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Abstract

A C4-decomposition of Kv − F , where F is a 1-factor of Kv and C4 is the cycle on

4 vertices, is a partition P of E(Kv − F ) into sets, each element of which induces a C4

(called a block). A function assigning a color to each block defined by P is said to be an

(s, p)-equitable block-coloring if: exactly s colors are used; each vertex v is incident with

blocks colored with exactly p colors; and the blocks containing v are shared out as evenly as

possible among the p color classes.

We introduce the study of the structure of such colorings, defining the color vector

V (E) = (c1(E), c2(E), . . . , cs(E)) of an (s, p)-equitable block-coloring E of G, arranged in

non-decreasing order, where ci(E) is the number of vertices in G incident with a block of

color i. In all cases where χ′p(v) > p, the most interesting values of V (E) are considered,

namely c1(E) and cs(E). The problems of finding the value of the smallest color class when

it is as large as possible, ψ′1(C4, Kv − F ), and the value of the largest color class when it is

as small as possible, ψ′s(C4, Kv − F ), are settled.

We then consider the opposite extremes, solving the problems of finding the value of the

smallest color class when it is as small as possible, ψ′1(C4, Kv−F ), and the value of the largest

color class when it is as large as possible, ψ′s(C4, Kv − F ). These extreme colorings follow

from another interesting problem, namely finding (s, p)-equitable edge-colorings of Kv. The

most interesting values are ψ′1(K2, Kv/2), ψ′s(K2, Kv/2), ψ
′
1(C4, Kv − F ) and ψ′s(C4, Kv − F ),

but as a bonus from our method of proof in Chapter 6, we settle the value of ψ′i(K2, Kv/2)

and ψ′i(C4, Kv − F ) for all other values of i as well.

Finally, some work on tiling generalized Petersen graphs, P (n, k), with paths consisting

of two and four vertices is also presented along with our plans for future work with tiling

with paths on six and eight vertices.
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Chapter 1

Introduction to Block Colorings of Graph Decompositions

An H-decomposition of a graph G is an ordered pair (V,B) where V is the vertex set of

G and B is a partition of the edges of G into sets, each of which induces a copy of H. The

graphs induced by the elements of B are known as the blocks of the decomposition. (V,B)

is said to have an (s, p)-equitable block-coloring E : B 7→ C = {1, 2, . . . , s} if:

1. the blocks in B are colored with exactly s colors,

2. for each vertex u ∈ V (G) the blocks containing u are colored using exactly p colors,

and

3. for each vertex u ∈ V (G) and for each {i, j} ⊂ C(E, u),

|b(E, u, i)− b(E, u, j)| ≤ 1,

where C(E, u) = {i | E colors some block incident with u with color i} and b(E, u, i) is the

number of blocks in B containing u that are colored i by E. For ease of notation, an

(s, p)-equitable H-coloring of G is equivalent to an (s, p)-equitable block-coloring of an H-

decomposition of G, where the blocks of the coloring are copies of H. For an example of

such a coloring see Figure 1.1.

Such colorings were originally introduced by L. Gionfriddo, M. Gionfriddo, and Ragusa

in [10]. They studied (s, p)-equitable C4-colorings of Kv where C4 is the cycle of length 4 and

Figure 1.1: A (5, 4)-equitable K2-coloring of K5
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Kv is the complete graph on v vertices. They considered such colorings where p ∈ {2, 3, 4},

noting that a C4-decomposition of Kv exists if and only if v = 1 + 8k with k ≥ 1. For some

values of v, (s, p)-equitable block-colorings of H-decompositions of Kv have also been studied

in the case where H is a 4-cycle in [12], a 6-cycle in [3] and an 8-cycle in [4] (necessarily v is

odd in these cases).

For any C4-decomposition Σ = (V,B) of Kv, Gionfriddo et al. defined its spectrum to be

Ωp(Σ) = {s | there exists an (s, p)-equitable block-coloring of Σ}. This definition suggests

the problem of finding the p-color-spectrum Ωp(v) =
⋃

Ωp(Σ), where the union is taken over

the set of all C4-decompositions, Σ, of Kv. Gionfriddo et al. also considered two values of

interest within Ωp(v), the lower p-chromatic index defined to be χ′p(v) = min Ωp(v), and the

upper p-chromatic index defined to be χ′p(v) = max Ωp(v); that is the least and greatest

values of s for which there exists an (s, p)-equitable block-coloring of some C4-decomposition

of Kv. The specific results of Gionfriddo et al. of most interest related to our work are

summarized in Theorem 2.1.

The work of Gionfriddo et al. was extended by Li and Rodger in [24] where they consid-

ered the existence of (s, p)-equitable block-colorings of C4-decompositions of Kv − F where

F is a 1-factor of Kv. For any C4-decomposition Σ = (V,B) of Kv − F , Li and Rodger

defined its spectrum to be Ωp(Σ) = {s | there exists an (s, p)-equitable block-coloring of Σ}.

This definition again suggests the problem of finding the p-color-spectrum Ωp(v) =
⋃

Ωp(Σ),

where the union is taken over the set of all C4-decompositions, Σ, of Kv − F . The val-

ues of primary interest in Ωp(v) are namely the lower p-chromatic index, defined to be

χ′p(v) = min Ωp(v), and the upper p-chromatic index, defined to be χ′p(v) = max Ωp(v), that

is the least and greatest values of s for which there exists an (s, p)-equitable block-coloring

of some C4-decomposition of Kv − F .

The main interest of Li and Rodger in [24] was to find χ′p(v) and χ′p(v) when p ≤ 4. In

so doing, they established χ′2t(v) for t ∈ {1, 2} when v ≡ 4t+ 2 (mod 8t) stated in Theorem

1.1, which includes a non-existence result concerning (2t, 2t)-equitable block-colorings. This
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non-existence result was the starting point of our work with equitable colorings of graph.

In another result they also settled the value of χ′4(v) for all other values of v; in such cases

χ′4(v) = 4 (see Theorem 2.2).

Theorem 1.1 ( [24]). Let v ≡ 4t+ 2 (mod 8t). Then

1. there is no C4-decomposition of Kv−F for which there exists a (2t, 2t)-equitable block-

coloring

2. χ′2t(v) = 2t+ 1 for t ∈ {1, 2}.

This leaves open the interesting problem of finding χ′2t(v) when v ≡ 4t + 2 (mod 8t),

noting that Theorem 1.1 just shows that χ′2t(v) > 2t and settles the case where t ≤ 2. We

continued Li and Rodger’s work to show that there is a (2t+ 1, 2t)-equitable block-coloring

of some C4-decomposition of Kv − F when v ≡ 4t + 2 (mod 8t) (see Theorem 4.1). As a

consequence, the value of χ′2t(v) when v ≡ 4t + 2 (mod 8t) is established in Corollary 4.1,

thereby settling the open case left in [24]. The complete results from [24] of most interest

related to our work are summarized in Theorem 2.2.

Another important focus of our work is developing the study of the structure within

such equitable block-colorings. Here we introduce two concepts, originally defined in [23],

that provide a way to categorize such colorings. The color vector of an (s, p)-equitable

block-coloring E of an H-decomposition (V (G), B) of a graph G is the vector

V (E) = (c1(E), c2(E), . . . , cs(E))

in which, for 1 ≤ i ≤ s, ci(E) is the number of vertices in G that are incident with a

block of color i. In stating results concerning the color vector, we always assume that

c1(E) ≤ c2(E) ≤ · · · ≤ cs(E). If E is clear then, more simply, ci is written instead of ci(E).

Regarding the color vector, the values naturally of most interest are c1(E) and cs(E), in

particular just how small or large they can be as E ranges over all possible colorings. Some
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basic results are also presented for ci(E) for the intermediate components of the vector and

the largest ci can be for all i is settled in Chapter 5. The following definition formalizes these

natural parameters of interest. For any graphs G and H and for 1 ≤ i ≤ s, define,

• φ(H,G; s, p, i) = {ci(E) | E is an (s, p)-equitable block-coloring of an H-decomposition

of G}.

• ψ′
(H,G; s, p, i) = minφ(H,G; s, p, i), and

• ψ′(H,G; s, p, i) = maxφ(H,G; s, p, i).

Our work with colorings of H-decompositions of G is focused on how large or how small ci(E)

can be in all cases where χ′p(v) > p. Thus we are solely considering (2t + 1, 2t)-equitable

block-colorings and for convenience define,

ψ
′
(H,G; 2t+ 1, 2t, i) = ψ

′

i(H,G), and ψ′(H,G; 2t+ 1, 2t, i) = ψ
′
i(H,G).

For v′ ≡ 4t+ 2 (mod 8t), the largest value that the smallest element of the color vector

can attain, ψ′1(C4, Kv′ − F ), and the smallest value that the largest element of the color

vector can attain, ψ′2t+1(C4, Kv′ − F ), have been determined, presented here in Chapter 4.

In order to find these parameters for C4-decompositions of Kv′ − F it suffices to find K2-

decompositions of Kv′/2 as explained in Chapter 3. Thus ψ′1(K2, Kv′/2) and ψ′2t+1(K2, Kv′/2)

are also determined.

The value of the remaining two parameters of most interest, namely the smallest value

that the smallest element of the color vector can attain, ψ′1(C4, Kv′ − F ), and the largest

value that the largest element of the color vector can attain, ψ′2t+1(C4, Kv′ − F ), are pre-

sented in Chapter 5 with an alternate proof presented in Chapter 6. Again, in the process,

we determine ψ′1(K2, Kv′/2) and ψ′2t+1(K2, Kv′/2), thereby also establishing the value of the

remaining two parameters of most interest in regards to edge-colorings of Kv′/2.
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One important facet of Chapter 5, is that the proof technique of graph amalgamations is

used for the first time to obtain (s, p)-equitable block-colorings (see the proof of Propositions

5.1, 5.2, and 5.3). Formally,

• a graph H is said to be an amalgamation of a graph G if there exists a function ψ from

V (G) onto V (H) and a bijection ψ
′
: E(G)→ E(H) such that,

e = {u, v} ∈ E(G) ⇐⇒ ψ
′
(e) = {ψ(u), ψ(v)} ∈ E(H).

• The function ψ is called an amalgamation function.

• We say that G is a detachment of H, where each vertex u of H splits into the vertices

of ψ−1({u}).

• An η-detachment of H is a detachment in which each vertex u of H splits into η(u)

vertices.

The amalgamation approach has been successfully used in many graph decomposition results,

especially when edge-colorings representing the decompositions are required to share the

colors out fairly in quite a variety of ways, which is further detailed in Chapter 2.

The following notation will be useful in our results. Let K[R] denote the complete graph

defined on the vertex set R. Also, define:

• dxeo to be the smallest odd number greater than or equal to x,

• bxco to be the largest odd number less than or equal to x ,

• dxee to be the smallest even number greater than or equal to x,

• bxce to be the largest even number less than or equal to x,

• dxed4 to be the smallest integer divisible by 4 and greater than or equal to x, and

• bxcd4 to be the largest integer divisible by 4 and less than or equal to x.
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In what follows, a color i is said to appear at a vertex u if at least one block incident with

u is colored i.

In Chapter 2 we provide a brief history of graph decompositions . In Chapter 3 general

results are presented which form the base for our work, giving parameters for the color

vector, and explaining the connection between C4-colorings of Kv − F and edge-colorings

of Kv/2. In Chapter 4 we settle the open case left in [24], finding the value of χ′2t(v
′) for

v′ ≡ 4t + 2 (mod 8t). As a result of the construction presented, we also settle the value of

ψ′1(C4, Kv′ − F ), ψ′2t+1(C4, Kv′ − F ), ψ′1(K2, Kv′/2), and ψ′2t+1(K2, Kv′/2). In Chapter 5 we

settle the value of ψ′1(C4, Kv′ − F ) and ψ′i(C4, Kv′ − F ) for all remaining values of i and the

corresponding results in reference to edge-colorings of Kv′/2 as well. In Chapter 6 we present

a simple direct construction of a coloring that is helpful if only maximizing c2t+1 is of concern.

We also present in Chapter 6 an alternate proof for several results in Chapter 5 via another

direct construction. In Chapter 7 we outline further areas of interest in block-colorings of

graph-decompositions and where our work will progress from what is presented here.

Finally in Chapter 8 we introduce our work with tiling generalized Petersen graphs,

P (n, k), with it’s own introduction and history. We detail how to tile P (n, k) with paths on

two and four vertices. We also introduce furthers areas of consideration with tiling P (n, k)

with paths on six and eight vertices. We then have a concluding summary in Chapter 9.
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Chapter 2

History of Graph Decompositions

Hamiltonian decompositions of graphs have been an area of interest in mathematics

since 1982 when Walecki proved that Kn has a Hamilton decomposition if and only if n is

odd (see [25]). In 1976 Laskar and Auerbach [17] proved that the complete p-partite graph

Km,...,m has a Hamilton decomposition when m(p − 1) is even. They also considered the

case where m(p − 1) is odd, utilizing a key idea in graph decompositions, that Km,...,m has

a Hamilton decomposition once a 1-factor is removed (the 1-factor is removed in order to

make all vertices have even degree).

As described in the introduction, (s, p)-equitable block-colorings were originally intro-

duced by L. Gionfriddo, M. Gionfriddo, and Ragusa in [10]. They studied (s, p)-equitable

C4-colorings of Kv with p ∈ {2, 3, 4}, noting that a C4-decompositions of Kv exists only

if v = 1 + 8k with k ≥ 1. The results from [10] of most interest related to our work are

summarized in Theorem 2.1. For some values of v, (s, p)-equitable block-colorings of H-

decompositions of Kv have also been studied in the case where H is a 4-cycle in [12], a

6-cycle in [3] and an 8-cycle in [4] (necessarily v is odd in these cases).

Theorem 2.1 ( [10]). Let v = 1 + 8k with k ≥ 1. Considering C4-decompositions of Kv,

(1) Ω2(v) = ∅ if k is odd and Ω2(v) = {2, 3} is k is even,

(2) χ′3(v) = 3,

(3) χ′3(v) ≤ 8 if k ≡ 0 (mod 3) or k = 1, χ′3(v) ≤ 9 if k ≡ 1 (mod 3) or k ≡ 2 (mod 3),

v 6= 9, 17, χ′3(v) ≤ 10 if v = 17,

(4) χ′4(v) = 4 if and only if k ≡ 0 (mod 4),
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(5) there exists a (9, 4)-equitable block-coloring of any C4-decomposition of K9,

(6) for s ∈ {6, 7, 8}, there exists a C4-decomposition of K9 for which there exists an (s, 4)-

equitable block-coloring,

(7) there is no C4-decomposition of K9 for which there exists a (5, 4)-equitable block-

coloring, and

(8) if k = 1, χ′4(v) = 9, if k = 2, χ′4(v) ≤ 13, if k ∈ {3, 4, 5}, χ′4(v) ≤ 14, and if k ≥ 6,

χ′4(v) ≤ 15.

Again the work of Gionfriddo et al. was extended by Li and Rodger in [24] where they

considered the existence of (s, p)-equitable block-colorings of C4-decompositions of Kv − F

where F is a 1-factor of Kv and C4 is the cycle of length 4. Part of Li and Rodger’s results

were stated in the introduction, but the complete results from [24] of most interest related

to our work are summarized in Theorem 2.2.

Theorem 2.2 ( [24]). Concerning C4-decompositions of Kv − F :

(1) If v/2 is even, then there exists an (s, s)-equitable block-coloring of a C4-decomposition

of Kv − F if and only if v − 2 ≥ 2s,

(2) for each s ∈ {2, 3}, there exists an (s, 2)-equitable block-coloring of some C4-decomposition

of Kv − F if and only is v is even, v ≥ 6, and if s = 2 then v ≡ 6 (mod 8),

(3) if v ≡ 0, 2, or 4 (mod 8) then Ω2(v) = {2, 3} and if v ≡ 6 (mod 8) then Ω2(v) = {3},

(4) there exists a (3, 3)-equitable block-coloring of some C4-decomposition of Kv−F if and

only if v ≥ 8,

(5) suppose v ≥ 8, then

– χ′3(v) ≤ 8 if v ≡ 2 or 8 (mod 12) with v 6= 8

– χ′3(v) ≤ 9 if v ≡ 0, 4, 6, or 10 (mod 12) with v 6∈ {10, 12, 18, 24, 30}
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– χ′3(v) ≤ 10 if v ∈ {18, 24, 30}

– χ′3(v) = 6 if v ∈ {8, 10} and

– χ′3(12) = 7,

(6) There exists a (4, 4)-equitable block-coloring of Kv−F if and only is v is even, v ≥ 10,

and v 6≡ 10 (mod 16), and

(7) if v ≡ 10 (mod 16), then χ′4(v) = 5 , and if v 6≡ 10 (mod 16), then χ′4(v) = 4.

The amalgamation approach, as described in the introduction, has been successfully

used in many graph decomposition results, especially when edge-colorings representing the

decompositions are required to share the colors out fairly in quite a variety of ways. A key

amalgamation result of Bahmanian and Rodger is presented in [2] and explained further in

Chapter 3. Their work allows us to disentangle an edge-colored amalgamated graph in an

organized equitable way, perfectly suiting our work. Hilton and Rodger [15, 16] used this

technique to find embeddings of edge-colorings into Hamiltonian decompositions. Buchanan

[5] used amalgamations to find Hamiltonian decompositions of Kn−E(U) for any 2-regular

spanning subgraph U . Buchanan’s work was then extended to various multipartite graphs by

Leach and Rodger [18,21]. Leach and Rodger [20] went on to find Hamilton decompositions

of complete multipartite graphs where each Hamilton cycle spreads its edges out as evenly

as possible among the pairs of parts of the graph.

This notion was recently extended further by Erzurumluoğlu and Rodger [9] to (s, p)-

equitable block colorings of the complete multipartite graph K(n, r) (n vertices in each of r

parts) where the blocks are holey 1-factors (i.e. matchings of size n(r − 1)/2 in which each

matching saturates all vertices except for those in one part called the hole of the matching);

so a consequence is that s = nr and p = n(r − 1). A similar result of Erzurumluoğlu and

Rodger is found in [8] in which the blocks of the decomposition of K(n, r) are cycles of length

n(r − 1). Additional work with holey decompositions is presented in [19] and [21].
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It is worth noting here that if the blocks are defined to be K2, then we would be seeking

a type of edge-coloring that generalizes the well-studied equitable edge-colorings, each of

which is easily seen to be equivalent to an (s, s)-equitable edge-coloring (so each block is a

copy of K2). Edge-colorings which are proper are certainly equitable, but equitable edge-

colorings become particularly interesting when the number of colors being used to color

E(G) is less than χ′(G) (for example, see [2, 14, 19, 31] for some results and applications).

Interchanging colors along paths with alternately colored edges is a traditionally powerful

technique for finding such edge-colorings, but they are rendered useless in this more general

setting whenever it is required that s > p, as is the situation for results presented here. Not

only are these edge-colorings challenging to produce in themselves, but also (s, p)-equitable

edge-colorings of Kv are relevant here because of the connection to C4-decompositions of

Kv − F described in Lemma 3.1.
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Chapter 3

General Results for Block Colorings of Graph Decompositions

Define G × 2 to be the graph with vertex set {(u, 1), (u, 2) | u ∈ V (G)} and edge set

{{(u, i), (w, j)} | 1 ≤ i, j ≤ 2 and {u,w} ∈ E(G)}. As Lemma 3.1 suggests, when studying

C4-decompositions of Kv − F , edge-colorings of the graph Kv/2 are pertinent and useful.

Lemma 3.1 ( [24]). If there exists an (s, p)-equitable edge-coloring E of G then there exists

an (s, p)-equitable C4-coloring E ′ of G× 2− F for some 1-factor F of G× 2.

Furthermore, note by Lemma 3.1 that 2ci(E) = ci(E
′) for 1 ≤ i ≤ s. The specifics of

forming a C4-coloring of G × 2 from a K2-coloring of G are detailed in [24]. As was done

in [23] it can be shown that there exists a (2t + 1, 2t)-equitable block-coloring of some C4-

decompositions of Kv′ − F when v′ ≡ 4t + 2 (mod 8t) by simply showing that there exists

a (2t + 1, 2t)-equitable edge-coloring of Kv where v = v′/2 as a result of Lemma 3.1. This

connection is naturally the source of our interest in equitable edge-colorings of Kv, but they

are also of interest in their own right.

In any (s, p)-equitable block-coloring E of an H-decomposition (V (G), B) of some graph

G, for each u ∈ V (G), let b(H,G;E, u, i) denote the number of blocks incident with u that

are colored i. An immediate consequence of this definition, a less specific version of which

was first presented in [23], is the following. Note for ease of notation, let x ≈ y represent the

fact that byc ≤ x ≤ dye.

Lemma 3.2 ( [26]). Let v′ = 2v = 8tx + 4t + 2 for some integer x. Let E and E ′ be

(2t+ 1, 2t)-equitable edge and C4-colorings of Kv and Kv′ − F respectively. Then

b(K2, Kv;E, u, i) = b(C4, Kv′ − F ;E ′, u′, i′) = 2x+ 1
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for all u ∈ V (Kv), i ∈ C(E, u), u′ ∈ V (Kv′ − F ), and i′ ∈ C(E ′, u′).

Proof. Let v′ = 2v = 4t + 2 + 8tx for some integer x and E be a (2t + 1, 2t)-equitable

edge-coloring of Kv. Therefore since E is a (2t+ 1, 2t)-equitable edge-coloring,

b(K2, Kv;E, u, i) ≈
dKv(u)

2t
=

2t+ 1 + 4tx− 1

2t
= 2x+ 1

for all u ∈ V (Kv), and i ∈ C(E, u).

Note for u′ ∈ V (Kv′ − F ), dKv′−F (u′) = 8tx + 4t and the number of blocks in any

C4-decomposition of Kv′ − F incident with u′ is dKv′−F (u′)/2 = 4tx + 2t. Let E ′ be a

(2t+ 1, 2t)-equitable C4-coloring of Kv′ − F and i′ ∈ C(E ′, u′). Then

b(C4, Kv′ − F ;E ′, u′, i′) =
4tx+ 2t

2t
= 2x+ 1.

The particular cases of interest here are (2t + 1, 2t)-equitable edge-coloring, E of Kv

where v ≡ 2t+ 1 (mod 4t) and C4-colorings of Kv′ − F where v′ = 2v. So in this situation

(and, indeed, whenever v ≡ p + 1 (mod 2p)) Lemma 3.2 implies that b(K2, Kv;E, u, i) and

b(C4, Kv′ − F ;E ′, u′, i′) are constant for all u ∈ V (Kv), u
′ ∈ V (Kv′ − F ), i ∈ C(E, u), and

i′ ∈ C(E ′, u′) regardless of the choice of E or E ′; so in such cases it makes sense to define,

b(v) = b′(v′) = b(K2, Kv;E, u, i) = b(C4, Kv′ − F ;E ′, u′, i′) = 2x+ 1.

We now get a series of lemmas that restrict parameters of interest in regards to equitable

edge-colorings of Kv and equitable C4-colorings of Kv′ − F where v′ ≡ 4t+ 2 (mod 8t) and

v = v′/2 with some more general results as well.

Lemma 3.3. Let v ≡ p + 1 (mod 2p). In any (s, p)-equitable edge-coloring E of Kv, for

1 ≤ i ≤ s

12



(i) ci(E) must be even,

(ii) ci(E) ≥ b(v) + 1 = v−1
p

+ 1, and

(iii) if v is odd, then ci(E) ≤ v − 1.

Proof. Let 1 ≤ i ≤ s and E be an (s, p)-equitable edge-coloring of Kv. Since v ≡ p + 1

(mod 2p), let v = p + 1 + 2px, where x is an integer. Then by Lemma 3.2, b(v) = v−1
p

=

p+2px
p

= 1+2x, so b(v) is odd. If ci(E) is odd, the subgraph induced by W = {u ∈ V (Kv)|i ∈

C(E, u)} would be an odd-regular graph with an odd number of vertices, which cannot exist,

so (i) follows. For u ∈ V (Kv) and i ∈ C(E, u), u is joined to b(v) neighbors with an edge

colored i, so at least b(v) + 1 vertices are incident with an edge colored i; so (ii) follows.

Clearly ci ≤ v, so (iii) follows since ci was just shown to be even and v is clearly odd.

Lemma 3.4. Let v′ ≡ 4t + 2 (mod 8t). In any (2t + 1, 2t)-equitable C4-coloring E ′ of

Kv′ − F , for 1 ≤ i ≤ 2t+ 1

(1) 4 divides ci(E
′),

(2) ci(
′E) ≥ 2(b′(v′) + 1), and

(3) ci(E
′) ≤ v′ − 2.

Proof. Let v′ = 4t+2+8tx for some integer x. For u ∈ V (Kv′−F ), dKv′−F (u) = 8tx+4t, so

the number of blocks in any C4-decomposition of Kv′ − F incident with u is dKv′−F (u)/2 =

4tx+ 2t. Let E ′ be a (2t+ 1, 2t)-equitable C4-coloring of Kv′ − F and i ∈ C(E ′, u). Then

b(C4, Kv′ − F ;E ′, u, i) =
4tx+ 2t

2t
= 2x+ 1.

Note then the number of edges in the blocks in each color class is

2ci(E
′)b(C4, Kv′ − F ;E ′, u, i)/2 = ci(E

′)(2x+ 1).

13



Therefore 4 divides ci(E
′) since E ′ is a C4-coloring.

Note as well that the 2b′(v′) neighbors of u are clearly each incident with a block

colored i, so ci(E) ≥ 2b′(v′) + 1 = 4x + 3. Therefore, since by (1) 4 divides ci(E), ci(E) ≥

4x + 4 = 2(b′(v′) + 1). Also, since 4 divides ci(E) and v′ ≡ 4t + 2 (mod 8t), it follows that

ci(E) ≤ v′ − 2.

Lemma 3.5. Let E be a (2t + 1, 2t)-equitable block-coloring of a graph G with v = |V (G)|

vertices. Then,
2t+1∑
i=1

ci(E) = 2tv.

Proof. Since the number of colors appearing at each vertex is 2t and ci is the number of

vertices where a block of color i appears, the above holds.

Lemma 3.6. Let v ≡ 2t+ 1 (mod 4t). In any (2t+ 1, 2t)-equitable edge-coloring E of Kv,

(i) c1(E) ≤
⌊

2tv
2t+1

⌋
e

and

(ii) c2t+1(E) ≥
⌈

2tv
2t+1

⌉e
.

Proof. Note by Lemma 3.5 the average of the integers c1, . . . , c2t+1 is

∑2t+1
i=1 ci

2t+ 1
=

2tv

2t+ 1
. By

Lemma 3.3, ci is even and by definition c1 ≤ ci for 1 ≤ i ≤ 2t+ 1, so c1 ≤
⌊

2tv
2t+1

⌋
e
. Similarly

by Lemma 3.3, ci is even and by definition c2t+1 ≥ ci for 1 ≤ i ≤ 2t + 1, so it follows that

c2t+1 ≥
⌈

2tv
2t+1

⌉e
.

Lemma 3.7. Let v′ ≡ 4t + 2 (mod 8t). In any (2t + 1, 2t)-equitable C4-coloring E ′ of

Kv′ − F ,

(i) c1(E
′) ≤

⌊
2tv′

2t+1

⌋
d4

and

(ii) c2t+1(E
′) ≥

⌈
2tv′

2t+1

⌉d4
.

Proof. Note by Lemma 3.5 the average of the integers c1, . . . , c2t+1 is

∑2t+1
i=1 ci

2t+ 1
=

2tv′

2t+ 1
. By

Lemma 3.4 for 1 ≤ i ≤ 2t + 1, ci is divisible by 4. By definition c1 ≤ ci for 1 ≤ i ≤ 2t + 1,

14



so c1 ≤
⌊

2tv′

2t+1

⌋
d4

. Similarly by definition c2t+1 ≥ ci for 1 ≤ i ≤ 2t + 1, so it follows that

c2t+1 ≥
⌈

2tv′

2t+1

⌉d4
.

Lemma 3.8. Let v ≡ 2t + 1 (mod 4t) and let E be a (2t + 1, 2t)-equitable edge-coloring of

Kv. If |c1(E)− c2t+1(E)| ∈ {0, 2} then

(i) c1(E) = ψ′1(K2, Kv) =
⌊

2tv
2t+1

⌋
e
, and

(ii) c2t+1(E) = ψ′2t+1(K2, Kv) =
⌈

2tv
2t+1

⌉e
.

Proof. Since E is clear we let ci = ci(E) for 1 ≤ i ≤ 2t+1. First suppose that |c1−c2t+1| = 0.

Since we have named the colors so that ci ≤ cj for 1 ≤ i < j ≤ 2t+ 1, it follows that ci = cj

for 1 ≤ i < j ≤ 2t+ 1. Then by Lemma 3.5,

ci =

∑2t+1
i=1 ci

2t+ 1
=

2tv

2t+ 1
.

Therefore by Lemma 3.3, 2tv
2t+1

is an even integer and ci = 2tv
2t+1

=
⌊

2tv
2t+1

⌋
e

=
⌈

2tv
2t+1

⌉e
. Hence

by Lemma 3.6, c1 = ψ′1(K2, Kv) = 2tv
2t+1

and c2t+1 = ψ′2t+1(K2, Kv) = 2tv
2t+1

.

Now suppose that |c1 − c2t+1| = 2. By the naming of the colors, we have that c1 =

c2t+1−2. Note by Lemma 3.5, 2tv
2t+1

is the average of the integers c1, . . . , c2t+1. So if c1 < c2t+1

then,

c1 <
2tv

2t+ 1
< c2t+1. (3.1)

If 2tv
2t+1

is an integer then it is clearly even; but then by (3.1) this is a contradiction,

because by Lemma 3.3 c2t+1 is an even integer.
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Therefore 2tv
2t+1

is not an integer and
⌊

2tv
2t+1

⌋
e

=
⌈

2tv
2t+1

⌉e − 2. So by Lemma 3.6 we have

that

c2t+1 − 2 = c1 ≤
⌊

2tv

2t+ 1

⌋
e

=

⌈
2tv

2t+ 1

⌉e
− 2, so

c2t+1 ≤
⌈

2tv

2t+ 1

⌉e
≤ c2t+1,

so c2t+1 = ψ′2t+1(K2, Kv) =
⌈

2tv
2t+1

⌉e
. It also follows now that

c1 = c2t+1 − 2 =

⌈
2tv

2t+ 1

⌉e
− 2 =

⌊
2tv

2t+ 1

⌋
e

,

so by Lemma 3.6, c1 = ψ′1(K2, Kv) =
⌊

2tv
2t+1

⌋
e
.

Lemma 3.9. Let v′ ≡ 4t + 2 (mod 8t) and let E ′ be a (2t + 1, 2t)-equitable C4-coloring of

Kv′ − F . If |c1(E ′)− c2t+1(E
′)| ∈ {0, 4} then

(i) c1(E
′) = ψ′1(C4, Kv′ − F ) =

⌊
2tv′

2t+1

⌋
d4

, and

(ii) c2t+1(E
′) = ψ′2t+1(C4, Kv′ − F ) =

⌈
2tv
2t+1

⌉d4
.

Proof. Since E ′ is clear we let ci = ci(E
′) for 1 ≤ i ≤ 2t+1. First suppose that |c1−c2t+1| = 0.

Since we have named the colors so that ci ≤ cj for 1 ≤ i < j ≤ 2t+ 1, it follows that ci = cj

for 1 ≤ i < j ≤ 2t+ 1. Then by Lemma 3.5

ci =

∑2t+1
i=1 ci

2t+ 1
=

2tv′

2t+ 1
.

Therefore by Lemma 3.4, 2tv′

2t+1
is divisible by 4 and ci = 2tv′

2t+1
=
⌊

2tv′

2t+1

⌋
d4

=
⌈

2tv′

2t+1

⌉d4
. Hence by

Lemma 3.7 c1 = ψ′1(C4, Kv′−F ) = 2tv′

2t+1
and c2t+1 = c2t+1 = ψ′s(C4, Kv′−F ) = ψ′2t+1(C4, Kv′−

F ) = 2tv′

2t+1
.

Now suppose that |c1 − c2t+1| = 4. By the naming of the colors, we have that c1 =

c2t+1−4. Note by Lemma 3.5, 2tv′

2t+1
is the average of the integers c1, . . . , c2t+1. So if c1 < c2t+1

then
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c1 <
2tv′

2t+ 1
< c2t+1. (3.2)

If 2tv′

2t+1
is an integer then it is clearly divisible by 4 since v′ ≡ 4t+ 2 (mod 8t); but then

by (3.2) this is a contradiction, because by Lemma 3.4 c2t+1 is divisible by 4.

Therefore 2tv′

2t+1
is not an integer and

⌊
2tv′

2t+1

⌋
d4

=
⌈

2tv′

2t+1

⌉d4− 4. So by Lemma 3.7 we have

that

c2t+1 − 4 = c1 ≤
⌊

2tv′

2t+ 1

⌋
d4

=

⌈
2tv′

2t+ 1

⌉d4
− 4, so

c2t+1 ≤
⌈

2tv′

2t+ 1

⌉d4
≤ c2t+1,

so c2t+1 = ψ′2t+1(C4, Kv′ − F ) =
⌈

2tv′

2t+1

⌉d4
. It also follows now that

c1 = c2t+1 − 4 =

⌈
2tv′

2t+ 1

⌉d4
− 4 =

⌊
2tv′

2t+ 1

⌋
d4

,

so by Lemma 3.7, c1 = ψ′1(C4, Kv′ − F ) =
⌊

2tv′

2t+1

⌋
d4

.

Lemma 3.10. Let v ≡ 2t+ 1 (mod 4t). In any (2t+ 1, 2t)-equitable edge-coloring E of Kv,

c1(E) ≥ 2t.

Proof. Since v is odd, by Lemma 3.3 ci ≤ v−1 for 1 ≤ i ≤ 2t+1. Thus
∑2t+1

i=2 ci ≤ 2t(v−1).

Thus by Lemma 3.5,

2tv =
2t+1∑
i=1

ci =
2t+1∑
i=2

ci + c1

≤ 2t(v − 1) + c1.

Thus 2tv − 2t(v − 1) ≤ c1 and so 2t ≤ c1 as required.

Lemma 3.11. Let v′ ≡ 4t+ 2 (mod 8t). In any (2t+ 1, 2t)-equitable block-coloring E of a

C4-decomposition of Kv′ − F , c1(E) ≥ 4t.
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Proof. Note by Lemma 3.4 ci ≤ v′ − 2 for 1 ≤ i ≤ 2t+ 1. Thus
∑2t+1

i=2 ci ≤ 2t(v′ − 2). Note

as well since there are exactly 2t colors appearing at each vertex,
∑2t+1

i=2 ci = 2tv′. Thus,

2tv′ =
2t+1∑
i=1

ci =
2t+1∑
i=2

ci + c1

≤ 2t(v′ − 2) + c1.

Thus 2tv′ − 2t(v′ − 2) ≤ c1 and 4t ≤ c1 as required.

Lemma 3.12. For v ≡ 2t+ 1 (mod 4t) and v′ = 2v,

ψ′i(K2, Kv) ≤

⌊
2tv −

∑i−1
j=1 ψ

′
j(K2, Kv)

2t+ 2− i

⌋
e

and

ψ′i(C4, Kv′ − F ) ≤

⌊
2tv′ −

∑i−1
j=1 ψ

′
j(C4, Kv′ − F )

2t+ 2− i

⌋
e

.

Proof. Note the elements of the color vector are listed in non-decreasing order; and since in

Lemma 3.5 it is shown that for any (2t+ 1, 2t)-equitable edge-coloring E of Kv and for any

(2t+ 1, 2t)-equitable C4-coloring E ′ of Kv′ − F , both
∑2t+1

i=1 ci(E) = 2tv and
∑2t+1

i=1 ci(E
′) =

2tv′, the above holds.

To describe the amalgamation result used in Chapter 5 more precisely, some notation

will be needed. Again, we let x ≈ y represent the fact that byc ≤ x ≤ dye. Furthermore,

let `(u) denote the number of loops incident with vertex u, where loops contribute two to

the degree of u, let G(j) denote the subgraph of G induced by the edges colored j, and let

m(u, v) denote the number of edges between the pair of vertices u and v in G.

The following is a special case of Theorem 3.1 in [2] (omitting the condition that ensures

color classes are connected and a balanced property on the color classes for multigraphs since

in our case G is simple).

Theorem 3.1. (Bahmanian, Rodger [2, Theorem 3.1]) Let H be a k-edge-colored graph

and let η be a function from V (H) into N such that for each v ∈ V (H), η(v) = 1 implies

18



`H(v) = 0. Then there exists a loopless η-detachment G of H in which each v ∈ V (H) is

detached into v1, . . . , vη(v), such that G satisfies the following conditions:

(i) dG(ui) ≈ dH(u)/η(u) for each u ∈ V (H) and 1 ≤ i ≤ η(u);

(ii) dG(j)(ui) ≈ dH(j)(u)/η(u) for each u ∈ V (H), 1 ≤ i ≤ η(u), and 1 ≤ j ≤ k;

(iii) mG(ui, ui′) ≈ `H(u)/
(
η(u)
2

)
for each u ∈ V (H) with η(u) ≥ 2 and 1 ≤ i < i′ ≤ η(u);

and

(iv) mG(ui, vi′) ≈ mH(u, v)/(η(u)η(v)) for every pair of distinct vertices u, v ∈ V (H),

1 ≤ i ≤ η(u), and 1 ≤ i′ ≤ η(v).
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Chapter 4

Initial Main Result for Block Colorings of Graph Decompositions

The following theorem establishes the value of χ′2t(v
′) for v′ ≡ 4t + 2 (mod 8t), set-

tling the open case left in [24] (see Corollary 4.1). In so doing, with v = v′/2, an ex-

treme equitable edge-coloring is produced for K2-decompositions of Kv, establishing the

largest value that the smallest element of the color vector can attain, ψ′1(K2, Kv), and the

smallest value that the largest element of the color vector can attain, ψ′2t+1(K2, Kv) (see

Corollary 4.2). Using Lemma 3.1, this also creates an extreme equitable block-coloring for

C4-decompositions of Kv′−F , establishing the analogous extreme values of the color vector,

specifically ψ′1(C4, Kv′ − F ) and ψ′2t+1(C4, Kv′ − F ) as stated in Corollary 4.3.

Theorem 4.1. Let v′ ≡ 4t + 2 (mod 8t) Then there exists a (2t + 1, 2t)-equitable block-

coloring of some C4-decomposition of Kv′ − F .

Proof. By Lemma 3.1 it need only be shown that there exists a (2t + 1, 2t)-equitable edge-

coloring of Kv where v = v′

2
, thus we let v = 2t+ 1 + 4tx. We first describe the coloring E,

show E is well defined, and then show E is a (2t+ 1, 2t)-equitable edge-coloring.

We begin by partitioning the vertices into 2t+ 1 groups such that

1. each group has an odd number of vertices and

2. the number of vertices in any two groups differs by at most two.

Therefore the size of each group is l(v) =
⌈

v
2t+1

⌉o
or s(v) =

⌊
v

2t+1

⌋
o
. Note by construction,

the number of groups with s(v) vertices, which we refer to as small groups, is

Sv =
l(v)(2t+ 1)− v

2
=

2l(v)t+ l(v)− (2t+ 1 + 4tx)

2
= l(v)t+

l(v)

2
− 2tx− t− 1

2
.

20



Note, Sv is easily seen to be an integer. The number of groups with l(v) vertices, which we

refer to as large groups, is Lv = 2t+ 1− Sv. Note as well for calculation purposes,

b(v) =
v − 1

p
=

2t+ 1 + 4tx− 1

2t
= 2x+ 1.

Let the groups with s(v) vertices be named P1, . . . , PSv and the groups with l(v) vertices be

named PSv+1, . . . , P2t+1. For 1 ≤ j ≤ t and 1 ≤ i ≤ 2t+ 1 we color all the edges between the

vertices in group Pm and the vertices in group Pn with color i for m ≡ i + j (mod 2t + 1)

and n ≡ i − j (mod 2t + 1). Clearly the coloring of all edges between the groups is well

defined.

To color edges joining vertices within the groups, first note that b(v), s(v) and l(v) are

all odd (so b(v) − s(v) and b(v) − l(v) are even) and it is well known that there exists a 2-

factorization of K[Pi] for 1 ≤ i ≤ 2t+ 1. The 2-factors in such 2-factorizations are combined

as follows. For 1 ≤ l ≤ 2t + 1 and 1 ≤ j ≤ Sv with l 6= j, if the edges joining Pl to Pj are

colored i then color the edges in one
(
b(v)− s(v)

)
-factor in K[Pl] with color i; so now there

are exactly b(v) edges of color i incident with each vertex in Pl. Similarly, for 1 ≤ l ≤ 2t+ 1

and Sv + 1 ≤ k ≤ 2t+ 1 with l 6= k, if the edges joining Pl to Pk are colored i, then we color

the edges in one
(
b(v) − l(v)

)
-factor in K[Pl] with color i; so it is also the case that now

there are exactly b(v) edges of color i incident with each vertex in Pl. So for every vertex v

and for every color i on an edge incident with v:

v is incident with exactly b(v) edges colored i. (4.1)

Notice that 4.1 implies that for each v, blocks incident with v have been colored with

deg(v)/b(v) = p colors as required. By considering two cases in turn, we now show that

this construction is well-defined, and that all the edges in K[Pi] for 1 ≤ i ≤ 2t+ 1 have been

colored.

21



Case 1: Suppose l(v) = s(v), so the number of vertices in each group is l(v) = v
2t+1

, and

K[Pi] ∼= Kl(v) for 1 ≤ i ≤ 2t+ 1. It suffices to show that each vertex in each Kl(v) has

degree equal to the sum of the degrees of factors defined in the coloring. Therefore

since each Pi is joined to Pj for all j 6= i, the sum of the degrees of the factors is

2t∑
1

b(v)− l(v) = 2t
(
b(v)− l(v)

)
= 2t

(
2x+ 1− v

2t+ 1

)
= 4xt+ 2t−

(
4t2 + 2t+ 8xt2

)
2t+ 1

=
4xt(2t+ 1) + 2t(2t+ 1)− 4t2 − 2t− 8xt2

2t+ 1

=
8xt2 + 4xt+ 4t2 + 2t− 4t2 − 2t− 8xt2

2t+ 1

=
4xt

2t+ 1

=
4xt+ 2t+ 1− 2t− 1

2t+ 1

=
v

2t+ 1
− 1

which is exactly the degree of each vertex in Kl(v). Therefore the coloring of the

complete graphs induced by each group is well defined.

Case 2: Suppose l(v) 6= s(v). Then v
2t+1

is not an odd integer, so s(v) = l(v)− 2.

First we show that each vertex in K[Pi] for 1 ≤ i ≤ Sv has degree equal to the sum of

the degrees of its factors defined in the coloring. Since each Pi for 1 ≤ i ≤ Sv is joined

to all small groups except itself and to all large groups, the sum of the degrees of the
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factors is

(
Sv − 1

)
(b(v)− s(v)) + Lv

(
b(v)− l(v)

)
=
(
Sv − 1

)(
b(v)− (l(v)− 2)

)
+ Lv

(
b(v)− l(v)

)
=
(
b(v)− l(v)

)(
Sv − 1 + Lv

)
+ 2
(
Sv − 1

)
=
(
b(v)− l(v)

)(
Sv − 1 + 2t+ 1− Sv

)
+ 2
(
Sv − 1

)
=
(
b(v)− l(v)

)
2t+ 2

(
Sv − 1

)
=
(
2x+ 1− l(v)

)
2t+ 2

(
l(v)t+

l(v)

2
− 2tx− t− 3

2

)
= 4tx+ 2t− 2tl(v) + 2tl(v) + l(v)− 4tx− 2t− 3

= l(v)− 3 = s(v)− 1

which is exactly the degree of each vertex in K[Pi] for 1 ≤ i ≤ Sv. Therefore the

coloring of each complete graph induced on the vertices of each small group is well

defined.

We now show that each vertex in K[Pi] for Sv + 1 ≤ i ≤ 2t+ 1 has degree equal to the

sum of the degrees of its factors defined in the coloring. Since each Pi for Sv ≤ i ≤ 2t+1

is joined to all small groups and all large groups except itself, the sum of the degrees
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of the factors is

Sv(b(v)− s(v)) +
(
Lv − 1

)(
b(v)− l(v)

)
= Sv

(
b(v)− (l(v)− 2)

)
+
(
Lv − 1

)(
b(v)− l(v)

)
=
(
b(v)− l(v)

)(
Sv + Lv − 1

)
+ 2Sv

=
(
b(v)− l(v)

)(
Sv + 2t+ 1− Sv − 1

)
+ 2Sv

=
(
b(v)− l(v)

)
2t+ 2Sv

=
(
2x+ 1− l(v)

)
2t+ 2

(
l(v)t+

l(v)

2
− 2tx− t− 1

2

)
= 4tx+ 2t− 2tl(v) + 2tl(v) + l(v)− 4tx− 2t− 1

= l(v)− 1

which is exactly the degree of each vertex in K[Pi] for Sv + 1 ≤ i ≤ 2t+ 1. Therefore

the coloring of each complete graph induced on the vertices of each large group is well

defined.

In both cases the number of colors used is exactly p = 2t + 1, so it remains to show

there are exactly s = 2t colors appearing at each vertex. We will do this by showing that

for 1 ≤ i ≤ 2t+ 1:

(a) color i is does not appear at any vertex of Pi and

(b) for each color h 6= i, color h appears at all vertices of Pi.

Note that the edges colored i between parts join Pi+j and Pi−j for 1 ≤ j ≤ t. In

particular, there are no edges colored i between parts which are incident with vertices in

Pi. Therefore the construction also ensures that there is no factor colored i in K[Pi], so it

follows that (a) holds. Note that for 1 ≤ h ≤ 2t + 1 with h 6= i, there exist j′, 1 ≤ j′ ≤ t,

for which i ≡ h± j′ (mod 2t+ 1). So each vertex in Pi has an edge of color h incident with

it by construction, so (b) holds. Finally note by 4.1, for each u ∈ V (Kv) and i ∈ C(E, u)
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there are b(v) edges of color i incident with u, so the coloring is equitable. Therefore we

have formed a (2t+ 1, 2t)-equitable edge-coloring of Kv.

Corollary 4.1. Let v′ ≡ 4t+ 2 (mod 8t). Then χ′2t(v
′) = 2t+ 1.

Proof. By Theorem 1.1 we know that χ′2t(v
′) > 2t. So, using the edge-coloring produced in

the proof of Theorem 4.1, it follows by Lemma 3.1 that χ′2t(v
′) = 2t+ 1.

Corollary 4.2. Let v ≡ 2t+ 1 (mod 4t). Then

(i) ψ′1(K2, Kv) =
⌊

2tv
2t+1

⌋
e
, and

(ii) ψ′2t+1(K2, Kv) =
⌈

2tv
2t+1

⌉e
.

Proof. By the proof of Theorem 4.1, there exists an edge-coloring E of Kv such that |c1(E)−

c2t+1(E)| ∈ {0, 2}. So by Lemma 3.8, ψ′1(K2, Kv) =
⌊

2tv
2t+1

⌋
e

and ψ′2t+1(K2, Kv) =
⌈

2tv
2t+1

⌉e
.

Corollary 4.3. Let v′ ≡ 4t+ 2 (mod 8t). Then

(i) ψ′1(C4, Kv′ − F ) =
⌊

2tv′

2t+1

⌋
d4

, and

(ii) ψ′2t+1(C4, Kv′ − F ) =
⌈

2tv′

2t+1

⌉d4
.

Proof. Let v = v′/2. By the proof of Theorem 4.1, there exists an edge-coloring E of Kv such

that |c1(E)−c2t+1(E)| ∈ {0, 2}. Thus by Lemma 3.1 there exists a C4-coloring E ′ of Kv′−F

and ci(E) = 2ci(E
′) for 1 ≤ i ≤ s, so |c1(E ′) − c2(E ′)| = |2c1(E) − 2c2t+1(E)| = 2|c1(E) −

c2t+1(E)| ∈ {0, 4}. So by Lemma 3.9, ψ′1(C4, Kv′ − F ) =
⌊

2tv′

2t+1

⌋
d4

and ψ′2t+1(C4, Kv′ − F ) =⌈
2tv′

2t+1

⌉d4
.

Thus in regards to equitable edge-colorings of Kv and equitable block-colorings of C4-

decompositions of Kv′ − F , we have established two extreme values for each; the largest

values that the smallest element of the color vector can attain and the smallest value that

the largest element of the color vector can attain.
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Chapter 5

Exploring the Color Vector for Block Colorings of Graph Decompositions

The largest value that the smallest element of the color vector can attain, ψ′1(C4, Kv′ −

F ), and the smallest value that the largest element of the color vector can attain, ψ′2t+1(C4, Kv′−

F ), were proved in Chapter 4. In this Chapter we obtain another extreme coloring, establish-

ing the smallest value that the smallest element of the color vector can attain, ψ′1(C4, Kv′−F )

and the largest value that the largest element of the color vector can attain, ψ′2t+1(C4, Kv′ −

F ); see Corollary 5.1.

These extreme colorings again follow from another interesting problem, finding ψ′1(K2, Kv′/2)

and ψ′2t+1(K2, Kv′/2); see Theorem 5.1. The powerful proof technique of graph amalgama-

tions is utilized for the first time in the study of graph decompositions, applying Theorem

3.1 in the proofs of Propositions 5.1, 5.2, and 5.3. As a bonus from our method of proof, we

settle ψ′i(K2, Kv) and ψ′i(C2, Kv′−F ) for all other values of i (see Corollary 5.1 and Theorem

5.1).

Lemma 5.1. Let v = v′/2 = 4tx+ 2t+ 1 for some integer x and b(v) + 1 = b′(v′) + 1 ≥ 2t.

Then,

ψ′2(K2, Kv) ≤
⌊
v − x+ 1

t

⌋
e

and ψ′2(C4, Kv′ − F ) ≤
⌊
v′ − 2x+ 2

t

⌋
e

.

Proof. Let b(v) + 1 ≥ 2t. By Lemma 3.3, ψ′1(K2, Kv) ≥ b(v) + 1. Therefore by Lemma 3.12,

ψ′2(K2, Kv) ≤ b
2tv − ψ′1(K2, Kv))

2t+ 2− 2
ce

≤ bv − (b(v) + 1)

2t
ce

= bv − 2x+ 2

2t
ce

= bv − x+ 1

t
ce.
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By Lemma 3.4, ψ′1(C4, Kv′ − F ) ≥ 2b′(v′) + 2. Therefore by Lemma 3.12,

ψ′2(C4, Kv′ − F ) ≤
⌊

2tv′ − ψ′1(C4, Kv′ − F ))

2t+ 2− 2

⌋
e

≤
⌊
v′ − (2b′(v′) + 2)

2t

⌋
e

=

⌊
v′ − 2x+ 4

2t

⌋
e

=

⌊
v′ − 2x+ 2

t

⌋
e

.

Proposition 5.1. Let v ≡ 2t+ 1 (mod 4t) with v > 1. Let 2t ≤ b(v) + 1. Then

ψ′2(K2, Kv) =

⌊
v − x+ 1

t

⌋
e

.

Proof. Let v = 4tx + 2t + 1 for some integer x. Form a complete graph G0 on the set of

vertices V0 = {u1, . . . , u2x+2} and color all the edges of G0 with color 2t+ 1. So each vertex

in G0 is incident with 2x+ 1 = b(v) edges colored 2t+ 1 as desired. Notice that in the final

edge-coloring of Kv, each vertex is missing (i.e., is not incident with any edges of) exactly

one color. We will arrange for 1 ≤ i ≤ 2t, color m(i) = i to be missing from vertex ui, for

2t + 1 ≤ i ≤ 2x + 2 color m(i) = d i−2t
2
e (mod 2t) ∈ {1, . . . , 2t} to be missing from ui, and

color m(αi) = 2t + 1 to be missing from the remaining v − 2x − 2 vertices (which will be

named α1, . . . , αη(α) below). For 1 ≤ i ≤ 2t let M(i) = {uj ∈ V0 | m(j) = i}. Note for

1 ≤ i < j ≤ 2t, | |M(i)| − |M(j)| |∈ {0, 2} and |M(i)| is odd for all i.

Next form a new edge-colored graph G+0 from G0 as follows. Add a single vertex, α. The

aim now is to complete the proof by using Theorem 3.1 with η(ui) = 1 for 1 ≤ i ≤ 2x + 2

and η(α) = v − 2x − 2. For 1 ≤ i ≤ 2x + 2 join ui to α with b(v) edges of each color in

{1, 2, . . . , 2t} \ {m(i)}. Thus for 1 ≤ i ≤ 2x + 2 the number of edges joining ui to α is

(2t− 1)(2x+ 1) = 4tx+ 2t+ 1− (2x+ 1)− 1 = v− 1− (2x+ 1) = η(α), and dG+0 (ui) = v− 1.
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Let a(i) be the number of vertices in G+
0 where color i appears and let εi = 2 for

1 ≤ i ≤ x + 1 − t (mod 2t) and εi = 0 otherwise. Therefore a(2t + 1) = 2x + 2 and for

1 ≤ i ≤ 2t,

a(i) = 2x+ 3− |M(i)|

= 2x+ 2− 2

⌊
2x+ 2− 2t

4t

⌋
− εi.

Note since x ≥ 0 and t ≥ 1 for 1 ≤ i ≤ 2t,

η(α)− (a(i)− 1) = v − 2x− 2−
(

2x+ 2− 2

⌊
2x+ 2− 2t

4t

⌋
− εi − 1

)
= v − 4x− 3− 2

⌊
2x+ 2− 2t

4t

⌋
+ εi

≥ 4tx+ 2t− 2− 4x−
(

2x+ 2− 2t

2t

)
= 4x(t− 1) + 2t− 1− x+ 1

t

= (4x+ 1)(t− 1) + t− x+ 1

t
≥ 0.

Thus for 1 ≤ i ≤ 2t add (b(v)η(α)− b(v)(a(i)−1))/2 loops colored i to α, thus resulting

in dG+0 (i)(α) = b(v)η(α). By the above calculations we know we will be adding a non-negative

number of loops for all colors 1, . . . , 2t.

Let l(α) be the number of loops incident with α and E(V (G0), α) be the set of edges

from a vertex in G0 to α. Therefore,
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l(α) =
(
dG+

0
(α)− |E(V (G0), α)|

)
/2

= (η(α)b(v)2t− (2x+ 2)[b(v)(2t− 1)]) /2

= (η(α)b(v)2t− (2x+ 2)η(α)) /2

= η(α) (b(v)2t− 2x− 2) /2

= η(α) (4tx+ 2t+ 1− 2x− 3) /2

= η(α)(v − 2x− 2− 1)/2

= η(α)(η(α)− 1)/2.

Now apply Theorem 3.1 to form the detachment G of G+0 in which α is detached into

the vertices α1, . . . , αη(α). For 1 ≤ i ≤ 2x + 2, since ui is joined to α with b(v) edges in G+0 ,

by condition (3) ui is joined to each vertex αj for 1 ≤ j ≤ η(α) by exactly one edge in G.

Also, since α is incident with η(α)(η(α) − 1)/2 loops in G+0 , by condition (4) αi is joined

to αj by exactly one edge for 1 ≤ i < j ≤ η(α) in G. It follows that G is isomorphic to

K2x+2+η(α) = Kv. By condition (2), for each vertex u in G, each color which appears at u does

so on b(v) edges. Therefore the edge-coloring E of G is (2t + 1, 2t)-equitable. Furthermore,

in G, color 2t+ 1 appears at b(v) + 1 ≥ 2t vertices and for 1 ≤ i ≤ 2t, the number of vertices

where color i appears is

a(i)− 1 + η(α) = (2x+ 2)− 2

⌊
x+ 1− t

2t

⌋
− εi − 1 + v − (2x+ 2)

= v − 1− 2

⌊
x+ 1− t

2t

⌋
− εi.
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Therefore, since a(i) and η(α) are both odd integers, if 2t divides (x + 1 − t), then ε1 = 0

and

a(1)− 1 + η(α) = v − 1− x+ 1− t
t

= v − x+ 1

t

=

⌊
v − x+ 1

t

⌋
e

,

and if 2t does not divide (x+ 1− t) then ε1 = 2 and

a(1)− 1 + η(α) = v − 1−
(

2

⌊
x+ 1− t

2t

⌋
+ 2

)
= v − 1− 2

⌈
x+ 1− t

2t

⌉
= v − 1 + 2

⌊
−(x+ 1− t)

2t

⌋
= 2

⌊
v − 1

2
+

1

2
− x+ 1

2t

⌋
= 2

⌊
v

2
− x+ 1

2t

⌋
=

⌊
v − x+ 1

t

⌋
e

.

Therefore by Lemma 5.1, ψ′2(K2, Kv) = bv− x+1
t
ce and the proof is complete (after renaming

color 2t+ 1 with 1 and renaming colors 1, 2, . . . , 2t with 2, 3, . . . , 2t+ 1 respectively).

By modifying the proof of Proposition 5.1 we obtain the proof of Proposition 5.2.

Proposition 5.2. Let v ≡ 2t+ 1 (mod 4t) with v > 1 and b(v) + 1 ≥ 2t. Then

1. ψ′1(K2, Kv) = b(v) + 1 and

2. for 3 ≤ i ≤ 2t+ 1, ψ′i(K2, Kv) = v − 1.

Proof. Let v = 4tx+ 2t+ 1 for some integer x. Form G0 in the same way as in Proposition

5.1. Here color m(i) = i will be missing from vertex ui for 1 ≤ i ≤ 2t − 1, color m(i) = 2t
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will be missing from vertex ui for 2t ≤ i ≤ 2x+ 2, and color m(αi) = 2t+ 1 will be missing

from the remaining v − 2x− 2 vertices (which will be named α1, . . . , αη(α) below).

Next form a new edge-colored graph G+0 as in Proposition 5.1 and again the aim now is to

complete the proof using Theorem 3.1 with η(ui) = 1 for 1 ≤ i ≤ 2x+2 and η(α) = v−2x−2.

For 1 ≤ i ≤ 2x + 2 join ui to α with b(v) edges of each color {1, 2, . . . , 2t} \ {m(i)} as in

Proposition 5.1; again the number of edges joining ui to α is η(α), and dG+0 (ui) = v− 1. For

1 ≤ i ≤ 2t − 1 add b(v)(η(v) − (2x + 1))/2 loops of color i to α; so α has degree b(v)η(v)

in color class i (where loops contribute 2 to the degree of the incident vertex). Also add

b(v)(η(v) − (2t − 1))/2 loops of color 2t to α; so α has degree b(v)η(v) in color class 2t as

well. Notice that the number of loops incident with α is

l(α) = (2t− 1)b(v)(η(α)− (2x+ 1)/2) + b(v)(η(α)− (2t− 1))/2

= (2t(2x+ 1)η(α)− (2x+ 1)(2t− 1)(2x+ 2))/2

= (2x+ 1)(2tη(α)− (4xt− 2x− 4t− 2))/2

= (2x+ 1)(2tη(α)− (η(α) + 2t− 1))/2

= (2x+ 1)(η(α)− 1)(2t− 1))/2

= η(α)(η(α)− 1)/2.

As in the proof of Proposition 5.1, Theorem 3.1 allows us to form G isomorphic to Kv

from G+0 so that the edge-coloring E of G is (2t + 1, 2t)-equitable. Furthermore, in G, color

2t+1 appears at b(v)+1 vertices, color 2t appears at v−2t−1 vertices, and each other color

appears at v − 1 vertices. Since in [26] it is shown in this case that ψ′i(K2, Kv) ≥ b(v) + 1

and that ψ′i(K2, Kv) ≤ v − 1 for 1 ≤ i ≤ 2t + 1, the proof is complete (after renaming the

colors 1, 2, . . . , 2t+ 1 with 2t+ 1, 2t, . . . , 1 respectively).

We apply a well known result stated in Lemma 5.2 at the start of the proof of Proposition

5.3.
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Lemma 5.2. There exists a simple k-regular graph on n-vertices if and only if k ≤ n − 1

and kn is even.

Lemma 5.3 will also be useful in the proof of Proposition 5.3 and is a result of Vizing’s

Theorem and work presented by McDiarmid in [28]. An edge-coloring is said to be equalized

if the number of edges of each color is within one of the number of edges of each other color.

Lemma 5.3. If G is a k-regular graph, for m > k there exists an equalized proper m-edge

coloring of G.

The following result is also used in the proof of Proposition 5.3 and is a well known

corollary of Hall’s theorem.

Lemma 5.4. If G is a k-regular bipartite graph with k ≥ 1 then G has a 1-factor.

Proposition 5.3. Let v ≡ 2t+ 1 (mod 4t) with v > 1 and b(v) + 1 ≤ 2t. Then

1. ψ′1(K2, Kv) = 2t and

2. for 2 ≤ i ≤ 2t+ 1, ψ′i(K2, Kv) = v − 1.

Proof. By Lemma 3.10, ψ′1(K2, Kv) ≥ 2t and ψ′i(K2, Kv) ≤ v − 1 for 1 ≤ i ≤ 2t + 1. Thus

the result is proved by showing there exists a (2t+ 1, 2t)-equitable edge-coloring of Kv such

that c1 = 2t and ci = v − 1, for 2 ≤ i ≤ 2t+ 1.

Let v = 2t + 1 + 4tx for some integer x ≥ 0. We assume v > 1, so t ≥ 1. Let

b(v) + 1 ≤ 2t. Define a set of vertices V0 = {v1, . . . , v2t} and G0 = K[V0]. Color all the edges

of a b(v)-regular subgraph H1 of G0 with color 2t+ 1. Note by Lemma 5.2 such a subgraph

exists since b(v) ≤ 2t − 1 and (b(v))(2t) is even. Thus for 1 ≤ j ≤ 2t, dH2(2t+1)(vj) = b(v).

Let k = 2t − 1 − b(v) = 2t − 2x − 2 (by Lemma 3.2), then H2 = G0\E(H1) is a k-regular

graph with tk edges. Since k
2

= t−x− 1 is an integer and 2t > k, by Lemma 5.3 there exists

an equalized proper 2t-edge-coloring of H2 with colors 1, . . . , 2t; so there are k/2 edges of

each color. Note then that for 1 ≤ i ≤ 2t,
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(?) color i appears on k vertices in H2

and all edges of G0 have been colored. Now form a bipartite graph B with vertex set

V = {v1, . . . , v2t} and C = {c1, . . . , c2t}. Join ci to vj if and only if color i is missing

from (i.e., no edge of color i is incident with) vj in H2 . Note since the coloring of H2 was

proper, dB(vj) = 2t− dH2(vj) = 2t− k. Also, since color i appears on k vertices in H2 and

|H2| = 2t, dB(ci) = 2t− k. Therefore B is a regular bipartite graph and by Lemma 5.4 there

exists a 1-factor F of B. Without loss of generality, we assume F = {(vj, cj) | 1 ≤ j ≤ 2t}.

The role of F is to guarantee that for 1 ≤ i ≤ 2t, color i does not appear on vi in our final

edge-coloring of Kv. Next form a new edge-colored graph G+0 from G0 as follows. Add a

single vertex, called α, joining α to vj with v − 2t edges for 1 ≤ j ≤ 2t and adding
(
v−2t
2

)
loops at α. We now turn to coloring the added edges and loops. For 1 ≤ i, j ≤ 2t with

i 6= j, color
(
b(v)− dH2(i)(vj)

)
∈ {b(v), b(v)−1} edges between α and vj with color i, so now

dG+0 (i)(vj) = b(v). Since H2 is k-regular and the coloring of H2 was proper, for each vj ∈ V0,

this colors each of the v − 2t edges between α and vj since,

k(b(v)− 1) + (2t− k − 1)b(v) = k(2x+ 1− 1) + (2t− k − 1)(2x+ 1)

= 2kx+ 4tx− 2kx− k + (2t− 2x− 2) + 1

= 4tx+ 1

= v − 2t.

Somewhat coincidentally α is currently incident with k(b(v)−1)+(2t−k−1)b(v) edges

colored i (using (?)), which was just shown to be v− 2t. Now color 1
2
(v− 2t)(b(v)− 1) loops
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of color 1, . . . , 2t at α. Notice this colors all the loops incident with α since

2t

(
1

2
(v − 2t)(b(v)− 1)

)
= (v − 2t)(4tx)/2

= (v − 2t)(v − 2t− 1)/2

=

(
v − 2t

2

)
.

Now we intend to apply Theorem 3.1 to achieve the construction of a (2t + 1, 2t)-equitable

edge coloring of Kv. Let H = G+0 , which is a (2t + 1)-edge-colored graph, and define

η(α) = v − 2t and η(vi) = 1 for 1 ≤ i ≤ 2t. Thus by Theorem 3.1, a new graph G can be

formed from H by detaching α into v − 2t new vertices α1, . . . , αv−2t, so |V (G)| = v. The

conditions G satisfies stated in Theorem 3.1 are presented in turn to show that G = Kv and

that it has a (2t+ 1, 2t)-equitable edge-coloring:

(i) For 1 ≤ j ≤ 2t, since η(vj) = 1 , dG(vj) ≈ dG+0 (vj) = (2t − 1) + (v − 2t) = v − 1 as

it should be in Kv. For 1 ≤ k ≤ v − 2t, the same is true for each αk since by the

construction of G+0 and η(α) = v − 2t, thus

dG(αk) ≈ dG+0 (α)/(v − 2t)

=
2
(
2t
(
1
2
(v − 2t)(b(v)− 1)

))
+ 2t(v − 2t)

v − 2t

= 2t(b(v)− 1) + 2t

= 4tx+ 2t

= v − 1.

(ii) For 1 ≤ i ≤ 2t + 1 and 1 ≤ j ≤ 2t with i 6= j, dG+0 (i)(vj) = b(v), dG+0 (j)(vj) = 0, and

η(vj) = 1, so this condition simply states that dG(i)(vj) = b(v) and dG(j)(vj) = 0 as

well. Note dG+0 (2t+1)(α) = 0, so dG(2t+1)(αk) = 0 for all 1 ≤ k ≤ v − 2t. Finally, for
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1 ≤ i ≤ 2t and 1 ≤ k ≤ v − 2t,

dG(i)(αk) ≈ dG+0 (2t+1)(α)/η(α)

=
(v − 2t) +

(
2
(
1
2
(v − 2t)(b(v)− 1)

))
v − 2t

= b(v)

as required by Lemma 3.2.

(iii) For 1 ≤ j ≤ 2t, η(vj) = 1 < 2, so for all vj ∈ V0 this condition does not apply. Note

η(α) =
(
v−2t
2

)
≥ 2, so this condition tells us for 1 ≤ i < i′ ≤ v− 2t there is exactly one

edge between each αi and αi′ in G since,

mG(αi, αi′) ≈ lG+0 (α)/

(
η(α)

2

)
=

(
v − 2t

2

)
/

(
v − 2t

2

)
= 1.

(iv) For 1 ≤ i, i′ ≤ 2t, mG(vi, vi′) ≈ mG+0 (vi, vi′)/(η(vi)η(vi′) = 1 so this condition ensures

there is exactly one edge between any vi and vi′ in V0. For 1 ≤ i ≤ 2t and 1 ≤ i′ ≤ v−2t,

there is exactly one edge between each vi and αi′ in G since,

mKv(vi, αi′) ≈ mG+0 (vi, αi)/ (η(vi)η(αi′))

= (v − 2t)/(1(v − 2t))

= 1.

Therefore G = Kv since by (iii) and (iv) G is simple and by (i) each of the v vertices has

degree v − 1. By (ii) for 1 ≤ i ≤ 2t + 1 and 1 ≤ j ≤ 2t with i 6= j, dG(i)(vj) = b(v) and

dG(j)(vj) = 0 and for 1 ≤ i ≤ 2t and 1 ≤ k ≤ v − 2t, dG(i)(αk) = b(v) and dG(2t+1)(αk) = 0,
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so we have achieved a (2t + 1, 2t)-equitable edge-coloring of Kv. Note color 2t + 1 only

appears at each vertex in V0 and for 2 ≤ i ≤ 2t + 1, color i appears at all but one vertex.

It follows that, after renaming the colors 1, 2, . . . , 2t + 1 with 2t + 1, 2t, . . . , 1 respectively,

c1 = 2t ≥ b(v) + 1 by assumption and ci = v − 1 for 2 ≤ i ≤ 2t+ 1.

Theorem 5.1. Let v ≡ 2t+ 1 (mod 4t) with v > 1. Then,

1. ψ′1(K2, Kv) = max{b(v) + 1, 2t},

2. if b(v) + 1 ≤ 2t, then ψ′2(K2, Kv) = v − 1,

3. if b(v) + 1 ≥ 2t, then ψ′2(K2, Kv) =
⌊
v − x+1

t

⌋
e
, and

4. for 3 ≤ i ≤ 2t+ 1, ψ′i(K2, Kv) = v − 1.

Proof. Let v ≡ 2t + 1 (mod 4t) with v > 1. Property 1 holds by Propositions 5.2 and 5.3,

property 2 holds by Proposition 5.3, property 3 holds by Proposition 5.1, and property 4

holds by Propositions 5.2 and 5.3.

Corollary 5.1. Let v′ ≡ 4t+ 2 (mod 8t) with v > 2. Then

(1) ψ′1(C4, Kv′ − F ) = max{2(b′(v′) + 1), 4t},

(3) if b′(v′) + 1 ≤ 2t, then ψ′2(C4, Kv′ − F ) = v′ − 2,

(3) if b′(v′) + 1 ≥ 2t, then ψ′2(C4, Kv′ − F ) =
⌊
v′ − 2x+2

t

⌋
e
, and

(4) for 3 ≤ i ≤ 2t+ 1, ψ′i(C4, Kv′ − F ) = v′ − 2.

Proof. Let v = v′/2. By Theorem 5.1, there exists a (2t + 1, 2t)-equitable edge-coloring

E of G = Kv with c1(E) = max{b(v) + 1, 2t}, ci(E) = v − 1 for 3 ≤ i ≤ 2t + 1, and

c2(E) = v − 1 when b(v) + 1 ≤ 2t. There also exists a (2t + 1, 2t)-equitable edge-coloring

H of G = Kv when b(v) + 1 ≥ 2t with |c1(H) − c2t+1(H)| ∈ {0, 2}. Thus by Lemma

3.1, there exists a (2t + 1, 2t)-equitable C4-coloring E ′ of G × 2 = Kv′ − F with c1(E
′) =

2 max{b(v) + 1, 2t} = max{2(b′(v′) + 1), 4t} by Lemma 3.2. The coloring E ′ also has the
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property that ci(E
′) = 2(v−1) = v′−2 for 3 ≤ i ≤ 2t+1 and c2(E

′) = 2(v−1) = v′−2 when

b′(v′) + 1 ≤ 2t since b(v) = b′(v′). Also by Lemma 3.1, there exists a (2t + 1, 2t)-equitable

C4-coloring H ′ of G× 2 = Kv′ − F with |c1(H ′)− c2t+1(H
′)| = 2|c1(H)− c2t+1(H)| ∈ {0, 4}.

Thus by Lemma 3.4 and 3.11 it follows that ψ′1(C4, Kv′−F ) = max{2(b′(v′)+1), 4t}. Note as

well, by Lemma 3.3, ψ′i(C4, Kv′−F ) = v′−2 for 3 ≤ i ≤ 2t+1 and ψ′2(C4, Kv′−F ) = v′−2 if

b′(v′) + 1 ≤ 2t. Finally, by Lemma 3.9, ψ′2(C4, Kv′ −F ) =
⌊
v′ − 2x+2

t

⌋
e

if b′(v′) + 1 ≥ 2t.

Thus in regards to equitable edge-colorings of Kv and equitable C4-colorings of Kv′−F ,

we have established the other two extreme values for each; the smallest values that the

smallest element of the color vector can attain and the largest value that the largest value of

the color vector can attain. We have also in fact settled the largest any element of the color

vector can be.
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Chapter 6

Alternate Proofs via Direct Construction

Below is an alternate proof of Propositions 5.2 and 5.3 via a direct construction, dis-

playing the diversity of proof techniques in the study of graph decompositions.

Proof. Assume b(v)+1 ≥ 2t. Partition the vertices into 2t sets labeled G1, . . . , G2t such that

for 1 ≤ j ≤ 2t − 1, |Gj| = b(v) and |G2t| = b(v) + 1. Note by Lemma 3.2, the number of

vertices in these sets is well-defined since,

(2t− 1)b(v) + b(v) + 1 = (2t− 1)(2x+ 1) + 2x+ 2

= 4tx+ 2t+ 1

= v.

Let V (G2t) = {u1, . . . , u2t, v2t+1 . . . , vb(v)+1}. Color all edges in K[G2t] with color 2t+ 1. For

1 ≤ i ≤ 2t, 1 ≤ j ≤ 2t− 1, and k ≡ i+ j (mod 2t), color all edges between Gj and uk with

color i. Note for 1 ≤ i, k ≤ 2t such that i 6= k, color i appears at uk and color k does not; so

there are exactly 2t colors appearing at uk. Furthermore, since |Gj| = b(v) for 1 ≤ j ≤ 2t−1,

each color appearing at uk does so on b(v) edges. Now for 2t+1 ≤ l ≤ b(v) and 1 ≤ i ≤ 2t−1,

color the edges joining vl to the vertices in Gi with color i; so there are b(v) edges of color i

incident with vl and there are exactly 2t colors appearing at vl. This completes the coloring

of all edges incident with vertices in G2t. Note, for 1 ≤ i ≤ 2t and 1 ≤ j ≤ 2t− 1 with i 6= j,

each u ∈ Gj is incident with one edge colored i and 1 + (b(v) + 1− 2t) edges colored j.

To color the remaining edges, first for 1 ≤ j ≤ 2t − 1 color all edges in K[Gj] with

color 2t. Second, let {F1, . . . , F2t−1} be a near 1-factorization of K2t−1 on the vertex set

{i | 1 ≤ i ≤ 2t−1} such that i 6∈ V (Fi). For 1 ≤ j < k ≤ 2t−1 color a (b(v) + 1− 2t)-factor

38



of the bipartite graph formed by the edges between Gj and Gk with i if and only if {j, k} is

in Fi; this is possible by Lemma 5.4. Note all vertices in G1, . . . , G2t−1 are now incident with

b(v)+2−2t edges of color i for 1 ≤ i ≤ 2t−1, so each still needs to be incident with 2t−2 more

edges colored i. Finally, note the remaining uncolored edges form a (2t− 2)(2t− 1)-regular

subgraph on the vertex set ∪2t−1i=1 Gi, thus it has a 2-factorization by Petersen’s Theorem (a

well known corollary of Lemma 5.4); so it clearly has a (2t − 2)-factorization. Hence, for

1 ≤ i ≤ 2t− 1, color all the edges in the ith (2t− 2)-factor with color i.

Thus a (2t + 1, 2t)-equitable edge-coloring of Kv has been formed. Note that color

2t + 1 is only used on edges in K[G2t], color 2t appears at all vertices except those in

{u2t, v2t+1, . . . , vb(v)+1}, and for 3 ≤ i ≤ 2t−1 color i only misses ui. Therefore, after renaming

the colors 1, 2, . . . , 2t+1 with 2t+1, 2t, . . . , 1 respectively, c1 = 2t, c2 = v−(b(v)+1−(2t−1)),

and ci = v − 1 for 3 ≤ i ≤ 2t+ 1.

Therefore, in each case, a (2t+1, 2t)-equitable edge-coloring has been produced in which

c1 = max{b(v) + 1, 2t}, ci = v− 1 for 3 ≤ i ≤ 2t+ 1 and c2 = v− 1 when b(v) = 1 ≤ 2t. So,

by Lemma 3.3 and 3.10 it follows that ψ′1(K2, Kv) = max{b(v) + 1, 2t}, and since v is odd,

by Lemma 3.3 it follows that ψ′i(K2, Kv) = v − 1 for 3 ≤ i ≤ 2t+ 1 and ψ′2(K2, Kv) = v − 1

when b(v) + 1 ≤ 2t.

If only ψ′2t+1(K2, Kv′/2) or ψ′2t+1(C4, Kv′−F ) are of interest, they can be obtained much

more easily via the simple direct construction shown in the proof of Theorem 6.1 where

except for the smallest value of v and v′, only one color class achieves the maximum value

of v − 1 and v′ − 2 respectively.

Theorem 6.1. Let v ≡ 2t+ 1 (mod 4t). Then

(1) ψ′2t+1(K2, Kv) = v − 1 and

(2) ψ′2t+1(C4, K2v − F ) = 2v − 2.

Proof. Let v = 4tx + 2t + 1 for some integer x ≥ 0. By Lemma 3.3 ψ′2t+1(K2, Kv) ≤ v − 1

so it simply needs to be shown that there exists a (2t+ 1, 2t)-equitable edge-coloring of Kv

39



such that c2t+1 = v − 1. Partition the vertices with one vertex labeled P1 and 2t groups

P2, . . . , P2t+1, each with 1+2x vertices. Let {F1, . . . , F2t+1} be a near 1-factorization of K2t+1

on the vertex set {1, 2, . . . , 2t + 1}. For 1 ≤ i < j ≤ 2t + 1 color the edges joining vertices

in Pi to vertices in Pj with k if and only if {i, j} is in Fk. Note for 1 ≤ i, k ≤ 2t + 1 such

that i 6= k, color k appears at all vertices of group Pi. Now for 3 ≤ i ≤ 2t + 1, when group

Pi is joined with color k to group P1, color K[Pi] with color k; there are b(v) = 2x+ 1 edges

of color k 6= i at each vertex in Pi. Note as well that |Pk| = 2x + 1, so by construction we

have b(v) edges of color k incident with P1. Therefore this creates a (2t + 1, 2t)-equitable

edge-coloring of Kv. Note as well by construction that color 1 appears at every vertex

except P1, so c2t+1 = v − 1. So by Lemma 3.3 ψ′2t+1(K2, Kv) = v − 1. With G = Kv,

by Lemma 3.1, there exists a (2t + 1, 2t)-equitable C4-coloring of G × 2 = Kv′ − F with

the property that c2t+1 = 2(v − 1) = v′ − 2. So by Lemma 3.4, it may be concluded that

ψ′2t+1(C4, K2v − F ) = 2v − 2.
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Chapter 7

Further Areas of Interest in Block Colorings of Graph Decompositions

Note by Theorem 2.2 if v ≡ 0 (mod 4), there exists an (s, s)-equitable C4-coloring of

Kv − F if and only if v − 2 ≥ 2s. By Theorem 4.1 we know if v ≡ 4t + 2 (mod 8t), there

exists a (2t+ 1, 2t)-equitable C4-coloring of Kv − F . Therefore,

• if v ≡ 0 (mod 4) and v − 2 ≥ 2s, then χ′p(v) = p,

• if v ≡ 0 (mod 4) and v − 2 < 2s, then χ′p(v) > p, and

• if v ≡ 4t+ 2 (mod 8t), then χ′2t(v) = 2t+ 1.

These results leave some natural questions to be addressed:

(1) If v ≡ 0 (mod 4) and v − 2 < 2s, what is χ′p(v)?

• We already know χ′p(v) > p by Theorem 2.2.

(2) If v ≡ 2 (mod 4) and v 6≡ 4t+ 2 (mod 8t), what is χ′p(v)?

• Naturally, χ′p(v) ≥ p, so we have our starting point and

• for p ∈ {2, 3, 4}, in this case we know from Theorem 2.2, χ′p(v) = p if and only if

v ≥ 6, v ≥ 8, and v ≥ 10 respectively.

(3) If v ≡ 4t+ 2 (mod 8t), for p odd, what is χ′p(v)?

• Again naturally, χ′p(v) ≥ p, so we have our starting point and

• we know from Theorem 2.2, χ′3(v) = 3 if and only if v ≥ 8.
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Note for there to be a C4-decomposition of Kv−F , it must be that v ≡ 0 (mod 2) since the

degree of each vertex must be even. So once these three questions are complete, we will know

the value of χ′s(v) for any v in regards to C4-decompositions of Kv − F , that is the smallest

value of s for a fixed value of p for which there exists an (s, p)-equitable block-coloring of

some C4-decomposition of Kv − F .

From Corollaries 4.3 and 5.1, for v′ ≡ 4t+ 2 (mod 8t) and v′ > 2 we know:

• ψ′1(C4, Kv′ − F ) = max{2(b′(v′) + 1), 4t},

• ψ′2t+1(C4, Kv′ − F ) =
⌈

2tv′

2t+1

⌉d4
,

• ψ′1(C4, Kv′ − F ) =
⌊

2tv′

2t+1

⌋
d4

,

• if b′(v′) + 1 ≤ 2t, then ψ′2(C4, Kv′ − F ) = v′ − 2,

• if b′(v′) + 1 ≥ 2t, then ψ′2(C4, Kv′ − F ) =
⌊
v′ − 2x+2

t

⌋
e
, and

• for 3 ≤ i ≤ 2t+ 1, ψ′i(C4, Kv′ − F ) = v′ − 2.

These results introduce one immediate question to be first addressed.

(4) For v ≡ 4t+ 2 (mod 8t), what is ψ′i(C4, Kv′ − F ) for 2 ≤ i ≤ 2t?

We have begun to work on answering question (4), but the work is proving more difficult

than expected. There are many more restriction on the smallest the intermediate values of

the color vector can be as compared to c1 and c2t+1.

Note in our work we have restricted ourselves to considering ψ′i(C4, Kv′ − F ) and

ψ′i(C4, Kv′ − F ) in the case where s = χ′p(v), that is using as few colors as possible for

a particular value of p. Thus for v ≡ 0 (mod 4) and v − 2 ≥ 2s, we are considering the

size of the color classes for (p, p)-equitable block-colorings. Hence we are using p colors and

want p colors appearing at each vertex. Necessarily then, every color class will contain every

vertex. Therefore for v ≡ 0 (mod 4), v − 2 ≥ 2s, and 1 ≤ i ≤ s,

ψ′i(C4, Kv′ − F ) = ψ′i(C4, Kv′ − F ) = v. (7.1)
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By answering questions (1) and (3), if χ′p(v) = p, then we have ψ′i(C4, Kv′ − F ) =

ψ′i(C4, Kv′ − F ) = v as well. The more interesting question then stems from question (2)

where we already know χ′p(v) > p. Thus the following questions remain:

(5) If v ≡ 0 (mod 4) and v − 2 < 2s, what are ψ′i(C4, Kv′ − F ) and ψ′i(C4, Kv′ − F ) for

1 ≤ i ≤ s?

• We already know χ′p(v) > p, so this will be an interesting question to resolve.

(6) If v ≡ 2 (mod 4) and v 6≡ 4t+2 (mod 8t), what are ψ′i(C4, Kv′−F ) and ψ′i(C4, Kv′−F )

for 1 ≤ i ≤ s?

• If in settling question (2), we find χ′p(v) = p, this question is automatically settled

and equation (7.1) applies here.

(7) If v ≡ 4t + 2 (mod 8t), for p odd, what are ψ′i(C4, Kv′ − F ) and ψ′i(C4, Kv′ − F ) for

1 ≤ i ≤ s?

• Again, if in settling question (3), we find χ′p(v) = p, this question is automatically

settled and equation (7.1) applies here as well.

In answering these questions, we’ll again be addressing the analogous questions for edge-

colorings of Kv. Having just introduced the idea of the color vector in our work, the final

question to be considered would be, if s > χ′p(v),

(8) what are ψ′i(C4, Kv′ − F ) and ψ′i(C4, Kv′ − F ) for 1 ≤ i ≤ s?

Thus the field of mathematics is ever changing and growing, leading us to continually ask

more questions and expand our base of knowledge.
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Chapter 8

Tiling Generalized Petersen Graphs

8.1 Introduction

The Generalized Petersen Graph P (n, k) is defined for all n ≥ 3 with 1 ≤ k ≤ (n− 1)/2

to be the graph on the vertex set Zn x Z2 with,

E(P (n, k)) = {{(i, 0), (i+ 1, 0)}, {(i, 0), (i, 1)}, {(i, 1), (i+ k, 1)} | i ∈ Zn}

reducing the sums modulo n. A path on j vertices of length j − 1 is denoted by Pj with,

V = {v0, v1, v2, ..., vj−1} and E = {{vi, vi+1} | i ∈ Zj−1}. We define an H-tiling of a graph

G to be a partition Π of the vertices of G into sets such that for all π ∈ Π, G[π] = H. In

particular, we settle the existence of tilings of P (n, k) with Pj for j ∈ {2, 4} (see Theorem

8.1). We also propose necessary and sufficient conditions for the existence of a P6-tiling of

P (n, k) in Conjecture 8.1 with a nearly complete proof and detailed plans for our future

work with forming a P8-tiling of P (n, k).

The inspiration for our work with tiling generalized Petersen graphs with paths of var-

ious lengths came from a talk given by Jerrold Griggs and Kevin Milans on the Tilings of

Hypercubes. They explored necessary and sufficient conditions with n sufficiently large for

a graph G to tile the n-dimensional hypercube Qn.

8.2 History

The study of tilings in mathematics has become a wide range of research with many

variations in the questions explored. One area of interest is with tiling m× n checkerboards

with polyominoes, which are connected figures formed from congruent squares placed side by
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side so that each square shares at least one side with another square. The most commonly

known is the domino 2×1 tile, with further information in [13]. We can connect checkerboard

tiling to graph theory by considering each square to be a vertex and having two vertices

adjacent if their respective squares are adjacent. The shortcoming in this connection is

when we consider tiling with 3 squares in an L-shape, also called a tromino (see [1] and [7]),

which is viewed as different from tiling with 3 tiles stacked side by side, referred to as a

3× 1 tile. In graph theory both would be considered a P3–tiling. T–tetrominoes, which are

formed by 4 congruent squares arranged in the shape of a T, can be thought of as stars of

degree 3 (see [29]). In all of these tilings though, the partitions of vertices do not form an

induced subgraph as is the case in our work.

Work has also been done in tiling nonorientable surfaces with Steiner Triple Systems

(see [30]) where the triples {i, j, k} of disjoint Steiner Triple Systems are thought of as black

and white triangles with vertices i, j, and k joined together by their sides to tile some closed

surface. In addition, others have looked at the minimum degree threshold for a bipartite

graph to tile another bipartite graph (see [6]). Again, the difference in this specific work,

versus our own, is that their partitioning of the vertices to form a particular subgraph does

not induce that graph, versus our graphs are induced.

8.3 Results

We introduce some notation to ease our work. We refer to the set of vertices V0 =

{(i, 0) | i ∈ Zn} and their induced edges as the outer vertices and outer cycle, the set of

vertices V1 = {(i, 1) | i ∈ Zn} and their induced edges as the inner vertices and inner graph,

denoted by I(n, k), and the edges between vertices in V0 and vertices in V1 as the spoke

edges. Let D be a set of induced vertex disjoint paths with span V (G). A tiling naturally

follows from such a partition as Π = {{V (D)} | D ∈ D}. We say that D induces the tiling

Π. Throughout the following proof it will also be useful to denote {s + i|s ∈ S} by simply

S + i.
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Theorem 8.1. For j ∈ {2, 4} and integers n and k with n ≥ 3 and 1 ≤ k ≤ (n− 1)/2, there

exists a Pj-tiling of P (n, k) if and only if j divides 2n.

Proof. Let n and k be integers with n ≥ 3 and 1 ≤ k ≤ (n−1)/2. Since each of the 2n vertices

in P (n, k) must appear in exactly one path in any Pj-tiling, Π, of P (n, k), |Π| = 2n/j, so j

must divide 2n and the condition is necessary. To prove sufficiency we consider each value

of j ∈ {2, 4} in turn.

Let j = 2. A P2-tiling of P (n, k) is simply formed by the spoke edges with,

Π1 = {{(i, 0), (i, 1)} | i ∈ Zn}.

Let j = 4. Since we are assuming n ≥ 3 and j|2n, we have n ≥ 4. We consider two cases in turn.

Let k = 1 and

Π2 = {πi = [(2i, 0), (2i+ 1, 0), (2i+ 1, 1), (2i+ 2, 1)] | i ∈ Zn/2}.

Note that 2i and 2i+ 1 are different modulo 2 and cover all values 1 ≤ j ≤ n, so each

vertex on the outer cycle is in exactly one πk ∈ Π2. Similarly 2i + 1 and 2i + 2 are

different modulo 2 and cover all values 1 ≤ j ≤ n, so each vertex in the inner graph

is in exactly one πi ∈ Π2 as well. Since n ≥ 4, by the definition of E(P (n, 1)) and πi,

clearly G[πi] = P4 for all i ∈ Zn/2.

Let k > 1 and

Π3 = {πi = [(2i, 1), (2i, 0), (2i+ 1, 0), (2i+ 1, 1)] | i ∈ Zn/2}.

Note that 2i and 2i+ 1 are different modulo 2 and cover all values 1 ≤ j ≤ n, so each

vertex of P (n, k) is in exactly one πi ∈ Π3. Since k > 1 and n ≥ 4, by the definition of

E(P (n, k)) and πi, G[πi] = P4 for all i ∈ Zn/2.
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Conjecture 8.1. For integers n and k with n ≥ 3 and 1 ≤ k ≤ (n − 1)/2, there exists a

P6-tiling of P (n, k) if and only if 6 divides 2n and n ≥ 6.

The following proves the necessity of the conjecture, and lays out a plan for proving the

sufficiency, settling nearly all cases in the process. Subcases that are not completely proved

are indicated with a * (in fact there are only six subcases that remain to be proved).

Let n and k be integers with n ≥ 3 and 1 ≤ k ≤ (n−1)/2. Since each of the 2n vertices

in P (n, k) must appear in exactly one path in any P6-tiling Π of P (n, k), |Π| = 2n/6, so 6

must divide 2n. If n = 3, then since 1 ≤ k < n/2, we have k = 1. Note though that P (3, 1)

contains no induced subgraph isomorphic to P6 as |V (P (3, 1)| = 6; therefore n ≥ 6. Thus

the two conditions are necessary. To prove sufficiency, we consider six cases in turn. Note

since n ≥ 6 and 6|2n, we have that n ≡ 0 (mod 3).

Case 1: Suppose that k = 1 and let

Π4 = {πi = [(3i, 0), (3i+ 1, 0), (3i+ 2, 0), (3i+ 2, 1), (3i+ 3, 1), (3i+ 4, 1)] | i ∈ Zn/3}.

Note that 3i, 3i + 1, and 3i + 2 are all different modulo 3 and consist of every value

1 ≤ j ≤ n, so each vertex on the outer cycle is in exactly one πi ∈ Π4. Also, 3i + 2,

3i + 3, and 3i + 4 are all different modulo 3 and consist of every value 1 ≤ j ≤ n, so

each vertex on the inner graph is in exactly one πi ∈ Π4. Since n ≥ 6, by the definition

of E(P (n, k)) and πi, G[πi] = P6 for all i ∈ Zn/2. Therefore, Π4 is a P6-tiling of P (n, k).

Case 2: Suppose that k ≡ 1 (mod 3) and k 6= 1, then let

Π5 = {πi = [(3i, 1), (3i, 0), (3i+1, 0), (3i+1, 1), (3i+1+k, 1), (3i+1+k, 0)] | i ∈ Zn/3}.

Since k 6= 1 and n ≥ 6, G[πi] ∼= P6 for each πi ∈ Π5. Note as k ≡ 1 (mod 3), 3i,

3i+ 1, and 3i+ 1 + k are all different modulo 3 and consist of every value 1 ≤ j ≤ n.
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Therefore each vertex of P (n, k) is contained in exactly one elements of Π5. Hence, Π5

is a P6-tiling of P (n, k).

Case 3: Suppose that k = 2. We then consider three subcases in turn.

Case 3.1: Suppose that n = 6, then

D1 = {[(0, 1), (0, 0), (1, 0), (1, 1), (3, 1), (3, 0)], [(2, 0), (2, 1), (4, 1), (4, 0), (5, 0), (5, 1)]}

clearly induces a P6-tiling Π6 of P (6, 2).

Case 3.2: Suppose that n = 9, then

D2 = {[(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0)], [(6, 0), (7, 0), (7, 1), (5, 1), (3, 1), (1, 1)],

[(8, 0), (8, 1), (6, 1), (4, 1), (2, 1), (0, 1)]},

clearly induces a P6 tiling Π7 of P (9, 2).

*Case 3.3: Suppose that n ≥ 12 and recall that n ≡ 0 (mod 3), so we let n = 3x.

If x is even, then we propose that

Π8 =
⋃

i∈Zx/2

(Π6 + (6i, 0))

is a P6-tiling of P (n, 2), but this remains to be sufficiently proved.

If x is odd, we propose that

Π9 = Π7 ∪

(x−3)/2⋃
i=1

(Π6 + (6i+ 3, 0))


is a P6-tiling of P (n, 2) which also remains to be proved.
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Case 4: Suppose that k ≡ 2 (mod 3) and k 6= 2, so we let

Π10 = {πi = [(3i+ 1, 1), (3i+ 1, 0), (3i, 0), (3i, 1), (3i+ k, 1), (3i+ k, 0)] | i ∈ Zn/3}.

Since k 6= 2, for each integer 1 ≤ i ≤ n/3, πi induces a P6. As k ≡ 2 (mod 3), 3i,

3i + 1, and 3i + k are all different modulo 3 and consist of every value 1 ≤ j ≤ n, so

each vertex of P (n, k) is contained in exactly one copy of P6 induced by the elements

of Π10. Therefore, Π10 is a P6-tiling of P (n, k).

Case 5: Suppose that k = 3. We then again consider three subcases in turn.

Case 5.1: Suppose that n = 6, then

D1 = {[(1, 1), (1, 0), (0, 0), (0, 1), (3, 1), (3, 0)], [(2, 0), (2, 1), (5, 1), (5, 0), (4, 0), (4, 1)]}

clearly induces a P6-tiling Π11 of P (6, 3).

Case 5.2: Suppose that n = 9, then

D2 = {[(1, 1), (1, 0), (0, 0), (0, 1), (3, 1), (3, 0)], [(2, 0), (2, 1), (5, 1), (5, 0), (6, 0), (6, 1)],

[(4, 0), (4, 1), (7, 1), (7, 0), (8, 0), (8, 1)]}

clearly induces a P6-tiling Π12 of P (9, 3).

*Case 5.3: Suppose that n ≥ 9. We again then let n = 3x.

If x is even, we propose that

Π13 =

(x/2)−1⋃
i=1

(Π12 + (6i, 0))

is a P6-tiling of P (n, 3), which remains to be proved.
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If x is odd, we propose that

Π14 = Π12 ∪ (

(x−3)/2⋃
i=1

(Π11 + (6i+ 3, 0)))

is a P6-tiling of P (n, 3), which remains to be proved.

Case 6: Suppose that k ≡ 0 (mod 3) and k 6= 3. We focus on the cycles formed in the inner

graph. Note by a simple number theory argument, the inner graph will have gcd(n, k)

disjoint cycles, each of length l(I(n, k)) = n/ gcd(n, k). Therefore we consider the

following subcases to complete this result.

*Case 6.1 Suppose that l(I(n, k)) ≡ 0 (mod 2).

*Case 6.2 Suppose that l(I(n, k)) = 3.

*Case 6.3 Suppose that l(I(n, k)) ≡ 1 (mod 2), l(I(n, k)) 6= 3 and gcd(n, k) = 3.

*Case 6.4 Suppose that l(I(n, k)) ≡ 1 (mod 2), l(I(n, k)) 6= 3 and gcd(n, k) > 3.

We have tiling schemes formed for Case 6, but simply lack the means to describe them

using the current methods and require new visualization techniques. Therefore the proof of

six subcases (Cases 3.3, 5.3, and 6.1–6.4) remain to complete the proof of this result. As

tiling P (n, k) with P6 is nearly complete, we have also begun work on tiling P (n, k) with P8,

breaking the proof down in a similar way, based on the modular value of k. We have thus

resolved tiling the generalized Petersen graph with paths on j vertices for j ∈ {2, 4} and will

soon complete the result for j ∈ {6, 8} as well.
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Chapter 9

Final Comments

As can be seen from Chapters 3 through 6, extensive work has been completed in regards

to equitable block-colorings of C4-decompositions ofKv−F and edge-coloring ofKv. A means

of studying the structure within such colorings has been thoroughly developed, resolving

many extremes in various regards. Further areas of interest which will next be explored in

this field have also been presented in Chapter 7. As can be seen from Chapter 8, work with

tiling P (n, k) with Pj has just begun, with significant results already found and plans for

future work.
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