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Abstract

This dissertation is devoted to the study of the classical Keller-Segel chemotaxis systems with
space-time heterogeneous logistic source function on RY. Chemotaxis systems are mathemat-
ical models describing aggregation phenomena of cells due to chemotaxis. That is, phenomena
of directed movement of cells in response to the gradient of a chemical attractant, which may
be produced by the cells themselves.

We first study the fundamental problems such as local existence and global existence of
nonnegative classical solutions for given nonnegative initial function in various spaces. Among
our results, we prove that it is enough for the self-limitation coefficient of the logistic source
function to be greater than or equal to the chemotaxis sensitivity coefficient to guarantee the
existence of time-global classical solutions.

Next, we discuss the pointwise and uniform persistence of classical solutions, the existence
of positive entire solutions, the existence of time-periodic solution if the logistic function is
time-periodic, and, the existence of steady state solutions if the logistic function is time homo-
geneous. In particular, we show that any classical solution with a positive initial function enjoys
pointwise persistence under the same assumption of the existence of time-global classical solu-
tion. Moreover, we study the stability of positive entire solutions, and the spreading feature of
solutions with compactly supported or front like initials. In this direction, our results recover
as a special case the stability and spreading speeds for the classical Fisher-KPP equations.

Finally, we establish the existence and non-existence of traveling wave solutions. When
the logistic function is homogeneous and the chemotaxis sensitivity coefficient is sufficiently
small, we show that there are traveling wave solutions with arbitrarily large speeds and there
is no traveling wave solution of arbitrarily small speeds. That is there are positive constant
0 < ¢* < ¢} < oo such that for any ¢ > ¢, there is a traveling wave solution with speed ¢

connecting the two trivial constant solutions and no such solutions exist with speed ¢ < ¢*.
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Chapter 1

Introduction

Chemotaxis is a biological process through which living organisms orient their movement along
a chemical concentration gradient. Such movement may be towards or away from a higher con-
centration of a chemical substance. The process is present in different types of biological phe-
nomena such as bacteria aggregation, immune system response or angiogenesis in the embryo
formation and in tumour development. Recent studies describe macroscopic processes such as
population dynamics or gravitational collapses, in terms of chemotaxis. Because of its crucial
role in the aforementioned processes, chemotaxis has attracted significant interest and has been
investigated not only from a biological point of view but also from a mathematical perspective.

Many mathematical models to describe chemotaxis have been proposed since the pioneering
work of Keller and Segel during the 1970s [24, 25]. Let u(z, t) denotes the population density
function at time ¢ and location x € D, D C RY, of some mobile species moving toward
the concentration gradient of some chemical substance with density function v(x,t), which is
produced by the mobile species themselves. Then the time evolution of the population density

function u(z, t) can be described by the following differential equation

w= Qu  —xV-(uVv)+(a(z,t) = blz,huu, =z €D, (1.1)
Diffusion term Chemo?a;is term React?(gl term

where u;(x,t) and Au(z, t) stand for the partial derivatives with respect to time and the space of
u(x, t), respectively. In the reaction term (a(x,t) — b(x, t)u)u, the functions a(x, t) and b(x, t),
which will be assumed to be positive, bounded, and uniformly Holder continuous, measure
the production rate and self-limitation rate of the mobile species at time ¢ and location x €

D, respectively. The positive constant x in the chemotaxis term xV - (uVv) measures the



sensitivity of the mobile species with respect to the effect of the chemical substance. We
consider the case that the chemical substance is produced by the mobile species, and hence

suppose that the concentration function v(z, t) is given by the partial differential equations

Ty = Av — \v + pu, (1.2)

where 7 > 0, A and p are positive constant. The term +pu in (1.2) indicates that the mobile
species produce the chemical substance themselves while the positive constant A measures the
self-degradation rate of the chemical substance. The nonnegative constant 7 is related to the
diffusion rate of the chemical substance with respect to the mobile species. Combining (1.1)
and (1.2) and taking 7 = 0, we obtain the following coupled system of parabolic-elliptic partial

differential equations

u = Au— xV - (uVv) + (a(z,t) — b(x,t)u)u, z € D,
(1.3)

0=Av— v+ puu, x€D,

complemented with certain boundary conditions on 0D when D is bounded. Thus, the chemo-
taxis system (1.3) models the situation where the chemical substance diffuses very fast com-
pared to the mobile species.

This dissertation is devoted to the study of several dynamic aspects of the deterministic
chemotaxis model (1.3) with space-time dependent logistic source on the unbounded domain
D = R¥. The chemotaxis system (1.3) is a time and space logistic source dependent variant
of the classical parabolic-elliptic Keller and Segel models [24], and describes the situations in
which the chemical substance diffuses very fast. In the last two decades, considerable progress
has been made in the analysis of (1.3) on both bounded and unbounded domains.

When a = b = 0 and N = 1, it is well known that classical/weak solutions of (1.3) with
given smooth initial functions always exist globally when D is either a bounded domain with
smooth boundary or is the whole space R". However, whena = b =0, N = 2and Disa

ball centered at the origin, Herrero and Veldzquez [17, 18, 19] constructed a radial solution to



(1.3) which blows up in finite time and forms a j—function singularity at the origin. J.I. Diaz
etal. [8] and T. Nagai [34] also proved the existence of solutions which blow up in a finite time
when N > 2.

It is believed that, if the self-limitation rate function b(z, t) is positive and large enough, in
the sense that inf, ; b(x,¢) > 0, then solutions to (1.3) will always exist for all time. This
was in fact proved in 2007 by Tello and Winkler [55] when (1.3) is considered on a bounded
domain D complemented with Neumann boundary condition and with the choice A = p = 1,
and a(z,t) = b(x,t) = bis space and time independent. With these choices, it was shown in
[55] that if either N < 2 or x < ﬁ, (1.3) has a globally bounded classical solution for
any nonnegative and uniformly continuous initial data. Furthermore, if b > 2y, then for any

ug € C%(D) with ug(x) > 0 and ug(z) # 0,
tlijgo [lu(; ¢ u0) = 1| ooy + v+, 8 u0) — 1| zoo(my] =0,

where (u(z, t;ug), v(z,t;up)) is the solution of (1.3) complemented with Newmann boundary
condition and with u(x,0;ug) = ug(x). It should be pointed out that when N > 3 and b <
=2, it remains open whether for any given initial data uy € C%*(D), (1.3) supplemented
by Newmann boundary condition possesses a global classical solution (u(zx, t;ug), v(x,t;up))
with u(x,0;u9) = ug(x), or whether finite-time blow-up occurs for some initial data. The
works [28], [63], [66] should be mentioned along this direction. It is shown in [28], [66] that
in the presence of suitably weak logistic dampening (that is, small b), certain transient growth
phenomena do occur for some initial data. It is shown in [63] that, with the reaction term
f(u) = au — bu” with suitable x < 2 (for instance, x = 3/2) and the second equation of (1.3)
replaced by 0 = Av(z,t) — ﬁ [, u(z, t)dz+u(x,t), then finite-time blow-up is possible. The
reader is referred to [2], [7], [15], [57], [60], [62], [63], [64], [66], [67], [69], and references
therein for other studies of (1.3) on bounded domain with Neumann or Dirichlet boundary
conditions and various kinds of source functions.

It is worth mentioning that most of the existing results are established for the space-time ho-

mogeneous logistic function f(u) = (a — bu)u. Furthermore, in contrast to bounded domains,



there is not much study of (1.3) on unbounded domains. Besides the difficulties induced from
the lack of comparison principle for solutions of (1.3), the unboundedness of the spatial domain
induces many additional difficulties in the study of (1.3) on unbounded domains.

There are also several studies of (1.3) when D is the whole space RY and a(z,t) = b(z,t) =
0 (see [8, 23, 35, 53, 52]). For example, in the case of a(x,t) = b(x,t) = 0, it is known that
blow-up occurs if either N=2 and the total initial population mass is large enough, or N > 3
(see [2, 8, 35] and references therein). However, there is little study of (1.3) when D = RY
and a(z,t) # 0 and b(x,t) # 0.

In reality, the environments of many living organisms are spatially and temporally hetero-
geneous. It is of both biological and mathematical interests to study chemotaxis models with
certain time and space dependence. In the case that the chemotaxis is absent, i.e., x = 0 in
(1.3), the population density u(z, t) of the mobile species satisfies the following scalar reaction
diffusion equation,

Ou = Au~+u(a(x,t) — b(z,t)u), v € D (1.4)

complemented with certain boundary conditions if D C R¥ is a bounded domain. Equation
(1.4) is called Fisher or KPP type equation in literature because of the pioneering works by
Fisher ([10]) and Kolmogorov, Petrowsky, Piskunov [26] in the special case a(t, x) = b(t,z) =
1. A huge amount of research has been carried out toward the asymptotic dynamics of (1.4),
see, for example, [3,4, 5,6, 11, 12, 31, 32, 33, 36, 37, 50, 51, 58, 59, 70], etc. for the asymptotic
dynamics of (1.4) on bounded and unbounded domains.

In this dissertation, we study several dynamical features of nonnegative solutions of (1.3)

when D = R”, a(z,t) and b(x, t) are Holder’s continuous functions and satisfy

0< in;f min{a(z,t),b(z,t)} < supmax{a(z,t),b(z,t)} < oo.

x,t

We first investigate the local existence and global existence of solution u(¢, z) of (1.3) with
given initial condition u(x,ty) = wug(z) for various initial functions uy(z). Note that, due to
biological interpretations, only nonnegative initial functions will be of interest. Let ¢, € R and

T > 0 be given. We call (u(z,t),v(x,t)) a classical solution of (1.3) on [tg, to + T) if (u,v) €
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C(RN x [to, to+T))NC*HRY x (tg, to+T)) and satisfies (1.3) for (z,t) € RN x (to, to+T)
in the classical sense. A classical solution (u(zx,t),v(xz,t)) of (1.3) on [tg,to + T') is called
nonnegative if u(x,t) > 0 and v(z,t) > 0 forall (x,t) € RN x [tg,to +T). A global classical
solution of (1.3) is a classical solution on RY x [to, 00) for some ¢y € R. In this dissertation,
among others, we prove the following results.

e For any given ty € R and given nonnegative uniformly continuous and bounded initial func-
tion ug(x), (1.3) has a unique local nonegative classical solution with u(z,ty) = ug(x) (see
Theorem 2.1 for detail).

o If xu < inf,; b(z,t), then for any given ty € R and given nonnegative uniformly continuous
and bounded initial function uy(z), (1.3) has a unique bounded global nonegative classical
solution with u(x, ty) = ug(x) on [tg, 00) (see Theorem 2.2 for detail).

Therefore, as already mentioned above, it is enough for the self-limitation function b(z,t)
to be large enough to rule out any possible finite time blow-up phenomena. When a classical
solution is globally defined in time with a strictly positive initial function, it is important to
know whether this solution will remain uniformly strictly positive over time or it will eventually
die out. Likewise, it is also of great biological interest to know how globally defined solutions
with compactly supported initial functions spread over time. These questions are related to
persistence and asymptotic spreading, which are well studied in the absence of chemotaxis but
are hardly studied in the presence of chemotaxis. In this dissertation, we prove that
o If xu < inf,,b(x,t), the pointwise persistence phenomena occurs in (1.3). Furthermore
if xp < (1 + %) - inf, ; b(z,t) then uniform persistence phenomena occurs in (1.3)
(see Theorem 2.3 for details).

These results guarantee that persistence phenomena occurs in (1). Hence, it is natural to study
the existence, uniqueness, and stability of strictly positive entire solutions of (1.3). These are
very basic problems in the heterogeneous case, but are very nontrivial problems in chemotaxis
models. In this dissertation, we prove that
o If xpu < inf,; b(x,t) then (1.3) has a strictly positive entire solution, which is time-periodic
if the logistic source function is time-periodic, and time-homogeneous if the logistic source

function is time homogeneous. Moreover, if 0 < x < 1, then (1.3) has a unique strictly



positive entire solution which is uniformly and exponentially stable with respect to strictly
positive perturbation (see Theorems 2.4 and 2.5 for details).

When a positive entire solution is stable, it is natural to know the asymptotic behavior of
solutions with front-like or compactly supported initial functions. This question is strongly
related to the spreading speeds of solutions, the existence, uniqueness and stability of transition
front solutions of (1.3) connecting the unique positive entire solution and the trivial solution
u(z,t) = 0. Transition waves are very important as they describe how mobile species transit
between two entire solutions. Transition waves are also used to characterize the spreading
speeds, however, transition wave solutions of (1.3) are hardly studied. In this dissertation, we
prove the following.

e Suppose that the functions a(x,t) and b(x,t) are both constant. If 0 < xu < b, then for
every ¢ > 0 and every classical solution u(x,t) of (1.3) associated with a nonnegative and

nonempty compactly supported initial function uy(z) = u(z,0), it holds that

limsup  sup  wu(z,t) =0,

t—o0 |$‘Z(Cﬁpper+€)t

where ¢, = 2v/a+ % Furthermore, if 0 < xu < b then there is a positive constant
Clower SUCH that for every 0 < ¢ < 1 and every classical solution u(z,t) of (1.3) associated

with a nonnegative and nonempty compactly supported initial uo(x) = u(zx,0), it holds that

liminf  inf u(z,t) >0
1300 [2]<(chyyor =0t

*
Clower

(see Theorem 2.6 for details and also for the general case).

e Suppose that a(z,t) = a and b(x,t) = b are both constant functions. Then for every positive
constants x and p satisfying 0 < py < g, there is a constant ¢*(x) > 2+/a such that for
every ¢ > c¢*(x), (1.3) has a traveling wave solution (u(z,t),v(x,t)) = (¢(x — ct),P(x — ct))
with speed c connecting the constant equilibrium solutions (%, 53) and (0, 0). There is no such

traveling wave solution of speed less than 2\/a (see Theorem 2.7 for more details).



Chapter 2

Notations, definitions, and main results

In this chapter, we start with the notations that will be used throughout the rest of this work.
Also, we introduce the relevant definitions of the concepts discussed. The last part this chapter
is concerned with the statements of the main results of this dissertation. The proofs of these

results will be given in the subsequent chapters.

2.1 Notations and standing assumptions

Let N be a positive integer. For every z € RY and r > 0, let |7| = max{|z;| | i =
1, N}, Jz| = /2N, |5]? and B(x,7) = {y € RN | |z — y| < r}. For every function
w:RY x I — R, where I C R, we set win(t) = inf,cpy w(z, 1), Weyp(t) = sup,cpn w(w, t),
Wiyt = inf, s w(z,t) and wey, = sup, , w(z,t). Let

C* (RN = {u € C(RY) | u(x) is uniformly continuous inz € RY and sup |u(z)| < oo}

zERN

equipped with the norm ||u||» = sup,cp~ |u(z)|. Forany 0 < v < 1, let

Cr(RY) = {u € Chy(®Y)]  sup 14D U0l oy
ryeRN oty T — Y]
with nom ] vy = [0l + 5Py e ey U2 and

CQ((tlv t2)7 Cy (RN))

unif
= {u(-) € C((t1,ts), C%s(RY)) | u(t) is locally Holder continuous in t with exponent 6}.

unif

In particular for every uy € C? ,;(RY), we set ugint = inf, uo(x) and ugsyp = sup, ug(z).

nif

Throughout this work, we shall always suppose there is some 0 < v < 1 such that the

following hypothesis holds:

H) a(-,-),b(-,-) € C75(RY x R), min{aing, bint} > 0, and max{asup, bsup} < 0C.

nif

7



We will be concerned with the Banach space X = C?_ .(R") and the analytic semigroup

unif

{T(t)}+>0 generatedby A=A —Ton X =C°

unif

(RM). Explicitly, it holds that

(T(tyu)(@) = e (G- ) % u) (x) = / Gl — y tuly)dy @1

forevery u € X,t > 0, and z € RY, where X = C° ..(R") and G(z,t) is the heat kernel

nif

defined by
G(x,t) L -l 2.2)
aj’) — e 4t .
(4nt) %
Let X = C? .(RY) and X* = Dom((I — A)®) be the fractional power spaces of [ — A

on X (o € [0,1]). Note that X° = X and X' = Dom(/ — A). It is well known that
A generates a contraction Cp—semigroup defined by the heat kernel, {G(t)}:>0, on X with
spectrum o (A) = (—o0, 0] (see [16]). Thus, the Hille-Yosida theorem implies that the resolvent
operator R(\) associated with A is the Laplace transform of {G(-,%)};. Thus the operator

A — M\ is invertible with
(A —A)lu = / e MG (-, t) * udt (2.3)
0

for all w € X and \ > 0. Furthermore the restriction operator (A — M) |xa : X* — X%isa

bounded linear map. For every a > 0 there is a positive constant C, > 0 such that
IT(t)ul|xa < Cat e |ulloo, t >0, ue Chu(RY), (2.4)
with Cy = 1. Furthermore, it holds that
I(T(t) — Dul|xo < Cot®e ul|xa, t>0,ue X*0<a<l. (2.5)

We refer to [16] for the proofs of the inequalities (2.4) and (2.5).
We end this section by stating an important result that will be needed to complete the proof

of the main theorem on the uniqueness of solutions.



Lemma 2.1. ([16, Exercise 4*, page 190]) Assume that a,, as, «, 3 are nonnegative constants,
with0 < «, < 1,and 0 < T < oo. There exists a constant M (aq, 3, T) < oo so that for any

integrable function u : [0, T| — R satisfying
t
0<u(t) <at ™™+ az/ (t — ) Pu(s)ds
0
fora.e. tin |0, T, we have

(ZlM
0<u(t) <
_u() T 1l-«

t7 aeon 0<t<T.

2.2 Statements of the main results

As stated in the previous chapter, this dissertation is concerned with the study of the following

partial differential equations (PDE) :

Ou = Au —xV - (uVv) + (a(x,t) — b(x, t)u)u, xRN,
(2.6)

0=Av— M+ pu, xcRY,

where the functions a(x,t) and b(x,t) satisfy the standing assumption (H). The objective of
the current work is to investigate the global existence and persistence of nonnegative bounded
classical solutions of (2.6), existence and stability of positive entire bounded classical solutions
of (2.6), spreading properties of classical solutions of (2.6) with compactly supported initial
functions, and traveling wave solutions for (2.6). For the sake of clarity, we introduce some

definitions.

Definition 2.1. For given uy € X := C?

unif

(RN) and ty € R, (u(z,t;tg, ug),v(w,t;to, ug)) is

said to be a classical solution of (2.6) on [to, T) with u(x, to; to, ug) = ug(x) for every v € RY
ifu(-, s to, up), v(-, s to, up) € C([to, T) : X)NCHL (RN x (to, T)) and satisfies (2.6) for (x,t) €
RN X (tg, T) in the classical sense withlim;_,q+ u(-, to+t) = ug in X. When a classical solution
(u(z,t),v(z,t)) of (2.6) on [ty,T) satisfies u(x,t) > 0 and v(z,t) > 0 for every (z,t) €

RN x [to, T), we say that it is nonnegative. A global classical solution of (2.6) on [ty, ) is a




classical solution on [ty, T) for every T > 0. We say that (u(x,t),v(x,t)) is an entire solution
of (2.6) if (u(z,t),v(x,t)) is a global classical solution of (2.6) on [ty, 00) for every ty € R.
For given uniformly continuous function ug and to, T € R with T' > to, if (u(z,t),v(z,t)) isa

classical solution of (2.6) on RY x (to, T) with u(z,ty) = ug(x) for all x € R, we denote it as

(u(z, t;to, ug), v(x,t; to, up)) and call it the solution of (2.6) with initial function ug(x) at time

to.

Note that, due to biological interpretations, only nonnegative initial functions will be of in-
terest. It is of great interest to determine under which circumstance that (2.6) has a unique
nonnegative solution for a given initial function. The main results stated below are selected
from our works [43, 44, 46, 47, 48, 49].

We have the following result on the local existence and uniqueness of solution of (2.6) for

initial data belonging to C?_..(R™).

Theorem 2.1. For any ty € R and uy € C® .(RY) with ug > 0, there exists Tpna, € (0,00]

nif

such that (2.6) has a unique non-negative classical solution (u(x,t;to, ug), v(x,t;tg, up)) on

[to, to + Tiax) Satisfying limy oy u(-,to + t; to, ug) = ug in the C° (RN )-norm,

u('7 3 to, UO) € C([tOv lo + TmaX)v anif(RN)) N Cl((tOv lo + TmaX)7 anif(RN)) (2-7)
and
Uy Ugyy Uggzy, Ut © 09((t0’t0 + Tmax)v ll;nif(RN)) (2.8)

foralli,j = 1,2,--- N, 0 < 0 <1, and 0 < v < 1. Moreover, if Ty.x < 00, then

lim sup,_,

- Nlul to + tuo) ||, = oo.
Note that for uy = 0, (u(z,t;te, ug),v(z,t;tg,ug)) = (0,0) forall t € R and x € RY.
From both the mathematical and biological points of view, it is important to find conditions

which guarantee the global existence of (u(x,t;to;ug), v(x,t;to, ug)) for every to € R and

ug € C? (RN) \ {0} with ug > 0. The following is our main result on the global existence.

Theorem 2.2. Suppose that xu < by, then for every ty € R and nonnegative function

ug € C° (R™)\ {0}, (2.6) has a unique nonnegative global classical solution (u(x,t;y, up),

nif

10



v(z, t;to, up)) satisfying lime o ||u(-, to + t; to, uo) — Uo||c = 0. Moreover, it holds that

||u(7t+t0ut07u0)||oo S ”u0||ooeasupt- (29)

Furthermore, if
(Hl) binf > XH

holds, then the following hold.

(i) For every nonnegative initial function uy € C° (RN)\ {0} and t, € R, there holds

asu
(-, t + to; to, Uo) || oo < max{||tol|ee, ————} V t >0, (2.10)
bing — X1
and
limn sup [|u(-, £ + o; fo, o) oo < 22—, @.11)
t—o0 binf — XM

(ii) Forevery ug € C° (RN) with inf ,cgn ug(x) > 0 and ty € R, there holds

Qinf

asu
< limsup sup u(x,t+to;to, ug), liminf inf w(w,t+tg;t, up) < —>. (2.12)

sup t—oo geRN t—oo  zeRN binf

jop)

(iii) For every positive real number M > 0, there is a constant K1 = Ky(v, M, a, b) such that

for every ug € Ct L (RN) with 0 < ug < M, we have

HU(-7t + to;t()?uO)HClll:;f(RN) S Kl, \V/to c ]R, Vi 2 0. (213)

The so called persistence is an important concept in population models.

Definition 2.2. Assume (H1). We say that pointwise persistence occurs in (2.6) if for any

ug € C° (RN) with inf ,cgn ug(x) > 0, there is m(ug) > 0 such that

m(ug) < u(z,t + to; to, up) < max{||uol|oo, &} Vto € Rand t > 0. (2.14)
- XU

binf

11



We say that uniform persistence occurs in (2.6) if there are 0 < m < M < oo such that for

any to € R and any positive initial function ug € C°_(RN) with inf,cg uo(x) > 0, there exists

T(to,uo) > 0 such that

m < u(x,t+to;to,ug) < M YVt >T(to,up).

By Theorem 2.2, for any uy € CP (RY) with uginr > 0, limsup,_,., sup,cpy u(z, t +

unif
to; to, uo) has a positive lower bound and lim inf; . inf, cgn u(x, t + to; tg, up) has a positive
upper bound. But it is not clear whether there is a positive lower bound (respectively, a positive
lower bound independent of ug) for lim inf; ., inf,cpn u(x, t+to; to, ug) with inf ,cpn ug(x) >
0 under hypothesis (H1), which would imply pointwise persistence (respectively, uniform per-

sistence) in (2.6). We have the following results on the pointwise persistence and uniform

persistence of solutions of (2.6) with positive initial functions.

Theorem 2.3. (i) (Pointwsie persistence) Suppose that (H1) holds. Then pointwise persis-

tence occurs in (2.6).

(ii) (Uniform persistence) Suppose that (H1) holds. If, furthermore,

a’Su
(H2)  bine > (1 + - I:)XM

holds, then uniform persistence occurs in (2.6). In particular, for every strictly positive
initial function ug € C° (RY) and ¢ > 0, there is T-(ug) > 0 such that the unique
classical solution (u(x,t + to;to, uo), v(x,t + to;to, uo)) of (2.6) with u(-,to; to, ug) =
uo(+) satisfies

M —e <u(z,t+toto,ug) <M +e, Vt>T.(u), z €RY, tyeR, (2.15)

and

M M
“T— — & < ua,t+ to;to, up) < MT Ve, VE>Ti(uw), €RY, theR, (2.16)

12



where

. _ XMGsup
P ..my == 2.17)
(bsup - X/“L) (binf - X,U/) - (X:LL) bsup — XK
and
X7 (bsup - X,U/)asup — XHAinf Asup
M = < . (2.18)
(bsup — X) (bint — xt) — (Xp)? bint — Xt
Furthermore, the set
Iy = {u € C° (RY) | M < ug(z) < M, Vo € RN} (2.19)

is a positively invariant set for solutions of (2.6) in the sense that for every ty, € R and

Uy € Liny, we have that u(-,t + to; to, ug) € Lin, for everyt > 0.

Remark 2.1. (/) Assume (H1). By Theorem 2.2 (ii), and Theorem 2.3 (i), it holds that

%“m(”w uniformly in ty € R
inf —XH

m(ug) < ‘zf and lim sup,_, . ||u(-, t + to; to, Uo) |0 <
for every ug € C°_ (RN with ugsns > 0. It remains open whether uniform persistence

occurs under (H1).

(2) The proof of Theorem 2.3 (i) is highly nontrivial and is based on a key and fundamental
result proved in Lemma 4.5. Roughly speaking, Lemma 4.5 shows that for any given time
T > 0, the concentration u(x,t;ly, ug) of the mobile species at time ty + T is bounded
below by ugins provided that ugiys is sufficiently small. This result will also play a crucial

role in the study of existence of strictly positive entire solutions stated below.

(3) When the functions a(x,t) and b(x,t) are both space and time homogeneous, M = M =

7, where M and M are as in Theorem 2.3 (ii).

Assume (H1). By Theorems 2.2 and 2.3, for any t, € R and strictly positive 1y, € C°

unif

(RY),

0 < liminf inf u(x,t+ to;t, up) < limsup sup u(z,t + to; to, ug) < 00.
t—o00 geRN t—oo  zeRN

Naturally, it is important to know whether there is a strictly positive entire solution, that is, an

entire solution (u™(x,t),v*(x,t)) of (2.6) with inf,cp ,ery u'(x,t) > 0. It is also important

13



to know the stability of strictly positive entire solutions of (2.6) (if such exist) and to inves-
tigate the asymptotic behavior of globally defined classical solutions with nonnegative initial

functions. We have the following result on the existence of strictly positive entire solutions.

Theorem 2.4 (Existence of strictly positive entire solutions). Suppose that (H1) holds. Then

(2.6) has a strictly positive entire solution (u™ (z,t),v" (t,x)). Moreover, the following hold.
(i) Any strictly positive entire solution (u™t(z,t),v*(z,t)) of (2.6) satisfies
(aing — Xptudyp)+ < (boup — Xz and  (bint — X10)tdy < (Qsup — XHUz)+-
In particular, we have that

Qinf + < Qsup — X,U’ujrrlf
bsup binf — XM

(2.20)

for every positive entire solution (u™ (x,t),v"(t,x)) of (2.6).

(ii) If (H2) holds, then any strictly positive entire solution (u™ (x,t),v" (z,t)) of (2.6) satisfies

M <ut(x,t) <M, YorecRY VteR, (2.21)

where M and M are given by (2.17) and (2.18), respectively.

(iii) Ifthereis T > 0 suchthat a(z,t+T) = a(x,t) and b(x,t+T) = b(z, t) for very z € RY,
t € R, then (2.6) has a strictly positive entire solution (u™(x,t), vt (x,t)) satisfying

(ut(z,t +T), 0 (2, t +T)) = (u(z,t),v(z,t)) foreveryx € RN, t € R.
(iv) If a(z,t) = a(x) and b(x,t) = b(x), then (2.6) has a strictly positive steady state solution.

Remark 2.2. (i) Theorem 2.4 (i) provides an explicit a priori lower and upper bounds for the
supremum of all positive entire solutions. This lower bound is in fact achieved in the case

when the functions a(x,t) and b(z,t) are constant.
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(ii) Theorem 2.4 (ii) shows that if (H2) holds, then the explicit lower bound and upper bound
for all positive entire solutions which coincide with the lower bound and upper bound of

the attraction region given by Theorem 2.3 (ii).

We have the following result on the uniqueness and stability of positive entire solutions of

2.6).

Theorem 2.5 (Uniqueness and stability of strictly positive entire solutions). There exists xo > 0
such that when 0 < x < Xxq, there is o, > 0 such that (2.6) has a unique strictly positive entire
solution (uf (x,t), v (x,t)) which is uniformly and exponentially stable with respect to strictly

positive perturbations in the sense that for any ugy € CS (R) with ugins > 0, there is M > 0

nif

such that
Ju(-,t + to;to, uo) — s (- + to)llee < Me ', ¥t >0, Vi, € R, (2.22)
and

[0(-, T + to; to, o) — v (-t 4 to)||oe < ‘—;Me‘axt, VE >0, Vg €R., Vg e R, (2.23)
Furthermore, if the logistic function f(z,t,u) = (a(x,t) — ub(z,t))u is either space homo-
geneous or is of form f(x,t,u) = b(x,t)(k —u)u, kK > 0, then xo can be taken to be x, = bzi—‘lf,

and uf (v,t) = ug (t), 0 < x < Xo, is the only stable positive entire solution of the Fisher-KPP
equation (1.4).

Remark 2.3. (i) If we suppose that the logistic function is space homogeneous (resp. the func-

tion RN x R 3 (x,t) — % is constant), Theorem 2.5 establishes the stability of the

unique space homogeneous (resp. space-time homogeneous) positive entire solution of
(2.6) when the chemotaxis sensitivity satisfies 0 < x < Z—‘lf Furthermore, this result
goes beyond the stability of the constant equilibrium given by Theorem 2.3 (ii) when the
logistic source is constant, and show that all strictly positive solutions of (2.6) converge
exponentially to (§,57) when 0 < x < Z—‘;f It should be noted that the hypothesis

bint ;
0<x< 2—; is weaker than hypothesis (H2).
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(ii) It is worth mentioning that the techniques developed to prove Theorem 2.5 can be adopted
to study the uniqueness and stability of positive entire solution of (2.6) studied on bounded
domains with Neuwmann boundary conditions. Hence the same result is true in this latter

case.

We have the following results on the asymptotic behavior or spreading properties of solutions

to (2.6) with compactly supported initial functions.

Theorem 2.6 (Asymptotic spreading). (1) Suppose that (H1) holds. Then for every t, € R

and every nonnegative initial function ug € C®_..(RN) with nonempty compact support

unif

supp(ug), we have that

lim sup u(z,t +to;to,up) =0, Ve>c, (2.24)

t—o0 |x\20t

where

X,UJ\/Nasup

c(a, b, x, A, ) = 24/Agup + . (2.25)
’ " 2(bwr — x)VA
(2) Suppose that
<1 +4/1+ —Nj;ﬂf)asup
H3 bin > 11 .
( ) ! * 2a/inf X
(2.26)
Then for every ty € R and nonnegative initial function ug € C°_.(R™) with
h{n inf|i|rif uw(x, t 4 to;to,ug) >0, V0 <ec<c (a,bx, A\ p), (2.27)
—o0o  |z|<ct
where
su N su
c(a, by x, A p) i= 2\/amf - A VNt (2.28)
bin — X1t 2\/X(binf — XH)
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Remark 2.4. Let x( be given by Theorem 2.5. One can prove that for every,

1
(1 +4/1+ ij\"f) Asup

26Linf

bin
0 < x < min XO,—f 14+
7

it holds that

lim sup |u(z,t + to;to, ug) — ui(z,t)] =0, VO<c<c (a,bx,\u),V tg €R,

X
t—o0 ‘I|§Ct

whenever ug € Ct .(RYN) is nonnegative with nonempty compact support supp(ug), where the

nif

constant ¢* (a, b, x, \, p) is given by Theorem 2.6.

We studied the existence and non-existence of transition wave solution of (2.6) when the

functions a(x,t) and b(x, t) are both constant.

Definition 2.3. Suppose that the functions a(x,t) and b(x,t) are both constant. Given a vector

¢ € RY with ||| = 1, an entire solution (u(x,t),v(z,t)) is called a traveling wave solution

of (2.6) in the direction of § with speed c, connecting (¢, 35) and (0,0) if it can be written as
(u(z,t),v(z,t)) = (U(x-&—ct),V(x- & — ct)) for some nonnegative functions U,V € C?*(R)
satisfying lim,_,_(U(z),V(z)) = (%, %) and lim,_,(U(z), V(x)) = (0,0). The function

(U(x),V(x)) is called the profile of the traveling wave.
Among others, we proved the following results.
Theorem 2.7 (Existence and non-existence of Traveling wave solutions). Suppose that N = 1.

(i) (Existence of planar traveling wave solutions) Suppose that the functions a(x,t) and b(x,t)

are constant. There is a function c;,, : (0, %) > X = Cip(X) € (2v/a, 00) satisfying

2va ifa <A,
Jim, cup(X) =
“\Jg‘ if a > V),
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such that for every 0 < x < 2, and ¢ > ¢ (x), (2.6) has a traveling wave solution

W’ up

(u(z,t),v(z,t)) = (U(x—ct), V(x—ct)) with speed c and connecting (3, 75) and (0, 0)

(ie. (U(—00),V(~00)) = (%, 35) and (U(o0),U(00)) = (0,0)). Moreover,

where y1is the only solution of the equation ¢ = p + 3. in (0, Va).

(ii) (Non-existence of planar traveling wave solutions) Suppose that the functions a(z,t) and
b(x,t) are both constant. Then (2.6) has no traveling wave solution (u(x,t),v(z,t)) =

(U(z — ct),V(z — ct)) with a speed ¢ < 2+/a and connecting ($, 35) and (0,0).

Remark 2.5. We note that supposing N = 1 in Theorem 2.7 is not a restriction. Indeed, if
(u(z,t),v(x,t)) = (U(x — ct),V(x — ct)), x € R, is a traveling wave solution of (2.6) with
speed c connecting (£, 5%) and (0,0) in R then for any given unit vector £ € RY and N > 1
the function (u(z,t),v(z,t)) = (U(x-& —ct),V(x-&—ct)), x € RY, is also a traveling wave

in the direction of § with speed c connecting (¢, 35) and (0,0). Hence Theorem 2.7 applies to

N > 1.
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Chapter 3

Local and global existence of nonnegative classical solutions

In this chapter, which contains two sections, we study the local and global existence of nonneg-
ative classical solutions of (2.6) and prove Theorems 2.1 and 2.2. Section 1 is devoted to the
study of local existence of nonnegative classical solution. In section 2, we provide explicit con-
ditions on the parameters which ensure that time-local classical solutions are defined globally

in time.
3.1 Local existence of classical solutions

In this section, we investigate the local existence and uniqueness of classical solutions of (2.6)

with given initial functions in C®, .(R") and prove Theorem 2.1. Our approach to prove The-

uinf

orem 2.1 is first to prove the existence of a mild solution (see Definition 3.1 below) and then to

prove the mild solution is a classical solution.

Definition 3.1. For given ug € C° (RY), to € Rand T > 0, a function (u(x,t),v(x,t)) €

[C([to,to +T] : C®

unif

(RM))]2, with v = p(A — A)~ L, is called a mild solution of (2.6) if it

satisfies the integral equation

u(-,t+to) =T(t)up — x /Ot T(t—3s)V - (u(s+ty) V(s +tg))ds

+ /t T(t—s)(1+a(s+to) — b(s+ to)u(s + to))u(s + to)ds, Vt € [0,T7,

where {T'(t)}+>¢ is the analytic Cy-semigroup in (2.1).

It is clear that any classical solution of (2.6) is also a mild solution in the sense of Definition

3.1. Next, we establish some important lemmas.
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Lemma 3.1. Let T'(t),, be the semigroup in (2.1) generated by A—1 on CP (RN). Forevery

t > 0, the operator T(t)V- has a unique bounded extension on (C%, . (RY ))N satisfying

unif
N 1, b N\ NV
HT(t)v.uuoogﬁt 2e " ullo Yue (Cou(®RY))™, Vi >0. (3.1

Proof. Let C**

unif

RY) = {u € C*RY)|u(),dp,u(-) € C° (RN), i =1,2,--- ,N}. Since

CL? (RN) is a dense subspace of C? (RN, it is enough to prove that inequality (3.1) hold on
(CEE(RY))™. Forevery u = (ur, ug, -+ ,uy) € (CL2(RN))" and t > 0, we have
e’ L2 : e’ L2
T(t)0y,u; = < e i O ui(r—z)dz = lim < e it Oy ui(r — 2)dz
(4mt)2 JrN R=eo | (47t)2 JBOR)
(3.2)
Next, for every R > 0 using integration by parts, we have
_=?
/ e i Oy ui(r — 2)dz (3.3)
B(0,R)
1 T T
=— zie” it u(r — z)dz — e it u(z — 2)v(2)ds(2)
2t JBo,R) 8B(0,R)
1 N _R? Z
=— ziew Wy (r —2)dz — e 4 / ui(r — z)=ds(z). (3.4)
2t Jp(o,r) OB(0,R) R

Since u is uniformly bounded and the function z € RN — ze~ i belongs to L'(R"), then

1 2|2 1 2|2
lim —/ zie_%ui(:v —2)dz = — zie_‘4‘t ui(r — 2)dz. (3.5)
B(O,R) 2t Jpn

On the other hand, we have

R2

e 4 / w;i(z — z)ﬁds(z)
OB(0,R) R

Combining (3.2), (3.3),(3.5) and (3.6), we obtain that

2
< Jugljsce™ o / ds(z) = 0as R — c0.  (3.6)
dB(0,R)

—t 412 —t
T(t)0y,u; = e—N/ zie’%ui(x —2)dz = e—N/ H;(z, t)uy(x —2)dz, (3.7)
2t (4mt) 2 JrY 2t (4mt) 2 JRY
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2 2
where the function H;(z,t) = zie_%. Observe that, taking y = ﬁz, then

N
2

2 N 1
[ Hi (-, )| 2 vy = 2V (4t) /N lysle ¥ dy = 2v/t (4t) = | H, (-, Z)HLl(RN).
R

This, combined with Holder’s inequality and (3.7) yield that

tze ! 1
1T (), uilloo < —5— i Pl em) il
s
Direct computations yield that || H;(-, 1)|| 11 &~y = 72 . Hence
t—3et

1T ()0l o0 < NG |-

Inequality (3.1) easily follows from (3.8).

(3.8)

]

The next Lemma provides an explicit a priori estimate of the gradient of the solution v(-, -)

in the second equation of (2.6). This a priori estimate will be useful in the proof of existence

theorem and the discussion on the asymptotic behavior of the solution.

Lemma 3.2. For every u € C® .(RY), with u(z) > 0, and X\ > 0, we have that

unif

1 1
A =MDl < = ulls d |0 (A = 2Dl < —=||ullu
I1( )| _AIIUII and |0y, ( )] _QAIIUII

foreachi=1,---,N. Therefore we have

VN
V(A =AD"l < —=|lt|leo, Yu e Cl L (RY).
IV( )| _Qﬁ\l | it (RY)

Proof. Letu € C® .(RY) and set v = (I — A)~!u. According to (2.3) it follows that

o0 e a2
’U(Q?)| S/O /RN (47T8)%e Ts ’u(z)|dzd8

> A a—zf? 1
§||u||oo/ / e T deds = ulle, VRV
0o JrN (47s)z A
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On the other hand, observe that from (2.3) that

/ /RN 25(dms)>
/ /RN me - u(z + 2v/sz)dzds
- LS

fl ":f [ /0°°2 = <x+2f<m<>+ziez->>dzi} dmi(2)ds

/ /Rm A:r 132—(2”2 UOOO s u(z + 24/s(mi(2) — ziei))dzi} dr;(2)ds
(3.12)

AS s

—————¢ o u(z)dzds

_xl

where 7;(2) = (21, -+, 2i-1,0, zi11, -+ , 2n) forevery z € R, Since u(z) > 0, forevery 7 €

{-1,1}and i € {1,---, N}, using the facts that [;* e Fdz = 3 Jana € lﬁfw dm( ) =

7 %, and foo e_ks ds = ‘\? we have

0</ /RN 1 _:1 'T;j)z UOOO e (e + 2v/5(m(z )+miei))dzi] dmi(2)ds

—/\se |7i(2)]? L
<||u||oo/ / / zie Fidz; | dmi(z)ds
0

=||| o0 {/ . Sds} / e meF ———dm;(2) {/00 zie_zlgdzi} = % (3.13)
o VA RN-1 T /5 0 2V A

Therefore, (3.9) follows from (3.11), (3.12) and (3.13). The lemma thus follows. [

Next, we prove Theorems 2.1. The main tools for the proof of this theorem are based on the
contraction mapping theorem and the existence of classical solutions for linear parabolic equa-
tions with Holder continuous coefficients. Throughout the rest of this subsection, C' denotes
a constant independent of the initial functions and the solutions under consideration, unless
specified otherwise. We let X = C?

b +(RY) and X7 is the fractional power space of I — A on
X (B €(0,1)).

Proof of Theorem 2.1. (i) Existence of mild solution. We first prove the existence of a mild
solution of (2.6) with given initial function uy € C? ,;(RY), which will be done by proving five

claims.
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Fix ug € C? (RY). For every o, T > 0 and R > 0, let
Srr(to) = {u € C([to, to + T, CLyr(R™)) | Jul-, )| x < R}.

Note that Sg (o) is a closed subset of the Banach space C([to, o + T, C?

u

¢ (RY)) with the

Sup-norm.

Claim 1. For any u € Sgr(tp) and t € [0,T7, (Gu)(t + to) is well defined, where

(Gu)(t + to) =T (t)uo + x /O Tt 5V (u(s + to) V(A — A" u(s + to))ds

+ /Ot T(t—s) (L4 a(-,s+to)u(s +to) — b(-, s + to)u’(s + to)) ds,

with (Gu)(tg) = uo, and the integrals are taken in C° ..(RY). Indeed, let u € Sgr(t) and

unif

0 < t < T be fixed. Since the function

0,2] 3 5+ (a(-,s +to) + Du(s +to) — b(-, s + to)u?(s + ty) € C° (RY)

is continuous, then the function F; : [0,¢] — C? ..(RY) defined by

Fi(s):=T(t—s) (L +al,s+to)u(s +to) — b(-, s+ to)u’(s + to))

is continuous. Hence the Riemann integral fot Fy(s)ds in C°_.(RY) exists. Observe that for

unif

every 0 < e <tands € [0,t — €], we have

By (s) =T (t — 8)V - (u(s + to) V(A — X)) tu(s + tg))

=T(t—e—35)T(E)V - (u(s + 1) V(A = X)) tu(s + tg)),

and the function [0,t — ] 2 s — T(e)V - (u(s + to) V(A — M) tu(s + ty)) € C? (RY) is

continuous. Thus the function F . : [0, — ] — C®, (RY) is continuous for every 0 < € < ¢.

uinf

Thus, the function F; : [0,t) — C?

uinf

(RY) defined by

Fy(s) :=T(t — 8)V - (u(s +tg) V(A — M) tu(s + o))
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is continuous. Moreover, using Lemma 3.1 and inequality (3.10), we have that

/O [F2(s)[|oods < X/O 1Tt = $)V - [llluls + to)loc [ V(A = AT) " u(s + to) [|ds

uNVN t
< X

2V AT 0
_ MNB?WXF@) _ MNRWNX
ERVAVOY s 2 2v/\

(t — s)"2e” 9 Ju(s + to)||%ds

(RY) exists. Note that (Gu)(t+ty) = T(t)ug+

unif

Hence, the Riemann integral fot Fy(s)dsin C®

fot Fy(s)ds + f(f Fi(s)ds. Whence, Claim 1 follows.

Claim 2. For every u € Spr(to) and 0 < 3 < 3, the function (0, 7] 5 t — (Gu)(t+1o) € X
is locally Holder continuous, and G maps Sg 7(to) into C'([to, to + T, Ct (RY)).

First, observe that

(Gu)(t +to) = T(t)ug +x /Ot T(t—35)V - (u(s +to) V(A — X)) u(s + to))ds

Io(2) I;&)

+ /OtT(t —5)((a(-, s +to) + Du(s +to) — b(-, s + to)u*(s + to))ds .

J/

-~

I>(t)

(3.14)

For every t > 0, it is clear that T'(t)uy € X” because the semigroup {T'(t)}; is analytic.

Furthermore, the divergence operator 7'(¢)V - satisfies
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forallt > 0, w € (C’fmif(RN ))N Using Lemma 3.1 and inequalities (2.4) and (3.10), we

obtain

/0 |T(t — 5)V - (u(s +to) V(A — M) tu(s + to))|| xeds
:/0 (A = DPT(t — $)V - (s + o) V(A — M) uls + to))||ods
<C /t(t — s)_ﬁ_%e_(t_s)ﬂu(s 4+ t0) V(A — M) tu(s + tg)||ods

t
1 1
SC’RQ/ (t—s) P 2e79ds < C’RQF(§ - B).
0
Since the operator (I — A)? is closed, we have that

L(t) = /0 t T(t — $)V - (uls + t) V(A — AI)"uls + to))ds € X°

(3.15)

for every t > 0. Similar arguments show that I(t) € X? for every 0 < t < T. Hence

u(t) € XP for every t > 0.
Next, let £ € (0,7) and h > 0 such that t + h < T Using (2.4) and (2.5), we have

1ot + h) = To(8)lxs < (T (h) = DT (t)uolxs < CHP|IT(t)uo] x2s

< ChPt e |ug||oo < CRPE28 U] oo,

[12(t + h) — L(t) || xs
< /0 IT(R) = DT = 59 - (u(s + 1) V(A — AD)u(s + 0))]| xods
+ /ﬁh IT(t+h—8)V - (uls+t)V(A = X) " u(s +to))|| xs
<Ch? /Ot(t — 5) e | (u(s + 1) V(A — AT u(s + o)) || sods
+ C’/tHh(t Fh—s) P ae 9|y (s + o) V(A = M) uls + to))||sods
~(t+h—s)

t t+h
SCRQhﬂ/ e—lds + C’R2/ ¢ —ds < CR*(h® + h%—ﬂ)’
o (t—s)7tz i (t+h—s)t2

—(t+h—s)

and
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I Io(t + ) — In(t)]|| x5

/ (T YT(t — s)((al-, s +to) + Du(s +to) — b(-, 5 + to)u(s +to))| xsds
/t |T(t+h — s)((a(-, s +to) + Du(s +to) — b(-, s + to)u(s +to))| xsds
<Ch5/ (t — s)’ﬁe’(wh*s)H(a(-, )+ Du(s +to) — b(-, s)u*(s + to)||sods

(t+h—s)
# 0 [ ats ) 4 s 1) b o) o)

<CR*(h" + h'77). (3.18)

Combining (3.14),(3.16),(3.17) and (3.18), we deduce that the function (0,7] > t — (Gu(t +
tg)) € X7 is locally Holder continuous.
Now it is clear that t — (Gu)(t + to) € C° .(RY) is continuous in ¢ at ¢ = 0. The claim

then follows.

Claim 3. For every R > ||ug||o, there exists 7' := T'(R) such that G(Sgr(to)) C Srr(to).
First, observe that for any v € Sg.r(to), we have

|G (u)(t +to) oo t
IT(#) o0 + X/o 1Tt = 5)V - (u(s + 1) V(A = AI) " u(s + to)) [lds

IN

t t
+(1 4 asup) / IT(t — s)u(s + to)||ecds + bsup/ |7 (t — s)u*(s + to)||sods
0 0

IN

e ||uo || + X/o (T (t — 5)V - (u(s + to) V(A — M) u(s + tg))||oods

t t
+(1+ asup)R/ e~ 9 ds 4 by, R? / e~ =9 ds
0 0

= e uolles + R ((1 4 asup) + beupR) (1 —€7")
t
—l—x/ Tt —8)V - (u(s + to) V(A — X)) tu(s + tg))]|0eds. (3.19)
0

Using Lemma 3.1 and inequality (3.10), the last inequality can be improved to
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IG(u)(t +to)lloc <e™[|uolloo + R (1 + asup) + DR) (1 — ™)

t e —(t—s)
NN / s+ 107 (A = ML) (s + ) s
o—(t=3)

[[to]lo - '
< o + R((1+4 asyp) +bR) (1 —e t)+xC'R2/O \/mds

ke R (1t ) b B) (1= ) 1 20vRHE (320

(&

Now, by (3.20), we can now chose 1" > 0 such that
|G (u)(t 4 to)|loo < HZO—JLOO + R ((1 + asup) + bsupR) (1 — e_t) + QCxRQt% < RVtel0,T].
This together with Claim 2 implies Claim 3.

Claim 4. G is a contraction map for 7" small and hence has a fixed point u(-) € Sgr(ty).
Moreover, for every 0 < 3 < 3, (0,T] 3 t — u(t + to) € X is locally Holder continuous.
For every u, w € S, using again Lemma 3.1 and (2.4), we have

(G (u) = G(w))(E +to)]|oc

<X/ Tt — $)V - V(A — AD) Mt — wV(A — AT) ") (s + to)||uds
+ <1+asup)/0 IT(E = 8)(uls + to) — w(s + to)) || seds

¢
+ bsup/ T (t — s)(uQ(s +to) — wQ(s + t0)||oods

—(t s)
ng/ \/_H(uV(A — M)t —wV(A = M) 7Mw)((s + to)) ||l sods

+ (1 + asup) + 2Rbgup) / eI (u(s) — w(s))|wds

CX/ \/—H u(s +to) — w(s + 1)) |l V(A = M) Hu(s) [ ds

+ CX/ \/t(THw(s +1t0) oo | V(A = A1) "Hw(s + tg) — uls + to))||cods

t
+(1+awP+2meﬂm_4wb&ﬂmx/ffuﬂ%m
0

CRxuv N e
S ( X / ,—_ SdS + (1 + asup + 2Rbsup) /O € & S)d8> ||u - wHSR,T(tO)
Cquv
< ( \/X + (1 + asup + 2Rbsup) ) ||U - wHSR,T(to)‘
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Hence, choose 1" small satisfying
CRX/L\/ N 1
2———=—12

VA

we have that G is a contraction map. Thus there is 7" > 0 and a unique function u € Sg r (%)

+ (1 + agup + 2Rboyp)t <1 V¢ € 10,77,

such that

u(t+to) = T(t)ug + X/t T(t—5)V - (u(s +to) V(A — X)) u(s + to))ds

+ /Ot T(t —s)((a(-, s +to) + Du(s +to) — b(-, s + to)u*(s + to))ds.

Moreover, by Claim 2, for every 0 < < 3, the function ¢ € (0,7] — u(t + to) € X” is
locally Holder continuous. Clearly, u(t) is a mild solution of (2.6) on [to, T + ty) with a = 0

and X0 = C? (RY).

unif
Claim 5. There is T ,ax € (0, 00] such that (2.6) has a mild solution u(-) on [tg, to + Tmax) With
a=0and X°=C?

unif

(R™). Moreover, for every 0 < 8 < 1, (0, Tnax) 2 t — u(-) € X" is
locally Holder continuous. If Ty < 00, then limsup,_, 7. |Ju(t + to)||oc = 00.

This claim follows the regular extension arguments.

(ii) Regularity and non-negativity. We next show that the mild solution u(-) of (2.6) on
[to, to + Tmax) Obtained in (i) is a nonnegative classical solution of (2.6) on [tg, to + Tinax) and
satisfies (2.7), (2.8).

Without loss of generality, we may suppose that ¢, = 0. Let 0 < t; < Tiax be fixed. It

follows from claim 2 that for 0 < v < 1, uy := u(t;) € C% +(R"), and the mappings

unif

t—=u(t+t) = ult+1)(-) € C¥ (RY), tv(-,t+1t) € CY(RY)

unif

(-t + 1) . O*v(-,t+ 1) . N
T € unif T&x] unif(]R )

are locally Holder continuous in ¢ € (—t1, Typax —t1), Where v (-, t+t1) := p(A — A) " tu(-, t+

t s RY), ¢t~

t1)and i, j = 1,2,---, N. Consider the initial value problem

ba=(A-Da+Fta), zeRY t>0
(3.21)

W(2,0) = wi(x), zERY,
where F(t, 1) = —xVo(-, t+t1)Vit(a(-, t4+t)+1—xv(-, t+t1) — (b(-, t+t1) =X )u(-, t+t1) ).

Then by [13, Theorem 11 and Theorem 16 in Chapter 1], (3.21) has a unique classical solution
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a(z,t) on [0, Tyyax — t1) wWith limy_,o ||@(-, t) — uy||c = 0. In fact @ has the representation

u(x,t) = /RN C(x, t,y,t1)u(y)dy

with the function I" satisfying the inequalities

_Aglz—y|? _Aglz—y|?
e 4(t—T) e 4(t—71)

D(x,t,y,7)]| < C——% and [0, '(z,t,y,7) < C——F
(t—7)2 (t—7) 2

for every 0 < A\g < 1. By a priori interior estimates for parabolic equations (see [13, Theorem

5]), we have that

fL(-, ) S Ol((07 Tinax — tl)? CﬁnifGRN)ﬂ
and the mappings
Lo (1) € Clg(BY), 1 D0 (1) € Ol (BY),
01 ou
¢ ot v (RN), t— —(- v (RN
Haxﬁxj(’ )6 unlf( )? = at(7t)€ unlf( )

are locally Holder continuous in t € (0, Ty — t1) fori,j = 1,2,--- /Nand 0 < v < 1.
Hence, by [16, Lemma 3.3.2], u(t)(-) = a(-,t) is also a mild solution of (3.21) and then

satisfies the following integral equation,

w(t) =T (t)u; — X/o T(t—s)(Vu(s+t)Va(s))ds
+ /0 T(t—s)(a(,s+t1)+1—xv(s+1t1)— (b(-,s+t1) — x)u(s + t1))u(s))ds

fort € [0, Tmax — t1). Now, using the fact that Vi - Vo(- +t1) = V - (aVu(- +t1)) — (v(- +

f1) — u(- + t1))ii, we have
a(t) =T(H)ur — x /0 Tt — (V- (@) Vols + £,))ds
4 X/Ot T(t — s)(v(s + 1) — u(s + #1))ii(s)ds
+ /OtT(t — (a1 =y — (b— y)uls + t))als)ds
Tty — x /O Tt — $)V - (@) Vols + 1))ds

t
+ / T(t—s)(a+1—>bu(s+t))u(s)ds. (3.22)
0
On the other hand from equation (3.14), we have that
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ult+t) = T(t)u — X/OtT(t —5)V - (u(s +t)Vou(s + t1))ds

t
+/ T(t—s)(a+1—bu(s+t))u(s+ti)ds. (3.23)
0

Taking the difference side by side of (3.22) and (3.23) and using Lemma 3.1 and (2.4), we
obtain forany ¢ > 0and 0 < ¢t < T, < Tiax — t1 — € that
la(t) — u(t + t1) |0

/ IT(t = )V - ((u(s + 1) — @(5)) V(s + 1)) l|ods

IN

—I—/O |T(t—s)(a+1—bu(s+t))(u(s+t1) — U(s))|leods

IA

CX/O (t— s) 3= (u(s + 1) — () V(s + £1)) ] uds

+ / e (a+ 1= buls + 1)) (uls + tr) — (s)) | ds

IN

t
CUx sup IIW(8+t1)||°°/(t—s)”@_(t_s)HU(SHl)—fb(S)HoodS
0

SE[O,T&]

t
+C(agup + 1+ boup sup [Ju(s +11) o) / eI u(s + t1) — A(s) | ds.
s€[0,T¢] 0

Combining this last inequality with Lemma 2.1, we conclude that @(t) = wu(t + ¢;) for every
€ [0,T.]. We then have that u is a classical solution of (2.6) on [0, T},.x) and satisfies (2.7)

and (2.8). Since u > 0, by comparison principle for parabolic equations, we get u(z,t) > 0.
Let u(-, t;up) = u(t)(-) and v(-,t;ug) = (A — A)~tu(-, t;up). We have that the func-

tion (u(-,-;up),v(+,;up)) is a nonnegative classical solution of (2.6) on [0, Tj,.x) With initial

function ug and (-, t; up) satisfies (2.7) and (2.8).

(iii) Uniqueness. We now prove that for given uy € C° (RY), (2.6) has a unique classical
solution (u(+, -;ug), v(+, ;ug)) satisfying (2.7) and (2.8).
Any classical solution of (2.6) satisfying the properties of Theorem 2.1 clearly satisfies the

integral equation (3.23). Suppose that for given ug € C® . .(R') with ug > 0, (u1(t, ), v1(t, 7))

unif
and (uy(t, ), vo(t, z)) are two classical solutions of (2.6) on R x [0,7T') satisfying the prop-
erties of Theorem 2.1. Let 0 < t; < T < T be fixed. Thus supgc,<q(||ui(-,t)[[oc +

|uz (- t)|loo) < o0o. Let ui(t) = w;(-,t) and v;(t) = (I — A)~ u,(t) for every i = 1,2 and
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0<t<T.Foreveryt € [t;,T'], and i = 1,2 we have that
t

w;(t) = T(t—tl)ui(t1)+x/ T(t—s)V-(ui(s)Vvi(s))ds—l—/ T(t—s)(a+1—bu;(s))u;(s)ds.

t1 t1

Hence fort; <t < T, using Lemma 3.2 and inequality (2.4), we obtain

leas (£) — () oo
ﬂ@ﬁﬂ—wmmu+0y/

—(t s)

N
+ /0 e ur (s) — uz(s) oo (@ + 1+ b(]|ur () [loo + uz(5) o)) ds

[ur (8)Vvi(s) = uz(s)Va(s)|loods

t 67(t75)
<[|(u (£1) —U2(i1))\|oo+0></t mHul(S) — u2(8)loc [ V1 (8) |
+Cx/

IU2 IV (va(s) = v1(s)llods
+(asup+1+bsup sup (Ilul(T)lloo+IIU2(T)||oo))/0 e Jua(s) — ua(s)||ods

C/*L\/NX e —(t—s)
oY / \/_||u1( §) = a(s)[loo ([[u1(8) loo + l[u2(s)lloc)

t
+ (Goup + 14 boup SUD (e (7)o + [lu2(7)[loo)) / ™ lur(s) — ua(s)llods

t1

=)
e lusts) — (s,

<[(ua(t1) = ua(tr)) o +

<mmewmmmm+M/

where M = asup—i-l—i-(ch—kbsup\/ ") suPo<y<r (|11 (7)o + || U2(7T)]|o0) < 00. Lett; — 0,

we have
Jui(t) — w2 (t)[|oo < M/O (t — 5)"2e™ ) Jua(s) || ua(s) — ua(s)[|cds.

By Lemma 2.1 again, we get u;(t) = uq(t) forall 0 < ¢ < T". Since 7" < T was arbitrary

chosen, then u; (t) = uy(t) for all 0 < ¢ < T'. The theorem is thus proved. O

3.2 Global existence of classical solutions

This section is devoted to the study of the global existence of classical solutions to (2.6). For

every to € R and nonnegative function ug € C?_(R"), it follows from Lemma 3.2 that,

||U('7t +t0;t07u0)||oo S %Hu(at—'— tO;thUO)Hooy V0 S t < Tmax(thU'O)a (324)

and
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/N
2v/A

|Vu(-, t 4+ to; to, uo) |leo <

||U(,t + tO;tO;UO)Hoo» YO0 <t< Tmax(t();uO)- (325)

Now we present the proof of Theorem 2.2. Note that Theorem 2.2 provides a sufficient
condition on the parameters y and b;,; to guarantee the existence of time globally defined

classical solutions.

Proof of Theorem 2.2. Let ty € R and ug € C° (R"), ug > 0, be given. According to
Theorem 2.1, there is Trax = Tax(to, uo) € (0, 00| such that (2.6) has a unique nonnegative
classical solution (u(z, t;to, ug), v(z,t;to, uo)) on [to, to + Tmax). Since biys > xp, we have

that (u(x, t;tg, ug), v(x, t;tg, up)) satisfies

ur = Au — xVu - Vu+ u(a(z,t) — u(b(z,t) — xpu) — x\v)
< Au—xVv-Vu+u(a(z,t) —ulb(z,t) — xp))

< Au— xVv - Vu + u(asyp — (binf — X)) (3.26)

fort € (to,to + Tmax). Thus, by comparison principles for parabolic equations, it follows from

(3.26) that

u(x, t + to;to, uo) < u(t; ||uolloo), VO <t < Thax(to, ), V€ RV, (3.27)

where %(t; || uo|| ) solves the ODE

iﬂ - ﬂ(asu - (binf - X/L)ﬂ)
at ’ (3.28)

(0) = [[uolloo-

gl

Since bi,r > x i, then T(t; ||ugl|oo) is defined for all ¢ > 0. This implies that Ty,. (to, ug) = 0.

Moreover, u(t; ||ug||oo) < |uo||soe™v® for all ¢ > 0. Hence (2.9) holds.

(i) If bine > xp, we have that u(t; [Juol|c) < max{||uolloc, 52} for all ¢ > 0, and

limy o0 W(t; ||1o||00) ‘2 provided that ||ugl| > 0. Hence (2.10) and (2.11) hold.

o binf —XH
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(11) First, by (3.24),

uy = Au — xVu - Vu + u(a(z,t) — u(b(z,t) — xpu) — xAv)
> N~ X V0 Vb g — [ 1 80,00) oo (B — xX4) ~ AR, s o))

= Au— xVv - Vu + u(ams — ||u(-, t;to, uo) | oobsup) (3.29)
for t > t,. By comparison principle for parabolic equations, we have
(i, t + to: to, ug) > elio " (@ine—lluCostoito,uo) locbsup)dsy iy > g
This together with ugi,r > 0 implies that

inf wu(x,t+to;to,ug) >0 V>t
zeRN

Next, for any € > 0, there is 7 > 0 such that

u(z, t + to;to, up) < u™ + e and v(x,t + to;to, ug) < '%(uoo +e) Vt>T°,

where ©u™ = lim sup,_, ., Sup,cp~ w(z,t + to; to, uo). This combined with (3.29) imply that
u > Au— xVu - Vu + u(ains — (4™ + €)bsyp)

for ¢ > T. By comparison principle for parabolic equations again, we have

w(, t + to; to, ug) > el@mt =W F)baup)(t=T7) ian w(z, T+ to; to,ug) YVt >TC.
zeR

By the boundedness of u(x,t + g, to, ug) for t > 0, we must have

Ainf — (U™ + €)bsyp <0V e> 0.

The first inequality in (2.12) then follows.
Now, if liminf; o inf,cpy u(z, ,t + to;to,up) = 0, then the second inequality in (2.12)

holds trivially. Assume u., := liminf; , inf,cpnv u(x,,t + to;t9,uo) > 0. Then for any
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0 < € < U, there is T, > 0 such that

u(x,t 4 to;to, up) > Uso — € and v(z,t + to; to, ug) > %(uOo —€) Vit>T.

This combined with (3.26) yields that

u < Au— xVu - Vu + u(asup — (oo — €)bing)

for ¢t > T.. By comparison principle for parabolic equations, we have

w(z, t + to; to, up) < eloeup (o) (1=T0)

U(',Te+t0;t0,U0)|| Vvt zTe
This together with the first inequality in (2.12) implies that
Asup — (Uoo — €)bing >0 V0 < € < Uno.

The second inequality in (2.12) then follows.

(iii) Let z € RN and t > 0 be fixed. Define

f(y) = Mv(z +y,t +tos to, uo) — pu(x +y,t + tos to, o), Yy € B(0,3)

and

¢(y) :U(x+y7t+t0;t07u0)> vy € 3(073)

Let (G; be the solution of
AG, = f, ye€B(0,3)

G1 =0, on 0B(0,3).

Choose p > N such that W2?(B(0,3)) c C1¥(B(0, 3)) (with continuous embedding). Thus,

unif

by regularity for elliptic equations, there is ¢; , > 0 (depending only on v, N and the Lebesgue

measure |B(0, 3)| of B(0, 3)) such that
HGchi;;(B(o,g)) < Cl,quHLP(B(O,B))- (3.30)
Next, define

Gy(y) = v(x +y,t +to;te, uo) — G1(y), Yy € B(0,3).
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Hence G4 solves

AG, =0, ye B(0,3)
Ga(y) = o(y), y€9B(0,3).

Thus, (see [9, page 41]),

2- ||y||2/ ¢(2)
= Vy € B(0,3
GQ(Z/) QNCL)N B(03) |y . Z‘NdS(Z), ye ( ) )7

where wy = |B(0,1)| is the Lebesgue measure of B(0, 1), and

2
0,,Galy) = _N?iiN /8 s |y¢_<?|ﬂ5@)+% /8 o %dﬂz)ﬁy € B(0,3).
(3.31)
But
ly+h—z>|z|—|y+h| >1, VzedB(0,3), y,he B(0,1)
and

It follows from (3.31), that there is ¢2,, > 0 (depending only on v, N and | B(0, 3)|) such that
10y, Ga(y + h) = 0,,Ga(y)| < coulh]"[|Plloo, Yy, h € B(O,1).

Combining the last inequality with (3.30), there is ¢, (N, P)(depending only on v, N and
| B(0, 3)]) such that

1G1 + Gallgrov o1y < elllfllee + lI€llc]. (3.32)

Note that v(z + h,t + to; to, ug) = (G1 + G2)(h), thus (iii) follows from (2.10), (3.24), (3.25),
and (3.32). [l
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Chapter 4

Pointwise and uniform persistence phenomena

In this chapter we explore the pointwise and unifrom persistence of positive classical solutions

and prove Theorem 2.3. In order to do so, we first prove some important lemmas.

4.1 Important lemmas

This section is devoted to establishing the tools that will be needed to prove our main result on
pointwise and uniform persistence of solutions of (2.6). The next Lemma provides a finite time
pointwise persistence for solutions (u(z, t; ty, ug), v(z, t; o, ug)) of (2.6) with strictly positive

function .

Lemma 4.1. Suppose that (H1) holds. Then for everyT' > 0, ty € R, and for every nonnegative

initial function ug € CP (RN), it holds that

ian U({L‘,t + to;to,uo) > uoinfet(ainf—bsup”UOHooeTasup)’ Y0 <t< T. (41)
T€R

In particular, for every T > 0 and for every nonnegative initial function uy € C’ﬁnif(RN )
satisfying ||uo||co < My = %, we have that
inf wu(x,t+ to;to, ug) > inf wg(x), YV0<t<T, Vip € R. 4.2)
zeRN xRN

Proof. Letty € R and ug € C° (RY), ug > 0, be given. Since (H1) holds, it follows from
Theorem 2.2 that (u(-,t + to;to, uo), v(+, t + to; Lo, up)) is defined for all ¢ > 0. By (2.9) and
(3.24),

X)\HU(,t + t07t07u0)Hoo < XMHu(at—i_ Zvat(]vuO)Hoo < X,uHuOHooeasupta Vi > 0.

Hence, for every ty < t <ty + 7, it follows from the previous inequality and (3.29) that
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up > Au — xVou - Vu + u(aps — bsup||u0||ooeas“pT). 4.3)

Thus, by comparison principle for parabolic equations, it follows from (4.3) that

inf u(z,t + to; to, ug) > Ugippe!@nt—bsuplluolloc®™® ™) g <4 < T S0 tg € R, (4.4)
z€R

Observe that [[ug|loc < My 1= i7"

sup

implies that aint — bsupl|tol|eoe™»? > 0. This

combined with (4.4) yields (4.2). L]

Remark 4.1. We note that a slight modification of the proof of Lemma 4.1 yields that if (H1)

does not hold then

. e agupT
inf u(z,t+to;to, uo) > U npe! it~ oup i) fuollooe P 7).
z€R

V0 <t<T < Tuax(ug), (4.5)

or every nonnegative initial function vy € C® (RY). Hence for every initial function u, €
ry 8 unif y

b
CVunif

(RN) with inf ,cgn ug(z) > 0, it always holds that

inf U(.CC,t + to; to, 'LL()) > 0, VO<T < Tmax(uo),Vto € R.
2€RN 0<t<T

It should be noted (4.5) and (4.1) do not implies the pointwise persistence of u(x,t + to; tg, up).

Lemma 4.2. Assume that (H1) holds. Let uy € C°

b (RN, {uon fn>1 be a sequence of non-

negative functions in C°_.(RY), and let {to, },>1 be a sequence of real numbers. Suppose that
0 <ugy(z) <M := b:f%w and {ug, }n>1 converges locally uniformly to ug. Then there exist a
subsequence {to, } of {ton}, functions a*(x,t), b*(x,t) such that (a(x, t+toy ), b(x, t+to,)) —
(a*(z,t),b*(x,t)) locally uniformly as n — oo, and u(x,t + ton; tons, o) — uw*(2,t;0, u)

locally uniformly in C*1(RY x (0,00)) as n’ — oo, where (u*(x,t;0, up), v*(z,t; 0, ug) is the

classical solution of
(

ui(z,t) = Au(z,t) — xV - (u(z, t)Vo(z,t)) + (a*(z,t) — b*(z, t)u(z, t))u(z,t), = eRY
0= (A= X)v*(x,t) + pu*(z,t), ze€RN

u*(z,0) = up(z), xRN,

\

Proof. Without loss of generality, by Arzela-Ascoli’s Theorem, we may suppose that (a(z,t +

ton), b(z,t + ton)) — (a*(z,t),b*(z,t)) locally uniformly in RY x R as n — oo. Recall that
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(u(, t + ton; ton, Uon), V(2, t + ton; ton, Uon)) satisfies for z € RY | ¢ > 0,
ut('a -+ tOn; tOna U'On) = AU(, -+ tOn; tOna uOn) - XV : (U(, -+ tOn; t()na uOn)VU('a -+ t()n; t0n7 uOn))

+ ((1(', -+ tOn) - b(, -+ tOn)u('a -+ ZfOn; tOna Uon))U(', -+ tDn; tOn; uOn)-

So, by variation of constant formula, we have that

u('a t + ZfOn; tOna uOn) - et(Ail)uOn(t)
I
Oon

t
= / e(t_S)(A_I) (a('a s+ tOn) + 1)U(, s+ tOna t()na uOn)dS
0

N J/
-~

Iln(t)

t
- X/ eUHAZDT - (u(-, 8 4 ton; ton, Uon) VU(+ t 4 ton; ton, Uon ) )ds
0

Is, (t)

t
- / e(t_s)(A_I)b(-, s+ tOn)uz(-, S + ton; ton, Uon)ds,V t > 0, (4.6)
0

J/

-~

I3, (t)

where {e!(A~D},5, denotes the analytic semigroup generated on X° := C? .(RV) by A — I.
Let X?, B > 0, denote the fractional power spaces associated with A — I. Let 0 < 3 < % be
fixed.

Using inequalities (2.4), (2.5), and (3.16), (3.18), there is a constant C'z > 0, such that

Hon (t + 1) = Toa(t) | xs < Coh™t " |luon]loe < Csh”t™" M,

t —(t+h—s
I s < )M |n? c
[ 110t + h) — Iin(8) | xe < Cplasup + 1) {h ; / (t+h—s)s ds}

Von(t + B) — In(Dllxs < Cabaup M? [hﬂm 8+

S Og(asup + 1)M |:h F(l —

and

h'=8
=1
It follows from Lemma 3.2 and inequalities (2.4), (2.5), and (3.18) that
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NCM? t —(t—s) t+h —(t+h—s)
R e L s s
0 t

2V A t—s)Pte t4+h—s)Pte
2 1-8
_ mNCM [hﬁr(1—5)+ h }
2v/\ 1-5

Hence the function (0,00) 2 t + (-, t + ton;ton, Uon) € X7 is locally uniformly Holder
continuous. It then follows from the Arzela-Ascoli Theorem and [13, Theorem 15] that there
is a subsequence {to,/} of {to,} and a function u € C%}(RY x (0,00)) such that u(z,t +
ton'; tons, Uon ) converges to u(x, t) locally uniformly in C*1(RY x (0,00)) as n’ — oo. Fur-
thermore, taking v(z,t) = u(A — A)~tu(x,t), we have that

up(w,t) = Au(z,t) — XV - (u(z,t)Vo(z,t) + (a*(2,t) — b (z, t)u(z, t))u(z,t), xRN
for ¢t > 0. Since ug, (x) — ug(z) locally uniformly as n — oo, it is not hard to show from

(4.6) that u(z, t) satisfies

t
u(zx,t) =e" A Dyy — X/ e=A=DY . (y(-, s)Vo(-, 5))ds
0
t
- / eE=AD((1 4+ a* (-, 8))u — b (-, s)u?(-, 5)))ds. 4.7)
0
Note that (u*(z,¢; 0, ug), v*(x, t; 0, ug)) also satisfies the integral equation (4.7). It thus follows
from Lemma 2.1, that u(z, t) = u*(z,t; 0, up). O

Lemma 4.3. Assume that (HI1) holds. For every M > 0, ¢ > 0, and T > 0, there exist

Lo = L(M,T,e) > 1and & = 0o(M, ) such that for every initial function uy € C°_(RN)
with 0 < ug < M and every L > Ly,
u(x, t +to;to,up) <e, VO<t<T, to €R, V|z|e < 2L (4.8)
whenever 0 < ug(z) < &y for |z] < 3L.
Proof. Tt follows from (3.26) and comparison principle for parabolic equations that
0 < u(z,t+to;to,up) < Ulx,t +to;to,ug), VYo eRYN t>0, 4.9)

where U solves
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Uy = AU — xVo(-, 5 to, ug) - VU + agpU, > tg
(4.10)

U('a tU) = Up

It follows from Theorem 2.2 (iii) and [13, Theorem 12] that U ((z, to + ¢; Lo, uo)) can be written

in the form

Uz, to+ t;to, up) = / ['(z,t,y,0)uo(y)dy. (4.11)

RN

Moreover, for every 0 < Ay < 1, there is a constant Ky = Ks(X\g, N, v, K1,T), where K is

given by Theorem 2.2 (iii), such that for x € RN 7<t<714+T,

-4 -4
D(x,t,y,7)| < Kg‘zt—ﬂg and |0, T(z,t,y,7)| < KQST. (4.12)
— -7

We then have

e_ko\ajl—yIQ

t
Uz, to+ t;to, ug) < Ky /N tTuo(y)dy
R 2

= Kg/ e‘%|2|2u0(x+t%z)dz
R

—20 |42 1 — 20,2 1
ng[ e 4 Fug(x +t22)dz + et Mug(x +t2z)dz|.
Moogﬁ \Z|m2#
This implies that for |z| < 2L,
~21el? ~21eP
U(x,to+t;t0,u0) < K250 e 4 dZ"—KQHUQHOO e 4 dz
RN |z|mzﬁ
Ar\ 2
A
< Ky8 (—W) + KoM e H . (4.13)
)\0 >_L
|Z|007ﬁ

ol

Take 0y = 5= <4—”)7

A
7z (3¢)  and choose Lo > Lsuch that [ . ry ™ F'dz < z55. it follows
=T

2K, M*
from (4.13) that for every L > L, there holds that U (x, t + to; o, ug) < € for every |z|o < 2L

whenever ug(x) < dy for all x|, < 3L. This combined with (4.9) yields the lemma. O
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Lemma 4.4. Suppose that (H2) holds. Consider the sequence (M. n7Mn>n20 defined induc-

tively by M, = 0 and

R sup — M inf — Mn
M, = M’ and M, ,, = %7 Vn>0. (4.14)
binf — XK bsup — XK

Then for every n > 0, it holds that

M, >M,>0 and M, > M, ;> 0.

Moreover, we have that lim ( Mnaﬁn) _ (0 M),

n—00

where M and M are given by (2.17) and (2.18), respectively.

Proof. For every n > 0, it holds that

(int — X/4)@int — XHasup + (Xp)2 M,

M, ., =
1 (bint — X1) (bsup — X14)

(4.15)

and

M _ (bSup — X:u)asup — XHQinf + (XIU‘)QMTL

L= (4.16)
! (binf - X,u)(bSUp - Xﬂ)

Thus, since M, = 0, My = baf—jxu > (, and (H2) holds, it follows by mathematical induction

that M, > 0 and M, > 0 for every n > 0. Therefore, it follows from (4.14) that

Observe that M, < M,. Hence, (4.15) implies that M, < M, , for every n > 0. Similarly,
we have that M, > M,. Hence (4.16) implies that Mml < M,, for every n > 0. Thus
the sequence (M,,, M,,) is convergent. By passing to the limit in (4.15) and (4.16), it is eas-
ily seen that lim,,_,oo (M, M,) = (M, M), where M and M are given by (2.18) and (2.17)

respectively. [

Lemma 4.5. For fixed T > 0, there is 0 < 03(T) < M+ = bafs%w + 1 such that for any
0 < 0 < 65(T) and for any ug with 6 < ug < M™,

§ <ulx, to+Tito,0,u)) < MT VaeRY Vi, €R. 4.17)
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Proof. We divide the proof into four steps.

First of all, let ap = “2* and

Dp={zeR" ||z <L fori=1,2,--- N}

Consider

uy = Au+agu, € Dy,

(4.18)
u = O, x € 8DL,
and its associated eigenvalue problem
Au+ agu = ou, x € Dy,
(4.19)

UZO, .Z‘E@DL.

Let o, be the principal eigenvalue of (4.19) and ¢ (x) be its principal eigenfunction with

¢(0) = 1. Note that

or(z) =TI | cos (%xz) and 0 < ¢p(x) < ¢r(0), Vxe Dy.

Note also that u(z,t) = e“r'¢r(z) is a solution of (4.18). Let u(x,t;ug) be the solution of

(4.18) with ug € C(Dp). Then

u(z, t;kdr) = ke“Llor(z) (4.20)

for all Kk € R.

In the following, let Ly > 0 be such thato, >0 VL > Lj.

Step 1. Let 7' > 0 be fixed. Consider

up = Au+ b(z,t) - Vu+ apu, x € Dy
4.21)

U:O, J]G@DL,

where |b.(z,t)| < e forx € Dy and ty <t < to+ T. Let uy, (2, t; 1o, up) be the solution of
(4.21) with uy,_ 1 (x, to; to, ug) = ue(z).

We claim that there is €o(T') > 0 such that for any L > Lo, k > 0, and 0 < € < €o(T),
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To
Up,.1(0,t0 + T to, k) > e%fz > K (4.22)
provided that |b.(z,t)| < € for x € Dy; and for any L > Ly and 0 < € < (T,

0 < wup, p(z,t+to;to, k) <e®'rn VOL<t<T, z€Dy. (4.23)

In fact, by (4.20), there is €,(7") > 0 such that for any 0 < ¢ < ¢y(7)),

TO'LO

Up, 1o (0,0 + T to, kKor,) > € 2 K (4.24)

provided that |b.(z,t)| < € for x € Dyp,. Note that for L > Ly,

QSL(‘T) Z QSLO('I) Ve DLm

and

;

Oup, 1.(+5 to + t to, kpr) = Auy, (o + t;to, KoL) + be(z,t) - Vg, 1(x,to + t; to, KoL)

+aoub€’L(l’,to+t;t0,li¢L), T € DLO,

ume('r7t0+t;t07"€¢L) > O, T € 8DLO.
\
Then by comparison principle for parabolic equations,

up, 1(z, to + t5to, KPL) > wp, 1, (T, to + t; to, KOL,)

for x € Dy, which together with (4.24) implies (4.22). (4.23) follows directly from compari-

son principle for parabolic equations.

Step 2. Consider

up = Au+ b(z,t) - Vu+ u(2a9 — c(z,t)u), =€ Dy,
(4.25)

UZO, ZEE@DL,

where 0 < ¢(z,t) < bgyp. Let u(z,t;to, up) be the solution of (4.25) with u.(z, to; to, ug) =
uo(z). Assume L > Lo and 0 < € < ¢y(7T).
We claim that

TcrLO

us(0,t0 + Tsto, ko) > € 2 K (4.26)
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provided that 0 < k < ko(T) := age— %7

bsup

Note that (4.23) yields,
Oup, 1(x, tyto, KoL) — Aup, 1(x, t; to, Kpr) — be(x,t) - Vuy, (2, t; to, kKoL)
— up, r(x,t; to, KL) (2@0 —c(z, t)up, (x, t; to, H¢L))
= —uyp, (2, t; to, H¢L)(&o —c(z, t)up, (x,t; to, /§¢L))

SO for toStSto—l-T, l’EDL

when 0 < k < ‘“’f—aOT Then by comparison principal for parabolic equations,
sup

ue(w,t;to, kKor) > up, L(x,t;to, k) for to <t <te+T, x€ Dy
This together with (4.22) implies (4.26).

Step 3. For any given 2, € RY, consider

uy = Au—xVo-Vutu(alz+xg,t) — x (z, t; o, 20, ug) — (b(x+20, 1) — Xp)u), xRN,
(4.27)

where v(x, t; to, xo, ug) is the solution of

0=Av—Xv+pu, xRV

Let u(x, t; to, g, ug) be the solution of (4.27) with u(x, to; to, xo, ug) = ug(x). Let o(T) > 0
and ko(7") > 0 be as in Steps 1 and 2, respectively.
We claim that there is 0 < 6o(T) < ko(T) such that for any ug € C° (RN) with 0 < ug <

M+ and ug(z) < 6o(T) for |z;] <3L,i=1,2,--- N, 29 € RY
eo(T)
2x

0 < Mv(z, t;tg, zo,up) < ;—;, |Vo(z,t;ty, zo,up)| < for to <t <ty+T, x € Dy,
(4.28)
provided that L > 1.
Indeed, let 0 < & < go(7) be fixed. Lemma 4.3 implies that there is 0; = 6;(M ™, ¢) and

Ly = Ly(M™*,T,e) > Lg such that for every L > L4, there holds

w(z,t +to;to, xo,up) < e, VO<t<T, tyg€R, Voo € RY, V]z| € Doy (4.29)

whenever 0 < uy(z) < 61, Va € Dsp.
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Next, note that

[e’¢) —As 2
|z—2
v(x, tg + t; to, T, Ug) = ,u/ / c ~€ o u(z, t; to, o, ug)dzds
0o JrN (47s)?

and

= T)e N Josp?
O, v(x, tg + t;to, o, ug) = / / Y e 5wz, t;ty, o, ug)dzds.
RN

2s( 47r3 2

Hence, by (4.29), for L > L;,0 <t < T, and |z| < L, we have

(I to + t; to, xo, U(] < % [/ / )\seZ|2dZdS] sup U(Z, t + to; to, To, Uo)
T2 |20 < 0<t<T,|2|0e<2L
M // el d2ds
( inf — XM 77'2 s>Lor|z |oo>—
< g + —F ) N // e Me 1 dzds
)\ ( inf — X,u >Lor|z|eo>
(4.30)
and
As —\z|
|0z, v(, to + t;t0,0,u0)| < —5 / / [zile” —dzds
|2]o0 < Vs

I . Masup // ‘Zz|e_/\se o == = dads
( inf — s>Lor|z]eo> \/_

L, e f / e e
S—F=+t— % dzds,
\/_ ( inf — Xﬂf s 2 s>Lor]| Zloo>7 \/—
(4.31)

whenever 0 < ug(z) < 0, for every |z|,, < 3L. These together with (4.29) implies (4.28).

Note that
up > Au— xVu - Vu+u(2ag — (b(x + zo,t) — xp)u), x € Dy
u(z, t;ty, xo,up) >0, x € IDy.
Let v = inf,ep, uo(x). Then k < §o(T) < k(7). By comparison principle for parabolic

equations,
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u(x, t;to, xo, up) > uc(t,x;to, kpy) for x € Dy, to<t<ty+T.

This together with the conclusion in Step 2

TJLO TO'LO

w(0, T + to; to, xo,up) > € 2 k=e 2 inf ug(x). (4.32)

Step 4. In this step we claim that there is 0 < §5(T") < min{do(7"), M}, where M = b::%xu
such that for any 0 < 6 < 63(T) and for any ug with 6 < ug < M™,

§ <wux,to+Tito,0,u9) < MY VaecRY, (4.33)

Assume that the claim does not hold. Then there are §,, — 0, tg,, € R, ug, with d,, < ug, <

M+, and z,, € RY such that

w(xp, ton + T ton, 0, uon) < Op- (4.34)

Note that
w(x + Ty, t ton, 0, ugn) = w(z, t; ton, Tn, Uon(- + ).

Let g := €(T) > 0, 6g := 0o(T") > 0, and ko := ko(7T") > 0 be fixed and be such that the

conclusions in Steps 2 and 3 hold. Let

)
Do, ={z € RN | |z;] < 3L, ugn(x + x,) > 50}

Without loss of generality, we may assume that lim,, . | Do, | exists.

Case 1. lim,, ., | Dy,| = 0. We claim that in this case, |xVv(x + 2, t + ton; ton, 0, uon)| < €o
and 0 < v(x + Ty, t + ton; ton, 0, o) < ag for |x;| < L,i=1,2,--- /N, L> 1landn > 1.

Indeed, let {iig, },>1 be sequence of elements of C° ..(RY) satisfying
6n < lign(x) <2, € D3y and

> 9

||ﬁ'0n() - Uon(‘ + l’n)HLp(RN) — 0, Vp > 1.
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Let wy,(x,t) := u(t + ton, T; ton, Tn, Uon (- + ) — u(t + ton, T; ton, Tn, Topn) and v, (z,t) =
V(t + ton, T; tons Tn, Uon (- + Tn)) — V(t + ton, Z; ton, Tn, Uon ). Hence {(wp, vy,) }rn> satisfies

;

Oyw, = Aw, + by (t,x) - Vw, + fo(t, 2)w, + gu(t, x)v, + by - Vo, x€ RN, t>0

0 = Av, — v, + pw,, r€RN t>0

wn(0,x) = upp(x + ) — Ugn(x), =€ RY,
(4.35)

where b, (t,x) = —xVu(t + ton, T + Tp; ton, Tn, Uon (- + 1)), gn(t, ) == —xAu(t + ton, © +

T, t0n7 L, 7jOn)’ hn(ta x) = —XVU(t + ton, T + ™ tOna o aOn), and

fn(t - tOny r— xn) ::a(tv J}) - X)‘U(ta 5 th Ly U'On(' + xn))

- (b(tv CB) - XM)(U(t,iQt(), T, u()n(' + xn)) + U(t,w;to, T, a()n))

For wy, (0, ) € LP(RY), (4.35) has a unique solution w(t, z; wo,) with w(0, z; wo,) = W, ()
in LP?(RY). Note that V - (w,b,) = b, - Vw, + w,V - b, and V - b, = —x(Av — pu)(t +

tOna €T3 z€0n7 Tn, uOn(' + xn)) Hence
Oywy, = Awy, + V- (wpby) + (fult, ) — V- by)wy, + gn(t, 2)v, + hy - Vo, € RY ¢t > 0.

Thus, the variation of constant formula yields that

t
wy(t,) = A Dw, (0) + / UIADT . (w, (s, )b (s, -))ds
0

N J/
-~

I

+ /t A=D1 4 f(s,) = V- by(s, ) wn(s, ) + gn(s, )on(s, ) + hy - V,)ds,
Jo

J/

-

1P

where {c"4=1},- denotes the Cy—semigroup on LP(R") generated by A — I.

Observe that ||b,,(t,-)|lec < pllult + ton, T + T} ton, Uon (- + Tn))|loe < p—22—. Hence, as

inf —X

shown in [49, Lemma 3.1], we have

t e_(t_s)
3]l o ey SC/ \/—I\Vbn( s Moollwa(s, ) e @ )ds

Cuasu
oten [ s,
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We also observe that Supg<;<7.,>1 |1+ fu(t, )=V -bu(t, ) |loo < 00, SUPg<i<rn>1 190t ) |loe <

00, and SupPy<;<7 1 [|hn(t, ) |lso < 00, thus we have
t
Ealws) < € [ €9 (s, Musgas + loalss Moy} ds.
0

Since (A — AI)v,, = —pw,, then by elliptic regularity, we have that

[on(t, ) lw2r@yy < Cllwn(t, )|l o).

Hence, since ||"“~Dw, (0, ) || Loy < €7 |[wn(0, )| Lo gy, We obtain

t
leon(t, Moy < a0l iogesy + C / (t = 5) Hwn(s, ) oo gands

for some constant C' > (0. Therefore it follows from Lemma 2.1 that

[wn(t, )l zr@yy < Crllwn(0,)|[r@yy, VO<t<T, ¥Vn>1,

where C'r > 0 is a constant. Thus

lim sup |lwn(t,-)||Lr@y) = 0. (4.36)

n—=00 0<t<T

For p > N, by regularity and a priori estimates for elliptic operators, there is a constant

C' > 0 such that

1A =MD wllgis gy < Cllwl @), Yw € LP(RY).

Combining this with (4.36) we have that

lim sup |lv,(t, )Hclb @) =0 (4.37)

n—=00 0<t<T

It follows from the claim in Step 3 that for every n > 1,

0 < Mo(t4ton, ;5 ton, Tn, Ton) < ;—0, IXVu(t+ton, ; ton, Tn, Gon)| < %, VO<t<T,xze€ Dy.
X

Thus (4.37) implies that, forn > 1,V0 <t < T, x € Dy, there holds

0 < XAU(t + ton, Z; ton, Tn, Uon (- + 20n)) < ag, |XVUE =+ ton, ;5 ton, Tn, Uon (- + 21))| < 0.

Hence, it follows from the arguments of (4.32) that

U(T + ton, 05 ton, Tn, uOn(' + mn)) > Op,
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which is a contradictions. Hence case 1 does not hold.

Case 2. liminf,, ., |Dy,| > 0.
In this case, without loss of generality, we might suppose that inf,,>; |Dy,,| > 0, and there a

suitable N —cube, D CC D3y, with inf,> |[D N Dy, | > 0. Let ¥,,(x, ) denotes the solution of

p
Uy = AU,, S DgL

u=0, on(0,7) x 0Djsy, (4.38)

\U(V 0) = %OXDnDOn'

Thus, by comparison principle for parabolic equations, we have

P ugy (x4 ) > Up(x,t), Vo € D3, 0<t<T, n>1.

From this, it follows that

1
e ton (- + 2n) |G (D) = U2 (z,t)dr, VO<t<T, n>1. (4.39)

)= |Da1] Jp,,

Note that for every n > 1, W,,(x, t) can be written as

\Ifn@,t):@Ze-%kw)[ D10 Xorn, W)y

2 DsL

where {¢; }r>1 denotes the orthonormal basis of L?(Dj;) consisting of eigenfunctions with
corresponding eigenvalues {S\k} of —A with Dirichlet boundary conditions on D3y. Since i

is principal, then we might suppose that ¢, (z) > 0 for every x € Dsy,. Thus

o] s 50 2
H\Ijn(7t)|’%2(D3L) = Z@ 2t |:§ . ¢k<y)XDmD0n (y)dy:|
k=1 3L

~ 2
> e M { 1(Y)X prp, ., (y)dy}
D3y,

- Ts . 2
> ¢-20 [§°| D N Dy,| min gbl(y)} . (4.40)

Since inf,,>1 |Dy,| > 0 and mingep ¢1(y) > 0, it follows from (4.39) and (4.40) that

inf |etA0)

0<t<Tn>1 Uon (- + Zn)llc(Dsy) > 0.
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Thus there is 0 < Ty < 1 such that

1I>1fi ||U(, TO + tOn; tOna {7 uOn(' + xn))HCO(DgL) > 0.

n

Hence, we might suppose that u(-, Ty + ton; ton, Tn, Uon (- + n)) — ug locally uniformly and
|ugllo(psyy > 0. Moreover, by Lemma 4.2, we might assume that (u(-, T+ ton; ton, Tn, ton (- +
2n)), (-, T + ton; ton, Tn, ton(- + ,))) — (u*(z,t),v*(z, 1)), a(zr + x,,t) — a*(z,t), and

b(x + xp,t) — b*(z,t), where (u*, v*) satisfies

(

uf = Au* — xV - (u*Vo*) + (a* — b*u*)u*

0= (A—=X)v*+ pu*

Sine ||ug|| > 0and u*(z,t) > 0, it follows from comparison principle for parabolic equations
that u*(x,t) > 0 for every x € RY and ¢t € (0, 7. In particular u*(0,7") > 0. Note by (4.34)

that we must have u*(0,7") = 0, which is a contradiction. Hence the result holds. []

4.2  Proof of Theorem 2.3

In this section, using the preliminary results established in the previous section, we present the

proof of Theorem 2.3.

Proof of Theorem 2.3. (i) Let uy € C’g (RY), with ugi,s > 0 be given. It follows from (2.11)

inf

that there is 77 > 0 such that

w(,t+toito,ug) S M+ = — 2% 41 Y ¢>T, Vi €R.
binf_X:U’

Note that 7} is independent of ¢,. We claim that

m(ug) 1= inf u(z,t + to; to, ug) > 0. (4.41)
to€ER,(z,t)ERN x[0,00)

In fact, since ugi,e > 0, by Lemma 4.1, we have that

. — . Ty asu
01 := inf u(x,t + to; to, o) > Uginge Ti(@insFbsuplluolloce™*02) () (4.42)
to€R, (z,t) ERN X [to,to+T1]
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Let
52 = min{él, (50(71)}7

where 6y(77) is given by Lemma 4.5. Then d, > 0. By induction, it follows from Lemma 4.5

that
6y <infu(x,tyg+nTy;to,ug)) < MT, Vtg€R and Vn €N, (4.43)
Lemma 4.1 implies that for every t, € R, x € RY, ¢ € [0,71] and n € NU {0}, we have
u(z, to +nTy + t;to, ug) = u(x, to + nTy + t;to + nTy, u(x, to + nT, to, up))
> (5zet(“inf*bsuPM+6T1a5“p)

> §ye Tt (i Hhoup M T N1 00) (4.44)

By (4.44), we obtain that

inf U(ﬂf, to + t, to, Uo)) > 52€_T1(ainf+b5upM+T1)
to€R,(z,t)ERN x [0,00)

The last inequality yields that m(ug) > 0. Hence (4.41) holds.
(i) Let (M,,, M ,),>o be the sequence define by (4.14). Let ug € C®_..(R™) with ugins > 0
be fixed.

We first claim that for every n > 0, and € > 0 there is 7" (ug) such that

M, — e <u(w,t+to;to,up) < M, +¢ Vo€ RN Vit >T"(uy), Vs € R, (4.45)

—n

which implies that for any € > 0 there is 7..(u) such that (2.15) holds.
In fact, for n = 0, it is clear that M, = 0 < u(x,t + to; o, up) for every x € R, ¢ > 0, and

to € R. It follows (3.27) that there is TP (ug) such that
u(z,t +to;to,ug) < My +e, Vo eRY t>T (u), Vi, € R.

Hence (4.45) holds for n = 0. Suppose that (4.45) holds for n — 1, (n > 1). We show that

(4.45) also holds for n. Indeed, let € > 0. It follows from the induction hypothesis that there is
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T (ug) > 1 that

M, — S <wula,t+to;to, uo) < My +

M, - Vo eRY Vt>T" Y ug), Vo € R. (4.46)

A~ ™

This implies that

p

ue(-, - + to; o, uop)
> Au(-, -+ to; to, ug) — x(Vo - Vu) (-, - + to; to, uo)
+(aime = X (M1 + £) = (bsup — Xp)u(-, - + to; to, uo)Jul-, - + tos to, uo), t > T u),

u(-, T (ug) + to; to, uo) > m(uo),

£

\

(4.47)
where m(ug) := inf{u(x,t + to;to, uo) | ¥ € RN, t € [0,00), to € R} > 0. Hence, it follows

from comparison principle for parabolic equations that there is 7" (ug) > 77" (uo) such that

inf T Mnf + 2 ~
u(z,t + to;to, up) > (@in = X1{ 1) — E, Vit>T"(up), v € RV, Viy € R.
bsup — XM 4
(4.48)
Note that, since (H2) holds, then it follows from Lemma 4.4 that
inf — Mn— + £
(@int — Xp(Mn1+ 7))+ S VAR (L VA (4.49)
bsup — XM 4(bsup — XH) 4

It follows from (4.48) and (4.49) that

(-, - + to; to, uo)
< Au(s, -+ to; to, ug) — x (Vo - Vu) (-, - + to; to, uo)
Hasup — Xp(M,, = 5) = (bt — xp)ul-, - + to; to, uo))u(, - + tos to, uo), t > T (uo),

ul-, T(uo) + to; to, uo) < My +

PN

\

(4.50)
Hence, it follows from comparison principle for parabolic equations that there is 77" (ug) >

T (up) such that

52



)

(@int — xp(M,, — 5))+ +§

;o YVt > T (ug), x € RN, Yty € R. (4.51)
bsup — XM 2

u(w,t+1to; to, up) <

Observe that, sine (H2) holds, Lemma 4.4 implies that

(@inf - XILL(MTL - %))Jr
binf - XM

<M, + . (4.52)

DO | ™

Hence, it follows from (4.48)-(4.52) that (4.45) also holds for n. Thus we conclude that (4.45)
holds for every n > 0.

Next, we show that the set [;,,,, given by (2.19) is an invariant set for solutions of (2.6).

By Lemma 4.4 we have that M, M and M, Ny M. Tt suffices to show that the set
= {uy € C*

1nu unif

(RN) | M, < ug(x) < M,}, n > 0, is positively invariant for (2.6). This
is also done by induction on n > 0. The case n = 0 is guaranteed by Theorem 2.2 (i). Suppose

that /7 is a positive invariant set for (2.6). Let ug € [ "1 Since, by Lemma 4.4, M, > Mm_l,

mu mu

it follows from (4.47) and comparison principle for parabolic equations that

inf — Mn
w} = M,,,, Yz €RY, V>0Vt €R.
bsup_X,u
—_——

:Mn+ 1

ul,t 4 toj o, ug) > min { M.,

Using this last inequality, by (4.50), it follows from comparison principle for parabolic equa-

tions that

Asup — XMMn—i—l
binf — XK

=M1

u(x, t+to; to, ug) < max {MnH , } =M1, Ve € RN, YVt >0,Vt, € R.

Thus, I is also a positive invariant set for (2.6). The result thus follows. O

> Tinv
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Chapter 5

Existence, uniqueness and stability of positive entire solutions.

This chapter is concerned with the existence, uniqueness, and stability of strictly positive entire
solutions of (2.6). In the first section, we study the existence of strictly positive entire solutions
and prove Theorem 2.4. The uniqueness and stability of these strictly positive entire solutions

are studied in Section 2, where we prove Theorem 2.5.

5.1 Existence of strictly positive entire solutions

While the proof of Lemma 4.5 is presented in the previous chapter, for the sake of clarity in
the arguments in the proof of our main result in this section, it is convenient to point out some
fundamental results developed in its proof. Letting agp = %2, Dy := {z € RY : || <

LYi=1,---,N}, consider the PDE

u— Au—agu =0, x€ Dy

5.1)
u=0~0 S aDL
and its corresponding eigenvalue problem
—Au —agu = ou, x € Dy,
(5.2)

u=2~0 xG@DL.

There exists Ly > 1 such that the principal eigenvalue of (4.19), denoted by o, , is negative for
every L. > L. Moreover, a principal eigenfunction, ¢, associated to the principal eigenvalue

oy, can be chosen in such away that 0 < ¢ () < ¢(0) = 1 forall z € Dy \ {0}. Moreover, for
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every 0 < g9 < 1, there is 0 < &y < 1 such that for any ug € C° (RN) with0 < ug < M

nif

and ug(x) < &g for |z;| < 3L, i=1,2,--- N, o € RY,

0 < Mola, t: to, 7o, o) < ;—0 Vo, t; to, 70, uo)| < 26—0 for ty <t < ty+1, z € Dy, (5.3)
X X

provided that L > 1.

Next we consider the following related periodic-perturbation of (4.18),

u — Au — b.(x,t)Vu —agu =0, z € Dy
5.4)

u=20 x e 3DL
with [b.(x,t)| < e, b.(x,t + 1) = b.(x, ), and its corresponding periodic eigenvalue problem

¢

u — Au — b.(x,t)Vu — agu = ou, x € Dy, 0 <t <1,

u(z,t) =0, r€0DL,0<t <1, (5.5)

u(z,0) = u(x, 1), x € Dy.

\

We suppose that b.(z, t) is 1—periodic in ¢ € R, thatis, b.(z,t + 1) = b.(x,t) forall x € Dy,
andt € Rand welet Uy, (t,7), 7 < t, denotes the solution operator of (5.4) on L?(Dy), N <
p < 0. For, 7 < ¢, the evolution operator Uy, . (%, 7) is a compact and strongly positive operator
on WeP(Dyp) := {u € W>’(Dy) : u=0o0ndD.}. Letting K1, := Upy.(1,0), which is
compact and strongly positive, thus its spectrum radius 7y, ., 1s positive. By Krein-Rutman
Theorem, 7 . is an eigenvalue of K . with a corresponding positive eigenfunction uy .. It is
well known that 0} := —In(r ) is the principal eigenvalue of (5.5) with positive 1-periodic
eigenfunction ¢y .(t) = eL=Ur, (1,0)ur., (see [20]). Note that UL (t)(¢r) = e Loy,
where Uy (t) denotes the solution operator of (4.18). It follows that K (¢r) = UL(1)(¢r) =

g

e ?L¢r, which implies that r;, > e~?Z. By perturbation theory for parabolic equations, we

have that U (1,0) — UL(1) as ||b|lc(p, xo1y) — 0. Thus, there is 0 < go(L) << 1 such

55



that 7. > e~ whenever bellc(py x[0,1)) < €0(L). Hence
oL
or.=—In(rp.) < 5 < 0, 0<e<egl).

Note that Uy ,_(t,7)¢1.(7) = e =770, (t). Thus for every nonnegative initial function

ug € C(Dy) with |Jug|ls > 0, we have that

sup  |(Upp.(t, 7)uo)(z)| =00, Y [bellop, xjo,1) < €0(L)- (5.6)

xeDy <t

Proof of Theorem 2.4. Let T > 0 be fixed and 0 := 05(7") and M+ = =2 4 1 be given in

inf —XH

Lemma 4.5. It follows from Lemma 4.5 that
bo <u(x, T —kT;—kT,ug) <M, zeR" k>1 6 <u <M. (5.7)
Thus, it follows by induction and uniqueness of solution that
So <u(x,nT — kT;—kT,up) <M, zeR" k>1,n>1 6<u<M". (58)

Let u¥(z) := u(z, —nT; —kT, &) for all z € R", and k > n > 0. Then by a priori estimates
for parabolic equations (see [13]), the sequence {uf },>; has a locally uniformly convergent
subsequence {uf };>1 to some u* with u* € C¥ (R") for 0 < v < 1. Let ut(z,t) =

u(z,t;0,u*) for every x € R™ and ¢t > 0. We claim that u™ (-, -) has a backward extension.

Indeed, by uniqueness of solution of (2.6), for every 1 < n < k/, we have that
uf () = u(-, 0; =T, u(-, —nT; —k'T, 5y)) = u(-,0; —nT, uF"). (5.9)

Similarly as above, for every n > 1, there is a function u) € C?

unif

(R™) and a subsequence
{uf{} k=1 of {u¥'} with ubn u locally uniformly as k, — oo.
Since ulgé — u* for each n > 1 locally uniformly, it follows from (5.9) and Lemma 4.2 that
w*(+) = u(-, 0; —nT,w)).
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Therefore

ut(z,t) = u(x, t;0,u*) = u(x, t,0,u(-,0; —nT,u})) = u(z, t; —nT,u)

(5.10)

forallz € RN and ¢ > 0. Since u(-, t; —nT, u}) is defined for all ¢ > —nT, then it follows from

(5.10) that u™*(z, t) has an extension to RY x [-nT', o) for every n € N. Therefore, u™ (z,t)

has a backward extension on RY x R. Note that (5.8) implies that 6, < u* < M™*. Thus,

by Theorem 2.3 and Lemma 4.1, we obtain that 0 < inf,, u™(z,t) < sup, ,u™(z,t) < M.

Hence (u™(z,t),v"(z,t)) is a positive entire solution of (2.6).

(i) Suppose that (u™(z,t),v"(z,t)) is a strictly positive entire solution of (2.6). Then,

u(t — to;uy) < ut(x,t) <u(t —to;udy,),Vio € Rt > ty, € RY,

ot
where u(t; u; ;) solves

Lu = u(ame — xpudy,
Q(O) = uinrlﬁ

and U(t; ug,,) solves

u(0) = ugy,
Note that
+
Qinf — Ugyy
lim w(t;u,) = (it = X1 p)+, and
t—00 bsup — XM

Hence, it follows from (5.11) and (5.12) that

(ainf - X:U“u:{lp)-i‘ < (bSUP - X:u)ul—;f and

- (bsup - XU)H); t > 0

- (binf - Xﬂ’)ﬂ% t>0

) =

binf — XM

(binf - X/J“)u;:lp < (asup o XMU’IIf)"‘
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Thus, (1) follows.

(i) Since 0 < v, < uf . (5.13) implies that

inf — “sup>®
Ainf — qu:;p S (bsup - XM)U;f and (binf - X,u)u:;lp S 6Lsup - X:uujr—lf

This together with (5.13) implies that

(binf - Xﬂ)ainf — XHAsup S ((binf - X,u) (bsup - X:u) - (X:u)z)ul-;f (514)

and

((binf - Xﬂ) (bsup - X,u) - (X/"L)2)u;:1p S (bsup - Xﬂ)asup — XHUQinf- (515)

Since (H2) holds and u;"; > 0, it follows from (5.14) that (i, — xt) (bsup — x1) — (x1)* > 0.

inf

Thus (2.21) follows from (5.14) and (5.15).

(iii) Let 63(7T) be given by Lemma 4.5 and E(T) := {u € C®  (RY) | 63(T) < upms <

nif
Usyp < bi—ifw} endowed with the open compact topology. Lemma 4.5 implies that the map

Pr: E(T) 3 ug — u(-,T;0,up) € E(T) is well defined. Note that F(7") is a closed bounded

b
convex subset of C7; ¢

(R™) endowed with the open compact topology. Let {ug, }n>1 C FE(T)
and ug € F(T) such that up, — g uniformly on every compact subset of RY. For every

n > 1, we have
(50, u0,) = Au — xVou(-, s upn) - Vu+ (@ — xAv(+, 50, up,) — (b — xp)w)u, t>0
and Theorem 2.2 (ii) gives

sup ||U(',t;0,Uon)HCI,Z{f(RN) < 0. (5.16)
0<t<Tn>1 uni

Since ug, — wug locally uniformly, it follows from Lemma 4.2 that there is a subsequence
{(u(-, -5 0,u0n ), v(-, 0, wons)) b1 of {(u(+, 5 0, upn), v(+, +; 0, 1oy )) }rn>1 and a function (u, v) €

C*L(RY x (0,00)) such that (u(-,+;0,upn),v(, 0, up)) — (u,v) locally uniformly in
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C?*HRY x (0,00)). Moreover, (u,v) satisfies Av — \v + pu = 0 and

up = Au—xVu-Vu+ (a—x\v—(b—xp)uw)u, 0<t<T

u(0) = up.

Thus (u(z,t),v(x,t)) = (u(z,t;0,ug),v(x,t;0,up)) for every x € RY, ¢t € [0,T]. This
implies that u(-, 7"; 0, ug,r) — u(+, T; 0, ug) locally uniformly. Hence P is continuous.

Next let {ugy, }n> € E(T') be given. It follows from (5.16) and a priori estimate for parabolic
equations that

sup [[u(-, 750, uon) ||ov vy < 00.

Thus {u(-, T’; 0, ug,) }n>1 has a convergent subsequence in the open compact topology in £(7T').
Hence Py is a compact map. Therefore, Shauder’s fixed theorem implies that there is u* €
E(T) such that u(-,T; 0, u*) = u*. Clearly (u(-,-;0,u*),v(-,-;0,u*)) is a T'—periodic solution
of (2.6) and can extended uniquely to a positive entire solution.

(iv) Forevery n > 1, let t, = L and uo, € C? (R"), such that (u(z, t; up,), v(z, t; uon)) is

Asup

positive ¢, — periodic solution of (2.6) with {2t < supy, ;) u(@, tugn) < 52

Claim 1 :There exists L >> 1 large enough, such that

inf  sup ug,(x + x9) > 0. (5.17)

n>Lzo€RY |g1<L,

Let ag = “2 and Ly > 1 be fixed such that the principal eigenvalue Ay, of (5.2) is negative
for every L > Lg. Note that for every nonnegative uniformly continuous function ug(z) in Dy,
L > Ly, with ||ug|| L (p,) > 0, we have that ||u(-, t;u)||oc — 00, ast — oo, where u(zx, t; uo)
solves the initial-boundary problem (5.1). Hence, by (5.6), for every L > Ly, thereis eo(L) > 0
such that if sup,cp, g<s<1 |0 (7,1)] < €0, bey (2, + 1) = bey (2, 1) for every x € Dy, t > 0,
then for every nonnegative continuous function ug(x) on Dy, with |Jugl|z(p,) > 0, we have
that

sup  (Urp,, ., (; 0)uo)(z) = oo, (5.18)

x€Dr,t>0
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where Ubso oy r(z,t;0)ug solves the initial boundary value problem (5.4) (with 7" = 1).

Taking T =1, M = bi::jcu’ ande = min{m, eo(Lo)}, it follows from Lemma 4.3
and inequalities (4.8) and (4.28) that there is L.; > Ly and oy > 0 such that for every L > L,

xz € Dyr,and 0 <t <1, we have
u(z, t +to;ug) < e, v(x,t+to;to,up) < e, and |Vo(x,t+ to;to, ug)| < &, (5.19)

whenever 0 < ug(x) < do, V |z| < 3L, i=1,---, N. Suppose that there is some n > 1 and
xo € RY, such that

sup  uon( + xp) < do. (5.20)
|2|co <3L1

Thus, since (u(z,t;0, ugy,), v(z,t;0,ug,)) is t,—periodic with t,, < 1, it follows from (5.19)

that, for |z — zo| < Ly, t > 0,

ue(, 50, ugn) = Au(-, 5 0,u0,) — X(VoVu) (-, 0, u0n) + ula — (b — xp)u — x\v)

Ainf

3

2 AU(, ) O’ U()n) - X(VUVU)(7 S Oa u()n) + U(', K 07 U’On)-

Therefore, by comparison principle for parabolic equations, since L; > Ly, we have that

u(z + o, t; 0, ugy) > UbsO,Lo(x>t?O)U0n\DL0a V2| < Ly, ¥t >0 (5.21)

where g, bry denotes the restriction of wug, on Dy, and b, (z,t) = Vu(x + xg,t; 0, ug,) for
every x € Dp,,t > 0. It follows from (5.18) and (5.21) that sup,, ; u(x,t; 0, up,) = oo, which
is a contradiction. Hence Claim 1 follows.

By a priori estimate for parabolic equations, we may suppose that ug, — u* € C?_.(RY) in
the open compact topology. Let u™t (z,t) = u(x,t; 0, u*).

Claim 2: u"(x,t) = u*(z) for every x € RN  and t > 0.
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Without loss of generality, let us suppose that ug, — «* in the open compact topology. Let

x € RY and t > 0 be fixed. For every n > 1, we have that

ut(z,t) — u*(z) = u(z, t;0,u) — u(z, t;0,up,) + u(z, t; 0, up,) — u(z, [nt]Ty; 0, ugy)

S

-~ -~

]1’,1(1',23) Ig_yn x,t)

+ u(x, [ntlt,; 0, ug,) — u* .

N

-~

I3 n(x,t)

(5.22)

Since u(x, t; 0, ugy,) is t,—periodic, then
I3 (x,t) = upp(x) —u*(z) - 0, as n— o0
in the open compact topology. It follows from the variation of constant formula that

t—[nt]Ty
Lz, t) =— X/o T(t — [nt]t, —s)V - ((uVv)(x, s + [nt]t,; 0, up,)))ds

&

-
13, ()

t—[nt]tn
+ /o T(t — [nt]t, — s)(((a + 1 = bu)u)(x, s + [nt]t,; 0, ug,))ds

N J/
-~

12 (z,t)

,n

where {7'(t)}:>o denotes the analytic semigroup in (2.1). Since |up,||cc < M, there is a

constant C' depending only on M such that

t—[ntltn e~ (t=[nt]tn—s)
L, (z, 1) < C / ds < O(t — [nt]t,)
0

t — [ntlt, — s

=

— 0, asn — oo
and
t—[nt]tn
|13, (x, )] < C/ e~ ttitn=s)gs — C(1 — e~y 50, asn — oco.
0

Hence I ,,(x,t) — 0 as n — oo in the open compact topology . Since up, — u* in the open

compact topology, by Lemma 4.2, we have that [, ,,(z,t) — 0 as n — oo in the open compact
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topology. Therefore, we conclude from (5.22) that u™(z,t) = u*(x), which completes the
proof of Claim 2.

Next, it follows from Claim 1 that there exists L > 1 such that

inf  sup u*(z+ x0) > 0. (5.23)

zo€RN |#]oo <L

Suppose by contradiction that v} ; = 0. Then there is a sequence {xz,, },>1 such that u*(x,,) — 0
asn — oo. Let u,(x) = u*(x + x,,) for every n > 1. By a prior estimate for parabolic equa-
tions, as above, we may suppose that u,, — @ in the open compact topology and w is a steady
state solution of (2.6). Furthermore, (5.23) implies that ||%||,, > 0. Hence by comparison prin-
ciple for parabolic equations, we that that @(0) > 0. But 4(0) = lim,,,~ u*(x,) = 0, which

impossible. Thus u ; > 0. Therefore u*(x) is a positive steady state solution of (2.6). []

inf
5.2 Uniqueness and stability of strictly positive entire solutions

In this section, we study the uniqueness and stability of strictly positive entire solutions of
(2.6) and prove Theorem 2.5. First, we study these questions for general logistic type source
function f(x,t,u) = u(a(x,t) — ub(x,t)), and prove that there is a positive constant x, such
that for every 0 < x < X0, (2.6) has a unique exponentially stable positive entire solution.
Next, we examine two frequently encountered cases of logistic source in the literature, namely
space independent logistic source function fo(x,t,u) = u(a(t) — ub(t)) and a logistic source
function of the form fi(x,t,u) = b(z,t)(k — u)u, K > 0, and derive explicit lower bound
for xo. In this section, we shall always assume that (H1) holds, so that pointwise persis-
tence phenomena occurs in (2.6) (see Theorem 2.3 (i)). Furthermore, for every initial func-
tion ug € Cb (RY), inf, ug(z) > 0, every initial time ¢, € R, it follows from Remark
2.1 that there exists 77 (ug) > 1 such that the unique nonnegative global classical solution

(u(x,t + to; to, ug), v(w, t + to;to, ug)) of (2.6) with (u(x, to; to, ug) = ug(x), satisfies

0 < m(uo) < ulw,t + to; to, ug) < b“&,w > Ty(up), Vo € RY, Vg € R, (5.24)
inf — XM
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Henceforth, we shall always suppose that 0 < ugint < Ugsup < . Note that, by a variation

bin

of constant formula, we have that

(e, t+t1 + to; to, ug) = T(t)u(-, t1 + to; to, uo) X/ T(t — s)V(uVv)(-, s+t + to; o, ug)ds
0
¢
—I—/ T(t—s)((a+1—ub)u)(-, s+t + to; to, up))ds,
0

(5.25)

where {T'(t)}+0 denotes the analytic semigroup in (2.1). We let X#, 0 < 8 < 1, stand for the

fractional power space associated with [ — A.

Thus, it holds that (see [16]) X 2 is continuously embedding in C?_..(RY) with
\/_F( B) 1 1
IVullos @y S A+ 8) lull y300 Yue X7z VO<B< 5 (5.26)
lullee @vy < llullxs, VueX?, VO<B<1, (5.27)
and
IT(t)ulxs < CstPe|ullos, VE>0,Vue XP VO<B<I1. (5.28)

The next lemma provides an a priori bound on the sup-norm of the gradient of positive entire

solutions to (2.6).

Lemma 5.1. There is a positive constant C' independent of x, a, b, \ and ju such that for any

positive entire solution (u (z,t), v (x,t)) of (2.6), it holds that

VNT
IV (-t + )| < Ci )

)Moe—tt—i (1 n CMQt%> 2(0HM)" oy e R, VES 0,

—~
EN] R

(5.29)

1
where My = b:fsf;w and M, = 2ag,, + 14 xpuMy and My := Cs (’f/’ﬂiéiMo + Ml) and C%

is given by (5.28).
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Proof. Observe from (5.25) that for every ¢ > 0, ty € R, u;(, t + to) can be written as

uf (t + to) =T (t)u (to) — x /t T(t — s)(Vui - Vol )(s + to)ds

t
+ / T(t—s)((a+1—xMy — (b—xpul)ul) (s +to)ds. (5.30)
0

Note from Lemma 3.2 and (2.20) that [V (-, + t0)|eo < %Hu;(,t +10)|loo < %MO.

Thus, it follows from (2.4), (5.28) and (5.26) and Lemma 3.2 that

t
HX/O T(t— s)(Vu; . Vv;)(s + to)dsHX%

XUV NCs My [t o—(t—s)
< 1 Vul(s+ty)|leods
v LR
XUNT(2)Cs My [t o—(t—s)
< [ V(s ) s

2 ﬂ-)\F(Z) (t—S)Z

Similarly since Al[v (t + ;) [loo < xpulluf (t + t:)lloe < xpMo, using (5.27) and (5.28), we

obtain

H /0 T(t - 8) (a+1 - W — (b— i ut) (s + to)ds| s

ef(tfs)

(t—s)%

t
<Cs ( 1 xAsup 165 (7)o + (baup — 1) supuu;muoo) / et (5 + to) s
T T 0

—(t—s)

¢

e

<Cs (2a5up + 1 + xpMo) / [uy (5 4 to)||sods.
0

(t—s)i
Therefore, we have from (5.30) that

NFl tes U+S—|—t 00
ettt + ol g < Cohors + 0y [ LGy g, / [ERRD]
o ' P\ 2vrAL(3) 0 (t —s)i

N J/
-

:=Mo

Therefore, it follows from [1, Theorem 3.1.1] that there is C' > 0 such that

: 4
Hetu;(t + to)HX% SC%MM’% (1 + CMzti> o2 (P()M)"
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Combining this with (5.26), we obtain (5.29). The Lemma is thus proved. ]

Remark 5.1. It follows from Lemma 5.1 that

VNT(3)

1 4
Y2 et (14 OMy) 20@M) e R
VaT() e T C)e

Vg (5 8)lloo = [[Vuy (14(=1)) [l < Cs
where C, Mo, My and M, are given by Lemma 5.1 whenever (u} (x,t),v¥ (z,t)) is a positive

entire solution of (2.6). Therefore, by setting

Co(x) = sup{[|Vu (-, t)|lcc, t € R, (uf (,t),v] (,t)) is a positive entire solution of (2.6)},

(5.31)

we have that Cy(x) < oo for every 0 < x < % Moreover taking C1(x) = 1 + % it

x inf

follows from (2.21) that

lim X,LLCl (X)U)Jgsup

=0,
x=0+ (bing — Xﬂ)u;inf

Jor any positive entire solution (u (x,t),vy (z,t)) of (2.6). Thus, we introduce the following

definition

>~<,U01 (X)u;(_sup
(binf - )NCIU)u;(rinf

inf

Xo :=sup{x € (0,
1

: - + .t ey
) 1 VO <X <X, 3 (u,v]) satisfying <1}

(5.32)

Lemma 5.2. For givenuy € C},(RY) and positive entire solution (u} (z,t), v} (z,t)) of (2.6)

we let

v(x,t + to; to, uo)
vl (7, + to)

u(x,t + to; to, ug)
uf (z,t+1o)

Uz, t+ to;to, ug) == and 'V (x,t+tg;to, up) :=
Then U(z,t + to; to, ug) satisfies

Uy = AU+VUV (2In(u))—xv)+x (Avy —v) + VIn(u]) V(v —v)) U+(b—xp)uiU1-U).

X

(5.33)
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In particular, if u (z,t) = uf (), that is u} is space independent, we have that

Uy =AU — xVUVv + (xA(1 = VYU + (b — xp)U(1 = U)) u? (t). (5.34)

X

Proof. We have that

1
U, :(U;{)Q (uf (Au—xV - (uVv) + (a — buju) — u (Auf — XV - (uf Vo) + (a — bul)ul))
1
:@ (Au—UAuf —x (V- (uVv) =UV - (uf Vi) + bufU(1 - U)

=AU +2VU - Vin(uy) — ul* (V- (uVv) = UV - (ui Vul)) + bulU(1 - U).
X

On the other hand, we have

V- (uVv) = UV - (uf VoY)
=Vu - Vo +Uuf Av —UVuf - Vol — Uuf Avt
=Uuf A(v —v]) +UVul - V(v —v]) +ufVU - Vv

2
=AUu) (v —vy) + p(u))°U(L = U) + UVu] - V(v — o)) +u;VU - V.

Hence, we have that

Uy = AU+VU-V(2In(u))—xv)—x (A(v = v)) + Vin(u))V(v = o)) U+(b—xp)uf U(1-U).

]

We note that to show the stability of the positive entire solution u;(x, t) it is enough to show
that [|[U (-, t + to;to, up) — 1||oc — 0 ast — oco. We first prove the following theorem, which

will be used in for the proof of our main result in this section.
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(RY) satisfying 0 < ugint < Upsup <

nif = >~

Theorem 5.1. For every € > 0, and for every uy € C?

o, and n > 1 there is T., > 0 such that

C
10+t oy ttg) — Lo < [ T Yo w4 YE>T,. tER,
(binf X,U) me (blnf X,U) xsup

(5.35)
where C1(x) =1+ ’;C‘ir(X)y and Cy is given by (5.31). Furthermore, if u (x,t) = u (t), is

x inf

space homogeneous, then 1. ,, can be chosen so that

U (- tto: to, 10) — 1| oo < (bian_lqulJ> o _a;:;)u;mfﬁ, Vit > T, to € R, (5.36)
Proof. The proof of this theorem is divided in two parts. In the first part, we shall give the proof
of the general case. Next, in the second part, we consider the proof of the particular cases.
Lete > 0 be given. Since, by (3.25), |V (v — v (-, ¢ +to; to, uo) loo < EV5 H(u ul)(,t+
to; to, o) [leo and [[A(v — vF) (-t + to;to, uo) oo < pfl(w —ul)(t + to;to,uo)Hoo for every

t > 0, we have from Remark 5.1 that

1A = vy) + Vn(uy) - V(v = v7)( £+ to; to, o) ||

< <1+§0(;+\/\/§> pull(w — ) (-t + tos to, o) flo

=C1(x)

(5.37)

(.

S,UCI<X) Xsup(t + tO)H( )<7t+ to;t()’uO)HOCHVt =0,

where Cy(x) is given by (5.31). Observe from Theorem 2.2 (i) and Theorem 2.4 (i) that
(-, + tos o, o) — uf floo < —22— V£ >0, Vg €R

Thus it follows from the first inequality in (5.37) that

MCI (X) asup

H(A(v—v )+ Vin(u ) V(v—v )) (5t +to; to, uo)||co < T——

, Vi>0,VtyeR.
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This combined with (5.33) yields that

MU + (b — X,u)u:U(l -U), (5.38)

Uy < AU+ VU -V(2In(u) — xv) + 2 "
inf —

and

C su
U, > AU + VU - V(2In(u) — xv) — %U + (b=t U1 —T). (539
inf —
Let U, (t) denote the solutions of the ODE

dQ X,LLCl (X)asup

i — bint — T (1= 1),

dt bint — X4 U (o = xpJeeU(1 = 1)

U(0) = min{ 22, 1)

and U (t) denote the solutions of the ODE

U C1(X)asup 77 = -
Cil_g = X#bi;f(i(;,u tU + (binf - Xlu)u;(rme<1 - U)

XMC1(X)0«sup

— binf— )u+,
UQ s (mf XK f b o —
T7(0) = mauc tgzme, ot Ty
Uy inf (binf XH‘)qunf

Thus, it follows from comparison principle for ODE’s that

x#1C1(x)asup

Ui(t) > 1+ G b};;’;w and 0<U,(t)<1 Vt>0. (5.40)
inf — X inf

Furthermore, it holds that

xnCh (X)asup xuC1 (X)asup
lim U, (t) = [ 1 — — b and lim U, (t) = 1+ —mX — (54])
o0 ! ( (bing — X:U’)u;inf n f=roo (bing — XM)U;inf

We claim that

U,(t) <U(x,t+to;tg,ug) UL(t), VY eR,VEt>0, Vi, €R. (5.42)
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Indeed, by setting

XU 17 1 (45, 1) — )t U(L— ) and

LU =AU +
1( ) binf_X:u

O su
£ (0) = a0 = SO oy 43, 4) — U (1 - 0),
inf —
it follows from (5.40) that

dU — -

d—tl — LE(T) = ((bing — U g — byt +to) — x)ud)TL(1=T1) 20 (5.43)
and

dU

stl — L7 (U;) = ((bint — X)u;mf — (b(z, t + ty) — Xu)u;g)gl(l -U, <o. (5.44)

Therefore, using (5.38), (5.39), (5.43), (5.44), and comparison principle for parabolic equa-
tions, we deduce that (5.42) holds. Thus, it follows from (5.41) and (5.42) that there is 7} . > 1

such that for every ¢,

xC1 (X) asup x#C1(X)asup

bin — bin —
in X in m X in

which is equivalent to

x¢1C1(X)asup

bin_
U (-t + to; to, uo) — oo < o f—;(;l;u+ f+5, Vit>T., Vi, €R.
n X in:

This complete the proof of (5.35) for the case n = 1.
Next, proceed by induction and suppose that (5.35) holds for some n > 1. We show that

(5.35) holds for n + 1. Indeed, using the last inequality in (5.37), we may suppose that for
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0 <€ < 1, we have forevery tp € R

1A = vy) + Vn(uy) - V(v = v7)( £+ to; to, o) ||

<Ch(x)puy

xsup

(£ + 1) [(U = 1)(, ¢ + to; to, o)

XHC1(X) Uy Asup
binf — X,u)uj(_inf (binf - X,u)uj(_sup

<Cy(X) i g (t + to) <( +& Vt>T,: zcRY

(5.45)

for some 7), > 1. Therefore, similar arguments as in the case of n = 1 from (5.38) to (5.44)

yield for every ¢y € R,

C u;tlp " Asup
XCI(X)Mu;sup ((XH 109 )

Bint —XH)US (5 (Bint—XH) U sup

||U(7t+t07t07u0)_]-||oo < + ¢,

(binf - Xu)u:inf

n+1
X:ucl (X)u?u gy
— ( b (b P + g, Vi 2 Tn+1,&a

(binf — XM)U;inf inf — XM)u;(rsup

for some T}, 1 . > 1.
If uf (7,t) = uf(t), then using (5.34) instead of (5.33) in the proof of the general case given
above, (5.38) and (5.39) become

Uy < AU~ VU - Vo + (xlV = ol + (b— iU - D) ul (), (546)
and
Uy > AU = xVU - Vo + (=xp|lV = 1|U + (b = xp)U (1 = U)) ui (). (5.47)

Observe that ||V (-, + to;to, up) — 1]|ec < # for every t > 0, to € R. Hence, by
n. uxinf

considering U, (¢) and U (t) solutions of the ODE

nf_X.U')ui—inf

&= (—xu(bi&ﬂ + (bing — xp)U(1 — Q)) u (t 4 to)

U(0) = min{ Mgt 1}

Uy sup
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and

+
inf_X/'L)uX inf

% = (XM@“S#U + (bine — x)U(1 — U)) uy (t + to)

U(0) = max{=2, 1+ <b X ) @ fowp 3

X inf inf — XM inf_X“)uIinf
Hence, following similar arguments as in the general case, (5.40)-(5.44), we deduce that (5.36)

also holds. This completes the proof of the theorem. [

We now present the proof of Theorem 2.5, which is based on the previous result.
Let U(x,t;tg,uo) = U(z,t;to;up) — 1 and V(a:,t; to,uo) = V(x,t;to,up) — 1. Then it

follows from (5.33) that U(x, t;to, ug) satisfies

U, =AU + VU - V(2In(uf) — xv) — (b(x,t) — xp)ul (t)U

! N (5.48)
+ U (Mo =) + Vin(u) V(v — o)) — (b(z, 1) — xp)uf U>.
Let @, (¢, s) be the solution operator in C?_.(RY) of
up = Au+ Vu - V(2In(u)) — xv) — (b(z,t) — xp)ulu. (5.49)
Then, by the comparison principle for parabolic equations, we have
1@, (1, 5)|] < e~ Brmxiie g — 5> 0. (5.50)

Proof of Theorem 2.5. We shall give the proof of the general case. The proof of the particular
case follows similar arguments. We suppose that 0 < x < o, where Y is given by (5.32).

Hence, by definition of x, there is a positive entire solution of (2.6) (u] (,t), v} (z,t)) satis-

fying

T\ L XMCI (X)u;sup

<1
(binf - X,u)u;inf
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Exponential Stability of (v} (z,t), v} (7,?)): By Theorem 5.1 we may suppose that there is

t, > 1,t, < t,i1, such that

N Ch(x)ud, "
10y t0: oy ) oe = 1T s for o)1 oo < 2 [ 2P ) sy e
(bint — X:u)uxinf
(5.51)
By the variation of constant formula, it follows from (5.48) that for every ¢ > 0,
Ut +ty + toi to, uo) = Lin(tito) + XTan(tito) — Isn(t,to), (5.52)

where
Iip(t o) = @y (t + by + tos t + to)U (-, t + toito, uo), VE > 0,¥n > 1,

t
Lyn(t, to) := /0 O, (t+tn+to, s+tntto) (U (A(v—v)+V 1n(u;§)-V(v—v;§))) (-, s+tntto)ds,

and
t ~
I3 n(t, 1) = / Do (t +tn 4 to, s+ tn +t0) (b — xp)ul U (-, s + t,, + to)ds.
0

Next, it follows from (5.51) and (5.50) that for every n > 1, ¢y € R,and ¢ > 0,

110 (2, t0) || oo <€ im0 %ine | T (- 0 + to; o, o) || oo

<9 XHC1(X)udy, ot Gime—xp)uf (5.53)
T\ (e = XU 1

(.

::Kl,n
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Next, forevery 0 < s <¢,n > 1,and ty € R, we have

D (t 4ty + to, s+t + 1) (U (Mo — ) + VIn(ul) - V(o —0]))(s + tn +t0)) [l

<e (t=s) (bint =Xk 1

(U (v — v)) + Vin(ul) - V(v - v;))) (s 4 tn + t0)||oo

n

(149 xHC1(X)udy, [ ()x(v —v)) +V1n(u;) . V(v—v;)) (s 4+t +t0)]|o
- (bint — X”)u;inf e(t_s)(binf_xﬂ)u:mf
N (binf - X/“L)u;inf 2u;inf\/x e(binf—XM)u;inf(t—S)

IN

Lo (0O \ ([ GOOVEY L I8 b )
(Dint — XH)U g Q%Jginf\/X XD bine = Xp) g ()

5:K2,n

(5.54)

We also have

|y (t + ty + to, 5+t + t0) (b — xp)u U (-, 8 + ty + t0) ||

XHC1(X) Uy,
binf - X:u)u;inf

=K3n

S2<bsup—xu>uisup<< ) 1Ty 5+t + to) e~ =00 (5:59)

Thus, it follows from (5.52), (5.53), (5.54), and (5.55) that

[T (-t + tn + to: to, uo)||so

t
SKl,nG_(binf_Xﬂ)t + (XK2,n + K3,n) / 6—(t—5)(binf—xu)u;sup ||U(.7 s+ t, + to: to, uO)HoodS;
0
which is equivalent to

el Gt XN s || T7 (- ¢ + t, + to; to, o) || oc

t
<Kin+ (xKap+ Ks,) / e Bt =X sun || TT (- s + 1, + to; to, o) ||cods, ¥ > 0.
0

Therefore, by Gronwall’s inequality, we obtain that
et im0 || T (- 4, + to; o, thp)||oo < Ky peOXE2n K30y ¢ >0,
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That is

(U (-t + ty =+ to; to, uo)||eo < Kl,ne‘(("inf‘x“’@sup‘xf{?’”‘KS’”)t, Vit>0. (5.56)

By (H), we have

Co(x)\/N> | .

lim Ky, = lim K, =0 and  lim Ky, = (1 + Ny fitly g = HCT(X) Uy gup-

n—o0 n—o0

Since (H ) holds, then there is ng > 1 such that

Qi 1= Sup ((binf - X:U’)u)tsup - XKZ” o K3’n) > 0.

n>ng

This combined with (5.56) yield that

(-t =+ tng + to; to, uo) — U (t+ tng + o) lso < Ul gy Kinee ™ Vi >0,

whch implies that (u} (x,t), v (z,t)) is exponentially stable.

; —~ — . ot e " : :
Uniqueness of (uf(z,t),v7(z,t)): Let (4f(z,t),07 (x,t)) be a positive entire solution of
(2.6). Then, since 0 < ﬂ;inf < ﬂ;sup < o0, it follows from the exponential stability of

+

(uf (z,t), v (x,t)) that there is a positive constant K depending only of @ N inf>

Yau
X inf? uxsup? u

+
and uy ., such that

Hﬂ;<>t) _u;(r("tmoo
=|laf (-, n+ (t—n)it —nul (-t —n)) —ul(-,n+ (E—n)it —n,ul (-t —n))|s

7 X

<Ke "™ ¥n>1.

Letting n — oo in the last inequality yields that u (x,t) = @] (,t). This completes the proof

of Theorem 2.5. ]
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Chapter 6

Asymptotic spreading and traveling wave solutions

In this chapter we study spreading speeds of solutions with compactly supported initial func-
tions, as well as the existence and non-existence of traveling wave solutions of (2.6). Section
1 1s devoted to the proof of our main result on the spreading speeds. Section 2 contains results

which will be used later in Section 3 for the proof of the existence of traveling wave solutions.

6.1 Asymptotic spreading

In this section, we study the spreading properties of positive solutions and prove Theorem 2.6.

We first present two lemmas.

Lemma 6.1. Consider

wy = Au+ qo(z,t) - Vu + u(ag — bou), xRV, 6.1)

where qo € RY is a continuous vector function and ay, by are positive constants. Let u(z, t; up)

be the solution of (6.1) with u(-,0;ug) = ug(-) € C° +(RY) (up(z) > 0). If

lim inf inf(4ag — |go(z,1)]?) > 0, (6.2)

|z| =00 t>0

then for any nonnegative initial function uy € C°_..(RY) with nonempty support,

unif

liminf u(x,t;ug) >0 V0 <c<c,

t—o0,|z|<ct
where ¢ = liminf|g| o infi>0(2v/ao — |qo(x, t)]).
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Proof. 1t follows from Theorem 1.5 in [3]. O]
Next, we prove Theorem 2.6.

Proof of Theorem 2.6. (1) Let t; € R and uy € ijmf(RN ) with uy > 0 such that there is

R > 1 with up(z) = 0 for all ||z|] > R. By (2.11), for every ¢ > 0 there is 7. > 0 such that

a u
(-, ¢+ to; to, uo)[| < ﬁ te, VE>T. (6.3)
inf —

By (3.25) and (6.3), we have that

VN
2v/A

VUt + to; to, o)l < ( T 4), vt> T (6.4)

inf — XM

Choose C' > 0 such that

up(z) < Ce Varltl vy g e RV,

and let

K. := sup [|Vu(-,t+ to;to, uo)| o

0<t<T:

Let £ € SV~ be given and consider

Tz, ;&) i= CeVamm(@t=(2yamptxko)t)
Recall from inequality (3.26) that u,(-, - + to; to, ug) < Lou(-, - + to; to, ug), where

L(w) := Aw—xVo(-, -4s+to; to, tg)- Viw+(asp—(bing—xp)w)w, Vw € C*' (R % (0, 00)),¥ s > 0.

76



‘We have that

U, — LU

= ((2asup + X/AsupK=) — Asup + X/Tsupl - VU(-, - + tos o, uo) — (asup — (bint — xp)U)) U
= (X/@sup (K — € - V(.- + to; to, ug)) + (bt — xp)U) U
> (

X\/ asup H€ VU( -+ 2SO;th uO)”OO) + (binf - XM)U) U Z 0.

Since ug(z) < U(x, 0; &), then it follows from the comparison principle for parabolic equations

that
u(z,t +to;to, o) < Uz, t;€), Ve eRY Vte[0,T], VEe SV (6.5)
Next, let
L u\/W( G )
2v/\ 1
and

W (x,t; ) = e VEwEo=CVaw XLV (0 T ¢), Vt>0,VzeRY, veEe SV L

Similarly, using inequality (6.4), we have that

Wt £Ta asup f VU( -+ TE + t(); to, Uo) + (binf - X/L)W) W

v

( asup ||§ VU( -+ TE + th t07 UO)HOO) + (binf - XM)W) W
0.

v

But by (6.5), we have that W (z,0;¢) = U(x,T.;€) > u(-,T. + to;tg,up). Hence by the

comparison principle for parabolic equations we obtain that

u(z,t +to;to, o) < Wi, t;€), Ve eRY, Vt>T., VEeSV (6.6)
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Observe that

X1V N agup
(binf - X:u)\/X

- Cj—(a/7 b7X7 >\’ ILL>'

lim (2/asup + X Le) = 24/Asup + 5

e—0t

Thus, it follows from (6.6) and the definition of ¥ that

lim sup u(x,t+ to; to, up) =0,

t—o00 |z|>ct

whenever ¢ > ¢ (a, b, x, A, iv). This completes the proof of (1).

(2) We first claim that

Xty ) Npx2a2,,

4 Ainf — —
( ! bing — X1t 4/\<binf - X,U)2

> 0. 6.7)

XHAsup

. (6.7) is equivalent to 4(a;,s — fi) — %ﬂz > (. This implies that

Indeed, let 1 =

~ X HAsup < Qainf

O<p= be — .
inf — XU 1+ 14+ Nf}i\nf
Nain
e (YT o

>
XM 20ing

and then

This proves the claim.
Next, by (2.11), (3.24), and (3.25), for every € > 0, we can choose 7. withT. — ccase — 0

such that

HGsup

|lo(-, t4+to; to, uo)||co < ————
)\<binf - X:u)

+e and [|[Vo(-, t+1o;to, uo) |l <

u\/ﬁ<b Osup +€>

2/ A \bint — XH
(6.8)

forallt > T..
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Note that for every ¢ > O and t > 1. + ¢y, we have

ut('a ';t()a U’O) Z AU(, B tO; uO) - XVU('a ';th U’O) : VU’(7 ) th UO)

XHAsup

+ (g — o
( binf — XM

For every € > 0, let U(, -; €) denotes the solution of the initial value problem

Ut('a ’5) = AE(U)(v ';€>’ t> O’ z < RY

U(-,0;¢) = u(-, T. + to; to),

where
A (U)(,58) = AU 58) +q(+58) - VU, 58) + U 5e) FL(U 45 €)),
XHGsup
FE = Uinf — 77— — - bsu - 9 V R
(5) = it b e (bsup — xH)s, Vs €
and
—XVU(',t—i‘ TE + to;to,Uo), t Z O
q(z,t;e) =

_XV’U(" TE + th tO) uO)v t<0.

— XME — (bsup - XU)U('a 5 to, UO))U('7 s to, Uo).

(6.9)

(6.10)

Hence, by the comparison principle for parabolic equations, it follows from (6.9) and (6.10)

that

uw(z,t+ T, +to;ug) > U(x, t;e), €>0,t>0, xRV,

Observe that for 0 < £ < 1, since (H3) holds, it follows form (6.7) and (6.8) that

(6.11)

2 ZN 2
lim inf (4F.(0) — ||q(z, t;€)[|?) = AF.(0) — 22 (b Gsup +g> >0. (6.12)

R—00 t>0,[z|>R 4\ inf — X}

By Lemma 6.1, it holds that

liminf inf U(z,t;e) >0

t—oo  |z|<ct
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forevery 0 < e < 1land 0 < ¢ < ¢ where

c; ;= liminf inf (2\/ainf — bxuﬂ — xpe — x|[Vo(z,t + to;tg,uo)”) .
XH

EE inf —

Combining inequalities (6.11) and (6.13), we obtain that

liminf inf w(z,t 4+ 1. + to;to,up) >0 VO0<e<k 1, VO<c<cl (6.14)

t—oo |z|<ct (5

Using (6.8), we have that

\ XHsup pv N ( Qsup )
€. 2 24 Qing — 7 — XME — +¢€
\/ ! binf — XU XH X 2\/X binf — XK
Hence
su \% N su %

liminf ¢l > 2\/ainf _ XHGswp  XHV e c (a,b,x, A, 1) (6.15)

e—0t bing — X1t 2\/X(binf — XH)
This together with (6.14) implies (2.27). [l

6.2 Super- and sub-solutions

In this section and the next one, we take N = 1 and suppose that the functions b(z,¢) and
a(x,t) are both constant. We construct super- and sub-solutions of some equations related to
(2.6). They will be used to prove the existence of traveling wave solutions in next the section.

We first note that (u(x, t), v(z,t)) is solution of (2.6) if and only if the function (@ (z, t), 0(x, t)) =

(Su(Lox, Lt), 2o(Lo2, L1)) solves

a
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where y = X and A= % Hence, it is enough to prove Theorem 2.7 under the assumption
a = b= p = 1. So, without loss of generality, we shall suppose that « = b = = 1 in this
section and the next section.

Observe that, under the assumption a(z,t) = b(z,t) = p = 1, if (u(z,t),v(x,t)) = (U(x —

ct),V(xz — ct)) is a traveling wave solution of (2.6) connecting (1, +) and (0, 0) with speed c,

then (u,v) = (U(x),V (x)) is a stationary solution of

Up = Ugy + CUy — YXUVz +u(l — x v — (1 — x)u), z €R,
(6.16)

0=1v4 —Av+u, x€R,

connecting (1, %) and (0, 0). For a given ¢, showing the existence of a traveling wave solution
of (2.6) connecting (1, 1) and (0, 0) is then equivalent to showing the existence of a stationary
solution connecting (1, 5) and (0,0). Throughout this section, we assume that 0 < x < 1,
unless specified otherwise.

For every 0 < 7 < min{1,v/\} and z € R define

T oand e, =7+ —.

pr(z) =e -

Note that for every fixed 0 < 7 < min{1,/\}, the function ¢, is decreasing, infinitely differ-

entiable, and it satisfies
ol(x) + el (z) + p(x) =0, VzeR, (6.17)

and

1 A
@) 3T (r) = —pr(z) VzeR (6.18)

For every 7 € (0, min{1,+/\}) define

UF(z) = min{ or(m)h =4 X i (6.19)

T

I—x
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and

. 1 1
V() = min{ Ni—x) A= - ()} (6.20)

Since ¢, is decreasing, then the functions U and V* are both non-increasing. Furthermore,

the functions U+ and V. belong to C?

unif

(R) forevery0 <6 <land0 <7 < 1.

Let 0 < 7 < 1 be fixed. Next, let 7 < 7 < min{1,27} and d > 1. The function ¢, — dy;

achieves its maximum value at @, 7 4 := @ and takes the value zero ata, ; ; := lfde)
Define
0 if x<a, -,
U~ (z) == max{0, p,(x) — dp:(z)} = (6.21)
or(2) —dpz(z) ifr>a;,
Clearly, 0 < U7 < U} < 2o and U € C9(R) forevery 0 < § < 1.
Let us consider the set £, defined by
E={uecC +(R)|U- <u<U'} (6.22)

for every 0 < 7 < 1. It should be noted that U~ and & all depend on 7 and d. Later on, we
shall provide more information on how to choose d and 7 whenever 7 is given.

For every u € C?

unif

(R), consider
Uy =Up + (¢r — XV (z;u))Up + (1 — xAV(z;u) — (1 = x)U)U, z€R, t>0, (6.23)

where

_|w—z\2

00 —As
V(x;u):/o /R\B/Re s u(z)dzds. (6.24)

It is well known that the function V' (z;u) is the solution of the second equation of (2.6) in

C? (R) with given u € C® ..(R).
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For given open intervals D C R and I C R, a function U(+,-) € C**(D x I,R) is called a

super-solution or sub-solution of (6.23) on D x [

U > Upe + (¢r — XV (50)) U, + (1 — XAV (z3u) — (1 —x)U)U forze D, tel
or

Ui <Upp + (¢r — xXV'(z;0)) U, + (1 — xAV(z;u) — (1 = x)U)U forz e D, tel,

respectively.

Theorem 6.1. Suppose that 0 < x < 3 and 0 < 7 < min{1, V\} satisfy

(1 4+ VA = 712) < 1—x

2
A—1T12 Y (6.25)

Then for every u € &,, the following hold.
(1) U(x,t) = ﬁ and U(z,t) = @, (x) are super-solutions of (6.23) on R x R.

(2) There is dy > 0 such that U(x,t) = U~ (z) is a sub-solution of (6.23) on (a, ; 4,00) x R
foralld > dyand T < 7 < min{1, 27,7 + ﬁ} Moreover, U(z,t) = U-(zs) isa

sub-solution of (6.23) on R x R for 0 < 0 < 1, where x5 = a, z ;+ 9.

We recall from Lemma 3.2 that
1
max{ ||V (:;u)[loos IV (+50)loos V(55 u) |} < max{1, Pl Vues  (6.26)

The next lemma provides a pointwise estimate for |V (+; u)| with u € &, .

Lemma 6.2. For every 0 < 7 < min{1,V\} and u € &,, let V(-;u) be defined as in (6.24),
then

0< V(u) < V(). (6.27)
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Proof. Forevery u € &, since 0 < U~ < u < U then

0<V(U7) SV(iu) S V(UT).

Hence it is enough to prove that V(-; U) < V.7 (-). Forevery x € R, 0 < 7 < 1, we have that

o “asg _la—z|?
e g (2)
dz )ds
/ ( R Vs )
/ / —z e—T(x—Zfz dS _ / / |z—T\/§|26T2sdz> ds

_ —>\—’7'S Z—T o >\T5 _SOT(‘%)
_ﬁ/o e )/ - ‘ﬂdz ds =e~ / )sds = O

Thus, we have

—z|2

2
> e Me m Uf(2) /OO e oo 1
= T-—~dz)ds = ———————min{—, p.(2)}dz)ds
| ([ ==y [ ([ = ninl= . eloa)

2
1 oo e—)\se—‘xzszl 0o —/\s - Zz
gmin{—/ /—dzds, / ( 2 dz)ds} = V().
1 —XJo Jr 4drs 0 R \/ or(2) (@)

Next, we present a pointwise estimate for |V'(+; u)| with u € &, .

Lemma 6.3. Letu € C° (R) and V (-;u) € C>:(R) be the corresponding function satisfying

nif

the second equation in (2.6). Then

V' (z;u)| < o (z) (6.28)

for every z € R and every u € &, and 0 < 7 < min{1, V\}.
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Proof. Letu € &, and fix any x € R.

"(z;u) / / Z2§ x47rs - u(z)dzds = \/_/ / u(x + 2v/s2)dzds.
(6.29)

Observe that

\/_/ / L&) e e o (z + 2/52)dzds
~(A=r%)s x) [*e” z4+T
= :/%) A \/’ (/Relz|f|fl2dz>d52¢:/(%) ; f < R| twﬂ > i

prlw) [* e / 22
< - dz)d
= 7 ( R(|z|+7‘\/§)e z> s
z) [ (1+ pyws)e 1-1s 1 T
_ul )/ (1 + py/7s) ds — ( 4 (@),
VT Jo Vs VA—T A= p
(6.30)
Since u < ., (6.28) follows from (6.29) and (6.30). The lemma is thus proved. [l
Proof of Theorem 6.1. For every U € C**(R x R,), let
LU =Upy + (¢ — XV'(u)Up + (1 = XV (5 u) — (1 = x)U)U. (6.31)

(1) First, we have that

£ =1 =WV (50) = D= =~V () <0,

Hence U(x,t) = ﬁ is a super-solution of (6.23) on R x R.
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Next, it follows from Lemma 6.3 and (6.25) that

L(pr) =@ (x) + (cr = XV (5 u) @l (x) + (1 = XAV (5u) = (1 = x)@r)er
= (&) 4+ e 4 7)) XV (5 u) = XAV (5 u) — (1= x)er)er
0 (6.32)
=(mxV'(5;u) = XV (1) = (1 = x)er)er
SX(T(T +VA-7%) (1- X))(p3

< 0.
A— 72 X -

Hence U(x,t) = . (z) is also a super-solution of (6.23) on R x R.
(2) Let O = (@, 7 4,00). Then for z € O, U (z) > 0. For x € O, it follows from inequality

(6.28) that

LU-

=1, — P2 + (cr — XV (50) (=T, + dFps) + (1 — XAV (5u) — (1 — x)U)US

= (1 =7, + 1) o +d (Fer, = 72 = 1)z — XV (5 u) (=7 + dTps)
—_— —_——
=0 =Ap

— (XAV + (1 =x)U)US

>dAppz — X’V/(ﬂ w)(tor + dipsz) — X)\VjU; —(1- X)[Uf]z

T

sddop— T () - VU — (1 U
>dAgps — X(T +AT> (Tsof + d?so;> ©r — Af—irz%UZ - (1=x[U 7T
=dAgps — EXT(T J;T) : 9972 +1- X)J 2
—A,
+ d<2(1 -X) — x%(T j;\_/?) + >i)\7_2>907§0% — (1 — x)¥3.

Note that U~ (z) > 0 is equivalent to ¢, (z) > dyz(x), which is also equivalent to

d(1 = x)p-(2)pz(x) > d*(1 — x)pi(x).
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Since A; > 0, thus for z € O, we have

LU (z)
Hr VAT
>dAopz(x) — A (z) +d ((1 - X) — XT(T 2 ) + Af 72> or(z)pz(7)
— ,
dAy (o
—A _(27'T)ac_1 2 +dA N - ]
(e )2 (@) + dAspr(2)ps (@)

Note also that, by (6.25),

_ (1T + VA —12) - Y/ 2
A2:X(1XX_ J;\_T2 >+)\i<72<>\—(7—7)(7+ /\_T)> (6.33)

> (A-F-nr+ VA=) 20,

A— T2

~ A
whenever 7 < 7 + ) w—t Observe that

5 V(] — ui
A, = B =—pl)
i
Furthermore, we have that U (z) > 0 implies that z > 0 for d > 1. Thus, for every d > dy :=
max{1, ﬁ—é}, we have that

LU (z) > 0 (6.34)

whenever z € O and 7 < min{27, 7 + ﬁ} Hence U(x,t) = U (z) is a sub-solution of
(6.23) on (a, 7 4,00) x R.

Note that for 0 < § < 1,

(1 =0V (i) = (1= U (@)U () 21 = 12 = (L= U7 (o) U (25) >0 V€ R,

whenever 0 < x < 4, where 25 = a,;,+ 0. This implies that U(z,t) = U (xs) is a

sub-solution of (6.23) on R x R. O
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6.3 Traveling wave solutions

In this section, we investigate the existence of traveling wave solutions of (2.6) connecting
(1, %) and (0,0) and prove Theorem 2.7 (i). We first prove the following theorem and then

prove Theorem 2.7 (i).

Theorem 6.2. Suppose that 0 < 7 < min{1,vA} and 0 < y < %satisfy (6.25). Letc, = T—l—%.

Then (2.6) has a traveling wave solution (u(z,t),v(z,t)) = (U(x—c;t), V(x—c.t)) satisfying

lim U(x)=1, lim Ulz)

T——00 r—o0 77T

=1.

Our key idea to the proof of the above theorem is to prove that, forany 7 > 0 and 0 < y < %
satisfying (6.25), there is u*(-) € &, such that U = u*(-) is a stationary solution of (6.23) and
u*(—o0) = 1 and u*(o0) = 0, which implies that (u(z,t),v(z,t)) = (v*(x — ¢, t),V(z —
c-t;u*)) is a traveling wave solution of (2.6) connecting (1, ;) and (0, 0).

In order to prove Theorem 6.2, we first prove some lemmas. Fix v € &,. For given

ug € C? +(R), let U(z, t;up) be the solution of (6.23) with U(x, 0; ug) = ug(z). By the argu-

nif

ments in the proof of Theorem 2.2, we have U (x,¢; U') exists forall t > 0 and U(-,;U') €

C([0,00), Cli(R)) N CH((0, 00), Cpyip(R)) N C*H(R x (0, o0)) satisfying
U('> g U:>v Ux('» g U:)a wa('» l; U:_)> Ut('7 g U:_) € 06((07 00)7 Znif(R)) (6'35)

for0 <6, v <1.

Lemma 6.4. Assume that 0 < 7 < min{1,v/A}, and 0 < x < 1 satisfy (6.25). Then for every

u € &,, the following hold.
(i) 0 <U(-,t;UF) < UF(-) foreveryt > 0.

(ii) U(,t;UF) S U(t1;UY) for every 0 <ty <ty
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Proof. (i) Note that UF(-) < ﬁ Then by the comparison principle for parabolic equations

and Theorem 6.1(1), we have

1
U(x,t;Uf)Sl— VeeR, t>0.
- X

Similarly, note that UF () < ¢, (x). Then by the comparison principle for parabolic equa-
tions and Theorem 6.1(1) again, we have

Uz, t; UD) < @, () VzeRt>0.

Thus U (-, ¢; U) < U}. This completes of (i).

(i1) For 0 < ¢; < ¢4, since
U to; US) = U 1, Ut — 113 U)))
and by (i), U(-, ty — t1; UT) < U7, (ii) follows from comparison principle for parabolic equa-

tions. ]

Let us define U(z; u) to be

U(z;u) = lim U(z, t; U) = %I;g Uz, t;US). (6.36)

t—o00

By the a priori estimates for parabolic equations, the limit in (6.36) is uniform in x on compact
subsets of R and U(+;u) € C?_ (R). We shall provide sufficient hypothesis on the choice of d
to guarantee that the function U (-; u) constructed above is not identically zero for each u € &;.

Now, we are ready to prove that the function u € £, — U(-;u) € &, for d large enough.

Lemma 6.5. For every 0 < x < %, 0<7<7<min{l,27,7+ ﬁ}, there is dy > 1

such that

Ux;u) > w (6.37)
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foreveryu € £,t>0,and 0 < § < 1, whenever d > d,,.

Proof. Letu € &, be fixed. Let O = (a, : 4,00). Note that U~ (a, - ;) = 0. By Theorem 6.1(2),
U= (x) is a sub-solution of (6.23) on O x (0, 00) for d > dy. Note also that U (z) > U (x)

forz > a,:4and U(a, z4,t;UF)) > 0forall £ > 0. Then by the comparison principle for

T,7,d)

parabolic equations, we have that

for d > d,.
Now for any 0 < § < 1, by Theorem 6.1(2), U(z,t) = U (z5) is a sub-solution of (6.23)
on R x R. Note that U} (z) > U~ (x5) for x < x5 and U(xs,t; UF) > U~ (xs) for t > 0. Then

by the comparison principle for parabolic equations again,
Uz, t; UN) > U= (x5) Vo <uazs t>0.

The lemma then follows. OJ

Remark 6.1. It follows that under the assumptions of Lemmas 6.4 and 6.5
Us() SUCHEUS) <US()

foreveryu e E,t>0and (0 < 6 < 1, where

This implies that

Urs(1) SU(5u) SUS()

foreveryu € E,. Henceu € &, — U(-;u) € &;.
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From now on, we suppose that 0 < 7 < min{1, \/X}, and 0 < x < 1 are fixed and satisfy

inequality (6.25). Next choose 7 such that

T <7 <min{l,27,7 +

1
A

and take d > dy, where d; is given by Lemma 6.5. We have the following important result.

Lemma 6.6. Assume that 0 < ju,x < 1 satisfy (6.25). Then for every u € &, the associated

function U(-; u) satisfies the elliptic equation,
0="Us + (¢c; — xXV'(x;u))Up + (1 = xA\V(z;u) — (1 — ) U)U VzeR. (6.38)

Proof. Let {t,},>1 be an increasing sequence of positive real numbers converging to co. For
every n > 1, define U,,(z,t) = U(z,t + t,;u) for every x € R, ¢ > 0. For every n, U, solves

the PDE

U, = 0peUp + (¢7 — XV (2;1))0,Up + (1 — xAV(z;u) — (1 — x)Up)Uy, x €R, t >0,

Un(+,0) =U(:, ty; u).

Let {T'(t)}+>0 be the analytic semigroup on C? ..(R) generated by A — I and let X# =
Dom((I — A)P) be the fractional power spaces of I — A on C? .(R) (8 € [0, 1]).

The variation of constant formula and the fact that V" (x; u) — AV (z;u) = —u(x) yield that

U ti) = TOUL+ [ 7= 8)(((er =XV 500,

N J/

o ()

+/0 T(t—s)(?—Xu)U(-,s;u)ds—(l—X)/O T(t — s)U?(-, s;u)ds .

N N J/
-~ -~

I3 (t) 1y (t)

Let0) < 3 < % be fixed. We have that

5 - c .
110 < Cot~Pe U lloo = Tt P
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Next, using inequality (3.1) , we have that

[12(2) | xe SCﬁ/O (t =) e (e = XV (5u)U(, 5) o

t—s)ite 1-x
And

t
IE(Ollx <Co [ (¢ 5) P I 2 = U5
0

< Gs Cs
“1-x - X I—x

t
X -8, —(t—s)
2 t— ds <
( +1—X)/0( o) 8_1

Similar arguments yield that

Cs
(1—x)?

[ La(t) I xs < I'(1-p).
Therefore, for every 1" > 0 we have that

sup U t;u) || xe < My < o0,
t>T

where
G
=1~ ,

1

JE(L=B) + (5 = B))|-

My 5

TPe T+ (e, + ————
( Al =x)

Hence it follows that

sup ||Un(+,t)||xs < My, < o0.
n>1,6>0

Next, for every ¢, h > 0 and n > 1, we have that

Cﬁ hﬁef(ﬂrt”)

W“Ujﬂoo < Cph’ 177 U ||,

Nt +h+t,) — Li(t+t,)]|xs <
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(cr + X))/O : s < 72 (et 5 DG — )

(6.39)

(6.40)

6.41)

(6.42)



H12<t +h+ tn) - 12<t + tn)HX5
t+t,
sA 1T = DT+t — $)(((cr — XV (s 5:0) U, 550))a) | xsds

t+tn+h
+[ ITG + b+ b — 5)(((er — XV (53 0))U 55 0))2) | xods

+in

t+in
S%W/‘(VHwﬂV&%#%ﬂW@—XVh$WW@$MM@
0

t+tn+h —(t+tn+h—s) V(- s U(-. s
o, [ ler =XV (s a)UC s ),
t

tn (t+t, +h—s)t2
C 1 t+tn+h —(t+tn+h—s)
< et [0 - ) +/ ‘ ds]
1—x A1 =Xx) 2 i, (t+t, +h—s)0t2
C/j X 1 héfﬁ
< IR, S | N of e S
ST +>\(1—X))[ (2 B)J“%_ﬁ}’
and
HIS(t +t, + h) - 13<t + tn)”X5
t+t,
s/ NT(R) = DT+t — $)(2 — XU (-, 530))] xads
0
t+tn+h
—g/ 1T+t h— $)(2 — xW)U (- 550)) | o
tat,
Cg X h'=P
< 2 T (1 —
ST+ T - B) + 7).
and

| Ls(t +t, +h) — L(t+t,)| xs

S/O n I(T(h) — )T (t +t, — s)U(-, s;u)|| xsds

t+tn+h
+/ IT(t 4+t + h— )U(-, 550) | xods
t

+tn
Oﬁ ﬁ hliﬁ
S(l—x)Q[h F(1—5)+1_B :

(6.43)

(6.44)

(6.45)

It follows from inequalities (6.41), (6.42), (6.43), (6.44) and (6.45), the functions U,, : [0, c0) —

X7 are uniformly bounded and equicontinuous. Since X” is continuously imbedded in C*(R)

for every 0 < v < 20 (see [16]), therefore, the Arzeld-Ascoli Theorem and Theorem 3.15 in

[13], imply that there is a function U(-, ;u) € C*'(R x (0, 00)) and a subsequence {Un }ns1
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of {U, }n>1 such that U,y — U in C2' (R x (0,00)) as n — oo and U (-, -; u) solves the PDE

loc

U = 9paU + (cr — XV (x;0))0,U + (1 = xAV(z;u) — (1 = x)0)U z€R, t>0

U(z,0) = lim, o U(x, t,;u).

But U(z;u) = limy_,o U(x,t;u) and t,y — oo as n — oo, hence U(x,t;u) = U(z;u) for

every x € R, ¢ > 0. Hence U(+; u) solves (6.38). Il

Lemma 6.7. Assume that0 < p < land(0 < x < % satisfy (6.25). Then, for any givenu € &,

(6.38) has a unique bounded non-negative solution satisfying

liminfU(z) >0 and lim Ulw) = 1. (6.46)

T——00 rz—o00 77T

Proof. First, note that for any two Uy, U; € C° . (R) satisfying (6.46) with U;(x) > 0 for

x € R, we can define the so called part metric p(Uy, Us) as follows:
p(U,Uy) =inf{lna|a > 1, $U1($) < Us(x) < aly(z), VY zeR}
Moreover, there is a > 1 such that
p(Uy,Us) =Ina  and $U1($) < Uy(z) <ali(x), VzeR.

Next, fix u € &,. Suppose that U; (z) and Us(x) are two solutions of (6.38) satisfying (6.46).
Let o > 1 be such that p(Uy, Us) = Ina. Note that U(z,t;U;) = U, for all ¢ > 0 and every
1 = 1,2. Hence

p(U(-,t;Uy),U(-,t;Us)) =Ina, Vi¢>0.

Assume that o > 1. Note that

1
aUl(l") < Uy(z) < aly(z), VzeR,
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and

(@Ui)i > (aUi)zz + (cz = xV'(;u))(alU)e + (1 = XAV (5 u) — (1 = x)(al))) (al;)

for ¢ = 1, 2. Thus the comparison principle for parabolic equations implies that

Us(z) < U(x,t,al;) < alUy(z) Ve eR, t>0

(6.47)
Ui(z) < U(z,t,als) < aly(x) VzeR, t>0.
Since U;(x) > 0 for every x € R and lim, ., g_—(fi) = 1 for each 7 = 1, 2, then for every
1 < o < a, there is R, > 1 such that
Us(z) < &'Uy(x), Ui(z) < a'Us(x) V> Ry. (6.48)
Since U;(x) > 0 for every € R and liminf, , ., U;(z) > 0 for each ¢ = 1, 2, then
ly = min{zigx}%fa/ Uy (z), xigl}%fa/ Us(z)} > 0, V1<d <a. (6.49)
Forevery 1 <o’ < a,i=1,2and x < R, we have
(@) =(alU;)ee + (¢r — XV (x;u)) (),
+ (1 = xAV(z;u) — (1 = x)(al;))(al;) + (1 = x)(a — 1)Ui(al;) 6.50)

>(al;)e + (¢r — XV (250)) (),

+ (1= xAV(z;u) = (1 = x)(li))(ali) + (1 = x)(a = Dlw (all).
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On the other hand, if we set W*(z,t) = e'U(z, t; al;), it follows from (6.47) that

W) =eW'+eUy(z, t; aU;)
=W+ Wi, + (¢; — xV'(z;u)) WL+ (1 — XAV (z30) — (1 — ) WHW!
+ (1 = x) (e — 1)U(z, t; aU)W*
<WE A4 (er — XV (x;u))WE+ (1 — xAV(z3u) — (1 — ) WHW' + eW*
+a(l — x) (e — 1HU;W*
Wy, + (e = XV (1)) Wy + (L= XAV (2;0) — (1 x)WH W

+ (2 +a(l = )(e = Lo )W,

where

L, = max{ sup U(z), sup Us(z)}.

<R,/ <R,/

Choose 0 < € < 1 such that
e+a(l—x)(e" —1)Ly <(1—-x)(a—1Dly 0<t<1.
Then, for x < R, and 0 < ¢t < 1 we have

Wi < Wi 4 (cr —xV'(z;u))WE+ (1 — XAV (z;u) — (1= )WHW + (1 — x)(a — 1)l W™
(6.51)
But inequality (6.47) implies that U (R, t; aU;) < aU;(R,) forevery t > 0 and i = 1,2. So,

choose 0 < ¢ < 1 such that

W Ry, t) = e U(Ry, t;aU;) < aU;(Ry) <t<l1, i=12. (6.52)

DN | —

Therefore, using the comparison principle for parabolic equations, it follows from inequalities

(6.50), (6.51) and (6.52) that

Wiz, t) = e'U(x, t;aU;) < alUj(z) Vo < Ry,
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for 0 < € < 1. Hence there is 0 < ¢y < 1 such that

Uz, ;aU;) <e “alUi(x) Vo< Ry, i=1,2.

Combining this with (6.47), we obtain that

Uy(z) < e *alUi(x) =< Ry

(6.53)
Ui(xz) < e aly(z) x < Ry.
Combining inequalities (6.49) and (6.53) we have that
1
T Ui(z) < Uy(z) < max{da/,e *a}U;(z) Vz eR.
Which implies that
a < max{d, e " a} < a,
which is a contradiction. Hence o« = 1 and then U; = U,. The lemma is thus proved. O]

We now prove Theorem 6.2.

Proof of Theorem 6.2. First of all, let us consider the normed linear space £ = C? ..(R) en-

dowed with the norm
oo

1
lull. = > g llullzgn, n)-

n=1
For every u € &£, we have that

1
ulls < ——.
I—x

Hence &, is a bounded convex subset of £. Furthermore, since the convergence in £ implies
the pointwise convergence, then & is a closed, bounded, and convex subset of £. Furthermore,
a sequence of functions in &, converges with respect to norm || - ||, if and only if it converges
locally uniformly on R.

We prove that the mapping £, > u + U(+; u) has a fixed point. We divide the proof in two

steps.
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Step 1. In this step, we prove that the mapping &, > u +— U(+; u) is compact.
Let {u,}n>1 be a sequence of elements of £,. Since U(-;u,) € &, for every n > 1 then

{U(;un) }n>1 is clearly uniformly bounded by = Using inequality (6.39), we have that
sup ||U(> t; un)”Xﬁ < M,
t>1
for all n > 1 where M, is given by (6.40). Therefore, there is 0 < v < 1 such that
sup U, 6 ) ey < M, (6.54)
>

for every n > 1 where M, is a constant depending only on M. Since for every n > 1 and
every z € R, we have that U (z, t;u,) — U(x;u,) as t — oo, it follows from (6.54) that

U5 un)|ov ., < My (6.55)

unif —

for every n > 1. This implies that the sequence {U(-;u,)},>1 is equicontinuous. The
Arzela-Ascoli’s Theorem implies that there is a subsequence {U(-; u,/)}n>1 of the sequence
{U(+;upn)}n>1 and a function U € C(R) such that {U(-; u,)},>1 converges to U locally uni-
formly on R. Furthermore, the function U satisfies inequality (6.55). Combining this with the
fact U= (x) < U(z;uy) < U (z) for every € R and n > 1, by letting n — oo, we obtain
that U € &..
Step 2. In this step, we prove that the mapping &, > u +— U(+; u) is continuous.

Letu € & and {u,},>1 € &Y be such that ||u, — u|, — 0 as n — oco. Suppose by
contradiction that ||U(;u,) — U(+; u)]||« does not converge to zero. Hence there is § > 0 and a

subsequence {u,, },>1 such that

UG un,) =UGu)fle 26 Vo> 1 (6.56)
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For every n > 1, we have that U+, u,, ) satisfies

0 =Usa (25 tn, ) + (¢r = XV (5 tn, )) U (%3 Uy )

+ (1 — xAV(z5upn,) — (1 — x)U(x;up, ) ) U (25 u,,) YV x €R. (6.57)

Claim 1. ||V (:;u,) — V(:;u)|l« — 0asn — oo. Indeed, for every R > 0, it follows from

(6.24) that

™ Jo
1 R —\ _ 2
< — e |up(z — 2vt2) — u(z — 2v/52)|dzds
™Jo JB(O,R)
2 2
+— e e dzds. (6.58)

~—~
—_

—X)VT {s>R or |z|>R}

Thus for every £ € N and every R > 1, we have that

||V(-'u ) = V5wl

—)\s e
\/— / /OR dZdS]HUn_“HLoo (k+2R?) | (k+2R))
2

e 2 dzds
\/_ {s>R or |z|>R}

0 B (6.59)
S\/— / / dZdS ||Un ” ~(k+2R3) | (k+2R3)))
VAN

+

2
(1= x)V7 {s>R or |z|>R}

k+2R? 9
[un = ulls + m—=—=
(1 - X)\/7_T {s>R or |z|>R}

_ 2
e Me * dzds

+

< e e~ dzds.

Now, let ¢ > 0 be given. Choose R > 1 and k£ > 1 such that

2 s 2 € 2 €
—_— e e Fdzds < = and —_— < - (6.60)
(1= x)V7 {s>R or |2|>R} 3 ; (I—-x)2" 3
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Next, choose N > 1 such that

2k+2R2

A

[ty — . < % Vn> N. (6.61)

It follows from inequalities (6.59), (6.60) and (6.61) that for every n > N, we have

[V (5 un) = V(5 u)l

1
SZ@“W-;%) — V()i oy + VG ) = VW)l r, 0

i>k (6.62)
<Z =+ V(s un) = V(s u)llpeor, 1) <€
i>k
Thus, the claim follows.
Claim 2. |V'(:;u,) — V'(+;u)||« — 0 as n — oo. Indeed, it follows from (6.24) that
/ / z—1x) \122\2 (2)dzd
(z;w) s w(z)dzds
R QSV ams (6.63)

_ﬁfo /Rye MoV w(z — 2y/sy)dzds Vo € R, w e C¥(R).

Since

. _ a2
lim lyle e dzds = 0,
700 J{sz R or ly=R}

same arguments as in the proof of Claim 1 yield Claim 2.
Now, since V" (-;u,,) — V" (3 u) = (V(u,) — V(5 u)) — (uy, — ), it follows from Claim 1
that

WV u,) = V'(5u)|l — 0 as n— . (6.64)

Combining inequality (6.55), Claim 1, Claim 2, (6.64), Theorem 3.15 of [13], and the Arzela-
Ascoli’s Theorem, there is a subsequence {U (-; un, ) }>1 of {U(+; up, ) }n>1 and a function U €

C?*(R) such that {U(+; u,,)}>1 converges to U in C?

loc

(RY) and U satisfies

0= U+ (c; — XV'(x;u))Us + (1 = xAV(z;u) — (1 — x)U)U. (6.65)
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Hence U € &, and

WU tny,) = Ulls =0 as n — oo.

But

0= Upe(z;u) + (c; — xXV'(2;u)Up(z;u) + (1 — XAV (25 0)

— (1= x)U(z;u)U(x;u) VxeR.

By Lemma 6.7, U(-) = U(+; u). By (6.56),

IUC) = UG u)l =4,

which is a contradiction. Hence the mapping &, > u +— U(+; u) is continuous.

(6.66)

(6.67)

Now by Schauder’s Fixed Point Theorem, there is U € &, such that U(-;U) = U(-). Then

(U(x),V(x;U)) is a stationary solution of (6.16) with ¢ = ¢,. It is clear that

U

im )
rz—o00 77T

We claim that if y < %, then
lim U(x) = 1.

T——00

For otherwise, we may assume that there is x,, — —oo such that U(z,) — a # 1 as n — oo.

Define U, () = U(x + x,,) for every z € R and n > 1. By observing that U,, = U(+; U,,) for

every n, hence it follows from the Step 1, that there is a subsequence {U, },>1 of {U, },> and

a function U* € &, such that ||U,, — U*||, — 0 as n — oo. Next, it follows from Step 2 that

(U*, V(-;U")) is also a stationary solution of (6.16).

Claim 3. inf,cg U*(z) > 0. Indeed, let 0 < 6 < 1 be fixed. For every « € R, there N, > 1

such that « + x,, < zs for all n > N,. Hence, it follows from Remark 6.1 that

0<U, (r5) U +m0) V02> Ny
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Letting n go to infinity in the last inequality, we obtain that U (z5) < U*(x) for every = € R.
The claim thus follows.

Since x < £, it follows from Theorem 2.5 that U*(z) = V(z; U*) = 1 for every € R. In
particular, « = U*(0) = 1, which is a contradiction. This implies that U*(0) = 1 = a, which is

a contradiction. Hence lim,_, ., U(z) = 1. O

As a direct consequence of Theorem 6.2 we present the proof of Theorem 2.7.

Proof of Theorem 2.7 (i). Let 0 < y < % be fixed. According to Theorem 6.2, it is enough to
show that for every ¢ > ¢*(x) there is 0 < 7(c) < 1 with ¢;() = c and 7(c) satisfying (6.25).
To this end, let 7*(x) € (0, min{1,+/\}] be given by

7(7—1—\//\—7'2) 1—y

<
A— T2 - X

(x) =sup{ 0 < 7 < min{1,VA} :
Recall that c¢*(x) = ¢r+() = 7*(x) + (- Since the function (0,1) > pi = ¢, = 7 + 7 is
continuous and decreasing with lim,_,o+ ¢, = oo, then for every ¢ > ¢*(), there is a unique

7(c) € (0,7*(x)) such that ¢ = ¢;(.). Observe that

r(revai=7) ] 7
_ + V0 <7 < min{1,VA}. (6.68)
A / ’ ’
A — 7'2 =z 1 7-% -1
T(T—l—\/m

Hence the function (0, min{1,vA}) > 7 — is also strictly increasing. Thus,

A—T2

since 7(c) < 7*(x), we have that

@@+ VA=) (T 0+ VA= TO0P) 1oy

N 7(cP = = (02 \

Hence, applying Theorem 6.2 the result follows. Observe from the definition of 7* that

lim 7*(x) = min{1, VA}. (6.69)

x—0t
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Indeed, by a change of variable 3 = — - the algebraic equation

[ _
2

T<T+m> 1—

X
= € (0,vA 6.70
py— o TEl V) (6.70)
is transformed into a quadratic equation
2 1—x
B +6:T, 8> 0. (6.71)

/1+4(1*X>71
Note that § = Y—*—

5 is the only positive solution of (6.71). Thus solution of (6.70) is

given by

[NIES

4
o=V |1+

2
[,/1+@—1]

Thus, we have that

7"(x) = min{1, 7, },

which implies (6.69). Thus,

2 if1 <)
lim C*<X) = Cmin{l VA T
X_>0+ ’ 1+)\ .

In order to prove Theorem 2.7(i1) we first prove some lemmas.

Lemma 6.8. (/) Let 0 < ¢ < 2\/a be fixed and \y > 0 be such that ¢* — 4a + 4o < 0. Let

Ap(L) be the principal eigenvalue of

¢azz+c¢x+a/¢:)\¢, O<ax< L
(6.72)

Then there is L > 0 such that A\p(L) = Xo.
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(2) Let cand L be as in (1). Let Ap(L; by, by) be the principal eigenvalue of

Guz + (¢ +b1(2))ps + (a+ ba(2))p = Xp, O0<z <L
(6.73)

where by(z) and by(z) are continuous functions. If there is a C? function ¢(x) with

¢(x) > 0for 0 < x < L such that

¢x:v+<C+b1(x))¢x+(a+b2(x))¢§ O, O<ax< L
(6.74)

Then /\D(L, bl, bg) S 0.

Proof. (1) Let L > 0 be such that

\/4a—;l)\0—02L:7T‘

2

Then A\ = ) is the principal eigenvalue of (6.72) and ¢(z) = e~ 2% sin <—°4€H1Wx> is a

corresponding positive eigenfunction. Hence Ap(L) = Aq and (1) follows.

(2) Consider

Up = Ugy + (¢ + 01(2))ug + (a+ ba(x))u, 0<ax<L
(6.75)

u(z,0) = u(x,L) =0.

Let u(z, t; ug, by, by) be the solution of (6.75) with u(x, 0; ug, by, by) = ug(z) forug € L*(0, L).

Then we have
In [|u(-, t; uo, by, b2) || L2
t

Ap(L; by, by) = tlggo

for any ug € L?(0, L) with ug > 0 and uy # 0. By the comparison principle for parabolic
equations, u(z,t;¢,b1,by) < ¢(x) forall ¢ > 0and 0 < = < L. It then follows that

>\D(L, bl,bg) S 0. [l
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Lemma 6.9. (1) Let ¢ < 0 be fixed and let \g > 0 be such that 0 < \g < a. Let Ay p(L) be

the principal eigenvalue of

¢zx+c¢x+a¢:)\¢, O<z< L

(6.76)
¢:(0) = ¢(L) =0
Then there is L > 0 such that Ay p(L) = Xo.
(2) Let cand L be as in (1). Let A p(L; by, be) be the principal eigenvalue of
Guw + (c+b1(2)) s + (a+ba(z))p =g, 0<z<L
(6.77)

where by(x) and by(x) are continuous functions. If there is a C* function ¢(x) with

¢(z) > 0for 0 < & < L such that

Guw + (¢ +01(2)) bz + (a4 ba(2))p <0, 0<az<L
(6.78)
Then AN,D(La bl, bg) S 0.

Proof. (1)Fixc < 0and 0 < \g < a with 4a — 4)\y < 2. Let

1 | —c+ V2 —4da+ 4\

L= n .
V2 —4da+4Ng  —c— 2 —4da+ 4N\

Then L > 0, Ay p(L) = A is the principal eigenvalue of (6.76), and ¢(x) is a corresponding

positive eigenfunction, where

—cty/—datrng 4 =€ + vt —da+ 4Ny ooy Pt
2

Tr) = —e e 2 LL"
o) —c— /% —4a+ 4N\
(1) then follows.
(2) can be proved by the similar arguments as those in Lemma 6.8 (2). [l
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Proof of Theorem 2.7. We first consider the case that 0 < ¢ < 2y/a. Then there is \g > 0 such
that

& —4da+ 4\ < 0.

By Lemma 6.8 (1), there is L > 0 such that Ap(L) = Xy > 0.

Fix 0 < ¢ < 2+/a and choose L as above. Assume that (2.6) has a traveling wave solution

(

u,v) = (U(z — ct),V(z — ct)) with (U(—o0), V(—00)) = (%, 7%) and (U(oc0), V(c0))
(0,0). Then (6.16) has a stationary solution (u,v) = (U(z), V(x)) with (U(—00),V(—00)) =

bA

(%, %5) and (U(o0), V(00)) = (0, 0). Moreover, for any e > 0, this is 2. > 0 such that

0<U(x)<e, 0<V(x)<e |Vilv)<e Va>uz.

Consider the eigenvalue problem,

e + (= XVo)Or + (a — x(AV —7cV,) — (b—xp)U)p = Ao, x < <+ L

o(ze) = p(x.+ L) = 0.
(6.79)
Let A%, (L) be the principal eigenvalue of (6.79). By Lemma 6.8 (1) and perturbation theory for

principal eigenvalues of elliptic operators, A, (L) > 0 for 0 < ¢ < 1.

Note that

Upe + (¢ = xVo)Up + (a = x(AV () = 7¢Vy) = (b—x)U(2)) U =0 Va.<z<z.+L

and U(z.) > 0, U(zc + L) > 0. Then, by Lemma 6.8 (2), A\;,(L) < 0. We get a contradic-
tion. Therefore, (2.6) has no traveling wave solution (u,v) = (U(z — ct),V(z — ct)) with
(U(=00),V(=00)) = (¢, 35) and (U(00),V(00)) = (0,0) and 0 < ¢ < 2v/a.

Next, we consider the case that ¢ < 0. Let A\g and L be as in Lemma 6.9 (1). Then Ay p(L) =
Ao > 0.

Fix ¢ < 0 and the above L. Assume that (2.6) has a traveling wave solution (u,v) =

(U(z —ct),V(x — ct)) with (U(—00), V(—00)) = (£, 75) and (U(o0), V(c0)) = (0,0). Then
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(6.16) has a stationary solution (u,v) = (U(x),V(z)) with (U(—00),V(—00)) = (%, &) and

(U(00),V(o0)) = (0,0). Similarly, for any € > 0, this is z. > 0 such that

0<U(z)<e, 0<V(x)<e |Vi(z)l<e Vz>uz.

Moreover, since U(oc) = 0, there is Z. > x, such that

U.(ze) <O.

Consider the eigenvalue problem,

¢2(Ze) = ¢(Ze + L) = 0.
(6.80)
Let Ay p(L) be the principal eigenvalue of (6.80). By Lemma 6.9 (1) and using perturbation
theory for principal eigenvalues of elliptic operators, Ay (L) > 0 for 0 < e < 1.

Note that

Upe + (¢ = xVa)Up + (a — x(AV () = 7¢V,) = (0 — xp)U(2))U =0 VI, <zx<Z +L

and U,(7.) < 0, U(Zc + L) > 0. Then, by Lemma 6.9 (2), Ay p(L) < 0, contradic-
tion. Therefore, (2.6) has no traveling wave solution (u,v) = (U(x — ct),V(z — ct)) with

(U(—00),V(—00)) = (¢,7%) and (U(c0), V(00)) = (0,0) and ¢ < 0.

b’ bA

Theorem 2.7 (ii) is thus proved. [
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Chapter 7

Remarks and further works

When x = 0 and the functions a(x,t) and b(z,t) are constants, it is known that ¢;, = 2\/a
and that the traveling wave solution associated with any speed ¢ > 2+/a is unique up to a
translation which is also stable. In which case the constant 21/a is called the minimal wave
speed and coincide with the spreading speeds. There is also a huge amount of research on the
transition wave solutions in the case x = 0 and a(z,t) and b(x,t) depend on = and/or ¢. The

following questions associated to (2.6) arise from the results obtained in the above chapters.

P1. Suppose that the logistic source function is constant. Does a minimal wave speed ex-
ist in (2.6)? That is, is there a positive constant ¢*(a, b, x, 1, A) such that (2.6) has
traveling wave solutions connecting the two constant equilibria solutions for every ¢ >

c*(a, b, x, pt, A) and no such solution exists of speed ¢ < ¢*(a, b, x, i1, A)?
P2. Uniqueness and stability of transition waves in (2.6).

P3. For space and/or time dependent logistic source, does (2.6) admit transition wave solu-

tions?

P4. Finite time blow-up of solution in chemotaxis models with logistic type source on both

bounded and unbounded domains.

The results on traveling wave solutions of (2.6) presented in this dissertation have been ex-

tended to the following full parabolic chemotaxis system,

Up = Ugy — X(UV,)z + (a — bu)u,

TV = Vg — AU + LU
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Indeed, in [46], we considered this problem and developed new techniques which are nontrivial
generalizations of the ones presented in this dissertation. In general, the study of dynamics
of solutions of the full parabolic chemotaxis system is more complex. In fact, most of the
results established in this dissertation on the parabolic-elliptic case, such as global existence of
classical solutions, stability of strictly positive entire solutions, spreading speeds, are still open,

that is, the following problem remains to be studied.

P5. Dynamics in full parabolic-parabolic chemotaxis systems on RY,

u = Au — xV - (uVv) + (a(z,t) — bz, )u)u, x € D,

To = Av— v+ pu, x€D.

It is well known that micro-organisms usually have mixed directed movement toward the
gradient of chemical substances, in the sense that the mobile species move toward higher con-
centration of the chemical substances or away from it. These phenomena are describe by the
attraction-repulsion chemotaxis models. In [45, 47], joint works with Dr.W. Shen, we studied
the existence of global classical solutions, stability of constant equilibria, spreading speeds, and
existence and non-existence of traveling wave solutions in the following attraction-repulsion

chemotaxis systems

(

ur = Au — x1V(uVoy) + x2V(uVue) + u(a — bu), xRN
TOw1 = (A — Moy + x e RN

7Oy = (A — Xo1)vy + pou, r € RN,

\

In particular, taking 7 = 0 and x» = 0 in the last system of partial differential equations, we

recover as a special case system (2.6) when the functions a(z, t) and b(x, t) are both constant.
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In a joint work with Issa Bachar Tahir [22], we considered the following extended attraction

chemotaxis system with two speciesof parabolic-parabolic-elliptic type with nonlocal terms

(

ut:dlAu—)gV(u-Vw)—|—u(a0—alu—agv—agfﬂu—cmfﬂv), x €N

vy = doAv — xoV (v - Vw) + v (by — biu — byv — b [yu—by [yv), z€Q

0=dsAw+ku+lv—AIw, x€Q
\

under homogeneous Neumann boundary conditions in a bounded domain Q@ C R"(n > 1)
with smooth boundary, where ag, by, a;, and b, are positive and as, as, a4, by, b3, and b, are
real numbers. Under some explicit conditions on these paramaters, we proved the global ex-
istence of non-negative classical solutions, coexistence of the two species in a sense that the
system has a unique positive constant steady state solution which is globally asymptotically
stable. We also found some conditions on the coefficients a;, b;, and on the chemotaxis sensi-
tivities y; for which the phenomenon of competitive exclusion occurred, i.e. one of the species
dies out asymptotically, whereas the other reaches its carrying capacity in the large time limit.

Meanwhile, the following problem has been rarely studied.
P6. Traveling wave solutions in competitive/cooperative chemotaxis systems of two species.

In the future, I plan to continue working on various dynamic aspects of chemotaxis models
with logistic source functions f(¢,z,u,v) = wu(a(t,z) — b(t,z)u), including the problems

described above. I also plan to study chemotaxis models with bistable source functions.
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