet40g"

NoiseExtraction = "achdet40g"

NoisePlot = "achdet40g190"

)

{Poisson Electron Hole ElectronTemperature}

}
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B.3 MATLAB Programming for Simulation Results

This is MATLAB Programming for 8HP DESSIS simulation results. The MATLAB pro-
gramming is similar for 5HP SiGe HBT DESSIS simulation results.

B.3.1 Main file

close all; clear all; clc;

q = 1.6e-19;

kt = 0.0259*q;

datapath = ’D:\Yan\research\8hp\noisedata’;

cd(datapath);

filename = {’hdetall’,’hd2etall’,’g05hdetall’};

legname = {’design I’, ’design II’, ’design III’};

x1 = 20;

fileNumber=length(filename);

datasel =1; %1: bias dependence, 2: frequency dependence

for filsel = [1:3],

load(filename{filsel});

rbrange = (num_of_freq-5):num_of_freq;

Jc = Ic./0.12.*1e3; Jb = Ib./0.12.*1e3;

nx = x1;

for n = nx;

switch datasel

case 1 %bias dependence

sv12x = conj(sv12); sv12eex = conj(sv12ee); sv12hhx = conj(sv12hh);

SV = [sv1(:,n) sv12x(:,n) conj(sv12x(:,n)) sv2(:,n)];

SVee = [sv1ee(:,n) sv12eex(:,n) conj(sv12eex(:,n)) sv2ee(:,n)];

SVhh = [sv1hh(:,n) sv12hhx(:,n) conj(sv12hhx(:,n)) sv2hh(:,n)];

Y = [Y11(:,n) Y12(:,n) Y21(:,n) Y22(:,n)]; Z = z_from_Y(Y);

for x = 1: num_of_bias,

Y11f = Y11(x,:); Y12f = Y12(x,:);Y21f = Y21(x,:);Y22f = Y22(x,:);

h11f = 1./Y11f;

Yf = [conj(Y11f’) conj(Y12f’) conj(Y21f’) conj(Y22f’)];

Zf = Z_from_Y(Yf);

Z11f = Zf(:,1); Z12f = Zf(:,2); Z21f = Zf(:,3); Z22f = Zf(:,4);

rbh(x) = rb_from_h11(h11f(rbrange));

rb(x) = rbh(x); re(x) = 0; rc(x) = 0;

end

numend = num_of_bias;

case 2 %frequency dependence
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sv12x = conj(sv12); sv12eex = conj(sv12ee); sv12hhx = conj(sv12hh);

SV = [conj(sv1(n,:)’) conj(sv12x(n,:)’) sv12x(n,:)’ conj(sv2(n,:)’)];

SVee = [conj(sv1ee(n,:)’) conj(sv12eex(n,:)’) ...

sv12eex(n,:)’ conj(sv2ee(n,:)’)];

SVhh = [conj(sv1hh(n,:)’) conj(sv12hhx(n,:)’) ...

sv12hhx(n,:)’ conj(sv2hh(n,:)’)];

Y = [conj(Y11(n,:)’) conj(Y12(n,:)’) conj(Y21(n,:)’) conj(Y22(n,:)’)];

Z = z_from_Y(Y);

h11 = 1./Y(:,1); rbh(n) = rb_from_h11(h11(rbrange));

Z11f = Z(:,1); Z12f = Z(:,2); Z21f = Z(:,3); Z22f = Z(:,4);

rb(n) = rbh(n); re(n) = 0; rc(n) = 0;

numend = num_of_freq;

end

%----------------------------------------------------------------------------

for x = 1:numend,

y = Y(x,:); z = Z(x,:); a = a_from_y(y);

cz = 0.5.*SV(x,:); ca = c_from_z_to_a(cz, a); cy = c_from_a_to_y(ca, y);

nf = nf_from_ca(ca, 50);

svb(x) = 2*cz(1); svc(x) = 2*cz(4);

svbvcr(x) = 2*real(cz(2)); svbvci(x) = 2*imag(cz(2));

cvbvcr(x) = svbvcr(x)/sqrt(svc(x)*svb(x));

cvbvci(x) = svbvci(x)/sqrt(svc(x)*svb(x));

sva(x) = 2*ca(1); sia(x) = 2*ca(4);

siavar(x) = 2*real(ca(3)); siavai(x) = 2*imag(ca(3));

ciavar(x) = siavar(x)/sqrt(sia(x)*sva(x));

ciavai(x) = siavai(x)/sqrt(sia(x)*sva(x));

sib(x) = 2*cy(1); sic(x) = 2*cy(4);

sicibr(x) = 2*real(cy(3)); sicibi(x) = 2*imag(cy(3));

cicibr(x) = sicibr(x)/sqrt(sib(x)*sic(x));

cicibi(x) = sicibi(x)/sqrt(sib(x)*sic(x));

nfmin(x) = nf(1); rn(x) = nf(2); Yopt(x) = nf(3);

czee = 0.5.*SVee(x,:); caee = c_from_z_to_a(czee, a);

cyee = c_from_a_to_y(caee, y); nfee = nf_from_ca(caee, 50);

svbee(x) = 2*czee(1); svcee(x) = 2*czee(4);

svbvcree(x) = 2*real(czee(2)); svbvciee(x) = 2*imag(czee(2));

cvbvcree(x) = svbvcree(x)/sqrt(svcee(x)*svbee(x));

cvbvciee(x) = svbvciee(x)/sqrt(svcee(x)*svbee(x));

svaee(x) = 2*caee(1); siaee(x) = 2*caee(4);

siavaree(x) = 2*real(caee(3)); siavaiee(x) = 2*imag(caee(3));

ciavaree(x) = siavaree(x)/sqrt(siaee(x)*svaee(x));

ciavaiee(x) = siavaiee(x)/sqrt(siaee(x)*svaee(x));
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sibee(x) = 2*cyee(1); sicee(x) = 2*cyee(4);

sicibree(x) = 2*real(cyee(3)); sicibiee(x) = 2*imag(cyee(3));

cicibree(x) = sicibree(x)/sqrt(sibee(x)*sicee(x));

cicibiee(x) = sicibiee(x)/sqrt(sibee(x)*sicee(x));

nfminee(x) = nfee(1); rnee(x) = nfee(2); Yoptee(x) = nfee(3);

czhh = 0.5.*SVhh(x,:); cahh = c_from_z_to_a(czhh, a);

cyhh = c_from_a_to_y(cahh, y); nfhh = nf_from_ca(cahh, 50);

svbhh(x) = 2*czhh(1); svchh(x) = 2*czhh(4);

svbvcrhh(x) = 2*real(czhh(2)); svbvcihh(x) = 2*imag(czhh(2));

cvbvcrhh(x) = svbvcrhh(x)/sqrt(svchh(x)*svbhh(x));

cvbvcihh(x) = svbvcihh(x)/sqrt(svchh(x)*svbhh(x));

svahh(x) = 2*cahh(1); siahh(x) = 2*cahh(4);

siavarhh(x) = 2*real(cahh(3)); siavaihh(x) = 2*imag(cahh(3));

ciavarhh(x) = siavarhh(x)/sqrt(siahh(x)*svahh(x));

ciavaihh(x) = siavaihh(x)/sqrt(siahh(x)*svahh(x));

sibhh(x) = 2*cyhh(1); sichh(x) = 2*cyhh(4);

sicibrhh(x) = 2*real(cyhh(3)); sicibihh(x) = 2*imag(cyhh(3));

cicibrhh(x) = sicibrhh(x)/sqrt(sibhh(x)*sichh(x));

cicibihh(x) = sicibihh(x)/sqrt(sibhh(x)*sichh(x));

nfminhh(x) = nfhh(1); rnhh(x) = nfhh(2); Yopthh(x) = nfhh(3);

end

for x = 1:numend,

y = Y(x,:); z = Z(x,:);, a = a_from_y(y);

switch datasel

case 1

rbx = rb(x); Ibx = Ib(x); Icx = Ic(x);

rex = re(x); rcx = rc(x);

case 2

rbx = rb(n); Ibx = Ib(n); Icx = Ic(n);

rex = re(n); rcx = rc(n);

end

zb = [rbx+rex rex rex rex+rcx]; czb = 2*kt.*zb;

zi = z-zb; yi = y_from_z(zi); ai = a_from_y(yi);

if x ==1, yix = yi(3); end

cz = 0.5.*SV(x,:); ca = c_from_z_to_a(cz, a);

cy = c_from_a_to_y(ca, y);

czi = cz - czb; cai = c_from_z_to_a(czi, ai);

cyi = c_from_a_to_y(cai, yi);

sibi(x) = 2*cyi(1); sici(x) = 2*cyi(4);

sicibri(x) = 2*real(cyi(3)); sicibii(x) = 2*imag(cyi(3));

cicibri(x) = sicibri(x)./sqrt(sibi(x).*sici(x));
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cicibii(x) = sicibii(x)./sqrt(sibi(x).*sici(x));

czhh = 0.5.*SVhh(x,:); cahh = c_from_z_to_a(czhh, a);

cyhh = c_from_a_to_y(cahh, y);

czihh = czhh - czb; caihh = c_from_z_to_a(czihh, ai);

cyihh = c_from_a_to_y(caihh, yi);

sibihh(x) = 2*cyihh(1); sicihh(x) = 2*cyihh(4);

sicibrihh(x) = 2*real(cyihh(3)); sicibiihh(x) = 2*imag(cyihh(3));

cicibrihh(x) = sicibrihh(x)./sqrt(sibihh(x).*sicihh(x));

cicibiihh(x) = sicibiihh(x)./sqrt(sibihh(x).*sicihh(x));

czee = 0.5.*SVee(x,:); caee = c_from_z_to_a(czee, a);

cyee = c_from_a_to_y(caee, y);

cziee = czee; caiee = c_from_z_to_a(cziee, ai);

cyiee = c_from_a_to_y(caiee, yi);

sibiee(x) = 2*cyiee(1); siciee(x) = 2*cyiee(4);

sicibriee(x) = 2*real(cyiee(3)); sicibiiee(x) = 2*imag(cyiee(3));

cicibriee(x) = sicibriee(x)./sqrt(sibiee(x).*siciee(x));

cicibiiee(x) = sicibiiee(x)./sqrt(sibiee(x).*siciee(x));

sibs(x) = 2*q*Ibx; sics(x) = 2*q*Icx; sicibrs(x) = 0; sicibis(x) = 0;

cysi = 0.5*[sibs(x), sicibrs(x) - j*sicibis(x), ...

sicibrs(x) + j*sicibis(x), sics(x)];

casi = c_from_y_to_a(cysi, ai);

czsi = c_from_a_to_z(casi, zi); czs = czsi + czb;

cas = c_from_z_to_a(czs, a); nfs = nf_from_ca(cas, 50);

svas(x) = 2*cas(1); sias(x) = 2*cas(4);

siavars(x) = real(2*cas(3)); siavais(x) = imag(2*cas(3));

nfmins(x) = nfs(1); rns(x) = nfs(2); Yopts(x) = nfs(3);

sibv(x) = 4*kt*real(yi(1)) - 2*q*Ibx;

sicv(x) = 4*kt*real(yi(4)) + 2*q*Icx;

sicibrv(x) = 2*kt*real(yi(3)+y(2)’-yix);

sicibiv(x) = 2*kt*imag(yi(3)+y(2)’);

cyvi = 0.5*[sibv(x), sicibrv(x) - j*sicibiv(x), ...

sicibrv(x) + j*sicibiv(x), sicv(x)];

cavi = c_from_y_to_a(cyvi, ai); czvi = c_from_a_to_z(cavi, zi);

czv = czvi + czb;

cav = c_from_z_to_a(czv, a); nfv = nf_from_ca(cav, 50);

svav(x) = 2*cav(1); siav(x) = 2*cav(4);

siavarv(x) = real(2*cav(3)); siavaiv(x) = imag(2*cav(3));

nfminv(x) = nfv(1); rnv(x) = nfv(2); Yoptv(x) = nfv(3);
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end

end

end

B.3.2 Z_from_Y.m

function Z = Z_from_Y(Y)

%Z = Z_from_Y(Y)

z0 = 50;

Y11 = Y(:,1);

Y12 = Y(:,2);

Y21 = Y(:,3);

Y22 = Y(:,4);

Y_delta = Y11.*Y22 - Y12.*Y21;

Z11 = Y22./Y_delta;

Z12 = -Y12./Y_delta;

Z21 = -Y21./Y_delta;

Z22 = Y11./Y_delta;

Z = [Z11, Z12, Z21, Z22];

B.3.3 rb_from_h11.m

function rb=rb_from_h11(h11)

%rb=rb_from_h11(h11)

rb=circle(h11);

B.3.4 circle.m

function rb=circle(h11)

%rb=circle(h11)

ydata=imag(h11); ydata=ydata(:);

xdata=real(h11); xdata=xdata(:);

[ymin, y_ind]=min(ydata);

nsize=size(ydata);

para0=[xdata(y_ind), abs(ymin)];

newPara=fminsearch(’myCostFunc’, para0,[],[xdata ydata])

rb=newPara(1)-newPara(2);

B.3.5 myCostFunc.m

function cost=myCostFunc(para, data)

%para(1) is x0, para(2) is r

cost=sum((sqrt(data(:,2).^2+(data(:,1)-para(1)).^2)-para(2)).^2);
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B.3.6 c_from_z_to_a.m

function C_A = C_from_Z_to_A(C_Z, A)

%C_A = C_from_Z_to_A(C_Z, A)

k = size(A, 1);

for i = 1:k;

CZ = [C_Z(i,1), C_Z(i,2); C_Z(i,3), C_Z(i,4)];

A_temp = [A(i,1), A(i,2); A(i,3), A(i,4)];

Trans = [1, -A_temp(1,1); 0, -A_temp(2,1)];

Trans_conj_trans = [Trans(1,1)’, Trans(2,1)’; Trans(1,2)’, Trans(2,2)’];

CA = Trans*CZ*Trans_conj_trans;

C_A(i,1) = (abs(Trans(1,1)))^2*CZ(1,1) + (abs(Trans(1,2)))^2*CZ(2,2)...

+ 2*real(Trans_conj_trans(1,1)*Trans(1,2)*CZ(2,1));

C_A(i,2) = Trans(1,1)*Trans_conj_trans(1,2)*CZ(1,1)...

+Trans(1,2)*Trans_conj_trans(1,2)*CZ(2,1)...

+Trans(1,1)*Trans_conj_trans(2,2)*CZ(1,2)...

+Trans(1,2)*Trans_conj_trans(2,2)*CZ(2,2);

C_A(i,3) = C_A(i,2)’;

C_A(i,4) = (abs(Trans(2,1)))^2*CZ(1,1) + (abs(Trans(2,2)))^2*CZ(2,2)...

+ 2*real(Trans_conj_trans(2,2)*Trans(2,1)*CZ(1,2));

end

B.3.7 c_from_a_to_y.m

function C_Y = C_from_A_to_Y(C_A, Y)

%C_Y = C_from_A_to_Y(C_A, Y)

k = size(Y, 1);

for i = 1:k;

CA = [C_A(i,1), C_A(i,2); C_A(i,3), C_A(i,4)];

Y_temp = [Y(i,1), Y(i,2); Y(i,3), Y(i,4)];

Trans = [-Y_temp(1,1),1; -Y_temp(2,1),0];

Trans_conj_trans = [Trans(1,1)’, Trans(2,1)’; Trans(1,2)’, Trans(2,2)’];

CY = Trans*CA*Trans_conj_trans;

C_Y(i,1) = (abs(Trans(1,1)))^2*CA(1,1) + (abs(Trans(1,2)))^2*CA(2,2)...

+ 2*real(Trans_conj_trans(1,1)*Trans(1,2)*CA(2,1));

C_Y(i,2) = Trans(1,1)*Trans_conj_trans(1,2)*CA(1,1)...

+Trans(1,2)*Trans_conj_trans(1,2)*CA(2,1)...

+Trans(1,1)*Trans_conj_trans(2,2)*CA(1,2)...

+Trans(1,2)*Trans_conj_trans(2,2)*CA(2,2);

C_Y(i,3) = C_Y(i,2)’;

C_Y(i,4) = (abs(Trans(2,1)))^2*CA(1,1) + (abs(Trans(2,2)))^2*CA(2,2)...

+ 2*real(Trans_conj_trans(2,2)*Trans(2,1)*CA(1,2));
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end

B.3.8 nf_from_ca.m

%function nf = nf_from_ca(ca,Z0);

function nf = nf_from_ca(ca,Z0);

k=1.38066e-023;

T=300;

kt = k*T;

sia = 2*ca(:,4);

siava = 2*ca(:,3);

sva = 2*ca(:,1);

gva1 = 4*kt/sva;

rn1 = 1/gva1/Z0;

gia1 = sia/(4*kt);

yc1 = siava/sva;

gc1 = real(yc1);

bc1 = imag(yc1);

gso1 = sqrt(gva1*gia1-bc1^2);

bso1 = -bc1;

yopt1 = gso1+j*bso1;

gammaopt1 = (1-yopt1*Z0)/(1+yopt1*50);

fmin1 = 1+2*(gso1+gc1)/gva1;

nfmin1 = 10*log10(fmin1);

nf = [nfmin1 rn1 yopt1];

B.3.9 y_from_z.m

function Y = Y_from_Z(Z)

%Y = Y_from_Z(Z)

Z11 = Z(:,1);

Z12 = Z(:,2);

Z21 = Z(:,3);

Z22 = Z(:,4);

delta = Z11.*Z22 - Z12.*Z21;

Y11 = Z22./delta;

Y12 = -Z12./delta;

Y21 = -Z21./delta;

Y22 = Z11./delta;

Y = [Y11, Y12, Y21, Y22];
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B.3.10 a_from_y.m

function A = A_from_Y(Y);

%from Y parameter to ABCD = [A B C D], A = A_from_Y(Y)

z0 = 50;

Y11 = Y(:,1);

Y12 = Y(:,2);

Y21 = Y(:,3);

Y22 = Y(:,4);

Y_delta = Y11.*Y22 - Y12.*Y21;

A11 = -Y22./Y21;

A12 = -1./Y21;

A21 = -Y_delta./Y21;

A22 = -Y11./Y21;

A = [A11, A12, A21, A22];
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APPENDIX C
DESSIS INPUT DECK AND MATLAB PROGRAMMING FOR 50 NM Leff MOSFET NOISE

SIMULATION

C.1 Mesh files

C.1.1 BND file

Oxide "leftox" {rectangle[(-0.081,-0.15 ) (-0.025, 0)]}

PolySi "gatepoly" {rectangle[(-0.025, -0.001) (0.025, -0.15)]}

Oxide "rightox" {rectangle[(0.025, -0.15) (0.081, 0)]}

Oxide "gateox" {rectangle[(-0.025, 0) (0.025, -0.001)]}

Silicon "chanelsi" {rectangle[(-0.525, 0) (0.525, 1)]}

Contact "drain" {line[(0.081, 0) (0.525, 0)]}

Contact "gate" {line[(-0.022, -0.15) (0.022, -0.15)]}

Contact "source" {line[(-0.525, 0) (-0.081, 0)]}

Contact "bulk" {line[(-0.525, 1) (0.525, 1)]}

C.1.2 CMD file

Title "nmos"

Definitions {

Refinement "all region"

{

MaxElementSize = (0.05 0.1)

MinElementSize = (0.0025 0.01)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=0.1)

}

Refinement "oxide"

{

MaxElementSize = (0.04 0.04)

MinElementSize = (0.005 0.01)

}

Refinement "source"

{

MaxElementSize = (0.05 0.005)

MinElementSize = (0.025 0.0025)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=0.01)

}

Refinement "source1"

{
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MaxElementSize = (0.1 0.01)

MinElementSize = (0.05 0.005)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=0.1)

}

Refinement "gate"

{

MaxElementSize = (0.04 0.04)

MinElementSize = (0.005 0.01)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=0.1)

}

Refinement "gateoxide"

{

MaxElementSize = (0.001 0.00025)

MinElementSize = (0.001 0.00025)

}

Refinement "drain"

{

MaxElementSize = (0.0025 0.005)

MinElementSize = (0.001 0.001)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=0.001)

}

Refinement "refine"

{

MaxElementSize = (0.001 0.001)

MinElementSize = (0.0005 0.0005)

RefineFunction = MaxTransDiff(Variable="DopingConcentration" Value=0.001)

}

Refinement "interface"

{

MaxElementSize = (0.01 0.005)

MinElementSize = (0.0025 0.005)

}

# Profiles

Constant "bulkboron"

{

Species = "BoronActiveConcentration"

Value =1e+15

}

Constant "bulkarsen"

{
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Species = "ArsenicActiveConcentration"

Value =1e+5

}

Constant "npoly"

{

Species = "ArsenicActiveConcentration"

Value =1e+21

}

Constant "channeln"

{

Species = "ArsenicActiveConcentration"

Value =1e+12

}

Constant "channelp"

{

Species = "BoronActiveConcentration"

Value =1e17

}

Constant "channelp2"

{

Species = "BoronActiveConcentration"

Value =1e+18

}

AnalyticalProfile "bulkn"

{

Species = "ArsenicActiveConcentration"

Function = gauss(peakpos=0, PeakVal =1.5e21,

ValatDepth = 1e20,

depth = 0.015

)

lateralfunction = gauss(standarddeviation = 0.002)

}

AnalyticalProfile "bulkn1"

{

Species = "ArsenicActiveConcentration"

Function = gauss(peakpos=0, PeakVal =1.5e21,

ValatDepth = 1e20,

depth = 0.043

)

lateralfunction = gauss(standarddeviation = 0.0095) #0.00613758)

}

AnalyticalProfile "bulkpg"
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{

Species = "BoronActiveConcentration"

Function = gauss(peakpos=0, PeakVal =1e19,

ValatDepth = 1e18,

depth = 0.015

)

lateralfunction = gauss(standarddeviation = 0.002)

}

AnalyticalProfile "bulkpg1"

{

Species = "BoronActiveConcentration"

Function = gauss(peakpos=0, PeakVal =1e19,

ValatDepth = 1e18,

depth = 0.043

)

lateralfunction = gauss(standarddeviation = 0.0095) #0.00613758)

}

AnalyticalProfile "bulkp"

{

Species = "BoronActiveConcentration"

Function = gauss(peakpos=0, PeakVal=6.5e+18,

ValatDepth = 3e18

depth = 0.005700

)

lateralfunction = gauss(standarddeviation = 0.006)

}

AnalyticalProfile "bulkp2"

{

Species = "BoronActiveConcentration"

Function = gauss(peakpos=0, PeakVal =1e18,

ValatDepth = 1e15,

depth = 0.4

)

lateralfunction = gauss(standarddeviation = 0.002)

}

AnalyticalProfile "bulkp1"

{

Species = "BoronActiveConcentration"

Function = gauss(peakpos=0, PeakVal=1.35e18,

ValatDepth = 1.2e18

depth = 0.030

)
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lateralfunction = gauss(standarddeviation = 0.06)

}

}

Placements {

# Refinement regions

Refinement "all region"

{

Reference = "all region"

RefineWindow = rectangle [(-0.525 -0.15), (0.525 1)]

}

Refinement "leftoxide"

{

Reference = "oxide"

RefineWindow = rectangle [(-0.081 0), (-0.025 -0.15)]

}

Refinement "rightoxide"

{

Reference = "oxide"

RefineWindow = rectangle [(0.025 0), (0.081 -0.15)]

}

Refinement "source1 instant"

{

Reference = "source1"

RefineWindow = rectangle [(-0.525 0), (0.525 0.045)]

}

Refinement "source instant"

{

Reference = "source"

RefineWindow = rectangle [(-0.102 0), (0.102 0.045)]

}

Refinement "gate"

{

Reference = "gate"

RefineWindow = rectangle [(-0.025 -0.15) (0.025 -0.001)]

}

Refinement "gaterefine"

{

Reference = "gateoxide"

RefineWindow = rectangle [(-0.025 0) (0.025 -0.001)]

}
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Refinement "undergate"

{

Reference = "drain"

RefineWindow = rectangle [(-0.052 0) (0.052 0.045)]

}

Refinement "interface1"

{

Reference = "interface"

RefineWindow = rectangle [(-0.525 0.044), (0.525 0.047)]

}

Refinement "interface2"

{

Reference = "interface"

RefineWindow = rectangle [(-0.081 0.001), (0.081 -0.002)]

}

Refinement "underrefine"

{

Reference = "refine"

RefineWindow = rectangle [(-0.025 0) (0.025 0.025)]

}

# Profiles

Constant "bulkarsen instance"

{

Reference = "bulkarsen"

EvaluateWindow

{

Element = rectangle [(-0.525 0), (0.525 1)]

DecayLength = 0

}

}

Constant "bulkboron instance"

{

Reference = "bulkboron"

EvaluateWindow

{

Element = rectangle [(-0.525 0), (0.525 1)]

DecayLength = 0

}

}

Constant "channelboron instance"

{

Reference = "channelp"
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EvaluateWindow

{

Element = rectangle [(-0.525 0.045), (0.525 0.05)]

# direction = positive

DecayLength = 0.20

}

}

Constant "npoly instance"

{

Reference = "npoly"

EvaluateWindow

{

Element = rectangle [(-0.025 -0.15), (0.025 -0.001)]

DecayLength = 0

}

}

AnalyticalProfile "sourcen"

{

Reference = "bulkn"

ReferenceElement

{

Element = line[(-0.525 0) (-0.025 0)]

Direction =positive

}

EvaluateWindow

{

Element = rectangle[(-0.525 0) (0 0.045)

]

}

}

AnalyticalProfile "drain"

{

Reference = "bulkn"

ReferenceElement

{

Element = line[(0.025 0) (0.525 0)]

Direction =positive

}

EvaluateWindow

{

Element = rectangle[(0 0) (0.525 0.045)

]
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}

}

AnalyticalProfile "sourcep"

{

Reference = "bulkpg"

ReferenceElement

{

Element = line[(-0.525 0) (-0.025 0)]

Direction =positive

}

EvaluateWindow

{

Element = rectangle[(-0.525 0) (0 0.045)

]

}

}

AnalyticalProfile "drainp"

{

Reference = "bulkpg"

ReferenceElement

{

Element = line[(0.025 0) (0.525 0)]

Direction =positive

}

EvaluateWindow

{

Element = rectangle[(0 0) (0.525 0.045)

]

}

}

AnalyticalProfile "sourcenl"

{

Reference = "bulkn1"

ReferenceElement

{

Element = line[(-0.525 0) (-0.081 0)]

Direction =positive

}

EvaluateWindow

{

Element = rectangle[(-0.525 0)

(-0.025 0.045) ]
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}

}

AnalyticalProfile "drainl"

{

Reference = "bulkn1"

ReferenceElement

{

Element = line[(0.081 0) (0.525 0)]

Direction =positive

}

EvaluateWindow

{

Element = rectangle[(0.025 0) (0.525 0.045)

]

}

}

AnalyticalProfile "sourcepl"

{

Reference = "bulkpg1"

ReferenceElement

{

Element = line[(-0.525 0) (-0.081 0)]

Direction =positive

}

EvaluateWindow

{

Element = rectangle[(-0.525 0)

(-0.025 0.045) ]

}

}

AnalyticalProfile "draipl"

{

Reference = "bulkpg1"

ReferenceElement

{

Element = line[(0.081 0) (0.525 0)]

Direction =positive

}

EvaluateWindow

{

Element = rectangle[(0.025 0) (0.525 0.045)

]
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}

}

AnalyticalProfile "undergateboron1"

{

Reference = "bulkp"

ReferenceElement

{

Element = line[(-0.008 0) (-0.006 0)]

Direction =positive

}

EvaluateWindow

{

Element = rectangle[(-0.525 0)(0.525 1)

]

}

}

AnalyticalProfile "undergateboron2"

{

Reference = "bulkp"

ReferenceElement

{

Element = line[(0.006 0) (0.008 0)]

Direction =positive

}

EvaluateWindow

{

Element = rectangle[(-0.525 0)(0.525 1)

]

}

}

AnalyticalProfile "undergateboron1_1"

{

Reference = "bulkp1"

ReferenceElement

{

Element = line[(-0.025 0.045) (-0.024 0.045)]

}

EvaluateWindow

{

Element = rectangle[(-0.525 0)(0.525 1)

]

}
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}

AnalyticalProfile "undergateboron2_1"

{

Reference = "bulkp1"

ReferenceElement

{

Element = line[(0.024 0.045) (0.025 0.045)]

}

EvaluateWindow

{

Element = rectangle[(-0.525 0)(0.525 1)

]

}

}

}

C.2 Noise Simulation CMD file

Device nmos {

Electrode {

{ Name="drain" Voltage=0 }

{ Name="source" Voltage=0 }

{ Name = "gate" Voltage = 0 }

{ Name="bulk" Voltage=0 }

}

File {

Grid = "msh_msh.grd"

Doping = "msh_msh.dat"

Current = "noiseqmhdetvdswp_des.plt"

Plot = "noiseqmhdetvdswp_des.dat"

}

Physics{

Areafactor= 1

EffectiveIntrinsicDensity( Slotboom )

Hydrodynamic(eTemp)

Mobility(

dopingdependence(Masetti)

enormal(Lombardi)
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Highfieldsaturation(CarrierTempDrive)

)

eQCvanDort

Fermi

Noise ( DiffusionNoise ( eTemperature ))

}

}

*----------------------------------------------------------------------*

*--End of Device{}

*----------------------------------------------------------------------*

Plot {

eDensity hDensity

TotalCurrent/Vector eCurrent/Vector hCurrent/Vector

ElectricField Potential SpaceCharge

Doping DonorConcentration AcceptorConcentration

SRH Auger

eQuasiFermi hQuasiFermi

eEparal hEparal

eMobility hMobility

eVelocity hVelocity

xMoleFraction

BandGap BandGapNarrowing

Affinity

ConductionBand ValenceBand

}

Math {

Extrapolate

NotDamped=200

Iterations=20

NewDiscretization

Derivatives

RelerrControl

Digits=6
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}

File {

Output = "noiseqmhdetvdswp"

ACExtract="noiseqmhdetvdswp"

}

System {

nmos NMOS (drain=2 gate=1 source=0 bulk=0)

Vsource_pset vg (1 0){ dc = 0 }

Vsource_pset vd (2 0){ dc = 0 }

}

Solve {

Coupled (Iterations=50) {poisson}

Coupled { poisson Electron }

Coupled {poisson Electron ElectronTemperature}

Quasistationary (

initialstep = 0.2 MinStep=1e-1 MaxStep=1

Goal {Parameter=vd.dc Voltage=0}

Goal {Parameter=vg.dc Voltage=0.1}

){

Coupled {poisson Electron ElectronTemperature}

}

save(fileprefix = "vd0vg0.1acqmhd")

load(fileprefix = "vd0vg0.1acqmhd")

Quasistationary (

initialstep = 0.5 MinStep=1e-1 MaxStep=1

Goal {Parameter=vg.dc Voltage=0.2}

){

Coupled {poisson Electron ElectronTemperature}

}

save(fileprefix = "vd0vg0.2acqmhd")

Quasistationary (

initialstep = 0.5 MinStep=1e-1 MaxStep=1

Goal {Parameter=vg.dc Voltage=0.3}

){

Coupled {poisson Electron ElectronTemperature}

}

save(fileprefix = "vd0vg0.3acqmhd")

Quasistationary (
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initialstep = 0.5 MinStep=1e-1 MaxStep=1

Goal {Parameter=vg.dc Voltage=0.4}

){

Coupled {poisson Electron ElectronTemperature}

}

save(fileprefix = "vd0vg0.4acqmhd")

Quasistationary (

initialstep = 0.5 MinStep=1e-1 MaxStep=1

Goal {Parameter=vg.dc Voltage=0.5}

){

Coupled {poisson Electron ElectronTemperature}

}

save(fileprefix = "vd0vg0.5acqmhd")

Quasistationary (

initialstep = 0.5 MinStep=1e-1 MaxStep=1

Goal {Parameter=vg.dc Voltage=0.6}

){

Coupled {poisson Electron ElectronTemperature}

}

save(fileprefix = "vd0vg0.6acqmhd")

Quasistationary (

initialstep = 0.5 MinStep=1e-1 MaxStep=1

Goal {Parameter=vg.dc Voltage=0.7}

){

Coupled {poisson Electron ElectronTemperature}

}

save(fileprefix = "vd0vg0.7acqmhd")

Quasistationary (

initialstep = 0.5 MinStep=1e-1 MaxStep=1

Goal {Parameter=vg.dc Voltage=0.8}

){

Coupled {poisson Electron ElectronTemperature}

}

save(fileprefix = "vd0vg0.8acqmhd")

Quasistationary (

initialstep = 0.5 MinStep=1e-1 MaxStep=1

Goal {Parameter=vg.dc Voltage=0.9}

){

Coupled {poisson Electron ElectronTemperature}

}

save(fileprefix = "vd0vg0.9acqmhd")

Quasistationary (
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initialstep = 0.5 MinStep=1e-1 MaxStep=1

Goal {Parameter=vg.dc Voltage=1}

){

Coupled {poisson Electron ElectronTemperature}

}

save(fileprefix = "vd0vg1acqmhd")

newcurrent = "vd0vg0p1acqmhd_"

Coupled {poisson Electron ElectronTemperature}

load(fileprefix = "vd0vg0.1acqmhd")

Quasistationary (

initialstep = 0.05 Increment = 1 MinStep=1e-2 MaxStep=0.1

Goal {Parameter=vd.dc Voltage=1}

){

ACCoupled (

StartFrequency = 1e9 EndFrequency =4e10

NumberOfPoints = 10 linear

Node(1 2) Exclude(vd vg)

ObservationNode(1 2)

ACExtraction = "acqmhdetvdswp"

NoiseExtraction = "acqmhdetvdswp"

NoisePlot = "acqmhdetvdswp"

) {Poisson Electron ElectronTemperature}

}

newcurrent = "vd0vg0p2acqmhd_"

load(fileprefix = "vd0vg0.2acqmhd")

Quasistationary (

initialstep = 0.05 Increment = 1 MinStep=1e-2 MaxStep=0.1

Goal {Parameter=vd.dc Voltage=1}

){

ACCoupled (

StartFrequency = 1e9 EndFrequency =4e10

NumberOfPoints = 10 linear

Node(1 2) Exclude(vd vg)

ObservationNode(1 2)

ACExtraction = "acqmhdetvdswp"

NoiseExtraction = "acqmhdetvdswp"

NoisePlot = "acqmhdetvdswp"

) {Poisson Electron ElectronTemperature}

}

newcurrent = "vd0vg0p3acqmhd_"

load(fileprefix = "vd0vg0.3acqmhd")
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Quasistationary (

initialstep = 0.05 Increment = 1 MinStep=1e-2 MaxStep=0.1

Goal {Parameter=vd.dc Voltage=1}

){

ACCoupled (

StartFrequency = 1e9 EndFrequency =4e10

NumberOfPoints = 10 linear

Node(1 2) Exclude(vd vg)

ObservationNode(1 2)

ACExtraction = "acqmhdetvdswp"

NoiseExtraction = "acqmhdetvdswp"

NoisePlot = "acqmhdetvdswp"

) {Poisson Electron ElectronTemperature}

}

newcurrent = "vd0vg0p4acqmhd_"

load(fileprefix = "vd0vg0.4acqmhd")

Quasistationary (

initialstep = 0.05 Increment = 1 MinStep=1e-2 MaxStep=0.1

Goal {Parameter=vd.dc Voltage=1}

){

ACCoupled (

StartFrequency = 1e9 EndFrequency =4e10

NumberOfPoints = 10 linear

Node(1 2) Exclude(vd vg)

ObservationNode(1 2)

ACExtraction = "acqmhdetvdswp"

NoiseExtraction = "acqmhdetvdswp"

NoisePlot = "acqmhdetvdswp"

) {Poisson Electron ElectronTemperature}

}

newcurrent = "vd0vg0p5acqmhd_"

load(fileprefix = "vd0vg0.5acqmhd")

Quasistationary (

initialstep = 0.05 Increment = 1 MinStep=1e-2 MaxStep=0.1

Goal {Parameter=vd.dc Voltage=1}

){

ACCoupled (

StartFrequency = 1e9 EndFrequency =4e10

NumberOfPoints = 10 linear

Node(1 2) Exclude(vd vg)

ObservationNode(1 2)

ACExtraction = "acqmhdetvdswp"
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NoiseExtraction = "acqmhdetvdswp"

NoisePlot = "acqmhdetvdswp"

) {Poisson Electron ElectronTemperature}

}

newcurrent = "vd0vg0p6acqmhd_"

load(fileprefix = "vd0vg0.6acqmhd")

Quasistationary (

initialstep = 0.05 Increment = 1 MinStep=1e-2 MaxStep=0.1

Goal {Parameter=vd.dc Voltage=1}

){

ACCoupled (

StartFrequency = 1e9 EndFrequency =4e10

NumberOfPoints = 10 linear

Node(1 2) Exclude(vd vg)

ObservationNode(1 2)

ACExtraction = "acqmhdetvdswp"

NoiseExtraction = "acqmhdetvdswp"

NoisePlot = "acqmhdetvdswp"

) {Poisson Electron ElectronTemperature}

}

newcurrent = "vd0vg0p7acqmhd_"

load(fileprefix = "vd0vg0.7acqmhd")

Quasistationary (

initialstep = 0.05 Increment = 1 MinStep=1e-2 MaxStep=0.1

Goal {Parameter=vd.dc Voltage=1}

){

ACCoupled (

StartFrequency = 1e9 EndFrequency =4e10

NumberOfPoints = 10 linear

Node(1 2) Exclude(vd vg)

ObservationNode(1 2)

ACExtraction = "acqmhdetvdswp"

NoiseExtraction = "acqmhdetvdswp"

NoisePlot = "acqmhdetvdswp"

) {Poisson Electron ElectronTemperature}

}

newcurrent = "vd0vg0p8acqmhd_"

load(fileprefix = "vd0vg0.8acqmhd")

Quasistationary (

initialstep = 0.05 Increment = 1 MinStep=1e-2 MaxStep=0.1

Goal {Parameter=vd.dc Voltage=1}

){
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ACCoupled (

StartFrequency = 1e9 EndFrequency =4e10

NumberOfPoints = 10 linear

Node(1 2) Exclude(vd vg)

ObservationNode(1 2)

ACExtraction = "acqmhdetvdswp"

NoiseExtraction = "acqmhdetvdswp"

NoisePlot = "acqmhdetvdswp"

) {Poisson Electron ElectronTemperature}

}

newcurrent = "vd0vg0p9acqmhd_"

load(fileprefix = "vd0vg0.9acqmhd")

Quasistationary (

initialstep = 0.05 Increment = 1 MinStep=1e-2 MaxStep=0.1

Goal {Parameter=vd.dc Voltage=1}

){

ACCoupled (

StartFrequency = 1e9 EndFrequency =4e10

NumberOfPoints = 10 linear

Node(1 2) Exclude(vd vg)

ObservationNode(1 2)

ACExtraction = "acqmhdetvdswp"

NoiseExtraction = "acqmhdetvdswp"

NoisePlot = "acqmhdetvdswp"

) {Poisson Electron ElectronTemperature}

}

newcurrent = "vd0vg1acqmhd_"

load(fileprefix = "vd0vg1acqmhd")

Quasistationary (

initialstep = 0.05 Increment = 1 MinStep=1e-2 MaxStep=0.1

Goal {Parameter=vd.dc Voltage=1}

){

ACCoupled (

StartFrequency = 1e9 EndFrequency =4e10

NumberOfPoints = 10 linear

Node(1 2) Exclude(vd vg)

ObservationNode(1 2)

ACExtraction = "acqmhdetvdswp"

NoiseExtraction = "acqmhdetvdswp"

NoisePlot = "acqmhdetvdswp"

) {Poisson Electron ElectronTemperature}

}
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}

C.3 MATLAB Programming for Simulation Results

C.3.1 Main file

close all; clear all; clc;

q = 1.6e-19;

kt = 0.0259*q;

datapath = ’D:\Yan\research\nmos\50nm\vdswpdata’;

cd(datapath);

filename = {’vdswpvg0p1’, ’vdswpvg0p2’, ’vdswpvg0p3’,...

’vdswpvg0p4’, ’vdswpvg0p5’, ’vdswpvg0p6’,...

’vdswpvg0p7’, ’vdswpvg0p8’, ’vdswpvg0p9’, ’vdswpvg1’};

x1 = 1;

Vdtmp = [0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225...

0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45...

0.475 0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675...

0.7 0.725 0.75 0.775 0.8 0.825 0.85 0.875 0.9...

0.925 0.95 0.975 1.0];

for vdsel = [1:length(Vdtmp)],

Vdx = Vdtmp(vdsel);

fileNumber=length(filename);

datasel = 1; %1: bias dependence, 2: frequency dependence

for filsel = [1:10],

load(filename{filsel});

Jd = Id./Area.*1e6; Jg = Ig./Area.*1e6;

nx = x1;

for n = [nx]; %frequency or bias point selection.

switch datasel

case 1 %bias dependence

sv12x = conj(sv12); sv12eex = conj(sv12ee); sv12hhx = conj(sv12hh);

SV = [sv1(:,n) sv12x(:,n) conj(sv12x(:,n)) sv2(:,n)];

SVee = [sv1ee(:,n) sv12eex(:,n) conj(sv12eex(:,n)) sv2ee(:,n)];

SVhh = [sv1hh(:,n) sv12hhx(:,n) conj(sv12hhx(:,n)) sv2hh(:,n)];

Y = [Y11(:,n) Y12(:,n) Y21(:,n) Y22(:,n)]; Z = z_from_Y(Y);

numend = num_of_bias;

case 2 %frequency dependence

sv12x = conj(sv12); sv12eex = conj(sv12ee); sv12hhx = conj(sv12hh);

SV = [conj(sv1(n,:)’) conj(sv12x(n,:)’) sv12x(n,:)’ conj(sv2(n,:)’)];

SVee = [conj(sv1ee(n,:)’) conj(sv12eex(n,:)’) sv12eex(n,:)’ conj(sv2ee(n,:)’)];
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SVhh = [conj(sv1hh(n,:)’) conj(sv12hhx(n,:)’) sv12hhx(n,:)’ conj(sv2hh(n,:)’)];

Y = [conj(Y11(n,:)’) conj(Y12(n,:)’) conj(Y21(n,:)’) conj(Y22(n,:)’)];

Z = z_from_Y(Y); S = s_from_y(Y);

numend = num_of_freq;

Igx = Ig(x1);Idx = Id(x1);

clear Ig; clear Id;

Ig = Igx; Id = Idx;

end

for x = 1:numend,

y = Y(x,:); z = Z(x,:); a = a_from_y(y);

cz = 0.5.*SV(x,:); ca = c_from_z_to_a(cz, a);

cy = c_from_a_to_y(ca, y);

nf = nf_from_ca(ca, 50);

ch = c_from_y_to_h(cy, y);

svb(x) = 2*cz(1); svc(x) = 2*cz(4);

svbvcr(x) = 2*real(cz(2)); svbvci(x) = 2*imag(cz(2));

cvbvcr(x) = svbvcr(x)/sqrt(svc(x)*svb(x));

cvbvci(x) = svbvci(x)/sqrt(svc(x)*svb(x));

sva(x) = 2*ca(1); sia(x) = 2*ca(4);

siavar(x) = 2*real(ca(3)); siavai(x) = 2*imag(ca(3));

ciavar(x) = siavar(x)/sqrt(sia(x)*sva(x));

ciavai(x) = siavai(x)/sqrt(sia(x)*sva(x));

sib(x) = 2*cy(1); sic(x) = 2*cy(4);

sicibr(x) = 2*real(cy(3)); sicibi(x) = 2*imag(cy(3));

cicibr(x) = sicibr(x)/sqrt(sib(x)*sic(x));

cicibi(x) = sicibi(x)/sqrt(sib(x)*sic(x));

svh(x) = 2*ch(1); sih(x) = 2*ch(4);

svhihr(x) = 2*real(ch(2)); svhihi(x) = 2*imag(ch(2));

cvhihr(x) = svhihr(x)/sqrt(svh(x)*sih(x));

cvhihi(x) = svhihi(x)/sqrt(svh(x)*sih(x));

nfmin(x) = nf(1); rn(x) = nf(2); Yopt(x) = nf(3);

czee = 0.5.*SVee(x,:); caee = c_from_z_to_a(czee, a);

cyee = c_from_a_to_y(caee, y); nfee = nf_from_ca(caee, 50);

svbee(x) = 2*czee(1); svcee(x) = 2*czee(4);

svbvcree(x) = 2*real(czee(2)); svbvciee(x) = 2*imag(czee(2));

cvbvcree(x) = svbvcree(x)/sqrt(svcee(x)*svbee(x));

cvbvciee(x) = svbvciee(x)/sqrt(svcee(x)*svbee(x));

svaee(x) = 2*caee(1); siaee(x) = 2*caee(4);

siavaree(x) = 2*real(caee(3)); siavaiee(x) = 2*imag(caee(3));

ciavaree(x) = siavaree(x)/sqrt(siaee(x)*svaee(x));
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ciavaiee(x) = siavaiee(x)/sqrt(siaee(x)*svaee(x));

sibee(x) = 2*cyee(1); sicee(x) = 2*cyee(4);

sicibree(x) = 2*real(cyee(3)); sicibiee(x) = 2*imag(cyee(3));

cicibree(x) = sicibree(x)/sqrt(sibee(x)*sicee(x));

cicibiee(x) = sicibiee(x)/sqrt(sibee(x)*sicee(x));

nfminee(x) = nfee(1); rnee(x) = nfee(2); Yoptee(x) = nfee(3);

czhh = 0.5.*SVhh(x,:); cahh = c_from_z_to_a(czhh, a);

cyhh = c_from_a_to_y(cahh, y); nfhh = nf_from_ca(cahh, 50);

svbhh(x) = 2*czhh(1); svchh(x) = 2*czhh(4);

svbvcrhh(x) = 2*real(czhh(2)); svbvcihh(x) = 2*imag(czhh(2));

cvbvcrhh(x) = svbvcrhh(x)/sqrt(svchh(x)*svbhh(x));

cvbvcihh(x) = svbvcihh(x)/sqrt(svchh(x)*svbhh(x));

svahh(x) = 2*cahh(1); siahh(x) = 2*cahh(4);

siavarhh(x) = 2*real(cahh(3)); siavaihh(x) = 2*imag(cahh(3));

ciavarhh(x) = siavarhh(x)/sqrt(siahh(x)*svahh(x));

ciavaihh(x) = siavaihh(x)/sqrt(siahh(x)*svahh(x));

sibhh(x) = 2*cyhh(1); sichh(x) = 2*cyhh(4);

sicibrhh(x) = 2*real(cyhh(3)); sicibihh(x) = 2*imag(cyhh(3));

cicibrhh(x) = sicibrhh(x)/sqrt(sibhh(x)*sichh(x));

cicibihh(x) = sicibihh(x)/sqrt(sibhh(x)*sichh(x));

nfminhh(x) = nfhh(1); rnhh(x) = nfhh(2); Yopthh(x) = nfhh(3);

end

end

end

C.3.2 c_from_y_to_h.m

function x = c_from_y_to_h(cy, Y);

%function x = c_from_y_to_h(cy, Y);

Y11 = Y(1); Y21 = Y(3);

sin1 = cy(1); sin2 = cy(4); sin1in2 = cy(2); sin2in1 = cy(3);

sv = sin1./(abs(Y11)).^2;

si= sin2 + sin1.*(abs(Y21./Y11)).^2-...

2.*real(Y21./Y11.*sin1in2);

svi = conj(Y21)./(abs(Y11)).^2.*sin1 -...

sin1in2./Y11;

x = [sv svi conj(svi) si];
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