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Abstract

This dissertation is devoted to the study of the classical Keller-Segel chemotaxis systems with

space-time heterogeneous logistic source function on RN . Chemotaxis systems are mathemat-

ical models describing aggregation phenomena of cells due to chemotaxis. That is, phenomena

of directed movement of cells in response to the gradient of a chemical attractant, which may

be produced by the cells themselves.

We first study the fundamental problems such as local existence and global existence of

nonnegative classical solutions for given nonnegative initial function in various spaces. Among

our results, we prove that it is enough for the self-limitation coefficient of the logistic source

function to be greater than or equal to the chemotaxis sensitivity coefficient to guarantee the

existence of time-global classical solutions.

Next, we discuss the pointwise and uniform persistence of classical solutions, the existence

of positive entire solutions, the existence of time-periodic solution if the logistic function is

time-periodic, and, the existence of steady state solutions if the logistic function is time homo-

geneous. In particular, we show that any classical solution with a positive initial function enjoys

pointwise persistence under the same assumption of the existence of time-global classical solu-

tion. Moreover, we study the stability of positive entire solutions, and the spreading feature of

solutions with compactly supported or front like initials. In this direction, our results recover

as a special case the stability and spreading speeds for the classical Fisher-KPP equations.

Finally, we establish the existence and non-existence of traveling wave solutions. When

the logistic function is homogeneous and the chemotaxis sensitivity coefficient is sufficiently

small, we show that there are traveling wave solutions with arbitrarily large speeds and there

is no traveling wave solution of arbitrarily small speeds. That is there are positive constant

0 < c∗− ≤ c∗+ < ∞ such that for any c ≥ c∗+, there is a traveling wave solution with speed c

connecting the two trivial constant solutions and no such solutions exist with speed c < c∗−.
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Chapter 1

Introduction

Chemotaxis is a biological process through which living organisms orient their movement along

a chemical concentration gradient. Such movement may be towards or away from a higher con-

centration of a chemical substance. The process is present in different types of biological phe-

nomena such as bacteria aggregation, immune system response or angiogenesis in the embryo

formation and in tumour development. Recent studies describe macroscopic processes such as

population dynamics or gravitational collapses, in terms of chemotaxis. Because of its crucial

role in the aforementioned processes, chemotaxis has attracted significant interest and has been

investigated not only from a biological point of view but also from a mathematical perspective.

Many mathematical models to describe chemotaxis have been proposed since the pioneering

work of Keller and Segel during the 1970s [24, 25]. Let u(x, t) denotes the population density

function at time t and location x ∈ D, D ⊂ RN , of some mobile species moving toward

the concentration gradient of some chemical substance with density function v(x, t), which is

produced by the mobile species themselves. Then the time evolution of the population density

function u(x, t) can be described by the following differential equation

ut = ∆u︸︷︷︸
Diffusion term

−χ∇ · (u∇v)︸ ︷︷ ︸
Chemotaxis term

+ (a(x, t)− b(x, t)u)u︸ ︷︷ ︸
Reaction term

, x ∈ D, (1.1)

where ut(x, t) and ∆u(x, t) stand for the partial derivatives with respect to time and the space of

u(x, t), respectively. In the reaction term (a(x, t)− b(x, t)u)u, the functions a(x, t) and b(x, t),

which will be assumed to be positive, bounded, and uniformly Hölder continuous, measure

the production rate and self-limitation rate of the mobile species at time t and location x ∈

D, respectively. The positive constant χ in the chemotaxis term χ∇ · (u∇v) measures the
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sensitivity of the mobile species with respect to the effect of the chemical substance. We

consider the case that the chemical substance is produced by the mobile species, and hence

suppose that the concentration function v(x, t) is given by the partial differential equations

τvt = ∆v − λv + µu, (1.2)

where τ ≥ 0, λ and µ are positive constant. The term +µu in (1.2) indicates that the mobile

species produce the chemical substance themselves while the positive constant λ measures the

self-degradation rate of the chemical substance. The nonnegative constant τ is related to the

diffusion rate of the chemical substance with respect to the mobile species. Combining (1.1)

and (1.2) and taking τ = 0, we obtain the following coupled system of parabolic-elliptic partial

differential equations


ut = ∆u− χ∇ · (u∇v) + (a(x, t)− b(x, t)u)u, x ∈ D,

0 = ∆v − λv + µu, x ∈ D,
(1.3)

complemented with certain boundary conditions on ∂D when D is bounded. Thus, the chemo-

taxis system (1.3) models the situation where the chemical substance diffuses very fast com-

pared to the mobile species.

This dissertation is devoted to the study of several dynamic aspects of the deterministic

chemotaxis model (1.3) with space-time dependent logistic source on the unbounded domain

D = RN . The chemotaxis system (1.3) is a time and space logistic source dependent variant

of the classical parabolic-elliptic Keller and Segel models [24], and describes the situations in

which the chemical substance diffuses very fast. In the last two decades, considerable progress

has been made in the analysis of (1.3) on both bounded and unbounded domains.

When a ≡ b ≡ 0 and N = 1, it is well known that classical/weak solutions of (1.3) with

given smooth initial functions always exist globally when D is either a bounded domain with

smooth boundary or is the whole space RN . However, when a ≡ b ≡ 0, N = 2 and D is a

ball centered at the origin, Herrero and Velázquez [17, 18, 19] constructed a radial solution to
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(1.3) which blows up in finite time and forms a δ−function singularity at the origin. J.I. Diaz

et al. [8] and T. Nagai [34] also proved the existence of solutions which blow up in a finite time

when N ≥ 2.

It is believed that, if the self-limitation rate function b(x, t) is positive and large enough, in

the sense that infx,t b(x, t) � 0, then solutions to (1.3) will always exist for all time. This

was in fact proved in 2007 by Tello and Winkler [55] when (1.3) is considered on a bounded

domain D complemented with Neumann boundary condition and with the choice λ = µ = 1,

and a(x, t) = b(x, t) ≡ b is space and time independent. With these choices, it was shown in

[55] that if either N ≤ 2 or χ < Nb
(N−2)+

, (1.3) has a globally bounded classical solution for

any nonnegative and uniformly continuous initial data. Furthermore, if b > 2χ, then for any

u0 ∈ C0,α(D̄) with u0(x) ≥ 0 and u0(x) 6≡ 0,

lim
t→∞

[
‖u(·; t;u0)− 1‖L∞(D) + ‖v(·, t;u0)− 1‖L∞(D)

]
= 0,

where (u(x, t;u0), v(x, t;u0)) is the solution of (1.3) complemented with Newmann boundary

condition and with u(x, 0;u0) = u0(x). It should be pointed out that when N ≥ 3 and b ≤
N−2
N
χ, it remains open whether for any given initial data u0 ∈ C0,α(D̄), (1.3) supplemented

by Newmann boundary condition possesses a global classical solution (u(x, t;u0), v(x, t;u0))

with u(x, 0;u0) = u0(x), or whether finite-time blow-up occurs for some initial data. The

works [28], [63], [66] should be mentioned along this direction. It is shown in [28], [66] that

in the presence of suitably weak logistic dampening (that is, small b), certain transient growth

phenomena do occur for some initial data. It is shown in [63] that, with the reaction term

f(u) = au− buκ with suitable κ < 2 (for instance, κ = 3/2) and the second equation of (1.3)

replaced by 0 = ∆v(x, t)− 1
|D|

∫
D
u(x, t)dx+u(x, t), then finite-time blow-up is possible. The

reader is referred to [2], [7], [15], [57], [60], [62], [63], [64], [66], [67], [69], and references

therein for other studies of (1.3) on bounded domain with Neumann or Dirichlet boundary

conditions and various kinds of source functions.

It is worth mentioning that most of the existing results are established for the space-time ho-

mogeneous logistic function f(u) = (a− bu)u. Furthermore, in contrast to bounded domains,
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there is not much study of (1.3) on unbounded domains. Besides the difficulties induced from

the lack of comparison principle for solutions of (1.3), the unboundedness of the spatial domain

induces many additional difficulties in the study of (1.3) on unbounded domains.

There are also several studies of (1.3) when D is the whole space RN and a(x, t) ≡ b(x, t) ≡

0 (see [8, 23, 35, 53, 52]). For example, in the case of a(x, t) = b(x, t) ≡ 0, it is known that

blow-up occurs if either N=2 and the total initial population mass is large enough, or N ≥ 3

(see [2, 8, 35] and references therein). However, there is little study of (1.3) when D = RN

and a(x, t) 6= 0 and b(x, t) 6= 0.

In reality, the environments of many living organisms are spatially and temporally hetero-

geneous. It is of both biological and mathematical interests to study chemotaxis models with

certain time and space dependence. In the case that the chemotaxis is absent, i.e., χ = 0 in

(1.3), the population density u(x, t) of the mobile species satisfies the following scalar reaction

diffusion equation,

∂tu = ∆u+ u(a(x, t)− b(x, t)u), x ∈ D (1.4)

complemented with certain boundary conditions if D ⊂ RN is a bounded domain. Equation

(1.4) is called Fisher or KPP type equation in literature because of the pioneering works by

Fisher ([10]) and Kolmogorov, Petrowsky, Piskunov [26] in the special case a(t, x) = b(t, x) =

1. A huge amount of research has been carried out toward the asymptotic dynamics of (1.4),

see, for example, [3, 4, 5, 6, 11, 12, 31, 32, 33, 36, 37, 50, 51, 58, 59, 70], etc. for the asymptotic

dynamics of (1.4) on bounded and unbounded domains.

In this dissertation, we study several dynamical features of nonnegative solutions of (1.3)

when D = RN , a(x, t) and b(x, t) are Hölder’s continuous functions and satisfy

0 < inf
x,t

min{a(x, t), b(x, t)} ≤ sup
x,t

max{a(x, t), b(x, t)} <∞.

We first investigate the local existence and global existence of solution u(t, x) of (1.3) with

given initial condition u(x, t0) = u0(x) for various initial functions u0(x). Note that, due to

biological interpretations, only nonnegative initial functions will be of interest. Let t0 ∈ R and

T > 0 be given. We call (u(x, t), v(x, t)) a classical solution of (1.3) on [t0, t0 + T ) if (u, v) ∈
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C(RN × [t0, t0 +T ))∩C2,1(RN × (t0, t0 +T )) and satisfies (1.3) for (x, t) ∈ RN × (t0, t0 +T )

in the classical sense. A classical solution (u(x, t), v(x, t)) of (1.3) on [t0, t0 + T ) is called

nonnegative if u(x, t) ≥ 0 and v(x, t) ≥ 0 for all (x, t) ∈ RN × [t0, t0 + T ). A global classical

solution of (1.3) is a classical solution on RN × [t0,∞) for some t0 ∈ R. In this dissertation,

among others, we prove the following results.

• For any given t0 ∈ R and given nonnegative uniformly continuous and bounded initial func-

tion u0(x), (1.3) has a unique local nonegative classical solution with u(x, t0) = u0(x) (see

Theorem 2.1 for detail).

• If χµ < infx,t b(x, t), then for any given t0 ∈ R and given nonnegative uniformly continuous

and bounded initial function u0(x), (1.3) has a unique bounded global nonegative classical

solution with u(x, t0) = u0(x) on [t0,∞) (see Theorem 2.2 for detail).

Therefore, as already mentioned above, it is enough for the self-limitation function b(x, t)

to be large enough to rule out any possible finite time blow-up phenomena. When a classical

solution is globally defined in time with a strictly positive initial function, it is important to

know whether this solution will remain uniformly strictly positive over time or it will eventually

die out. Likewise, it is also of great biological interest to know how globally defined solutions

with compactly supported initial functions spread over time. These questions are related to

persistence and asymptotic spreading, which are well studied in the absence of chemotaxis but

are hardly studied in the presence of chemotaxis. In this dissertation, we prove that

• If χµ < infx,t b(x, t), the pointwise persistence phenomena occurs in (1.3). Furthermore

if χµ <
(

1 +
supx,t a(x,t)

infx,t a(x,t)

)−1

infx,t b(x, t) then uniform persistence phenomena occurs in (1.3)

(see Theorem 2.3 for details).

These results guarantee that persistence phenomena occurs in (1). Hence, it is natural to study

the existence, uniqueness, and stability of strictly positive entire solutions of (1.3). These are

very basic problems in the heterogeneous case, but are very nontrivial problems in chemotaxis

models. In this dissertation, we prove that

• If χµ < infx,t b(x, t) then (1.3) has a strictly positive entire solution, which is time-periodic

if the logistic source function is time-periodic, and time-homogeneous if the logistic source

function is time homogeneous. Moreover, if 0 < χ � 1, then (1.3) has a unique strictly
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positive entire solution which is uniformly and exponentially stable with respect to strictly

positive perturbation (see Theorems 2.4 and 2.5 for details).

When a positive entire solution is stable, it is natural to know the asymptotic behavior of

solutions with front-like or compactly supported initial functions. This question is strongly

related to the spreading speeds of solutions, the existence, uniqueness and stability of transition

front solutions of (1.3) connecting the unique positive entire solution and the trivial solution

u(x, t) ≡ 0. Transition waves are very important as they describe how mobile species transit

between two entire solutions. Transition waves are also used to characterize the spreading

speeds, however, transition wave solutions of (1.3) are hardly studied. In this dissertation, we

prove the following.

• Suppose that the functions a(x, t) and b(x, t) are both constant. If 0 < χµ � b, then for

every ε > 0 and every classical solution u(x, t) of (1.3) associated with a nonnegative and

nonempty compactly supported initial function u0(x) = u(x, 0), it holds that

lim sup
t→∞

sup
|x|≥(c∗upper+ε)t

u(x, t) = 0,

where c∗upper = 2
√
a+ µχa

√
N

2(b−χµ)
√
λ

. Furthermore, if 0 < χµ� b then there is a positive constant

c∗lower such that for every 0 < ε � 1 and every classical solution u(x, t) of (1.3) associated

with a nonnegative and nonempty compactly supported initial u0(x) = u(x, 0), it holds that

lim inf
t→∞

inf
|x|≤(c∗lower−ε)t

u(x, t) > 0

(see Theorem 2.6 for details and also for the general case).

• Suppose that a(x, t) ≡ a and b(x, t) ≡ b are both constant functions. Then for every positive

constants χ and µ satisfying 0 < µχ < b
2
, there is a constant c∗(χ) > 2

√
a such that for

every c ≥ c∗(χ), (1.3) has a traveling wave solution (u(x, t), v(x, t)) = (φ(x− ct), ψ(x− ct))

with speed c connecting the constant equilibrium solutions (a
b
, µa
λb

) and (0, 0). There is no such

traveling wave solution of speed less than 2
√
a (see Theorem 2.7 for more details).
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Chapter 2

Notations, definitions, and main results

In this chapter, we start with the notations that will be used throughout the rest of this work.

Also, we introduce the relevant definitions of the concepts discussed. The last part this chapter

is concerned with the statements of the main results of this dissertation. The proofs of these

results will be given in the subsequent chapters.

2.1 Notations and standing assumptions

Let N be a positive integer. For every x ∈ RN and r > 0, let |x|∞ = max{|xi| | i =

1, · · · , N}, |x| =
√∑N

i=1 |xi|2 and B(x, r) = {y ∈ RN | |x − y| < r}. For every function

w : RN × I → R, where I ⊂ R, we set winf(t) = infx∈RN w(x, t), wsup(t) = supx∈RN w(x, t),

winf = infx,tw(x, t) and wsup = supx,tw(x, t). Let

Cb
unif(RN) = {u ∈ C(RN) |u(x) is uniformly continuous inx ∈ RN and sup

x∈RN
|u(x)| <∞}

equipped with the norm ‖u‖∞ = supx∈RN |u(x)|. For any 0 ≤ ν < 1, let

Cb,ν
unif(R

N) = {u ∈ Cb
unif(RN) | sup

x,y∈RN ,x 6=y

|u(x)− u(y)|
|x− y|ν

<∞}

with norm ‖u‖Cb,νunif(RN ) = ‖u‖∞ + supx,y∈RN ,x 6=y
|u(x)−u(y)|
|x−y|ν and

Cθ((t1, t2), Cν
unif(RN))

= {u(·) ∈ C((t1, t2), Cν
unif(RN)) |u(t) is locally Hölder continuous in t with exponent θ}.

In particular for every u0 ∈ Cb
unif(RN), we set u0 inf = infx u0(x) and u0 sup = supx u0(x).

Throughout this work, we shall always suppose there is some 0 < ν � 1 such that the

following hypothesis holds:

(H) a(·, ·), b(·, ·) ∈ Cν,ν
unif(RN × R), min{ainf , binf} > 0, and max{asup, bsup} <∞.
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We will be concerned with the Banach space X = Cb
unif(RN) and the analytic semigroup

{T (t)}t≥0 generated by A = ∆− I on X = Cb
unif(RN). Explicitly, it holds that

(T (t)u)(x) = e−t(G(·, t) ∗ u)(x) =

∫
RN
e−tG(x− y, t)u(y)dy (2.1)

for every u ∈ X , t ≥ 0, and x ∈ RN , where X = Cb
unif(RN) and G(x, t) is the heat kernel

defined by

G(x, t) =
1

(4πt)
N
2

e−
|x|2
4t . (2.2)

Let X = Cb
unif(RN) and Xα = Dom((I − ∆)α) be the fractional power spaces of I − ∆

on X (α ∈ [0, 1]). Note that X0 = X and X1 = Dom(I − ∆). It is well known that

∆ generates a contraction C0−semigroup defined by the heat kernel, {G(t)}t≥0, on X with

spectrum σ(∆) = (−∞, 0] (see [16]). Thus, the Hille-Yosida theorem implies that the resolvent

operator R(λ) associated with ∆ is the Laplace transform of {G(·, t)}t. Thus the operator

∆− λI is invertible with

(λI −∆)−1u =

∫ ∞
0

e−λtG(·, t) ∗ udt (2.3)

for all u ∈ X and λ > 0. Furthermore the restriction operator (∆− λI)−1|Xα : Xα → Xα is a

bounded linear map. For every α ≥ 0 there is a positive constant Cα > 0 such that

‖T (t)u‖Xα ≤ Cαt
−αe−t‖u‖∞, t > 0, u ∈ Cb

unif(RN), (2.4)

with C0 = 1. Furthermore, it holds that

‖(T (t)− I)u‖X0 ≤ Cαt
αe−t‖u‖Xα , t > 0, u ∈ Xα, 0 < α ≤ 1. (2.5)

We refer to [16] for the proofs of the inequalities (2.4) and (2.5).

We end this section by stating an important result that will be needed to complete the proof

of the main theorem on the uniqueness of solutions.
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Lemma 2.1. ([16, Exercise 4∗, page 190]) Assume that a1, a2, α, β are nonnegative constants,

with 0 ≤ α, β < 1, and 0 < T <∞. There exists a constant M(a2, β, T ) <∞ so that for any

integrable function u : [0, T ]→ R satisfying

0 ≤ u(t) ≤ a1t
−α + a2

∫ t

0

(t− s)−βu(s)ds

for a.e. t in [0, T ], we have

0 ≤ u(t) ≤ a1M

1− α
t−α, a.e. on 0 < t < T.

2.2 Statements of the main results

As stated in the previous chapter, this dissertation is concerned with the study of the following

partial differential equations (PDE) :


∂tu = ∆u− χ∇ · (u∇v) + (a(x, t)− b(x, t)u)u, x ∈ RN ,

0 = ∆v − λv + µu, x ∈ RN ,

(2.6)

where the functions a(x, t) and b(x, t) satisfy the standing assumption (H). The objective of

the current work is to investigate the global existence and persistence of nonnegative bounded

classical solutions of (2.6), existence and stability of positive entire bounded classical solutions

of (2.6), spreading properties of classical solutions of (2.6) with compactly supported initial

functions, and traveling wave solutions for (2.6). For the sake of clarity, we introduce some

definitions.

Definition 2.1. For given u0 ∈ X := Cb
unif(RN) and t0 ∈ R, (u(x, t; t0, u0), v(x, t; t0, u0)) is

said to be a classical solution of (2.6) on [t0, T ) with u(x, t0; t0, u0) = u0(x) for every x ∈ RN

if u(·, ·; t0, u0), v(·, ·; t0, u0) ∈ C([t0, T ) : X)∩C2,1(RN×(t0, T )) and satisfies (2.6) for (x, t) ∈

RN×(t0, T ) in the classical sense with limt→0+ u(·, t0+t) = u0 inX . When a classical solution

(u(x, t), v(x, t)) of (2.6) on [t0, T ) satisfies u(x, t) ≥ 0 and v(x, t) ≥ 0 for every (x, t) ∈

RN × [t0, T ), we say that it is nonnegative. A global classical solution of (2.6) on [t0,∞) is a
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classical solution on [t0, T ) for every T > 0. We say that (u(x, t), v(x, t)) is an entire solution

of (2.6) if (u(x, t), v(x, t)) is a global classical solution of (2.6) on [t0,∞) for every t0 ∈ R.

For given uniformly continuous function u0 and t0, T ∈ R with T > t0, if (u(x, t), v(x, t)) is a

classical solution of (2.6) on RN × (t0, T ) with u(x, t0) = u0(x) for all x ∈ R, we denote it as

(u(x, t; t0, u0), v(x, t; t0, u0)) and call it the solution of (2.6) with initial function u0(x) at time

t0.

Note that, due to biological interpretations, only nonnegative initial functions will be of in-

terest. It is of great interest to determine under which circumstance that (2.6) has a unique

nonnegative solution for a given initial function. The main results stated below are selected

from our works [43, 44, 46, 47, 48, 49].

We have the following result on the local existence and uniqueness of solution of (2.6) for

initial data belonging to Cb
unif(RN).

Theorem 2.1. For any t0 ∈ R and u0 ∈ Cb
unif(RN) with u0 ≥ 0, there exists Tmax ∈ (0,∞]

such that (2.6) has a unique non-negative classical solution (u(x, t; t0, u0), v(x, t; t0, u0)) on

[t0, t0 + Tmax) satisfying limt→0+ u(·, t0 + t; t0, u0) = u0 in the Cb
unif(RN)-norm,

u(·, ·; t0, u0) ∈ C([t0, t0 + Tmax), Cb
unif(RN)) ∩ C1((t0, t0 + Tmax), Cb

unif(RN)) (2.7)

and

u, uxi , uxixj , ut ∈ Cθ((t0, t0 + Tmax), Cν
unif(RN)) (2.8)

for all i, j = 1, 2, · · · , N , 0 < θ � 1, and 0 < ν � 1. Moreover, if Tmax < ∞, then

lim supt→Tmax
‖u(·, t0 + t;u0)‖∞ =∞.

Note that for u0 ≡ 0, (u(x, t; t0, u0), v(x, t; t0, u0)) ≡ (0, 0) for all t ∈ R and x ∈ RN .

From both the mathematical and biological points of view, it is important to find conditions

which guarantee the global existence of (u(x, t; t0;u0), v(x, t; t0, u0)) for every t0 ∈ R and

u0 ∈ Cb
unif(RN) \ {0} with u0 ≥ 0. The following is our main result on the global existence.

Theorem 2.2. Suppose that χµ ≤ binf , then for every t0 ∈ R and nonnegative function

u0 ∈ Cb
unif(Rn) \ {0}, (2.6) has a unique nonnegative global classical solution (u(x, t; t0, u0),
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v(x, t; t0, u0)) satisfying limt↘0 ‖u(·, t0 + t; t0, u0)− u0‖∞ = 0. Moreover, it holds that

‖u(·, t+ t0; t0, u0)‖∞ ≤ ‖u0‖∞easupt. (2.9)

Furthermore, if

(H1) binf > χµ

holds, then the following hold.

(i) For every nonnegative initial function u0 ∈ Cb
unif(RN) \ {0} and t0 ∈ R, there holds

‖u(·, t+ t0; t0, u0)‖∞ ≤ max{‖u0‖∞,
asup

binf − χµ
} ∀ t > 0, (2.10)

and

lim sup
t→∞

‖u(·, t+ t0; t0, u0)‖∞ ≤
asup

binf − χµ
. (2.11)

(ii) For every u0 ∈ Cb
unif(RN) with infx∈RN u0(x) > 0 and t0 ∈ R, there holds

ainf

bsup

≤ lim sup
t→∞

sup
x∈RN

u(x, t+t0; t0, u0), lim inf
t→∞

inf
x∈RN

u(x, t+t0; t0, u0) ≤ asup

binf

. (2.12)

(iii) For every positive real number M > 0, there is a constant K1 = K1(ν,M, a, b) such that

for every u0 ∈ Cb
unif(RN) with 0 ≤ u0 ≤M , we have

‖v(·, t+ t0; t0, u0)‖C1,ν
unif(RN ) ≤ K1, ∀ t0 ∈ R, ∀ t ≥ 0. (2.13)

The so called persistence is an important concept in population models.

Definition 2.2. Assume (H1). We say that pointwise persistence occurs in (2.6) if for any

u0 ∈ Cb
unif(RN) with infx∈RN u0(x) > 0, there is m(u0) > 0 such that

m(u0) ≤ u(x, t+ t0; t0, u0) ≤ max{‖u0‖∞,
asup

binf − χµ
} ∀ t0 ∈ R and t > 0. (2.14)
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We say that uniform persistence occurs in (2.6) if there are 0 < m < M < ∞ such that for

any t0 ∈ R and any positive initial function u0 ∈ Cb
unif(RN) with infx∈R u0(x) > 0, there exists

T (t0, u0) > 0 such that

m ≤ u(x, t+ t0; t0, u0) ≤M ∀ t ≥ T (t0, u0).

By Theorem 2.2, for any u0 ∈ Cb
unif(RN) with u0 inf > 0, lim supt→∞ supx∈RN u(x, t +

t0; t0, u0) has a positive lower bound and lim inft→∞ infx∈RN u(x, t + t0; t0, u0) has a positive

upper bound. But it is not clear whether there is a positive lower bound (respectively, a positive

lower bound independent of u0) for lim inft→∞ infx∈RN u(x, t+t0; t0, u0) with infx∈RN u0(x) >

0 under hypothesis (H1), which would imply pointwise persistence (respectively, uniform per-

sistence) in (2.6). We have the following results on the pointwise persistence and uniform

persistence of solutions of (2.6) with positive initial functions.

Theorem 2.3. (i) (Pointwsie persistence) Suppose that (H1) holds. Then pointwise persis-

tence occurs in (2.6).

(ii) (Uniform persistence) Suppose that (H1) holds. If, furthermore,

(H2) binf > (1 +
asup

ainf

)χµ

holds, then uniform persistence occurs in (2.6). In particular, for every strictly positive

initial function u0 ∈ Cb
unif(RN) and ε > 0, there is Tε(u0) > 0 such that the unique

classical solution (u(x, t + t0; t0, u0), v(x, t + t0; t0, u0)) of (2.6) with u(·, t0; t0, u0) =

u0(·) satisfies

M − ε ≤ u(x, t+ t0; t0, u0) ≤M + ε, ∀t ≥ Tε(u0), x ∈ RN , t0 ∈ R, (2.15)

and

µM

λ
− ε ≤ v(x, t+ t0; t0, u0) ≤ µM

λ
+ ε, ∀t ≥ Tε(u0), x ∈ RN , t0 ∈ R, (2.16)

12



where

M :=
(binf − χµ)ainf − χµasup

(bsup − χµ)(binf − χµ)− (χµ)2
>
ainf − χµasup

binf−χµ

bsup − χµ
, (2.17)

and

M :=
(bsup − χµ)asup − χµainf

(bsup − χµ)(binf − χµ)− (χµ)2
<

asup

binf − χµ
. (2.18)

Furthermore, the set

Iinv := {u ∈ Cb
unif(RN) |M ≤ u0(x) ≤M, ∀x ∈ RN} (2.19)

is a positively invariant set for solutions of (2.6) in the sense that for every t0 ∈ R and

u0 ∈ Iinv, we have that u(·, t+ t0; t0, u0) ∈ Iinv for every t ≥ 0.

Remark 2.1. (1) Assume (H1). By Theorem 2.2 (ii), and Theorem 2.3 (i), it holds that

m(u0) ≤ asup
binf

and lim supt→∞ ‖u(·, t+ t0; t0, u0)‖∞ ≤ asup−χµm(u0)

binf−χµ
uniformly in t0 ∈ R

for every u0 ∈ Cb
unif(RN) with u0 inf > 0. It remains open whether uniform persistence

occurs under (H1).

(2) The proof of Theorem 2.3 (i) is highly nontrivial and is based on a key and fundamental

result proved in Lemma 4.5. Roughly speaking, Lemma 4.5 shows that for any given time

T > 0, the concentration u(x, t; t0, u0) of the mobile species at time t0 + T is bounded

below by u0 inf provided that u0 inf is sufficiently small. This result will also play a crucial

role in the study of existence of strictly positive entire solutions stated below.

(3) When the functions a(x, t) and b(x, t) are both space and time homogeneous, M = M =

a
b
, where M and M are as in Theorem 2.3 (ii).

Assume (H1). By Theorems 2.2 and 2.3, for any t0 ∈ R and strictly positive u0 ∈ Cb
unif(RN),

0 < lim inf
t→∞

inf
x∈RN

u(x, t+ t0; t0, u0) ≤ lim sup
t→∞

sup
x∈RN

u(x, t+ t0; t0, u0) <∞.

Naturally, it is important to know whether there is a strictly positive entire solution, that is, an

entire solution (u+(x, t), v+(x, t)) of (2.6) with inft∈R,x∈RN u
+(x, t) > 0. It is also important
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to know the stability of strictly positive entire solutions of (2.6) (if such exist) and to inves-

tigate the asymptotic behavior of globally defined classical solutions with nonnegative initial

functions. We have the following result on the existence of strictly positive entire solutions.

Theorem 2.4 (Existence of strictly positive entire solutions). Suppose that (H1) holds. Then

(2.6) has a strictly positive entire solution (u+(x, t), v+(t, x)). Moreover, the following hold.

(i) Any strictly positive entire solution (u+(x, t), v+(x, t)) of (2.6) satisfies

(ainf − χµu+
sup)+ ≤ (bsup − χµ)u+

inf and (binf − χµ)u+
sup ≤ (asup − χµu+

inf)+.

In particular, we have that

ainf

bsup

≤ u+
sup ≤

asup − χµu+
inf

binf − χµ
, (2.20)

for every positive entire solution (u+(x, t), v+(t, x)) of (2.6).

(ii) If (H2) holds, then any strictly positive entire solution (u+(x, t), v+(x, t)) of (2.6) satisfies

M ≤ u+(x, t) ≤M, ∀x ∈ RN , ∀t ∈ R, (2.21)

where M and M are given by (2.17) and (2.18), respectively.

(iii) If there is T > 0 such that a(x, t+T ) = a(x, t) and b(x, t+T ) = b(x, t) for very x ∈ RN ,

t ∈ R, then (2.6) has a strictly positive entire solution (u+(x, t), v+(x, t)) satisfying

(u+(x, t+ T ), v+(x, t+ T )) = (u+(x, t), v+(x, t)) for every x ∈ RN , t ∈ R.

(iv) If a(x, t) = a(x) and b(x, t) = b(x), then (2.6) has a strictly positive steady state solution.

Remark 2.2. (i) Theorem 2.4 (i) provides an explicit a priori lower and upper bounds for the

supremum of all positive entire solutions. This lower bound is in fact achieved in the case

when the functions a(x, t) and b(x, t) are constant.

14



(ii) Theorem 2.4 (ii) shows that if (H2) holds, then the explicit lower bound and upper bound

for all positive entire solutions which coincide with the lower bound and upper bound of

the attraction region given by Theorem 2.3 (ii).

We have the following result on the uniqueness and stability of positive entire solutions of

(2.6).

Theorem 2.5 (Uniqueness and stability of strictly positive entire solutions). There exists χ0 > 0

such that when 0 ≤ χ < χ0, there is αχ > 0 such that (2.6) has a unique strictly positive entire

solution (u+
χ (x, t), v+

χ (x, t)) which is uniformly and exponentially stable with respect to strictly

positive perturbations in the sense that for any u0 ∈ Cb
unif(R) with u0 inf > 0, there is M > 0

such that

‖u(·, t+ t0; t0, u0)− u+
χ (·, t+ t0)‖∞ ≤Me−αχt, ∀t ≥ 0, ∀ t0 ∈ R, (2.22)

and

‖v(·, t+ t0; t0, u0)− v+
χ (·, t+ t0)‖∞ ≤

µ

λ
Me−αχt, ∀t ≥ 0, ∀ t0 ∈ R., ∀ t0 ∈ R. (2.23)

Furthermore, if the logistic function f(x, t, u) = (a(x, t)− ub(x, t))u is either space homo-

geneous or is of form f(x, t, u) = b(x, t)(κ− u)u, κ > 0, then χ0 can be taken to be χ0 = binf
2µ

,

and u+
χ (x, t) = u+

0 (t), 0 < χ < χ0, is the only stable positive entire solution of the Fisher-KPP

equation (1.4).

Remark 2.3. (i) If we suppose that the logistic function is space homogeneous (resp. the func-

tion RN × R 3 (x, t) 7→ a(x,t)
b(x,t)

is constant), Theorem 2.5 establishes the stability of the

unique space homogeneous (resp. space-time homogeneous) positive entire solution of

(2.6) when the chemotaxis sensitivity satisfies 0 < χ < binf
2µ

. Furthermore, this result

goes beyond the stability of the constant equilibrium given by Theorem 2.3 (ii) when the

logistic source is constant, and show that all strictly positive solutions of (2.6) converge

exponentially to (a
b
, µa
λb

) when 0 < χ < binf
2µ

. It should be noted that the hypothesis

0 < χ < binf
2µ

is weaker than hypothesis (H2).
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(ii) It is worth mentioning that the techniques developed to prove Theorem 2.5 can be adopted

to study the uniqueness and stability of positive entire solution of (2.6) studied on bounded

domains with Neuwmann boundary conditions. Hence the same result is true in this latter

case.

We have the following results on the asymptotic behavior or spreading properties of solutions

to (2.6) with compactly supported initial functions.

Theorem 2.6 (Asymptotic spreading). (1) Suppose that (H1) holds. Then for every t0 ∈ R

and every nonnegative initial function u0 ∈ Cb
unif(RN) with nonempty compact support

supp(u0), we have that

lim
t→∞

sup
|x|≥ct

u(x, t+ t0; t0, u0) = 0, ∀c > c∗+, (2.24)

where

c∗+(a, b, χ, λ, µ) := 2
√
asup +

χµ
√
Nasup

2(binf − χµ)
√
λ
. (2.25)

(2) Suppose that

(H3) binf >

1 +

(
1 +

√
1 + Nainf

4λ

)
asup

2ainf

χµ. .

(2.26)

Then for every t0 ∈ R and nonnegative initial function u0 ∈ Cb
unif(RN) with

lim inf
t→∞

inf
|x|≤ct

u(x, t+ t0; t0, u0) > 0, ∀0 ≤ c < c∗−(a, b, χ, λ, µ), (2.27)

where

c∗−(a, b, χ, λ, µ) := 2

√
ainf −

χµasup

binf − χµ
− χ µ

√
Nasup

2
√
λ(binf − χµ)

(2.28)
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Remark 2.4. Let χ0 be given by Theorem 2.5. One can prove that for every,

0 < χ < min

χ0,
binf

µ

1 +

(
1 +

√
1 + Nainf

4λ

)
asup

2ainf


−1
 ,

it holds that

lim
t→∞

sup
|x|≤ct

|u(x, t+ t0; t0, u0)− u+
χ (x, t)| = 0, ∀0 ≤ c < c∗−(a, b, χ, λ, µ),∀ t0 ∈ R,

whenever u0 ∈ Cb
unif(RN) is nonnegative with nonempty compact support supp(u0), where the

constant c∗−(a, b, χ, λ, µ) is given by Theorem 2.6.

We studied the existence and non-existence of transition wave solution of (2.6) when the

functions a(x, t) and b(x, t) are both constant.

Definition 2.3. Suppose that the functions a(x, t) and b(x, t) are both constant. Given a vector

ξ ∈ RN with ‖ξ‖ = 1, an entire solution (u(x, t), v(x, t)) is called a traveling wave solution

of (2.6) in the direction of ξ with speed c, connecting (a
b
, aµ
bλ

) and (0, 0) if it can be written as

(u(x, t), v(x, t)) = (U(x · ξ− ct), V (x · ξ− ct)) for some nonnegative functions U, V ∈ C2(R)

satisfying limx→−∞(U(x), V (x)) = (a
b
, aµ
bλ

) and limx→∞(U(x), V (x)) = (0, 0). The function

(U(x), V (x)) is called the profile of the traveling wave.

Among others, we proved the following results.

Theorem 2.7 (Existence and non-existence of Traveling wave solutions). Suppose that N = 1.

(i) (Existence of planar traveling wave solutions) Suppose that the functions a(x, t) and b(x, t)

are constant. There is a function c∗up : (0, b
µ
) 3 χ 7→ c∗up(χ) ∈ (2

√
a,∞) satisfying

lim
χ→0+

c∗up(χ) =


2
√
a if a ≤ λ,

a+λ√
λ

if a ≥
√
λ,
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such that for every 0 < χ < b
2µ

, and c ≥ c∗up(χ), (2.6) has a traveling wave solution

(u(x, t), v(x, t)) = (U(x−ct), V (x−ct)) with speed c and connecting (a
b
, aµ
bλ

) and (0, 0)

(i.e. (U(−∞), V (−∞)) = (a
b
, aµ
bλ

) and (U(∞), U(∞)) = (0, 0)). Moreover,

lim
x→∞

U(x)

e−µx
= 1,

where µ is the only solution of the equation c = µ+ a
µ

in (0,
√
a).

(ii) (Non-existence of planar traveling wave solutions) Suppose that the functions a(x, t) and

b(x, t) are both constant. Then (2.6) has no traveling wave solution (u(x, t), v(x, t)) =

(U(x− ct), V (x− ct)) with a speed c < 2
√
a and connecting (a

b
, aµ
bλ

) and (0, 0).

Remark 2.5. We note that supposing N = 1 in Theorem 2.7 is not a restriction. Indeed, if

(u(x, t), v(x, t)) = (U(x − ct), V (x − ct)), x ∈ R, is a traveling wave solution of (2.6) with

speed c connecting (a
b
, aµ
bλ

) and (0, 0) in R then for any given unit vector ξ ∈ RN and N ≥ 1

the function (u(x, t), v(x, t)) = (U(x · ξ− ct), V (x · ξ− ct)), x ∈ RN , is also a traveling wave

in the direction of ξ with speed c connecting (a
b
, aµ
bλ

) and (0, 0). Hence Theorem 2.7 applies to

N ≥ 1.
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Chapter 3

Local and global existence of nonnegative classical solutions

In this chapter, which contains two sections, we study the local and global existence of nonneg-

ative classical solutions of (2.6) and prove Theorems 2.1 and 2.2. Section 1 is devoted to the

study of local existence of nonnegative classical solution. In section 2, we provide explicit con-

ditions on the parameters which ensure that time-local classical solutions are defined globally

in time.

3.1 Local existence of classical solutions

In this section, we investigate the local existence and uniqueness of classical solutions of (2.6)

with given initial functions in Cb
uinf(RN) and prove Theorem 2.1. Our approach to prove The-

orem 2.1 is first to prove the existence of a mild solution (see Definition 3.1 below) and then to

prove the mild solution is a classical solution.

Definition 3.1. For given u0 ∈ Cb
unif(RN), t0 ∈ R and T > 0, a function (u(x, t), v(x, t)) ∈

[C([t0, t0 + T ] : Cb
unif(RN))]2, with v = µ(λI −∆)−1u, is called a mild solution of (2.6) if it

satisfies the integral equation

u(·, t+ t0) =T (t)u0 − χ
∫ t

0

T (t− s)∇ · (u(s+ t0)∇v(s+ t0))ds

+

∫ t

0

T (t− s)(1 + a(s+ t0)− b(s+ t0)u(s+ t0))u(s+ t0)ds, ∀ t ∈ [0, T ],

where {T (t)}t≥0 is the analytic C0-semigroup in (2.1).

It is clear that any classical solution of (2.6) is also a mild solution in the sense of Definition

3.1. Next, we establish some important lemmas.
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Lemma 3.1. Let T (t)t≥0 be the semigroup in (2.1) generated by ∆−I on Cb
unif(RN). For every

t > 0, the operator T (t)∇· has a unique bounded extension on
(
Cb

unif(RN)
)N satisfying

‖T (t)∇ · u‖∞ ≤
N√
π
t−

1
2 e−t‖u‖∞ ∀ u ∈

(
Cb

unif(RN)
)N
, ∀ t > 0. (3.1)

Proof. Let C1,b
unif(RN) = {u ∈ C1(RN) |u(·), ∂xiu(·) ∈ Cb

unif(RN), i = 1, 2, · · · , N}. Since

C1,b
unif(RN) is a dense subspace of Cb

unif(RN), it is enough to prove that inequality (3.1) hold on(
C1,b

unif(RN)
)N
. For every u = (u1, u2, · · · , uN) ∈

(
C1,b

unif(RN)
)N and t > 0, we have

T (t)∂xiui =
e−t

(4πt)
N
2

∫
RN
e−
|z|2
4t ∂xiui(x−z)dz = lim

R→∞

[
e−t

(4πt)
N
2

∫
B(0,R)

e−
|z|2
4t ∂xiui(x− z)dz

]
.

(3.2)

Next, for every R > 0 using integration by parts, we have

∫
B(0,R)

e−
|z|2
4t ∂xiui(x− z)dz (3.3)

=
1

2t

∫
B(0,R)

zie
− |z|

2

4t ui(x− z)dz −
∫
∂B(0,R)

e−
|z|2
4t ui(x− z)νi(z)ds(z)

=
1

2t

∫
B(0,R)

zie
− |z|

2

4t ui(x− z)dz − e−
R2

4t

∫
∂B(0,R)

ui(x− z)
zi
R
ds(z). (3.4)

Since u is uniformly bounded and the function z ∈ RN 7→ zie
− |z|

2

4t belongs to L1(RN), then

lim
R→∞

1

2t

∫
B(0,R)

zie
− |z|

2

4t ui(x− z)dz =
1

2t

∫
RN
zie
− |z|

2

4t ui(x− z)dz. (3.5)

On the other hand, we have

∣∣∣∣e−R2

4t

∫
∂B(0,R)

ui(x− z)
zi
R
ds(z)

∣∣∣∣ ≤ ‖ui‖∞e−R2

4t

∫
∂B(0,R)

ds(z)→ 0 as R→∞. (3.6)

Combining (3.2), (3.3),(3.5) and (3.6), we obtain that

T (t)∂xiui =
e−t

2t (4πt)
N
2

∫
RN
zie
− |z|

2

4t ui(x− z)dz =
e−t

2t (4πt)
N
2

∫
RN
Hi(z, t)ui(x− z)dz, (3.7)
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where the function Hi(z, t) = zie
− |z|

2

4t . Observe that, taking y = 1
2
√
t
z, then

‖Hi(·, t)‖L1(RN ) = 2
√
t (4t)

N
2

∫
RN
|yi|e−|y|

2

dy = 2
√
t (4t)

N
2 ‖Hi(·,

1

4
)‖L1(RN ).

This, combined with Hölder’s inequality and (3.7) yield that

‖T (t)∂xiui‖∞ ≤
t−

1
2 e−t

π
N
2

‖Hi(·,
1

4
)‖L1(RN )‖ui‖∞.

Direct computations yield that ‖Hi(·, 1
4
)‖L1(RN ) = π

N−1
2 . Hence

‖T (t)∂xiui‖∞ ≤
t−

1
2 e−t√
π
‖ui‖∞. (3.8)

Inequality (3.1) easily follows from (3.8).

The next Lemma provides an explicit a priori estimate of the gradient of the solution v(·, ·)

in the second equation of (2.6). This a priori estimate will be useful in the proof of existence

theorem and the discussion on the asymptotic behavior of the solution.

Lemma 3.2. For every u ∈ Cb
unif(RN), with u(x) ≥ 0, and λ > 0, we have that

‖(∆− λI)−1u‖∞ ≤
1

λ
‖u‖∞ and ‖∂xi(∆− λI)−1u‖∞ ≤

1

2
√
λ
‖u‖∞ (3.9)

for each i = 1, · · · , N . Therefore we have

‖∇(∆− λI)−1u‖∞ ≤
√
N

2
√
λ
‖u‖∞, ∀ u ∈ Cb

unif(RN). (3.10)

Proof. Let u ∈ Cb
unif(RN) and set v = (I −∆)−1u. According to (2.3) it follows that

|v(x)| ≤
∫ ∞

0

∫
RN

e−λs

(4πs)
N
2

e−
|x−z|2

4s |u(z)|dzds

≤‖u‖∞
∫ ∞

0

∫
RN

e−λs

(4πs)
N
2

e−
|x−z|2

4s dzds =
1

λ
‖u‖∞, ∀ x ∈ RN . (3.11)
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On the other hand, observe that from (2.3) that

∂xiv(x) =

∫ ∞
0

∫
RN

(zi − xi)e−λs

2s(4πs)
N
2

e−
|x−z|2

4s u(z)dzds

=

∫ ∞
0

∫
RN

zie
−λse−|z|

2

π
N
2
√
s

u(x+ 2
√
sz)dzds

=

∫ ∞
0

∫
RN

e−λse−|πi(z)|
2

π
N−1

1
√
s

[∫ ∞
0

zie
−z2i u(x+ 2

√
s(πi(z) + ziei))dzi

]
dπi(z)ds

−
∫ ∞

0

∫
RN−1

e−λse−|πi(z)|
2

π
N
1
√
s

[∫ ∞
0

zie
−z2i u(x+ 2

√
s(πi(z)− ziei))dzi

]
dπi(z)ds

(3.12)

where πi(z) = (z1, · · · , zi−1, 0, zi+1, · · · , zN) for every z ∈ RN . Since u(z) ≥ 0, for every τ ∈

{−1, 1} and i ∈ {1, · · · , N}, using the facts that
∫∞

0
zie
−z2i dzi = 1

2
,
∫
RN−1

e−|πi(z)|
2

π
N−1

1
√
s
dπi(z) =

π
N−1

2 , and
∫∞

0
e−λs√
λ
ds =

√
π√
λ

, we have

0 ≤
∫ ∞

0

∫
RN−1

e−λse−|πi(z)|
2

π
N−1

1
√
s

[∫ ∞
0

zie
−z2i u(x+ 2

√
s(πi(z) + τziei))dzi

]
dπi(z)ds

≤‖u‖∞
∫ ∞

0

∫
RN

e−λse−|πi(z)|
2

π
N−1

1
√
s

[∫ ∞
0

zie
−z2i dzi

]
dπi(z)ds

=‖u‖∞
[∫ ∞

0

e−λs√
λ
ds

] [∫
RN−1

e−|πi(z)|
2

π
N−1

1
√
s
dπi(z)

][∫ ∞
0

zie
−z2i dzi

]
=
‖u‖∞
2
√
λ
. (3.13)

Therefore, (3.9) follows from (3.11), (3.12) and (3.13). The lemma thus follows.

Next, we prove Theorems 2.1. The main tools for the proof of this theorem are based on the

contraction mapping theorem and the existence of classical solutions for linear parabolic equa-

tions with Hölder continuous coefficients. Throughout the rest of this subsection, C denotes

a constant independent of the initial functions and the solutions under consideration, unless

specified otherwise. We let X = Cb
unif(RN) and Xβ is the fractional power space of I −∆ on

X (β ∈ (0, 1)).

Proof of Theorem 2.1. (i) Existence of mild solution. We first prove the existence of a mild

solution of (2.6) with given initial function u0 ∈ Cb
unif(RN), which will be done by proving five

claims.
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Fix u0 ∈ Cb
unif(RN). For every t0, T > 0 and R > 0, let

SR,T (t0) :=
{
u ∈ C([t0, t0 + T ], Cb

unif(RN)) | ‖u(·, t)‖X ≤ R
}
.

Note that SR,T (t0) is a closed subset of the Banach space C([t0, t0 + T ], Cb
unif(RN)) with the

sup-norm.

Claim 1. For any u ∈ SR,T (t0) and t ∈ [0, T ], (Gu)(t+ t0) is well defined, where

(Gu)(t+ t0) =T (t)u0 + χ

∫ t

0

T (t− s)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0))ds

+

∫ t

0

T (t− s)
(
(1 + a(·, s+ t0))u(s+ t0)− b(·, s+ t0)u2(s+ t0)

)
ds,

with (Gu)(t0) = u0, and the integrals are taken in Cb
unif(RN). Indeed, let u ∈ SR,T (t0) and

0 < t ≤ T be fixed. Since the function

[0, t] 3 s 7→ (a(·, s+ t0) + 1)u(s+ t0)− b(·, s+ t0)u2(s+ t0) ∈ Cb
unif(RN)

is continuous, then the function F1 : [0, t]→ Cb
unif(RN) defined by

F1(s) := T (t− s)
(
(1 + a(·, s+ t0))u(s+ t0)− b(·, s+ t0)u2(s+ t0)

)
is continuous. Hence the Riemann integral

∫ t
0
F1(s)ds in Cb

unif(RN) exists. Observe that for

every 0 < ε < t and s ∈ [0, t− ε], we have

F2,ε(s) :=T (t− s)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0))

=T (t− ε− s)T (ε)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0)),

and the function [0, t − ε] 3 s 7→ T (ε)∇ · (u(s + t0)∇(∆ − λI)−1u(s + t0)) ∈ Cb
unif(RN) is

continuous. Thus the function F2,ε : [0, t− ε]→ Cb
uinf(RN) is continuous for every 0 < ε < t.

Thus, the function F2 : [0, t)→ Cb
uinf(RN) defined by

F2(s) := T (t− s)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0))
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is continuous. Moreover, using Lemma 3.1 and inequality (3.10), we have that

∫ t

0

‖F2(s)‖∞ds ≤ χ

∫ t

0

‖T (t− s)∇ · ‖‖u(s+ t0)‖∞‖∇(∆− λI)−1u(s+ t0)‖∞ds

≤ µN
√
N

2
√
λπ

χ

∫ t

0

(t− s)−
1
2 e−(t−s)‖u(s+ t0)‖2

∞ds

≤ µNR2
√
N

2
√
λπ

χΓ(
1

2
) =

µNR2
√
N

2
√
λ

χ.

Hence, the Riemann integral
∫ t

0
F2(s)ds inCb

unif(RN) exists. Note that (Gu)(t+t0) = T (t)u0+∫ t
0
F2(s)ds+

∫ t
0
F1(s)ds. Whence, Claim 1 follows.

Claim 2. For every u ∈ SR,T (t0) and 0 < β < 1
2
, the function (0, T ] 3 t→ (Gu)(t+ t0) ∈ Xβ

is locally Hölder continuous, and G maps SR,T (t0) into C([t0, t0 + T ], Cb
unif(RN)).

First, observe that

(Gu)(t+ t0) = T (t)u0︸ ︷︷ ︸
I0(t)

+χ

∫ t

0

T (t− s)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0))ds︸ ︷︷ ︸
I1(t)

+

∫ t

0

T (t− s)((a(·, s+ t0) + 1)u(s+ t0)− b(·, s+ t0)u2(s+ t0))ds︸ ︷︷ ︸
I2(t)

.

(3.14)

For every t > 0, it is clear that T (t)u0 ∈ Xβ because the semigroup {T (t)}t is analytic.

Furthermore, the divergence operator T (t)∇· satisfies

T (t)∇ · w = T (
t

2
)(T (

t

2
)∇ · w) ∈ Dom(∆) ⊂ Xβ
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for all t > 0, w ∈
(
Cb

unif(RN)
)N . Using Lemma 3.1 and inequalities (2.4) and (3.10), we

obtain

∫ t

0

‖T (t− s)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0))‖Xβds

=

∫ t

0

‖(∆− I)βT (t− s)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0))‖∞ds

≤C
∫ t

0

(t− s)−β−
1
2 e−(t−s)‖u(s+ t0)∇(∆− λI)−1u(s+ t0)‖∞ds

≤CR2

∫ t

0

(t− s)−β−
1
2 e−(t−s)ds ≤ CR2Γ(

1

2
− β). (3.15)

Since the operator (I −∆)β is closed, we have that

I1(t) =

∫ t

0

T (t− s)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0))ds ∈ Xβ

for every t > 0. Similar arguments show that I2(t) ∈ Xβ for every 0 < t ≤ T . Hence

u(t) ∈ Xβ for every t > 0.

Next, let t ∈ (0, T ) and h > 0 such that t+ h ≤ T . Using (2.4) and (2.5), we have

‖I0(t+ h)− I0(t)‖Xβ ≤ ‖(T (h)− I)T (t)u0‖Xβ ≤ Chβ‖T (t)u0‖X2β

≤ Chβt−2βe−t‖u0‖∞ ≤ Chβt−2β‖u0‖∞, (3.16)

‖I1(t+ h)− I1(t)‖Xβ

≤
∫ t

0

‖(T (h)− I)T (t− s)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0))‖Xβds

+

∫ t+h

t

‖T (t+ h− s)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0))‖Xβ

≤Chβ
∫ t

0

(t− s)−β−
1
2 e−(t+h−s)‖(u(s+ t0)∇(∆− λI)−1u(s+ t0))‖∞ds

+ C

∫ t+h

t

(t+ h− s)−β−
1
2 e−(t+h−s)‖u(s+ t0)∇(∆− λI)−1u(s+ t0))‖∞ds

≤CR2hβ
∫ t

0

e−(t+h−s)

(t− s)β+ 1
2

ds+ CR2

∫ t+h

t

e−(t+h−s)

(t+ h− s)β+ 1
2

ds ≤ CR2(hβ + h
1
2
−β), (3.17)

and
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‖I2(t+ h)− I2(t)‖Xβ

≤
∫ t

0

‖(T (h)− I)T (t− s)((a(·, s+ t0) + 1)u(s+ t0)− b(·, s+ t0)u2(s+ t0))‖Xβds

+

∫ t+h

t

‖T (t+ h− s)((a(·, s+ t0) + 1)u(s+ t0)− b(·, s+ t0)u2(s+ t0))‖Xβds

≤Chβ
∫ t

0

(t− s)−βe−(t+h−s)‖(a(·, s) + 1)u(s+ t0)− b(·, s)u2(s+ t0)‖∞ds

+ C

∫ t+h

t

e−(t+h−s)

(t+ h− s)β
‖(a(·, s+ t0) + 1)u(s+ t0)− b(·, s+ t0)u2(s+ t0)‖∞ds

≤CR2(hβ + h1−β). (3.18)

Combining (3.14),(3.16),(3.17) and (3.18), we deduce that the function (0, T ] 3 t → (Gu(t +

t0)) ∈ Xβ is locally Hölder continuous.

Now it is clear that t → (Gu)(t + t0) ∈ Cb
unif(RN) is continuous in t at t = 0. The claim

then follows.

Claim 3. For every R > ‖u0‖∞, there exists T := T (R) such that G(SR,T (t0)) ⊂ SR,T (t0).

First, observe that for any u ∈ SR,T (t0), we have

‖G(u)(t+ t0)‖∞

≤ ‖T (t)u0‖∞ + χ

∫ t

0

‖T (t− s)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0))‖∞ds

+(1 + asup)

∫ t

0

‖T (t− s)u(s+ t0)‖∞ds+ bsup

∫ t

0

‖T (t− s)u2(s+ t0)‖∞ds

≤ e−t‖u0‖∞ + χ

∫ t

0

‖T (t− s)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0))‖∞ds

+(1 + asup)R

∫ t

0

e−(t−s)ds+ bsupR
2

∫ t

0

e−(t−s)ds

= e−t‖u0‖∞ +R ((1 + asup) + bsupR) (1− e−t)

+χ

∫ t

0

‖T (t− s)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0))‖∞ds. (3.19)

Using Lemma 3.1 and inequality (3.10), the last inequality can be improved to

26



‖G(u)(t+ t0)‖∞ ≤e−t‖u0‖∞ +R ((1 + asup) + bR) (1− e−t)

+ Cχ

∫ t

0

e−(t−s)
√
t− s

‖(u(s+ t0)∇(∆− λI)−1u(s+ t0))‖∞ds

≤‖u0‖∞
et

+R ((1 + asup) + bR) (1− e−t) + χCR2

∫ t

0

e−(t−s)
√
t− s

ds

≤‖u0‖∞
et

+R ((1 + asup) + bsupR) (1− e−t) + 2CχR2t
1
2 . (3.20)

Now, by (3.20), we can now chose T > 0 such that

‖G(u)(t+ t0)‖∞ ≤
‖u0‖∞
e−t

+R ((1 + asup) + bsupR) (1− e−t) + 2CχR2t
1
2 < R ∀ t ∈ [0, T ].

This together with Claim 2 implies Claim 3.

Claim 4. G is a contraction map for T small and hence has a fixed point u(·) ∈ SR,T (t0).

Moreover, for every 0 < β < 1
2
, (0, T ] 3 t→ u(t+ t0) ∈ Xβ is locally Holder continuous.

For every u,w ∈ SR,T , using again Lemma 3.1 and (2.4), we have

‖(G(u)−G(w))(t+ t0)‖∞

≤χ
∫ t

0

‖T (t− s)∇ · (u∇(∆− λI)−1u− w∇(∆− λI)−1w)(s+ t0)‖∞ds

+ (1 + asup)

∫ t

0

‖T (t− s)(u(s+ t0)− w(s+ t0))‖∞ds

+ bsup

∫ t

0

‖T (t− s)(u2(s+ t0)− w2(s+ t0)‖∞ds

≤Cχ
∫ t

0

e−(t−s)
√
t− s

‖(u∇(∆− λI)−1u− w∇(∆− λI)−1w)((s+ t0))‖∞ds

+ ((1 + asup) + 2Rbsup)

∫ t

0

e−(t−s)‖(u(s)− w(s))‖∞ds

≤Cχ
∫ t

0

e−(t−s)
√
t− s

‖(u(s+ t0)− w(s+ t0))‖∞‖∇(∆− λI)−1u(s)‖∞ds

+ Cχ

∫ t

0

e−(t−s)
√
t− s

‖w(s+ t0)‖∞‖∇(∆− λI)−1(w(s+ t0)− u(s+ t0))‖∞ds

+ (1 + asup + 2Rbsup)‖u− w‖SR,T (t0)

∫ t

0

e−(t−s)ds

≤

(
CRχµ

√
N√

λ

∫ t

0

e−(t−s)
√
t− s

ds+ (1 + asup + 2Rbsup)

∫ t

0

e−(t−s)ds

)
‖u− w‖SR,T (t0)

≤

(
2
CRχµ

√
N√

λ
t
1
2 + (1 + asup + 2Rbsup)t

)
‖u− w‖SR,T (t0).
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Hence, choose T small satisfying

2
CRχµ

√
N√

λ
t
1
2 + (1 + asup + 2Rbsup)t < 1 ∀ t ∈ [0, T ],

we have that G is a contraction map. Thus there is T > 0 and a unique function u ∈ SR,T (t0)

such that

u(t+ t0) = T (t)u0 + χ

∫ t

0

T (t− s)∇ · (u(s+ t0)∇(∆− λI)−1u(s+ t0))ds

+

∫ t

0

T (t− s)((a(·, s+ t0) + 1)u(s+ t0)− b(·, s+ t0)u2(s+ t0))ds.

Moreover, by Claim 2, for every 0 < β < 1
2
, the function t ∈ (0, T ] → u(t + t0) ∈ Xβ is

locally Holder continuous. Clearly, u(t) is a mild solution of (2.6) on [t0, T + t0) with α = 0

and X0 = Cb
unif(RN).

Claim 5. There is Tmax ∈ (0,∞] such that (2.6) has a mild solution u(·) on [t0, t0 +Tmax) with

α = 0 and X0 = Cb
unif(RN). Moreover, for every 0 < β < 1

2
, (0, Tmax) 3 t 7→ u(·) ∈ Xβ is

locally Hölder continuous. If Tmax <∞, then lim supt→Tmax
‖u(t+ t0)‖∞ =∞.

This claim follows the regular extension arguments.

(ii) Regularity and non-negativity. We next show that the mild solution u(·) of (2.6) on

[t0, t0 + Tmax) obtained in (i) is a nonnegative classical solution of (2.6) on [t0, t0 + Tmax) and

satisfies (2.7), (2.8).

Without loss of generality, we may suppose that t0 = 0. Let 0 < t1 < Tmax be fixed. It

follows from claim 2 that for 0 < ν � 1, u1 := u(t1) ∈ Cν
unif(RN), and the mappings

t→ u(·, t+ t1) := u(t+ t1)(·) ∈ Cν
unif(RN), t 7→ v(·, t+ t1) ∈ Cν

unif(RN)

t 7→ ∂v(·, t+ t1)

∂xi
∈ Cν

unif(RN), t 7→ ∂2v(·, t+ t1)

∂xi∂xj
∈ Cν

unif(RN)

are locally Hölder continuous in t ∈ (−t1, Tmax−t1), where v(·, t+t1) := µ(λI−∆)−1u(·, t+

t1) and i, j = 1, 2, · · · , N . Consider the initial value problem
∂
∂t
ũ = (∆− 1)ũ+ F̃ (t, ũ), x ∈ RN , t > 0

ũ(x, 0) = u1(x), x ∈ RN ,

(3.21)

where F̃ (t, ũ) = −χ∇v(·, t+t1)∇ũ+(a(·, t+t1)+1−χv(·, t+t1)−(b(·, t+t1)−χ)u(·, t+t1))ũ.

Then by [13, Theorem 11 and Theorem 16 in Chapter 1], (3.21) has a unique classical solution
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ũ(x, t) on [0, Tmax − t1) with limt→0+ ‖ũ(·, t)− u1‖∞ = 0. In fact ũ has the representation

ũ(x, t) =

∫
RN

Γ(x, t, y, t1)u1(y)dy

with the function Γ satisfying the inequalities

|Γ(x, t, y, τ)| ≤ C
e−

λ0|x−y|
2

4(t−τ)

(t− τ)
N
2

and |∂xiΓ(x, t, y, τ)| ≤ C
e−

λ0|x−y|
2

4(t−τ)

(t− τ)
(N+1)

2

for every 0 < λ0 < 1. By a priori interior estimates for parabolic equations (see [13, Theorem

5]), we have that
ũ(·, ·) ∈ C1((0, Tmax − t1), Cb

unif(RN),

and the mappings

t 7→ ũ(·, t) ∈ Cν
unif(RN), t 7→ ∂ũ

∂xi
(·, t) ∈ Cν

unif(RN),

t 7→ ∂2ũ

∂xi∂xj
(·, t) ∈ Cν

unif(RN), t 7→ ∂ũ

∂t
(·, t) ∈ Cν

unif(RN)

are locally Hölder continuous in t ∈ (0, Tmax − t1) for i, j = 1, 2, · · · , N and 0 < ν � 1.

Hence, by [16, Lemma 3.3.2], ũ(t)(·) = ũ(·, t) is also a mild solution of (3.21) and then

satisfies the following integral equation,

ũ(t) = T (t)u1 − χ
∫ t

0

T (t− s)(∇v(s+ t1)∇ũ(s))ds

+

∫ t

0

T (t− s)(a(·, s+ t1) + 1− χv(s+ t1)− (b(·, s+ t1)− χ)u(s+ t1))ũ(s))ds

for t ∈ [0, Tmax − t1). Now, using the fact that ∇ũ · ∇v(· + t1) = ∇ · (ũ∇v(· + t1))− (v(· +

t1)− u(·+ t1))ũ, we have

ũ(t) =T (t)u1 − χ
∫ t

0

T (t− s)(∇ · (ũ(s)∇v(s+ t1))ds

+ χ

∫ t

0

T (t− s)(v(s+ t1)− u(s+ t1))ũ(s)ds

+

∫ t

0

T (t− s)(a+ 1− χv − (b− χ)u(s+ t1))ũ(s)ds

=T (t)u1 − χ
∫ t

0

T (t− s)∇ · (ũ(s)∇v(s+ t1))ds

+

∫ t

0

T (t− s)(a+ 1− bu(s+ t1))ũ(s)ds. (3.22)

On the other hand from equation (3.14), we have that
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u(t+ t1) = T (t)u1 − χ
∫ t

0

T (t− s)∇ · (u(s+ t1)∇v(s+ t1))ds

+

∫ t

0

T (t− s)(a+ 1− bu(s+ t1))u(s+ t1)ds. (3.23)

Taking the difference side by side of (3.22) and (3.23) and using Lemma 3.1 and (2.4), we

obtain for any ε > 0 and 0 < t < Tε < Tmax − t1 − ε that

‖ũ(t)− u(t+ t1)‖∞

≤ χ

∫ t

0

‖T (t− s)∇ · ((u(s+ t1)− ũ(s))∇v(s+ t1))‖∞ds

+

∫ t

0

‖T (t− s)(a+ 1− bu(s+ t1))(u(s+ t1)− ũ(s))‖∞ds

≤ Cχ

∫ t

0

(t− s)−
1
2 e−(t−s)‖(u(s+ t1)− ũ(s))∇v(s+ t1))‖∞ds

+

∫ t

0

e−(t−s)‖(a+ 1− bu(s+ t1))(u(s+ t1)− ũ(s))‖∞ds

≤ Cχ sup
s∈[0,Tε]

‖∇v(s+ t1)‖∞
∫ t

0

(t− s)−
1
2 e−(t−s)‖u(s+ t1)− ũ(s)‖∞ds

+C(asup + 1 + bsup sup
s∈[0,Tε]

‖u(s+ t1)‖∞)

∫ t

0

e−(t−s)‖u(s+ t1)− ũ(s)‖∞ds.

Combining this last inequality with Lemma 2.1, we conclude that ũ(t) = u(t + t1) for every

t ∈ [0, Tε]. We then have that u is a classical solution of (2.6) on [0, Tmax) and satisfies (2.7)

and (2.8). Since u0 ≥ 0, by comparison principle for parabolic equations, we get u(x, t) ≥ 0.

Let u(·, t;u0) = u(t)(·) and v(·, t;u0) = µ(λI − ∆)−1u(·, t;u0). We have that the func-

tion (u(·, ·;u0), v(·, ·;u0)) is a nonnegative classical solution of (2.6) on [0, Tmax) with initial

function u0 and u(·, t;u0) satisfies (2.7) and (2.8).

(iii) Uniqueness. We now prove that for given u0 ∈ Cb
unif(RN), (2.6) has a unique classical

solution (u(·, ·;u0), v(·, ·;u0)) satisfying (2.7) and (2.8).

Any classical solution of (2.6) satisfying the properties of Theorem 2.1 clearly satisfies the

integral equation (3.23). Suppose that for given u0 ∈ Cb
unif(R1) with u0 ≥ 0, (u1(t, x), v1(t, x))

and (u2(t, x), v2(t, x)) are two classical solutions of (2.6) on RN × [0, T ) satisfying the prop-

erties of Theorem 2.1. Let 0 < t1 < T ′ < T be fixed. Thus sup0≤t≤T ′(‖u1(·, t)‖∞ +

‖u2(·, t)‖∞) < ∞. Let ui(t) = ui(·, t) and vi(t) = (I − ∆)−1ui(t) for every i = 1, 2 and
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0 ≤ t < T . For every t ∈ [t1, T
′], and i = 1, 2 we have that

ui(t) = T (t−t1)ui(t1)+χ

∫ t

t1

T (t−s)∇·(ui(s)∇vi(s))ds+
∫ t

t1

T (t−s)(a+1−bui(s))ui(s)ds.

Hence for t1 ≤ t ≤ T
′ , using Lemma 3.2 and inequality (2.4), we obtain

‖u1(t)− u2(t)‖∞

≤‖(u1(t1)− u2(t1))‖∞ + Cχ

∫ t

t1

e−(t−s)
√
t− s

‖u1(s)∇v1(s)− u2(s)∇v2(s)‖∞ds

+

∫ t

0

e−(t−s)‖u1(s)− u2(s)‖∞(a+ 1 + b(‖u1(s)‖∞ + ‖u2(s)‖∞))ds

≤‖(u1(t1)− u2(t1))‖∞ + Cχ

∫ t

t1

e−(t−s)
√
t− s

‖u1(s)− u2(s)‖∞‖∇v1(s)‖∞

+ Cχ

∫ t

t1

e−(t−s)
√
t− s

‖u2(s)‖‖∇(v2(s)− v1(s)‖∞ds

+ (asup + 1 + bsup sup
0≤τ≤T ′

(‖u1(τ)‖∞ + ‖u2(τ)‖∞))

∫ t

0

e−(t−s)‖u1(s)− u2(s)‖∞ds

≤‖(u1(t1)− u2(t1))‖∞ +
Cµ
√
Nχ

2
√
λ

∫ t

t1

e−(t−s)
√
t− s

‖u1(s)− u2(s)‖∞(‖u1(s)‖∞ + ‖u2(s)‖∞)

+ (asup + 1 + bsup sup
0≤τ≤T ′

(‖u1(τ)‖∞ + ‖u2(τ)‖∞))

∫ t

t1

e−(t−s)‖u1(s)− u2(s)‖∞ds

≤‖(u1(t1)− u2(t1))‖∞ +M

∫ t

t1

e−(t−s)
√
t− s

‖u2(s)− u1(s)‖∞ds,

whereM = asup +1+(C
√
Nχ

2
√
λ

+bsup

√
T ′) sup0≤t≤T ′(‖u1(τ)‖∞+‖u2(τ)‖∞) <∞. Let t1 → 0,

we have

‖u1(t)− u2(t)‖∞ ≤M

∫ t

0

(t− s)−
1
2 e−(t−s)‖u2(s)‖‖u2(s)− u1(s)‖∞ds.

By Lemma 2.1 again, we get u1(t) ≡ u2(t) for all 0 ≤ t ≤ T ′. Since T ′ < T was arbitrary

chosen, then u1(t) ≡ u2(t) for all 0 ≤ t < T . The theorem is thus proved.

3.2 Global existence of classical solutions

This section is devoted to the study of the global existence of classical solutions to (2.6). For

every t0 ∈ R and nonnegative function u0 ∈ Cb
unif(Rn), it follows from Lemma 3.2 that,

‖v(·, t+ t0; t0, u0)‖∞ ≤
µ

λ
‖u(·, t+ t0; t0, u0)‖∞, ∀ 0 ≤ t < Tmax(t0, u0), (3.24)

and
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‖∇v(·, t+ t0; t0, u0)‖∞ ≤
µ
√
N

2
√
λ
‖u(·, t+ t0; t0, u0)‖∞, ∀ 0 ≤ t < Tmax(t0, u0). (3.25)

Now we present the proof of Theorem 2.2. Note that Theorem 2.2 provides a sufficient

condition on the parameters χ and binf to guarantee the existence of time globally defined

classical solutions.

Proof of Theorem 2.2. Let t0 ∈ R and u0 ∈ Cb
unif(Rn), u0 ≥ 0, be given. According to

Theorem 2.1, there is Tmax = Tmax(t0, u0) ∈ (0,∞] such that (2.6) has a unique nonnegative

classical solution (u(x, t; t0, u0), v(x, t; t0, u0)) on [t0, t0 + Tmax). Since binf ≥ χµ, we have

that (u(x, t; t0, u0), v(x, t; t0, u0)) satisfies

ut = ∆u− χ∇v · ∇u+ u(a(x, t)− u(b(x, t)− χµ)− χλv)

≤ ∆u− χ∇v · ∇u+ u(a(x, t)− u(b(x, t)− χµ))

≤ ∆u− χ∇v · ∇u+ u(asup − (binf − χµ)u) (3.26)

for t ∈ (t0, t0 + Tmax). Thus, by comparison principles for parabolic equations, it follows from

(3.26) that

u(x, t+ t0; t0, u0) ≤ u(t; ‖u0‖∞), ∀ 0 ≤ t < Tmax(t0, u0), ∀ x ∈ RN , (3.27)

where u(t; ‖u0‖∞) solves the ODE


d
dt
u = u(asup − (binf − χµ)u)

u(0) = ‖u0‖∞.
(3.28)

Since binf ≥ χµ, then u(t; ‖u0‖∞) is defined for all t ≥ 0. This implies that Tmax(t0, u0) =∞.

Moreover, u(t; ‖u0‖∞) ≤ |u0‖∞etasup for all t > 0. Hence (2.9) holds.

(i) If binf > χµ, we have that u(t; ‖u0‖∞) ≤ max{‖u0‖∞, asup
binf−χµ

} for all t > 0, and

limt→∞ u(t; ‖u0‖∞) = asup
binf−χµ

provided that ‖u0‖∞ > 0. Hence (2.10) and (2.11) hold.
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(ii) First, by (3.24),

ut = ∆u− χ∇v · ∇u+ u(a(x, t)− u(b(x, t)− χµ)− χλv)

≥ ∆u− χ∇v · ∇u+ u(ainf − ‖u(·, t; t0, u0)‖∞(bsup − χµ)− χλµ
λ
‖u(·, t; t0, u0)‖∞)

= ∆u− χ∇v · ∇u+ u(ainf − ‖u(·, t; t0, u0)‖∞bsup) (3.29)

for t > t0. By comparison principle for parabolic equations, we have

u(x, t+ t0; t0, u0) ≥ e
∫ t+t0
t0

(ainf−‖u(·,s+t0;t0,u0)‖∞bsup)dsu0 inf ∀t ≥ t0.

This together with u0 inf > 0 implies that

inf
x∈RN

u(x, t+ t0; t0, u0) > 0 ∀ t ≥ t0.

Next, for any ε > 0, there is T ε > 0 such that

u(x, t+ t0; t0, u0) ≤ u∞ + ε and v(x, t+ t0; t0, u0) ≤ µ

λ
(u∞ + ε) ∀ t ≥ T ε,

where u∞ = lim supt→∞ supx∈RN u(x, t+ t0; t0, u0). This combined with (3.29) imply that

ut ≥ ∆u− χ∇v · ∇u+ u(ainf − (u∞ + ε)bsup)

for t ≥ T ε. By comparison principle for parabolic equations again, we have

u(x, t+ t0; t0, u0) ≥ e(ainf−(u∞+ε)bsup)(t−T ε) inf
x∈RN

u(x, T ε + t0; t0, u0) ∀ t ≥ T ε.

By the boundedness of u(x, t+ t0, t0, u0) for t ≥ 0, we must have

ainf − (u∞ + ε)bsup ≤ 0 ∀ ε > 0.

The first inequality in (2.12) then follows.

Now, if lim inft→∞ infx∈RN u(x, , t + t0; t0, u0) = 0, then the second inequality in (2.12)

holds trivially. Assume u∞ := lim inft→∞ infx∈RN u(x, , t + t0; t0, u0) > 0. Then for any
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0 < ε < u∞, there is Tε > 0 such that

u(x, t+ t0; t0, u0) ≥ u∞ − ε and v(x, t+ t0; t0, u0) ≥ µ

λ
(u∞ − ε) ∀ t ≥ Tε.

This combined with (3.26) yields that

ut ≤ ∆u− χ∇v · ∇u+ u(asup − (u∞ − ε)binf)

for t ≥ Tε. By comparison principle for parabolic equations, we have

u(x, t+ t0; t0, u0) ≤ e(asup−(u∞−ε)binf)(t−Tε)‖u(·, Tε + t0; t0, u0)‖ ∀ t ≥ Tε.

This together with the first inequality in (2.12) implies that

asup − (u∞ − ε)binf ≥ 0 ∀ 0 < ε < u∞.

The second inequality in (2.12) then follows.

(iii) Let x ∈ RN and t ≥ 0 be fixed. Define

f(y) = λv(x+ y, t+ t0; t0, u0)− µu(x+ y, t+ t0; t0, u0), ∀y ∈ B(0, 3)

and

φ(y) = v(x+ y, t+ t0; t0, u0), ∀y ∈ B̄(0, 3)

Let G1 be the solution of 
∆G1 = f, y ∈ B(0, 3)

G1 = 0, on ∂B(0, 3).

Choose p� N such thatW 2,p(B(0, 3)) ⊂ C1+ν
unif (B(0, 3)) (with continuous embedding). Thus,

by regularity for elliptic equations, there is c1,ν > 0 (depending only on ν, N and the Lebesgue

measure |B(0, 3)| of B(0, 3)) such that

‖G1‖C1+ν
unif (B(0,3)) ≤ c1,ν‖f‖Lp(B(0,3)). (3.30)

Next, define

G2(y) = v(x+ y, t+ t0; t0, u0)−G1(y), ∀y ∈ B̄(0, 3).
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Hence G2 solves 
∆G2 = 0, y ∈ B(0, 3)

G2(y) = φ(y), y ∈ ∂B(0, 3).

Thus, (see [9, page 41]),

G2(y) =
2− ‖y‖2

2NωN

∫
∂B(0,3)

φ(z)

|y − z|N
dS(z), ∀y ∈ B(0, 3),

where ωN = |B(0, 1)| is the Lebesgue measure of B(0, 1), and

∂yiG2(y) = − yi
NωN

∫
∂B(0,3)

φ(z)

|y − z|N
dS(z)+

2− ‖y‖2

2ωN

∫
∂B(0,3)

(yi − zi)φ(z)

|y − z|N+2
dS(z),∀y ∈ B(0, 3).

(3.31)

But

|y + h− z| ≥ |z| − |y + h| ≥ 1, ∀z ∈ ∂B(0, 3), y, h ∈ B(0, 1)

and

||y + h− z| − |y − z|| ≤ |h|,∀y, h, z ∈ RN .

It follows from (3.31), that there is c2,ν > 0 (depending only on ν, N and |B(0, 3)|) such that

|∂yiG2(y + h)− ∂yiG2(y)| ≤ c2,ν |h|ν‖φ‖∞, ∀y, h ∈ B(0, 1).

Combining the last inequality with (3.30), there is cν(N,P )(depending only on ν, N and

|B(0, 3)|) such that

‖G1 +G2‖C1+ν
unif (B(0,1)) ≤ cν [‖f‖∞ + ‖φ‖∞]. (3.32)

Note that v(x+ h, t+ t0; t0, u0) = (G1 +G2)(h), thus (iii) follows from (2.10), (3.24), (3.25),

and (3.32).
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Chapter 4

Pointwise and uniform persistence phenomena

In this chapter we explore the pointwise and unifrom persistence of positive classical solutions

and prove Theorem 2.3. In order to do so, we first prove some important lemmas.

4.1 Important lemmas

This section is devoted to establishing the tools that will be needed to prove our main result on

pointwise and uniform persistence of solutions of (2.6). The next Lemma provides a finite time

pointwise persistence for solutions (u(x, t; t0, u0), v(x, t; t0, u0)) of (2.6) with strictly positive

function u0.

Lemma 4.1. Suppose that (H1) holds. Then for every T > 0, t0 ∈ R, and for every nonnegative

initial function u0 ∈ Cb
unif(RN), it holds that

inf
x∈RN

u(x, t+ t0; t0, u0) ≥ u0 infe
t(ainf−bsup‖u0‖∞eTasup ), ∀0 ≤ t ≤ T. (4.1)

In particular, for every T > 0 and for every nonnegative initial function u0 ∈ Cb
unif(RN)

satisfying ‖u0‖∞ ≤MT := ainfe
−asupT

bsup
, we have that

inf
x∈RN

u(x, t+ t0; t0, u0) ≥ inf
x∈RN

u0(x), ∀0 ≤ t ≤ T, ∀t0 ∈ R. (4.2)

Proof. Let t0 ∈ R and u0 ∈ Cb
unif(RN), u0 ≥ 0, be given. Since (H1) holds, it follows from

Theorem 2.2 that (u(·, t + t0; t0, u0), v(·, t + t0; t0, u0)) is defined for all t ≥ 0. By (2.9) and

(3.24),

χλ‖v(·, t+ t0; t0;u0)‖∞ ≤ χµ‖u(·, t+ t0; t0;u0)‖∞ ≤ χµ‖u0‖∞easupt, ∀ t ≥ 0.

Hence, for every t0 < t ≤ t0 + T , it follows from the previous inequality and (3.29) that
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ut ≥ ∆u− χ∇v · ∇u+ u(ainf − bsup‖u0‖∞easupT ). (4.3)

Thus, by comparison principle for parabolic equations, it follows from (4.3) that

inf
x∈RN

u(x, t+ t0; t0, u0) ≥ u0 infe
t(ainf−bsup‖u0‖∞easupT ), ∀ 0 ≤ t ≤ T, T > 0, t0 ∈ R. (4.4)

Observe that ‖u0‖∞ ≤ MT := ainfe
−asupT

bsup
implies that ainf − bsup‖u0‖∞easupT ≥ 0. This

combined with (4.4) yields (4.2).

Remark 4.1. We note that a slight modification of the proof of Lemma 4.1 yields that if (H1)

does not hold then

inf
x∈RN

u(x, t+ t0; t0, u0) ≥ u0 infe
t(ainf−(bsup+χµ)‖u0‖∞easupT ), ∀ 0 ≤ t ≤ T < Tmax(u0), (4.5)

for every nonnegative initial function u0 ∈ Cb
unif(RN). Hence for every initial function u0 ∈

Cb
unif(RN) with infx∈RN u0(x) > 0, it always holds that

inf
x∈RN ,0≤t≤T

u(x, t+ t0; t0, u0) > 0, ∀ 0 ≤ T < Tmax(u0),∀t0 ∈ R.

It should be noted (4.5) and (4.1) do not implies the pointwise persistence of u(x, t+ t0; t0, u0).

Lemma 4.2. Assume that (H1) holds. Let u0 ∈ Cb
unif(RN), {u0n}n≥1 be a sequence of non-

negative functions in Cb
unif(RN), and let {t0n}n≥1 be a sequence of real numbers. Suppose that

0 ≤ u0n(x) ≤M := asup
binf−χµ

and {u0n}n≥1 converges locally uniformly to u0. Then there exist a

subsequence {t0n′} of {t0n}, functions a∗(x, t), b∗(x, t) such that (a(x, t+t0n′), b(x, t+t0n′))→

(a∗(x, t), b∗(x, t)) locally uniformly as n′ → ∞, and u(x, t + t0n′ ; t0n′ , u0n′) → u∗(x, t; 0, u0)

locally uniformly in C2,1(RN × (0,∞)) as n′ →∞, where (u∗(x, t; 0, u0), v∗(x, t; 0, u0) is the

classical solution of
ut(x, t) = ∆u(x, t)− χ∇ · (u(x, t)∇v(x, t)) + (a∗(x, t)− b∗(x, t)u(x, t))u(x, t), x ∈ RN

0 = (∆− λI)v∗(x, t) + µu∗(x, t), x ∈ RN

u∗(x, 0) = u0(x), x ∈ RN .

Proof. Without loss of generality, by Arzela-Ascoli’s Theorem, we may suppose that (a(x, t+

t0n), b(x, t + t0n)) → (a∗(x, t), b∗(x, t)) locally uniformly in RN × R as n → ∞. Recall that
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(u(x, t+ t0n; t0n, u0n), v(x, t+ t0n; t0n, u0n)) satisfies for x ∈ RN , t > 0,

ut(·, ·+ t0n; t0n, u0n) = ∆u(·, ·+ t0n; t0n, u0n)− χ∇ · (u(·, ·+ t0n; t0n, u0n)∇v(·, ·+ t0n; t0n, u0n))

+ (a(·, ·+ t0n)− b(·, ·+ t0n)u(·, ·+ t0n; t0n, u0n))u(·, ·+ t0n; t0n, u0n).

So, by variation of constant formula, we have that

u(·, t+ t0n; t0n, u0n)− et(∆−I)u0n︸ ︷︷ ︸
I0n

(t)

=

∫ t

0

e(t−s)(∆−I)(a(·, s+ t0n) + 1)u(·, s+ t0n; t0n, u0n)ds︸ ︷︷ ︸
I1n(t)

− χ
∫ t

0

e(t−s)(∆−I)∇ · (u(·, s+ t0n; t0n, u0n)∇v(·, t+ t0n; t0n, u0n))ds︸ ︷︷ ︸
I2n(t)

−
∫ t

0

e(t−s)(∆−I)b(·, s+ t0n)u2(·, s+ t0n; t0n, u0n)ds︸ ︷︷ ︸
I3n(t)

,∀ t > 0, (4.6)

where {et(∆−I)}t≥0 denotes the analytic semigroup generated on X0 := Cb
unif(RN) by ∆ − I .

Let Xβ , β > 0, denote the fractional power spaces associated with ∆ − I . Let 0 < β < 1
2

be

fixed.

Using inequalities (2.4), (2.5), and (3.16), (3.18), there is a constant Cβ > 0, such that

‖I0n(t+ h)− I0n(t)‖Xβ ≤ Cβh
βt−β‖u0n‖∞ ≤ Cβh

βt−βM,

‖I1n(t+ h)− I1n(t)‖Xβ ≤ Cβ(asup + 1)M

[
hβ
∫ t

0

e−(t−s)

(t− s)β
ds+

∫ t+h

t

e−(t+h−s)

(t+ h− s)β
ds

]
≤ Cβ(asup + 1)M

[
hβΓ(1− β) +

h1−β

1− β

]
,

and

‖I2n(t+ h)− I2n(t)‖Xβ ≤ CβbsupM
2

[
hβΓ(1− β) +

h1−β

1− β

]
.

It follows from Lemma 3.2 and inequalities (2.4), (2.5), and (3.18) that
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‖I3n(t+ h)− I3n(t)‖Xβ ≤ µ
√
NCβM

2

2
√
λ

[
hβ
∫ t

0

e−(t−s)

(t− s)β+ 1
2

ds+

∫ t+h

t

e−(t+h−s)

(t+ h− s)β+ 1
2

ds

]

≤ µ
√
NCβM

2

2
√
λ

[
hβΓ(1− β) +

h1−β

1− β

]
.

Hence the function (0,∞) 3 t 7→ u(·, t + t0n; t0n, u0n) ∈ Xβ is locally uniformly Hölder

continuous. It then follows from the Arzela-Ascoli Theorem and [13, Theorem 15] that there

is a subsequence {t0n′} of {t0n} and a function u ∈ C2,1(RN × (0,∞)) such that u(x, t +

t0n′ ; t0n′ , u0n′) converges to u(x, t) locally uniformly in C2,1(RN × (0,∞)) as n′ → ∞. Fur-

thermore, taking v(x, t) = µ(λI −∆)−1u(x, t), we have that

ut(x, t) = ∆u(x, t)− χ∇ · (u(x, t)∇v(x, t)) + (a∗(x, t)− b∗(x, t)u(x, t))u(x, t), x ∈ RN

for t > 0. Since u0n′(x) → u0(x) locally uniformly as n → ∞, it is not hard to show from

(4.6) that u(x, t) satisfies

u(x, t) =et(∆−I)u0 − χ
∫ t

0

e(t−s)(∆−I)∇ · (u(·, s)∇v(·, s))ds

+

∫ t

0

e(t−s)(∆−I)((1 + a∗(·, s))u− b∗(·, s)u2(·, s)))ds. (4.7)

Note that (u∗(x, t; 0, u0), v∗(x, t; 0, u0)) also satisfies the integral equation (4.7). It thus follows

from Lemma 2.1, that u(x, t) = u∗(x, t; 0, u0).

Lemma 4.3. Assume that (H1) holds. For every M > 0, ε > 0, and T > 0, there exist

L0 = L(M,T, ε) � 1 and δ0 = δ0(M, ε) such that for every initial function u0 ∈ Cb
unif(RN)

with 0 ≤ u0 ≤M and every L ≥ L0,

u(x, t+ t0; t0, u0) ≤ ε, ∀ 0 ≤ t ≤ T, t0 ∈ R, ∀ |x|∞ < 2L (4.8)

whenever 0 ≤ u0(x) ≤ δ0 for |x|∞ < 3L.

Proof. It follows from (3.26) and comparison principle for parabolic equations that

0 ≤ u(x, t+ t0; t0, u0) ≤ U(x, t+ t0; t0, u0), ∀ x ∈ RN , t ≥ 0, (4.9)

where U solves
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
Ut = ∆U − χ∇v(·, ·; t0, u0) · ∇U + asupU, t > t0

U(·, t0) = u0

(4.10)

It follows from Theorem 2.2 (iii) and [13, Theorem 12] that U((x, t0 + t; t0, u0)) can be written

in the form

U(x, t0 + t; t0, u0) =

∫
RN

Γ(x, t, y, 0)u0(y)dy. (4.11)

Moreover, for every 0 < λ0 < 1, there is a constant K2 = K2(λ0, N, ν,K1, T ), where K1 is

given by Theorem 2.2 (iii), such that for x ∈ RN , τ ≤ t ≤ τ + T,

|Γ(x, t, y, τ)| ≤ K2
e−

λ0|x−y|
2

4(t−τ)

(t− τ)
N
2

and |∂xiΓ(x, t, y, τ)| ≤ K2
e−

λ0|x−y|
2

4(t−τ)

(t− τ)
N+1

2

. (4.12)

We then have

U(x, t0 + t; t0, u0) ≤ K2

∫
RN

e−
λ0|x−y|

2

4t

t
N
2

u0(y)dy

= K2

∫
RN

e−
λ0
4
|z|2u0(x+ t

1
2 z)dz

≤ K2

[ ∫
|z|∞≤ L√

T

e−
λ0
4
|z|2u0(x+ t

1
2 z)dz +

∫
|z|∞≥ L√

T

e−
λ0
4
|z|2u0(x+ t

1
2 z)dz

]
.

This implies that for |x| ≤ 2L,

U(x, t0 + t; t0, u0) ≤ K2δ0

∫
RN
e−

λ0
4
|z|2dz +K2‖u0‖∞

∫
|z|∞≥ L√

T

e−
λ0
4
|z|2dz

≤ K2δ0

(
4π

λ0

)N
2

+K2M

∫
|z|∞≥ L√

T

e−
λ0
4
|z|2dz. (4.13)

Take δ0 = ε
2K2

(
4π
λ0

)−N
2

and choose L0 � 1 such that
∫
|z|∞≥ L0√

T

e−
λ0
4
|z|2dz < ε

2K2M
, it follows

from (4.13) that for every L ≥ L0, there holds that U(x, t+ t0; t0, u0) ≤ ε for every |x|∞ ≤ 2L

whenever u0(x) ≤ δ0 for all |x|∞ ≤ 3L. This combined with (4.9) yields the lemma.
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Lemma 4.4. Suppose that (H2) holds. Consider the sequence (Mn,Mn)n≥0 defined induc-

tively by M0 = 0 and

Mn =
asup − χµMn

binf − χµ
, and Mn+1 =

ainf − χµMn

bsup − χµ
, ∀ n ≥ 0. (4.14)

Then for every n ≥ 0, it holds that

Mn+1 > Mn ≥ 0 and Mn > Mn+1 > 0.

Moreover, we have that
lim
n→∞

(Mn,Mn) = (M,M),

where M and M are given by (2.17) and (2.18), respectively.

Proof. For every n ≥ 0, it holds that

Mn+1 =
(binf − χµ)ainf − χµasup + (χµ)2Mn

(binf − χµ)(bsup − χµ)
(4.15)

and

Mn+1 =
(bsup − χµ)asup − χµainf + (χµ)2Mn

(binf − χµ)(bsup − χµ)
. (4.16)

Thus, since M0 = 0, M0 = asup
binf−χµ

> 0, and (H2) holds, it follows by mathematical induction

that Mn ≥ 0 and Mn ≥ 0 for every n ≥ 0. Therefore, it follows from (4.14) that

0 ≤Mn ≤
ainf

bsup − χµ
and 0 ≤Mn ≤

asup

binf − χµ
, ∀n ≥ 0.

Observe that M0 < M1. Hence, (4.15) implies that Mn < Mn+1 for every n ≥ 0. Similarly,

we have that M0 > M1. Hence (4.16) implies that Mn+1 < Mn for every n ≥ 0. Thus

the sequence (Mn,Mn) is convergent. By passing to the limit in (4.15) and (4.16), it is eas-

ily seen that limn→∞(Mn,Mn) = (M,M), where M and M are given by (2.18) and (2.17)

respectively.

Lemma 4.5. For fixed T > 0, there is 0 < δ∗0(T ) < M+ = asup
binf−χµ

+ 1 such that for any

0 < δ ≤ δ∗0(T ) and for any u0 with δ ≤ u0 ≤M+,

δ ≤ u(x, t0 + T ; t0, 0, u0) ≤M+ ∀ x ∈ RN , ∀ t0 ∈ R. (4.17)
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Proof. We divide the proof into four steps.

First of all, let a0 = ainf
3

and

DL = {x ∈ RN | |xi| < L for i = 1, 2, · · · , N}.

Consider 
ut = ∆u+ a0u, x ∈ DL

u = 0, x ∈ ∂DL,

(4.18)

and its associated eigenvalue problem


∆u+ a0u = σu, x ∈ DL

u = 0, x ∈ ∂DL.

(4.19)

Let σ
L

be the principal eigenvalue of (4.19) and φL(x) be its principal eigenfunction with

φL(0) = 1. Note that

φL(x) = ΠN
i=1 cos

( π
2L
xi
)

and 0 < φL(x) ≤ φL(0), ∀x ∈ DL.

Note also that u(x, t) = eσL tφL(x) is a solution of (4.18). Let u(x, t;u0) be the solution of

(4.18) with u0 ∈ C(D̄L). Then

u(x, t;κφL) = κeσL tφL(x) (4.20)

for all κ ∈ R.

In the following, let L0 � 0 be such that σ
L
> 0 ∀L ≥ L0.

Step 1. Let T > 0 be fixed. Consider
ut = ∆u+ bε(x, t) · ∇u+ a0u, x ∈ DL

u = 0, x ∈ ∂DL,

(4.21)

where |bε(x, t)| < ε for x ∈ D̄L and t0 ≤ t ≤ t0 + T . Let ubε,L(x, t; t0, u0) be the solution of

(4.21) with ubε,L(x, t0; t0, u0) = u0(x).

We claim that there is ε0(T ) > 0 such that for any L ≥ L0, κ > 0, and 0 ≤ ε ≤ ε0(T ),
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ubε,L(0, t0 + T ; t0, κφL) ≥ e
TσL0

2 κ > κ (4.22)

provided that |bε(x, t)| < ε for x ∈ DL; and for any L ≥ L0 and 0 ≤ ε ≤ ε0(T ),

0 ≤ ubε,L(x, t+ t0; t0, κφL) ≤ ea0tκ ∀ 0 ≤ t ≤ T, x ∈ DL. (4.23)

In fact, by (4.20), there is ε0(T ) > 0 such that for any 0 ≤ ε ≤ ε0(T ),

ubε,L0(0, t0 + T ; t0, κφL0) > e
TσL0

2 κ (4.24)

provided that |bε(x, t)| < ε for x ∈ DL0 . Note that for L ≥ L0,

φL(x) ≥ φL0(x) ∀ x ∈ DL0 ,

and
∂tubε,L(·, t0 + t; t0, κφL) = ∆ubε,L(x, t0 + t; t0, κφL) + bε(x, t) · ∇ubε,L(x, t0 + t; t0, κφL)

+a0ubε,L(x, t0 + t; t0, κφL), x ∈ DL0 ,

ubε,L(x, t0 + t; t0, κφL) > 0, x ∈ ∂DL0 .

Then by comparison principle for parabolic equations,

ubε,L(x, t0 + t; t0, κφL) ≥ ubε,L0(x, t0 + t; t0, κφL0)

for x ∈ DL0 , which together with (4.24) implies (4.22). (4.23) follows directly from compari-

son principle for parabolic equations.

Step 2. Consider
ut = ∆u+ bε(x, t) · ∇u+ u(2a0 − c(x, t)u), x ∈ DL

u = 0, x ∈ ∂DL,

(4.25)

where 0 ≤ c(x, t) ≤ bsup. Let u(x, t; t0, u0) be the solution of (4.25) with uε(x, t0; t0, u0) =

u0(x). Assume L ≥ L0 and 0 ≤ ε ≤ ε0(T ).

We claim that

uε(0, t0 + T ; t0, κφL) ≥ e
TσL0

2 κ (4.26)
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provided that 0 < κ ≤ κ0(T ) := a0e−a0T

bsup
.

Note that (4.23) yields,

∂tubε,L(x, t; t0, κφL)−∆ubε,L(x, t; t0, κφL)− bε(x, t) · ∇ubε,L(x, t; t0, κφL)

− ubε,L(x, t; t0, κφL)
(
2a0 − c(x, t)ubε,L(x, t; t0, κφL)

)
= −ubε,L(x, t; t0, κφL)

(
a0 − c(x, t)ubε,L(x, t; t0, κφL)

)
≤ 0 for t0 ≤ t ≤ t0 + T, x ∈ DL

when 0 < κ ≤ a0e−a0T

bsup
. Then by comparison principal for parabolic equations,

uε(x, t; t0, κφL) ≥ ubε,L(x, t; t0, κφL) for t0 ≤ t ≤ t0 + T, x ∈ DL.

This together with (4.22) implies (4.26).

Step 3. For any given x0 ∈ RN , consider

ut = ∆u−χ∇v ·∇u+u(a(x+x0, t)−χλv(x, t; t0, x0, u0)−(b(x+x0, t)−χµ)u), x ∈ RN ,

(4.27)

where v(x, t; t0, x0, u0) is the solution of

0 = ∆v − λv + µu, x ∈ RN .

Let u(x, t; t0, x0, u0) be the solution of (4.27) with u(x, t0; t0, x0, u0) = u0(x). Let ε0(T ) > 0

and κ0(T ) > 0 be as in Steps 1 and 2, respectively.

We claim that there is 0 < δ0(T ) ≤ κ0(T ) such that for any u0 ∈ Cb
unif(RN) with 0 ≤ u0 ≤

M+ and u0(x) < δ0(T ) for |xi| ≤ 3L, i = 1, 2, · · · , N , x0 ∈ RN

0 ≤ λv(x, t; t0, x0, u0) ≤ a0

2χ
, |∇v(x, t; t0, x0, u0)| < ε0(T )

2χ
for t0 ≤ t ≤ t0 + T, x ∈ DL,

(4.28)

provided that L� 1.

Indeed, let 0 < ε ≤ ε0(T ) be fixed. Lemma 4.3 implies that there is δ1 = δ1(M+, ε) and

L1 = L1(M+, T, ε) > L0 such that for every L ≥ L1, there holds

u(x, t+ t0; t0, x0, u0) ≤ ε, ∀ 0 ≤ t ≤ T, t0 ∈ R, ∀x0 ∈ RN , ∀|x| ∈ D2L (4.29)

whenever 0 ≤ u0(x) ≤ δ1, ∀ x ∈ D3L.
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Next, note that

v(x, t0 + t; t0, x0, u0) = µ

∫ ∞
0

∫
RN

e−λs

(4πs)
N
2

e−
|x−z|2

4s u(z, t; t0, x0, u0)dzds

and

∂xiv(x, t0 + t; t0, x0, u0) = µ

∫ ∞
0

∫
RN

(zi − xi)e−λs

2s(4πs)
N
2

e−
|x−z|2

4s u(z, t; t0, x0, u0)dzds.

Hence, by (4.29), for L ≥ L1, 0 ≤ t ≤ T , and |x|∞ < L, we have

v(x, t0 + t; t0, x0, u0) ≤ µ

π
N
2

[∫ L

0

∫
|z|∞≤ L

2
√
T

e−λse−|z|
2

dzds

]
sup

0≤t≤T,|z|∞≤2L

u(z, t+ t0; t0, x0, u0)

+
µasup

(binf − χµ)π
N
2

∫ ∫
s≥L or |z|∞≥ L

2
√
T

e−λse−|z|
2

dzds

≤ µ

λ
ε+

µasup

(binf − χµ)π
N
2

∫ ∫
s≥L or |z|∞≥ L

2
√
T

e−λse−|z|
2

dzds

(4.30)

and

|∂xiv(x, t0 + t; t0, 0, u0)| ≤ εµ

π
N
2

∫ L

0

∫
|z|∞≤ L

2
√
T

|zi|e−λse−|z|
2

√
s

dzds

+
µasup

(binf − χµ)π
N
2

∫ ∫
s≥L or |z|∞≥ L

2
√
T

|zi|e−λse−|z|
2

√
s

dzds

≤ εµ√
λ

+
µasup

(binf − χµ)π
N
2

∫ ∫
s≥L or |z|∞≥ L

2
√
T

|zi|e−λse−|z|
2

√
s

dzds,

(4.31)

whenever 0 ≤ u0(x) ≤ δ1 for every |x|∞ ≤ 3L. These together with (4.29) implies (4.28).

Note that
ut ≥ ∆u− χ∇v · ∇u+ u(2a0 − (b(x+ x0, t)− χµ)u), x ∈ DL

u(x, t; t0, x0, u0) > 0, x ∈ ∂DL.

Let κ = infx∈DL u0(x). Then κ ≤ δ0(T ) ≤ κ0(T ). By comparison principle for parabolic

equations,
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u(x, t; t0, x0, u0) ≥ uε(t, x; t0, κφL) for x ∈ DL, t0 ≤ t ≤ t0 + T.

This together with the conclusion in Step 2

u(0, T + t0; t0, x0, u0) ≥ e
TσL0

2 κ = e
TσL0

2 inf
x∈DL

u0(x). (4.32)

Step 4. In this step we claim that there is 0 < δ∗0(T ) < min{δ0(T ),M+}, whereM+ = asup
binf−χµ

,

such that for any 0 < δ ≤ δ∗0(T ) and for any u0 with δ ≤ u0 ≤M+,

δ ≤ u(x, t0 + T ; t0, 0, u0) ≤M+ ∀ x ∈ RN . (4.33)

Assume that the claim does not hold. Then there are δn → 0, t0n ∈ R, u0n with δn ≤ u0n ≤

M+, and xn ∈ RN such that

u(xn, t0n + T ; t0n, 0, u0n) < δn. (4.34)

Note that
u(x+ xn, t; t0n, 0, u0n) = u(x, t; t0n, xn, u0n(·+ xn)).

Let ε0 := ε(T ) > 0, δ0 := δ0(T ) > 0, and κ0 := κ0(T ) > 0 be fixed and be such that the

conclusions in Steps 2 and 3 hold. Let

D0n = {x ∈ RN | |xi| < 3L, u0n(x+ xn) >
δ0

2
}.

Without loss of generality, we may assume that limn→∞ |D0n| exists.

Case 1. limn→∞ |D0n| = 0. We claim that in this case, |χ∇v(x+ xn, t+ t0n; t0n, 0, u0n)| < ε0

and 0 ≤ v(x+ xn, t+ t0n; t0n, 0, u0n) ≤ a0 for |xi| ≤ L, i = 1, 2, · · · , N , L� 1 and n� 1.

Indeed, let {ũ0n}n≥1 be sequence of elements of Cb
unif(RN) satisfying

δn ≤ ũ0n(x) ≤ δ0
2
, x ∈ D3L and

‖ũ0n(·)− u0n(·+ xn)‖Lp(RN ) → 0, ∀p > 1.
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Let wn(x, t) := u(t + t0n, x; t0n, xn, u0n(· + xn)) − u(t + t0n, x; t0n, xn, ũ0n) and vn(x, t) :=

v(t+ t0n, x; t0n, xn, u0n(·+ xn))− v(t+ t0n, x; t0n, xn, ũ0n). Hence {(wn, vn)}n≥ satisfies


∂twn = ∆wn + bn(t, x) · ∇wn + fn(t, x)wn + gn(t, x)vn + hn · ∇vn, x ∈ RN , t > 0

0 = ∆vn − λvn + µwn, x ∈ RN , t > 0

wn(0, x) = u0n(x+ xn)− ũ0n(x), x ∈ RN ,

(4.35)

where bn(t, x) = −χ∇v(t + t0n, x + xn; t0n, xn, u0n(· + xn)), gn(t, x) := −χλu(t + t0n, x +

xn; t0n, xn, ũ0n), hn(t, x) := −χ∇u(t+ t0n, x+ xn; t0n, xn, ũ0n), and

fn(t− t0n, x− xn) :=a(t, x)− χλv(t, x; t0, xn, u0n(·+ xn))

− (b(t, x)− χµ)(u(t, x; t0, xn, u0n(·+ xn)) + u(t, x; t0, xn, ũ0n)).

For w0n(0, ·) ∈ Lp(RN), (4.35) has a unique solution w(t, x;w0n) with w(0, x;w0n) = w0n(x)

in Lp(RN). Note that ∇ · (wnbn) = bn · ∇wn + wn∇ · bn and ∇ · bn = −χ(λv − µu)(t +

t0n, x; t0n, xn, u0n(·+ xn)). Hence

∂twn = ∆wn +∇ · (wnbn) + (fn(t, x)−∇ · bn)wn + gn(t, x)vn + hn · ∇vn, x ∈ RN , t > 0.

Thus, the variation of constant formula yields that

wn(t, ·) = et(∆−I)wn(0) +

∫ t

0

e(t−s)(∆−I)∇ · (wn(s, ·)bn(s, ·))ds︸ ︷︷ ︸
I1

+

∫ t

0

e(t−s)(∆−I)((1 + fn(s, ·)−∇ · bn(s, ·))wn(s, ·) + gn(s, ·)vn(s, ·) + hn · ∇vn)ds︸ ︷︷ ︸
I2

,

where {et(∆−I)}t≥0 denotes the C0−semigroup on Lp(RN) generated by ∆− I .

Observe that ‖bn(t, ·)‖∞ ≤ µ‖u(t + t0n, x + xn; t0n, u0n(· + xn))‖∞ ≤ µ asup
binf−χµ

. Hence, as

shown in [49, Lemma 3.1], we have

‖I1‖Lp(RN ) ≤ C

∫ t

0

e−(t−s)
√
t− s

‖∇bn(s, ·)‖∞‖wn(s, ·)‖Lp(RN )ds

≤ Cµasup

binf − χµ

∫ t

0

e−(t−s)
√
t− s

‖wn(s, ·)‖Lp(RN )ds.
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We also observe that sup0≤t≤T,n≥1 ‖1+fn(t, ·)−∇·bn(t, ·)‖∞ <∞, sup0≤t≤T,n≥1 ‖gn(t, ·)‖∞ <

∞, and sup0≤t≤T,n≥1 ‖hn(t, ·)‖∞ <∞, thus we have

‖I2‖Lp(RN ) ≤ C

∫ t

0

e−(t−s) {‖wn(s, ·)‖Lp(RN ) + ‖vn(s, ·)‖W 1,p(RN )

}
ds.

Since (∆− λI)vn = −µwn, then by elliptic regularity, we have that

‖vn(t, ·)‖W 2,p(RN ) ≤ C‖wn(t, ·)‖Lp(RN ).

Hence, since ‖et(∆−I)wn(0, ·)‖Lp(RN ) ≤ e−t‖wn(0, ·)‖Lp(RN ), we obtain

‖wn(t, ·)‖Lp(RN ) ≤ ‖wn(0)‖Lp(RN ) + C

∫ t

0

(t− s)−
1
2‖wn(s, ·)‖Lp(RN )ds

for some constant C > 0. Therefore it follows from Lemma 2.1 that

‖wn(t, ·)‖Lp(RN ) ≤ CT‖wn(0, ·)‖Lp(RN ), ∀ 0 ≤ t ≤ T, ∀n ≥ 1,

where CT > 0 is a constant. Thus

lim
n→∞

sup
0≤t≤T

‖wn(t, ·)‖Lp(RN ) = 0. (4.36)

For p > N , by regularity and a priori estimates for elliptic operators, there is a constant

C > 0 such that

‖(∆− λI)−1w‖C1,b
unif(RN ) ≤ C‖w‖Lp(RN ), ∀w ∈ Lp(RN).

Combining this with (4.36) we have that

lim
n→∞

sup
0≤t≤T

‖vn(t, ·)‖C1,b
unif(RN ) = 0. (4.37)

It follows from the claim in Step 3 that for every n ≥ 1,

0 ≤ λv(t+t0n, x; t0n, xn, ũ0n) ≤ a0

2χ
, |χ∇v(t+t0n, x; t0n, xn, ũ0n)| ≤ ε0

2
, ∀0 ≤ t ≤ T, x ∈ DL.

Thus (4.37) implies that, for n� 1, ∀0 ≤ t ≤ T, x ∈ DL, there holds

0 ≤ χλv(t+ t0n, x; t0n, xn, u0n(·+ xn)) ≤ a0, |χ∇vt+ t0n, x; t0n, xn, u0n(·+ xn))| ≤ ε0.

Hence, it follows from the arguments of (4.32) that

u(T + t0n, 0; t0n, xn, u0n(·+ xn)) > δn,
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which is a contradictions. Hence case 1 does not hold.

Case 2. lim infn→∞ |D0n| > 0.

In this case, without loss of generality, we might suppose that infn≥1 |D0n| > 0, and there a

suitable N−cube, D ⊂⊂ D3L with infn≥1 |D ∩D0n| > 0. Let Ψn(x, t) denotes the solution of


ut = ∆u, x ∈ D3L

u = 0, on (0, T )× ∂D3L

u(·, 0) = δ0
2
χ
D∩D0n

.

(4.38)

Thus, by comparison principle for parabolic equations, we have

et∆u0n(x+ xn) ≥ Ψn(x, t), ∀x ∈ D3L, 0 ≤ t ≤ T, n ≥ 1.

From this, it follows that

‖et∆u0n(·+ xn)‖2
C∞(D3L) ≥

1

|D3L|

∫
D3L

Ψ2
n(x, t)dx, ∀0 ≤ t ≤ T, n ≥ 1. (4.39)

Note that for every n ≥ 1, Ψn(x, t) can be written as

Ψn(x, t) =
δ0

2

∞∑
k=1

e−tλ̃kφk(x)

[∫
D3L

φk(y)χ
D∩D0n

(y)dy

]
,

where {φk}k≥1 denotes the orthonormal basis of L2(D3L) consisting of eigenfunctions with

corresponding eigenvalues {λ̃k} of −∆ with Dirichlet boundary conditions on D3L. Since λ̃1

is principal, then we might suppose that φ1(x) > 0 for every x ∈ D3L. Thus

‖Ψn(·, t)‖2
L2(D3L) =

∞∑
k=1

e−2tλ̃k

[
δ0

2

∫
D3L

φk(y)χ
D∩D0n

(y)dy

]2

≥ e−2tλ̃1

[∫
D3L

φ1(y)χ
D∩D0n

(y)dy

]2

≥ e−2tλ̃1

[
δ0

2
|D ∩D0n|min

y∈D
φ1(y)

]2

. (4.40)

Since infn≥1 |D0n| > 0 and miny∈D φ1(y) > 0, it follows from (4.39) and (4.40) that

inf
0≤t≤T,n≥1

‖et(∆−I)u0n(·+ xn)‖C(D3L) > 0.
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Thus there is 0 < T0 � 1 such that

inf
n≥1
‖u(·, T0 + t0n; t0n, xn, u0n(·+ xn))‖C0(D3L) > 0.

Hence, we might suppose that u(·, T0 + t0n; t0n, xn, u0n(· + xn)) → u∗0 locally uniformly and

‖u∗0‖C(D3L) > 0. Moreover, by Lemma 4.2, we might assume that (u(·, T + t0n; t0n, xn, u0n(·+

xn)), v(·, T + t0n; t0n, xn, u0n(· + xn))) → (u∗(x, t), v∗(x, t)), a(x + xn, t) → a∗(x, t), and

b(x+ xn, t)→ b∗(x, t), where (u∗, v∗) satisfies
u∗t = ∆u∗ − χ∇ · (u∗∇v∗) + (a∗ − b∗u∗)u∗

0 = (∆− λI)v∗ + µu∗

u∗(·, 0) = u∗0.

Sine ‖u∗0‖∞ > 0 and u∗(x, t) ≥ 0, it follows from comparison principle for parabolic equations

that u∗(x, t) > 0 for every x ∈ RN and t ∈ (0, T ]. In particular u∗(0, T ) > 0. Note by (4.34)

that we must have u∗(0, T ) = 0, which is a contradiction. Hence the result holds.

4.2 Proof of Theorem 2.3

In this section, using the preliminary results established in the previous section, we present the

proof of Theorem 2.3.

Proof of Theorem 2.3. (i) Let u0 ∈ Cb
uinf(RN), with u0 inf > 0 be given. It follows from (2.11)

that there is T1 > 0 such that

u(x, t+ t0; t0, u0) ≤M+ :=
asup

binf − χµ
+ 1, ∀ t ≥ T1, ,∀ t0 ∈ R.

Note that T1 is independent of t0. We claim that

m(u0) := inf
t0∈R,(x,t)∈RN×[0,∞)

u(x, t+ t0; t0, u0) > 0. (4.41)

In fact, since u0 inf > 0, by Lemma 4.1, we have that

δ1 := inf
t0∈R,(x,t)∈RN×[t0,t0+T1]

u(x, t+ t0; t0, u0) ≥ u0 infe
−T1(ainf+bsup‖u0‖∞eT1asup ) > 0. (4.42)
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Let

δ2 = min{δ1, δ0(T1)},

where δ0(T1) is given by Lemma 4.5. Then δ2 > 0. By induction, it follows from Lemma 4.5

that

δ2 ≤ inf
x
u(x, t0 + nT1; t0, u0)) ≤M+, ∀ t0 ∈ R and ∀ n ∈ N. (4.43)

Lemma 4.1 implies that for every t0 ∈ R, x ∈ RN , t ∈ [0, T1] and n ∈ N ∪ {0}, we have

u(x, t0 + nT1 + t; t0, u0) = u(x, t0 + nT1 + t; t0 + nT1, u(x, t0 + nT1, t0, u0))

≥ δ2e
t(ainf−bsupM+eT1asup )

≥ δ2e
−T1(ainf+bsupM

+eT1asup ) (4.44)

By (4.44), we obtain that

inf
t0∈R,(x,t)∈RN×[0,∞)

u(x, t0 + t; t0, u0)) ≥ δ2e
−T1(ainf+bsupM

+T1)

The last inequality yields that m(u0) > 0. Hence (4.41) holds.

(ii) Let (Mn,Mn)n≥0 be the sequence define by (4.14). Let u0 ∈ Cb
unif(RN) with u0 inf > 0

be fixed.

We first claim that for every n ≥ 0, and ε > 0 there is T nε (u0) such that

Mn − ε ≤ u(x, t+ t0; t0, u0) ≤Mn + ε ∀x ∈ RN , ∀ t ≥ T nε (u0), ∀ t0 ∈ R, (4.45)

which implies that for any ε > 0 there is Tε(u0) such that (2.15) holds.

In fact, for n = 0, it is clear that M0 = 0 ≤ u(x, t+ t0; t0, u0) for every x ∈ RN , t ≥ 0, and

t0 ∈ R. It follows (3.27) that there is T 0
ε (u0) such that

u(x, t+ t0; t0, u0) ≤M1 + ε, ∀x ∈ RN , t ≥ T 0
ε (u0), ∀ t0 ∈ R.

Hence (4.45) holds for n = 0. Suppose that (4.45) holds for n − 1, (n ≥ 1). We show that

(4.45) also holds for n. Indeed, let ε > 0. It follows from the induction hypothesis that there is
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T̃ n−1
ε (u0)� 1 that

Mn−1−
ε

4
≤ u(x, t+ t0; t0, u0) ≤Mn−1 +

ε

4
∀ x ∈ RN , ∀ t ≥ T n−1

ε (u0), ∀ t0 ∈ R. (4.46)

This implies that



ut(·, ·+ t0; t0, u0)

≥ ∆u(·, ·+ t0; t0, u0)− χ(∇v · ∇u)(·, ·+ t0; t0, u0)

+(ainf − χµ(Mn−1 + ε
4
)− (bsup − χµ)u(·, ·+ t0; t0, u0))u(·, ·+ t0; t0, u0), t > T̃ n−1

ε (u0),

u(·, T̃ n−1
ε (u0) + t0; t0, u0) ≥ m(u0),

(4.47)

where m(u0) := inf{u(x, t+ t0; t0, u0) | x ∈ RN , t ∈ [0,∞), t0 ∈ R} > 0. Hence, it follows

from comparison principle for parabolic equations that there is T̃ nε (u0) ≥ T̃ n−1
ε (u0) such that

u(x, t+ t0; t0, u0) ≥
(ainf − χµ(Mn−1 + ε

4
))+

bsup − χµ
− ε

4
, ∀ t ≥ T̃ nε (u0), x ∈ RN , ∀ t0 ∈ R.

(4.48)

Note that, since (H2) holds, then it follows from Lemma 4.4 that

(ainf − χµ(Mn−1 + ε
4
))+

bsup − χµ
≥Mn −

χµε

4(bsup − χµ)
≥Mn −

ε

4
. (4.49)

It follows from (4.48) and (4.49) that



ut(·, ·+ t0; t0, u0)

≤ ∆u(·, ·+ t0; t0, u0)− χ(∇v · ∇u)(·, ·+ t0; t0, u0)

+(asup − χµ(Mn − ε
2
)− (binf − χµ)u(·, ·+ t0; t0, u0))u(·, ·+ t0; t0, u0), t > T̃ nε (u0),

u(·, T̃ nε (u0) + t0; t0, u0) ≤Mn−1 + ε
4
.

(4.50)

Hence, it follows from comparison principle for parabolic equations that there is T nε (u0) ≥

T̃ nε (u0) such that
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u(x, t+ t0; t0, u0) ≤
(ainf − χµ(Mn − ε

2
))+

bsup − χµ
+
ε

2
, ∀ t ≥ T nε (u0), x ∈ RN , ∀ t0 ∈ R. (4.51)

Observe that, sine (H2) holds, Lemma 4.4 implies that

(ainf − χµ(Mn − ε
2
))+

binf − χµ
≤Mn +

ε

2
. (4.52)

Hence, it follows from (4.48)-(4.52) that (4.45) also holds for n. Thus we conclude that (4.45)

holds for every n ≥ 0.

Next, we show that the set Iinv given by (2.19) is an invariant set for solutions of (2.6).

By Lemma 4.4 we have that Mn ↗ M and Mn ↘ M . It suffices to show that the set

Ininv := {u0 ∈ Cb
unif(RN) |Mn ≤ u0(x) ≤ Mn}, n ≥ 0, is positively invariant for (2.6). This

is also done by induction on n ≥ 0. The case n = 0 is guaranteed by Theorem 2.2 (i). Suppose

that Ininv is a positive invariant set for (2.6). Let u0 ∈ In+1
inv . Since, by Lemma 4.4,Mn > Mn+1,

it follows from (4.47) and comparison principle for parabolic equations that

u(x, t+ t0; t0, u0) ≥ min
{
Mn+1 ,

ainf − χµMn

bsup − χµ︸ ︷︷ ︸
=Mn+1

}
= Mn+1, ∀x ∈ RN , ∀ t ≥ 0,∀ t0 ∈ R.

Using this last inequality, by (4.50), it follows from comparison principle for parabolic equa-

tions that

u(x, t+t0; t0, u0) ≤ max
{
Mn+1 ,

asup − χµMn+1

binf − χµ︸ ︷︷ ︸
=Mn+1

}
= Mn+1, ∀x ∈ RN , ∀ t ≥ 0,∀ t0 ∈ R.

Thus, In+1
inv is also a positive invariant set for (2.6). The result thus follows.
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Chapter 5

Existence, uniqueness and stability of positive entire solutions.

This chapter is concerned with the existence, uniqueness, and stability of strictly positive entire

solutions of (2.6). In the first section, we study the existence of strictly positive entire solutions

and prove Theorem 2.4. The uniqueness and stability of these strictly positive entire solutions

are studied in Section 2, where we prove Theorem 2.5.

5.1 Existence of strictly positive entire solutions

While the proof of Lemma 4.5 is presented in the previous chapter, for the sake of clarity in

the arguments in the proof of our main result in this section, it is convenient to point out some

fundamental results developed in its proof. Letting a0 = ainf
3

, DL := {x ∈ RN : |xi| <

L∀ i = 1, · · · , N}, consider the PDE


ut −∆u− a0u = 0, x ∈ DL

u = 0 x ∈ ∂DL

(5.1)

and its corresponding eigenvalue problem


−∆u− a0u = σu, x ∈ DL

u = 0 x ∈ ∂DL.

(5.2)

There exists L0 > 1 such that the principal eigenvalue of (4.19), denoted by σ
L

, is negative for

every L ≥ L0. Moreover, a principal eigenfunction, φL, associated to the principal eigenvalue

σL can be chosen in such away that 0 < φL(x) < φ(0) = 1 for all x ∈ DL \{0}. Moreover, for
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every 0 < ε0 � 1, there is 0 < δ0 � 1 such that for any u0 ∈ Cb
unif(RN) with 0 ≤ u0 ≤ M+

and u0(x) < δ0 for |xi| ≤ 3L, i = 1, 2, · · · , N , x0 ∈ RN ,

0 ≤ λv(x, t; t0, x0, u0) ≤ a0

2χ
, |∇v(x, t; t0, x0, u0)| < ε0

2χ
for t0 ≤ t ≤ t0+1, x ∈ DL, (5.3)

provided that L� 1.

Next we consider the following related periodic-perturbation of (4.18),


ut −∆u− bε(x, t)∇u− a0u = 0, x ∈ DL

u = 0 x ∈ ∂DL.

(5.4)

with |bε(x, t)| ≤ ε , bε(x, t+ 1) = bε(x, t), and its corresponding periodic eigenvalue problem


ut −∆u− bε(x, t)∇u− a0u = σu, x ∈ DL, 0 < t < 1,

u(x, t) = 0, x ∈ ∂DL, 0 < t < 1,

u(x, 0) = u(x, 1), x ∈ DL.

(5.5)

We suppose that bε(x, t) is 1−periodic in t ∈ R, that is, bε(x, t + 1) = bε(x, t) for all x ∈ DL,

and t ∈ R and we let UL,bε(t, τ), τ < t, denotes the solution operator of (5.4) on Lp(DL), N �

p <∞. For, τ < t, the evolution operator UL,ε(t, τ) is a compact and strongly positive operator

on W 2,p
0 (DL) := {u ∈ W 2,p(DL) : u = 0 on ∂DL}. Letting KL,bε := UL,bε(1, 0), which is

compact and strongly positive, thus its spectrum radius rL,ε, is positive. By Krein-Rutman

Theorem, rL,ε is an eigenvalue of KL,ε with a corresponding positive eigenfunction uL,ε. It is

well known that σεL := − ln(rL,ε) is the principal eigenvalue of (5.5) with positive 1-periodic

eigenfunction φL,ε(t) = etσL,εUL,bε(1, 0)uL,ε, (see [20]). Note that UL(t)(φL) = e−tσLφL,

where UL(t) denotes the solution operator of (4.18). It follows that KL(φL) = UL(1)(φL) =

e−σLφL, which implies that rL ≥ e−σL . By perturbation theory for parabolic equations, we

have that UL,bε(1, 0) → UL(1) as ‖bε‖C(D̄L×[0,1]) → 0. Thus, there is 0 < ε0(L) << 1 such
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that rL,ε ≥ e−
σL
2 whenever ‖bε‖C(D̄L×[0,1]) ≤ ε0(L). Hence

σL,ε = − ln(rL,ε) ≤
σL
2
< 0, 0 < ε < ε0(L).

Note that UL,bε(t, τ)φL,ε(τ) = e−(t−τ)σL,εφL,ε(t). Thus for every nonnegative initial function

u0 ∈ C(DL) with ‖u0‖∞ > 0, we have that

sup
x∈DL,τ<t

|(UL,bε(t, τ)u0)(x)| =∞, ∀ ‖bε‖C(D̄L×[0,1]) < ε0(L). (5.6)

Proof of Theorem 2.4. Let T > 0 be fixed and δ0 := δ∗0(T ) and M+ = asup
binf−χµ

+ 1 be given in

Lemma 4.5. It follows from Lemma 4.5 that

δ0 ≤ u(x, T − kT ;−kT, u0) ≤M+, x ∈ Rn, k ≥ 1, δ0 ≤ u0 ≤M+. (5.7)

Thus, it follows by induction and uniqueness of solution that

δ0 ≤ u(x, nT − kT ;−kT, u0) ≤M+, x ∈ Rn, k ≥ 1, n ≥ 1, δ0 ≤ u0 ≤M+. (5.8)

Let ukn(x) := u(x,−nT ;−kT, δ0) for all x ∈ Rn, and k ≥ n ≥ 0. Then by a priori estimates

for parabolic equations (see [13]), the sequence {uk0}k≥1 has a locally uniformly convergent

subsequence {uk′0 }k≥1 to some u∗ with u∗ ∈ Cν
unif(Rn) for 0 < ν < 1. Let u+(x, t) =

u(x, t; 0, u∗) for every x ∈ Rn and t ≥ 0. We claim that u+(·, ·) has a backward extension.

Indeed, by uniqueness of solution of (2.6), for every 1 ≤ n ≤ k′, we have that

uk
′

0 (·) = u(·, 0;−nT, u(·,−nT ;−k′T, δ0)) = u(·, 0;−nT, uk′n ). (5.9)

Similarly as above, for every n ≥ 1, there is a function u∗n ∈ Cb
unif(Rn) and a subsequence

{uk
′
n
n }k≥1 of {uk′n } with uk

′
n
n → u∗n locally uniformly as k′n →∞.

Since uk
′
n

0 → u∗ for each n ≥ 1 locally uniformly, it follows from (5.9) and Lemma 4.2 that

u∗(·) = u(·, 0;−nT, u∗n).
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Therefore

u+(x, t) = u(x, t; 0, u∗) = u(x, t, 0, u(·, 0;−nT, u∗n)) = u(x, t;−nT, u∗n) (5.10)

for all x ∈ RN and t ≥ 0. Since u(·, t;−nT, u∗n) is defined for all t ≥ −nT , then it follows from

(5.10) that u+(x, t) has an extension to RN × [−nT,∞) for every n ∈ N. Therefore, u+(x, t)

has a backward extension on RN × R. Note that (5.8) implies that δ0 ≤ u∗ ≤ M+. Thus,

by Theorem 2.3 and Lemma 4.1, we obtain that 0 < infx,t u
+(x, t) ≤ supx,t u

+(x, t) ≤ M+.

Hence (u+(x, t), v+(x, t)) is a positive entire solution of (2.6).

(i) Suppose that (u+(x, t), v+(x, t)) is a strictly positive entire solution of (2.6). Then,

u(t− t0;u+
inf) ≤ u+(x, t) ≤ u(t− t0;u+

sup),∀ t0 ∈ R, t ≥ t0, x ∈ RN , (5.11)

where u(t;u+
inf) solves


d
dt
u = u(ainf − χµu+

sup − (bsup − χµ)u), t > 0

u(0) = u+
inf ,

and u(t;u+
sup) solves


d
dt
u = u(asup − χµu+

inf − (binf − χµ)u), t > 0

u(0) = u+
sup.

Note that

lim
t→∞

u(t;u+
inf) =

(ainf − χµu+
sup)+

bsup − χµ
, and lim

t→∞
u(t;u+

sup) =
(asup − χµu+

inf)+

binf − χµ
. (5.12)

Hence, it follows from (5.11) and (5.12) that

(ainf − χµu+
sup)+ ≤ (bsup − χµ)u+

inf and (binf − χµ)u+
sup ≤ (asup − χµu+

inf)+. (5.13)
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Thus, (i) follows.

(ii) Since 0 < u+
inf ≤ u+

sup, (5.13) implies that

ainf − χµu+
sup ≤ (bsup − χµ)u+

inf and (binf − χµ)u+
sup ≤ asup − χµu+

inf .

This together with (5.13) implies that

(binf − χµ)ainf − χµasup ≤
(
(binf − χµ)(bsup − χµ)− (χµ)2

)
u+

inf (5.14)

and (
(binf − χµ)(bsup − χµ)− (χµ)2

)
u+

sup ≤ (bsup − χµ)asup − χµainf . (5.15)

Since (H2) holds and u+
inf > 0, it follows from (5.14) that (binf − χµ)(bsup− χµ)− (χµ)2 > 0.

Thus (2.21) follows from (5.14) and (5.15).

(iii) Let δ∗0(T ) be given by Lemma 4.5 and E(T ) := {u ∈ Cb
unif(RN) | δ∗0(T ) ≤ uinf ≤

usup ≤ ainf
bsup−χµ} endowed with the open compact topology. Lemma 4.5 implies that the map

PT : E(T ) 3 u0 7→ u(·, T ; 0, u0) ∈ E(T ) is well defined. Note that E(T ) is a closed bounded

convex subset of Cb
uinf(RN) endowed with the open compact topology. Let {u0n}n≥1 ⊂ E(T )

and u0 ∈ E(T ) such that u0n → u0 uniformly on every compact subset of RN . For every

n ≥ 1, we have

ut(·, ·; 0, u0n) = ∆u− χ∇v(·, ·;u0n) · ∇u+ (a− χλv(·, ·; 0, u0n)− (b− χµ)u)u, t > 0

and Theorem 2.2 (ii) gives

sup
0≤t≤T,n≥1

‖v(·, t; 0, u0n)‖C1,ν
unif(RN ) <∞. (5.16)

Since u0n → u0 locally uniformly, it follows from Lemma 4.2 that there is a subsequence

{(u(·, ·; 0, u0n′), v(·, ·; 0, u0n′))}n≥1 of {(u(·, ·; 0, u0n), v(·, ·; 0, u0n))}n≥1 and a function (u, v) ∈

C2,1(RN × (0,∞)) such that (u(·, ·; 0, u0n′), v(·, ·; 0, u0n′)) → (u, v) locally uniformly in
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C2,1(RN × (0,∞)). Moreover, (u, v) satisfies ∆v − λv + µu = 0 and


ut = ∆u− χ∇v · ∇u+ (a− χλv − (b− χµ)u)u, 0 < t ≤ T

u(0) = u0.

Thus (u(x, t), v(x, t)) = (u(x, t; 0, u0), v(x, t; 0, u0)) for every x ∈ RN , t ∈ [0, T ]. This

implies that u(·, T ; 0, u0n′)→ u(·, T ; 0, u0) locally uniformly. Hence PT is continuous.

Next let {u0n}n≥ ∈ E(T ) be given. It follows from (5.16) and a priori estimate for parabolic

equations that

sup
n
‖u(·, T ; 0, u0n)‖Cν(RN ) <∞.

Thus {u(·, T ; 0, u0n)}n≥1 has a convergent subsequence in the open compact topology inE(T ).

Hence PT is a compact map. Therefore, Shauder’s fixed theorem implies that there is u∗ ∈

E(T ) such that u(·, T ; 0, u∗) = u∗. Clearly (u(·, ·; 0, u∗), v(·, ·; 0, u∗)) is a T−periodic solution

of (2.6) and can extended uniquely to a positive entire solution.

(iv) For every n ≥ 1, let tn = 1
n

and u0n ∈ Cb
unif(RN), such that (u(x, t;u0n), v(x, t;u0n)) is

positive tn− periodic solution of (2.6) with ainf
bsup
≤ sup(x,t) u(x, t;u0n) ≤ asup

binf−χµ
.

Claim 1 :There exists L� 1 large enough, such that

inf
n≥1,x0∈RN

sup
|x|<L

u0n(x+ x0) > 0. (5.17)

Let a0 = ainf
3

and L0 � 1 be fixed such that the principal eigenvalue λL of (5.2) is negative

for every L ≥ L0. Note that for every nonnegative uniformly continuous function u0(x) in DL,

L ≥ L0, with ‖u0‖L∞(DL) > 0, we have that ‖u(·, t;u0)‖∞ →∞, as t→∞, where u(x, t;u0)

solves the initial-boundary problem (5.1). Hence, by (5.6), for everyL ≥ L0, there is ε0(L) > 0

such that if supx∈DL,0≤t≤1 |bε0(x, t)| ≤ ε0, bε0(x, t + 1) = bε0(x, t) for every x ∈ DL, t ≥ 0,

then for every nonnegative continuous function u0(x) on DL with ‖u0‖L∞(DL) > 0, we have

that

sup
x∈DL,t>0

(UL,bε0(L)
(t; 0)u0)(x) =∞, (5.18)
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where Ubε0(L),L(x, t; 0)u0 solves the initial boundary value problem (5.4) (with T = 1).

Taking T = 1,M = asup
binf−χµ

, and ε = min{ ainf
3(χλ+bsup−χµ)

, ε0(L0)}, it follows from Lemma 4.3

and inequalities (4.8) and (4.28) that there is L1 > L0 and δ0 > 0 such that for every L ≥ L1,

x ∈ DL, and 0 ≤ t ≤ 1, we have

u(x, t+ t0;u0) < ε, v(x, t+ t0; t0, u0) < ε, and |∇v(x, t+ t0; t0, u0)| ≤ ε, (5.19)

whenever 0 ≤ u0(x) ≤ δ0, ∀ |x| ≤ 3L, i = 1, · · · , N. Suppose that there is some n ≥ 1 and

x0 ∈ RN , such that

sup
|x|∞<3L1

u0n(x+ x0) < δ0. (5.20)

Thus, since (u(x, t; 0, u0n), v(x, t; 0, u0n)) is tn−periodic with tn ≤ 1, it follows from (5.19)

that, for |x− x0| < L1, t ≥ 0,

ut(, ·; 0, u0n) = ∆u(·, ·; 0, u0n)− χ(∇v∇u)(·, ·; 0, u0n) + u(a− (b− χµ)u− χλv)

≥ ∆u(·, ·; 0, u0n)− χ(∇v∇u)(·, ·; 0, u0n) +
ainf

3
u(·, ·, 0, u0n).

Therefore, by comparison principle for parabolic equations, since L1 ≥ L0, we have that

u(x+ x0, t; 0, u0n) ≥ Ubε0 ,L0(x, t; 0)u0n|DL0
, ∀ |x|∞ < L1, ∀t ≥ 0 (5.21)

where u0n|DL0
denotes the restriction of u0n on DL0 and bε0(x, t) = ∇v(x + x0, t; 0, u0n) for

every x ∈ DL0 , t ≥ 0. It follows from (5.18) and (5.21) that supx,t u(x, t; 0, u0n) = ∞, which

is a contradiction. Hence Claim 1 follows.

By a priori estimate for parabolic equations, we may suppose that u0n → u∗ ∈ Cb
unif(RN) in

the open compact topology. Let u+(x, t) = u(x, t; 0, u∗).

Claim 2: u+(x, t) = u∗(x) for every x ∈ RN , and t ≥ 0.
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Without loss of generality, let us suppose that u0n → u∗ in the open compact topology. Let

x ∈ RN and t > 0 be fixed. For every n ≥ 1, we have that

u+(x, t)− u∗(x) = u(x, t; 0, u∗)− u(x, t; 0, u0n)︸ ︷︷ ︸
I1,n(x,t)

+u(x, t; 0, u0n)− u(x, [nt]Tn; 0, u0n)︸ ︷︷ ︸
I2,n(x,t)

+ u(x, [nt]tn; 0, u0n)− u∗︸ ︷︷ ︸
I3,n(x,t)

.

(5.22)

Since u(x, t; 0, u0n) is tn−periodic, then

I3,n(x, t) = u0n(x)− u∗(x)→ 0, as n→∞

in the open compact topology. It follows from the variation of constant formula that

I2,n(x, t) =− χ
∫ t−[nt]Tn

0

T (t− [nt]tn − s)∇ · ((u∇v)(x, s+ [nt]tn; 0, u0n)))ds︸ ︷︷ ︸
I12,n(x,t)

+

∫ t−[nt]tn

0

T (t− [nt]tn − s)(((a+ 1− bu)u)(x, s+ [nt]tn; 0, u0n))ds︸ ︷︷ ︸
I22,n(x,t)

where {T (t)}t≥0 denotes the analytic semigroup in (2.1). Since ‖u0n‖∞ ≤ M , there is a

constant C depending only on M such that

|I1
2,n(x, t)| ≤ C

∫ t−[nt]tn

0

e−(t−[nt]tn−s)√
t− [nt]tn − s

ds ≤ C(t− [nt]tn)
1
2 → 0, as n→∞

and

|I2
2,n(x, t)| ≤ C

∫ t−[nt]tn

0

e−(t−[nt]tn−s)ds = C(1− e−(t−[nt]tn))→ 0, as n→∞.

Hence I2,n(x, t) → 0 as n → ∞ in the open compact topology . Since u0n → u∗ in the open

compact topology, by Lemma 4.2, we have that I1,n(x, t)→ 0 as n→∞ in the open compact
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topology. Therefore, we conclude from (5.22) that u+(x, t) = u∗(x), which completes the

proof of Claim 2.

Next, it follows from Claim 1 that there exists L� 1 such that

inf
x0∈RN

sup
|x|∞≤L

u∗(x+ x0) > 0. (5.23)

Suppose by contradiction that u∗inf = 0. Then there is a sequence {xn}n≥1 such that u∗(xn)→ 0

as n → ∞. Let un(x) = u∗(x + xn) for every n ≥ 1. By a prior estimate for parabolic equa-

tions, as above, we may suppose that un → ũ in the open compact topology and ũ is a steady

state solution of (2.6). Furthermore, (5.23) implies that ‖ũ‖∞ > 0. Hence by comparison prin-

ciple for parabolic equations, we that that ũ(0) > 0. But ũ(0) = limn→∞ u
∗(xn) = 0, which

impossible. Thus u∗inf > 0. Therefore u∗(x) is a positive steady state solution of (2.6).

5.2 Uniqueness and stability of strictly positive entire solutions

In this section, we study the uniqueness and stability of strictly positive entire solutions of

(2.6) and prove Theorem 2.5. First, we study these questions for general logistic type source

function f(x, t, u) = u(a(x, t) − ub(x, t)), and prove that there is a positive constant χ0 such

that for every 0 ≤ χ < χ0, (2.6) has a unique exponentially stable positive entire solution.

Next, we examine two frequently encountered cases of logistic source in the literature, namely

space independent logistic source function f0(x, t, u) = u(a(t) − ub(t)) and a logistic source

function of the form f1(x, t, u) = b(x, t)(κ − u)u, κ > 0, and derive explicit lower bound

for χ0. In this section, we shall always assume that (H1) holds, so that pointwise persis-

tence phenomena occurs in (2.6) (see Theorem 2.3 (i)). Furthermore, for every initial func-

tion u0 ∈ Cb
unif(RN), infx u0(x) > 0, every initial time t0 ∈ R, it follows from Remark

2.1 that there exists T1(u0) � 1 such that the unique nonnegative global classical solution

(u(x, t+ t0; t0, u0), v(x, t+ t0; t0, u0)) of (2.6) with (u(x, t0; t0, u0) = u0(x), satisfies

0 < m(u0) ≤ u(x, t+ t0; t0, u0) ≤ asup

binf − χµ
,∀ t ≥ T1(u0), ∀ x ∈ RN , ∀t0 ∈ R. (5.24)
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Henceforth, we shall always suppose that 0 < u0 inf ≤ u0 sup ≤ a
binf−χµ

. Note that, by a variation

of constant formula, we have that

u(·, t+ t1 + t0; t0, u0) = T (t)u(·, t1 + t0; t0, u0)− χ
∫ t

0

T (t− s)∇(u∇v)(·, s+ t1 + t0; t0, u0)ds

+

∫ t

0

T (t− s)((a+ 1− ub)u)(·, s+ t1 + t0; t0, u0))ds,

(5.25)

where {T (t)}t≥0 denotes the analytic semigroup in (2.1). We let Xβ , 0 < β ≤ 1, stand for the

fractional power space associated with I −∆.

Thus, it holds that (see [16]) X
1
2

+β is continuously embedding in Cb
unif(RN) with

‖∇u‖Cbunif(RN ) ≤
√
NΓ(β)√

πΓ(1
2

+ β)
‖u‖

X
1
2+β , ∀ u ∈ Xβ+ 1

2 , ∀ 0 < β <
1

2
, (5.26)

‖u‖Cbunif(RN ) ≤ ‖u‖Xβ , ∀ u ∈ Xβ, ∀ 0 < β < 1, (5.27)

and

‖T (t)u‖Xβ ≤ Cβt
−βe−t‖u‖∞, ∀ t > 0, ∀ u ∈ Xβ, ∀ 0 < β < 1. (5.28)

The next lemma provides an a priori bound on the sup-norm of the gradient of positive entire

solutions to (2.6).

Lemma 5.1. There is a positive constant C independent of χ, a, b, λ and µ such that for any

positive entire solution (u+
χ (x, t), v+

χ (x, t)) of (2.6), it holds that

‖∇u+
χ (·, t+ t0)‖∞ ≤ C 3

4

√
NΓ(1

4
)

√
πΓ(3

4
)
M0e

−tt−
3
4

(
1 + CM2t

1
4

)
e2t(Γ( 1

4
)M2)

4

, ∀t0 ∈ R, ∀t > 0,

(5.29)

where M0 = asup
binf−χµ

and M1 = 2asup + 1 +χµM0 and M2 := C 3
4

(
χµNΓ( 1

4
)√

πλΓ( 3
4

)
M0 +M1

)
and C 3

4

is given by (5.28).
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Proof. Observe from (5.25) that for every t > 0, t0 ∈ R, u+
χ (·, t+ t0) can be written as

u+
χ (t+ t0) =T (t)u+

χ (t0)− χ
∫ t

0

T (t− s)(∇u+
χ · ∇v+

χ )(s+ t0)ds

+

∫ t

0

T (t− s)
(
(a+ 1− χλv+

χ − (b− χµ)u+
χ )u+

χ

)
(s+ t0)ds. (5.30)

Note from Lemma 3.2 and (2.20) that ‖∇v+
χ (·, t + t0)|∞ ≤ µ

√
N

2
√
λ
‖u+

χ (·, t + t0)‖∞ ≤ µ
√
N

2
√
λ
M0.

Thus, it follows from (2.4), (5.28) and (5.26) and Lemma 3.2 that

‖χ
∫ t

0

T (t− s)(∇u+
χ · ∇v+

χ )(s+ t0)ds‖
X

3
4

≤
χµ
√
NC 3

4
M0

2
√
λ

∫ t

0

e−(t−s)

(t− s) 3
4

‖∇u+
χ (s+ t0)‖∞ds

≤
χµNΓ(1

4
)C 3

4
M0

2
√
πλΓ(3

4
)

∫ t

0

e−(t−s)

(t− s) 3
4

‖∇u+
χ (s+ t0)‖∞ds.

Similarly since λ‖v+
χ (t + tτ )‖∞ ≤ χµ‖u+

χ (t + tτ )‖∞ ≤ χµM0, using (5.27) and (5.28), we

obtain

‖
∫ t

0

T (t− s)
(
(a+ 1− χλv+

χ − (b− χµ)u+
χ )u+

χ

)
(s+ t0)ds‖

X
3
4

≤C 3
4

(
asup + 1 + χλ sup

τ
‖v+

χ (τ)‖∞ + (bsup − χµ) sup
τ
‖u+

χ (τ)‖∞
)∫ t

0

e−(t−s)

(t− s) 3
4

‖u+
χ (s+ t0)‖∞ds

≤C 3
4

(2asup + 1 + χµM0)

∫ t

0

e−(t−s)

(t− s) 3
4

‖u+
χ (s+ t0)‖∞ds.

Therefore, we have from (5.30) that

‖etu+
χ (t+ t0)‖

X
3
4
≤ C 3

4
M0t

− 3
4 + C 3

4

(
χµNΓ(1

4
)

2
√
πλΓ(3

4
)
M0 +M1

)
︸ ︷︷ ︸

:=M2

∫ t

0

es‖u+
χ (s+ t0)‖∞
(t− s) 3

4

ds.

Therefore, it follows from [1, Theorem 3.1.1] that there is C > 0 such that

‖etu+
χ (t+ t0)‖

X
3
4
≤C 3

4
M0t

− 3
4

(
1 + CM2t

1
4

)
e2t(Γ( 1

4
)M2)

4

.
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Combining this with (5.26), we obtain (5.29). The Lemma is thus proved.

Remark 5.1. It follows from Lemma 5.1 that

‖∇u+
χ (·, t)‖∞ = ‖∇u+

χ (1+(t−1))‖∞ ≤ C 3
4

√
NΓ(1

4
)

√
πΓ(3

4
)
M0e

−1 (1 + CM2) e2(Γ( 1
4

)M2)
4

, ∀t ∈ R,

where C, M0, M1 and M2 are given by Lemma 5.1 whenever (u+
χ (x, t), v+

χ (x, t)) is a positive

entire solution of (2.6). Therefore, by setting

C0(χ) := sup{‖∇u+
χ (·, t)‖∞, t ∈ R, (u+

χ (x, t), v+
χ (x, t)) is a positive entire solution of (2.6)},

(5.31)

we have that C0(χ) < ∞ for every 0 < χ < binf
µ

. Moreover taking C1(χ) = 1 + µC0(χ)
√
N

2u+χ inf

√
λ

, it

follows from (2.21) that

lim
χ→0+

χµC1(χ)u+
χ sup

(binf − χµ)u+
χ inf

= 0,

for any positive entire solution (u+
χ (x, t), v+

χ (x, t)) of (2.6). Thus, we introduce the following

definition

χ0 := sup{χ ∈ (0,
binf

µ
) : ∀ 0 < χ̃ < χ, ∃ (u+

χ̃ , v
+
χ̃ ) satisfying

χ̃µC1(χ)u+
χ̃ sup

(binf − χ̃µ)u+
χ̃ inf

< 1 }.

(5.32)

Lemma 5.2. For given u0 ∈ Cb
unif(RN) and positive entire solution (u+

χ (x, t), v+
χ (x, t)) of (2.6)

we let

U(x, t+ t0; t0, u0) :=
u(x, t+ t0; t0, u0)

u+
χ (x, t+ t0)

and V (x, t+ t0; t0, u0) :=
v(x, t+ t0; t0, u0)

v+
χ (x, t+ t0)

.

Then U(x, t+ t0; t0, u0) satisfies

Ut = ∆U+∇U∇(2 ln(u+
χ )−χv)+χ

(
λ(v+

χ − v) +∇ ln(u+
χ )∇(v+

χ − v)
)
U+(b−χµ)u+

χU(1−U).

(5.33)
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In particular, if u+
χ (x, t) = u+

χ (t), that is u+
χ is space independent, we have that

Ut = ∆U − χ∇U∇v + (χλ(1− V )U + (b− χµ)U(1− U))u+
χ (t). (5.34)

Proof. We have that

Ut =
1

(u+
χ )2

(
u+
χ (∆u− χ∇ · (u∇v) + (a− bu)u)− u

(
∆u+

χ − χ∇ · (u+
χ∇v+

χ ) + (a− bu+
χ )u+

χ

))
=

1

u+
χ

(
∆u− U∆u+

χ − χ
(
∇ · (u∇v)− U∇ · (u+

χ∇u+
χ )
))

+ bu+
χU(1− U)

=∆U + 2∇U · ∇ ln(u+
χ )− χ

u+
χ

(
∇ · (u∇v)− U∇ · (u+

χ∇u+
χ )
)

+ bu+
χU(1− U).

On the other hand, we have

∇ · (u∇v)− U∇ · (u+
χ∇v+

χ )

=∇u · ∇v + Uu+
χ∆v − U∇u+

χ · ∇v+
χ − Uu+

χ∆v+

=Uu+
χ∆(v − v+

χ ) + U∇u+
χ · ∇(v − v+

χ ) + u+
χ∇U · ∇v

=λUu+
χ (v − v+

χ ) + µ(u+
χ )2U(1− U) + U∇u+

χ · ∇(v − v+
χ ) + u+

χ∇U · ∇v.

Hence, we have that

Ut = ∆U+∇U ·∇(2 ln(u+
χ )−χv)−χ

(
λ(v − v+

χ ) +∇ln(u+
χ )∇(v − v+

χ )
)
U+(b−χµ)u+

χU(1−U).

We note that to show the stability of the positive entire solution u+
χ (x, t) it is enough to show

that ‖U(·, t + t0; t0, u0) − 1‖∞ → 0 as t → ∞. We first prove the following theorem, which

will be used in for the proof of our main result in this section.
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Theorem 5.1. For every ε > 0, and for every u0 ∈ Cb
unif(RN) satisfying 0 < u0 inf ≤ u0 sup ≤

asup
binf−χµ

, and n ≥ 1 there is Tε,n > 0 such that

‖U(·, t+t0; t0, u0)−1‖∞ ≤

(
χµC1(χ)u+

sup

(binf − χµ)u+
χ inf

)n
asup

(binf − χµ)u+
χ sup

+ε, ∀ t ≥ Tε,n, t0 ∈ R,

(5.35)

where C1(χ) := 1 + µC0(χ)
√
N

2u+χ inf

√
λ

and C0 is given by (5.31). Furthermore, if u+
χ (x, t) = u+

χ (t), is

space homogeneous, then Tε,n can be chosen so that

‖U(·, t+t0; t0, u0)−1‖∞ ≤
(

χµ

binf − χµ

)n
asup

(binf − χµ)u+
χ inf

+ε, ∀ t ≥ Tε,n, t0 ∈ R, (5.36)

Proof. The proof of this theorem is divided in two parts. In the first part, we shall give the proof

of the general case. Next, in the second part, we consider the proof of the particular cases.

Let ε > 0 be given. Since, by (3.25), ‖∇(v− v+
χ )(·, t+ t0; t0, u0)‖∞ ≤ µ

√
N

2
√
λ
‖(u− u+

χ )(·, t+

t0; t0, u0)‖∞ and ‖λ(v − v+
χ )(·, t + t0; t0, u0)‖∞ ≤ µ‖(u − u+

χ )(·, t + t0; t0, u0)‖∞ for every

t ≥ 0, we have from Remark 5.1 that

‖(λ(v − v+
χ ) +∇ ln(u+

χ ) · ∇(v − v+
χ ))(·, t+ t0; t0, u0)‖∞

≤

(
1 +

C0(χ)
√
N

2u+
χ inf

√
λ

)
︸ ︷︷ ︸

=C1(χ)

µ‖(u− u+
χ )(·, t+ t0; t0, u0)‖∞

≤µC1(χ)u+
χ sup(t+ t0)‖(U − 1)(·, t+ t0; t0, u0)‖∞,∀ t ≥ 0,

(5.37)

where C0(χ) is given by (5.31). Observe from Theorem 2.2 (i) and Theorem 2.4 (i) that

‖u(·, t+ t0; t0, u0)− u+
χ ‖∞ ≤

asup

binf − χµ
, ∀t ≥ 0, ∀ t0 ∈ R

Thus it follows from the first inequality in (5.37) that

‖(λ(v − v+
χ ) +∇ ln(u+

χ ) · ∇(v − v+
χ ))(·, t+ t0; t0, u0)‖∞ ≤

µC1(χ)asup

binf − χµ
, ∀t ≥ 0, ∀ t0 ∈ R.
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This combined with (5.33) yields that

Ut ≤ ∆U +∇U · ∇(2 ln(u+
χ )− χv) +

χµC1(χ)asup

binf − χµ
U + (b− χµ)u+

χU(1− U), (5.38)

and

Ut ≥ ∆U +∇U · ∇(2 ln(u+
χ )− χv)− χµC1(χ)asup

binf − χµ
U + (b− χµ)u+

χU(1− U). (5.39)

Let U1(t) denote the solutions of the ODE


dU

dt
= −χµC1(χ)asup

binf − χµ
U + (binf − χµ)u+

χ infU(1− U),

U(0) = min{ u0 inf

u+χ sup
, 1}

and U1(t) denote the solutions of the ODE


dU
dt

= χµC1(χ)asup
binf−χµ

U + (binf − χµ)u+
χ infU(1− U)

U(0) = max{u0 sup

u+χ inf

,
(binf−χµ)u+χ inf+

χµC1(χ)asup
binf−χµ

(binf−χµ)u+χ inf

}

Thus, it follows from comparison principle for ODE’s that

U1(t) ≥ 1 +

χµC1(χ)asup
binf−χµ

(binf − χµ)u+
χ inf

and 0 < U1(t) ≤ 1 ∀ t ≥ 0. (5.40)

Furthermore, it holds that

lim
t→∞

U1(t) =

(
1−

χµC1(χ)asup
binf−χµ

(binf − χµ)u+
χ inf

)
+

and lim
t→∞

U1(t) = 1 +

χµC1(χ)asup
binf−χµ

(binf − χµ)u+
χ inf

. (5.41)

We claim that

U1(t) ≤ U(x, t+ t0; t0, u0) ≤ U1(t), ∀ x ∈ R,∀ t ≥ 0, ∀ t0 ∈ R. (5.42)
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Indeed, by setting

L+
1 (U) := ∆U +

χµC1(χ)asup

binf − χµ
U + (b(x, t+ t0)− χµ)u+

χU(1− U) and

L−2 (U) := ∆U − χµC1(χ)asup

binf − χµ
U + (b(x, t+ t0)− χµ)u+

χU(1− U),

it follows from (5.40) that

dU1

dt
− L+

1 (U1) = ((binf − χ)u+
χ inf − (b(x, t+ t0)− χµ)u+

χ )U1(1− U1) ≥ 0 (5.43)

and

dU1

dt
− L−1 (U1) = ((binf − χ)u+

χ inf − (b(x, t+ t0)− χµ)u+
χ )U1(1− U1) ≤ 0. (5.44)

Therefore, using (5.38), (5.39), (5.43), (5.44), and comparison principle for parabolic equa-

tions, we deduce that (5.42) holds. Thus, it follows from (5.41) and (5.42) that there is T1,ε � 1

such that for every t0,

1−
χµC1(χ)asup
binf−χµ

(binf − χµ)u+
χ inf

−ε ≤ U(x, t+t0; t0, u0) ≤ 1+

χµC1(χ)asup
binf−χµ

(binf − χµ)u+
χ inf

+ε, ∀ t ≥ T1,ε, ∀ x ∈ RN ,

which is equivalent to

‖U(·, t+ t0; t0, u0)− 1‖∞ ≤
χµC1(χ)asup
binf−χµ

(binf − χµ)u+
χ inf

+ ε, ∀ t ≥ T1,ε, ∀ t0 ∈ R.

This complete the proof of (5.35) for the case n = 1.

Next, proceed by induction and suppose that (5.35) holds for some n ≥ 1. We show that

(5.35) holds for n + 1. Indeed, using the last inequality in (5.37), we may suppose that for
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0 < ε̃� 1, we have for every t0 ∈ R

‖(λ(v − v+
χ ) +∇ ln(u+

χ ) · ∇(v − v+
χ ))(·, t+ t0; t0, u0)‖∞

≤C1(χ)µu+
χ sup(t+ t0)‖(U − 1)(·, t+ t0; t0, u0)‖∞

≤C1(χ)µu+
χ sup(t+ t0)

(
χµC1(χ)u+

sup

(binf − χµ)u+
χ inf

)n
asup

(binf − χµ)u+
χ sup

+ ε̃, ∀ t ≥ Tn,ε̃, x ∈ RN ,

(5.45)

for some Tn,ε̃ � 1. Therefore, similar arguments as in the case of n = 1 from (5.38) to (5.44)

yield for every t0 ∈ R,

‖U(·, t+ t0; t0, u0)− 1‖∞ ≤
χC1(χ)µu+

χ sup

(
χµC1(χ)u+sup

(binf−χµ)u+χ inf

)n
asup

(binf−χµ)u+χ sup

(binf − χµ)u+
χ inf

+ ε,

=

(
χµC1(χ)u+

sup

(binf − χµ)u+
χ inf

)n+1
asup

(binf − χµ)u+
χ sup

+ ε, ∀ t ≥ Tn+1,ε,

for some Tn+1,ε � 1.

If u+
χ (x, t) = u+

χ (t), then using (5.34) instead of (5.33) in the proof of the general case given

above, (5.38) and (5.39) become

Ut ≤ ∆U − χ∇U · ∇v + (χµ‖V − 1‖∞U + (b− χµ)U(1− U))u+
χ (t), (5.46)

and

Ut ≥ ∆U − χ∇U · ∇v + (−χµ‖V − 1‖∞U + (b− χµ)U(1− U))u+
χ (t). (5.47)

Observe that ‖V (·, t + t0; t0, u0) − 1‖∞ ≤ asup

(binf−χµ)u+χ inf

for every t ≥ 0, t0 ∈ R. Hence, by

considering U1(t) and U1(t) solutions of the ODE


dU
dt

=

(
−χµ asup

(binf−χµ)u+χ inf

U + (binf − χµ)U(1− U)

)
u+
χ (t+ t0)

U(0) = min{ u0 inf

u+χ sup
, 1}
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and 
dU
dt

=

(
χµ asup

(binf−χµ)u+χ inf

U + (binf − χµ)U(1− U)

)
u+
χ (t+ t0)

U(0) = max{u0 sup

u+χ inf

, 1 +
(

χµ
binf−χµ

)
asup

(binf−χµ)u+χ inf

}.

Hence, following similar arguments as in the general case, (5.40)-(5.44), we deduce that (5.36)

also holds. This completes the proof of the theorem.

We now present the proof of Theorem 2.5, which is based on the previous result.

Let Ũ(x, t; t0, u0) = U(x, t; t0;u0) − 1 and Ṽ (x, t; t0, u0) = V (x, t; t0, u0) − 1. Then it

follows from (5.33) that Ũ(x, t; t0, u0) satisfies

Ũt =∆Ũ +∇Ũ · ∇(2 ln(u+
χ )− χv)− (b(x, t)− χµ)u+

χ (t)Ũ

+ U
(
λ(v − v+

χ ) +∇ln(u+
χ )∇(v − v+

χ )
)
− (b(x, t)− χµ)u+

χ Ũ
2.

(5.48)

Let Φχ(t, s) be the solution operator in Cb
unif(RN) of

ut = ∆u+∇u · ∇(2 ln(u+
χ )− χv)− (b(x, t)− χµ)u+

χu. (5.49)

Then, by the comparison principle for parabolic equations, we have

‖Φχ(t, s)‖ ≤ e−(t−s)(binf−χµ)u+χ inf , ∀ t− s ≥ 0. (5.50)

Proof of Theorem 2.5. We shall give the proof of the general case. The proof of the particular

case follows similar arguments. We suppose that 0 < χ < χ0, where χ0 is given by (5.32).

Hence, by definition of χ0, there is a positive entire solution of (2.6) (u+
χ (x, t), v+

χ (x, t)) satis-

fying

(H̃) :
χµC1(χ)u+

χ sup

(binf − χµ)u+
χ inf

< 1.
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Exponential Stability of (u+
χ (x, t), v+

χ (x, t)): By Theorem 5.1 we may suppose that there is

tn � 1, tn < tn+1, such that

‖Ũ(·, t+t0; t0, u0)‖∞ = ‖U(·, t+t0; t0, u0)−1‖∞ ≤ 2

(
χµC1(χ)u+

sup

(binf − χµ)u+
χ inf

)n

, ∀ t ≥ tn, t0 ∈ R.

(5.51)

By the variation of constant formula, it follows from (5.48) that for every t ≥ 0,

Ũ(·, t+ tn + t0; t0, u0) = I1,n(t; t0) + χI2,n(t; t0)− I3,n(t, t0), (5.52)

where

I1,n(t, t0) := Φχ(t+ tn + t0; tn + t0)Ũ(·, tn + t0; t0, u0),∀t ≥ 0,∀ n ≥ 1,

I2,n(t, t0) :=

∫ t

0

Φχ(t+tn+t0, s+tn+t0)
(
U
(
λ(v−v+

χ )+∇ ln(u+
χ )·∇(v−v+

χ )
))

(·, s+tn+t0)ds,

and

I3,n(t, t0) :=

∫ t

0

Φχ(t+ tn + t0, s+ tn + t0)(b− χµ)u+
χ Ũ

2(·, s+ tn + t0)ds.

Next, it follows from (5.51) and (5.50) that for every n ≥ 1, t0 ∈ R, and t ≥ 0,

‖I1,n(t, t0)‖∞ ≤e−t(binf−χµ)u+χ inf‖Ũ(·, tn + t0; t0, u0)‖∞

≤ 2

(
χµC1(χ)u+

sup

(binf − χµ)u+
χ inf

)n

︸ ︷︷ ︸
:=K1,n

e−t(binf−χµ)u+χ inf . (5.53)

72



Next, for every 0 ≤ s ≤ t, n ≥ 1, and t0 ∈ R, we have

‖Φχ(t+ tn + t0, s+ tn + t0)((U
(
λ(v − v+

χ ) +∇ ln(u+
χ ) · ∇(v − v+

χ ))(s+ tn + t0)
)
‖∞

≤e−(t−s)(binf−χµ)u+χ inf‖
(
U
(
λ(v − v+

χ ) +∇ ln(u+
χ ) · ∇(v − v+

χ )
))

(s+ tn + t0)‖∞

≤

(
1 + 2

(
χµC1(χ)u+

sup

(binf − χµ)u+
χ inf

)n)
‖
(
λ(v − v+

χ ) +∇ ln(u+
χ ) · ∇(v − v+

χ )
)

(s+ tn + t0)‖∞
e(t−s)(binf−χµ)u+χ inf

≤

(
1 + 2

(
χµC1(χ)u+

sup

(binf − χµ)u+
χ inf

)n)(
1 +

C0(χ)
√
N

2u+
χ inf

√
λ

)
µ‖(u− u+

χ )(s+ tn + t0)‖∞
e(binf−χµ)u+χ inf(t−s)

≤

(
1 + 2

(
χµC1(χ)u+

sup

(binf − χµ)u+
χ inf

)n)(
1 +

C0(χ)
√
N

2u+
χ inf

√
λ

)
µu+

χ sup︸ ︷︷ ︸
:=K2,n

‖Ũ(·, s+ tn + t0)‖∞
e(binf−χµ)u+χ inf(t−s)

(5.54)

We also have

‖Φχ(t+ tn + t0, s+ tn + t0)(b− χµ)u+
χ Ũ

2(·, s+ tn + t0)‖∞

≤2 (bsup − χµ)u+
χ sup

(
χµC1(χ)u+

sup

(binf − χµ)u+
χ inf

)n

︸ ︷︷ ︸
:=K3,n

‖Ũ(·, s+ tn + t0)‖∞e−(t−s)(binf−χµ)u+inf . (5.55)

Thus, it follows from (5.52), (5.53), (5.54), and (5.55) that

‖Ũ(·, t+ tn + t0; t0, u0)‖∞

≤K1,ne
−(binf−χµ)t + (χK2,n +K3,n)

∫ t

0

e−(t−s)(binf−χµ)u+χ sup‖Ũ(·, s+ tn + t0; t0, u0)‖∞ds,

which is equivalent to

et(binf−χµ)u+χ sup‖Ũ(·, t+ tn + t0; t0, u0)‖∞

≤K1,n + (χK2,n +K3,n)

∫ t

0

es(binf−χµ)u+χ sup‖Ũ(·, s+ tn + t0; t0, u0)‖∞ds,∀ t ≥ 0.

Therefore, by Gronwall’s inequality, we obtain that

et(binf−χµ)u+χ sup‖Ũ(·, t+ tn + t0; t0, u0)‖∞ ≤ K1,ne
(χK2,n+K3,n)t, ∀ t ≥ 0.
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That is

|Ũ(·, t+ tn + t0; t0, u0)‖∞ ≤ K1,ne
−
(

(binf−χµ)u+χ sup−χK2,n−K3,n

)
t, ∀ t ≥ 0. (5.56)

By (H̃), we have

lim
n→∞

K1,n = lim
n→∞

K3,n = 0 and lim
n→∞

K2,n =
(

1 +
C0(χ)

√
N

2
√
λu+

χ inf

)
µu+

χ sup = µC1(χ)u+
χ sup.

Since (H̃) holds, then there is n0 � 1 such that

αχ := sup
n≥n0

((binf − χµ)u+
χ sup − χK2,n −K3,n) > 0.

This combined with (5.56) yield that

‖u(·, t+ tn0 + t0; t0, u0)− u+
χ (t+ tn0 + t0)‖∞ ≤ u+

χ supK1,n0e
−tαχ ∀ t ≥ 0,

whch implies that (u+
χ (x, t), v+

χ (x, t)) is exponentially stable.

Uniqueness of (u+
χ (x, t), v+

χ (x, t)): Let (ũ+
χ (x, t), ṽ+

χ (x, t)) be a positive entire solution of

(2.6). Then, since 0 < ũ+
χ inf ≤ ũ+

χ sup < ∞, it follows from the exponential stability of

(u+
χ (x, t), v+

χ (x, t)) that there is a positive constant K depending only of ũ+
χ inf , ũ

+
χ sup, u

+
χ inf ,

and u+
χ sup, such that

‖ũ+
χ (·, t)− u+

χ (·, t)‖∞

=‖ũ+
χ (·, n+ (t− n); t− n, u+

χ (·, t− n))− u+
χ (·, n+ (t− n); t− n, u+

χ (·, t− n))‖∞

≤Ke−nαχ , ∀ n ≥ 1.

Letting n→∞ in the last inequality yields that u+
χ (x, t) ≡ ũ+

χ (x, t). This completes the proof

of Theorem 2.5.

74



Chapter 6

Asymptotic spreading and traveling wave solutions

In this chapter we study spreading speeds of solutions with compactly supported initial func-

tions, as well as the existence and non-existence of traveling wave solutions of (2.6). Section

1 is devoted to the proof of our main result on the spreading speeds. Section 2 contains results

which will be used later in Section 3 for the proof of the existence of traveling wave solutions.

6.1 Asymptotic spreading

In this section, we study the spreading properties of positive solutions and prove Theorem 2.6.

We first present two lemmas.

Lemma 6.1. Consider

ut = ∆u+ q0(x, t) · ∇u+ u(a0 − b0u), x ∈ RN , (6.1)

where q0 ∈ RN is a continuous vector function and a0, b0 are positive constants. Let u(x, t;u0)

be the solution of (6.1) with u(·, 0;u0) = u0(·) ∈ Cb
unif(RN) (u0(x) ≥ 0). If

lim inf
|x|→∞

inf
t≥0

(4a0 − |q0(x, t)|2) > 0, (6.2)

then for any nonnegative initial function u0 ∈ Cb
unif(RN) with nonempty support,

lim inf
t→∞,|x|≤ct

u(x, t;u0) > 0 ∀ 0 < c < c∗0,

where c∗0 = lim inf |x|→∞ inft≥0(2
√
a0 − |q0(x, t)|).
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Proof. It follows from Theorem 1.5 in [3].

Next, we prove Theorem 2.6.

Proof of Theorem 2.6. (1) Let t0 ∈ R and u0 ∈ Cb
unif(RN) with u0 ≥ 0 such that there is

R� 1 with u0(x) = 0 for all ‖x‖ ≥ R. By (2.11), for every ε > 0 there is Tε > 0 such that

‖u(·, t+ t0; t0, u0)‖ ≤ asup

binf − χµ
+ ε, ∀t ≥ Tε. (6.3)

By (3.25) and (6.3), we have that

‖∇v(·, t+ t0; t0, u0)‖∞ ≤
µ
√
N

2
√
λ

( asup

binf − χµ
+ ε
)
, ∀t ≥ Tε. (6.4)

Choose C > 0 such that

u0(x) ≤ Ce−
√
asup|x|, ∀ x ∈ RN ,

and let

Kε := sup
0≤t≤Tε

‖∇v(·, t+ t0; t0, u0)‖∞.

Let ξ ∈ SN−1 be given and consider

U(x, t; ξ) := Ce−
√
asup(x·ξ−(2

√
asup+χKε)t).

Recall from inequality (3.26) that ut(·, ·+ t0; t0, u0) ≤ L0u(·, ·+ t0; t0, u0), where

Ls(w) := ∆w−χ∇v(·, ·+s+t0; t0, u0)·∇w+(asup−(binf−χµ)w)w,∀w ∈ C2,1(RN×(0,∞)),∀ s ≥ 0.
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We have that

U t − L0U

=
(
(2asup + χ

√
asupKε)− asup + χ

√
asupξ · ∇v(·, ·+ t0; t0, u0)− (asup − (binf − χµ)U)

)
U

=
(
χ
√
asup(Kε − ξ · ∇v(·, ·+ t0; t0, u0)) + (binf − χµ)U

)
U

≥
(
χ
√
asup(Kε − ‖ξ · ∇v(·, ·+ t0; t0, u0)‖∞) + (binf − χµ)U

)
U ≥ 0.

Since u0(x) ≤ U(x, 0; ξ), then it follows from the comparison principle for parabolic equations

that

u(x, t+ t0; t0, u0) ≤ U(x, t; ξ), ∀ x ∈ RN , ∀ t ∈ [0, Tε], ∀ ξ ∈ SN−1. (6.5)

Next, let

Lε :=
µ
√
N

2
√
λ

( asup

b∞ − χµ
+ ε
)

and

W (x, t; ξ) := e−
√
asup(ξ·x−(2

√
asup+χLε)t)U(0, Tε; ξ), ∀t ≥ 0, ∀ x ∈ RN , ∀ ξ ∈ SN−1.

Similarly, using inequality (6.4), we have that

W t − LTεW =
(
χ
√
asup(Lε − ξ · ∇v(·, ·+ Tε + t0; t0, u0) + (binf − χµ)W

)
W

≥
(
χ
√
asup(Lε − ‖ξ · ∇v(·, ·+ Tε + t0; t0, u0)‖∞) + (binf − χµ)W

)
W

≥ 0.

But by (6.5), we have that W (x, 0; ξ) = U(x, Tε; ξ) ≥ u(·, Tε + t0; t0, u0). Hence by the

comparison principle for parabolic equations we obtain that

u(x, t+ t0; t0, u0) ≤ W (x, t; ξ), ∀ x ∈ RN , ∀ t ≥ Tε, ∀ ξ ∈ SN−1. (6.6)
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Observe that

lim
ε→0+

(2
√
asup + χLε) = 2

√
asup +

χµ
√
Nasup

2(binf − χµ)
√
λ

= c∗+(a, b, χ, λ, µ).

Thus, it follows from (6.6) and the definition of W that

lim
t→∞

sup
|x|≥ct

u(x, t+ t0; t0, u0) = 0,

whenever c > c∗+(a, b, χ, λ, µ). This completes the proof of (1).

(2) We first claim that

4(ainf −
χµasup

binf − χµ
)−

Nµ2χ2a2
sup

4λ(binf − χµ)2
> 0. (6.7)

Indeed, let µ̃ = χµasup
binf−χµ

. (6.7) is equivalent to 4(ainf − µ̃)− N
4λ
µ̃2 > 0. This implies that

0 < µ̃ =
χµasup

binf − χµ
<

2ainf

1 +
√

1 + Nainf
4λ

and then

binf − χµ
χµ

>

(
1 +

√
1 + Nainf

4λ

)
asup

2ainf

.

This proves the claim.

Next, by (2.11), (3.24), and (3.25), for every ε > 0, we can choose Tε with Tε →∞ as ε→ 0

such that

‖v(·, t+t0; t0, u0)‖∞ <
µasup

λ(binf − χµ)
+ε and ‖∇v(·, t+t0; t0, u0)‖∞ <

µ
√
N

2
√
λ

( asup

binf − χµ
+ε
)

(6.8)

for all t ≥ Tε.
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Note that for every ε > 0 and t ≥ Tε + t0, we have

ut(·, ·; t0, u0) ≥ ∆u(·, ·; t0, u0)− χ∇v(·, ·; t0, u0) · ∇u(·, ·; t0, u0)

+ (ainf −
χµasup

binf − χµ
− χµε− (bsup − χµ)u(·, ·; t0, u0))u(·, ·; t0, u0). (6.9)

For every ε > 0, let U(·, ·; ε) denotes the solution of the initial value problem


Ut(·, ·; ε) = Aε(U)(·, ·; ε), t > 0, x ∈ RN

U(·, 0; ε) = u(·, Tε + t0; t0),

(6.10)

where

Aε(U)(·, ·; ε) = ∆U(·, ·; ε) + q(·, ·; ε) · ∇U(·, ·; ε) + U(·, ·; ε)Fε(U(·, ·; ε)),

Fε(s) = ainf −
χµasup

binf − χµ
− χµε− (bsup − χµ)s, ∀s ∈ R.

and

q(x, t; ε) =


−χ∇v(·, t+ Tε + t0; t0, u0), t ≥ 0

−χ∇v(·, Tε + t0; t0, u0), t < 0.

Hence, by the comparison principle for parabolic equations, it follows from (6.9) and (6.10)

that

u(x, t+ Tε + t0;u0) ≥ U(x, t; ε), ε > 0, t ≥ 0, x ∈ RN . (6.11)

Observe that for 0 < ε� 1, since (H3) holds, it follows form (6.7) and (6.8) that

lim
R→∞

inf
t≥0,|x|≥R

(4Fε(0)− ‖q(x, t; ε)‖2) ≥ 4Fε(0)− χ2χ
2µ2N

4λ

( asup

binf − χµ
+ ε
)2

> 0. (6.12)

By Lemma 6.1, it holds that

lim inf
t→∞

inf
|x|≤ct

U(x, t; ε) > 0 (6.13)
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for every 0 < ε� 1 and 0 ≤ c < c∗ε where

c∗ε := lim inf
|x|→∞

inf
t≥Tε

(
2

√
ainf −

χµasup

binf − χµ
− χµε− χ‖∇v(x, t+ t0; t0, u0)‖

)
.

Combining inequalities (6.11) and (6.13), we obtain that

lim inf
t→∞

inf
|x|≤ct

u(x, t+ Tε + t0; t0, u0) > 0 ∀ 0 < ε� 1, ∀ 0 ≤ c < c∗ε. (6.14)

Using (6.8), we have that

c∗ε ≥ 2

√
ainf −

χµasup

binf − χµ
− χµε− χµ

√
N

2
√
λ

( asup

binf − χµ
+ ε
)

Hence

lim inf
ε→0+

c∗ε ≥ 2

√
ainf −

χµasup

binf − χµ
− χµ

√
Nasup

2
√
λ(binf − χµ)

:= c∗−(a, b, χ, λ, µ) (6.15)

This together with (6.14) implies (2.27).

6.2 Super- and sub-solutions

In this section and the next one, we take N = 1 and suppose that the functions b(x, t) and

a(x, t) are both constant. We construct super- and sub-solutions of some equations related to

(2.6). They will be used to prove the existence of traveling wave solutions in next the section.

We first note that (u(x, t), v(x, t)) is solution of (2.6) if and only if the function (ũ(x, t), ṽ(x, t)) =

(a
b
u(
√
a
a
x, 1

a
t), µ

b
v(
√
a
a
x, 1

a
t)) solves


ũt = ũxx − χ̃(ũṽx)x + (1− ũ)ũ,

0 = ṽxx − λ̃ṽ + ũ
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where χ̃ = χµ
b

and λ̃ = λ
a
. Hence, it is enough to prove Theorem 2.7 under the assumption

a = b = µ = 1. So, without loss of generality, we shall suppose that a = b = µ = 1 in this

section and the next section.

Observe that, under the assumption a(x, t) ≡ b(x, t) = µ = 1, if (u(x, t), v(x, t)) = (U(x−

ct), V (x − ct)) is a traveling wave solution of (2.6) connecting (1, 1
λ
) and (0, 0) with speed c,

then (u, v) = (U(x), V (x)) is a stationary solution of


ut = uxx + cux − χuxvx + u(1− χλv − (1− χ)u), x ∈ R,

0 = vxx − λv + u, x ∈ R,
(6.16)

connecting (1, 1
λ
) and (0, 0). For a given c, showing the existence of a traveling wave solution

of (2.6) connecting (1, 1
λ
) and (0, 0) is then equivalent to showing the existence of a stationary

solution connecting (1, 1
λ
) and (0, 0). Throughout this section, we assume that 0 < χ < 1,

unless specified otherwise.

For every 0 < τ < min{1,
√
λ} and x ∈ R define

ϕτ (x) = e−τx and cτ = τ +
1

τ
.

Note that for every fixed 0 < τ < min{1,
√
λ}, the function ϕτ is decreasing, infinitely differ-

entiable, and it satisfies

ϕ′′τ (x) + cτϕ
′
τ (x) + ϕ(x) = 0, ∀ x ∈ R, (6.17)

and
1

λ− τ 2
ϕ′′τ (x)− λ

λ− τ 2
ϕτ (x) = −ϕτ (x) ∀ x ∈ R. (6.18)

For every τ ∈ (0,min{1,
√
λ}) define

U+
τ (x) = min{ 1

1− χ
, ϕτ (x)} =


1

1−χ if x ≤ ln(1−χ)
τ

,

e−τx if x ≥ ln(1−χ)
τ

.

(6.19)
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and

V +
τ (x) = min{ 1

λ(1− χ)
,

1

λ− τ 2
ϕτ (x)}. (6.20)

Since ϕτ is decreasing, then the functions U+
τ and V +

τ are both non-increasing. Furthermore,

the functions U+
τ and V +

τ belong to Cδ
unif(R) for every 0 ≤ δ < 1 and 0 < τ < 1.

Let 0 < τ < 1 be fixed. Next, let τ < τ̃ < min{1, 2τ} and d > 1. The function ϕτ − dϕτ̃

achieves its maximum value at āτ,τ̃ ,d := ln(dτ̃)−ln(τ)
τ̃−τ and takes the value zero at aτ,τ̃ ,d := ln(d)

τ̃−τ .

Define

U−τ (x) := max{0, ϕτ (x)− dϕτ̃ (x)} =


0 if x ≤ aτ,τ̃ ,d

ϕτ (x)− dϕτ̃ (x) if x ≥ aτ,τ̃ ,d.

(6.21)

Clearly, 0 ≤ U−τ ≤ U+
τ ≤ 1

1−χ and U−τ ∈ Cδ
unif(R) for every 0 ≤ δ < 1.

Let us consider the set Eτ defined by

Eτ = {u ∈ Cb
unif(R) |U−τ ≤ u ≤ U+

τ } (6.22)

for every 0 < τ < 1. It should be noted that U−τ and Eτ all depend on τ̃ and d. Later on, we

shall provide more information on how to choose d and τ̃ whenever τ is given.

For every u ∈ Cb
unif(R), consider

Ut = Uxx + (cτ − χV ′(x;u))Ux + (1− χλV (x;u)− (1− χ)U)U, x ∈ R, t > 0, (6.23)

where

V (x;u) =

∫ ∞
0

∫
R

e−λs√
4πs

e−
|x−z|2

4s u(z)dzds. (6.24)

It is well known that the function V (x;u) is the solution of the second equation of (2.6) in

Cb
unif(R) with given u ∈ Cb

unif(R).
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For given open intervals D ⊂ R and I ⊂ R, a function U(·, ·) ∈ C2,1(D × I,R) is called a

super-solution or sub-solution of (6.23) on D × I

Ut ≥ Uxx + (cτ − χV ′(x;u))Ux + (1− χλV (x;u)− (1− χ)U)U for x ∈ D, t ∈ I

or

Ut ≤ Uxx + (cτ − χV ′(x;u))Ux + (1− χλV (x;u)− (1− χ)U)U for x ∈ D, t ∈ I,

respectively.

Theorem 6.1. Suppose that 0 < χ < 1
2

and 0 < τ < min{1,
√
λ} satisfy

τ(τ +
√
λ− τ 2)

λ− τ 2
≤ 1− χ

χ
. (6.25)

Then for every u ∈ Eτ , the following hold.

(1) U(x, t) = 1
1−χ and U(x, t) = ϕτ (x) are super-solutions of (6.23) on R× R.

(2) There is d0 > 0 such that U(x, t) = U−τ (x) is a sub-solution of (6.23) on (aτ,τ̃ ,d,∞)×R

for all d ≥ d0 and τ < τ̃ < min{1, 2τ, τ + λ
τ+
√
λ−τ2}. Moreover, U(x, t) = U−τ (xδ) is a

sub-solution of (6.23) on R× R for 0 < δ � 1, where xδ = aτ,τ̃ ,d + δ.

We recall from Lemma 3.2 that

max{‖V (·;u)‖∞, ‖V ′(·;u)‖∞, ‖V ′′(·;u)‖∞} ≤ max{1, 1

λ
}‖u‖∞ ∀ u ∈ Eτ . (6.26)

The next lemma provides a pointwise estimate for |V (·;u)| with u ∈ Eτ .

Lemma 6.2. For every 0 < τ < min{1,
√
λ} and u ∈ Eτ , let V (·;u) be defined as in (6.24),

then

0 ≤ V (·;u) ≤ V +
τ (·). (6.27)
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Proof. For every u ∈ Eτ , since 0 ≤ U−τ ≤ u ≤ U+
τ then

0 ≤ V (·;U−τ ) ≤ V (·;u) ≤ V (·;U+
τ ).

Hence it is enough to prove that V (·;U+
τ ) ≤ V +

τ (·). For every x ∈ R, 0 < τ < 1, we have that

∫ ∞
0

(∫
R

e−λse−
|x−z|2

4s ϕτ (z)√
4πs

dz
)
ds

=
1√
π

∫ ∞
0

e−λs
(∫

R
e−z

2

e−τ(x−2
√
sz)dz

)
ds =

e−τx√
π

∫ ∞
0

e−λs
(∫

R
e−|z−τ

√
s|2eτ

2sdz
)
ds

=
e−τx√
π

∫ ∞
0

e−(λ−τ2)s
(∫

R
e−|z−τ

√
s|2dz

)
ds = e−τx

∫ ∞
0

e−(λ−τ2)sds =
ϕτ (x)

λ− τ 2
.

Thus, we have

V (x;U+
µ )

=

∫ ∞
0

(∫
R

e−λse−
|x−z|2

4s U+
τ (z)√

4πs
dz
)
ds =

∫ ∞
0

(∫
R

e−λse−
|x−z|2

4s

√
4πs

min{ 1

1− χ
, ϕτ (z)}dz

)
ds

≤min
{ 1

1− χ

∫ ∞
0

∫
R

e−λse−
|x−z|2

4s

√
4πs

dzds︸ ︷︷ ︸
= 1
λ

,

∫ ∞
0

(∫
R

e−λse−
|x−z|2

4s

√
4πs

ϕτ (z)dz
)
ds
}

= V +
τ (x).

Next, we present a pointwise estimate for |V ′(·;u)| with u ∈ Eτ .

Lemma 6.3. Let u ∈ Cb
unif(R) and V (·;u) ∈ C2,b

unif(R) be the corresponding function satisfying

the second equation in (2.6). Then

|V ′(x;u)| ≤ τ +
√
λ− τ 2

λ− τ 2
ϕτ (x) (6.28)

for every x ∈ R and every u ∈ Eτ and 0 < τ < min{1,
√
λ}.
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Proof. Let u ∈ Eτ and fix any x ∈ R.

V ′(x;u) =

∫ ∞
0

∫
R

(z − x)e−λs

2s
√

4πs
e−
|z−x|2

4s u(z)dzds =
1√
π

∫ ∞
0

∫
R

ze−λs√
s
e−z

2

u(x+ 2
√
sz)dzds.

(6.29)

Observe that

1√
π

∫ ∞
0

∫
R

|z|√
s
e−λse−|z|

2

ϕτ (x+ 2
√
sz)dzds

≤ϕτ (x)√
π

∫ ∞
0

e−(λ−τ2)s

√
s

(∫
R

|z|
e|z−τ

√
s|2 dz

)
ds =

ϕτ (x)√
π

∫ ∞
0

e−(λ−τ2)s

√
s

(∫
R

|z + τ
√
s|

e|z|2
dz
)
ds

≤ϕτ (x)√
π

∫ ∞
0

e−(λ−τ2)s

√
s

(∫
R
(|z|+ τ

√
s)e−|z|

2

dz
)
ds

=
ϕµ(x)√

π

∫ ∞
0

(1 + µ
√
πs)e−(1−µ2)s

√
s

ds = (
1√

λ− τ 2
+

τ

λ− µ2
)ϕτ (x).

(6.30)

Since u ≤ ϕτ , (6.28) follows from (6.29) and (6.30). The lemma is thus proved.

Proof of Theorem 6.1. For every U ∈ C2,1(R× R+), let

LU = Uxx + (cµ − χV ′(·;u))Ux + (1− χV (·;u)− (1− χ)U)U. (6.31)

(1) First, we have that

L(
1

1− χ
) =(1− χλV (·;u)− 1)

1

1− χ
= − χ

1− χ
λV (·;u) ≤ 0.

Hence U(x, t) = 1
1−χ is a super-solution of (6.23) on R× R.
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Next, it follows from Lemma 6.3 and (6.25) that

L(ϕτ ) =ϕ′′τ (x) + (cτ − χV ′(·;u))ϕ′τ (x) + (1− χλV (·;u)− (1− χ)ϕτ )ϕτ

= (ϕ′′τ + cτϕ
′
τ + ϕτ )︸ ︷︷ ︸

=0

+(τχV ′(·;u)− χλV (·;u)− (1− χ)ϕτ )ϕτ

=(τχV ′(·;u)− χV (·;u)− (1− χ)ϕτ )ϕτ

≤χ
(τ(τ +

√
λ− τ 2)

λ− τ 2
− (1− χ)

χ

)
ϕ2
τ ≤ 0.

(6.32)

Hence U(x, t) = ϕτ (x) is also a super-solution of (6.23) on R× R.

(2) Let O = (aτ,τ̃ ,d,∞). Then for x ∈ O, U−µ (x) > 0. For x ∈ O, it follows from inequality

(6.28) that

LU−τ

=µ2ϕτ − τ̃ 2dϕµ̃ + (cτ − χV ′(·;u))(−τϕτ + dτ̃ϕτ̃ ) + (1− χλV (·;u)− (1− χ)U−τ )U−τ

= (τ 2 − τcτ + 1)︸ ︷︷ ︸
=0

ϕτ + d (τ̃ cτ − τ̃ 2 − 1)︸ ︷︷ ︸
=A0

ϕτ̃ − χV ′(·;u)(−τϕτ + dτ̃ϕτ̃ )

− (χλV + (1− χ)U−τ )U−τ

≥dA0ϕτ̃ − χ|V ′(·;u)|(τϕτ + dτ̃ϕτ̃ )− χλV +
τ U

−
τ − (1− χ)[U−τ ]2

≥dA0ϕτ̃ − χ
(τ +

√
λ− τ 2)

λ− τ 2

(
τϕτ + dτ̃ϕτ̃

)
ϕτ − χλV +

τ U
−
τ − (1− χ)[U−τ ]2

≥dA0ϕτ̃ − χ
(τ +

√
λ− τ 2)

λ− τ 2

(
τϕτ + dτ̃ϕτ̃

)
ϕτ −

χλ

λ− τ 2
ϕτU

−
τ − (1− χ)[U−τ ]2

=dA0ϕτ̃ − (χ
τ(τ +

√
λ− τ 2)

λ− τ 2
+

χλ

λ− τ 2
+ 1− χ)︸ ︷︷ ︸

=A1

ϕ2
τ

+ d
(

2(1− χ)− χτ̃(τ +
√
λ− τ 2)

λ− τ 2
+

χλ

λ− τ 2

)
ϕτϕτ̃ − d2(1− χ)ϕ2

τ̃ .

Note that U−τ (x) > 0 is equivalent to ϕτ (x) > dϕτ̃ (x), which is also equivalent to

d(1− χ)ϕτ (x)ϕτ̃ (x) > d2(1− χ)ϕ2
τ̃ (x).
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Since A1 > 0, thus for x ∈ O, we have

LU−τ (x)

≥dA0ϕτ̃ (x)− A1ϕ
2
τ (x) + d

(
(1− χ)− χτ̃(τ +

√
λ− τ 2)

λ− τ 2
+

χλ

λ− τ 2

)
︸ ︷︷ ︸

A2

ϕτ (x)ϕτ̃ (x)

=A1

(dA0

A1

e(2τ−τ̃)x − 1
)
ϕ2
τ (x) + dA2ϕτ (x)ϕτ̃ (x).

Note also that, by (6.25),

A2 =χ
(1− χ

χ
− τ(τ +

√
λ− τ 2)

λ− τ 2

)
+

χ

λ− τ 2

(
λ− (τ̃ − τ)(τ +

√
λ− τ 2)

)
≥ χ

λ− τ 2

(
λ− (τ̃ − τ)(τ +

√
λ− τ 2)

)
≥ 0,

(6.33)

whenever τ̃ ≤ τ + λ
τ+
√
λ−τ2 . Observe that

A0 =
(µ̃− µ)(1− µµ̃)

µ
> 0.

Furthermore, we have that U−µ (x) > 0 implies that x > 0 for d ≥ 1. Thus, for every d ≥ d0 :=

max{1, A1

A0
}, we have that

LU−τ (x) > 0 (6.34)

whenever x ∈ O and τ̃ ≤ min{2τ, τ + λ
τ+
√
λ−τ2}. Hence U(x, t) = U−τ (x) is a sub-solution of

(6.23) on (aτ,τ̃ ,d,∞)× R.

Note that for 0 < δ � 1,

(1− χλV (xδ;u)− (1− χ)U−τ (xδ))U
−
τ (xδ) ≥(1− χ

1− χ
− (1− χ)U−τ (xδ))U

−
τ (xδ) > 0 ∀ x ∈ R,

whenever 0 < χ < 1
2
, where xδ = aτ,τ̃ ,d + δ. This implies that U(x, t) = U−τ (xδ) is a

sub-solution of (6.23) on R× R.
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6.3 Traveling wave solutions

In this section, we investigate the existence of traveling wave solutions of (2.6) connecting

(1, 1
λ
) and (0, 0) and prove Theorem 2.7 (i). We first prove the following theorem and then

prove Theorem 2.7 (i).

Theorem 6.2. Suppose that 0 < τ < min{1,
√
λ} and 0 < χ < 1

2
satisfy (6.25). Let cτ = τ+ 1

τ
.

Then (2.6) has a traveling wave solution (u(x, t), v(x, t)) = (U(x−cτ t), V (x−cτ t)) satisfying

lim
x→−∞

U(x) = 1, lim
x→∞

U(x)

e−τx
= 1.

Our key idea to the proof of the above theorem is to prove that, for any τ > 0 and 0 < χ < 1
2

satisfying (6.25), there is u∗(·) ∈ Eτ such that U = u∗(·) is a stationary solution of (6.23) and

u∗(−∞) = 1 and u∗(∞) = 0, which implies that (u(x, t), v(x, t)) = (u∗(x − cτ t), V (x −

cτ t;u
∗)) is a traveling wave solution of (2.6) connecting (1, 1

λ
) and (0, 0).

In order to prove Theorem 6.2, we first prove some lemmas. Fix u ∈ Eτ . For given

u0 ∈ Cb
unif(R), let U(x, t;u0) be the solution of (6.23) with U(x, 0;u0) = u0(x). By the argu-

ments in the proof of Theorem 2.2, we have U(x, t;U+
τ ) exists for all t > 0 and U(·, ·;U+

τ ) ∈

C([0,∞), Cb
unif(R)) ∩ C1((0 , ∞), Cb

unif(R)) ∩ C2,1(R× (0, ∞)) satisfying

U(·, ·;U+
τ ), Ux(·, ·;U+

τ ), Uxx(·, t;U+
τ ), Ut(·, ·;U+

τ ) ∈ Cθ((0,∞), Cν
unif(R)) (6.35)

for 0 < θ, ν � 1.

Lemma 6.4. Assume that 0 < τ < min{1,
√
λ}, and 0 < χ < 1 satisfy (6.25). Then for every

u ∈ Eτ , the following hold.

(i) 0 ≤ U(·, t;U+
τ ) ≤ U+

τ (·) for every t ≥ 0.

(ii) U(·, t2;U+
τ ) ≤ U(·, t1;U+

τ ) for every 0 ≤ t1 ≤ t2
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Proof. (i) Note that U+
τ (·) ≤ 1

1−χ . Then by the comparison principle for parabolic equations

and Theorem 6.1(1), we have

U(x, t;U+
τ ) ≤ 1

1− χ
∀ x ∈ R, t ≥ 0.

Similarly, note that U+
τ (x) ≤ ϕτ (x). Then by the comparison principle for parabolic equa-

tions and Theorem 6.1(1) again, we have

U(x, t;U+
τ ) ≤ ϕτ (x) ∀ x ∈ R t ≥ 0.

Thus U(·, t;U+
τ ) ≤ U+

τ . This completes of (i).

(ii) For 0 ≤ t1 ≤ t2, since

U(·, t2;U+
τ ) = U(·, t1, U(·, t2 − t1;U+

τ ))

and by (i), U(·, t2 − t1;U+
τ ) ≤ U+

τ , (ii) follows from comparison principle for parabolic equa-

tions.

Let us define U(x;u) to be

U(x;u) = lim
t→∞

U(x, t;U+
τ ) = inf

t>0
U(x, t;U+

τ ). (6.36)

By the a priori estimates for parabolic equations, the limit in (6.36) is uniform in x on compact

subsets of R and U(·;u) ∈ Cb
unif(R). We shall provide sufficient hypothesis on the choice of d

to guarantee that the function U(·;u) constructed above is not identically zero for each u ∈ Eτ .

Now, we are ready to prove that the function u ∈ Eτ → U(·;u) ∈ Eτ for d large enough.

Lemma 6.5. For every 0 < χ < 1
2
, 0 < τ < τ̃ < min{1, 2τ, τ + λ

τ+
√
λ−τ2}, there is d0 > 1

such that

U(x;u) ≥


U−τ (x), x ≥ aτ,τ̃ ,d

U−τ (xδ), x ≤ xδ = aτ,τ̃ ,d + δ

(6.37)
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for every u ∈ Eτ , t ≥ 0, and 0 < δ � 1, whenever d ≥ d0.

Proof. Let u ∈ Eτ be fixed. LetO = (aτ,τ̃ ,d,∞). Note that U−τ (aτ,τ̃ ,d) = 0. By Theorem 6.1(2),

U−τ (x) is a sub-solution of (6.23) on O × (0,∞) for d ≥ d0. Note also that U+
τ (x) ≥ U−τ (x)

for x ≥ aτ,τ̃ ,d and U(aτ,τ̃ ,d, t;U
+
τ )) > 0 for all t ≥ 0. Then by the comparison principle for

parabolic equations, we have that

U(x, t;U+
τ ) ≥ U−τ (x) ∀ x ≥ aτ,τ̃ ,d, t ≥ 0

for d ≥ d0.

Now for any 0 < δ � 1, by Theorem 6.1(2), U(x, t) = U−τ (xδ) is a sub-solution of (6.23)

on R×R. Note that U+
τ (x) ≥ U−τ (xδ) for x ≤ xδ and U(xδ, t;U

+
τ ) ≥ U−τ (xδ) for t ≥ 0. Then

by the comparison principle for parabolic equations again,

U(x, t;U+
τ ) ≥ U−τ (xδ) ∀ x ≤ xδ, t > 0.

The lemma then follows.

Remark 6.1. It follows that under the assumptions of Lemmas 6.4 and 6.5

U−τ,δ(·) ≤ U(·, t;U+
τ ) ≤ U+

τ (·)

for every u ∈ Eτ , t ≥ 0 and 0 ≤ δ � 1, where

U−τ,δ(x) =


U−τ (x), x ≥ aτ,τ̃ ,d + δ

U−τ (xδ), x ≤ xδ = aτ,τ̃ ,d + δ.

This implies that

U−τ,δ(·) ≤ U(·;u) ≤ U+
τ (·)

for every u ∈ Eτ . Hence u ∈ Eτ 7→ U(·;u) ∈ Eτ .
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From now on, we suppose that 0 < τ < min{1,
√
λ}, and 0 < χ < 1 are fixed and satisfy

inequality (6.25). Next choose τ̃ such that

τ < τ̃ < min{1, 2τ, τ +
1

τ +
√
λ− τ 2

},

and take d ≥ d0, where d0 is given by Lemma 6.5. We have the following important result.

Lemma 6.6. Assume that 0 < µ, χ < 1 satisfy (6.25). Then for every u ∈ Eτ the associated

function U(·;u) satisfies the elliptic equation,

0 = Uxx + (cτ − χV ′(x;u))Ux + (1− χλV (x;u)− (1− χ)U)U ∀ x ∈ R. (6.38)

Proof. Let {tn}n≥1 be an increasing sequence of positive real numbers converging to∞. For

every n ≥ 1, define Un(x, t) = U(x, t+ tn;u) for every x ∈ R, t ≥ 0. For every n, Un solves

the PDE
∂tUn = ∂xxUn + (cτ − χV ′(x;u))∂xUn + (1− χλV (x;u)− (1− χ)Un)Un, x ∈ R, t > 0,

Un(·, 0) = U(·, tn;u).

Let {T (t)}t≥0 be the analytic semigroup on Cb
unif(R) generated by ∆ − I and let Xβ =

Dom((I −∆)β) be the fractional power spaces of I −∆ on Cb
unif(R) (β ∈ [0, 1]).

The variation of constant formula and the fact that V ′′(x;u)− λV (x;u) = −u(x) yield that

U(·, t;u) = T (t)U+
τ︸ ︷︷ ︸

I1(t)

+

∫ t

0

T (t− s)(((cτ − χV ′(·;u))U)x)ds︸ ︷︷ ︸
I2(t)

+

∫ t

0

T (t− s)(2− χu)U(·, s;u)ds︸ ︷︷ ︸
I3(t)

−(1− χ)

∫ t

0

T (t− s)U2(·, s;u)ds︸ ︷︷ ︸
I4(t)

.

Let 0 < β < 1
2

be fixed. We have that

‖I1(t)‖Xβ ≤ Cβt
−βe−t‖U+

µ ‖∞ =
C

1− χ
t−βe−t.
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Next, using inequality (3.1) , we have that

‖I2(t)‖Xβ ≤Cβ
∫ t

0

(t− s)−
1
2
−βe−(t−s)‖(cτ − χV ′(·;u))U(·, s;u)‖∞

≤ Cβ
1− χ

(cτ +
χ

λ(1− χ)
)

∫ t

0

e−(t−s)

(t− s)β+ 1
2

ds ≤ Cβ
1− χ

(cτ +
χ

λ(1− χ)
)Γ(

1

2
− β).

And

‖I3(t)‖Xβ ≤Cβ
∫ t

0

(t− s)−βe−(t−s)‖(2− χu)U(·, s;u)‖∞ds

≤ Cβ
1− χ

(2 +
χ

1− χ
)

∫ t

0

(t− s)−βe−(t−s)ds ≤ Cβ
1− χ

(2 +
χ

1− χ
)Γ(1− β).

Similar arguments yield that

‖I4(t)‖Xβ ≤ Cβ
(1− χ)2

Γ(1− β).

Therefore, for every T > 0 we have that

sup
t≥T
‖U(·, t;u)‖Xβ ≤MT <∞, (6.39)

where

MT =
Cβ

1− χ

[
T−βe−T + (cτ +

1

λ(1− χ)
)(2Γ(1− β) + Γ(

1

2
− β))

]
. (6.40)

Hence it follows that

sup
n≥1,t≥0

‖Un(·, t)‖Xβ ≤Mt1 <∞. (6.41)

Next, for every t, h ≥ 0 and n ≥ 1, we have that

‖I1(t+ h+ tn)− I1(t+ tn)‖Xβ ≤ Cβh
βe−(t+tn)

(t+ tn)β
‖U+

τ ‖∞ ≤ Cβh
βt−β1 e−t1‖U+

τ ‖∞, (6.42)

92



‖I2(t+ h+ tn)− I2(t+ tn)‖Xβ

≤
∫ t+tn

0

‖(T (h)− I)T (t+ tn − s)(((cτ − χV ′(·, s;u))U(·, s;u))x)‖Xβds

+

∫ t+tn+h

t+tn

‖T (t+ tn + h− s)(((cτ − χV ′(·, s;u))U(·, s;u))x)‖Xβds

≤ Cβh
β

∫ t+tn

0

(t+ tn − s)−β−
1
2 e−(t+tn−s)‖(cτ − χV ′(·, s;u))U(·, s;u)‖∞ds

+ Cβ

∫ t+tn+h

t+tn

e−(t+tn+h−s)‖(cτ − χV ′(·, s;u))U(·, s;u)‖∞
(t+ tn + h− s)β+ 1

2

ds

≤ Cβ
1− χ

(cτ +
χ

λ(1− χ)
)
[
hβΓ(

1

2
− β) +

∫ t+tn+h

t+tn

e−(t+tn+h−s)

(t+ tn + h− s)β+ 1
2

ds
]

≤ Cβ
1− χ

(cτ +
χ

λ(1− χ)
)
[
hβΓ(

1

2
− β) +

h
1
2
−β

1
2
− β

]
,

(6.43)

and

‖I3(t+ tn + h)− I3(t+ tn)‖Xβ

≤
∫ t+tn

0

‖(T (h)− I)T (t+ tn − s)((2− χu)U(·, s;u))‖Xβds

+

∫ t+tn+h

t+tn

‖T (t+ tn + h− s)((2− χu)U(·, s;u))‖Xβds

≤ Cβ
1− χ

(2 +
χ

1− χ
)
[
hβΓ(1− β) +

h1−β

1− β

]
,

(6.44)

and

‖I4(t+ tn + h)− I4(t+ tn)‖Xβ

≤
∫ t+tn

0

‖(T (h)− I)T (t+ tn − s)U2(·, s;u)‖Xβds

+

∫ t+tn+h

t+tn

‖T (t+ tn + h− s)U2(·, s;u)‖Xβds

≤ Cβ
(1− χ)2

[
hβΓ(1− β) +

h1−β

1− β

]
.

(6.45)

It follows from inequalities (6.41), (6.42), (6.43), (6.44) and (6.45), the functionsUn : [0,∞)→

Xβ are uniformly bounded and equicontinuous. Since Xβ is continuously imbedded in Cν(R)

for every 0 ≤ ν < 2β (see [16]), therefore, the Arzelá-Ascoli Theorem and Theorem 3.15 in

[13], imply that there is a function Ũ(·, ·;u) ∈ C2,1(R × (0,∞)) and a subsequence {Un′}n≥1
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of {Un}n≥1 such that Un′ → Ũ in C2,1
loc (R× (0,∞)) as n→∞ and Ũ(·, ·;u) solves the PDE


∂tŨ = ∂xxŨ + (cτ − χV ′(x;u))∂xŨ + (1− χλV (x;u)− (1− χ)Ũ)Ũ x ∈ R , t > 0

Ũ(x, 0) = limn→∞ U(x, tn′ ;u).

But U(x;u) = limt→∞ U(x, t;u) and tn′ → ∞ as n → ∞, hence Ũ(x, t;u) = U(x;u) for

every x ∈ R, t ≥ 0. Hence U(·;u) solves (6.38).

Lemma 6.7. Assume that 0 < µ < 1 and 0 < χ < 1
2

satisfy (6.25). Then, for any given u ∈ Eτ ,

(6.38) has a unique bounded non-negative solution satisfying

lim inf
x→−∞

U(x) > 0 and lim
x→∞

U(x)

e−τx
= 1. (6.46)

Proof. First, note that for any two U1, U1 ∈ Cb
unif(R) satisfying (6.46) with Ui(x) > 0 for

x ∈ R, we can define the so called part metric ρ(U1, U2) as follows:

ρ(U1, U2) = inf{lnα |α ≥ 1,
1

α
U1(x) ≤ U2(x) ≤ αU1(x), ∀ x ∈ R}.

Moreover, there is α ≥ 1 such that

ρ(U1, U2) = lnα and
1

α
U1(x) ≤ U2(x) ≤ αU1(x), ∀ x ∈ R.

Next, fix u ∈ Eτ . Suppose that U1(x) and U2(x) are two solutions of (6.38) satisfying (6.46).

Let α ≥ 1 be such that ρ(U1, U2) = lnα. Note that U(x, t;Ui) = Ui for all t ≥ 0 and every

i = 1, 2. Hence

ρ(U(·, t;U1), U(·, t;U2)) = lnα, ∀ t ≥ 0.

Assume that α > 1. Note that

1

α
U1(x) ≤ U2(x) ≤ αU1(x), ∀ x ∈ R,
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and

(αUi)t > (αUi)xx + (cτ − χV ′(·;u))(αUi)x + (1− χλV (·;u)− (1− χ)(αUi))(αUi)

for i = 1, 2. Thus the comparison principle for parabolic equations implies that


U2(x) ≤ U(x, t, αU1) < αU1(x) ∀ x ∈ R, t > 0

U1(x) ≤ U(x, t, αU2) < αU2(x) ∀ x ∈ R, t > 0.

(6.47)

Since Ui(x) > 0 for every x ∈ R and limx→∞
Ui(x)
e−τx

= 1 for each i = 1, 2, then for every

1 < α′ < α, there is Rα′ � 1 such that

U2(x) < α′U1(x), U1(x) < α′U2(x) ∀ x ≥ Rα′ . (6.48)

Since Ui(x) > 0 for every x ∈ R and lim infx→−∞ Ui(x) > 0 for each i = 1, 2, then

lα′ := min{ inf
x≤Rα′

U1(x), inf
x≤Rα′

U2(x)} > 0, ∀ 1 < α′ < α. (6.49)

For every 1 < α′ < α, i = 1, 2 and x ≤ Rα′ , we have

(αUi)t =(αUi)xx + (cτ − χV ′(x;u))(αUi)x

+ (1− χλV (x;u)− (1− χ)(αUi))(αUi) + (1− χ)(α− 1)Ui(αUi)

≥(αUi)xx + (cτ − χV ′(x;u))(αUi)x

+ (1− χλV (x;u)− (1− χ)(αUi))(αUi) + (1− χ)(α− 1)lα′(αUi).

(6.50)
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On the other hand, if we set W i(x, t) = eεtU(x, t;αUi), it follows from (6.47) that

W i
t =εW i+eεtUt(x, t;αUi)

=εW i +W i
xx + (cτ − χV ′(x;u))W i

x + (1− χλV (x;u)− (1− χ)W i)W i

+ (1− χ)(eεt − 1)U(x, t;αUi)W
i

≤W i
xx + (cτ − χV ′(x;u))W i

x + (1− χλV (x;u)− (1− χ)W i)W i + εW i

+ α(1− χ)(eεt − 1)UiW
i

≤W i
xx + (cτ − χV ′(x;u))W i

x + (1− χλV (x;u)− (1− χ)W i)W i

+
(
ε+ α(1− χ)(eεt − 1)Lα′

)
W i,

where

Lα′ = max{ sup
x≤Rα′

U1(x), sup
x≤Rα′

U2(x)}.

Choose 0 < ε� 1 such that

ε+ α(1− χ)(eεt − 1)Lα′ < (1− χ)(α− 1)lα′ 0 ≤ t ≤ 1.

Then, for x ≤ Rα′ and 0 ≤ t ≤ 1 we have

W i
t ≤ W i

xx + (cτ −χV ′(x;u))W i
x + (1−χλV (x;u)− (1−χ)W i)W i + (1−χ)(α− 1)lα′W

i.

(6.51)

But inequality (6.47) implies that U(Rα′ , t;αUi) < αUi(Rα′) for every t > 0 and i = 1, 2. So,

choose 0 < ε� 1 such that

W i(Rα′ , t) = eεtU(Rα′ , t;αUi) ≤ αUi(Rα′)
1

2
≤ t ≤ 1, i = 1, 2. (6.52)

Therefore, using the comparison principle for parabolic equations, it follows from inequalities

(6.50), (6.51) and (6.52) that

W i(x, t) = eεtU(x, t;αUi) ≤ αUi(x) ∀ x ≤ Rα′ ,
1

2
≤ t ≤ 1, i = 1, 2.
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for 0 < ε� 1. Hence there is 0 < ε0 � 1 such that

U(x, 1;αUi) ≤ e−εαUi(x) ∀ x ≤ Rα′ , i = 1, 2.

Combining this with (6.47), we obtain that


U2(x) ≤ e−ε0αU1(x) x ≤ Rα′

U1(x) ≤ e−ε0αU2(x) x ≤ Rα′ .

(6.53)

Combining inequalities (6.49) and (6.53) we have that

1

max{α′, e−ε0α}
U1(x) ≤ U2(x) ≤ max{α′, e−ε0α}U1(x) ∀x ∈ R.

Which implies that

α ≤ max{α′, e−ε0α} < α,

which is a contradiction. Hence α = 1 and then U1 = U2. The lemma is thus proved.

We now prove Theorem 6.2.

Proof of Theorem 6.2. First of all, let us consider the normed linear space E = Cb
unif(R) en-

dowed with the norm

‖u‖∗ =
∞∑
n=1

1

2n
‖u‖L∞([−n, n]).

For every u ∈ Eτ we have that

‖u‖∗ ≤
1

1− χ
.

Hence Eτ is a bounded convex subset of E . Furthermore, since the convergence in E implies

the pointwise convergence, then Eτ is a closed, bounded, and convex subset of E . Furthermore,

a sequence of functions in Eτ converges with respect to norm ‖ · ‖∗ if and only if it converges

locally uniformly on R.

We prove that the mapping Eτ 3 u 7→ U(·;u) has a fixed point. We divide the proof in two

steps.
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Step 1. In this step, we prove that the mapping Eτ 3 u 7→ U(·;u) is compact.

Let {un}n≥1 be a sequence of elements of Eτ . Since U(·;un) ∈ Eτ for every n ≥ 1 then

{U(·;un)}n≥1 is clearly uniformly bounded by 1
1−χ . Using inequality (6.39), we have that

sup
t≥1
‖U(·, t;un)‖Xβ ≤M1

for all n ≥ 1 where M1 is given by (6.40). Therefore, there is 0 < ν � 1 such that

sup
t≥1
‖U(·, t;un)‖Cνunif(R) ≤ M̃1 (6.54)

for every n ≥ 1 where M̃1 is a constant depending only on M1. Since for every n ≥ 1 and

every x ∈ R, we have that U(x, t;un)→ U(x;un) as t→∞, it follows from (6.54) that

‖U(·;un)‖Cνunif ≤ M̃1 (6.55)

for every n ≥ 1. This implies that the sequence {U(·;un)}n≥1 is equicontinuous. The

Arzelá-Ascoli’s Theorem implies that there is a subsequence {U(·;un′)}n≥1 of the sequence

{U(·;un)}n≥1 and a function U ∈ C(R) such that {U(·;un′)}n≥1 converges to U locally uni-

formly on R. Furthermore, the function U satisfies inequality (6.55). Combining this with the

fact U−τ (x) ≤ U(x;un′) ≤ U+
τ (x) for every x ∈ R and n ≥ 1, by letting n → ∞, we obtain

that U ∈ Eτ .

Step 2. In this step, we prove that the mapping Eτ 3 u 7→ U(·;u) is continuous.

Let u ∈ Eτ and {un}n≥1 ∈ ENτ be such that ‖un − u‖∗ → 0 as n → ∞. Suppose by

contradiction that ‖U(·;un)− U(·;u)‖∗ does not converge to zero. Hence there is δ > 0 and a

subsequence {un1}n≥1 such that

‖U(·;un1)− U(·;u)‖∗ ≥ δ ∀ n ≥ 1. (6.56)
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For every n ≥ 1, we have that U(·, un1) satisfies

0 =Uxx(x;un1) + (cτ − χV (x;un1))Ux(x;un1)

+ (1− χλV (x;un1)− (1− χ)U(x;un1))U(x;un1) ∀ x ∈ R. (6.57)

Claim 1. ‖V (·;un) − V (·;u)‖∗ → 0 as n → ∞. Indeed, for every R > 0, it follows from

(6.24) that

|V (x;un)− V (x;u)| ≤ 1√
π

∫ ∞
0

∫
R
e−λse−z

2|un(x− 2
√
tz)− u(x− 2

√
sz)|dzds

≤ 1√
π

∫ R

0

∫
B(0,R)

e−λse−z
2|un(x− 2

√
tz)− u(x− 2

√
sz)|dzds

+
2

(1− χ)
√
π

∫
{s≥R or |z|≥R}

e−λse−z
2

dzds. (6.58)

Thus for every k ∈ N and every R > 1, we have that

‖V (·;un)− V (·;u)‖L∞([−k ,k])

≤ 1√
π

[ ∫ R

0

∫
B(0,R)

e−λse−z
2

dzds
]
‖un − u‖L∞([−(k+2R

3
2 ) , (k+2R

3
2 )])

+
2

(1− χ)
√
π

∫
{s≥R or |z|≥R}

e−λse−z
2

dzds

≤ 1√
π

[ ∫ ∞
0

∫
R
e−λse−z

2

dzds
]

︸ ︷︷ ︸
√
π/λ

‖un − u‖L∞([−(k+2R
3
2 ) , (k+2R

3
2 )])

+
2

(1− χ)
√
π

∫
{s≥R or |z|≥R}

e−λse−z
2

dzds

≤2k+2R2

λ
‖un − u‖∗ +

2

(1− χ)
√
π

∫
{s≥R or |z|≥R}

e−λse−z
2

dzds.

(6.59)

Now, let ε > 0 be given. Choose R� 1 and k � 1 such that

2

(1− χ)
√
π

∫
{s≥R or |z|≥R}

e−λse−z
2

dzds <
ε

3
and

∑
i≥k

2

(1− χ)2i
<
ε

3
. (6.60)
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Next, choose N � 1 such that

2k+2R2

λ
‖un − u‖∗ <

ε

3
∀ n ≥ N. (6.61)

It follows from inequalities (6.59), (6.60) and (6.61) that for every n ≥ N , we have

‖V (·;un)− V (·;u)‖∗

≤
∑
i≥k

1

2i
‖V (·;un)− V (·;u)‖L∞([−i , i]) + ‖V (·;un)− V (·;u)‖L∞([−k , k])

≤
∑
i≥k

2

(1− χ)2i
+ ‖V (·;un)− V (·;u)‖L∞([−k , k]) < ε.

(6.62)

Thus, the claim follows.

Claim 2. ‖V ′(·;un)− V ′(·;u)‖∗ → 0 as n→∞. Indeed, it follows from (6.24) that

V ′(x;w) =

∫ ∞
0

∫
R

(z − x)e−λs

2s
√

4πs
e−
|x−z|2

4s w(z)dzds

=
−1√
π

∫ ∞
0

∫
R
ye−λse−y

2

w(x− 2
√
sy)dzds ∀ x ∈ R , w ∈ Cb

unif(R).

(6.63)

Since

lim
R→∞

∫
{s≥R or |y|≥R}

|y|e−λse−y2dzds = 0,

same arguments as in the proof of Claim 1 yield Claim 2.

Now, since V ′′(·;un)− V ′′(·;u) = (V (·;un)− V (·;u))− (un − u), it follows from Claim 1

that

‖V ′′(·;un)− V ′′(·;u)‖∗ → 0 as n→∞. (6.64)

Combining inequality (6.55), Claim 1, Claim 2, (6.64), Theorem 3.15 of [13], and the Arzelá-

Ascoli’s Theorem, there is a subsequence {U(·;un2)}≥1 of {U(·;un1)}n≥1 and a function U ∈

C2(R) such that {U(·;un2)}≥1 converges to U in C2
loc(RN) and U satisfies

0 = Uxx + (cτ − χV ′(x;u))Ux + (1− χλV (x;u)− (1− χ)U)U. (6.65)
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Hence U ∈ Eτ and

‖U(·;un2)− U‖∗ → 0 as n→∞. (6.66)

But

0 = Uxx(x;u) + (cτ − χV ′(x;u))Ux(x;u) + (1− χλV (x;u)

− (1− χ)U(x;u))U(x;u) ∀ x ∈ R.
(6.67)

By Lemma 6.7, U(·) = U(·;u). By (6.56),

‖U(·)− U(·;u)‖ ≥ δ,

which is a contradiction. Hence the mapping Eτ 3 u 7→ U(·;u) is continuous.

Now by Schauder’s Fixed Point Theorem, there is U ∈ Eτ such that U(·;U) = U(·). Then

(U(x), V (x;U)) is a stationary solution of (6.16) with c = cτ . It is clear that

lim
x→∞

U(x)

e−τx
= 1.

We claim that if χ < 1
2
, then

lim
x→−∞

U(x) = 1.

For otherwise, we may assume that there is xn → −∞ such that U(xn) → a 6= 1 as n → ∞.

Define Un(x) = U(x + xn) for every x ∈ R and n ≥ 1. By observing that Un = U(·;Un) for

every n, hence it follows from the Step 1, that there is a subsequence {Un′}n≥1 of {Un}n≥ and

a function U∗ ∈ Eµ such that ‖Un′ − U∗‖∗ → 0 as n → ∞. Next, it follows from Step 2 that

(U∗, V (·;U∗)) is also a stationary solution of (6.16).

Claim 3. infx∈R U
∗(x) > 0. Indeed, let 0 < δ � 1 be fixed. For every x ∈ R, there Nx � 1

such that x+ xn′ < xδ for all n ≥ Nx. Hence, it follows from Remark 6.1 that

0 < U−µ (xδ) ≤ U(x+ xn′) ∀ n ≥ Nn.
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Letting n go to infinity in the last inequality, we obtain that U−µ (xδ) ≤ U∗(x) for every x ∈ R.

The claim thus follows.

Since χ < 1
2
, it follows from Theorem 2.5 that U∗(x) = V (x;U∗) = 1 for every x ∈ R. In

particular, a = U∗(0) = 1, which is a contradiction. This implies that U∗(0) = 1 = a, which is

a contradiction. Hence limx→−∞ U(x) = 1.

As a direct consequence of Theorem 6.2 we present the proof of Theorem 2.7.

Proof of Theorem 2.7 (i). Let 0 < χ < 1
2

be fixed. According to Theorem 6.2, it is enough to

show that for every c ≥ c∗(χ) there is 0 < τ(c) < 1 with cτ(c) = c and τ(c) satisfying (6.25).

To this end, let τ ∗(χ) ∈ (0,min{1,
√
λ}] be given by

τ ∗(χ) = sup

0 < τ < min{1,
√
λ} :

τ
(
τ +
√
λ− τ 2

)
λ− τ 2

≤ 1− χ
χ

 .

Recall that c∗(χ) := cτ∗(χ) = τ ∗(χ) + 1
τ∗(χ)

. Since the function (0, 1) 3 µ 7→ cτ = τ + 1
τ

is

continuous and decreasing with limτ→0+ cτ = ∞, then for every c > c∗(χ), there is a unique

τ(c) ∈ (0, τ ∗(χ)) such that c = cτ(c). Observe that

τ
(
τ +
√
λ− τ 2

)
λ− τ 2

=
1

λ
τ2
− 1

+
1√
λ
τ2
− 1

, ∀ 0 < τ < min{1,
√
λ}. (6.68)

Hence the function (0,min{1,
√
λ}) 3 τ 7→

τ

(
τ+
√
λ−τ2

)
λ−τ2 is also strictly increasing. Thus,

since τ(c) < τ ∗(χ), we have that

τ(c)
(
τ(c) +

√
λ− τ(c)2

)
λ− τ(c)2

≤
τ ∗(χ)

(
τ ∗(χ) +

√
λ− (τ ∗(χ))2

)
λ− (τ ∗(χ))2

=
1− χ
χ

.

Hence, applying Theorem 6.2 the result follows. Observe from the definition of τ ∗ that

lim
χ→0+

τ ∗(χ) = min{1,
√
λ}. (6.69)
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Indeed, by a change of variable β = 1√
λ
τ2
−1

, the algebraic equation

τ
(
τ +
√
λ− τ 2

)
λ− τ 2

=
1− χ
χ

, τ ∈ (0,
√
λ) (6.70)

is transformed into a quadratic equation

β2 + β =
1− χ
χ

, β > 0. (6.71)

Note that β =

√
1+

4(1−χ)
χ
−1

2
is the only positive solution of (6.71). Thus solution of (6.70) is

given by

τ̃χ =
√
λ

1 +
4[√

1 + 4(1−χ)
χ
− 1
]2


− 1

2

Thus, we have that

τ ∗(χ) = min{1, τ̃χ},

which implies (6.69). Thus,

lim
χ→0+

c∗(χ) = cmin{1,
√
λ} =


2 if 1 ≤ λ,

1+λ√
λ

if 1 ≥
√
λ.

In order to prove Theorem 2.7(ii) we first prove some lemmas.

Lemma 6.8. (1) Let 0 ≤ c < 2
√
a be fixed and λ0 ≥ 0 be such that c2 − 4a+ 4λ0 < 0. Let

λD(L) be the principal eigenvalue of


φxx + cφx + aφ = λφ, 0 < x < L

φ(0) = φ(L) = 0.

(6.72)

Then there is L > 0 such that λD(L) = λ0.
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(2) Let c and L be as in (1). Let λD(L; b1, b2) be the principal eigenvalue of


φxx + (c+ b1(x))φx + (a+ b2(x))φ = λφ, 0 < x < L

φ(0) = φ(L) = 0,

(6.73)

where b1(x) and b2(x) are continuous functions. If there is a C2 function φ(x) with

φ(x) > 0 for 0 < x < L such that


φxx + (c+ b1(x))φx + (a+ b2(x))φ ≤ 0, 0 < x < L

φ(0) ≥ 0, φ(L) ≥ 0

(6.74)

Then λD(L, b1, b2) ≤ 0.

Proof. (1) Let L > 0 be such that

√
4a− 4λ0 − c2

2
L = π.

Then λ = λ0 is the principal eigenvalue of (6.72) and φ(x) = e−
c
2
x sin

(√
4a−4λ0−c2

2
x
)

is a

corresponding positive eigenfunction. Hence λD(L) = λ0 and (1) follows.

(2) Consider


ut = uxx + (c+ b1(x))ux + (a+ b2(x))u, 0 < x < L

u(x, 0) = u(x, L) = 0.

(6.75)

Let u(x, t;u0, b1, b2) be the solution of (6.75) with u(x, 0;u0, b1, b2) = u0(x) for u0 ∈ L2(0, L).

Then we have

λD(L; b1, b2) = lim
t→∞

ln ‖u(·, t;u0, b1, b2)‖L2

t

for any u0 ∈ L2(0, L) with u0 ≥ 0 and u0 6= 0. By the comparison principle for parabolic

equations, u(x, t;φ, b1, b2) ≤ φ(x) for all t ≥ 0 and 0 < x < L. It then follows that

λD(L; b1, b2) ≤ 0.
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Lemma 6.9. (1) Let c < 0 be fixed and let λ0 > 0 be such that 0 < λ0 < a. Let λN,D(L) be

the principal eigenvalue of


φxx + cφx + aφ = λφ, 0 < x < L

φx(0) = φ(L) = 0.

(6.76)

Then there is L > 0 such that λN,D(L) = λ0.

(2) Let c and L be as in (1). Let λN,D(L; b1, b2) be the principal eigenvalue of


φxx + (c+ b1(x))φx + (a+ b2(x))φ = λφ, 0 < x < L

φx(0) = φ(L) = 0,

(6.77)

where b1(x) and b2(x) are continuous functions. If there is a C2 function φ(x) with

φ(x) > 0 for 0 < x < L such that


φxx + (c+ b1(x))φx + (a+ b2(x))φ ≤ 0, 0 < x < L

φx(0) ≤ 0, φ(L) ≥ 0

(6.78)

Then λN,D(L, b1, b2) ≤ 0.

Proof. (1) Fix c < 0 and 0 < λ0 < a with 4a− 4λ0 < c2. Let

L =
1√

c2 − 4a+ 4λ0

ln
−c+

√
c2 − 4a+ 4λ0

−c−
√
c2 − 4a+ 4λ0

.

Then L > 0, λN,D(L) = λ0 is the principal eigenvalue of (6.76), and φ(x) is a corresponding

positive eigenfunction, where

φ(x) = −e
−c+
√

c2−4a+4λ0

2
x +
−c+

√
c2 − 4a+ 4λ0

−c−
√
c2 − 4a+ 4λ0

e
−c−
√

c2−4a+4λ0

2
x.

(1) then follows.

(2) can be proved by the similar arguments as those in Lemma 6.8 (2).
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Proof of Theorem 2.7. We first consider the case that 0 ≤ c < 2
√
a. Then there is λ0 > 0 such

that

c2 − 4a+ 4λ0 < 0.

By Lemma 6.8 (1), there is L > 0 such that λD(L) = λ0 > 0.

Fix 0 ≤ c < 2
√
a and choose L as above. Assume that (2.6) has a traveling wave solution

(u, v) = (U(x − ct), V (x − ct)) with (U(−∞), V (−∞)) = (a
b
, aµ
bλ

) and (U(∞), V (∞)) =

(0, 0). Then (6.16) has a stationary solution (u, v) = (U(x), V (x)) with (U(−∞), V (−∞)) =

(a
b
, aµ
bλ

) and (U(∞), V (∞)) = (0, 0). Moreover, for any ε > 0, this is xε > 0 such that

0 < U(x) < ε, 0 < V (x) < ε, |Vx(x)| < ε ∀ x ≥ xε.

Consider the eigenvalue problem,


φxx + (c− χVx)φx + (a− χ(λV − τcVx)− (b− χµ)U)φ = λφ, xε < x < xε + L

φ(xε) = φ(xε + L) = 0.

(6.79)

Let λεD(L) be the principal eigenvalue of (6.79). By Lemma 6.8 (1) and perturbation theory for

principal eigenvalues of elliptic operators, λεD(L) > 0 for 0 < ε� 1.

Note that

Uxx + (c− χVx)Ux + (a− χ(λV (x)− τcVx)− (b− χ)U(x))U = 0 ∀ xε ≤ x ≤ xε + L

and U(xε) > 0, U(xε + L) > 0. Then, by Lemma 6.8 (2), λεD(L) ≤ 0. We get a contradic-

tion. Therefore, (2.6) has no traveling wave solution (u, v) = (U(x − ct), V (x − ct)) with

(U(−∞), V (−∞)) = (a
b
, aµ
bλ

) and (U(∞), V (∞)) = (0, 0) and 0 ≤ c < 2
√
a.

Next, we consider the case that c < 0. Let λ0 and L be as in Lemma 6.9 (1). Then λN,D(L) =

λ0 > 0.

Fix c < 0 and the above L. Assume that (2.6) has a traveling wave solution (u, v) =

(U(x− ct), V (x− ct)) with (U(−∞), V (−∞)) = (a
b
, aµ
bλ

) and (U(∞), V (∞)) = (0, 0). Then
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(6.16) has a stationary solution (u, v) = (U(x), V (x)) with (U(−∞), V (−∞)) = (a
b
, aµ
bλ

) and

(U(∞), V (∞)) = (0, 0). Similarly, for any ε > 0, this is xε > 0 such that

0 < U(x) < ε, 0 < V (x) < ε, |Vx(x)| < ε ∀ x ≥ xε.

Moreover, since U(∞) = 0, there is x̃ε > xε such that

Ux(x̃ε) < 0.

Consider the eigenvalue problem,


φxx + (c− χVx)φx + (a− χ(λV − τcVx)− (b− χµ)U)φ = λφ, x̃ε < x < x̃ε + L

φx(x̃ε) = φ(x̃ε + L) = 0.

(6.80)

Let λεN,D(L) be the principal eigenvalue of (6.80). By Lemma 6.9 (1) and using perturbation

theory for principal eigenvalues of elliptic operators, λεN,D(L) > 0 for 0 < ε� 1.

Note that

Uxx + (c− χVx)Ux + (a− χ(λV (x)− τcVx)− (b− χµ)U(x))U = 0 ∀ x̃ε ≤ x ≤ x̃ε + L

and Ux(x̃ε) < 0, U(x̃ε + L) > 0. Then, by Lemma 6.9 (2), λεN,D(L) ≤ 0, contradic-

tion. Therefore, (2.6) has no traveling wave solution (u, v) = (U(x − ct), V (x − ct)) with

(U(−∞), V (−∞)) = (a
b
, aµ
bλ

) and (U(∞), V (∞)) = (0, 0) and c < 0.

Theorem 2.7 (ii) is thus proved.
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Chapter 7

Remarks and further works

When χ = 0 and the functions a(x, t) and b(x, t) are constants, it is known that c∗up = 2
√
a

and that the traveling wave solution associated with any speed c ≥ 2
√
a is unique up to a

translation which is also stable. In which case the constant 2
√
a is called the minimal wave

speed and coincide with the spreading speeds. There is also a huge amount of research on the

transition wave solutions in the case χ = 0 and a(x, t) and b(x, t) depend on x and/or t. The

following questions associated to (2.6) arise from the results obtained in the above chapters.

P1. Suppose that the logistic source function is constant. Does a minimal wave speed ex-

ist in (2.6)? That is, is there a positive constant c∗(a, b, χ, µ, λ) such that (2.6) has

traveling wave solutions connecting the two constant equilibria solutions for every c >

c∗(a, b, χ, µ, λ) and no such solution exists of speed c < c∗(a, b, χ, µ, λ)?

P2. Uniqueness and stability of transition waves in (2.6).

P3. For space and/or time dependent logistic source, does (2.6) admit transition wave solu-

tions?

P4. Finite time blow-up of solution in chemotaxis models with logistic type source on both

bounded and unbounded domains.

The results on traveling wave solutions of (2.6) presented in this dissertation have been ex-

tended to the following full parabolic chemotaxis system,


ut = uxx − χ(uvx)x + (a− bu)u,

τvt = vxx − λv + µu.
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Indeed, in [46], we considered this problem and developed new techniques which are nontrivial

generalizations of the ones presented in this dissertation. In general, the study of dynamics

of solutions of the full parabolic chemotaxis system is more complex. In fact, most of the

results established in this dissertation on the parabolic-elliptic case, such as global existence of

classical solutions, stability of strictly positive entire solutions, spreading speeds, are still open,

that is, the following problem remains to be studied.

P5. Dynamics in full parabolic-parabolic chemotaxis systems on RN ,


ut = ∆u− χ∇ · (u∇v) + (a(x, t)− b(x, t)u)u, x ∈ D,

τvt = ∆v − λv + µu, x ∈ D.
(1)

It is well known that micro-organisms usually have mixed directed movement toward the

gradient of chemical substances, in the sense that the mobile species move toward higher con-

centration of the chemical substances or away from it. These phenomena are describe by the

attraction-repulsion chemotaxis models. In [45, 47], joint works with Dr.W. Shen, we studied

the existence of global classical solutions, stability of constant equilibria, spreading speeds, and

existence and non-existence of traveling wave solutions in the following attraction-repulsion

chemotaxis systems


ut = ∆u− χ1∇(u∇v1) + χ2∇(u∇v2) + u(a− bu), x ∈ RN

τ∂tv1 = (∆− λ1I)v1 + µ1u, x ∈ RN

τ∂tv2 = (∆− λ2I)v2 + µ2u, x ∈ RN .

In particular, taking τ = 0 and χ2 = 0 in the last system of partial differential equations, we

recover as a special case system (2.6) when the functions a(x, t) and b(x, t) are both constant.
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In a joint work with Issa Bachar Tahir [22], we considered the following extended attraction

chemotaxis system with two speciesof parabolic-parabolic-elliptic type with nonlocal terms


ut = d1∆u− χ1∇(u · ∇w) + u

(
a0 − a1u− a2v − a3

∫
Ω
u− a4

∫
Ω
v
)
, x ∈ Ω

vt = d2∆v − χ2∇(v · ∇w) + v
(
b0 − b1u− b2v − b3

∫
Ω
u− b4

∫
Ω
v
)
, x ∈ Ω

0 = d3∆w + ku+ lv − λw, x ∈ Ω

under homogeneous Neumann boundary conditions in a bounded domain Ω ⊂ Rn(n ≥ 1)

with smooth boundary, where a0, b0, a1, and b2 are positive and a2, a3, a4, b1, b3, and b4 are

real numbers. Under some explicit conditions on these paramaters, we proved the global ex-

istence of non-negative classical solutions, coexistence of the two species in a sense that the

system has a unique positive constant steady state solution which is globally asymptotically

stable. We also found some conditions on the coefficients ai, bi, and on the chemotaxis sensi-

tivities χi for which the phenomenon of competitive exclusion occurred, i.e. one of the species

dies out asymptotically, whereas the other reaches its carrying capacity in the large time limit.

Meanwhile, the following problem has been rarely studied.

P6. Traveling wave solutions in competitive/cooperative chemotaxis systems of two species.

In the future, I plan to continue working on various dynamic aspects of chemotaxis models

with logistic source functions f(t, x, u, v) = u(a(t, x) − b(t, x)u), including the problems

described above. I also plan to study chemotaxis models with bistable source functions.
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