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ABSTRACT 

 
 The solution to an elastic-plastic contact problem can be applied to many 

phenomena such as friction, wear, and thermal contact resistance.  Many models have 

been developed to solve it.   A deterministic approach accurately describes the entire 

surface, but its computational time is too long for practical use.  Thus, simplified 

mathematical models have been developed to describe rough surface contact.  Older 

models employed a statistical methodology to solve the contact problem, and they 

borrowed the solution for spherical contact to represent individual asperities.  However, it 

is believed that a sinusoidal geometry may be more realistic.  This geometry has also 

been applied to a newer mathematical model: the multiscale model.  All models predict 

similar qualitative trends, but their quantitative results diverge.  This work highlights the 

disparities between them when applied to a piston ring-cylinder wall interface as well as 

two reference surfaces in contact with a rigid flat.  For the reference surfaces, they were 

compared to a deterministic FEM model. 
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CHAPTER 1 

INTRODUCTION 

 Contact between rough surfaces is a ubiquitous problem that can be applied to 

numerous phenomena such as friction, wear, and contact resistance.  It can be modeled in 

many ways such as statistical [1-4], fractal [5], and multi-scale [6] models.  In the 

statistical model, the surface is generalized by using mathematical parameters to calculate 

probabilities to determine the contact area and force.  Fractal based models account for 

different scales of surface features neglected by statistical models.  Due to their 

limitations such as predicting zero contact area, they are not considered in this work.  The 

multi-scale model more accurately incorporates deformation mechanics and is not 

restrained to zero area of contact at the smallest scales, which occurs if perfect fractal 

surfaces are assumed. 

 In this project, a combined contact mechanics and lubrication model was 

developed to predict performance in mechanical systems such as a piston ring system in a 

combustion engine.  To represent the contact mechanics module, three different rough 

surface contact models were applied to it.  The first two models were based on the 

Greenwood-Williamson (GW) statistical model, which assumes a Gaussian distribution 

of asperities.  One model assumed the asperities were spherical in nature, while the other 

assumed sinusoidal asperities.  Both assumed identical radius of curvature for each peak 

and a lack of interaction between adjacent asperities.  However, the sinusoidal asperity 

model includes a periodic boundary condition which includes interactions with adjacent 
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asperities.  The final model was the full multi-scale model with asperities assumed to be 

sinusoidal in shape and no underlying statistical distribution required because the surface 

would be analyzed in the frequency domain.  The contact models are part of the flow 

chart seen in Figure 1.1 as displacements are iteratively calculated. 

 

 

Figure 1.1: Flow chart of iterative calculations for the piston ring 
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CHAPTER 2 

HISTORICAL BACKGROUND 

2.1 Methods of Modeling Rough Surfaces 

 This chapter details various methods to model rough surface contact.  Statistical, 

fractal, and multi-scale models are mentioned here, but surfaces can be modeled using 

other methods.  They have unique assumptions and mathematical techniques, but they 

predict similar qualitative trends. 

 

2.2 Statistical Methods 

 Henrich Hertz was one of the first researchers in the field of contact mechanics.  

He solved the elastic deformation of a parabola, which can be applied to cylindrical or 

spherical contact [7].  However, he did not consider the effects of friction or plastic 

deformation.  His solution has been expanded from a single asperity, or raised point on a 

surface, to a system of asperities that describes a surface’s topography. 

 One such expansion is the statistical model provided by Greenwood and 

Williamson [1], which shall be referred to as the GW model.  Their work considered the 

interaction between two planes.  One plane was perfectly flat and rigid, while the other 

was covered with identical spherical asperities.  They assumed that asperities behave 

independently of each other and deformation was restricted to the asperities.  The asperity 

heights were assumed to fit a Gaussian distribution, so the percentage of contact area 
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could be calculated using statistical mathematics.  This model relies on the interference, 

or the material that deforms to maintain a given separation, between the surfaces.   

 The GW model only considers elastic contact, so the model has been refined to 

include the effects of elastic-plastic deformation.  One such model was derived by 

Jackson and Green [3] (JG), which establishes the required load above which the 

statistical model predicts plastic deformation.  Other models such as those proposed by 

Chang, Etsion, and Bogy (CEB) [2] and Kogut and Etsion [4] include the effects of 

plasticity, but they are not considered here because they contain discontinuities in crucial 

parameters.  As the contact pressure increases, so does the internal stress within 

asperities, which causes yielding and plastic deformation.  At the critical interference, 

which is provided in the next chapter, the material is assumed to yield, and JG model is 

used instead of Hertzian contact.  The JG model is limited to small deformations such 

that the contact radius is 41% or less of the radius of curvature. 

 

2.3 Fractal Methods 

 Statistical models are reliable and easily implemented, but shortcomings exist.  

For one, the entire surface is characterized by a single radius of curvature.  Thus, they 

neglect the effects of different scales of features.  Furthermore, the surface heights may 

be too far removed from a Gaussian distribution to employ the GW model.  In this 

instance, other models must be used instead.  Majumdar and Bhushan [5] (MB) created a 

fractal model for rough surface contact.  They applied the Weierstrauss-Mandelbrot 

(WM) function to multiple levels of roughness.  While it depicts a different roughness for 

each scale, a surface may not have a spectrum that can be related to the fractal equation.  
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Ciavarella et al. [8] solved a 2D W-M fractal-rigid flat interface using a stacked asperity 

assumption and an elastic sinusoidal model derived by Westergaard [9].  They found that 

the contact area approached zero as higher scales were included.   For this reason, this 

work does not consider a fractal based model. 

2.4 Multi-scale Methods 

 To overcome the limitations of the GW model and predict a realistic area of 

contact, the multi-scale model as developed by Jackson and Streator (JS) is used.  Their 

model builds off Archard’s [10] “protuberance upon protuberance” concept in which the 

Hertzian sphere was expanded by including hemispheres of smaller radii on it.  As loads 

increase, the surfaces come into complete contact at the smallest scales and begin 

compressing at larger scales.  Archard’s experiments showed a linear relationship 

between area and force and that rougher surfaces would only flatten with larger force.  

Jackson and Streator refined Archard’s model so it could be applied to real surfaces [6].  

They made the following assumptions: smaller asperities are stacked on larger asperities, 

load is distributed equally over all asperities on each scale, total load does not depend on 

scale, and the contact area is limited to that of the scale below.  They applied the Johnson, 

Greenwood, and Higginson piecewise solution [10] for perfectly elastic 3D sinusoidal 

contact and connected the equations.  To consider roughness, the surface was converted 

using a discrete Fourier transform into a series of sine waves of known frequency and 

amplitude [6].  Their procedures will be discussed in more detail in the next chapter. 

 The JS model was subsequently modified using results from Krithivasan and 

Jackson [11], who analyzed a finite element model of a sinusoidal asperity.  Like the JG 

model, a critical value below which contact remains perfectly elastic exists.  Because 
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interference is not calculated, the critical values are found in terms of force.  More details 

on their process are mentioned in the next chapter.  The multi-scale model was extended 

by Gao and Bower [12], who included plastic deformation, albeit for a 2D model.  

Therefore, there work is not considered here. 
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CHAPTER 3 

METHODS OF ANALYSIS 

3.1 Introduction 

In this chapter, the models being used to analyze rough surface contact are 

presented.  Numerical techniques for calculating the real area of contact, the contact 

pressure, and the surface separation for elastic and elastic-plastic contact are given.  Also, 

the critical values at which elastic-plastic contact starts are given. 

 

3.2 Development of the GW Statistical Model 

 For each asperity in the GW model, the difference between its height and the 

average asperity height is z.  When a rough surface is placed in contact with another 

surface, some asperities are compressed by a distance ω, which is defined as 

 ,z d           (3.1) 

where d is the distance between the mean asperity heights for the surfaces put together.  

In the original GW model, the contact area and the force were adopted from the Hertz 

elastic contact model [7].  The equations for them are 

A R          (3.2) 

3

2
4

'
3

P E R        (3.3) 

where E' is a modified elastic modulus calculated given the elastic moduli and Poisson’s 

ratios of surfaces 1 and 2: 
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2 2
1 2

1 2

1 11

'E E E

  
         (3.4) 

The asperity radius R is a modified quantity as well, given by 

1 2

1 1 1
,

R R R
          (3.5) 

where R1 and R2 are the average asperity radii of surfaces 1 and 2 respectively. 

 To derive the total contact area and pressure under the GW model [1], the asperity 

density per unit area, η, and the nominal contact area, An, must be known.  The product of 

these quantities will be called the asperity count, N.  The asperities in contact, Nc, can be 

found using the integral 

  ,c n

d

N A z dz 


         (3.6) 

where represents the probability density function for the normal distribution with a zero 

mean and standard deviation, σ. 

Thus, the total contact area and force can be found as follows: 

      ,n

d

A d A A z d z dz 


       (3.7) 

      .n

d

P d A P z d z dz 


        (3.8) 

These integrals were evaluated numerically using Simpson’s Rule.  The asperity density, 

asperity radius, and root mean square of the asperity heights were calculated using a 

spectral moment approach derived by McCool [13].  The spectral moments were found 

from raw surface data using the following equations: 
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2

2
1

1
,

N

n n

dz
m

N dx

   
 

        (3.9) 

22

4 2
1

1
.

N

n n

d z
m

N dx

 
  

 
         (3.10) 

where N is the number of points where the surface height was measured.  For a three-

dimensional surface, the moments were calculated along two orthogonal directions, then 

averaged together.  They were then used to calculate the statistical quantities as follows: 

4

26 3

m

m



         (3.11) 

4

0.375R
m


         (3.12) 

2
2 2

0.0003717
s R

 


         (3.13) 

To check if the surface was Gaussian in nature, the bandwidth parameter α was 

calculated in both dimensions using the equation 

2

4
2

.m
m


 

  
 

       (3.14) 

If the value of α exceeded 1.5, then the surface was assumed to be sufficiently Gaussian 

in that direction, and the G-W model could be used confidently. 

 However, elastic contact is not realistic because asperities yield when the applied 

pressure reaches a critical value, especially for metallic surfaces.  At the initial point of 

yielding, the surface compression is ωc.  Jackson and Green [3] derived this analytical 

solution using the von Mises criterion: 
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2

,
2 '

y
c

CS
R

E




 
  

 
       (3.15) 

where Sy is the yield strength of the material and 

0.7361.295 .C e         (3.16) 

At interference values below ω/ωc ≤ 1.9, the elastic contact formulae were still 

approximately valid.  At higher values of deflection, the following equations were used to 

predict contact area and force: 

1.9

B

c

A R
 


 
  

 
       (3.17) 

5 5

12 9
3

0.25 0.042 4
1 ,c cG

c
c y c

H
P P e e

CS

 
  

 

   
    

   

    
                     

  (3.18)  

where 

230.14 ,yeB e         (3.19) 

,
'

y
y

S
e

E
         (3.20) 

0.7

2
0.82

1.9

2.84 1 ,

B

cR
G

y

H
e

S

 



 

  
   

  
 

 
 
  
 
 
 

      (3.21) 

32
4

3 ' 2
y

c

C SR
P

E

     
   

       (3.22) 

3.3 Application of Sinusoidal Asperities to the GW Model 

Alternatively, the asperities could be assumed to have a sinusoidal profile and 

evenly distributed based on η.  At their peaks, their radius of curvature was identical and 
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defined by R.  The following relations were used to convert the asperity radius and density 

to the parameters for sinusoidal asperities, frequency and amplitude [14]: 

,
2

f


         (3.23) 

 2

1
.

4R f 
         (3.24) 

Johnson, Greenwood, and Higginson (JGH) [9] developed a piecewise defined function 

between pressure and contact area for a single asperity under elastic loading.  In their 

equations, ̅݌ is the average contact pressure, and p* is the pressure required for complete 

contact, which is given by 

* 2 ' .p E f         (3.25) 

 The ratio of the contact pressure and the pressure required for complete contact 

shall be called Pe.  At pressures below p*, JGH were not able to derive a closed form 

solution, but rather provided two asymptotic solutions based on Hertz contact.  For Pe<< 

1, 

 
2

3
2

1

3
,

8
e

JGH
P

A 


    
      (3.26) 

while at large values of Pe, 

   
2

2

3
1 1 .

2 2
JGH eA P




    
 

      (3.27) 

Jackson and Streator [6] fitted a polynomial that combined the two equations above using 

experimental data from Johnson et. al: 

For Pe<0.8, 

      0.51 1.04

1 2
1JGH JGHe eA A P A P        (3.28) 
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For Pe≥0.8, 

  
2

JGHA A         (3.29) 

 These equations neglect asperity yielding, so an elastic-plastic model for large 

loads was developed by Krithivasan and Jackson [11].  Their equation for the contact 

area at low pressures when plastic deformation occurs is 

1
11

2

3
2 ,

2 4

d

dd
c

p
y

A p
A

Cf S

           
     (3.30) 

where 

0.11

'
3.8 ,

y

E f
d

S

 
   

 
       (3.31) 

and 

2

2

2

8 '
y

c

CS
A

E f
 

   
       (3.32) 

is the critical area at which elastic-plastic contact begins.  They also found that complete 

contact occurs at much lower pressures compared to a purely elastic model and called 

that value p*ep.  The ratio of the contact pressure, p , and p*ep is Pep. 

Their equation linking contact area and load over low pressures and high pressures is 

   1.51 1.04

2
1 .JGHp ep epA A P A P        (3.33) 

In this equation, the value of  
2

JGHA is calculated by replacing Pe with Pep.  They also 

derived a critical average contact pressure below which contact remains in the elastic 

regime.  Because that was derived from spherical contact, Jackson et. al. [15] derived a 
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new model by computing the critical interference Δc, above which elastic-plastic relations 

are used.  Their corrected expression for it as published by Ghaednia et. al. [16] is 

 2
1

3

2
.

1 2
' 3 2

1

y
c

S

E f e
 


 

 
      

     (3.34) 

Using this value of critical interference, a new equation for p*ep that relates it to 

p* was fitted to the FEM data of Krithivasan and Jackson [11], 

0.39
10 9 4 0.64
3 4

1
*

*
0.992

c

c

epP

p


 

    

 
         
 
      (3.35) 

where 

  

 To apply sinusoidal asperities to the GW model, the surface separation must be 

known as well.  Rostami and Jackson [17] derived expressions for elastic and elastic-

plastic contact by extracting surface separation from a finite element model and 

averaging over the entire surface.  Their fitted equations are 

 2.5

1 eG P         (3.36) 

for elastic contact and 

 1 2
2.5

1 epA P A

epG P          (3.37) 

for elastic-plastic contact.  In these equations, 

,
g

G 


        (3.38) 

*
1 0.08ln ,A B         (3.39) 
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   *0.44 0.41 1*
2

1
1 0.99 0.5,

15

B
A B


        (3.40) 

*

c

B





         (3.41) 

 

3.4 Full Multiscale Model 

 The third model for rough surface contact considered in this work was iterative 

[6], as it incorporated the effects of asperities at different scales.  The surface is first 

transformed to the frequency domain by performing a two-dimensional FFT.  Its 

wavelength, λ, was set to be the length of the surface considered divided by the number 

of nodes.  The applied force was a known quantity.  Because the model requires a 1 to 1 

correspondence between amplitudes and frequencies, the 1D Fourier coefficient was 

calculated using the equation 

   
1 12 2

0 0

0.5 , , ,
y x

y x

N N

k y x
k k

z k k z k k
 

 

 
  
  
     (3.42) 

where z is the height of the surface [18].  In the analysis of [6], the number of asperities at 

each contact level was calculated.  This model determines area over the entire level.  The 

spectrum is symmetric, so only half the frequency levels are considered.  For the lowest 

frequency, the area and force were defined as their nominal values.  On each scale i, the 

overall contact area and force were calculated using the equations 


1 12

min ,i
i i i

A
A A A

  

 
  

 
      (3.43) 

and 
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         (3.44) 

In Eq. 3.43, iA is the area calculated using Equation 3.28 for elastic contact and Equation 

3.33 for elastic-plastic contact.  The total contact area and pressure were the values 

calculated after all the scales are included. 

 Unlike statistical models, the multiscale model does not require the gap between 

surfaces to be defined to calculate contact area as a function of force.  For the lubrication 

model, that is a known quantity, so Equations 3.36-3.41 are used to calculate surface 

separation given the pressure. 
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CHAPTER 4 

RESULTS 

4.1 Cylinder Wall-Rigid Flat Interface 

 This study used measurements from two rough surfaces to compare contact 

models.  The first surface analyzed was a cylinder wall from an internal combustion 

engine; it was placed in contact with a rigid flat.  The rough surface of a 1 mm2 area was 

measured using a DekTak 150 profilometer, and surface heights were reported at 1 μm 

intervals.  Figure 1 shows the measured profile of the surface. 

 

 

 

Figure 4.1: current production engine cylinder wall 
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 The surface was leveled by performing a linear regression on each row of 

measurements, then zeroed by subtracting the average height from each point.  Eq. 3.9-

3.13 were applied to it, and the parameters extracted from the measured surface are 

summarized in Table 4.1. 

Table 4.1: Cylinder Wall Parameters 

 “x-direction” “y-direction” “averaged 
directions” 

R (m) 1.03*10-5 1.39*10-4 7.48*10-5 
η (1/m2) 1.73*1010 4.11*108 8.84*109 
σs (m) 2.14*10-7 # 2.38*10-7 
α 4.338 0.4557 5.8417 

# This computation resulted in an imaginary number.  This is because the surface heights 

in that direction are too heavily skewed from a Gaussian distribution. 

 

The value of αy was less than the threshold of 1.5, so that set of parameters was 

discarded.  The two valid sets of statistical values were employed in the G-W model with 

spherical asperities, along with the material properties in Table 4.2. 

Table 4.2: Material Properties of the Cylinder Wall 

Property Value 
E 96.5 GPa 
E’ 51.7 GPa 
ν 0.26 
Sy 220 MPa 

 

 To calculate the contact area and pressure, Eq. 3.7 & 3.8 were evaluated 

numerically using Simpson’s method.  The upper bound was set to be 10 σs, above which 

the effects of surface contact were assumed to be negligible.  The average nominal 

pressure, or the force divided by the nominal area, was nondimensionalized by dividing 

by E’.   
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 Because real asperities may resemble waves more than spheres, an alternative 

model that assumes sinusoidal asperities was employed as well.  The statistical 

parameters were transformed into an amplitude and a frequency that described the 

surface.  Table 4.3 summarizes these values for the cylinder wall. 

Table 4.3: Sine Wave Parameters for Cylinder Wall 

Parameter “x-direction” “averaged directions” 
Δ (m) 2.85*10-7 7.66*10-8 
λ (m) 1.08*10-5 1.50*10-5 

 

 The limits of integration remained constant; Equations 3.37-3.42 for contact 

pressures using bisection, which were combined with the amplitude and frequency to 

create a function for contact area.  The integrals were evaluated with the same 

incremental length and method. 

 The surface was also analyzed by considering different roughness scales for use in 

the multiscale model.  Figure 4.2 is a plot of the surface in the frequency domain.  For the 

multiscale model, the force was varied between 5*10-21 and 500 N. 
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Figure 4.2: Spectrum of current production engine cylinder wall 

In the following plots, contact areas or loads below 10-10 were assumed to be 

negligible and are not shown.  Figures 4.3-4.5 plot the analysis using the G-W model 

with spherical asperities and both sets of statistical parameters. 
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Figure 4.3: Area contact ratio for different surface separations, cylinder wall-rigid 

flat interface 

 Figure 4.3 shows a trend of decreasing area of contact as the surfaces become 

farther apart.  Even at zero surface separation, there are substantial gaps between the 

surfaces.  In other words, the contact area differs from the nominal contact area.  Using 

just the spectral moments in the x direction to generate surface parameters underestimates 

the contact area.  
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Figure 4.4: Pressure variation with surface separation, cylinder wall-rigid flat interface 

 Figure 4.4 displays a trend of decreasing contact pressure as surface separation 

increases, which makes sense.  If only the spectral moments in the x direction are used to 

calculate statistical parameters, the contact pressure is underestimated in comparison to 

using moments in both directions.  Also, the contact pressure decreases by several orders 

of magnitude, while surface separation increases by less than one order of magnitude. 
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Figure 4.5: Area contact ratio and load comparison, cylinder wall-rigid flat 

interface 

 

 Figure 4.5 illustrates a nearly linear relationship between applied force and 

contact area, which is predicted by most rough surface contact models.  While the 

surface’s anisotropy affects the area and contact force relative to the surface separation, it 

does not affect the linear relationship between contact area and force.  In fact, directional 

effects can be largely ignored. 
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Figure 4.6: Area contact ratio over various surface separations for sinusoidal 

asperities, cylinder wall-rigid flat interface 

 

 Figure 4.6 shows results with sinusoidal asperities in the G-W model and compare 

them to the spherical asperity model.  This plot does not show as large a difference in 

contact area ratio for the different sets of parameters compared to the model using 

spherical asperities.  Also, this model predicts complete contact for zero surface 

separation.  On the other hand, the spherical asperity model predicts that over half the 

surface will not be in contact. 



24 

 

 

Figure 4.7: Percent difference, cylinder wall-rigid flat interface 

 Figure 4.7 shows the difference in contact area ratio for the sets of parameters 

when using them in the statistical model.  The spherical asperity model predicts a 

difference of approximately 70%, which is more than double what the sinusoidal asperity 

model predicts.  In Figure 4.8 and all subsequent figures that compare the statistical 

models, only the parameters generated from averaging two orthogonal directions are used 

because that would be more representative of the surface. 
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Figure 4.8: Contact pressure variation with surface separation, cylinder wall-rigid 

flat interface 

 Figure 4.8 compares the predicted contact pressure for the multiscale model and 

the statistical models for the cylinder wall.  The statistical models predict a larger contact 

pressure than the multiscale model, where the trend is similar with completely different 

quantitative values.  All models predict a large contact pressure that rapidly decreases as 

the surfaces are separated, but the multiscale model predicts the fastest decrease.  The 

sinusoidal asperity model predicts the largest contact pressure at low separations, but 

decreases faster than the spherical model as the surfaces are pulled apart.  It is important 

to know the contact pressure for a given surface separation because that is an input in the 

FEM model as shown in Figure 1.1. 
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Figure 4.9: Area contact ratio for varied load, cylinder wall-rigid flat interface 

 Figure 4.9 compares the predicted contact area as a function of force for the three 

elastic-plastic models for the cylinder wall using parameters from Tables 4.1-4.3.  All 

three of them display similar trends between contact area ratio and applied load.  Upon 

closer inspection, the statistical sinusoidal model predicts the largest contact area at low 

loads and the smallest contact area at high loads.  The relation also becomes nonlinear.  

This is likely because the asperities’ deformations are no longer independent of each 

other, undermining one of the assumptions of the G-W model. 
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4.2 Cylinder Wall-Piston Ring Interface 

 The analysis setup was subsequently modified by replacing the rigid flat with a 

piston ring. The piston ring’s surface heights were measured; Figure 4.10 shows a profile 

of its surface. 

 

Figure 4.10: Surface profile of Piston Ring 

The spectral moment approach was applied to both surfaces to generate three sets of 

statistical parameters, which are shown in Table 4.4.  The analysis steps were identical 

for the combined surfaces, except that E was not set to infinity for the second surface.  

Instead, the ring’s material properties were set to those in Table 4.2.  To analyze the 

system using the multiscale model, the surfaces were transformed to the frequency 

domain, which resulted in the spectrum seen in Figure 4.11. 
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Table 4.4: Statistical parameters for both surfaces 

 “x-direction” “y-direction” “averaged 
directions” 

R (m) 9.48*10-6 1.26*10-5 1.1*10-5 
η (1/m2) 9.73*109 5.75*109 7.73*109 
σs (m) 3.83*10-7 3.46*10-7 3.74*10-7 

 

 

 

 

Figure 4.11: Spectrum of cylinder wall-piston ring interface 
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Figure 4.12: Area contact ratio over various surface separations predicted by 

elastic-plastic spherical statistical model, cylinder wall-piston ring interface 

 Figure 4.12 shows the trend of decreasing contact area as the surfaces are pulled 

apart.  The area calculated by using properties computed from averaging directions lies 

between those values calculated using only one direction, which makes sense.  The 

percentage of area in contact with the surface is only a small fraction, even at zero 

surface separation.  This occurs because the valleys never come into contact, and the 

surface separation does not change due to deformation. 
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Figure 4.13: Variation of contact area with applied load predicted by elastic-plastic 

spherical statistical model, cylinder wall-piston ring interface 

 Figure 4.13 shows the variation of contact force and contact area.  The effects of 

surface geometry are not significant to see a difference in predicted quantities. 
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Figure 4.14: Difference from using different sets of parameters in the statistical 

model with spherical asperities, cylinder wall-piston ring interface 

 Figure 4.14 shows the relative difference caused by using statistical parameters 

calculated using only one direction instead of two.  The percentage difference is lower 

compared to analyzing the wall relative to a rigid flat as seen in Figure 4.7. 
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Figure 4.15: Area contact ratio with varied surface separation and sinusoidal 

asperities predicted by elastic-plastic spherical statistical model, cylinder wall-piston 

ring interface 

 Figure 4.15 displays the area contact ratio if sinusoidal asperities are combined 

with the statistical model to analyze the cylinder wall-piston ring interface using the 

statistical parameters in Table 4.4.  The model exhibits similar trends compared to the 

analysis of the wall in contact with a rigid flat (see Figure 4.6).  Furthermore, there is 

little difference in the direction-dependent results. 
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Figure 4.16: Difference from using different sets of parameters in the statistical 

model with sinusoidal asperities, cylinder wall-piston ring interface 

 

 Figure 4.16 shows the relative difference for the sinusoidal asperity model 

between the parameters from different directions.  The differences are two orders of 

magnitude less for this model compared to the spherical asperity model.  This is likely 

due to the periodic boundary condition imposed by the asperity model. 
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Figure 4.17: Area ratio for various applied loads, cylinder wall-piston ring interface 

 

 Figure 4.17 shows the relationship between the applied load and the contact area 

for all three contact models using the average surface parameters in Table 4.4 and the 

combined spectrum in Figure 4.11 for the multiscale model.  The multiscale model and 

the statistical spherical model predict essentially identical contact areas for a given load, 

while the statistical sinusoidal model consistently predicts a larger area of contact for a 

given load.  This is surprising because that model shares the same asperity model as the 

multiscale method. 
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Figure 4.18: Pressure dependence on surface separation, cylinder wall-piston ring 

interface 

 Figure 4.18 depicts the variation of contact pressure with respect to surface 

separation.  If sinusoidal asperities are used in the analysis, a greater contact pressure is 

predicted, but only for a small gap.  The multiscale model is only useable for very low 

surface separations, as it otherwise predicts a pressure several orders of magnitude lower 

than the statistical models.  This may be because the model does not consider the asperity 

distribution or inter-scale asperity contact.  Likewise, the spherical asperity model 

predicts a larger contact pressure for larger surface separations.  The curves resemble 

those found by Wilson et. al. [19] when they compared statistical and multiscale models. 
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CHAPTER 5 

COMPARING THE STATISTICAL AND MULTISCALE MODELS WITH 

DETERMINISTIC RESULTS 

5.1 Surface Characterization 

 To verify the models, they were compared to two surfaces analyzed by Wang 

[20]. His study included varied resolutions on both surfaces.  Both surfaces were 32x32 

μm with four resolutions: 1 μm, 0.5 μm, 0.25 μm, and 0.125 μm.  The smallest resolution 

was obtained using a profilometer, while spectral interpolation was used to create 

intermediate values of height between data points.  The two surfaces were leveled and 

zeroed using the same procedures mentioned in Chapter 4.  Equations 3.9-3.13 were 

applied to all of them, and relevant results are summarized in Table 5.1.  Both sets of 

parameters are for the 33x33 surfaces. 

Table 5.1: Statistical Parameters for the reference surfaces 

Surface 4L 63M 
 “y direction” “averaged 

directions” 
“y direction” “averaged 

directions” 
R (m) 2.64*10-6 4.19*10-6 1.64*10-6 2.13*10-6 
η (1/m2) 1.11*1011 5.86*1010 6.37*1010 3.64*1010

σs (m) 3.55*10-7 3.52*10-7 5.73*10-7 5.48*10-7 
In all other cases, α was found to be less than the required value to assume a Gaussian 

distribution.  Those sets of parameters were discarded. 

 

 The valid parameters were converted to a frequency and wavelength 

corresponding to sinusoidal asperities.  They were combined with material properties in 
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Table 5.2 and used in the G-W model.  Also, the surfaces were converted to the 

frequency domain to analyze them using the multiscale model.  Figures 5.1 and 5.2 show 

the spectral plots for the surfaces in Table 5.1. 

 

Table 5.2: Material properties for the reference surfaces 

Property Value 
E 200 GPa 
ν 0.3 
Sy 1 GPa 

 

 

Figure 5.1: Spectrum of Surface 4L 
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Figure 5.2: Spectrum of Surface 63M 

 

5.2 Surface 4L Analysis 

 The same steps detailed in Chapter 4 for the statistical models were repeated 

using the parameters in Tables 5.1 and 5.2.  Also, the surfaces were transformed to the 

frequency domain to analyze them using the multiscale model.  The detailed process was 

presented in Chapter 3. 
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Figure 5.3: Contact area ratio for Surface 4L using statistical models 

 

 Figure 5.3 depicts contact area for various surface separations when the statistical 

models were applied to Surface 4L.  The sinusoidal asperity model again predicts a 

higher contact area at very small surface separations relative to the spherical asperity 

model. 
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Figure 5.4: Difference caused by using different sets of parameters for surface 4L 

 

 The effect of using different sets of parameters can be seen for both models in 

Figure 5.4.  The spherical model consistently predicts approximately 30% more contact 

area for a given surface separation if analyzed using only one direction of spectral 

moments.  The sinusoidal model does not exhibit that trait, except at very large surface 

separations where contact pressure is negligible. 
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Figure 5.5: Comparison of applied load and contact area ratio for surface 4L 

 

 Figure 5.5 compares the trend between contact pressure and area of contact for all 

three models.  They predict a linear relationship, but the multiscale model predicts a 

significantly smaller contact area relative to the statistical models.  The spherical model 

predicts a smaller contact area for smaller loads, but a larger contact area for larger loads 

relative to the sinusoidal model.  In any plot that compares statistical and non-statistical 

models, only the average of directions is shown for the statistical models because that 

would provide a more valid comparison between the surfaces. 
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Figure 5.6: Contact pressure for surface 4L 

 

 Figure 5.6 compares contact pressure for a wide range of surface separations and 

contact models.  The multiscale model once again predicts a much different trend for 

load-dependent surface separation.  At very low surface separations, it predicts a much 

higher contact pressure relative to the statistical models.  However, the contact pressure 

falls off much more rapidly as the surface separation increases.  Wang [20] predicts a 

similar trend to the statistical models, but the load is an order of magnitude larger for a 

given surface separation.  The statistical models do not consider changes in the surface 

distribution or the mean surface height during deformation, which could explain the 

discrepancies. 
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Figure 5.7: Contact pressure for varied sample spacing, surface 4L 

 

 Figure 5.7 shows the results of the multiscale model applied to all provided 

resolutions and compared with results from Wang [20].  Statistical models were not 

analyzed for the larger resolutions because a real value of σs could not be calculated.  

None of the multiscale models agree with Wang’s results; they predict a larger contact 

pressure when the surface separation is less than 50 nm.  Otherwise, they predict a much 

smaller contact pressure.  The FEM results do not change much for different resolutions, 

which confirms that method’s accuracy. 
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5.3 Surface 63M Analysis 

 

Figure 5.8: Area contact ratio for surface 63M 

 

 Figure 5.8 displays the contact area for various surface separations; the trends 

match those found for other surfaces.  The contact area ratio decreases as the surfaces 

become farther apart, and the sinusoidal asperity model predicts a larger decrease.  The 

effects of surface anisotropy are apparent for the spherical model, but not the sinusoidal 

model. 
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Figure 5.9: Differences caused by using different sets of parameters in statistical 
models for surface 63M 

 

 Figure 5.9 illustrates the difference caused by using different sets of parameters in 

the statistical models.  The difference for using only one set of spectral moments with 

spherical asperities is near 30%, which is quite large. 
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Figure 5.10: Comparison of applied load and contact area ratio for surface 63M 

 

 Figure 5.10 shows the relationship between contact area and applied force for all 

three models applied to surface 63M.  The multiscale model once again predicts a much 

smaller area of contact for a given force relative to the statistical models.  If sinusoidal 

asperities are used in the statistical model, the predicted contact area is larger than if 

spherical asperities are used. 
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Figure 5.11: Contact pressure on surface 63M 

 

 Figure 5.11 shows contact pressure on surface 63M for varying surface 

separation.  All three models predict a lower pressure than Wang.  The statistical models 

exhibit a similar behavior to his results with a proportional offset.  The multiscale model 

predicts a similar pressure at zero surface separation, but much lower pressures if the 

separation is increased. 
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Figure 5.12: Contact pressure for surface 63M with varied surface spacing 

 

 Figure 5.12 compares the contact pressure calculated by the multiscale model for 

various surface resolutions to deterministic results.  Statistical models could not be used 

because a real value of σs was not calculated.  For zero surface separation, the multiscale 

model and the deterministic model predict similar values.   
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 Three different rough surface contact models were explored in this work to 

analyze a piston ring-cylinder wall interface.  Two of them were statistical; the only 

difference between them was how they treated individual asperities.  Both are vulnerable 

to errors when applied to an anisotropic surface.  Moreover, they depend on the surface 

heights being close to a Gaussian distribution.  If spherical asperities are used, the 

predicted contact area for a given surface separation is lower than if sinusoidal asperities 

are used.  However, the predicted contact pressure is higher except at very low surface 

separations. 

 The third model analyzed was the full multiscale model.  Unlike statistical 

models, the distribution of surface heights is irrelevant.  However, the predicted contact 

pressure exhibits a much different trend relative to the statistical models and differs 

quantitatively except for very small separations.  This happens because the model does 

not consider the asperity distribution or inter-scale asperity contact.  Otherwise, it 

predicts a similar trend between contact area and applied load.  The relative contact area 

for a given force compared to the other models depends on the surface, though. 

 To validate the models, they were tested against a deterministic model calculated 

using finite elements on reference surfaces.  The results exhibited similar trends to the 

results using the wall and ring.  The multiscale model predicted the lowest contact area 

for a given load, while the statistical sinusoidal model predicted the largest.  The 
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statistical models predicted a similar trend but different values for contact pressure given 

surface separation.  The statistical models are believed to underestimate the contact 

pressure because they do not vary the mean height or the surface distribution as surface 

separation decreases.   Ultimately, the individual surface must be characterized first; 

generalizations cannot be made. 

 The work shown in this thesis is only one part of a larger project involving a 

coupled rough surface contact-lubrication model in an internal combustion engine to 

predict friction and wear.  These contact pressures will be combined with fluid pressures 

calculated using the Reynolds equation, and an iterative model will be constructed along 

the flow chart of Figure 1.1.  The effects of heat generation and various coatings on the 

surfaces will be analyzed in the future.  In the 3D finite element model, the possibility of 

material failure will be considered. 
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