A Parallel Implementation of Fault Simulation on a Cluster of
Workstations
Except where reference is made to the work of others, the work described in this thesis
is my own or was done in collaboration with my advisory committee. This thesis does
not include proprietary or classified information.
Kyunghwan Han
Certificate of Approval:
Fa Foster Dai
Associate Professor
Electrical and Computer Engineering
Soo-Young Lee, Chair
Professor
Electrical and Computer Engineering
Chwan-Hwa John Wu
Professor
Electrical and Computer Engineering
Stephen L. McFarland
Acting Dean
Graduate School
A Parallel Implementation of Fault Simulation on a Cluster of
Workstations
Kyunghwan Han
A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of
Master of Science
Auburn, Alabama
December 15, 2006
A Parallel Implementation of Fault Simulation on a Cluster of
Workstations
Kyunghwan Han
Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at their expense.
The author reserves all publication rights.
Signature of Author
Date of Graduation
iii
Thesis Abstract
A Parallel Implementation of Fault Simulation on a Cluster of
Workstations
Kyunghwan Han
Master of Science, December 15, 2006
(B.S., Sungkyunkwan University, 2003)
81 Typed Pages
Directed by Soo-Young Lee
Parallel simulation on a cluster workstations is one method by which fault simu-
lation time for large circuits can be reduced significantly. To get near-linear speedups
from parallel processing, parallelization methods should result in an even computational
load distribution among processors in a cluster workstations. Fault simulation can be
parallelized by partitioning fault list, the test vector or both. In the thesis, parallel
fault simulation algorithm called PAUSIM has been developed. This algorithm consists
of logic simulation and two steps of fault simulation for sequential logic circuits. Com-
pared to the other algorithms, PAUSIM-CY avoids redundant work by a judicious task
decomposition. Also, it adopts a cyclic fault partitioning method based on the LOG
partitioning and local redistribution, resulting in a well-balanced load distribution. The
parallel implementations were done using the MPI library on a cluster of workstations.
The results show a significant speed-up by PAUSIM-CY over other existing parallel
algorithms.
iv
Style manual or journal used Journal of Approximation Theory (together with the
style known as ?aums?). Bibliograpy follows van Leunen?s A Handbook for Scholars.
Computer software used The document preparation package TEX (specifically
LATEX) together with the departmental style-file aums.sty.
v
Table of Contents
List of Figures viii
List of Tables xi
1 Introduction 1
1.1 Background . 1
1.2 Review of Previous Work . 3
1.3 Problem Definition . 4
1.4 Objective . 4
2 Circuit Testing 5
2.1 Fault Modeling . 5
2.2 Test Pattern Environment . 9
2.3 Sequential Methods . 10
2.3.1 Word-parallel Fault Simulation . 11
2.3.2 Deductive Fault Simulation . 12
2.3.3 Concurrent Fault Simulation . 13
2.3.4 Differential Fault Simulation . 15
2.3.5 PROOFS . 17
2.3.6 HOPE . 20
2.3.7 PARIS and PSF . 21
2.4 Parallel Methods . 21
2.4.1 Circuit Parallelism . 22
2.4.2 Algorithmic Parallelism . 22
2.4.3 Fault Parallelism . 23
2.4.4 Pattern Parallelism . 25
2.4.5 Fault and Pattern Parallelism . 26
2.5 AUSIM . 28
2.5.1 Program Configuration . 28
2.5.2 Algorithm Analysis . 29
3 Parallelization 34
3.1 PAUSIM-BL . 34
3.1.1 Task Decomposition . 34
3.1.2 Fault Partitioning . 36
3.1.3 Test Vector Partitioning . 36
3.1.4 Procedure . 37
vi
3.2 PAUSIM-CY . 41
3.2.1 Load Balancing . 41
3.2.2 Procedures . 41
3.3 Implementation . 43
4 Performance 47
4.1 Experimental Environment . 47
4.2 Results . 48
5 Conclusion 67
Bibliography 68
vii
List of Figures
1.1 Typical fault simulator. 2
2.1 Definition of fan-out stem. 5
2.2 Definition of fault. 6
2.3 An Example of a single stuck-at fault. 7
2.4 An example of an level order. 8
2.5 An example of an output cone. 9
2.6 An example of parallel fault simulation. 12
2.7 An example of deductive fault simulation. 13
2.8 Fault-lists in concurrent fault simulation. 14
2.9 An example of differential fault simulation 16
2.10 PROOFS algorithm. 18
2.11 An example of PROOFS fault simulation. 19
2.12 Test sequence partitioning in SPITFIRE-0 25
2.13 Partitioning in SPITFIRE-1 . 26
2.14 Partitioning in SPITFIRE-2 . 28
2.15 Sequential structure of AUSIM . 30
2.16 Data Structure of AUSIM . 31
2.17 An example of gate evaluation of AUSIM. 32
3.1 Task decomposition in PAUSIM-BL . 35
viii
3.2 Fault partitioning in PAUSIM-BL for 4 processors where each fault group
is distinguished by a different grey-scale 37
3.3 Test vector set partitioning . 38
3.4 Flowchart of the master processor in PAUSIM-BL 39
3.5 Flowchart of slave processors in PAUSIM-BL 40
3.6 Example of fault partitioning for s27 benchmark circuit for 5 processors . 42
3.7 Task decomposition in PAUSIM-CY1 . 43
3.8 Communication among 4 processors in logic simulation in PAUSIM-CY1.
V: Test vector, O: Logic simulation result 45
3.9 Communication among 4 processors in the first step of fault simulation in
PAUSIM-CY1. F: Fault, U: Undetected fault, D: Undetected fault 45
3.10 Communication among 4 processors in the second step of fault simulation
in PAUSIM-CY1 . 46
4.1 Execution time for 4 processors - small circuit 50
4.2 Execution time for 4 processors - large circuit 50
4.3 Execution time for 8 processors - small circuit 51
4.4 Execution time for 8 processors - large circuit 51
4.5 Execution time for 16 processors - small circuit 52
4.6 Execution time for 16 processors - large circuit 52
4.7 Execution times for PAUSIM-SF . 54
4.8 Execution times for PAUSIM-BL . 54
4.9 Execution times for PAUSIM-CY0 . 55
4.10 Execution times for PAUSIM-CY1 . 55
4.11 Speedup for PAUSIM-SF . 56
ix
4.12 Speedup for PAUSIM-BL . 56
4.13 Speedup for PAUSIM-CY0 . 57
4.14 Speedup for PAUSIM-CY1 . 57
4.15 Efficiency for PAUSIM-SF . 58
4.16 Efficiency for PAUSIM-BL . 58
4.17 Efficiency for PAUSIM-CY0 . 59
4.18 Efficiency for PAUSIM-CY1 . 59
4.19 Workload distribution: s3271 benchmark circuit, PAUSIM-SF 63
4.20 Workload distribution: s3271 benchmark circuit, PAUSIM-BL 63
4.21 Workload distribution: s3271 benchmark circuit, PAUSIM-CY0 64
4.22 Workload distribution: s3271 benchmark circuit, PAUSIM-CY1 64
4.23 Workload distribution: s3271 benchmark circuit, PAUSIM-SF 65
4.24 Workload distribution: s3271 benchmark circuit, PAUSIM-BL 65
4.25 Workload distribution: s3271 benchmark circuit, PAUSIM-CY0 66
4.26 Workload distribution: s3271 benchmark circuit, PAUSIM-CY1 66
x
List of Tables
4.1 Fault coverage statistics using 1600 random vectors on a single processor . 47
4.2 Execution time (seconds) and speedups using 1600 random vectors on
multiprocessor . 48
4.3 Mean and standard deviation execution times on eight processors for
PAUSIM-SF, PAUSIM-BL, PAUSIM-CY0 and PAUSIM-CY1. The unit
for time is second. s1196, s1423 and s1512 61
4.4 Mean and standard deviation execution times on eight processors for
PAUSIM-SF, PAUSIM-BL, PAUSIM-CY0 and PAUSIM-CY1. The unit
for time is second. s3271 and s5378 . 62
xi
Chapter 1
Introduction
Once a digital circuit is designed and fabricated, the circuit needs to be tested for
the potential presence of physical defects or faults. The objective of a fault simulation
algorithm is to find the fraction of total faults (also referred to as the fault coverage)
that are detected by a given set of input vectors. Especially, fault simulation is essential
to designing a high fault coverage Built-in Self Test (BIST) becoming popular for VLSI
testing.
1.1 Background
In the simplest form of testing, a fault is injected into a logic circuit by setting a line
or a gate to a faulty value (1 or 0), and then the effects of the fault are simulated using
zero-delay logic simulation. Most fault simulation algorithms are typically of O(n2) time
complexity, where n is the number of lines in the circuit. Studies have shown that there
is little hope of finding a linear time fault simulation algorithm [3].
Figure 1.1 shows a typical fault simulator [1]. The block C() is the fault-free circuit
and blocks C(f1) through C(fn) are copies of the same circuit with faults f1 through
fn permanently inserted. The good circuit (fault-free circuit) and the faulty circuits are
simulated for each test vector. If the output responses of a faulty circuit differ from
those of the good circuit, then the corresponding fault is detected, and the fault can
be dropped from the fault list, speeding up simulation of subsequent test vectors. A
fault simulator can be run in a stand-alone mode to grade a given set of test vectors,
1
Test
vectors
C ()
C (f1) C (f2) C (fn)
Comparator
?
Comparator Comparator
Figure 1.1: Typical fault simulator.
or interfaced with a test vector generator to reduce the number of faults that must be
explicitly targeted by the test vector generator. In a random vector environment, the
fault simulator helps in evaluating the fault coverage of a set of random vectors. In either
environment, fault simulation can consume a significant amount of time, especially in
random vector testing in which millions of vectors may have to be simulated. While
many methods have been suggested for efficient fault simulation to evaluate the fault
coverage of an enormous amount of test patterns, parallel processing can be utilized to
reduce the fault simulation time greatly.
2
1.2 Review of Previous Work
To parallelize simulation, one may exploit circuit parallelism, algorithm parallelism,
data parallelism, or a combination of them.
In a circuit-parallel approach [19], a circuit is partitioned into several parts. Each
part is assigned to a processor. When a processor needs the information on a circuit
node or line that is not in its own part, it must communicate with the processor that
has the information. Hence, a large amount of communication is required. Circuit
parallelism has the advantage that each processor needs to store the circuit description
and temporary structures only for a fraction of the circuit, hence requiring a smaller
space of memory.
In an algorithm-parallel approach [24][25], the simulation is carried out in a pipeline
mode. That is, all gates at each logic level form a stage of a pipeline. A processor
is assigned to each stage. The different test vectors are then pipelined through the
logic circuit. In the case of a sequential circuit, since test vectors have to be applied
in sequence, it is not possible to exploit pattern-parallel approach. Also, due to the
presence of feedback paths through memory elements like flip-flops, speedups may be
severely limited.
In a data-parallel approach [17][26][29], the simulation data are partitioned into
disjoint sets and each set assigned to a processor. Each processor executes the entire
algorithm and simulates the entire circuit. Fault parallelism is relatively simple to ex-
ploit. The fault list is partitioned among processors, and each processor performs fault
simulation on the entire circuit for its own fault list with the complete set of test vectors.
It is possible to obtain an almost linear speedup. The problem is that for each partition
3
of faults. Depending on the partitioning of the faults, the faults of each partition for a
test vector may not be uniform across all partitions. In pattern parallelism, the given
input test vectors are decomposed into subsets. Each processor gets a copy of the entire
circuit, the fault set and a subset of the test vectors. Each processor performs fault sim-
ulation with its subset of test vectors. For sequential circuits, the future behavior of the
circuit depends on the past input vectors, thus, limiting applicability of this approach.
1.3 Problem Definition
Parallel computing is becoming an increasingly cost-effective and affordable means
for providing high computing power and represents a challenge to costly conventional
supercomputers. For example, a cluster of workstations (COWs) can be easily configured
as a high performance computing platform. Therefore, it is worthwhile to investigate
efficient ways to utilize a COWs for time-consuming circuit testing.
1.4 Objective
The objective of this study is to develop parallel fault simulation algorithms that
can be efficiently executed on a COWs in order to maximize speedup. This is achieved
by judiciously partitioning the fault and test vector spaces, minimizing redundant com-
putation and better balancing the load distribution among workstations (processors).
4
Chapter 2
Circuit Testing
In this chapter, the general issues of VLSI testing are briefly described, introducing
the important concepts and terms.
2.1 Fault Modeling
Fan-out stem : A signal that branches to multiple places, each of which is called
a fan-out branch. The source of those branches is called stem or fan-in.
branch
a
b1 b2 b3 b4 b5
stem
Figure 2.1: Definition of fan-out stem.
Fault: A defect in electronic system is the unintended difference between the im-
plemented hardware and its intended design. A representation of a defect at the abstract
5
function level is called a fault. That is, a defect and a fault are the imperfections at the
hardware and function levels, respectively.
a b
c
Figure 2.2: Definition of fault.
A simple digital system in Figure 2.2 consists of an AND gate, two input terminals,
a and b, and an output terminal c. But, the connection between b and the gate is left
unconnected and the second input of the gate is grounded. The functional output of this
system, as implemented, is c = 0, instead of the correct intended output c = ab. For
this system, the defect is a short to ground, and the fault is single b stuck at logic 0.
Stuck-at Fault: The type of fault described above is modeled by assigning a fixed
(0 or 1) value to a signal line in the circuit. A signal line is an input or an output of a
logic gate or a flip-flop. The most popular forms are the single stuck-at faults, i.e., two
faults per line, stuck-at-1 (s-a-1 or sa1) and stuck-at-0 (s-a-0 or sa0).
Figure 2.3 illustrates a single stuck-at fault [1]. A stuck-at-1 fault as marked at the
output of the OR gate means that the faulty signal remains 1 irrespective of the input
state of the OR gate. It shows that the normal (faulty) value at the output is applied to
the AND2 gate as 0 (1). When the input vector (1100) is applied as a test vector for the
s-a-1 fault, it is easy to see that the normal and faulty outputs are different. The circuit
6
AND1
OR
1
stuck-a-
1
AND2
Test vector
1 1 0 0
0(1)
0(1)
True Re
sponse
Faulty Res
p
onse
Figure 2.3: An Example of a single stuck-at fault.
in Figure 2.3 has seven lines, each of which is the potential site for a single stuck-at fault.
Hence, the number of possible faults is 14.
Level and Output Cone of Circuit: Each gate in a circuit can be assigned a
level, which represents the maximum distance (in gates) from a primary input (PI) to
the gate. In Figure 2.4, the levels of gates are shown in circles. A level i gate is one for
which at least one of its inputs is from a level i-1 gate. For example, PIs G0, G1, and
G2 have the distance of 0 and therefore are assigned a level of 0. Accordingly, the top
two inputs of gate G5, the top input of gate G6, and the inputs to inverters G3 and G8
are labelled with a level of 0. When all of the inputs of a gate are labelled, the gate and
its outputs are labelled with the maximum of its input levels plus 1. That is, the gates
7
G3 and G8 are given a level of 1. Then, G4 is labeled with a level of 2, G5 and G6 with
a level of 3. Finally, G7 is assigned a level of 4.
G0
G4
G3 G8
G6
G2
G7
G1
G5
1 1
2
3 3
4
Figure 2.4: An example of an level order.
Each gate can be assigned a level by parsing the circuit once from the PI?s to the
primary outputs (PO?s). A path is an alternating sequence of wires and gates. Signals
are propagated from the inputs of a circuit to the outputs along one or more paths. A
gate g is in the output cone OC(Oi) of a circuit PO Oi if there is a path from the output
of g to the PO Oi. More formally, a gate g is in the output cone OC(Oi) of the PO Oi
if its output is the PO Oi or at least one of the gates on the fan-out of g is in OC(Oi).
Figure 2.5 shows the output cone of an output Oi [33]. The faults from the two gates,
G1 and G2, are propagated on the same path to the output. The cone to which a gate in
a circuit belongs is determined by a simple depth-first search from each PO. Both level
8
G2
G3
G1
Output Cone
O
i
O
j
G4
Figure 2.5: An example of an output cone.
and cone identifications can be carried out in time proportional to the number of gates
in the circuit.
2.2 Test Pattern Environment
Fault simulation algorithms may be used in two different environments. One is
a deterministic test generation environment and the other is a random pattern test
generation environment. In the former, a specific algorithm named Automatic Test-
Pattern Generation (ATPG) is used to generate a test vector for every fault in a circuit.
The ATPG selects a fault from the fault list and tries to generate a test vector for the
fault. If the ATPG is successful in generating a test vector, fault simulation is carried
9
out on the entire fault list and the fault simulator finds out the additional faults that are
detectable by the same test vector. But, the ATPG is an NP-complete problem and can
be computationally very expensive. In fact, in some complex circuits, the use of such
algorithms is no longer feasible or practical.
In the latter, a fault simulator determines if test vectors lead to the detection of a
target fault and evaluates the fault coverage of a set of random test vectors. The random
pattern environment uses a relatively inexpensive pseudo-random test pattern generator
to generate test vectors. The fault simulator randomly selects test vectors, runs fault
simulation and determines which faults are detected. Since the random pattern testing
may have to be simulated for a large number of vectors, fault simulation can be very time-
consuming. Thus, parallel processing can be employed to reduce the fault simulation time
significantly.
2.3 Sequential Methods
The task of fault simulation is to determine for each fault in a given list whether
the simulation of the faulty and fault-free circuits differ in any primary output. While
a fault simulator can be built in a straightforward manner from any logic simulator, the
resulting performance would be low due to significant duplicated computation. As a
result, various techniques to reduce duplicated computation have been developed. These
approaches may be classified by the manner in which they compute and store the good
and faulty circuit states. The most popular approaches are word-parallel, deductive,
concurrent, differential, and proofs fault simulation algorithms. In this section, these
and other single processor simulation algorithms are reviewed.
10
2.3.1 Word-parallel Fault Simulation
Several algorithms have been proposed for sequential circuit fault simulation, most
of which are targeted at single stuck-at faults in synchronous sequential circuits. Three-
valued (0, 1, X) simulation is generally carried out, and no reset is assumed. Word-
parallel simulation [4] utilizes bit-oriented logic operations to perform many of gate
evaluations simultaneously. If one word consists of 32 bits on a computer, 32 gate
evaluations can be performed at a time, where one bit is used for good circuit. The word-
parallel simulation can be either fault-parallel or pattern-parallel. The former simulates
the good circuit and 31 fault classes with one input vector at a time by assigning a
bit to each fault case. The latter simulates 32 input patterns for one fault at a time by
assigning a bit to each test vector case. In the word-parallel fault simulation [4], 31 faulty
circuits are simulated in parallel with the good circuit. Faults are packed statically into
fault groups, and all test vectors are applied to the circuit for a given fault group. Then,
the process is repeated for each group of 31 faults. Fault detection is done by comparing
the good and faulty circuit values of the primary outputs. Fault dropping is not possible
in this algorithm; therefore, the bit space for a faulty circuit is wasted once the fault is
detected.
Figure 2.6 shows a circuit that is being simulated for three faults, c stuck-at-0, f
stuck-at-1 and g stuck-at-0, with a four-bit word. To simulate the fault-free and three
faulty circuits in parallel, the signal on each line is expressed as one word. The state of
each bit represents the signal value in the fault-free and faulty circuits. When a vector
(a, b) = (1, 1) is applied, the output of the circuit with c s-a-0 (the second bit) and g
s-a-0 (the fourth bit) differs from that of the fault-free circuit (the first bit). Hence, those
11
bit 0: Fault-free circuit bit 1: Circuit with c s-a-0 bit 2: Circ
uit with f s
-
a-1
bit 3: Circuit w
i
th g s-a-0
a b
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
00
00
1
0
1
0
0
0
1
0
d
c
e
f
g
s-a-0
s-a-1
s-a-0
Figure 2.6: An example of parallel fault simulation.
faults are detected. The other fault (the third bit), which produces the same output as
that by the fault-free circuit, is not detected by this vector.
2.3.2 Deductive Fault Simulation
In deductive fault simulation [5], an event-driven algorithm is used, and processing
an event involves simulating the good circuit and propagating lists of active faults for a
given test vector. Every node in the circuit may have a large list of active faulty circuits
associated with it, and fault propagation is done using set operations on the lists of
active faulty circuits at the inputs of a gate. However, since an event-driven algorithm
12
is used, fault propagation is done only if one of the active fault lists at the inputs of a
gate has changed since the previous time frame.
a b
c
d
e
f
g
1 1
0
1
1
[
b
0
,
d
0
,
f
1
]
L
e
=
L
a
U
L
c
U
e
0
= [
a
0
,
b
0
,
c
0
,
e
0
]
L
g
= (
L
e
L
f
) U
g
0
= [
a
0
,
c
0
,
e
0
,
g
0
]
U
[
a
0
]
[b
0
][
b
0
,
c
0
]
[
b
0
,
d
0
]
Figure 2.7: An example of deductive fault simulation.
An example of deductive fault simulation is shown in Figure 2.7 [1]. The vector (1,
1) is applied to the circuit. First, logic simulation is carried out to determine all signal
values. Next, the s-a-0 and s-a-1 faults on all lines a through g are simulated. The lists
of primary inputs just contain the respective s-a-0 faults that are active at the inputs.
Their fault lists are denoted as sets, La = [a0] and Lb = [b0]. Fault lists for fan-outs c and
d are obtained by adding their locally active faults to the fault list Lb of the stem. The
fault lists for e, f and g are obtained by fault propagation. When the fault propagation
is completed, four faults a s-a-0, c s-a-0, e s-a-0, and g s-a-0 are detected by the input
vector (1, 1).
2.3.3 Concurrent Fault Simulation
Concurrent fault simulation [6][7] is similar to the deductive fault simulation, but
fault lists are propagated by evaluating individual gates, and only active faulty circuits
13
are simulated, which reduces the execution time. Timing information can easily be
incorporated, and function-level modules can be handled. However, more memory is
required to store the fault lists. Fault dropping is straightforward in both deductive and
concurrent fault simulations. The performance of a concurrent fault simulator can be
improved if it is restricted to synchronous sequential circuits [8]. Further improvements
in performance have been achieved with a parallel concurrent approach [9].
1 0
a b
c
d
e
f
g
1 1
0
1
1
1 1
1
1 0
1
0 1
0
1 0
0
1 0
0
1 1
0
a
0
b
0
c
0
e
0
0
1
0
1
1
1
b
0
d
0
f
1
0 0
0
1 1
1
1 0
0
0 0
0
0 1
1
0 0
0
1 1
1
a
0
b
0
c
0
d
0
g
0
e
0
f
1
Figure 2.8: Fault-lists in concurrent fault simulation.
Figure 2.8 shows that all stuck-at faults are concurrently simulated for an input
vector (1, 1) [1]. The subscript notation is used for faults. Thus, fault b0 means b s-a-0
fault. Faults are modeled on all gate inputs, primary inputs a and b, and primary output
g. To each good gate, a set of bad gates in grey shade with the corresponding fault name
is attached in a linked-list structure. Signal values at the input and output of each gate
are written inside the gate. At the primary output g, any bad gate whose output differs
14
from that of the good gate indicates fault detection. Thus, faults a0, c0, e0, and g0 are
detected by the test vector (1, 1). In the deductive simulator the fault list is for a signal
and contains only the faults that affect that signal. In the concurrent simulator, the
fault lists are for a gate and faults that affect the inputs of that gate are included in the
list. Fault lists in a concurrent simulator are, therefore, comparatively longer.
2.3.4 Differential Fault Simulation
Differential fault simulation algorithm was proposed for synchronous sequential cir-
cuits [10], where only differences between the current and previous faulty circuits are
simulated. The memory requirement is low, since only a single copy of node values and
differences between the succesive faulty circuits in the flip-flops are stored. Fault drop-
ping is more difficult, however, since simulation of each faulty circuit depends on the
previous faulty circuit.
15
1 1
0
1
1
sa1 (2)
sa0 (1)
X
X
0
CK
Curr
ent fa
ult l
i
st:
[e
mpty
]
Nex
t
 fault list:
[e
mpty
]
(a) First vector (1, 1)
1 0
1
0
1
sa1 (2)
sa0 (1)
1
0
D(1)
1
D (1)
CK
Curr
ent fa
ult l
i
st:
[e
mpty
]
Nex
t
 fault list: [D(1
)]
D (2)
D (2)
(b) Second vector (1, 0)
0 1
0
0
0
sa1 (2)
sa0 (1)
1
0
0
CK
Curr
ent fa
ult l
i
st:
[D(1
)]
Nex
t
 fault list:
[e
mpty
]
fault (1) dete
cted
D (1)
(c) Third vector (0, 1)
Figure 2.9: An example of differential fault simulation
16
Figure 2.9 shows the simulation of two faults (1) and (2) [1]. The vector set contains
three vectors, the first of which is simulated in Figure 2.9(a). The initial state of the
flip-flop is assumed to be unknown and is denoted as X. After simulating the second
vector (1, 0) in Figure 2.9(b), both faults are activated. The effects of fault (1) are
denoted as D(1) and that of fault (2) as D(2). Only D(1) reaches the flip-flop input and
is added to the next fault list. Note that no fault has been detected so far. Figure 2.9(c)
shows the simulation of the third vector (0, 1). The current fault list is updated with
D(1), which propagates to the primary output. Thus, fault (1) is now detected and can
be dropped. Subsequent vectors will only simulate fault (2) until that is detected.
2.3.5 PROOFS
The PROOFS fault simulator combines the features of word-parallel, concurrent,
and differential fault simulation algorithms. For each test vector, the good circuit is
first simulated, and then only the differences between the good and faulty circuits are
simulated. Several faulty circuits are simulated together, with one bit of the computer
word used for each faulty circuit, and faults are grouped dynamically with each test
vector simulated, in order to fully utilize all bits in the computer word. To limit the
memory usage, faulty circuit values are stored at the flip-flops only. Faults are dropped
from the fault list once they are detected, and faults that are identified as inactive in a
given time frame are not simulated.
The overall algorithm of PROOFS [2] is shown in Figure 2.10. It consists of a main
loop which reads in the next input vector, evaluates a logic circuit, and then simulates
the faulty circuit for each fault group. To simulate a fault group, the group-id is first
17
Clear Circuit
R
e
ad next ve
ctor
L
o
gi
c simul
a
ti
on
Increme
n
t
gr
ou
p-id
Yes
N
o
Fau
l
t
s
left for this
Vector?
Choose next
gr
oup of faults
Inject faults
Add f
a
ulty
state-node event
s
Simulate
faulty circuit
Dr
op dete
cted
fault
s
Store f
a
ulty
State-nodes
mo
re
ve
ctors ?
Yes
END
No
Figure 2.10: PROOFS algorithm.
incremented to identify each fault group. Next, the 32 faulty circuits to be included in
the fault group are selected. The faults are then injected into the circuit and the node
values for the state-nodes from the previous input vector are inserted into the faulty line
values. The faulty circuits in this fault group are simulated, and the state-node values
are stored for the next vector.
18
a
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
1
0
1
0
0
1
1
1
b c
d e
f
g
1
1
1
1
1
1
1
0
1
1
0
0
0
0
011
0
1
000
0
011
0
1
1
1
1
1
0
1
0
0
1
0
0
0
0
1
1
1
1
0
1
1
0
1
0
1
1
0
1
1
1
1
1
1
1
0
1
1
111
1
101
1
1
111
1
101
1
1
h k
m
n
p q
r
a sa0 b sa0 c sa0
n sa0
group-id
(a)
a
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
0
0
1
1
1
b c
d e
f
g
1
1
1
1
1
0
0
0
1
2
0
0
0
0
100
0
2
000
0
110
0
2
1
1
1
1
0
0
0
0
2
0
0
0
0
1
1
1
1
1
1
1
1
2
1
0
0
0
2
1
1
1
1
1
1
0
1
1
111
1
101
1
1
111
1
101
1
1
h k
m
n
p q
r
g sa1
k sa1
p sa0
r sa
0
(b)
Figure 2.11: An example of PROOFS fault simulation.
19
Figures 2.11(a) and 2.11(b) show a simple example in which the PROOFS fault
simulator is performed for each fault group. An input vector (1, 1, 1) is applied and the
word length of four bits is assumed. The fault list groups a s-a-0, b s-a-0, c s-a-0, and n
s-a-0 are simulated as shown in Figure 2.11(a). All the propagation lines of these faults
have group-id of 1. After the first group is done, the following group g s-a-1, k s-a-1, p
s-a-0, and r s-a-0 are simulated as shown in Figure 2.11(b). The lines of circuit affected
by the second fault group are updated to a group-id of 2. As shown in Figure 2.11(b),
three faults are detected in group 1 and four faults in group 2. These detected faults are
dropped, and not simulated by the next test vector to avoid redundant simulation.
2.3.6 HOPE
HOPE is a PROOFS-based fault simulation [11]. It screens out faults with short
propagation paths through the single fault propagation. A systematic method of identi-
fying faults with short propagation paths reduces the number of faults simulated.
A significant speedup was achieved by finding representative stem faults for faults
in fan-out-free regions [11]; only the representative stem faults are placed into the fault
groups and simulated in word-parallel for faults whose effects do not propagate to flip-
flops in the previous time frame. Single fault propagation is used to determine whether
a fault in a fan-out-free region is active at the stem. Additional improvements in per-
formance were obtained by modifying the fault injection procedure, statically ordering
faults by fan-out-free region, and dynamically ordering faults to place potentially de-
tected faults in separate fault groups [12]. The resulting fault simulator, HOPE, is about
twice as fast as PROOFS, which is partially due to the improvements in implementation.
20
2.3.7 PARIS and PSF
The parallel-pattern single-fault propagation algorithm [13] for combinational cir-
cuits has been extended to synchronous sequential circuits in the fault simulators PARIS
(PARallel Iterative Simulator) [14] and PSF (Parallel Sequence Fault simulation) [15].
For each group of 32 test vectors, the good circuit is simulated, followed by simulation of
a single fault for all 32 vectors. Several iterations may be required before circuit values
stabilize, due to the sequential nature of the circuits. Heuristics are used to minimize
the number of iterations performed. Minor differences between PARIS [14] and PSF [15]
exist. PARIS packs 32 consecutive vectors in each 32-bit computer word. PSF divides
the test sequence into 32 equal subsequences and packs the nth vector of each subse-
quence in a single 32-bit word, where n ranges from one to the number of vectors in
a subsequence. Both PARIS and PSF simulate one fault at a time, but the number of
iterations required to stabilize the circuit state differs between them considerably.
The various existing approaches to sequential fault simulation were reviewed. Fur-
ther improvements to these sequential algorithms have been made in the parallel algo-
rithms using a cluster of workstations.
2.4 Parallel Methods
A number of approaches have been proposed for parallelization of fault simulation
for both combinational and sequential circuits [18].
21
2.4.1 Circuit Parallelism
The main alternative to fault partitioning is circuit partitioning, in which the cir-
cuit being simulated is partitioned among available processors. Circuit-partitioned fault
simulation is effectively a variant of parallel logic simulation [19].
Fault simulation based on circuit partitioning has been reported by Mueller-Thuns
et al. [20] and Nelson [21] for vector-synchronous implementations on message passing
machines. Ghosh [22] presents an implementation based on asynchronous logic simula-
tion techniques that, while novel, falls short of achieving high efficiency. In [23], Patil et
al. present a circuit-partitioned approach applicable to shared memory machines, that
incorporates techniques from parallel logic simulation. A circuit is partitioned among
the processors. Since the circuit is evaluated level-by-level with barrier synchronization
at each level, the gates at each level are evenly distributed among the processors to bal-
ance the workloads. On the encore Multimax shared-memory multiprocessor system, an
average speedup of 2.16 was obtained for 8 processors, and the speedup for the ISCAS89
circuit s5378 was 3.29.
2.4.2 Algorithmic Parallelism
Algorithm partitioning was proposed for concurrent fault simulation in [24][25]. A
pipelined algorithm was developed, and specific functions were assigned to each proces-
sor. On a Sun Sparc 2 workstation with a MIPS (Million Instruction Per Second) rating
of 28.5 million, an estimated speedup of 4 to 5 was reported for 14 processors, based
on software emulation of a message-passing multi-computer [25]. The limitation of this
approach is that it cannot take advantage of a larger number of processors.
22
2.4.3 Fault Parallelism
Fault partitioning is a simpler method for parallelizing fault simulation than other
methods. In static fault partitioning, we have T test vectors that need to be simulated
against F faults. A fault list is divided among available processors. Each processor
simulated all faults in its partition independently. A fault parallel implementation has
a good potential to achieve high speedup. However, the fault activity of each partition
for a particular input vector may not be uniform across all partitions because the fault
activity depends on the partitioning of the faults. Thus, this static partitioning has
generally been considered ineffective in achieving high speedup especially for a large
number of processors.
Several implementations based on dynamic fault partitioning have been attempted
to even out the workloads of the processors at the expense of extra interprocess commu-
nication [17][26]. In [26], ProperPROOFS fault simulator use both static and dynamic
partitioning model in which static partitioning is performed by dividing the fault list
by the number of available processors at the start of processing and asynchronous fault
redistribution follows. When a processor completes simulation of its existing fault list, it
sends a request to another processor selected at random for more faults to be simulated.
The processor receiving a request splits its fault list to share with the requesting proces-
sor, or forwards the request to another processor at random if it has an empty fault list.
When all faults are simulated, each processor terminates simulation independently. In
[17][26], speedup in the range 2.4 - 3.8 was obtained for static fault partitioning over 8
processors for the larger ISCAS89 circuits having reasonably high fault coverage (s5378
23
and s35932) on an INTEL iPSC/860 hypercube. Duba et al. [27] report a parallel im-
plementation of CHIEFS for which speedup between five to six on a network of 8 Sun
3/280 file server workstations connected by a 10 Mb/s ethernet was achieved. Markas
et al. [28] report a distributed algorithm for which speedups ranged from two to six
on eight workstations in a heterogeneous cluster consisting of a Sun-3/160, Sun-3/60, a
cluster of VAX 2000, and a cluster of VAX II/GPX. The performance of dynamic fault
partitioning was not much better than the static fault partitioning due to the overheads
of dynamic load balancing.
There is another drawback to both static and dynamic fault partitioning approaches
in which the shortest execution time will be bounded by the time to perform the good
circuit logic simulation (or simply logic simulation) on a single processor. Each processor
must simulate the good circuit and the faulty circuit in its partition. Logic simulation
on more than one processor is obviously redundant. Alternatively, if a shard-memory
multiprocessor is used, the good circuit may be simulated by one processor only, but the
remaining processors will be idle during the simulation, at least for the first time frame.
One observation that can be made about the fault partitioning experiments is that a
higher speedup is obtained for circuits having lower fault coverage [17][26]. The potential
speedup drops as the number of faults simulated drops. This is a reason for higher speed-
up unless the hard-to-detect faults are mostly assigned to a single or few processors.
The logic simulation is not parallelized in the fault partitioning approach, and therefore,
speedup is limited. Parallelizing logic simulation based on partitioning the circuit has
been suggested, but has not been successful due to the high level of communication
required between processors.
24
2.4.4 Pattern Parallelism
For parallelizing logic simulation, some test vector partitioning approaches were
performed. The test vector partitioning provides a more scalable implementation, since
the logic simulation is also distributed over processors. In SPITFIRE-0 [29], the test
vectors are partitioned across the processors. This algorithm is presented as a base
of reference for the various test vector partitioning approaches to be described later.
As shown in Figure 2.12, the entire fault list is allocated on each processor. Thus,
each processor targets the entire list of faults using a subset of the test vectors. Each
processor proceeds independently and drops the faults that it can detect. This algorithm
is somewhat inefficient in that many faults are very testable and are detected by most, if
not all, of the subset of test vectors. Simulating these faults on all processors is a waste
of time.
Vec0
Vec1
Vec2
Vec3
Flt0 Flt1 Flt2 Flt3
P2
P3
P1
P0
Figure 2.12: Test sequence partitioning in SPITFIRE-0
25
2.4.5 Fault and Pattern Parallelism
Some methods to combine fault and pattern parallelism were developed. SPITFIRE-
1 [29], the synchronous two step algorithm, can filter out the easy-to-detect faults in
an initial step in which both the fault set and the test set are partitioned among the
processors. In the first step, each processor targets a subset of the faults using a subset
of the test vectors, as illustrated in Figure 2.13 [29]. A large fraction of the faults is
detected in this initial step, the undetected fault lists from the first step are combined
and only the remaining undetected faults have to be simulated by all processors using
test vectors in its partition in the second step.
Vec0
Vec1
Vec2
Vec3
Flt0
P0
Flt1
P1
Flt2
P2
Flt3
P3
Vec0
Vec1
Vec2
Vec3
Udt0
P1
P2
P3
Udt1
P0
P2
P3
Udt2
P0
P1
P3
Udt3
P0
P1
P2
1
st
Step for Fault Simulation
2
nd
Step for Fault Simulation
Figure 2.13: Partitioning in SPITFIRE-1
Other synchronous algorithm, SPITFIRE-2 and SPITFIRE-3, which are extensions
of the SPITFIRE-1 algorithm, were presented in [31]. SPITFIRE-2, a hybrid approach,
26
attempted to reduce the partition size used in SPITFIRE-1. The fault and pattern
partitioning for the two steps of fault simulation in SPITFIRE-2 is illustrated in Figure
2.14 [31]. As can be seen from the figure, processor i (Pi) uses Vec0 and Flti in the first
step of fault simulation. Since all faults are targeted in the first step using the input
vectors in Vec0, there is no need to re-simulate these vectors in the second step. In
the second step, Pi uses the set of test vector Veci+1 and any undetected faults left at
the end of the first step. The advantage of this algorithm is that the number of vectors
simulated in each step is now reduced by a factor 1P+1 ? 100percent as compared to
SPITFIRE-1. A small additional advantage is that the faulty circuit states available for
the undetected faults in the set Udti can be used for simulation with the test set Vecj
in the second step of fault simulation on Pj?1. However, it is possible that the second
step of this simulator may not drop as many faults as those by SPITFIRE-1 since less
test vectors are used in the first step..
SPITFIRE-3 is a multistep pipelined synchronous algorithm which helps in over-
coming any drawback in a single or two-step approach. The first step of fault simulation
is identical to that in SPITFIRE-1. Synchronization points are introduced in the second
step, in which processors exchange the information on the detected faults. This may
reduce the amount of work that a processor has to do subsequently, since each processor
does not need to target the faults that have been detected by other processors. However,
the synchronization points introduce barriers which may slow down parallel execution,
when the load is unbalanced among processors.
27
Vec0
Vec0
Vec0
Vec0
Flt0
P0
Flt1
P1
Flt2
P2
Flt3
P3
Vec1
Vec2
Vec3
Vec4
Udt0
P0
P1
P2
P3
Udt1
P0
P1
P2
P3
Udt2
P0
P1
P2
P3
Udt3
P0
P1
P2
P3
1
st
Step for Fault Simulation
2
nd
Step for Fault Simulation
Figure 2.14: Partitioning in SPITFIRE-2
2.5 AUSIM
AUSIM is a gate-level, sequential circuit fault simulation program developed at
Auburn University. AUSIM runs on the UNIX platform and targets single stuck-at
faults in synchronous sequential circuits represented in the ISCAS89 benchmark format.
2.5.1 Program Configuration
The AUSIM consists of six sub-commands which are three pre-processing and three
main commands. The command default checks the input file if the proper naming
convention is used. The command proc indicates that all file names have been specified
and processing is to begin. The processing of the files begins with syntax checks of the
library file and the ASL file as well as a check for subskt that makes statements to initiate
28
flattening of the hierarchy. After hierarchical flattening is complete, the data structures
are loaded and a number of audits and circuit checks are performed for items such as
nets with multiple driving sources, nets with no driving sources, etc. The command
audit records the audits results. After pre-processing, AUSIM can begin simulation with
the three commands: simul8 for logic simulation, fltgen for fault generation, and fltsim
for fault simulation.
The command simul8 is needed to initiate the application of the vector file (cir-
cuit name.vec) to the circuit loaded into the data structures, producing the simulation
output result file (curcuit name.out). The command fltgen command generates gate-level
stuck-at fault lists and writes the list to the file circuit name.flt. Normally, the fltgen
command produces a collapsed gate-level stuck-at fault list. The command fltsim takes
input files (circuit name.out and circuit name.flt), performs simulation and produces the
detected fault list (circuit name.det), potentially detected fault list (circuit name.pdt)
and undetected fault list (circuit name.udt).
2.5.2 Algorithm Analysis
Figure 2.15 shows the algorithm structure of sequential AUSIM. All the bits in a
computer word are utilized to simulate 32 faulty circuits at once. Logic simulation is
performed before simulating faulty circuits. Fault simulation consists of a main loop
which reads in the next fault group. The faults are injected into the circuit and each test
vector is inserted into the faulty circuit. The faulty circuits are evaluated, and state-node
values are stored for the next vector. When each test vector detects all faults of the same
fault group, AUSIM moves onto the next fault group.
29
Clear Circuit
Read
 Nex
t
 Vec
t
o
r
L
o
gi
c Simul
a
ti
on
Write Out file
Clear Circuit
R
e
ad Next F
a
ult gr
oup
Inject Faults
Make Faulty state circuit
Read
 Nex
t
 Vec
t
o
r
F
a
ult Simul
a
ti
on
Yes
No
Check if
all faults h
a
ve been
detected
m
o
re vectors ?
Yes
mo
re fault
s
 ?
No
END
m
o
re vectors ?
Yes
Yes
No
No
Figure 2.15: Sequential structure of AUSIM
The data structure used in AUSIM is shown in Figure 2.16, where the shaded
memory blocks represent a linked list. There are three kinds of memory blocks which
are gate, input and net structures of a circuit. Each gate memory block consists of a
type, name, and input and output pointers. Each input memory block is used to control
the state of the nets, which show interconnection among gates, corresponding to the
state changed due to each single fault propagation. The fields in the input structure,
logval and umask, are used to store the state of every net in the circuit. The fields in the
net structure, flt and saf, store the fault information of each net in the faulty circuit.
30
G0 G1 G2
G3
G4
Circuit model
G4
OR G3
Input
Output
NOR
G4
Input
Output
G0
flt
saf
G1
flt
saf
Gate str
u
cture
G3
flt
saf
G3
flt
saf
G2
flt
saf
G4
flt
saf
G0
lo
gval
umas
k
G1
lo
gval
umas
k
G2
lo
gval
umas
k
G3
logval
umas
k
G4
lo
gval
umas
k
Input structure
Net structure
Figure 2.16: Data Structure of AUSIM
Each of logval, umask, flt and saf consists of two 32-bit words, where a pair of bits is
used to store a different faulty machine?s value. A three-valued logic (0, 1 and X) is
used. Two bits are used to code the three values, one in logval and the other in umask.
0 is coded as (0, 0), 1 as (1, 1) and X as (0, 1).
31
X X
X
X
G0 G1 G2
a sa0 b sa0
d sa0
1
1
1
1
1
1
1
1
c sa0
lo
gv
al
um
a
s
k
0
0
0
1
0
0
0
0
flt
saf
1
1
1
1
1
1
1
1
lo
gv
al
um
a
s
k
0
0
1
0
0
0
0
0
flt
saf
1
1
1
1
0
1
0
0
1
1
1
1
lo
gv
al
um
a
s
k
0
0
0
0
flt
saf
1
1
1
1
1
1
1
1
lo
gv
al
um
a
s
k
1
0
0
0
0
0
0
0
flt
saf
0
0
0
0
0
0
1
1
0
0
0
0
lo
gv
al
um
a
s
k
0
0
1
0
flt
saf
G4
G3
a st
u
c
k-
at
 si
n
g
l
e

f
a
u
l
t
b st
u
c
k-
at
 si
n
g
l
e

f
a
u
l
t
c s
t
u
ck-
a
t
 si
n
g
l
e
 f
a
u
l
t
d st
u
c
k-
at
 si
n
g
l
e

f
a
u
l
t
(a)
1
1
1
0
1
1
1
0
X X
X
X
G0 G1 G2
a sa0 b sa0
d sa0
c sa0
lo
gv
al
um
a
s
k
1
0
1
1
1
1
0
1
1
1
0
1
lo
gv
al
um
a
s
k
1
0
1
1
lo
gv
al
um
a
s
k
0
0
0
0
0
1
1
1
0
1
1
1
lo
gv
al
um
a
s
k
0
0
0
0
lo
gv
al
um
a
s
k
G4
G3
(b)
Figure 2.17: An example of gate evaluation of AUSIM.
32
Figure 2.17 shows an example of gate evaluation for the test vector (1, 1, 1) on the
fault list groups (a, b, c, d). A word length of four bits is assumed. Coded logics 0(0,
0), X(0, 1) and 1(1, 1) are used in a sequential circuit, but this example does not use
the X value because it is a combinational circuit. Figure 2.17(a) illustrates the logic
simulation for good circuit. The steady state value of each net in the circuit is kept in a
single array in logval and umask. The information of faulty machine value is stored in
another array flt and saf. Figure 2.17(b) represents the net state of circuit modified due
to fault injection. After every fault in the same fault group is injected and the net state
is updated with the faulty state, the gate evaluation is performed.
33
Chapter 3
Parallelization
In this chapter, a parallel fault simulator PAUSIM (Parallel AUSIM) which has
developed based on AUSIM [32] is described. Three versions of PAUSIM have been im-
plemented, i.e., PAUSIM-BL (BLock partitioning), PAUSIM-CY0 (CYclic partitioning)
and PAUSIM-CY1.
3.1 PAUSIM-BL
3.1.1 Task Decomposition
PAUSIM-BL (Parallel AUSIM-BLock Partitioning) adopts the test vector and fault
set partitioning algorithm for parallel processing. It performs a logic and fault simula-
tions separately. Compared to SPITFIRE-1 consisting of the two steps of fault simulation
[31], PAUSIM-BL?s design focuses on eliminating a redundant work in logic simulation
and fault simulations.
In SPITFIRE-1, logic simulation of the fault-free circuit is carried out in both steps
of fault simulation, resulting in redundant computation. In order to avoid such redun-
dancy, in PAUSIM-BL, the logic simulation results are saved so that they can be referred
to during the fault simulation step.
In the second step of fault simulation of SPITFIRE-1, a fault may be detected by
more than one processor since the fault space is not partitioned. That is, it is possible
that a processor may simulate the faults which have been already detected by other
34
Vec0
Vec1
Vec2
Vec3
Flt0
P0
P0
P0
P0
Flt1
P1
P1
P1
P1
Flt2
P2
P2
P2
P2
Flt3
P3
P3
P3
P3
P :
 Processor
Vec
:
 Test
 vector set
Flt : Fault set Udt
:
 Undetected fault
 set
Vec0
Vec1
Vec2
Vec3
P0
P1
P2
P3
Task decomposit
ion for
 logic simulat
i
on
Task decomposit
ion fault
 simulat
i
on
Figure 3.1: Task decomposition in PAUSIM-BL
processors. PAUSIM-BL avoids such possibility by assigning a disjoint set of faults to
each processor in the second step as shown in Figure 3.1.
This also makes it unnecessary to filter out the multiply-detected faults when the
faults detected by processors are combined following the (second step of) fault simulation.
Fault simulation time on each processor is shorter on average for PAUSIM-BL than for
SPITFIRE-1. Let?s define a unit simulation as testing a circuit for a fault using a
test vector. The number of possible unit simulations in the fault simulations would
be the same regardless of partitioning faults or test vectors. However, the number of
unit simulations actually carried out is smaller for PAUSIM-BL than for SPITFIRE-1.
First, there is no redundant simulation in PAUSIM-BL. Second, since each processor in
PAUSIM-BL is assigned less faults with more test vectors than in SPITFIRE-1, it is more
likely in PAUSIM-BL than in SPITFIRE-1 that all of the assigned faults are detected
35
even before all possible unit simulations are tried. A processor stops fault simulation
when all the faults in its assigned fault group are detected.
3.1.2 Fault Partitioning
In PAUSIM-BL, faults in a fault list are divided into n equal-size groups when there
are n processors. In a fault list of a circuit, faults are arranged in the alphanumeric
order of propagation gate and net names. Therefore, faults in a group tend to be from
the contiguous parts of the circuit. All faults related to a gate are assigned to the
corresponding processor.
Figure 3.2 shows the distribution of faults in an area of the s27 benchmark circuit.
Faults from inputs of a gate are propagated on the same path to the primary outputs.
Hence, the workloads for simulating the faults at different inputs of a gate are similar.
If a fault group contains more hard-to-detect faults than other groups, there can be a
significant load imbalance among processors.
3.1.3 Test Vector Partitioning
For combinational circuits, a test vector set may be partitioned into mutually exclu-
sive subsets, each of which is assigned to a processor. In a sequential circuit, the current
state depends on the previous state in general. Each processor initiates its fault simula-
tion, starting from an unknown state at some outputs. This may cause detection of some
faults to be missed. In order to eliminate or reduce unknown outputs, the test vector
set may be partitioned in an overlapped manner as shown in Figure 3.3 [29]. Those
test vectors in an overlapped portion are mainly used for updating the unknown states
of outputs to the known states, rather than fault detection, i.e., they act as initializing
36
G3
G6G5
G2 G1 G0
CK
G7
G12
G14
G13
G8
G16 G15
G9
G11
G10G17
Figure 3.2: Fault partitioning in PAUSIM-BL for 4 processors where each fault group is
distinguished by a different grey-scale
vectors. The optimal number of initializing vectors depends on the circuit. Too many
initializing vectors would waste computation while few of them may lead to a low fault
coverage.
3.1.4 Procedure
The procedure of PAUSIM-BL, which consists of logic simulation and fault simula-
tion, is described in the flowchart in Figures 3.4 - 3.5. A master processor broadcasts
37
Test Sequence
n2
n
3
n
4
n
5
n
P1
P2
P3
P4
P5
Overlap
P1~P5 : Processors
Figure 3.3: Test vector set partitioning
the circuit information and the entire test vectors to all slave processors. All processors
including the master carry out the logic simulation with their respective partitions of test
vectors. Local logic simulation results are collected to the master which then broadcasts
the combined result to all slave processors. Then, the fault simulation starts. The master
processor partitions a list of faults into subsets and distributes them among processors.
The fault simulation is performed on all processors with faults disjointly distributed. At
38
the end of the fault simulation, slave processors report their detected and undetected
faults to the master processor.
Read in
t
e
st
 vect
o
r
s
Broadca
s
t
a circuit in
fo.
Yes
Broadca
s
t
t
e
st
 vect
o
r
s
Access to
a test vector
Logic sim
u
lation
Store the result
More
vector?
Genera
te and
distribute faults
Access to
a fault group
Access to
a test vector
No
Fault simulation
All faults
in a fault group
are detected?
Store
det
an
d
udt
faults
Yes
More
fault ?
Yes
Collect
det
an
d
udt
faults
Read in
a circuit in
fo.
T
o
 slaves
T
o
 slaves
No
No
More
vector ?
Yes
No
To s
l
a
v
e
s
From slav
es
Figure 3.4: Flowchart of the master processor in PAUSIM-BL
39
Receive
t
e
st
 vect
o
r
s
Receive
a circuit in
fo.
Yes
Get a test vector set
needed
Access to
a test vector
Logic sim
u
lation
Store the result
More
vector?
receive fault set
Access to
a fault group
Access to
a test vector
No
Fault simulation
All faults
in a fault group
are detected?
Store
det
an
d
udt
faults
Yes
More
fault ?
Yes
Sen
d
det
an
d
udt
faults
From the ma
ste
r
No
No
More
vector ?
Yes
No
From the ma
ste
r
From the ma
ste
r
T
o
 t
h
e master
Figure 3.5: Flowchart of slave processors in PAUSIM-BL
40
3.2 PAUSIM-CY
3.2.1 Load Balancing
One problem in PAUSIM-BL is the potential load imbalance among processors. It
is due to the fact that all the faults on a gate are assigned to the same processor and the
faults assigned to a processor tend to be clustered in space. Computational requirements
for the faults close to each other are similar, especially those at the same gate. Therefore,
the load distribution among processors can be unbalanced significantly in PAUSIM-BL.
Inorderto achieve amore uniformloaddistribution, PAUSIM-CY0(ParallelAUSIM-
CYclic) and PAUSIM-CY1 adopt the LOG (Level Output Gate) partitioning of faults
[33]. In the LOG partitioning scheme, faults on each gate and each circuit level are
assigned to processors in a cyclic fashion. In this way, for example, the hard-to-detect
faults on a gate would be distributed to multiple processors rather than a processor.
Figure 3.6 shows the difference between block partitioning and LOG partitioning
used in PAUSIM-BL and PAUSIM-CY0 and PAUSIM-CY1, respectively. The fault list
consists of four attributes which are gate name, net name connected to gate, input or
output, and a type of single stuck at fault. Faults are arranged in the alphanumeric
order of gate names. It is seen that faults in a PAUSIM-BL partition are mostly from
a contiguous part of circuit while those in a PAUSIM-CY0 and PAUSIM-CY1 partition
are scattered widely.
3.2.2 Procedures
PAUSIM-CY0 is identical with PAUSIM-BL except for the fault partitioning. Faults
are distributed among processors in a cyclic manner in PAUSIM-CY in an effort to spread
41
Ra
ndom block partitioning
G10 G14 in sa0 G10 G11 in sa0 G11 G5 i
n
 sa0
G11 G9 i
n
 sa0
G11 G11 out sa0 G11 G11 out sa1 G12 G1 i
n
 sa0
G12 G7 i
n
 sa0
G12 G12
o
ut sa0
G12 G12
o
ut sa1
G13 G2 i
n
 sa0
G13 G12 in sa0 G14 G14
o
ut sa0
G14 G14
o
ut sa1
G15 G12 in sa0 G15 G8 i
n
 sa0
G16 G3 i
n
 sa0
G16 G8 i
n
 sa0
G17 G17
o
ut sa0
G17 G17
o
ut sa1
G5 CK in sa0
G5 CK in sa1 G5 G10 i
n
 sa0
G5 G10 i
n
 sa1
G6 CK in sa0 G6 CK in sa1 G6 G11 i
n
 sa0
G6 G11 i
n
 sa1
G7 CK in sa0 G8 G8
out s
a
1
G7 CK in sa1 G9 G16 i
n
 sa
1
G7 G13 i
n
 sa0 G9 G1
5 in sa
1
G7 G13 i
n
 sa1
G8 G14 i
n
 sa1
G8 G6 in s
a
1
G8 G8
out sa0
PE0
PE1
PE2
PE3
PE4
G10 G14 in sa0 G11 G5 i
n
 sa0
G12 G7 i
n
 sa0
G13 G2 i
n
 sa0
G14 G14
o
ut sa0
G15 G12 in sa0 G16 G3 i
n
 sa0
G17 G17
o
ut sa0
G5 CK in sa0 G6 CK in sa0 G7 CK in sa0 G8 G14 i
n
 sa1
G9 G16 i
n
 sa1
G10 G11 in sa0
G11 G9 i
n
 sa0
G12 G7 i
n
 sa0
G13 G12 in sa0 G14 G14
o
ut sa1
G15 G8 i
n
 sa0
G16 G8 i
n
 sa0
G17 G17
o
ut sa1
G5 CK in sa1 G6 CK in sa1 G7 CK in sa1 G8 G6 in s
a
1
G9 G15 i
n
 sa1
G11 G1
1
o
ut sa0
G12 G1
2
o
ut sa0
G5 G10 i
n
 sa0 G6 G11 i
n
 sa
1
G6 G11 i
n
 sa0 G7 G13 i
n
 sa
1
G7 G13 i
n
 sa0 G8 G8
out s
a
1
G8 G8
out sa0
G11 G11
o
ut sa1
G12 G12
o
ut sa1
G5 G10 i
n
 sa1
Cyclic
partitioning
Figure 3.6: Example of fault partitioning for s27 benchmark circuit for 5 processors
distribution of hard-to-detect faults over as many different processors as possible. This
cyclic partitioning of faults may not balance the load completely. Hence, PAUSIM-CY1
employs a two-step fault simulation for more effective load balancing as shown in Figure
3.7. In PAUSIM-CY1, after the first step of simulation, each slave processor reports its
undetected faults to the master which then redistribute the undetected faults such that
the load is well balanced over slave processors.
42
Vec0
Vec1
Vec2
Vec3
P0
P1
P2
P3
logic simulation
Vec0
Vec1
Vec2
Vec3
Udt0
P0
P0
P0
Udt1
P1
P1
P1
Udt2
P2
P2
P2
Udt3
P3
P3
P3
Vec0
Vec1
Vec2
Vec3
Flt0
P0
Flt1
P1
Flt2
P2
Flt3
P3
1
st
step of fault
 simu
lat
i
on
2
nd
step of fault simulation
Figure 3.7: Task decomposition in PAUSIM-CY1
3.3 Implementation
The parallel simulation programs are written in C, using MPI library functions for
communication. Figures 3.8-3.10 illustrate the logic simulation and two steps of fault
simulation for PAUSIM-CY1, where the cluster consists of one master processor, P0,
and three slave processors, P1, P2, and P3.
Communications among processors are required when (i) the master processor
broadcasts test vectors (Ti) to the slave processors during logic simulation, (ii) the
master processor distributes faults (Fi) to the slave processors in the first step of fault
43
simulation, (iii) the slave processors report the detected (DAi), undetected (UAi) faults
and the results (Oi) of logic simulation to the master processor at the end of first step,
(iv) the master processor redistributes the undetected faults (UBi) and broadcasts the
the results collected (O) to the slave processors in the beginning of the second step, and
(v) the slave processors report the detected (DBi) and undetected (UCi) faults to the
master processor at the end of fault simulation. These communications are implemented
by MPI SEND MPI RECV, and MPI BCAST.
44
Broadca
s
t
P0
P1
P2
P3
V
V
V
V
LSi
m
LSi
m
LSi
m
LSi
m
P0
P1
P2
P3
O0
O1
O2
O3
Figure 3.8: Communication among 4 processors in logic sim-
ulation in PAUSIM-CY1. V: Test vector, O: Logic simula-
tion result
Sen
d
P0
P1
P2
P3
F0
F1
F2
F3
Step
1
FSi
m
Step
1
FSi
m
Step
1
FSi
m
Step
1
FSi
m
O0
O1
O2
O3
UA
0
UA
1
UA
2
UA
3
P0
P1
P2
P3
DA
0
DA
1
DA
2
DA
3
Receive
Figure 3.9: Communication among 4 processors in the first
step of fault simulation in PAUSIM-CY1. F: Fault, U: Un-
detected fault, D: Undetected fault
45
Sen
d
P0
P1
P2
P3
UB
0
UB
1
UB
2
UB
3
O0
O1
O2
O3
DAUA
O
Sen
d
Broadca
s
t
P0
P1
P2
P3
UB
0
UB
1
UB
2
UB
3
Step
2
FSi
m
Step
2
FSi
m
Step
2
FSi
m
Step
2
FSi
m
O
U
UC
1
UC
2
UC
3
P0
P1
P2
P3
DB
0
DB
1
DB
2
DB
3
O
O
O
DA
Receive
DB
UC
0
U
P0
DA
DB
DA
D
Figure 3.10: Communication among 4 processors in the second step of fault simulation
in PAUSIM-CY1
46
Chapter 4
Performance
4.1 Experimental Environment
The four parallel schemes, PAUSIM-SF, PAUSIM-BL, PAUSIM-CY0 and PAUSIM-
CY1, have beenimplemented, whichwere describedintheprevious section. ThePAUSIM-
SF refers to the parallel implementation which uses the task partitioning scheme of
SPITFIRE-1 [31]. The PAUSIM-BL and PAUSIM-CY are the proposed parallel testing
schemes described in chapter 3.
Table 4.1: Fault coverage statistics using 1600 random vectors on a single processor
Circuit #Fault #Gate #FF #PI #PO #Det.fault Coverage
s1196 1250 388 18 14 14 1042 83.4%
s1423 1663 490 74 17 5 517 31.1%
s1512 1411 413 57 29 21 46 3.3%
s3271 3438 1035 116 26 14 3103 90.3%
s5378 4961 1004 179 35 49 2945 59.4%
Table 4.1 shows the characteristics of the benchmark circuits and the fault coverage
on a single processor. Note that s1196 and s3271 have a high fault coverage while s1423
and s1512 contain lots of hard-to-detect faults. The four schemes were implemented on
a cluster consisting of sixteen utra 5 Sun workstations. The workstations are intercon-
nected by a 100-Mbps Ethernet. Results are provided for the five circuits, s1196, s1512,
s1423, s3271, and s5378, taken from the ISCAS89 benchmark suite. Logic and fault
47
Table 4.2: Execution time (seconds) and speedups using 1600 random vectors on multi-
processor
Circ. Sequ. Alg. Execution time Speedups
time 4 8 12 16 4 8 12 16
s1196 191.6 SF 131.4 58.6 52.9 50.2 1.5 3.3 3.6 3.8
BL 119.1 52.9 44.8 36.0 1.6 3.6 4.3 5.3
CY0 63.5 42.8 33.1 27.6 3.0 4.5 5.8 6.9
CY1 56.9 36.3 28.0 27.4 3.4 5.3 6.8 7.0
s1423 489.7 SF 180.5 92.3 92.0 78.1 2.7 5.3 5.3 3.8
BL 179.1 89.7 79.2 77.2 2.7 5.5 6.2 6.3
CY0 147.0 78.3 65.6 52.3 3.3 6.3 7.5 9.4
CY1 140.9 77.5 56.7 45.3 3.5 6.3 8.6 10.8
s1512 436.9 SF 135.3 87.6 71.7 61.7 3.2 5.0 6.1 7.1
BL 134.4 85.3 67.0 47.0 3.3 5.1 6.5 9.3
CY0 133.2 80.1 53.9 46.4 3.3 5.5 8.1 9.4
CY1 127.3 73.9 53.4 47.0 3.4 5.9 8.2 9.3
s3271 1077.1 SF 1056.1 696.1 383.3 293.3 1.1 1.5 2.8 3.7
BL 972.2 502.8 345.6 271.8 1.1 2.1 3.1 4.0
CY0 516.6 294.4 274.1 204.4 2.1 3.7 3.9 5.3
CY1 378.3 171.3 142.4 137.8 2.8 6.3 7.6 7.8
s5378 9898.4 SF 4701.3 2220.0 2089.3 1511.9 2.1 4.5 4.7 6.5
BL 4602.3 1951.2 1724.6 1333.2 2.1 5.1 5.7 7.4
CY0 3041.1 1471.6 1206.4 952.3 3.3 6.7 8.2 10.4
CY1 2486.9 1266.8 849.7 675.6 4.0 7.8 11.6 14.7
simulations were done with 1600 random test vectors. The overlap in the test vector
partitioning was 25 (test vectors).
4.2 Results
In Table 4.2, the execution time and speedup achieved by PAUSIM-SF, PAUSIM-
BL, PAUSIM-CY0 and PAUSIM-CY1 on the cluster are provided for the five circuits in
Table 4.1. The same fault coverage as in the sequential (uniprocessor) simulation was
48
obtained except for s1423 where one less fault was detected compared to the sequential
result.
This minor difference between the sequential and parallel simulations is most prob-
ably due to the loss of state information in the beginning of parallel simulation (caused
by test vector partitioning). When the test vector overlap was increased, there was no
difference in the fault coverage between the sequential and parallel simulations.
49
L 0PAUSIM-SFPAUSIM-B PAUSIM-CY PAUSIM-CY1
108.7 99.8 53.1 47.3 s1196
180.5 179.1 147 140.9 s1423
135.3 134.4 133.2 127.3 s1512
Results for P=4
0
50
100
150
200
s1196 s1423 s1512
Circuits
E
x
ecut
i
on
t
ime
(
s
econd
s)
PAUSIM-SF PAUSIM-BL PAUSIM-CY0 PAUSIM-CY1
Figure 4.1: Execution time for 4 processors - small circuit
L 0PAUSIM-SFPAUSIM-B PAUSIM-CY PAUSIM-CY1
1056.1 972.2 516.6 378.3 s3271
4701.3 4602.3 3041.1 2486.9 s5378
00 0 0
Results for P=4
0
1000
2000
3000
4000
5000
s3271 s5378
Circuits
E
x
ecut
i
on
t
ime
(
s
econd
s)
PAUSIM-SF PAUSIM-BL PAUSIM-CY0 PAUSIM-CY1
Figure 4.2: Execution time for 4 processors - large circuit
50
L 0PAUSIM-SFPAUSIM-B PAUSIM-CY PAUSIM-CY1
49.2 44.2 35.6 22.2 s1196
92.3 89.7 78.3 77.5 s1423
87.6 85.3 80.1 73.9 s1512
Results for P=8
0
20
40
60
80
100
s1196 s1423 s1512
Circuits
E
x
ecut
i
on
t
ime
(
s
econd
s)
PAUSIM-SF PAUSIM-BL PAUSIM-CY0 PAUSIM-CY1
Figure 4.3: Execution time for 8 processors - small circuit
L 0PAUSIM-SFPAUSIM-B PAUSIM-CY PAUSIM-CY1
696.1 502.8 294.4 171.3 s3271
2220 1951.2 1471.6 1266.8 s5378
00 0 0
Results for P=8
0
500
1000
1500
2000
2500
s3271 s5378
Circuits
E
x
ecut
i
on
t
ime
(
s
econd
s)
PAUSIM-SF PAUSIM-BL PAUSIM-CY0 PAUSIM-CY1
Figure 4.4: Execution time for 8 processors - large circuit
51
L 0PAUSIM-SFPAUSIM-B PAUSIM-CY PAUSIM-CY1
41.9 29.9 23.1 22.9 s1196
78.1 77.2 52.3 45.3 s1423
61.7 47 46.4 47 s1512
Results for P=16
0
20
40
60
80
100
s1196 s1423 s1512
Circuits
E
x
ecut
i
on
t
ime
(
s
econd
s)
PAUSIM-SF PAUSIM-BL PAUSIM-CY0 PAUSIM-CY1
Figure 4.5: Execution time for 16 processors - small circuit
L 0PAUSIM-SFPAUSIM-B PAUSIM-CY PAUSIM-CY1
383.3 271.8 204.4 137.8 s3271
1511.9 1333.2 952.3 675.6 s5378
00 0 0
Results for P=16
0
500
1000
1500
2000
s3271 s5378
Circuits
E
x
ecut
i
on
t
ime
(
s
econd
s)
PAUSIM-SF PAUSIM-BL PAUSIM-CY0 PAUSIM-CY1
Figure 4.6: Execution time for 16 processors - large circuit
52
It can be seen that the proposed approach to task decomposition achieves shorter
execution time (or higher speedup) than the existing approaches. As shown also in
Figures 4.1 - 4.6, PAUSIM-BL performs substantially better than PAUSIM-SF, and
PAUSIM-CY0 improves over PAUSIM-BL by the cyclic partitioning of faults instead
of the block partitioning. As expected, PAUSIM-CY1 outperforms all other algorithms
significantly mainly due to the two-step load balancing. It is also observed that the
reduction in execution time is larger for a lager circuit. Note that a large circuit must
have more room for improvement by a better load balancing scheme.
In Figures 4.7 - 4.18. execution time, speedup and efficiency are plotted as functions
of the number of processors employed in parallel simulation. As number of processors
increases, execution time monotonically decreases in all cases. One thing to note is that
the improvement by using more processors tends to saturate in some cases of PAUSIM-
SF as clearly seen in Figures. This is mainly due to the ineffective task partitioning.
In the proposed algorithms, such saturation is either not observed or much less than in
PAUSIM-SF.
It is to be mentioned that efficiency achieved by the proposed algorithms, especially
PAUSIM-CY1, is very high in almost all cases. In addition to the effective parallelization
in PAUSIM-CY1, the long simulation time (compared to the communication overhead)
is another factor contributing to such high efficiency.
53
s1196 s1423 s1512 s3271 s5378
108.7 180.5 135.3 1056.1 4701.3 4
49.2 92.3 87.6 696.1 2220 8
43.9 92 71.7 383.3 2089.3 12
41.9 78.1 61.7 293.3 1511.9 16
Execution time for the PAUSIM-SF
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
4 8 12 16
Number of processors
Execution time (Seconds)
s1196
s1423
s1512
s3271
s5378
Figure 4.7: Execution times for PAUSIM-SF
s1196 s1423 s1512 s3271 s5378
119.1 179.1 134.4 972.2 4602.3 4
52.9 89.7 85.3 502.8 1951.2 8
44.8 79.2 67 345.6 1724.6 12
36 77.2 47 271.8 1333.2 16
Execution time for the PAUSIM-BL
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
4 8 12 16
Number of processors
Execution time (Seconds)
s1196
s1423
s1512
s3271
s5378
Figure 4.8: Execution times for PAUSIM-BL
54
s1196 s1423 s1512 s3271 s5378
63.5 147 133.2 516.6 3041.1 4
42.8 78.3 80.1 294.4 1471.6 8
33.1 65.6 53.9 274.1 1206.4 12
27.6 52.3 46.4 204.4 952.3 16
Execution time for the PAUSIM-CY0
0
500
1000
1500
2000
2500
3000
3500
4 8 12 16
Number of processors
Execution time (Seconds)
s1196
s1423
s1512
s3271
s5378
Figure 4.9: Execution times for PAUSIM-CY0
s1196 s1423 s1512 s3271 s5378
47.3 140.9 127.3 378.3 2486.9 4
30.4 77.5 73.9 171.3 1266.8 8
23.4 56.7 53.4 142.4 849.7 12
22.9 45.3 47 137.8 675.6 16
Execution time for the PAUSIM-CY1
0
500
1000
1500
2000
2500
3000
4 8 12 16
Number of processors
Execution time (Seconds)
s1196
s1423
s1512
s3271
s5378
Figure 4.10: Execution times for PAUSIM-CY1
55
s1196 s1423 s1512 s3271 s5378
1.45814 2.713 3.22912 1.0199 2.1055 4
3.26962 5.3055 4.98744 1.5473 4.4587 8
3.62193 5.3228 6.09344 2.8101 4.7377 12
3.81673 6.2702 7.08104 3.6723 6.547 16
Speedup for the PAUSIM-SF
0
1
2
3
4
5
6
7
8
4 8 12 16
Number of processors
Speedup
s1196
s1423
s1512
s3271
s5378
Figure 4.11: Speedup for PAUSIM-SF
s1196 s1423 s1512 s3271 s5378
1.60873 2.7342 3.25074 1.1079 2.1508 4
3.62193 5.4593 5.12192 2.1422 5.073 8
4.27679 6.1831 6.5209 3.1166 5.7395 12
5.32222 6.3433 9.29574 3.9628 7.4245 16
Speedup for the PAUSIM-BL
0
1
2
3
4
5
6
7
8
9
10
4 8 12 16
Number of processors
Speedup
s1196
s1423
s1512
s3271
s5378
Figure 4.12: Speedup for PAUSIM-BL
56
s1196 s1423 s1512 s3271 s5378
3.01732 3.3313 3.28003 2.085 3.2549 4
4.47664 6.2542 5.45443 3.6586 6.7263 8
5.78852 7.4649 8.10575 3.9296 8.2049 12
6.94203 9.3633 9.41595 5.2696 10.394 16
speedup for the PAUSIM-CY0
0
2
4
6
8
10
12
4 8 12 16
Number of processors
speedup
s1196
s1423
s1512
s3271
s5378
Figure 4.13: Speedup for PAUSIM-CY0
s1196 s1423 s1512 s3271 s5378
3.36731 3.4755 3.43205 2.8472 3.9802 4
5.27824 6.3187 5.91204 6.2878 7.8137 8
6.84286 8.6367 8.18165 7.5639 11.649 12
6.9927 10.81 9.29574 7.8164 14.651 16
Speedup for the PAUSIM-CY1
0
2
4
6
8
10
12
14
16
4 8 12 16
Number of processors
Speedup
s1196
s1423
s1512
s3271
s5378
Figure 4.14: Speedup for PAUSIM-CY1
57
s1196 s1423 s1512 s3271 s5378
0.36454 0.6783 0.80728 0.255 0.5264 4
0.4087 0.6632 0.62343 0.1934 0.5573 8
0.30183 0.4436 0.50779 0.2342 0.3948 12
0.23855 0.3919 0.44256 0.2295 0.4092 16
Efficiency for the PAUSIM-SF
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
4 8 12 16
Number of processors
Efficiency
s1196
s1423
s1512
s3271
s5378
Figure 4.15: Efficiency for PAUSIM-SF
s1196 s1423 s1512 s3271 s5378
0.40191 0.6836 0.81269 0.277 0.5377 4
0.45274 0.6824 0.64024 0.2678 0.6341 8
0.3564 0.5153 0.54341 0.2597 0.4783 12
0.33264 0.3965 0.58098 0.2477 0.464 16
Efficiency for the PAUSIM-BL
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
4 8 12 16
Number of processors
Efficiency
s1196
s1423
s1512
s3271
s5378
Figure 4.16: Efficiency for PAUSIM-BL
58
s1196 s1423 s1512 s3271 s5378
0.75433 0.8328 0.82001 0.5212 0.8137 4
0.55958 0.9085 0.6818 0.4573 0.8408 8
0.48238 0.6221 0.67548 0.3275 0.6837 12
0.43388 0.5852 0.5885 0.3293 0.6496 16
Efficiency for the PAUSIM-CY0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
4 8 12 16
Number of processors
Efficiency
s1196
s1423
s1512
s3271
s5378
Figure 4.17: Efficiency for PAUSIM-CY0
s1196 s1423 s1512 s3271 s5378
0.84183 0.8689 0.85801 0.7118 0.9951 4
0.65797 0.7898 0.73901 0.786 0.9767 8
0.57024 0.7197 0.6818 0.6303 0.9708 12
0.43704 0.6756 0.58098 0.4885 0.9157 16
Efficiency for the PAUSIM-CY1
0
0.2
0.4
0.6
0.8
1
1.2
4 8 12 16
Number of processors
Efficiency
s1196
s1423
s1512
s3271
s5378
Figure 4.18: Efficiency for PAUSIM-CY1
59
In Tables 4.3 - 4.4, the minimum, maximum, mean, standard deviation, and nor-
malized standard deviation of execution time over eight processors are provided in order
to compare the four algorithms in terms of load balancing. A larger standard deviation
of execution time among processors indicates a larger load imbalance among them. The
logic simulation is a small fraction of the entire simulation and is well balanced over
processors. What is to be noticed in the table is that the execution time significantly
varies with processor in the case of PAUSIM-SF and PAUSIM-BL, leading to the rela-
tively large standard deviation (also, the difference between the maximum and minimum
execution time) in most cases. That is, the load is not well balanced in PAUSIM-SF and
PAUSIM-BL. However, PAUSIM-CY1 greatly reduces the load imbalance and thereby
achieves a significant performance improvement.
In Figure 4.19 - 4.26, execution times including communication times on individ-
ual processors are plotted for more detailed examination of load distribution among
processors. It is confirmed that PAUSIM-CY1 balances the load over processors well
at the expense of extra communication such that the overall parallel execution time is
significantly reduced.
60
Table 4.3: Mean and standard deviation execution times on eight processors for PAUSIM-
SF, PAUSIM-BL, PAUSIM-CY0 and PAUSIM-CY1. The unit for time is second. s1196,
s1423 and s1512
Circuit Algorithm Step Min.T. Max.T. Mean.T Stdv Norm.Stdv
s1196 PAUSIM LSIM 0.8 1.1 0.9 0.10 0.12
-SF FSIM 18.2 43.3 36.9 5.13 0.14
PAUSIM LSIM 0.8 1.1 0.9 0.10 0.12
-BL FSIM 15.1 36.1 32.5 7.07 0.22
PAUSIM LSIM 0.8 0.9 0.8 0.05 0.06
-CY0 FSIM 18.8 27.1 22.6 3.74 0.17
PAUSIM LSIM 0.8 0.9 0.83 0.05 0.06
-CY1 FSIM 16.1 17.4 16.6 0.51 0.03
s1423 PAUSIM LSIM 1.2 1.3 1.3 0.05 0.04
-SF FSIM 71.1 86.3 77.0 5.17 0.07
PAUSIM LSIM 1.2 1.3 1.3 0.05 0.04
-BL FSIM 73.5 84.0 77.3 4.36 0.06
PAUSIM LSIM 1.2 1.3 1.3 0.05 0.04
-CY0 FSIM 60.9 72.4 66.1 3.97 0.06
PAUSIM LSIM 1.2 1.3 1.3 0.05 0.04
-CY1 FSIM 60.5 69.9 66.0 3.06 0.05
s1512 PAUSIM LSIM 1.3 1.3 1.3 0.00 0.00
-BL FSIM 59.9 82.1 68.5 4.82 0.07
PAUSIM LSIM 1.3 1.3 1.3 0.00 0.00
-BL FSIM 63.0 77.9 66.5 4.89 0.07
PAUSIM LSIM 1.3 1.3 1.3 0.00 0.00
-CY0 FSIM 64.0 76.7 71.0 3.65 0.05
PAUSIM LSIM 1.3 1.4 1.4 0.1 0.10
-CY1 FSIM 65.7 68.0 66.3 1.25 0.02
61
Table 4.4: Mean and standard deviation execution times on eight processors for PAUSIM-
SF, PAUSIM-BL, PAUSIM-CY0 and PAUSIM-CY1. The unit for time is second. s3271
and s5378
Circuit Algorithm Step Min.T. Max.T. Mean.T Stdv Norm.Stdv
s3271 PAUSIM LSIM 4.1 4.4 4.3 0.10 0.02
-SF FSIM 345.3 684.8 477.7 110.67 0.23
PAUSIM LSIM 4.1 4.4 4.3 0.10 0.02
-BL FSIM 205.4 490.8 377.2 102.51 0.27
PAUSIM LSIM 4.1 4.4 4.3 0.10 0.02
-CY0 FSIM 80.4 278.3 155.8 63.59 0.41
PAUSIM LSIM 4.1 4.4 4.3 0.09 0.02
-CY1 FSIM 141.4 158.7 152.2 5.17 0.03
s5378 PAUSIM LSIM 11.3 11.9 11.7 0.19 0.02
-BL FSIM 1711.4 2185.9.6 1923.3 132.92 0.07
PAUSIM LSIM 11.4 11.9 11.7 0.16 0.01
-SF FSIM 1586.9 1912.6 1827.0 122.00 0.07
PAUSIM LSIM 11.5 11.9 11.7 0.15 0.01
-CY0 FSIM 1103.0 1438.6 1246.0 110.49 0.09
PAUSIM LSIM 11.3 11.9 11.7 0.19 0.02
-CY1 FSIM 1197.9 1229.0 1219.8 13.36 0.01
62
LSIM FSIM Communication
P0 4.1 345.3 7.2
P1 4.3 368.5 7.2
P2 4.4 466.7 7.2
P3 4.3 684.8 7.2
P4 4.4 515.5 7.2
P5 4.3 568.2 7.2
P6 4.2 425.4 7.2
P7 4.2 447.5 7.2
4.275 477.7375
0.10351 110.668242
0.02421 0.23165073
s3271
0
200
400
600
800
P0 P1 P2 P3 P4 P5 P6 P7
Processor ID
Time
(
S
econds)
LSIM FSIM Communication
Figure 4.19: Workload distribution: s3271 benchmark circuit, PAUSIM-SF
LSIM FSIM Communication
P0 4.1 345.3 7.2
P1 4.3 358 7.2
P2 4.4 466.7 7.2
P3 4.3 490.8 7.2
P4 4.4 415.5 7.2
P5 4.3 468 7.2
P6 4.2 205.4 7.2
P7 4.2 267.5 7.2
4.275 377.15
0.10351 102.512926
0.02421 0.27180943
s3271
0
200
400
600
800
P0 P1 P2 P3 P4 P5 P6 P7
Processor ID
Time
(
S
econds)
LSIM FSIM Communication
Figure 4.20: Workload distribution: s3271 benchmark circuit, PAUSIM-BL
63
LSIM FSIM Communication
P0 4.1 219.2 12 60.8 158.4
P1 4.3 278.3 12 62.6 215.7
P2 4.3 124.2 12 63.3 60.9
P3 4.3 123.5 12 61.1 62.4
P4 4.4 150.2 12 59.6 90.6
P5 4.3 153.7 12 61.6 92.1
P6 4.2 116.8 12 56.7 60.1
P7 4.3 80.4 12 50.3 30.1
4.275 155.7875
0.08864 63.5942369
0.02073 0.40821142
s3271
0
200
400
600
800
P0 P1 P2 P3 P4 P5 P6 P7
Processor ID
Time
(
S
econds)
LSIM FSIM Communication
Figure 4.21: Workload distribution: s3271 benchmark circuit, PAUSIM-CY0
LSIM FSIM Communication
P0 4.1 155.5 12 60.6 94.9
P1 4.4 158.7 12 63.3 95.4
P2 4.3 155.2 12 62.7 92.5
P3 4.3 151.9 12 61.1 90.8
P4 4.4 152.7 12 60.2 92.5
P5 4.3 152.4 12 60.9 91.5
P6 4.3 149.4 12 57.5 91.9
P7 4.3 141.4 12 50.4 91
4.3 152.15
0.09258 5.16831003
0.02153 0.03396852
s3271
0
200
400
600
800
P0 P1 P2 P3 P4 P5 P6 P7
Processor ID
Time
(
S
econds)
LSIM FSIM Communication
Figure 4.22: Workload distribution: s3271 benchmark circuit, PAUSIM-CY1
64
LSIM FSIM Communication
P0 2.1 132.1 18.7 0 149.2
P1 2.1 200.2 18.7 0 132.1
P2 2.2 214.8 18.7 0 214.8
P3 2.2 200 18.7 0 165.1
P4 2.3 180.3 18.7 0 267.2
P5 2.2 254.8 18.7 0 254.8
P6 2.2 235.4 18.7 0 255.9
P7 2.2 193.2 18.7 0 193.2
P8 2.2 173.4 18.7 0 244.7
P9 2.3 220.9 18.7 0 150.9
P10 2.2 213.4 18.7 0 223.4
P11 2.2 149.2 18.7 0 217.6
P12 2.2 231.3 18.7 0 200.3
P13 2.2 187.3 18.7 0 90.3
P14 2.2 169.1 18.7 0 189.1
P15 2.3 264.2 18.7 0 140.4
2.20625 201.225
0.0573736.1644485
0.0260.17972145 149.2
s3271
0
50
100
150
200
250
300
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9
P10 P11 P12 P13 P14 P15
Processor ID
Time
(
S
econds)
LSIM FSIM Communication
Figure 4.23: Workload distribution: s3271 benchmark cir-
cuit, PAUSIM-SF
LSIM FSIM Communication
P0 2.1 149.2 18.7 0 149.2
P1 2.1 132.1 18.7 0 132.1
P2 2.2 214.8 18.7 0 214.8
P3 2.2 165.1 18.7 0 165.1
P4 2.3 267.2 18.7 0 267.2
P5 2.2 254.8 18.7 0 254.8
P6 2.2 255.9 18.7 0 255.9
P7 2.2 193.2 18.7 0 193.2
P8 2.2 244.7 18.7 0 244.7
P9 2.3 150.9 18.7 0 150.9
P10 2.2 223.4 18.7 0 223.4
P11 2.2 217.6 18.7 0 217.6
P12 2.2 200.3 18.7 0 200.3
P13 2.2 90.3 18.7 0 90.3
P14 2.2 189.1 18.7 0 189.1
P15 2.3 140.4 18.7 0 140.4
2.20625193.0625
0.0573751.3285739
0.0260.26586506
s3271
0
50
100
150
200
250
300
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9
P10 P11 P12 P13 P14 P15
Processor ID
Time
(
S
econds)
LSIM FSIM Communication
Figure 4.24: Workload distribution: s3271 benchmark cir-
cuit, PAUSIM-BL
65
LSIM FSIM Communication
P0 2.1 77.3 18.7 15.6 61.7
P1 2.1 185.2 18.7 15.6 169.6
P2 2.2 77 18.7 16.1 60.9
P3 2.2 113.3 18.7 15.5 97.8
P4 2.3 94.6 18.7 16.2 78.4
P5 2.2 83.6 18.7 15.9 67.7
P6 2.2 85.1 18.7 16 69.1
P7 2.1 60.5 18.7 15.8 44.7
P8 2.2 48.5 18.7 15.8 32.7
P9 2.3 119.6 18.7 16.5 103.1
P10 2.2 114.6 18.7 15.6 99
P11 2.2 116.3 18.7 16.2 100.1
P12 2.2 82.7 18.7 16.1 66.6
P13 2.2 80.7 18.7 15.5 65.2
P14 2.2 49.5 18.7 16 33.5
P15 2.3 39.2 18.7 18.2 21
2.2 89.23125
0.0632535.7202784
0.028750.40031131
s3271
0
50
100
150
200
250
300
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9
P10 P11 P12 P13 P14 P15
Processor ID
Time
(
S
econds)
LSIM FSIM Communication
Figure 4.25: Workload distribution: s3271 benchmark cir-
cuit, PAUSIM-CY0
LSIM FSIM Communication
P0 2.1 119.9 18.7 15.5 104.4
P1 2.1 118 18.7 15.7 102.3
P2 2.3 118.7 18.7 16.2 102.5
P3 2.2 116.1 18.7 15.7 100.4
P4 2.2 113.4 18.7 16 97.4
P5 2.2 97.6 18.7 15.9 81.7
P6 2.2 87.6 18.7 16.2 71.4
P7 2.1 99.5 18.7 15.9 83.6
P8 2.2 118.9 18.7 16.1 102.8
P9 2.3 103.7 18.7 16.1 87.6
P10 2.2 85.2 18.7 16.2 69
P11 2.2 117.6 18.7 16.4 101.2
P12 2.2 84.6 18.7 16.2 68.4
P13 2.2 102.9 18.7 15.5 87.4
P14 2.2 93.6 18.7 16 77.6
P15 2.4 109.8 18.7 18.2 91.6
2.20625105.44375
0.0771912.8487597
0.034990.12185416
s3271
0
50
100
150
200
250
300
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9
P10 P11 P12 P13 P14 P15
Processor ID
Time
(
S
econds)
LSIM FSIM Communication
Figure 4.26: Workload distribution: s3271 benchmark cir-
cuit, PAUSIM-CY1
66
Chapter 5
Conclusion
Digital circuit testing including fault simulation is computationally intensive and
therefore is a a good target application for parallel computing. In this thesis, efficient
parallel fault simulation algorithms have been designed and implemented on a cluster
of workstations. The proposed algorithms eliminates redundant simulation and reduces
the actual number of unit simulation by partitioning faults among processors while as-
signed the entire test vector set to all processors. They, PAUSIM-CY0 and PAUSIM-
CY1, achieve a better load distribution by adapting the cyclic partitioning of faults. In
particular, PAUSIM-CY1 further improves the load distribution by allowing a load re-
distribution during fault simulation. The experimental results obtained on the 16-node
cluster have demonstrated that the proposed parallel fault simulation algorithms can
achieve significantly a shorter execution time than the existing algorithms.
67
Bibliography
[1] Michael L. Bushnell, Vishwani D. Agrawal, Essentials of Electronic Testing., Kluwer
Academic Publishers.
[2] T. M. Niermann, W. -T. Cheng, and J. H. Patel, ?PROOFS: A fast, memory-
efficient sequential circuit fault simulator,? IEEE Trans. Computer-Aided Design,
pp. 198-207, February 1992.
[3] D. Harel and B. Krishnamurthy, ?Is there hope for linear time fault simulation,?
Proc. Fault Tolerant Computing Symp., pp. 28-33, June 1987.
[4] S. Seshu, ?On an Improved Diagnosis Program,? IEEE Trans. Electronic Comput-
ing, vol. EC-14, pp. 76-79, February 1965.
[5] D. B. Armstrong, ?A deductive method for simulating faults in logic circuits,? IEEE
Transactions on Computers, vol. 21, pp. 462-471, May 1972.
[6] E. G. Ulrich and T. Baker, ?The concurrent simulation of nearly identical digital
networks,? Proc. Tenth Design Automation Workshop, vol. 6, pp. 145-150. 1973.
[7] P. Goel, H. Lichaa, T. E. Rosser, T. J. Stroh, and E. B. Eichelberger, ?LSSD fault
simulation using conjunctive combinational and sequential methods,? Proc. Int. Test
Conf., pp. 371-376, 1980.
[8] K. Kim and K. K. Saluja, ?On fault deletion problem in concurrent fault simulation
for synchronous sequential circuits,? Proc. VLSI Test Symp., pp. 125-130, 1992.
[9] D. G. Saab, ?Parallel-concurrent fault simulation,? Trans. VLSI Systems, vol. 1,
no. 3, pp. 356-364, September 1993.
[10] W. -T. Cheng and M. -L. Yu, ?Differential fault simulation - A fast method using
minimal memory,? Proc. Design Automation Conf., pp. 424-428, 1989.
[11] H. K. Lee and D. S. Ha, ?HOPE: An efficient parallel fault simulator for synchronous
sequential circuits,? Proc. Design Automation Conf., pp. 336-340, 1992.
[12] H. K. Lee and D. S. Ha, ?New methods of improving parallel fault simulation in
synchronous sequential circuits,? Proc. Int. Conf. Computer-Aided Design, pp. 10-
17, 1993.
[13] J. A. Waicukauski, E. B. Eichelberger, D. O. Forlenza, E. Lindbloom and T. Mc-
Carthy, ?Fault simulation for structured VLSI,? VLSI System Design, pp. 20-32,
December 1985.
68
[14] N. Gouders and R. Kaibel, ?PARIS: A parallel pattern fault simulator for synchro-
nous sequential circuits,? Proc. Int. Conf. Computer-Aided Design, pp. 542-545,
1991.
[15] C-P Kung and C-S. Lin, ?Parallel sequence fault simulation for synchronous sequen-
tial circuits,? Proc. European Conference on Desing Automation (EDAC-92), pp.
434-438, March 1992.
[16] R. Nair and D.S. Han, ?Vision: An efficient parallel pattern fault simulator for
synchronous sequential circuits,? Proc. 13th IEEE Test Symposium (VTS-95), p.
0221, 1995.
[17] M. B. Amin and B. Vinnakota, ?ZAMBEZI: A parallel pattern parallel fault se-
quential circuit fault simulator,? Proc. VLSI Test Symp., pp. 438-443, 1996.
[18] P. Banerjee, parallel Algorithms for VLSI computer-Aided Design. Englewood Cliffs,
NJ: PTR Prentice Hall, 1994.
[19] L. Soule and T. Blank, ?Parallel logic simulation on general purpose machines,? in
Proceedings of the 25th ACM/IEEE Design Automation Conference, pp. 166-171,
June 1988.
[20] R. B. Mueller-Thuns, D. G. Saab, R. F. Damiano,and J. A. Abraham, ?Portable
parallel logic and fault simulation,? in Digest of Papers, International Conference
on Computer-Aided Design, pp. 506-509, Nov. 1989.
[21] J. F. Nelson, ?Deductive fault simulation on hypercube multiprocessors,? in Pro-
ceeding of the 9th ATT Conference on Electronic Testing, Oct. 1987.
[22] S. Ghosh, ?NODIFS: A noval, distributed circuit partitioning based algorithm for
fault simulation of combinational and sequential digital designs on loosely coupled
parallel processors,? tech. rep., LEMS, Division of Engineering, Brown University,
Providence, RI, 1991.
[23] S. Patil, P. Banerjee, and J. Patel, ?Parallel test generation for sequential circuits
on general purpose multiprocessors,? in Proceedings of the 28th ACM/IEEE Design
Automation Conference, (San Fransisco, CA), June 1991.
[24] P. Agrawal, V. D. Agrawal, K. T. Cheng, and R. Tutundjian, ?Fault simulation in
a pipelined multiprocessor system,? Proc. Int. Test Conf., pp. 727-734, 1989.
[25] S. Bose and P. Agrawal, ?Concurrent fault simulation of logic gates and memory
blocks on message passing multicomputers,? Proc. Design Automation Conf., pp.
332-335, 1992.
[26] S. Parkes, P. Banerjee, and J. Patel, ?A parallel algorithm for fault simulation based
on PROOFS, ? Proc. Int. Conf. Computer Design, pp. 616-621, 1995.
69
[27] P. A. Duba, R. K. Roy, J. A. Rogers, ?Fault simulation in a distributed environment,
? in Proceedings of the 25th ACM/IEEE Design Automation Conference, pp. 686-
691, June 1988.
[28] T. Markas, M. Royals, and N. Kanopoulos, ?On distributed fault simulation,? IEEE
Computer, vol. 7, pp. 40-52, Jan. 1990.
[29] E. M. Rudnick and J. H. Patel, ?Overcoming the serial logic simulation bottleneck
in parallel fault simulation,? Proc 10th Intl. Conf. VLSI Design, pp. 495-501, 1997.
[30] M. B. Amin and B. Vinnakota, ?Zamlog: A parallel algorithm for fault simulation
based on Zambezi,? Proc. Intl. Conf. on Computer-Aided Design. pp. 509-512, 1996.
[31] D. Krishnaswamy, E. M. Rudnick, J. H. Patel and Prithviraj Banerjee, ?SPITFIRE:
Scalable Parallel Algorithms for Test Set Partitioned Fault Simulation.? Proc. 15th
IEEE VLSI Test Symposium, 1997.
[32] C. E. Stroud, ?Using the Workstation version of AUSIM - Version 2.1.?
[33] M. B. Amin and B. Vinnakota, ?Data Parallel-Fault Simulation,? IEEE Trans.
VLSI Systems, vol. 7, NO.2 June 1999.
70

