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Abstract

Surface plasmonic polaritons (SPPs) are evanescent electromagnetic waves coupled to free

electron plasma oscillations. It was first observed in metallic gratings in 1902 by Wood [57].

Modern plasmonics gained renewed interest since the discovery of the extraordinary optical

transmission through a periodic array of subwavelength hole arrays [15]. The strong confine-

ment of SPPs in the subwavelength scales and their huge electromagnetic field enhancements

have led to significant applications of plasmonics structures in near-field imaging, spectroscopy

and bio-sensing, solar cells, nano-photonics, etc. Graphene is rapidly emerging as a powerful

plasmonic material recently by combining the appealing features of SPPs and easiness to tune

electrically. It also opens applications of SPPs in lower frequency regimes such as the terahertz

to mid-infrared frequencies [1, 6, 11, 18, 20, 34, 35, 58].

This thesis is concerned with computational modeling of plasmonic phenomenon in graphene.

Two main difficulties arise in solving the associated mathematical models numerically. First,

surface plasmonic modes are strongly confined with subwavelength scales, and at the same

time, they are highly oscillatory along the graphene surface. Hence numerical schemes have

to be designed so as to resolve the oscillatory nature of plasmonic waves. Second, the two-

dimensional graphene has sharp edges. Such edge effect may give rise to additional difficulties,

such as ill-conditioning of the discretized linear system.

In this thesis, we develop an integral-equation solver for numerical simulations of graphene

plasmon. The integral equation is formulated along the graphene surface, which reduces the

degree of freedom significantly compared with volumetric methods. Another advantage is that

the radiation condition at infinity is enforced automatically. Due to the edge effect mentioned

above, the classical Calderon formula does not lead to a well-conditioned integral formulation

anymore. To alleviate the ill-conditioning, following the ideas in [8], we regularize the inte-

gral equation using scaled integral operators and generalized Calderon formula. The Nystrom
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scheme is then applied to discretize the integral operators and the Generalized minimal resid-

ual (GMRES) iterative method is employed to solve the linear system. Numerical examples are

demonstrated to illustrate the effectiveness of the proposed integral-equation solver. Finally,

we carry out numerical analysis to study the errors arising in numerical approximation of the

integral equation and its solution.
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Chapter 1

Introduction

1.1 Background on graphene plasmon

Plasmons, which are collective oscillations of electrons in conducting materials, possess a num-

ber of appealing properties for photonic technologies. The surface plasmonic polaritons (SPPs)

phenomenon was first observed and investigated in metallic gratings in 1902 by Wood (cf.

[57]). This is so-called Wood anomaly. Theoretical explanation for the origin of the Wood

anomaly began with Rayleigh in 1907 (cf. [49]). But not until 1937 it was fully understood

that surface plasmonic resonances give rise to such anomaly (cf. [16, 17]).

It was the discovery of the extraordinary optical transmission through a periodic array of

subwavelength hole arrays by T. Ebbesen in 1998 (cf. [15]) that sparked new interest in plas-

monics. Since then tremendous efforts has been devoted to the investigation and application of

plasmonics in physics and engineering (see [1, 20, 42] and references therein for an overview).

The small spatial extension of SPPs compared with the light wavelength has been exploited to

achieve super-resolution for optical imaging. The huge electromagnetic field enhancement pro-

duced by the strong interaction with the conducting material is also used in bio-sensing, such

as surface-enhanced Raman scattering (SERS) techniques, and other nano-optics techniques,

such as solar cells, nano-photonics, etc[19, 27, 39].

Graphene, a two-dimensional, hexagonal lattice consisting of a single atomic layer of car-

bon atoms (cf. Figure 1.1) , has recently emerged as a powerful plasmonic material. It combines

the appealing features above with the ability of being electrically tunable. In addition, it has
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Figure 1.1: A schematic plot of graphene plasmon.

been shown that the plasmon wave vector is two orders larger than the free space wave vec-

tor, which translates to the stronger confinement than the metallic plasmons. Very importantly,

the graphene plasmon also opens new applications in the terahertz to mid-infrared regime, for

which its plasmonic resonance resides. The plasmon in this frequency regime is much less ex-

plored than in the visible-light regime. We refer to [2, 6, 11, 18, 20, 34, 35, 58] for a complete

overview of the theoretical investigation as well as experimental studies on graphene plasmon.

1.2 Mathematical model

In this section, we introduce the mathematical model for the electromagnetic wave scattering

by graphene sheet. This will be used throughout the rest of the thesis.

H

Γ

E
y

x

Figure 1.2: Geometry of the problem.

Consider a time-harmonic (with e−iωt time dependence) plane wave (Ei,Hi) that impinges

on the graphene sheet sitting in the vacuum. The graphene layer is infinite and invariant along

z direction. Let us denote its cross-section by Γ (see Figure 1.2). Here Γ is a finite open curve
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in R2. The total field (E,H) after the scattering consists of the incident wave (Ei,Hi) and the

scattered wave (Es,Hs). The electromagnetic field (E,H) is governed by the time-harmonic

Maxwell’s equations in the vacuum (cf. [23]):



∇× E = iωµ0H,

∇ · E = 0,

∇×H = −iωε0E,

∇ ·H = 0.

(1.1)

Here ω is the angular frequency, ε0 and µ0 are permittivity and permeability respectively.

Along the graphene interface Γ, the electromagnetic field satisfies the following continuity

conditions:

ν × (E+ − E−) = 0, ν × (H+ −H−) = Js, (1.2)

ν · (ε0E+ − ε0E−) = ρs, ν · (µ0H+ − µ0H−) = 0. (1.3)

Here E± and H± denote the electric and magnetic fields above and below the graphene, re-

spectively, ν denotes the unit normal vector along the interface Γ, Js and ρs are surface current

density and charge density respectively. In addition, at infinity the scattered field satisfies the

Silver-Muller radiation condition:

lim
|x|→∞

(
√
µ0 H

s × x− |x| ·
√
ε0 E

s) = 0. (1.4)

(1.2) implies that the tangential components of the electric field is continuous across the

graphene sheet, while the tangential components of the magnetic field is discontinuous across

the graphene sheet and the jump is given by the surface current density Js. By Ohm’s law, the

surface current density equals the product of the conductivity and the electric current. Condition

(1.2) implies that the jump for the normal components of the electric field across the graphene

sheet is given by the surface charge density ρs. In our model, the plane wave is generated by

sources located at infinity, and consequently ρs = 0.

3



In this thesis, we consider the transverse magnetic (TM) polarization by assuming that

the magnetic field is pointing along the z direction. That is, the magnetic field H = (0, 0, u).

Correspondingly, the incident wave Hi = (0, 0, ui), where ui = eik(αx+βy) is a plane wave.

Since graphene is infinite and invariant along the z direction, u is the function of x and y only.

From∇×H = −iωε0E and ∇× E = iωµ0H in (1.1), it follows that

∇× (∇×H) = −iωε0 (∇× E) = ω2ε0µ0(0, 0, u).

A direct computation of∇× (∇×H) using H = (0, 0, u) yields that

∇× (∇×H) = (0, 0,−∆u).

Therefore, u satisfies the Helmhotlz equation in R2\Γ,

∆u+ k2u = 0,

where k = ω
√
ε0µ0 is the wavenumber.

From the continuity condition ν× (E+−E−) = 0 in (1.2) and using the relation∇×H =

−iωε0E, it can be shown that

ν × ((∇×H)+ − (∇×H)−)

=

(
0, 0,

(
∂u

∂ν

)
+

−
(
∂u

∂ν

)
−

)
= 0.

Therefore, we obtain the following condition along the interface Γ,

(
∂u

∂ν

)
+

=

(
∂u

∂ν

)
−

on Γ.
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On the other hand, by a combination of the continuity condition and the Ohm’s Law, it follows

that

ν × (H+ −H−) = Js = σEt = σ · ν × (E× ν).

An explicit calculation using H = (0, 0, u) implies that

u+ − u− =
iσ

ωε0

∂u

∂ν
=
iσ

k

√
µ0

ε0

∂u

∂ν
on Γ.

Therefore, the Maxwell’s equations can be reduced to the following model in the xy-plane:



∆u+ k2u = 0 in R2\Γ,(
∂u

∂ν

)
+

=

(
∂u

∂ν

)
−

on Γ,

u+ − u− =
iσ

k

√
µ0

ε0

∂u

∂ν
on Γ.

(1.5)

Here c is the speed of light, k = ω/c is the wavenumber, σ is the conductivity of the graphene

depending on the frequency ω. In the long-wavelength regime, it can be described by the Drude

model (cf. [34, 35]):

σ(ω) =
ie2|EF |

π~2(ω + i/τe)
,

where e is the electronic charge, ~ is the reduced Planck constant, EF is the chemical potential,

and τe is the momentum relaxation time. In addition, the scattered field us, which is given by

u− ui, satisfies the Sommerfeld radiation condition

lim
|x|→∞

√
r

(
∂us

∂r
− ikus

)
= 0. (1.6)

1.3 Existing methods for solving the scattering problem along graphene sheet

If the graphene sheet is flat and infinite such that it occupies the whole xy-plane or it is semi-

infinite, then analytical expressions for the electromagnetic field are available [40, 41]. The

finite element method (FEM) has been applied to the model in such instances numerically

[36]. When the graphene sheet is finite, then a numerical method has to be employed to solve
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the scattering problem. In this regard, a finite element solver has been developed and imple-

mented [37]. We also refer to a surface perturbation approach for solving the problem when

the graphene is periodic in one direction [44].

Current modeling algorithms such as the finite element method are extremely costly even

for the two-dimensional model, and the extension to the three-dimensional model would require

even more computational resources. The high cost for the finite element method is attributed

to two reasons. First, FEM relies on the discretization in the domain where the graphene sits,

hence the perfect matched layer (PML) or other radiation conditions have to be applied to

truncate the infinite domain to a finite one (Figure 1.3). Second, due to the strong localization

of the graphene plasmon waves and their highly oscillatory nature near the graphene surface,

the mesh has to be extremely refined to capture the physical phenomenon (See Figure 1.4).

Figure 1.3: The PML layer is applied to truncate the infinite domain into a finite one (after
[37]).

In this thesis, we aim to develop an efficient and accurate integral-equation method for

computational modeling of graphene plasmons. The integral equation is set up along the

graphene surface, which reduces the degree of freedom significantly compared with the fi-

nite element methods. In addition, the radiation condition at infinity is enforced automatically

in the integral formulation and no artificial radiation condition needs to be imposed. We also

6



Figure 1.4: Finite element mesh used in the simulation of graphene plasmon (after [38]).

apply high-order Nystrom scheme to discretize the integral operators and employ the Calderon

formula technique in order to alleviate the ill-conditioning of the integral equation formulation.
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Chapter 2

Layer potentials and the Calderon formula

In this chapter, we introduce the layer potentials and collect some main properties for layer

potentials. We also introduce the well-known Calderon formula for the integral equations. The

readers are referred to [13, 14, 22, 31, 46] for more details.

2.1 Layer potential

Throughout this chapter, we denote D by a bounded domain of class C2. Let ∂D be its bound-

ary and ν be the unit normal vector on the boundary that is directed into the exterior of D. We

introduce single-layer and double-layer potentials:

Definition 2.1

u(x) :=

∫
∂D

Φ(x, y)φ(y)dsy, x ∈ Rm\∂D,

and

v(x) :=

∫
∂D

∂Φ(x, y)

∂νy
φ(y)dsy, x ∈ Rm\∂D,

where φ is the density function, Φ(x, y) is the fundamental solution of Helmholtz equation.

The single-layer potential can be extended continuously throughout Rm, while its deriva-

tive attains a jump when crossing the boundary ∂D. These are stated in the following two

theorems (cf. [31]).
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Theorem 2.1 Let ∂D be of class C2 and φ ∈ C(∂D). Then the single-layer potential u with

density φ is continuous throughout Rm. On the boundary, it satisfies

u(x) =

∫
∂D

Φ(x, y)φ(y)dsy, x ∈ ∂D, (2.1)

where the integral exists as an improper integral.

Theorem 2.2 Let ∂D be of class C2. Then for the single-layer potential u with continuous

density φ we have

∂u±
∂ν

(x) =

∫
∂D

∂Φ(x, y)

∂νx
φ(y)dsy ∓

1

2
φ(x), x ∈ ∂D, (2.2)

where
∂u±
∂ν

(x) := lim
h→0+

ν(x) · ∇u(x± hνx)

is to be understood in the sense of uniform convergence on ∂D and where the integral exists as

an improper integral.

The following two theorems state the properties of the double-layer potential and its

derivative when it crosses the boundary ∂D (cf. [31]).

Theorem 2.3 Let ∂D be of class C2, the double-layer potential v with continuous density φ

can be continuously extended from D to D̄ and from Rm\D̄ to Rm\D with limiting values

v±(x) =

∫
∂D

∂Φ(x, y)

∂νy
φ(y)dsy ±

1

2
φ(x), x ∈ ∂D, (2.3)

where

v±(x) := lim
h→0+

v(x± hνx) (2.4)

and where the integral exists as an improper integral.

Theorem 2.4 Let ∂D be of classC2. Then the double-layer potential v with continuous density

φ satisfies

lim
h→0+

νx · {∇v(x+ hνx)−∇v(x− hνx)} = 0 (2.5)

9



uniformly for all x ∈ ∂D.

2.2 Calderon formula

In this section, we state the classical Calderon formula on the closed curve ∂D (cf. [14]). Let

us introduce the following integral operators.

For x ∈ Γ, let

(S̃φ)(x) :=

∫
Γ

Φ(x, y)φ(y)dsy, (2.6)

(K̃φ)(x) :=

∫
Γ

∂Φ(x, y)

∂νy
φ(y)dsy, (2.7)

(K̃′φ)(x) :=

∫
Γ

∂Φ(x, y)

∂νx
φ(y)dsy, (2.8)

(T̃ φ)(x) :=

∫
Γ

∂2Φ(x, y)

∂νx∂νy
φ(y)dsy. (2.9)

We define the Calderon projector as

C :=

 1

2
I − K̃ S̃

−T̃ 1

2
I + K̃′

 ,

where I is the identity operator.

Theorem 2.5 Let D be a bounded domain, the boundary ∂D be a class of C2. Then C maps

C1+α(∂D)× Cα(∂D) into itself continuously. Morever,

C2 = C.

Consequently, we have the following identities:

S̃T̃ = −1

4
I + K̃2, (2.10)

T̃ S̃ = −1

4
I + K̃′2, (2.11)

K̃S̃ = S̃K̃′, (2.12)

10



T̃ K̃ = K̃′T̃ . (2.13)

Proof: Let u(x) be the solution to Helmholtz equation and Φ(x, y) is the fundamental solution

to Helmholtz equation. Then by Green’s formula, for x ∈ ∂D and x− hνx ∈ D,

u(x− hνx) =

∫
∂D

Φ(x− hνx, y)
∂u(y)

∂νy
dsy −

∫
∂D

∂Φ(x− hνx, y)

∂νy
u(y) dsy. (2.14)

Taking the limit as h→ 0+ and by Theorem 2.1 and 2.3, we have

u(x) =

∫
∂D

Φ(x, y)
∂u(y)

∂νy
dsy −

(∫
∂D

∂Φ(x, y)

∂νy
u(y) dsy −

1

2
u(x)

)
, x ∈ ∂D.

which is equivalent to

u(x) = S̃ ∂u
∂ν

(x)− K̃u(x) +
1

2
u(x). (2.15)

For x− hνx ∈ D, take the normal derivative of (2.14) yields to

∂u(x− hνx)
∂νx

=

∫
∂D

∂Φ(x− hνx, y)

∂νx

∂u(y)

∂νy
dsy −

∫
∂D

∂2Φ(x− hνx, y)

∂νx∂νy
u(y) dsy.

Taking the limit as h→ 0+ and by Theorem 2.2 and 2.4, we have

∂u

∂ν
(x) =

∫
∂D

∂Φ(x, y)

∂νx

∂u(y)

∂νy
dsy +

1

2

∂u

∂ν
(x)−

∫
∂D

∂2Φ(x, y)

∂νx∂νy
u(y) dsy.

That is,
∂u

∂ν
(x) = K̃′∂u

∂ν
(x) +

1

2

∂u

∂ν
(x)− T̃ u. (2.16)

From (2.15) and (2.16), it is obvious that

 u(x)

∂u

∂ν
(x)

 =

 1

2
I − K̃ S̃

−T̃ 1

2
I + K̃′


 u(x)

∂u

∂ν
(x)

 . (2.17)
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From (2.17), it is easy to see that C maps C1+α(∂D)× Cα(∂D) into itself and C2 = C.

 1

2
I − K̃ S̃

−T̃ 1

2
I + K̃′


 1

2
I − K̃ S̃

−T̃ 1

2
I + K̃′

 =

 1

2
I − K̃ S̃

−T̃ 1

2
I + K̃′


implies that

S̃T̃ = −1

4
I + K̃2,

T̃ S̃ = −1

4
I + K̃′2,

K̃S̃ = S̃K̃′,

T̃ K̃ = K̃′T̃ .

The Calderon formula states that the composition of the unbounded hypersingular oper-

ator T̃ and the single-layer operator S̃ yields a compact perturbation of the identity, which is

a well-posed operator. As such the formula provides a natural regularization strategy for the

hypersingular operator T̃ . That is, the single-layer operator S̃ serves as an effective precondi-

tioner for T̃ when solving the discretized linear system.
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Chapter 3

Well-conditioned boundary integral equation

In this chapter, we set up a well-conditioned boundary integral equation for solving the scat-

tering problem (1.5) - (1.6). In Section 3.1, we deduce the boundary integral formulation. In

Section 3.2, we introduce regularization strategy to obtain a well-conditioned boundary integral

equation.

3.1 Boundary integral formulation

Let

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|)

be the fundamental solution to the Helmholtz equation in the free space satisfying that

∆Φ(x, y) + k2Φ(x, y) = −δ(x− y).

Here H(1)
0 is the first kind Hankel function of zero order.

Let Γ be the graphene sheet. As shown in figure 3.1, we choose a curve Γ̃ such that Γ ∪ Γ̃

is a closed and smooth curve in R2. The domain enclosed by Γ ∪ Γ̃ is denoted by D−. We also

choose a sufficiently large disk BR with radius R such that it includes the domain D−. The

domain enclosed by Γ ∪ Γ̃ and ∂BR is denoted as D+.

13



Figure 3.1: Interior and exterior domain D− and D+.

By Green’s second identity, the scattered field us in the exterior and interior domains can

be expressed as

us(x) =

∫
∂D−

∂Φ(x, y)

∂νy
us+(y)− Φ(x, y)

(
∂us

∂νy

)
+

(y) dsy (3.1)

+

∫
|y|=R

Φ(x, y)
∂us(y)

∂νy
− ∂Φ(x, y)

∂νy
us(y) dsy x ∈ D+;

us(x) =

∫
∂D−

Φ(x, y)

(
∂us

∂νy

)
−

(y)− ∂Φ(x, y)

∂νy
us−(y) dsy x ∈ D−.

Here ν is the unit normal vector along Γ directed into D+. For h > 0, f+(x) and f−(x) in the

above integral are defined as follows:

f+(x) = lim
h→0+

f(x+ hν), x+ hν ∈ D+ (3.2)

f−(x) = lim
h→0+

f(x− hν), x− hν ∈ D−. (3.3)

For the second term of (3.1), that is the integral on the circle with radius R, we have

∫
|y|=R

Φ(x, y)
∂us(y)

∂νy
− ∂Φ(x, y)

∂νy
us(y) dsy

=

∫
|y|=R

Φ(x, y)

(
∂us(y)

∂νy
− ikus(y)

)
dsy −

∫
|y|=R

(
∂Φ(x, y)

∂νy
− ikΦ(x, y)

)
us(y) dsy.

14



Since both us(y) and Φ(x, y) satisfy the Sommerfeld radiation condition (1.6), thus asR→∞,

the second term of (3.1) vanishes. It follows that

us(x) =

∫
∂D−

∂Φ(x, y)

∂νy
us+(y)− Φ(x, y)

(
∂us

∂νy

)
+

(y) dsy x ∈ D+; (3.4)

us(x) =

∫
∂D−

Φ(x, y)

(
∂us

∂νy

)
−

(y)− ∂Φ(x, y)

∂νy
us−(y) dsy x ∈ D−. (3.5)

Let h > 0. For any x ∈ Γ ∪ Γ̃, νx is the unit normal vector along Γ directed into D+, so

x+ hνx ∈ D+, while x− hνx ∈ D−. Taking the normal derivative of (3.4) and (3.5) yields

∂us

∂νx
(x+ hνx) =

∫
∂D−

∂2Φ(x+ hνx, y)

∂νx∂νy
us+(y)− ∂Φ(x+ hνx, y)

∂νx

(
∂us

∂νy

)
+

(y) dsy,

∂us

∂νx
(x− hνx) =

∫
∂D−

∂Φ(x− hνx, y)

∂νx

(
∂us

∂νy

)
−

(y)− ∂2Φ(x− hνx, y)

∂νx∂νy
us−(y) dsy.

We take the limit h→ 0+ for the above layer potentials. From Theorem 2.4 and Theorem 2.2,

we see that

(
∂us

∂νx

)
+

(x) =

∫
∂D−

∂2Φ(x, y)

∂νx∂νy
us+(y)− ∂Φ(x, y)

∂νx

(
∂us

∂νy

)
+

(y) dsy +
1

2

(
∂us

∂νx

)
+

(x),

(3.6)(
∂us

∂νx

)
−

(x) =

∫
∂D−

∂Φ(x, y)

∂νx

(
∂us

∂νy

)
−

(y)− ∂2Φ(x, y)

∂νx∂νy
us−(y) dsy +

1

2

(
∂us

∂νx

)
−

(x).

(3.7)

Note that
∂u(x)

∂νx
=
∂ui(x)

∂νx
+
∂us(x)

∂νx
. (3.8)

Recall that from (1.5),
∂u

∂νx
is continuous across Γ, and

∂ui

∂νx
is continuous in R2. Therefore,

∂us

∂νx
is continuous across Γ.

∂us

∂νx
is continuous across Γ̃, which leads to the following continuity

condition: (
∂us

∂νx

)
+

=

(
∂us

∂νx

)
−

on ∂D−. (3.9)
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By adding (3.6) and (3.7), and using (3.9), it is obtained that

∂us(x)

∂νx
=

∫
Γ

∂2Φ(x, y)

∂νx∂νy

[
us+(y)− us−(y)

]
dsy, x ∈ Γ.

Note that

u+ − u− =
iσ

k

√
µ0

ε0

∂u

∂ν
on Γ,

and u+ − u− = us+ − us− by the continuity of ui, we arrive at the boundary integral equation,

∂u(x)

∂νx
− iσ

k

√
µ0

ε0

∫
Γ

∂2Φ(x, y)

∂νx∂νy

∂u(y)

∂νy
dsy =

∂ui(x)

∂νx
, x ∈ Γ. (3.10)

To simplify to the notations, we introduce the following integral operators. For x ∈ Γ, we

introduce the operators as (2.6)–(2.9).

(S̃ψ)(x) :=

∫
Γ

Φ(x, y)ψ(y)dsy,

(K̃ψ)(x) :=

∫
Γ

∂Φ(x, y)

∂νy
ψ(y)dsy,

(K̃′ψ)(x) :=

∫
Γ

∂Φ(x, y)

∂νx
ψ(y)dsy,

(T̃ ψ)(x) :=

∫
Γ

∂2Φ(x, y)

∂νx∂νy
ψ(y)dsy.

Let

τ = σ

√
µ0

ε0

and h =
∂ui

∂ν
. (3.11)

Then (3.10) can be expressed by

(
I − iτ

k
T̃
)
∂u

∂ν
= h. (3.12)

The integral operator T̃ is a hypersingular operator, and is unbounded on L2(Γ) [22, 31, 32, 55].

As such its eigenvalues accumulate at infinity. Therefore, the solution of the discretized integral

equation (3.12) by iterative solvers such as the GMRES method would require a large number

of iterations.

16



3.2 Well-posed integral formulation

In this section, we introduce a regularization of the integral equation (3.12) using scaled oper-

ators and generalized Calderon formula.

From the classical Calderon formula (2.18) on a closed curve, the composition of the

operators S̃ and T̃ yields a second integral operator that is well-conditioned. In the context of

open surface, the combined operator gives rise to

T̃ S̃[1](X) = O

(
1

d(X)

)
, X ∈ Γ

where d(X) is the distance from the edge of the surface [33]. That is, the image of the constant

function under T̃ S̃ is singular. Hence T̃ S̃ not well-posed anymore.

To address this issue, we apply the idea developed by O. Bruno [8]. Introduce the scaled

integral operators

Sψ = S̃ (ψ/ρ) , T ψ = T̃ (ρψ) , (3.13)

where ρ ∼ O(
√
d) near the edge. Without loss of generality, we can choose a smooth parametriza-

tion X(t) = (x(t), y(t)) of Γ, where t ∈ (−1, 1), and define the weight function ρ =
√

1− t2.

Then the new integral operators can be expressed as

(Sψ)(X(t)) =

∫
Γ

Φ(X(t), X(s)) ψ(X(s))
1√

1− s2
dX(s)

=

∫ 1

−1

Φ(X(t), X(s)) ψ(X(s))
1√

1− s2
|X ′(s)| ds, (3.14)

(T ψ)(X(t)) =

∫
Γ

∂2Φ(X(t), X(s))

∂νX(t)∂νX(s)

ψ(X(s))
√

1− s2 dX(s)

=

∫ 1

−1

∂2Φ(X(t), X(s))

∂νX(t)∂νX(s)

ψ(X(s))
√

1− s2|X ′(s)| ds, (3.15)

where |X ′(t)| =

√(
dx(t)

dt

)2

+

(
dy(t)

dt

)2

.

It can be shown that the following generalized Calderon formula holds (cf. [8]):

T S = D + F . (3.16)
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In the above, D is a continuous operator and its eigenvalues are bounded away from zero and

infinity, and F is a compact operator.

Let
∂u

∂ν
(X(t)) =

√
1− t2Sψ.

Then the integral equation becomes

Aψ :=

[√
1− t2S − iτ

k
T S
]
ψ = h(X(t)). (3.17)

Since S is a compact operator,
√

1− t2I is a bounded operator, thus
√

1− t2S is a compact

operator. According to (3.16), we see that

A = −iτ
k
D + (

√
1− t2S − iτ

k
F ).

That is, the operatorA is a compact perturbation (given by
√

1− t2S− iτ
k
F ) from a continuous

operator−iτ
k
D whose eigenvalues are bounded away from zero and infinity. Consequently, the

eigenvalues of A are bounded away from zero and infinity.

To illustrate the eigenvalues of the operators T and
√

1− t2I − iτ

k
T before and after

regularization, we consider the case when Γ is a line segment [−L,L]. From Figures 3.2 and

3.3, it is clear that for both T and (
√

1− t2I − iτ

k
T ), the eigenvalues with smaller modulus

accumulate at zero and the eigenvalues with larger modulus tend to infinity. However, the

eigenvalues for the regularized integral operators T S and A accumulate at a nonzero value.
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Figure 3.2: Eigenvalues of T and
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1− t2I − iτ
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T when k = π, L = 50, and τ = 0.02i.
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Chapter 4

Nystrom discretization scheme

In this chapter, we apply the Nystrom decretization method to discretize the integral equation

(3.17). More precisely, we use the Chebyshev polynomial interpolant to approximate the un-

known function, and evaluate the integral with the logarithmic kernel analytically. To this end,

we first introduce Chebyshev polynomials and Chebyshev interpolations, and then discuss the

evaluation of the integral operators using Chebyshev polynomial interpolation.

4.1 Chebyshev polynomials

In this section, we introduce Chebyshev polynomials and collect several important properties

for Chebyshev polynomials. We refer to [43] for more details.

For x ∈ [−1, 1], the Chebyshev polynomial of degree n, denoted by Tn(x), is defined as

Tn(x) = cos(n arccosx). (4.1)

Let θ = arccosx, then θ ∈ [0, π] and Tn(x) = cos(nθ).

The first few Chebyshev polynomials are explicitly given as

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1, · · ·
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From the trigonometric identities, Tn(x) satisfies the following recurrence relation:

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, · · ·

The zeros of Tn(x) for x in [−1, 1] correspond to the zeros for θ in [0, π] of cosnθ, which

are

nθ =

(
k − 1

2

)
π, k = 1, 2, · · · , n.

Hence the zeros of Tn(x) are

xk = cos
(2k − 1)π

2n
, k = 1, 2, · · · , n.

The extrema of Tn(x) occur at nθ = kπ, that is,

x = cos
kπ

n
, k = 0, 1, · · · , n

In the following, we state the orthogonality of Chebyshev polynomials.

Definition 4.1 Two functions f(x) and g(x) inL2[a, b] are orthogonal on the interval [a, b] with

respect to a given continuous and non-negative weight function w(x) if

∫ b

a

w(x)f(x)g(x) dx = 0.

The above formula can be written in the ”inner product” notation as

〈f, g〉 =

∫ b

a

w(x)f(x)g(x) dx = 0.

The Chebyshev polynomials {Tn, n = 0, 1, · · · } form an orthogonal polynomial system

on [−1, 1] with respect to the weight w(x) = (1− x2)−
1
2 [43]. That is,

〈Tn, Tm〉 =

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = 0, n 6= m. (4.2)
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Moreover, ||T0||2 = 〈T0, T0〉 = π, and

||Tn||2 = 〈Tn, Tn〉 =
1

2
π for n 6= 0.

Given a function f(x), we expand it using the Chebyshev polynomials {Tn(x)}∞n=0, which

takes the form of

f(x) =
∞∑
n=0

cnTn(x), x ∈ [−1, 1]. (4.3)

By taking the inner product with Tm(x) and using the orthogonality, we see that

〈f, Tm〉 =
∞∑
n=0

cn 〈Tn, Tm〉 = cm 〈Tm, Tm〉 , (4.4)

thus the coefficient cm can be expressed as

cn =
〈f, Tn〉
〈Tn, Tn〉

. (4.5)

The following theorem states that the expansion (4.3) holds when f is a continuous function on

[−1, 1] (cf. [43]).

Theorem 4.1 If f is continuous on [a, b], then the expansion (4.3) in Chebyshev polynomials

converges in L2 with respect to the weight function w(x) = (1− x2)−
1
2 .

4.2 Chebyshev polynomial interpolation

For a function f(x) ∈ Hs(−1, 1), we sample the function values at zeros of Chebyshev poly-

nomial TN(x),

xn = cos
(2n− 1)π

2N
or θn =

(2n− 1)π

2N
, n = 1, 2, · · · , N.

The corresponding Chebyshev polynomial PN(x) with degree N − 1 to approximate f(x) is

given by (cf. [48])

PN(x) =
N−1∑
n=1

cnTn(x) +
c0

2
, (4.6)
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where

cn =
2

N

N∑
j=1

f(xj)Tn(xj), n = 0, 1, · · · , N − 1. (4.7)

The above approximation can be written in the θ coordinate as follows:

PN(θ) =
N−1∑
n=1

cn cos(nθ) +
c0

2
, (4.8)

where

cn =
2

N

N∑
j=1

g(θj) cos(nθj), n = 0, 1, · · · , N − 1. (4.9)

g(θj) = f(xj).

Therefore, the relationship between cn and g(θj) can be written in the matrix form as follows:



c0

c1

...

cN−1


=

2

N



1 · · · 1

cos θ1 · · · cos θN

. . .

cos(N − 1)θ1 · · · cos(N − 1)θN





g(θ1)

g(θ2)

...

g(θN)



=
2

N
·B ·



g(θ1)

g(θ2)

...

g(θN)


, (4.10)

where

B =



1 · · · 1

cos θ1 · · · cos θN

. . .

cos(N − 1)θ1 · · · cos(N − 1)θN


. (4.11)
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By substituting (4.9) into (4.8), it follows that

PN(θ) =
N∑
j=1

g(θj)Lj(θ), (4.12)

where

Lj(θ) =
1

N
+

2

N

N−1∑
n=1

cos(nθj) cos(nθ). (4.13)

Note that Lj(θ) is the Lagrange basis function associated with the interpolation points θn =

(2n− 1)π

2N
(n = 1, 2, · · · , N ).

Let PN(x) be the Chebyshev polynomial interpolant for f(x) given by (4.6), then the

following polynomial of degree N − 2 serves as an approximation for
df(x)

dx
:

P ′N−2(x) =
N−2∑
n=1

c′nTn(x) +
c′0
2
, (4.14)

where the relationship between cn and c′n are given as follows [48]:

 c′n−1 = c′n+1 + 2ncn, n = 1, 2, · · · , N − 1

c′N = c′N−1 = 0.
(4.15)

From the above recurrence relation, we can express c′n in terms of cn explicitly. If N is odd, it

follows that

c′N−2 = c′N + 2(N − 1)cN−1 = 2(N − 1)cN−1,

c′N−3 = c′N−1 + 2(N − 2)cN−2 = 2(N − 2)cN−2,

c′N−4 = c′N−2 + 2(N − 3)cN−3 = 2(N − 1)cN−1 + 2(N − 3)cN−3,

· · ·

c′1 = c′3 + 4c2 = 2(N − 1)cN−1 + 2(N − 3)cN−3 + · · ·+ 8c4 + 4c2,

c′0 = c′2 + 2c1 = 2(N − 2)cN−2 + 2(N − 4)cN−4 + · · ·+ 6c3 + 2c1.
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When N is even, then



c′N−2 = c′N + 2(N − 1)cN−1 = 2(N − 1)cN−1,

c′N−3 = c′N−1 + 2(N − 2)cN−2 = 2(N − 2)cN−2,

c′N−4 = c′N−2 + 2(N − 3)cN−3 = 2(N − 1)cN−1 + 2(N − 3)cN−3,

· · ·

c′1 = c′3 + 4c2 = 2(N − 2)cN−2 + 2(N − 4)cN−4 + · · ·+ 8c4 + 4c2,

c′0 = c′2 + 2c1 = 2(N − 1)cN−1 + 2(N − 3)cN−3 + · · ·+ 6c3 + 2c1.

Now let

c′ = [c′0, c
′
1, · · · , c′N−2]′ and c = [c0, c1, · · · , cN−2, cN−1]′.

We may write the above equations in the matrix form as follows. If N is odd,

c′ = 2



0 1 0 3 0 · · · N − 2 0

0 0 2 0 4 · · · 0 N − 1

. . .

0 0 0 0 · · · N − 3 0 N − 1

0 0 0 0 0 · · · N − 2 0

0 0 0 0 0 · · · 0 N − 1


· c (4.16)

If N is even,

c′ = 2



0 1 0 3 0 · · · 0 N − 1

0 0 2 0 4 · · · N − 2 0

. . .

0 0 0 0 · · · N − 3 0 N − 1

0 0 0 0 0 · · · N − 2 0

0 0 0 0 0 · · · 0 N − 1


· c (4.17)
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We define the matrix P by

P =



0 1 0 3 0 · · · N − 2 0

0 0 2 0 4 · · · 0 N − 1

. . .

0 0 0 0 · · · N − 3 0 N − 1

0 0 0 0 0 · · · N − 2 0

0 0 0 0 0 · · · 0 N − 1,


and

P =



0 1 0 3 0 · · · 0 N − 1

0 0 2 0 4 · · · N − 2 0

. . .

0 0 0 0 · · · N − 3 0 N − 1

0 0 0 0 0 · · · N − 2 0

0 0 0 0 0 · · · 0 N − 1


.

for odd and even n respectively.

4.3 Evaluation of integral operators

In this section, we derive the evaluation of the integral operator S and T given in Chapter 3. To

give a more clear picture, we first consider the case when Γ is a line segment, then we derive

the formulas when Γ is an open curve.

4.3.1 Flat graphene sheets

In this subsection, the graphene is assumed to be a flat sheet such that Γ is the line segment

[−L,L].
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From (3.14) and (3.15), let t = cos θ, thenX(t) = (L cos θ, 0) and φ(θ) = ψ(X(t)),

where θ ∈ [0, π]. Correspondingly, the operators S and T in terms of θ are

(Sφ)(θ) = L

∫ π

0

Φ(cos θ, 0; cos θ′, 0) φ(θ′) dθ′, (4.18)

(T φ)(θ) = L

∫ π

0

∂2Φ(cos θ, 0; cos θ′, 0)

∂νX(θ)∂νX(θ′)
φ(θ′) sin2(θ′) dθ′. (4.19)

In the following, we evaluate Sφ explictly. First, we expand the kernel Φ as follows (cf. [8]):

Φ(cos θ, 0; cos θ′, 0) =
i

4
H

(1)
0 (k| cos θ − cos θ′|)

= M1(θ, θ′) ln | cos θ − cos θ′|+M2(θ, θ′). (4.20)

where

M1(θ, θ′) = − 1

2π
J

(1)
0 (k| cos θ − cos θ′|),

and

M2(θ, θ′) =
i

4
H

(1)
0 (k| cos θ − cos θ′|) +

1

2π
J

(1)
0 (k| cos θ − cos θ′|).

Note thatM1(θ, θ′) andM2(θ, θ′) are smooth functions, therefore, the singularity of Φ(cos θ, 0; cos θ′, 0)

resides in the term ln | cos θ − cos θ′|.

From (4.18) and (4.20), we obtain

(Sφ)(θ) = L

∫ π

0

Φ(cos θ, 0; cos θ′, 0) φ(θ′) dθ′,

= L

∫ π

0

ln | cos θ − cos θ′|M1(θ, θ′)φ(θ′) +M2(θ, θ′)φ(θ′) dθ, (4.21)

where
∫ π

0

ln | cos θ−cos θ′|M1(θ, θ′)φ(θ′) dθ is a weakly singular integral and
∫ π

0

M2(θ, θ′)φ(θ′) dθ

is a smooth integral.
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In order to evaluate
∫ π

0

ln | cos θ−cos θ′|M1(θ, θ′)φ(θ′) dθ, we use the following formulas

for cosine functions (cf. [9]):


∫ π

0

ln | cos θ − cos θ′| dθ′ = −π ln 2 =: `0,∫ π

0

ln | cos θ − cos θ′| cos(nθ′) dθ′ = −π
n

cosnθ =: `n cosnθ.
(4.22)

We use the Chebyshev polynomial interpolant PN(θ′) to approximate M1(θ, θ′)φ(θ′) as a func-

tion of θ′. Therefore, by (4.12), (4.13) and (4.22), it follows that

∫ π

0

ln | cos θ − cos θ′|M1(θ, θ′)φ(θ′) dθ

≈
∫ π

0

[
N∑
j=1

M1(θ, θj)φ(θj)Lj(θ
′)

]
· ln | cos θ − cos θ′| dθ

=
N∑
j=1

M1(θ, θj)φ(θj)

∫ π

0

Lj(θ
′) ln | cos θ − cos θ′| dθ

=
N∑
j=1

M1(θ, θj)φ(θj)

[
`0

N
+

2

N

N−1∑
n=1

`n cos(nθj) cos(nθ)

]

=:
N∑
j=1

M1(θ, θj)φ(θj)Rj(θ). (4.23)

Note that by using (4.22), no numerical quadrature is needed for evaluating this singular inte-

gral.

To evaluate
∫ π

0

M2(θ, θ′)φ(θ′) dθ, we use the fact that

∫ π

0

Lj(θ
′) dθ′ =

π

N
. (4.24)

Similarly, we approximate M2(θ, θ′)φ(θ′) as a function of θ′ by the Chebyshev polynomials.

From (4.12) and (4.24), it follows that

∫ π

0

M2(θ, θ′)φ(θ′) dθ ≈
∫ π

0

N∑
j=1

M2(θ, θj)φ(θj)Lj(θ
′) dθ

=
π

N

N∑
j=1

M2(θ, θj)φ(θj). (4.25)
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Hence, combining (4.21), (4.23) and (4.25), we arrive at

(Sφ)(θ) = L

∫ π

0

Φ(cos θ, 0; cos θ′, 0) φ(θ) dθ′

≈ L

[
N∑
j=1

Rj(θ)M1(θ, θj)φ(θj) +
π

N

N∑
j=1

M2(θ, θj)φ(θj)

]
. (4.26)

Let

SL(θ) =

[
R1(θ)M1(θ, θ1) +

π

N
M2(θ, θ1), · · · , RN(θ)M1(θ, θN) +

π

N
M2(θ, θN)

]
,

then the estimate of Sφ can be written in the matrix form as:

(Sφ)(θ) ≈ LSL(θ)



φ(θ1)

φ(θ2)

...

φ(θN)


. (4.27)

This completes the evaluation of Sφ.

We discuss the evaluation of T in the remainder of the subsection. From (3.15), we can see

that the kernel is the second derivative of fundamental solution, therefore it is hard to evaluate

directly. However, T can be decomposed into (cf. [14])

T = T g + T s, (4.28)

where

(T gψ)(X(t)) = k2

∫ 1

−1

Φ(X(t), X(s)) ψ(X(s)) |X ′(s)|
√

1− s2 (νX(t) · νX(s)) ds,

and

(T sψ)(X(t)) =
1

|X ′(t)|
d

dt

∫ 1

−1

Φ(X(t), X(s))
d

ds
(ψ(X(s))

√
1− s2) ds.
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In the case of a line segment, T g in the θ coordinate can be reduced to

(T gφ)(θ) = k2L

∫ π

0

Φ(cos θ, 0; cos θ′, 0) φ(θ′) sin2(θ′) dθ′.

From (4.18), it is obvious that

(T gφ)(θ) = k2 · S(ψ)(θ),

where

ψ(θ) = φ(θ) sin2(θ).

From above discussion, we already know how to evaluate S, thus we are able to evaluate T g as

follows:

(T gφ)(θ) ≈ k2L

[
N∑
j=1

Rj(θ)M1(θ, θj) sin2(θj)φ(θj) +
π

N

N∑
j=1

M2(θ, θj) sin2(θj)φ(θj)

]
.

Let

STgL(θ) =



R1(θ)M1(θ, θ1) sin2(θ1) +
π

N
M2(θ, θ1) sin2(θ1)

R2(θ)M1(θ, θ2) sin2(θ2) +
π

N
M2(θ, θ2) sin2(θ2)

...

RN(θ)M1(θ, θN) sin2(θN) +
π

N
M2(θ, θN) sin2(θN)



T

,

then

(T gφ)(θ) ≈ k2L STgL(θ)



φ(θ1)

φ(θ2)

...

φ(θN)


. (4.29)

The remaining task is to evaluate T s. We write T s in the θ coordinate and have

(T sφ)(θ) =
1

L sin θ

d

dθ

∫ π

0

Φ(cos θ, 0; cos θ′, 0)
d

dθ′
(φ(θ′) sin θ′) dθ′.
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It can be viewed as the composition of three operators given by

(T sφ)(θ) =
1

L
(T1 · S · T2) (φ(θ) · sin θ). (4.30)

Here

T1 :=
1

sin θ

d

dθ
, T2 :=

d

dθ
.

Recalling the change of variables for t = cos θ, it follows that

T1 =
1

sin θ

d

dθ
= − d

dt
.

To evaluate T1f(X(t)), we use the Chebyshev polynomial interpolant to approximate

f(X(t)). From the formula of Chebyshev polynomial interpolant (4.14) and its derivative

(4.15), we have

T1f(X(t)) = − d

dt
f(X(t)) ≈ −

(
N−2∑
n=1

c′nTn(t) +
c′0
2

)
.

To express T1f(X(t)) in terms of interpoation values, we let f(X(t)) = g(θ). It is clear that

the interpolant values are {θj, g(θj)}Nj=1. Recall that the relationship between c′n and cn are

given by (4.15), (4.16) and (4.17). Thus from (4.10), we obtain

N−2∑
n=1

c′nTn(t) +
c′0
2

(4.31)

=
N−2∑
n=1

c′n cos(nθ) +
c′0
2

=

(
1

2
cos θ · · · cos(N − 2)θ

)
·



c′0

c′1
...

c′N−2


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=

(
1

2
cos θ · · · cos(N − 2)θ

)
· P ·



c0

c1

...

cN−1



=
2

N

(
1

2
cos θ · · · cos(N − 2)θ

)
· PB ·



g(θ1)

g(θ2)

...

g(θN)


.

Here the matrix P is given by (4.16) and (4.17), and the matrix B is given by (4.11). Define

T1Lb(θ) =

(
1

2
cos θ · · · cos(N − 2)θ

)
.

Then the evaluation of T1 can be expressed as the following matrix form:

T1g(θ) ≈ − 2

N
T1Lb(θ) · P ·B ·



g(θ1)

g(θ2)

...

g(θN)


. (4.32)

Next, we discuss the evaluation of T2(g(θ) sin θ) =
d

dθ
(g(θ) sin θ). Approximating g(θ)

by the Chebyshev polynomial (4.8) and using the product-to-sum identity, we have

d

dθ
(g(θ) sin θ) ≈ d

dθ

((
N−1∑
n=1

cn cos(nθ) +
c0

2

)
sin θ

)

=
d

dθ

(
N−1∑
n=1

cn
2

[sin(n+ 1)θ − sin(n− 1)θ] +
c0

2
sin θ

)

=
N−1∑
n=1

cn
2

[(n+ 1) cos(n+ 1)θ − (n− 1) cos(n− 1)θ] +
c0

2
cos θ
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=
1

2

(
cos θ · · · N cosNθ − (N − 2) cos(N − 2)θ

)
·



c0

c1

...

cN−1



=
1

2

(
cos θ · · · N cosNθ − (N − 2) cos(N − 2)θ

)
B



g(θ1)

g(θ2)

...

g(θN)


.

Let

T2Lb(θ) =

(
cos θ · · · N cosNθ − (N − 2) cos(N − 2)θ

)
,

we obtain

T2(φ(θ) sin θ) ≈ 1

2
T2Lb(θ) ·B ·



φ(θ1)

φ(θ2)

...

φ(θN)


. (4.33)

Now we are ready to evaluate (T sφ)(θ). From (4.30) and (4.32),

(T sφ)(θ) =
1

L
(T1 · S · T2) (φ(θ) · sin θ)

≈ − 2

NL
T1Lb(θ)PB



ST 2(φ(θ1) sin θ1)

ST 2(φ(θ2) sin θ2)

...

ST 2(φ(θN) sin θN


.
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For ST 2(φ(θi) sin θi), by (4.27), we see that

ST 2(φ(θi) sin θi) ≈ LSL(θi)



T2(φ(θ1) sin θ1)

T2(φ(θ2) sin θ2)

...

T2(φ(θN) sin θN)


.

By (4.33), it is obvious that

T2(φ(θi) sin θi) ≈
1

2
T2Lb(θi) ·B ·



φ(θ1)

φ(θ2)

...

φ(θN)


.

Therefore, the evaluation of T s(φ) can be summarized as follows:

(T sφ)(θ) ≈ − 2

NL
T1Lb(θ)PB



ST 2(φ(θ1) sin θ1)

ST 2(φ(θ2) sin θ2)

...

ST 2(φ(θN) sin θN



≈ − 2

N
T1Lb(θ)PB



SL(θ1)

SL(θ2)

...

SL(θN)





T2(φ(θ1) sin θ1)

T2(φ(θ2) sin θ2)

...

T2(φ(θN) sin θN)



≈ − 1

N
T1Lb(θ)PB



SL(θ1)

SL(θ2)

...

SL(θN)





T2Lb(θ1)

T2Lb(θ2)

...

T2Lb(θN)


B



φ(θ1)

φ(θ2)

...

φ(θN)


. (4.34)
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Let us define

TsL = PB



SL(θ1)

SL(θ2)

...

SL(θN)





T2Lb(θ1)

T2Lb(θ2)

...

T2Lb(θN)


B.

Then

(T sφ)(θ) ≈ − 1

N
T1Lb(θ)TsL



φ(θ1)

φ(θ2)

...

φ(θN)


. (4.35)

To evaluate the operators in the boundary integral equation (3.17), note that in θ coordinate

it takes the form of

Aφ(θ) =

[
sin θ S − iτ

k
T S
]
φ(θ) = h̃(θ).

Combining (4.27), (4.29) and (4.35), we see that

(T Sφ)(θ) = (T g + T s)(Sφ)(θ)

≈
[
k2LSTgL(θ)− 1

N
T1Lb(θ)TsL

]


(Sφ)(θ1)

(Sφ)(θ2)

...

(Sφ)(θN)



≈
[
k2LSTgL(θ)− 1

N
T1Lb(θ)TsL

]
L



SL(θ1)

SL(θ2)

...

SL(θN)





φ(θ1)

φ(θ2)

...

φ(θN)


. (4.36)
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Define

TSc(θ) =

[
k2LSTgL(θ)− 1

N
T1Lb(θ)TsL

]
L



SL(θ1)

SL(θ2)

...

SL(θN)


.

Then the discretization of Aφ in (3.17) leads to the following equation

[
L sin θSL(θ)− iτ

k
TSc(θ)

]


φ(θ1)

φ(θ2)

...

φ(θN)


= h̃(θ).

In order to solve for φ(θ1), φ(θ2), · · · , φ(θN), we choose collocation points at Chebyshev points

θ1, θ2, · · · , θN . We finally arrive at the following linear system when Γ is a line segment:



L sin θ1SL(θ1)− iτ

k
TSc(θ1)

L sin θ2SL(θ2)− iτ

k
TSc(θ2)

...

L sin θNSL(θN)− iτ

k
TSc(θN)





φ(θ1)

φ(θ2)

...

φ(θN)


=



h̃(θ1)

h̃(θ2)

...

h̃(θN)


. (4.37)

4.3.2 Non-flat graphene sheets

In this subsection, we introduce the discretization of (3.17) when Γ is a smooth open curve. Fol-

lowing the procedures in the last subsection, we first evaluate S and then discuss the evaluation

of the operator T .

Recall that from (3.14), we have

Sψ(X(t)) =

∫ 1

−1

Φ(X(t), X(s)) ψ(X(s))
1√

1− s2
|X ′(s)| ds.
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For t ∈ (−1, 1), we do change of variable for t = cos θ. Define φ(θ) = ψ(X(t)), then S has

the following form written in θ coordinate:

Sφ(θ) =

∫ π

0

Φ(X(cos θ), X(cos θ′))φ(θ′)|X ′(cos θ′)| dθ′ (4.38)

According to [13], the kernel Φ(X(cos θ), X(cos(θ′))) can be expanded as:

Φ(X(cos θ), X(cos(θ′))) =
i

4
H

(1)
0 (k|X(cos θ)−X(cos θ′)|)

= − 1

2π
J0 (k|X(cos θ)−X(cos θ′)|) · ln | cos θ − cos θ′|

+
i

4
H

(1)
0 (k|X(cos θ)−X(cos θ′)|)

+
1

2π
J0 (k|X(cos θ)−X(cos θ′)|) · ln | cos θ − cos θ′|

=: M1(θ, θ′) ln | cos θ − cos θ′|+M2(θ, θ′). (4.39)

whereM1(θ, θ′) = − 1

2π
J0 (k|X(cos θ)−X(cos θ′)|) andM2(θ, θ′) = Φ(X(cos θ), X(cos(θ′)))−

M1(θ, θ′) ln | cos θ−cos θ′|. From the previous study,M1 andM2 are smooth functions of θ and

θ′ and the singular behavior of Φ(X(cos θ), X(cos(θ′))) resides entirely in ln | cos θ − cos θ′|.

From (4.38) and (4.39), we see that

Sφ(θ) =

∫ π

0

[M1(θ, θ′) ln | cos θ − cos θ′|+M2(θ, θ′)]φ(θ′)|X ′(cos θ′)| dθ′

=

∫ π

0

M1(θ, θ′) ln | cos θ − cos θ′|φ(θ′)|X ′(cos θ′)| dθ′

+

∫ π

0

M2(θ, θ′)φ(θ′)|X ′(cos θ′)| dθ′ (4.40)

As before, M1(θ, θ′)φ(θ′)|X ′(cos θ′)| and M2(θ, θ′)φ(θ′)|X ′(cos θ′)| are approximated by the

Chebyshev polynomial as a function of θ′. As such, from (4.23) and (4.24), we have

Sφ(θ) ≈
∫ π

0

[
N∑
j=1

M1(θ, θj)φ(θj)|X ′(cos θj)|Lj(θ′)

]
ln | cos θ − cos θ′| dθ′

+

∫ π

0

N∑
j=1

M2(θ, θj)φ(θj)|X ′(cos θj)|Lj(θ′) dθ′
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=
N∑
j=1

[
M1(θ, θj)φ(θj)|X ′(cos θj)|Rj(θ) +

π

N
M2(θ, θj)φ(θj)|X ′(cos θj)|

]
.

= Sg(θ)



φ(θ1)

φ(θ2)

...

φ(θN)


, (4.41)

where

Sg(θ) =



M1(θ, θ1)|X ′(cos θ1)|R1(θ) +
π

N
M2(θ, θ1)|X ′(cos θ1)|

M1(θ, θ2)|X ′(cos θ2)|R2(θ) +
π

N
M2(θ, θ2)|X ′(cos θ2)|

...

M1(θ, θN)|X ′(cos θN)|RN(θ) +
π

N
M2(θ, θN)|X ′(cos θN)|



T

.

In the following, we evaluate the operator T . Recall from (3.15),

T ψ(X(t)) =

∫ 1

−1

∂2Φ(X(t), X(s))

∂νX(t)∂νX(s)

ψ(X(s))
√

1− s2|X ′(s)| ds.

Changing the variable t = cos θ gives

(T φ)(θ) =

∫ π

0

∂2Φ(X(cos θ), X(cos θ′))

∂νX(cos θ) ∂νX(cos θ′)
φ(θ′)|X ′(cos θ′)| sin2 θ′ dθ′. (4.42)

Since we do not have an effective way to handle the kernel
∂2Φ(X(cos θ), X(cos θ′))

∂νX(cos θ) ∂νX(cos θ′)
, the same

technique to decompose T is applied here:

T ψ = T gψ + T sψ, (4.43)

where

T gψ(X(t)) = k2

∫ 1

−1

Φ(X(t), X(s))ψ(X(s))|X ′(s))|
√

1− s2 νX(t) · νX(s) ds,
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T sψ(X(t)) =
1

|X ′(t)|
d

dt

∫ 1

−1

Φ(X(t), X(s))
d

ds

(
ψ(X(s))

√
1− s2

)
ds.

These operators can be expressed in terms of the θ coordinate as

T gφ(θ) = k2

∫ π

0

Φ(X(cos θ), X(cos θ′))φ(θ′)|X ′(cos θ′))| sin2(θ′) νX(cos θ) · νX(cos θ′) dθ
′,

(4.44)

T sφ(θ) =
1

|X ′(cos θ)|
· 1

sin θ
· d
dθ

∫ π

0

Φ(X(cos θ), X(cos θ′))
d

dθ′
(φ(θ′) sin θ′) dθ′ (4.45)

From (4.38) and (4.44), it is seen that T gφ(θ) differs from Sφ(θ) by sin2(θ′) νX(cos θ) ·

νX(cos θ′) inside the integral. In light of (4.23) and (4.24), we have

T gφ(θ) ≈ k2

N∑
j=1

Rj(θ)M1(θ, θj)φ(θj)|X ′(cos θj)| sin2(θj) νX(cos θ) · νX(cos θj)

+
k2π

N

N∑
j=1

M2(θ, θj)φ(θj)|X ′(cos θj)| sin2(θj) νX(cos θ) · νX(cos θj)

= Tgg(θ)



φ(θ1)

φ(θ2)

...

φ(θN)


, (4.46)

where

Tgg(θ) = k2



|X ′(cos θ1)| sin2 θ1 νX(cos θ) · νX(cos θ1)

[
M1(θ, θ1)R1(θ) +

π

N
M2(θ, θ1)

]
|X ′(cos θ2)| sin2 θ2 νX(cos θ) · νX(cos θ2)

[
M1(θ, θ2)R2(θ) +

π

N
M2(θ, θ2)

]
...

|X ′(cos θN)| sin2 θN νX(cos θ) · νX(cos θN )

[
M1(θ, θN)RN(θ) +

π

N
M2(θ, θN)

]



T

.

From (4.45), it is clear that T s can be viewed as the composition of three operators:

T sφ = (T1g · T2g · T3g)φ.
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where

T1gf(θ) =
1

|X ′(cos θ)|
1

sin θ

df(θ)

dθ
=

1

|X ′(t)|
·

(
−df̃(t)

dt

)
with f̃(t) = f(θ);

(4.47)

T2gf =

∫ π

0

Φ(X(cos θ), X(cos θ′))f(θ′) dθ′; (4.48)

T3gf =
d

dθ
(f(θ) sin θ) . (4.49)

We can evaluate T1g,T2g and T3g in a similar way as the case of line segment.

For T1g, by (4.32),

T1g ≈ − 2

N

1

|X ′(cos θ)|
T1Lb(θ)PB



f(θ1)

f(θ2)

...

f(θN)



= T1gb(θ)



f(θ1)

f(θ2)

...

f(θN)


, (4.50)

where

T1gb(θ) = − 2

N

1

|X ′(cos θ)|
T1Lb(θ)PB.

For T2, we apply the idea of evaluating Sφ, by (4.41), it is easy to deduce that

T2gf(θ) ≈
N∑
j=1

[
M1(θ, θj)f(θj)Rj(θ) +

π

N
M2(θ, θj)f(θj)

]

= T2g(θ)



f(θ1)

f(θ2)

...

f(θN)


, (4.51)
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where

T2g(θ) =



M1(θ, θ1)R1(θ) +
π

N
M2(θ, θ1)

M1(θ, θ2)R2(θ) +
π

N
M2(θ, θ2)

...

M1(θ, θN)RN(θ) +
π

N
M2(θ, θN)



T

.

Note that T3g is the same as the one for the line segment case. Thus its discretization also

leads to (4.33).

In summary, from (4.50), (4.51) and (4.33), the evaluation of T sφ is given by

T sφ(θ) = (T1g · T2g · T3g)φ(θ)

≈ T1gb(θ)



(T2g · T3g)φ(θ1)

(T2g · T3g)φ(θ2)

...

(T2g · T3g)φ(θN)



≈ T1gb(θ)



T2g(θ1)

T2g(θ2)

...

T2g(θN)





T3gφ(θ1)

T3gφ(θ2)

...

T3gφ(θN)



≈ 1

2
T1gb(θ)



T2g(θ1)

T2g(θ2)

...

T2g(θN)





T2Lb(θ1)

T2Lb(θ2)

...

T2Lb(θN)


B



φ(θ1)

φ(θ2)

...

φ(θN)



= Tsg(θ)



φ(θ1)

φ(θ2)

...

φ(θN)


, (4.52)
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where

Tsg(θ) =
1

2
T1gb(θ)



T2g(θ1)

T2g(θ2)

...

T2g(θN)





T2Lb(θ1)

T2Lb(θ2)

...

T2Lb(θN)


B.

We recall our boundary integral equation from (3.17) again:

Aφ(θ) =

[
sin θ S − iτ

k
T S
]
φ(θ) = h̃(θ).

Combining (4.41), (4.46) and (4.52), it follows that

T Sφ(θ) = (T g + T s)(Sφ(θ))

≈ [Tgg(θ) + Tsg(θ)]



Sφ(θ1)

Sφ(θ2)

...

Sφ(θN)



≈ [Tgg(θ) + Tsg(θ)]



Sg(θ1)

Sg(θ2)

...

Sg(θN)





φ(θ1)

φ(θ2)

...

φ(θN)



= TSg(θ)



φ(θ1)

φ(θ2)

...

φ(θN)


, (4.53)

where

TSg(θ) = [Tgg(θ) + Tsg(θ)]



Sg(θ1)

Sg(θ2)

...

Sg(θN)


.
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Therefore, the discretization of the integral equation (3.17) yields

[
sin θSg(θ)− iτ

k
TSg(θ)

]


φ(θ1)

φ(θ2)

...

φ(θN)


= h̃(θ). (4.54)

By choosing the collocation points at Chebyshev points θj for the above equation, it leads to

the following linear system with the unknown φ(θj):



sin θ1Sg(θ1)− iτ

k
TSg(θ1)

sin θ2Sg(θ2)− iτ

k
TSg(θ2)

...

sin θNSg(θN)− iτ

k
TSg(θN)





φ(θ1)

φ(θ2)

...

φ(θN)


=



h̃(θ1)

h̃(θ2)

...

h̃(θN)


. (4.55)

We have completed the discretization of boundary integral equation from (3.17) using the

Nystrom method. The solution of the linear system will be accomplished by iterative methods.

This will be discussed in next chapter.
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Chapter 5

Iterative solvers for linear system

In this chapter we introduce iterative methods for solving the linear system obtained from

Nystrom discretization. In particular, we introduce generalized minimum residual (GMRES)

and biconjugate gradient method (BCG) (see [54] for detailed description of the two methods).

5.1 Introduction

There are two main classes of iterative methods to solve the system of linear equations : station-

ary iterative methods and Krylov subspace methods. Stationary iterative methods are so named

because solving the linear systems is the process of finding the stationary point of a contraction

operator. In detail, to solve Ax = b, we split A as A = B − C where B is nonsingular. Then

we can write the linear system as:

Bx = Cx+ b,

or equivalently,

x = B−1(Cx+ b).

This leads to the fixed point iteration:

x(n+1) = B−1(Cx(n) + b) = x(n) +B−1(b− Ax(n)).

These methods are easy to derive and implement, but convergence is guaranteed only for a

limited class of A for which there exist B and C, such that A = B − C and ||B−1C|| <

1 under certain norm. Therefore, the stationary iterative methods are largely supplanted by
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more sophisticated methods such as Krylov subspace methods nowadays. The idea of Krylov

subspace method is to project a high-dimensional problem into a lower-dimensional Krylov

subspace.

In the following, we briefly introduce the Krylov subspace methods and then discuss GM-

RES and BCG in detail. Now we define the Krylov subspace as follows.

Definition 5.1 Given a nonsingular matrix A ∈ Cm×m and b 6= 0 ∈ Cm, the nth Krylov

subspace Kn(A, b) generated by A and b is

Kn := Kn(A, b) := span
〈
b, Ab, · · · , An−1b

〉
.

Starting with a initial guess x0 and corresponding residual r0 = b− Ax0, the Krylov subspace

method is an iterative method to generate a sequence of xn such that

xn − x0 ∈ Kn(A, r0)

with certain optimality property. The process continues until finding the exact solution or to

the desired accuracy.

There are three popular methods in the family of Krylov subspace methods: general-

ized minimum residual (GMRES), biconjugate gradient method (BCG) and conjugate gradient

method(CG). CG is applied when matrix A is symmetric and positive definite, while GMRES

and BCG are two popular methods to solve linear system with general matrices.

5.2 Generalized minimum residual (GMRES)

In this section, we introduce the Arnoldi iteration and illustrate how it can be used to solve

linear system Ax = b, A ∈ Cm×m, which is known as GMRES.

The Arnoldi iteration is used to reduce A to the Hessenberg form by an orthogonal sim-

ilarity transformation, which can be written as A = QHQ∗ or AQ = QH . Similar to the

Gram-Schmidt method, it has the advantage that it can be stopped part-way, leaving one with
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a partial reduction to the Hessenberg form that is exploited to form iterative algorithms for

systems of equations.

Computing the full reduction is impractical when m is large. Instead, the Arnoldi iteration

considers the first n columns of AQ = QH . Let Qn be the m × n matrix whose columns are

the first n columns of Q:

Qn =

(
q1 q2 · · · qn

)
.

Let Hn be the (n+ 1)× n upper-left section of H:

Hn =



h11 h12 · · · h1n

h21 h22 h2n

. . . . . . ...

hn,n−1 hnn

hn+1,n


It is seen that Hn is also a Hessenberg matrix. Then we have

AQn = Qn+1Hn,

that is

A

(
q1 q2 · · · qn

)
=

(
q1 q2 · · · qn+1

)


h11 h12 · · · h1n

h21 h22 h2n

. . . . . . ...

hn,n−1 hnn

hn+1,n


(5.1)

We can write the nth column of the above equation explicitly as:

Aqn = h1nq1 + · · ·+ hnnqn + hn+1,nqn+1. (5.2)
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The Arnoldi iteration starts from an arbitrary b with q1 =
b

||b||
. Then at step n, we use the

(n+ 1) term recurrence relation determined by (5.2) ,

for n = 1, 2, 3, · · ·

v = Aqn ,

for j = 1 : n

hjn = q∗j v

v = v − hjnqj

hn+1,n = ||v||

qn+1 =
v

hn+1,n

It is clear that span 〈b, Ab, · · · , An−1b〉 = Kn = span 〈q1, q2, · · · , qn〉.

The idea of GMRES is to generate a sequence of xn to approximate the exact solution of

Ax = b, at step n, finding xn ∈ Kn that minimizes the norm of the residual rn = b − Axn.

It implies that at each step, xn is determined by solving a least squares problem. To be more

precise, at each step, the least squares problem is to find a y ∈ Cn with xn = Qny such that

||AQny − b|| is minimized. (5.3)

By Arnoldi iteration, the above problem can be transformed to

||Qn+1Hny − b|| is minimized. (5.4)

We note that by multiplying Q∗n+1 on the left, (5.4) does not change the norm. Furthermore,

Q∗n+1b = ||b||e1. Therefore, the final form of the GMRES least squares problem is:

||Hny − ||b||e1|| is minimized. (5.5)

The GMRES algorithm can be summarized as follows:

q1 =
b

||b||
for n = 1, 2, 3, · · ·
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step n of Arnoldi iteration

Find y to minimize ||Hny − ||b||e1||

xn = Qny.

The least squares problem can be solved via QR factorization in the usual way.

5.3 Biconjugate gradient method (BCG)

From last section, it is known that GMRES retains orthogonality of the residuals and has the

effect of minimization. However, it is at the cost of large storage demand with a growing recur-

rence length from Arnoldi iteration. Hence it is natural to seek methods with short recurrence

relations. The biconjugate gradient method (BCG) is a popular method in this class. It is diffi-

cult to say which method is better between the GRMRES and BCG. Therefore, in this section,

we briefly introduce the idea of BCG.

If A is hermitian, then the Hessenberg matrix Hn from the Arnoldi iteration is in fact

tridiagonal, thus instead of (n + 1)-term recurrence at step n, the new iteration involves just a

three-term recurrence. However, when A is not hermitian, if we insist on a tridiagonal result,

we have to give up the use of unitary transformations.

It is known that for generalA ∈ Cm×m, there exists a nonsingular but not generally unitary

matrix V such that AV = V T , where T is tridiagonal. Define W = V −∗, then A∗W = WT ∗.

Let vj and wj be the j th columns of V and W , these vectors are biorthogonal in the sense that

w∗jvj = δij.
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From AV = V T and A∗W = WT ∗ and since T and T ∗ are tridiagonal, we have

A

(
v1 · · · vn

)
=

(
v1 · · · vn+1

)



a1 r1

b1 a2 r2

b2 a3
. . .

. . . . . . rn−1

bn−1 an

bn


(5.6)

which leads to the three-term recurrence relation:

Avn = rn−1vn−1 + anvn + bnvn+1. (5.7)

The similar form holds as follows:

A∗
(
w1 · · · wn

)
=

(
w1 · · · wn+1

)



a1 b1

r1 a2 b2

r2 a3
. . .

. . . . . . bn−1

rn−1 an

rn


(5.8)

with

A∗wn = bn−1wn−1 + anwn + rnwn+1. (5.9)

It is clear that vn ∈ Kn(A, v1) and wn ∈ Kn(A∗, w1).

Take v1 = b and w1 = v1/||v1||2. The basic idea of BCG is to pick a sequence xn ∈

Kn(A, b) with the residual rn = Axn − b orthogonal to the Krylov space Kn(A∗, w1), where

vn and wn are defined by (5.7) and (5.9). Unlike GMRES, ||rn||2 is not minimized at each step

while we take the advantage of short recurrence from (5.7) and (5.9).
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Chapter 6

Numerical examples

In this chapter, we carry out extensive numerical studies to demonstrate the effectiveness of

the proposed boundary integral equation solver for the simulation of graphene plasmons. The

numerical results presented below are implemented in Matlab. In Section 6.1, we compare the

efficiency of the regularized integral equation formulation with the non-regularized version. In

Section 6.2 and 6.3, we perform computational simulations of graphene plasmon for various

setups. Both flat graphene sheet and non-flat ones will be considered.

6.1 Efficiency of the well-conditioned boundary integral equation solver

We choose the cross-section of the graphene sheet to be Γ = [−π, π]. The parameter τ , which

is defined in (3.11), is chosen as 0.2. We consider the scattering by a normal incident plane

wave ui = e−iky with the wavenumber k = 1. GMRES is applied to solve the discretized

linear system (4.37). Table 6.1 shows the number of iterations when the regularized integral

formulation (3.17) and the unregularized integral formulation (3.12) are used for various N .

The tolerance for both formulations is 10−8.

Table 6.1: Iteration numbers for regularized and unregularized integral formulations.

N 400 800 1600 3200
Regularized formulation 65 67 68 68

Unregularized formulation 211 302 430 610

It is clear that solving the regularized formulation requires fewer iterations compared to the

unregularized formulation for allN . More precisely, as N doubles, the iteration number for the
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regularized formula remains almost the same, while the iteration number for the unregularized

formulation increases by approximately 50%.

6.2 Scattering by flat graphene sheets

In this section, we present four examples when the cross-section of graphene sheet is given by

a line segment [−π, π]. Both normal and oblique incidences are investigated.

Example 1 We consider the normal incidence with the incidence angle θ = 0. That is, the

plane wave ui = e−iky. We discretize the integral formulation with N = 800. Figures 6.1 and

6.3 plot the normal derivative
∂u

∂y
along Γ for the wavenumber k = 1 and k = 2, respectively.

Figures 6.2 and 6.3 demonstrate the corresponding scattered field near the graphene sheet. It

is observed that the surface plasmon occurs along Γ. More precisely, the scattered wave us is

much more oscillatory than the incident wave along Γ, and the energy for the plasmon wave

is localized near the interface Γ. For comparison, in Figure 6.5 and 6.6, we demonstrate the

scattered wave for k = 1 and k = 2 when a perfect conductor sheet, instead of a graphene

sheet, is sitting in the vacuum. For the latter setup, it is known that no plasmon occurs.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

Figure 6.1: The normal derivative
∂u

∂y
along Γ. k = 1.
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Figure 6.2: The scattered field us near the graphene sheet. k = 1.
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−0.1
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Figure 6.3: The normal derivative
∂u

∂y
along Γ. k = 2.

Figure 6.4: he scattered field us near the graphene sheet. k = 2.

Figure 6.5: The scattered field us if Γ is a perfect conductor. The boundary condition is
∂u

∂y
= 0

on Γ. k = 1.
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Figure 6.6: The scattered field us if Γ is a perfect conductor. The boundary condition is
∂u

∂y
= 0

on Γ. k = 2.

Example 2 In this example, we test the scattering by an oblique incident wave instead of a nor-

mal incident wave. The incidence angle θ = π/6 such that the plane wave ui = eik(1/2x−
√

3/2y).

We also discretize the integral equation with N = 800. Figures 6.7 and 6.9 show the normal

derivative
∂u

∂y
along Γ for the wavenumber k = 1 and k = 2, respectively. Figures 6.8 and 6.10

plot the corresponding scattered field near the graphene sheet. As seen from Figures 6.8 and

6.10, the plasmon also occurs along Γ and the scattered wave is highly oscillatory.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.4

0.6
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1

Figure 6.7: The normal derivative
∂u

∂y
along Γ. k = 1.
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Figure 6.8: The scattered field us near Γ. k = 1.
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Figure 6.9: The normal derivative
∂u

∂y
along Γ. k = 2.

Figure 6.10: The scattered field us near Γ. k = 2.
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6.3 Scattering by non-flat graphene sheets

In this section, the graphene sheet is assumed to be non-flat. We choose the parameterization

of Γ with x = Lt, y = H sin(Lt), where t ∈ [−1, 1]. The constants L and H are given by

L = π, H = 0.2. The wavenumber is set as k = 1. We use N = 800 to discretize the integral

equation.

Example 1 We consider both the normal incidence and the oblique incidence with incidence

angle θ = π/6. The normal derivative
∂u

∂y
along Γ for both cases are shown in Figure 6.11

and 6.12, respectively. Figure 6.13 and 6.14 clearly demonstrates the oscillatory behavior of

scattered field along Γ. In addition, these wave modes are localized along Γ. The difference in

Figure 6.1 (6.3) and Figure 6.11 (6.12) also reflects the difference of the scattering by flat and

non-flat graphene sheet.
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Figure 6.11: The normal derivative
∂u

∂y
along Γ for the normal incidence.
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Figure 6.12: The normal derivative
∂u

∂y
along Γ for the oblique incidence.
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Figure 6.13: The scattered field us near the graphene sheet.

Figure 6.14: The scattered field us near the graphene sheet.
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Chapter 7

Error estimation

In this chapter, we derive the error estimate for the Nystrom discretization method used for the

discretization of the well-conditioned integral equation. We first present some preliminaries in

Section 7.1. The error estimation for the numerical approximation of the integral operators is

derived in Section 7.2, and the error estimation for the solution of the integral equation is given

in Section 7.3.

7.1 Preliminaries

For functions on [−1, 1], we define the inner product with weight 1/
√

1− x2:

〈f(x), g(x)〉 =

∫ 1

−1

f(x)g(x)√
1− x2

dx.

From (4.2) in Section 4.1, we know that Chebyshev polynomials {Tn, n = 0, 1, · · · } forms an

orthogonal polynomial system under this inner product. We define the norms with the above

inner product as follows:

||f ||20 = 〈f, f〉 , ||f ||2s =
s∑
i=0

||f (i)||20. (7.1)

Let W s
T be a function space equipped with the above norm such that

W s
T = {f(x)

∣∣∣||f(x)||2s < +∞}.
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Throughout this chapter, we denote the Chebyshev polynomial interpolant with degree N

of f by IN(f). The following theorem presents an error estimate for the Chebyshev polynomial

interpolation as stated in [53].

Theorem 7.1 (Interpolation Error) Assume v(x) is in W r
T with r > 1

2
. Then for any real σ,

0 ≤ 2σ ≤ r, it holds that

||v − IN(v)||σ ≤ C

(
1

N

)r−2σ

||v||r. (7.2)

The following lemma follows from the expansion of a smooth function by Chebyshev

polynomials.

Lemma 7.1 Let {Tn(t)}∞n=0 be the Chebyshev polynimials on [−1, 1]. IfM(t, s) ∈ C∞[−1, 1]×

C∞[−1, 1] , then M(t, s) can be expanded as

M(t, s) =
∞∑
n=0

cn(t)Tn(s), where cn(t) = 〈M(t, ·), Tn(·)〉 . (7.3)

Moreover,
∂i

∂ti
∂j

∂sj
M(t, s) =

∑∞
n=0 c

(i)
n (t)T

(j)
n (s).

7.2 Error estimation for the numerical approximation of the integral operators

In this section, we present an error estimate for the numerical approximation of operators S

and T .

Let ϕ(t) = ψ(X(t)). Recall from (3.14) and (4.39), we have

(Sϕ)(t) =

∫ 1

−1

Φ(X(t), X(s)) ϕ(s)
1√

1− s2
|X ′(s)| ds

=

∫ 1

−1

[M1(t, s) ln |t− s|+M2(t, s)]ϕ(s)
|X ′(s)|√

1− s2
ds

=

∫ 1

−1

ln |t− s|M1(t, s)ϕ(s)
|X ′(s)|√

1− s2
ds+

∫ 1

−1

M2(t, s)ϕ(s)
|X ′(s)|√

1− s2
ds.

(7.4)
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The Nystrom discretization for Sϕ leads to SNϕ, which is given by

SNϕ(t) =

∫ 1

−1

ln |t− s| IN(M1(t, s)ϕ(s)|X ′(s)|)√
1− s2

+
IN(M2(t, s)ϕ(s)|X ′(s)|)√

1− s2
ds. (7.5)

First, S0 is a bounded operator, as stated in the next lemma (cf. [31]).

Lemma 7.2 If ϕ ∈ W σ
T , let

S0ϕ =

∫ 1

−1

ln |t− s| ϕ(s)√
1− s2

ds,

then there exists a constant C such that

||S0ϕ||σ ≤ C||ϕ||σ.

The error estimate for Sϕ is given in the following theorem.

Theorem 7.2 If X(t) ∈ Cr[−1, 1], ϕ ∈ W r
T [−1, 1], and for any σ, 0 ≤ 2σ ≤ r, then

||Sϕ− SNϕ||σ ≤ C

(
1

N

)r−2σ

||ϕ||r.

Proof: From (7.4) and (7.5),

(S − SN)ϕ =

∫ 1

−1

ln |t− s|
[
M1(t, s)ϕ(s)

|X ′(s)|√
1− s2

− IN (M1(t, s)ϕ(s)|X ′(s)|)√
1− s2

]
ds

+

∫ 1

−1

M2(t, s)ϕ(s)
|X ′(s)|√

1− s2
− IN (M2(t, s)ϕ(s)|X ′(s)|)√

1− s2
ds

=: A1(t) + A2(t).

It is known that M1(t, s) and M2(t, s) are analytic functions. Therefore, by Lemma 7.1,

M1(t, s) and M2(t, s) have the following expansions:

M1(t, s) =
∞∑
n=0

cn,1(t)Tn(s), M2(t, s) =
∞∑
n=0

cn,2(t)Tn(s). (7.6)
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Next, we give the estimate of ||A1(t)||σ and ||A2(t)||σ. By the expansion (7.6),

||A1(t)||σ =
∣∣∣∣∣∣ ∞∑
n=0

cn,1(t)

∫ 1

−1

ln |t− s|
[
Tn(s)ϕ(s)

|X ′(s)|√
1− s2

− IN (Tn(s)ϕ(s)|X ′(s)|)√
1− s2

] ∣∣∣∣∣∣
σ

≤
∞∑
n=0

∣∣∣∣∣∣cn,1(t)S0 (Tn(s)ϕ(s)|X ′(s)| − IN(Tn(s)ϕ(s)|X ′(s)|))
∣∣∣∣∣∣
σ

≤ C
∞∑
n=0

∣∣∣∣∣∣cn,1(t)
∣∣∣∣∣∣
Cσ [−1,1]

∣∣∣∣∣∣S0 (Tn(s)ϕ(s)|X ′(s)| − IN(Tn(s)ϕ(s)|X ′(s)|))
∣∣∣∣∣∣
σ
.

By Lemma 7.2, Theorem 7.1 and the fact that M1(t, s) is an analytic function, it follows that

||A1(t)||σ ≤ C
∞∑
n=0

∣∣∣∣∣∣cn,1(t)
∣∣∣∣∣∣
Cσ [−1,1]

∣∣∣∣∣∣Tn(s)ϕ(s)|X ′(s)| − IN(Tn(s)ϕ(s)|X ′(s)|)
∣∣∣∣∣∣
σ

≤ C
∞∑
n=0

∣∣∣∣∣∣cn,1(t)
∣∣∣∣∣∣
Cσ [−1,1]

(
1

N

)r−2σ ∣∣∣∣Tn(s)ϕ(s)|X ′(s)|
∣∣∣∣
r

≤ C

(
1

N

)r−2σ ∞∑
n=0

∣∣∣∣∣∣cn,1(t)
∣∣∣∣∣∣
Cσ [−1,1]

∣∣∣∣∣∣Tn(s)
∣∣∣∣∣∣
Cr[−1,1]

∣∣∣∣∣∣|X ′(s)|∣∣∣∣∣∣
Cr[−1,1]

∣∣∣∣ϕ∣∣∣∣
r

≤ C

(
1

N

)r−2σ ∣∣∣∣ϕ∣∣∣∣
r
. (7.7)

Next, we estimate ||A2(t)||σ. By the expansion (7.6),

A2(t) =

∫ 1

−1

M2(t, s)ϕ(s)
|X ′(s)|√

1− s2
− IN (M2(t, s)ϕ(s)|X ′(s)|)√

1− s2
ds

=
∞∑
n=0

cn,2(t)

∫ 1

−1

Tn(s)ϕ(s)
|X ′(s)|√

1− s2
− IN (Tn(s)ϕ(s)|X ′(s)|)√

1− s2
ds.

Then,

||A2(t)||σ =
∣∣∣∣∣∣ ∞∑
n=0

cn,2(t)

∫ 1

−1

Tn(s)ϕ(s)
|X ′(s)|√

1− s2
− IN (Tn(s)ϕ(s)|X ′(s)|)√

1− s2
ds
∣∣∣∣∣∣
σ

≤ C

(∫ 1

−1

∣∣∣Tn(s)ϕ(s)
|X ′(s)|√

1− s2
− IN (Tn(s)ϕ(s)|X ′(s)|)√

1− s2

∣∣∣ ds) ∞∑
n=0

||cn,2(t)||cσ [−1,1]

≤ C

∫ 1

−1

∣∣∣Tn(s)ϕ(s)
|X ′(s)|√

1− s2
− IN (Tn(s)ϕ(s)|X ′(s)|)√

1− s2

∣∣∣ ds
= C

∫ 1

−1

∣∣∣Tn(s)ϕ(s)|X ′(s)| − IN(Tn(s)ϕ(s)|X ′(s)|)
∣∣∣ 1√

1− s2
ds

60



= C

∫ 1

−1

∣∣∣Tn(s)ϕ(s)|X ′(s)| − IN(Tn(s)ϕ(s)|X ′(s)|)
∣∣∣ ( 1√

1− s2

) 1
2
(

1√
1− s2

) 1
2

ds.

By the Holder inequality,

||A2(t)||σ ≤ C

∫ 1

−1

∣∣∣Tn(s)ϕ(s)|X ′(s)| − IN(Tn(s)ϕ(s)|X ′(s)|)
∣∣∣2

√
1− s2

ds


1
2 (∫ 1

−1

1√
1− s2

ds

) 1
2

≤ C
∣∣∣∣∣∣Tn(s)ϕ(s)|X ′(s)| − IN(Tn(s)ϕ(s)|X ′(s)|)

∣∣∣∣∣∣
0
.

An application of Theorem 7.1 leads to

||A2(t)||σ ≤ C
∣∣∣∣∣∣Tn(s)ϕ(s)|X ′(s)| − IN(Tn(s)ϕ(s)|X ′(s)|)

∣∣∣∣∣∣
0

≤ C

(
1

N

)r ∣∣∣∣Tn(s)ϕ(s)|X ′(s)|
∣∣∣∣
r

≤ C

(
1

N

)r
||ϕ(s)||r

∣∣∣∣Tn(s)
∣∣∣∣
Cr[−1,1]

∣∣∣∣|X ′(s)|∣∣∣∣
Cr[−1,1]

≤ C

(
1

N

)r
||ϕ(s)||r

≤ C

(
1

N

)r−2σ

||ϕ(s)||r. (7.8)

Combining (7.7) and (7.8) yields

||Sϕ− SNϕ||σ ≤ C

(
1

N

)r−2σ

||ϕ||r. (7.9)

We remark that following the steps in Theorem 7.2, it is easy to obtain that

||Sϕ||r ≤
∣∣∣∣∣∣ ∫ 1

−1

ln |t− s|M1(t, s)ϕ(s)
|X ′(s)|√

1− s2
ds
∣∣∣∣∣∣
r

+
∣∣∣∣∣∣ ∫ 1

−1

M2(t, s)ϕ(s)
|X ′(s)|√

1− s2
ds
∣∣∣∣∣∣
r

≤ C
∣∣∣∣Tn(s)ϕ(s)|X ′(s)|

∣∣∣∣
r

+ C

∫ 1

−1

∣∣∣Tn(s)ϕ(s)
|X ′(s)|√

1− s2

∣∣∣ ds
≤ C

∣∣∣∣Tn(s)ϕ(s)|X ′(s)|
∣∣∣∣
r

+ C
∣∣∣∣Tn(s)ϕ(s)|X ′(s)|

∣∣∣∣
0

≤ C
∣∣∣∣Tn(s)ϕ(s)|X ′(s)|

∣∣∣∣
r
≤ C||ϕ(s)||r. (7.10)
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From the discussion in Section 4.2 and 4.3, the hypersingluar operator T can be decom-

posed as

T = T g + T s,

as given by (4.28). Furthermore, T s can be written as the composition of three operators

T sφ = (T1g · T2g · T3g)φ.

where T1g, T2g and T3g are defined by (4.47), (4.48) and (4.49), respectively.

The next lemma gives bounds for the operators T1g, T2g and T3g.

Lemma 7.3 If ϕ ∈ W r+1
T [−1, 1], then there exists constants such that

||T1gϕ||r ≤ C||ϕ||r+1, ||T2gϕ||r ≤ C||ϕ||r, ||T3gϕ||r ≤ C||ϕ||r+1 (7.11)

Remark: T1g and T3g are essentially the first-order differential operators, and their bounds are

obvious. T2g has the same kernel as S, hence its bound follows from a similar proof as that of

Theorem 7.2 .

We denote by Tjg,N (j = 1, 2, 3 ) the numerical approximation of Tjg by using Chebshev

polynomials. Then their boundness is given in the following lemma.

Lemma 7.4 If ϕ ∈ W 2(r+1)
T [−1, 1], then there exists constants such that

||T1g,Nϕ||r ≤ C||ϕ||2(r+1), ||T2g,Nϕ||r ≤ C||ϕ||2r, ||T3g,Nϕ||r ≤ C||ϕ||2(r+1). (7.12)

Proof: According to the definition of T1g and the calculation of T1g,N , it follows that

T1gϕ =
1

|X ′(t)|

(
−dϕ
dt

)
,

T1g,Nϕ =
1

|X ′(t)|

(
−d(IN(ϕ))

dt

)
,

T1g,Nϕ = (T1g,N − T1g)ϕ+ T1gϕ.
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From Theorem 7.1,

∣∣∣∣(T1g,N − T1g)ϕ
∣∣∣∣
r

=
∣∣∣∣∣∣ 1

|X ′(t)|

(
dϕ

dt
− d(IN(ϕ))

dt

) ∣∣∣∣∣∣
r

≤ C
∣∣∣∣∣∣dϕ
dt
− d(IN(ϕ))

dt

∣∣∣∣∣∣
r

≤ C
∣∣∣∣ϕ− INϕ∣∣∣∣r+1

≤ C||ϕ||2(r+1).

By Lemma 7.3,

||T1gϕ||r ≤ C||ϕ||r+1 ≤ C||ϕ||2(r+1).

Therefore,

∣∣∣∣T1g,Nϕ
∣∣∣∣
r
≤

∣∣∣∣(T1g,N − T1g)ϕ
∣∣∣∣
r

+
∣∣∣∣T1gϕ

∣∣∣∣
r

≤ C||ϕ||2(r+1).

The estimate of T3g,N can be obtained similarily.

For T2g,Nϕ,

T2g,Nϕ = (T2g,N − T2g)ϕ+ T2gϕ.

By Lemma 7.3, ∣∣∣∣T2gϕ
∣∣∣∣
r
≤ C||ϕ||r ≤ C||ϕ||2r.

On the other hand, (T2g,N − T2g)ϕ has the same kernel as (S − SN)ϕ, thus from Theorem 7.2,

we obtain ∣∣∣∣(T2g,N − T2g)ϕ
∣∣∣∣
r
≤ C||ϕ||2r.

Therefore,

∣∣∣∣T2g,Nϕ
∣∣∣∣
r
≤

∣∣∣∣(T2g,N − T2g)ϕ
∣∣∣∣
r

+
∣∣∣∣T2gϕ

∣∣∣∣
r

≤ C||ϕ||2r.
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The next theorem gives an error estimate of the Nystrom discretization for T ϕ.

Theorem 7.3 If ϕ ∈ W r
T (−1, 1),

r

4
− 1

2
− 2(σ + 1) ≥ 0 and σ ≥ 0, then

∣∣∣∣T ϕ− TNϕ∣∣∣∣σ ≤ C

(
1

N

) r
4
− 1

2
−2(σ+1)

||ϕ||r.

Proof: Since

T ϕ = T gϕ+ T sϕ,

TNϕ = T gNϕ+ T sNϕ.

T gϕ has the same kernel as S, then following the same proof in Theorem 7.2, we have

∣∣∣∣T gϕ− T gNϕ∣∣∣∣σ ≤ Ck2

(
1

N

)r−2σ

||ϕ||r. (7.13)

It is known that

T s = T1gT2gT3g,

T sN = T1g,N · T2g,N · T3g,N .

T2gϕ has the same kernel as S, then repeating the steps in the proof in Theorem 7.2 gives us

∣∣∣∣T2gϕ− T2g,Nϕ
∣∣∣∣
l
≤ C

(
1

N

)s−2l

||ϕ||s. (7.14)

T1g and T3g are first-order differential operators. Therefore, from lemma 7.1,

∣∣∣∣(T1g,N − T1g)ϕ
∣∣∣∣
l

=
∣∣∣∣∣∣ 1

|X ′(t)|

(
dϕ

dt
− d(IN(ϕ))

dt

) ∣∣∣∣∣∣
l

≤ C
∣∣∣∣∣∣dϕ
dt
− d(IN(ϕ))

dt

∣∣∣∣∣∣
l

≤ C
∣∣∣∣ϕ− INϕ∣∣∣∣l+1

≤ C

(
1

N

)s−2(l+1)

||ϕ||l (7.15)
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Similarly, the following result holds:

∣∣∣∣(T3g,N − T3g)ϕ
∣∣∣∣
l
≤ C

(
1

N

)s−2(l+1)

||ϕ||l (7.16)

To estimate
∣∣∣∣T1gT2gT3gϕ− T1g,NT2g,NT3g,Nϕ

∣∣∣∣
σ

, we split the difference as follows:

T1gT2gT3gϕ− T1g,NT2g,NT3g,Nϕ = (T1gT2gT3gϕ− T1gT2gT3g,Nϕ)

+ (T1gT2gT3g,Nϕ− T1gT2g,NT3g,Nϕ)

+ (T1gT2g,NT3g,Nϕ− T1g,NT2g,NT3g,Nϕ) (7.17)

From lemma 7.3 and (7.16),

∣∣∣∣T1gT2gT3gϕ− T1gT2gT3g,Nϕ
∣∣∣∣
σ
≤ C

∣∣∣∣T3gϕ− T3g,Nϕ
∣∣∣∣
σ+1

≤ C

(
1

N

)r−2(σ+1)

||ϕ||r. (7.18)

From lemma 7.3, (7.14) and lemma 7.4,

∣∣∣∣T1gT2gT3g,Nϕ− T1gT2g,NT3g,Nϕ
∣∣∣∣
σ
≤ C

∣∣∣∣T2gT3g,Nϕ− T2g,NT3g,Nϕ
∣∣∣∣
σ+1

≤ C

(
1

N

) r
2
−1−2(σ+1)

||T3g,Nϕ|| r
2
−1

≤ C

(
1

N

) r
2
−1−2(σ+1)

||ϕ||r. (7.19)

From (7.15) and lemma 7.4 ,

∣∣∣∣T1gT2g,NT3g,Nϕ− T1g,NT2g,NT3g,Nϕ
∣∣∣∣
σ
≤ C

(
1

N

) r
4
− 1

2
−2(σ+1) ∣∣∣∣T2g,NT3g,Nϕ

∣∣∣∣
r
4
− 1

2

≤ C

(
1

N

) r
4
− 1

2
−2(σ+1) ∣∣∣∣T3g,Nϕ

∣∣∣∣
r
2
−1

≤ C

(
1

N

) r
4
− 1

2
−2(σ+1)

||ϕ||r. (7.20)
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From (7.18), (7.19) and (7.20),

∣∣∣∣T1gT2gT3gϕ− T1g,NT2g,NT3g,Nϕ
∣∣∣∣
σ
≤ C

(
1

N

) r
4
− 1

2
−2(σ+1)

||ϕ||r. (7.21)

From (7.13) and (7.21), we have

||T ϕ− TNϕ||σ ≤ C

(
1

N

) r
4
− 1

2
−2(σ+1)

||ϕ||r.

7.3 Error estimation for the solution of the boundary integral equation

In this section, we employ the results obtained in the last section to derive an error estimate for

A and the solution of the boundary integral equation.

In our boundary integral equation formulation,

Aϕ =

(√
1− t2S − iτ

k
T S
)
ϕ.

We denote the numerical evaluation of A by AN .

Theorem 7.4 If ϕ ∈ W r
T [−1, 1] and r ≥ 20, then

∣∣∣∣Aϕ−ANϕ∣∣∣∣0 ≤ C

(
1

N

) r
8
− 5

2

||ϕ||r.

Proof: Since

Aϕ−ANϕ =
√

1− t2(Sϕ− SNϕ)− iτ

k
(T Sϕ− TNSNϕ).

From Theorem 7.2,

∣∣∣∣√1− t2(Sϕ− SNϕ)
∣∣∣∣

0
≤ C

∣∣∣∣Sϕ− SNϕ∣∣∣∣0
≤ C

(
1

N

)r
||ϕ||r. (7.22)
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And

T Sϕ− TNSNϕ = (T Sϕ− T SNϕ) + (T SNϕ− TNSNϕ).

From Lemma 7.3 and Theorem 7.2,

∣∣∣∣T Sϕ− T SNϕ∣∣∣∣0 ≤ C
∣∣∣∣Sϕ− SNϕ∣∣∣∣2

≤ C

(
1

N

)r−4

||ϕ||r. (7.23)

From Theorem 7.2 and (7.10),

||SNϕ||σ ≤
∣∣∣∣Sϕ− SNϕ∣∣∣∣σ +

∣∣∣∣Sϕ∣∣∣∣
σ

≤ C||ϕ||2σ + C||ϕ||σ

≤ C||ϕ||2σ. (7.24)

By Theorem 7.3 and (7.24),

∣∣∣∣T SNϕ− TNSNϕ∣∣∣∣0 ≤ C

(
1

N

) r
8
− 5

2

||SNϕ|| r
2

≤ C

(
1

N

) r
8
− 5

2

||ϕ||r. (7.25)

From (7.23) and (7.25), we have

∣∣∣∣T Sϕ− TNSNϕ∣∣∣∣0 ≤ C

(
1

N

) r
8
− 5

2

||ϕ||r. (7.26)

Therefore, by (7.22) and (7.26), we finally get that

∣∣∣∣Aϕ−ANϕ∣∣∣∣0 ≤ C

(
1

N

)r
||ϕ||r + C

(
1

N

) r
8
− 5

2

||ϕ||r

≤ C

(
1

N

) r
8
− 5

2

||ϕ||r.

The formulation in our problem

Aϕ = h
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has a discretized version in which we look to solve for ϕN from

ANϕN = h.

Theorem 7.5 If ϕ ∈ W r
T [−1, 1] and r ≥ 20, then

∣∣∣∣ϕ− ϕN ∣∣∣∣0 ≤ C

(
1

N

) r
8
− 5

2

||ϕ||r. (7.27)

Proof: Aϕ−ANϕN = 0 leads to

(Aϕ−ANϕ) + (ANϕ−ANϕN) = 0.

Thus,

AN(ϕ− ϕN) = −(Aϕ−ANϕ).

From Theorem 7.4, since

∣∣∣∣Aϕ−ANϕ∣∣∣∣0 ≤ C

(
1

N

) r
8
− 5

2

||ϕ||r,

we finally arrive at

∣∣∣∣ϕ− ϕN ∣∣∣∣0 ≤ C
∣∣∣∣Aϕ−ANϕ∣∣∣∣0

≤ C

(
1

N

) r
8
− 5

2

||ϕ||r. (7.28)

This completes the error estimation for the solution ϕ to the boundary integral equation

Aϕ = h.
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