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Abstract 

 
 

 This dissertation consists of three empirical essays as three chapters on environmental 

issue and hunger problem in developing countries. 

 Chapter 1 examines whether the central winter heating causes the air pollution in the 

Northern China. we measure this impact and the data are the daily Air Quality Index (AQI) 

records for mid-November when the heat is turned on and mid-March when heat is turned off in 

over 150 cities. The results show that winter heating contributes significantly to air pollution, 

especially in the period when central heating is switched on. The central heating causes AQI 

27.6% higher in northern cities, which indicates more air pollution; the air is 12.47% more likely 

to be unhealthy for sensitive people and 5.4% more likely to be unhealthy for all. When central 

heating is turned off, the air quality in southern cities gets slightly better. 

 Chapter 2 focuses on the issue of gender preference in terms of children malnutrition. We 

use the Demographic and Health Survey data in Ethiopia and run two rounds of regression, the 

first one is over stunting, underweight and wasting and the second round is over z-scores of 

height for age, weight for age and weight for height. The data description shows that nearly one-

half of children in our sample are stunted. Children at the age of 2 and 3 are more likely to be 

short or too skinny compared to normal children at the same age. Our decomposition model 

estimates show that under in the same living environment, if a girl were to be a boy, the odds 

ratio of being wasted would increase by 1.34, the odds ratio of being stunted would increase by 

1.03 and the odds ratio of being underweight would increase by 1.04. It suggests that boys under 
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5 in Ethiopia in our sample are more malnourished than girls in the same socio-economic 

environment. 

 Chapter 3 aims to assess the environmental performance across countries and over time. 

A directional distance function framework is applied to measure the technical environmental 

efficiency (TEE). We use data from the World Bank for the period 1990–2012. There are three 

inputs—capital, labor, and energy consumption and one good output—GDP; GHG, CO2, and 

N2O are treated as bad outputs and estimated separately in three models, each with five different 

direction vectors. The main findings are as follows.  1. The relationship between TEE and GDP 

per capita performs a shallow U shape curve. 2. No significant distributional change in TEE with 

different direction vectors in GHG and CO2 models, but results from the N2O model show that 

countries are generally more efficient when the direction in GDP is smaller, which indicates that 

the more we emphasize the importance of N2O emissions, the lower score in environmental 

performance evaluation. 3. The GHG efficiency trend over time is ambiguous across different 

direction vectors, while the CO2 efficiency is generally decreasing over time and N2O efficiency 

is increasing over time. Technical change, the shadow price of bad output, and Morishima 

elasticity are also computed in this chapter. 
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Chapter 1 The Impact of Central Winter Heating on Air Quality in China 

 
 
1. Introduction 

Fueled by rapid urbanization and industrialization, China has experienced a near 10% average 

annual growth in the last three decades (Zheng et al. 2014). From 1990 to 2013, the population 

increased by 322 million, the urban population rate increased by 26 percentage points, and the 

energy consumption per capita increased by 165%. Following the economic growth, however, is 

the environmental degradation, such as air pollution, water pollution, and land deterioration. Like 

many other developing countries, China faces a serious air pollution problem. One notorious 

pollutant is particulate matter (PM), with PM2.5 (particulate matter with diameter less than 2.5 

micrometers) and PM10 (particulate matter with diameter less than 10 micrometers) concentration 

are commonly used in air quality reports. In 2014, the population-weighted average exposure to 

PM2.5 in China was 52 µg/m3 while it was 10.75 µg/m3 in the US, 14.82 µg/m3 in the eurozone 

and 31.54 µg/m3 in the world (World Bank 2014).  

This paper focuses on the relationship between coal consumption and air pollution. In 

North China, haze has become the most frequent weather in winter. According to the China 

National Environmental Monitoring Center (CNEMC) Air Quality Report (CNEMC 2015), in 

2014 the Jing-Jin-Ji area experienced 156 days of poor air quality, and the PM10 index was 70μg/m3 

which was much higher than the air quality standard (average 50μg/m3 in 24 hours). In Beijing, 

air quality in nearly half a year was reported as “unhealthy” (Air Quality Index>150) in 2014. In 

some other cities, it was even worse. Haze lasted for more than two-thirds of the year in Xi’an 



2 
 

(278 days) as well as Shijiazhuang (323 days). Air pollution is more prominent in winter, 

especially in the northern1 cities; the coal-based central heating contributes to the formation of 

pollutants while cold weather in winter impedes the dissipation of air pollutants, which eventually 

causes the accumulation of haze. 

There is rich literature on the relationship between energy consumption, economic growth, 

and environmental issues, providing insights into the energy and environmental policy (Tiba and 

Omri 2017). The multi-country and country-specific studies have found that energy consumption 

and economic growth have a bi-directional causality and there is a positive relationship between 

greenhouse gas emissions and energy consumption (Auffhammer and Carson 2008; Zheng et al. 

2011). Direct energy consumption can be divided into three components: transportation, industrial 

and residential use. In the industrial sector, the concentration of industrial activities drive the fast 

economic growth followed by the deteriorated environmental quality (Zheng et al. 2014; Cao et 

al. 2011). In the transportation sector, the car stock and travels promote the concentration of 

pollution in urban areas (Han and Hayashi 2008; Viard and Fu 2015). Households’ use of biomass 

for cooking also generates indoor pollutant emissions (Malla 2013). China’s development relies 

heavily on energy consumption, with the coal accounting for up to 70% of the total energy sources, 

and it is much higher than the coal use in developed countries (20%-30%). Coal combustion is one 

of the most important sources of air pollution (He, Huo and Zhang 2002; Tian et al. 2012)  and it 

contributes as much as 51% to the average PM2.5 in the whole country (Hu and Jiang 2013) as well 

as 16.7% to the PM10 concentration (Zheng et al. 2014).  

                                                 
1 Later in this paper, the “northern” and “southern” represent the relative relationship to the 
Qinling Mountrain-Huai River line (or simply called Huai River line), which is the central line 
dividing the heating and non -heating areas. 
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Air pollution has a variety of negative effects, which include economic costs (Quah and 

Boon 2003; Wang and Mauzerall 2006), infant mortality (Luechinger 2014; Arceo-Gomez, Hanna 

and Oliva 2012; Cesur, Tekin and Ulker 2015), adverse health and happiness impacts 

(Mukhopadhyay and Forssell 2005; Matus et al. 2012; Li, Folmer and Xue 2014), etc. To alleviate 

air pollution, researchers propose setting a higher levy rate (Li, Wu and Zhang 2015), moving the 

dominant energy supply to natural gas, nuclear and renewable energy (van Vliet et al. 2012), etc.  

 This paper seeks to answer the following question: to what extent does the coal-based 

central winter heating affect local air quality? Different from the impact analysis of air pollution 

in the above literature, we use the hazard level2 to describe the health impact of air quality change 

caused by winter heating. Every year, the central winter heating in Northern China is turned on on 

Nov. 15th and keeps running until Mar. 15th of the next year, which causes a much higher coal 

consumption comparing to other seasons. The purpose of this paper is to use empirical data to test 

whether China’s central winter heating has a significant negative effect on the local air quality. 

The hypothesis is that the winter heating aggravates the air pollution in the urban area. We take 

the Huai-river Policy as a quasi-natural experiment, in which the central heating is considered as 

the treatment, and this treatment applies only to the cities in the north, which constitute the treated 

group, while cities in the south constitute the control group. The central winter heating policy has 

long been considered as a low-cost way for household heating, but very few studies focus on its 

negative impact on air quality. This paper will fill this gap. 

The rest of this article is organized as follows. The next section provides a brief description 

of the central heating policy and the related literature. The third section describes the data, and the 

                                                 
2 The hazard level standard is defined by EPA (2009) and detailed introduction is provided in section 3. 
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forth section introduces the model and reports the results. The last section is the conclusions and 

further discussion.  

2. The Central Heating Policy 

The central winter heating system was established during 1950-1980s and ran by state-owned 

enterprises (Chen et al. 2013). Urban areas are supplied with central heating every year during 

winter, but the heating is not throughout the country. On the issue of central heating, China is 

divided into two parts by the Qinling Mountain-Huai River line, along which the average 

temperature in winter is 0° Celsius. This division is named the “Huai-River Policy.” According to 

the policy, every year from Nov. 15th to Mar. 15th of the following year, hot steam is piped to 

households in the northern cities, and residents only need to pay a relatively low fee based on the 

size of their houses (around $3/m2/month in 2014). Cities located to the south of the Huai River 

are not provided with central heating.  

The central heating system is coal-based and technically inefficient. Most heat is provided 

by coal-fired, heat-only boilers or combined heat generators which are less efficient in energy 

conversion compared to electric, gas, and oil heating systems (Wang, Lin and Lee 1995). When 

the heating is switched on, there is a sharp rise in the coal combustion, which results in a large 

amount of Total Suspended Particulates (TSP), as well as nitrogen oxides and sulfur dioxides, 

being released into the air and forming the main components of air pollutants. Researchers in the 

chemical science and environmental economics consistently agree that coal combustion can 

release hazardous air pollutants, especially when the process is incomplete. The incomplete 

combustion of coal in the boilers causes a release of at least three measured types of air pollutants 

(Bi et al. 2007). The bad outputs from coal combustion include substantial TSP emissions, SO2, 

NO2, and cause significant air pollution (Muller, Mendelsohn and Nordhaus 2011). 



5 
 

The impact of winter heating has long been overlooked, and there is little research focusing 

on the environmental effects of the coal-based winter heating system. In recent years, some 

economists have tried to look into this issue. By analyzing Beijing’s haze weather, Duan and Tan 

(2013) find that winter heating is among important reasons for air pollution. By analyzing the data 

on air pollution in China in 1981-1993, Almond et al. (2009) find that northern cities have 

relatively higher TSP concentration, but the result does not hold for SO2 and NO2. The models in 

their paper do not include variables of the city characteristics, which indicates that there may be 

endogeneity. Chen et al. (2013) study the mortality data in China during 1991-2000 and find that 

due to the “Huai-river Policy,” people in the north bear a longer sustained exposure to air pollution, 

and their life expectancy is about 5.5 years lower owing to an increased incidence of the 

cardiorespiratory mortality. At the same time, there are arguments from some researchers 

supporting winter heating policy. Xiao et al. (2015) argue that the central heating system 

contributes less air pollution compared to other heating activities because central heating is more 

efficient than family level self-heating and due to the emission control technologies applied in the 

central heating system such that there are fewer air pollutants emitted than fugitive emissions from 

individual heating devices.  

3. Data Sources and Descriptive Statistics 

Data on environmental air pollution in China are relatively scarce compared to developed 

countries, and the data quality is considered questionable (Zheng and Kahn 2013; Ghanem and 

Zhang 2014). One encouraging development in 2011 was that China Environment Agency 

established a system to measure PM2.5, PM10, O3, NO2, and CO in the air. Monitor centers were 

built to provide hourly reports of air quality index in most cities. In this paper, we obtained the 

daily report of the Air Quality Index and hazardous level records from the Ministry of 
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Environmental Protection of the People’s Republic of China. This dataset is reliable since the data 

are directly generated by the air quality monitors established in each city and uploaded to the 

website with the lowest suspicion of manipulation. In the records, for the 2014-2015 winter around 

the time central heating is turned on there are 158 cities (Nov. 10th- Nov. 19th), and 357 cities in 

the period when it is turned off (Mar. 10th- Mar. 19th).  

In the introduction section, we use haze weather frequency as an indicator of air pollution, 

while in research air pollution indicators are more complex. Most studies employ an integrated 

index composed by the density of PM2.5, PM10, SO2, NOx, CO, O3. The standards on air quality 

levels are slightly different across countries, and in this paper, we employ the Air Quality Index 

(AQI)3 and the corresponding levels of health concern. Based on the Clean Air Act, United States 

Environmental Protection Agency (USEPA) calculates AQI using five major air pollutants: 

particulate matter, carbon monoxide, nitrogen dioxide, sulfur dioxide and ground-level ozone. The 

relative scales of AQI are shown in Table 1.1. 

Hazard levels are designated based on AQI with higher values of AQI corresponds to 

higher hazard level, which means that the air is more polluted and more harmful to individual’s 

health. At the “good level,” air quality is considered satisfactory, and the pollution has little or no 

risk. At the “moderate” level, air quality is considered acceptable, but the pollution may cause 

health concerns for a certain group of people. At “unhealthy for sensitive groups” level, people 

with lung disease, older adults, and children are exposed to a greater health risk. At the “unhealthy” 

level, the pollution could harm everyone exposed to the air. At the “very unhealthy” level, 

everyone may experience more serious health effects. At the “hazardous” level, air would trigger 

                                                 
3 We do not talk about how to calculate AQI here in detail but for more information please refer 
to (USEPA, 2006, 2009). A quick access can also be found at: 
http://www.iqa.mddefp.gouv.qc.ca/contenu/calcul_en.htm  

http://www.iqa.mddefp.gouv.qc.ca/contenu/calcul_en.htm
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a health warning of emergency conditions. The entire population is more likely to be affected. By 

defining the dependent variable in this way, we could obtain a rough estimation of the health 

concern caused by central heating.  

Other controlled variables such as city characteristics, including GDP per capita, 

population, number of buses and taxis, etc. are from the China City Year Book. GDP per capita is 

converted into the 2014 constant dollars. To construct population variable, we only count the 

people living in the urban area, since the heating facilities are constructed only in the urban area, 

while the rural households use heating from other sources, such as biomass and electricity. By 

using the GDP per capita, we seek to allow for an Environmental-Kuznets-Curve-like environment 

deterioration. Further, since Automobiles account for the largest sources of particulate matter, it is 

reasonable to include the total number of automobiles in the analysis. Given the limited available 

data, the number of taxis and buses is used instead of the total number of automobiles. Greenland 

represents the green covered area (1000 hectare). The number of industrial enterprises (in 

thousands) and the total amount of electricity consumption for industrial use (in 104 GWh) are 

employed to control for the industrial productivity. Since the geographical location of the cities is 

related to their climate and the use of heating in the winter time, we also control for the city latitude 

(north). Table 1.2 reports the descriptive summary statistics for the variables. 

For City characteristics, we use only data in 2014; the AQI are collected in two periods. 

Due to the development of monitor system, the number of observation increases in the second 

period. 

Like event study, we assemble two windows for the switch-on and switch-off periods, each 

window contains ten days, five days before and five days after the treatment event. The detailed 

introduction of the model is given in the next section. In the first window in 2014 fall, when heating 
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is switched on, the AQI ranges from 13 to 404 with the mean 99, standard deviation 48 and number 

of available observations in this period is 1460; there are 77 out of 156 cities in which the average 

AQI in continuous 10 days exceeds 100 (unhealthy for sensitive groups) and 58 cities in which 

AQI over 100 lasts more than 5 days.  In the second window in 2015 spring, the monitor system 

expanded and covered around 271 cities. At this switch-off period, the AQI ranges from 21 to 339, 

with the mean 90.16, standard deviation 42.74 and number of available observations in this period 

is 2588. There are 88 cities in which the average AQI is unhealthy for the sensitive group, and in 

62 cities this unhealthy-for-the-sensitive-group air condition lasts more than five days. The 

latitudes of the cities are between N 18.25 and N 50.25.  

4. Empirical Model and Results 

As we mentioned in earlier chapters, in this study the treatment is central heating, it is switched on 

in the first 10-day window in 2014 November and is switched off in the second 10-day window in 

2015 March. The treated group consists cities located to the north of the Huai-River line and the 

control or untreated group is composed by cities located to the south. Our main model is 

log𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑿𝑿𝑖𝑖𝑖𝑖 + 𝛿𝛿𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 + 𝜃𝜃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑖𝑖 + 𝜌𝜌𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑖𝑖 + 𝜖𝜖𝑡𝑡 ,               (1) 

where AQI is the Air Quality Index for city 𝑖𝑖 at time 𝑡𝑡, Hazard Level is the corresponding 

categories which are defined in Table 1.1. 𝑋𝑋 denotes socio-economic characteristics for city 𝑖𝑖, 

including GDP per capita, squared GDP per capita, population, number of taxis and buses, green 

land area etc. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ is a dummy variable indicating whether city 𝑖𝑖 is to the north of the Huai River 

or to the south. 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is a dummy variable indicating whether heating is provided, in equation (1), 

when heating is switched on, 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 = �0    𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑁𝑁. 10 − 𝑁𝑁𝑁𝑁𝑁𝑁. 14
1    𝑡𝑡 =  𝑁𝑁𝑁𝑁𝑁𝑁. 15 − 𝑁𝑁𝑁𝑁𝑁𝑁. 19 ,                                                                              (2) 

and when heating is switched off,  
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𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 = �1    𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀. 10 −𝑀𝑀𝑀𝑀𝑀𝑀. 14
0    𝑡𝑡 =  𝑀𝑀𝑀𝑀𝑀𝑀. 15 −𝑀𝑀𝑀𝑀𝑀𝑀. 19  .                                                                          (3) 

Since we have two periods of data, the first period covers Nov. 10-Nov.19 in 2014 and Nov. 

15 is the day when heating is turned on, we have 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 0 and 1 for before and after Nov. 15; the 

second period covers Mar. 10-Mar.19 in 2015 and Mar.15 is the day when heating is turned off, 

we have 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 1 and 0 for before and after Mar. 15. 

We run two models, one uses the AQI which is continuous and ranges from 1 to 500, another 

one uses the hazard level which is discrete and has six values in order (see Table 1.1). The OLS 

model can be used as the baseline estimation and the ordered Logit model shows how winter 

heating and health concerns are related. We estimate each model for both windows in November 

and March. Table 1.3 reports the results with the columns labeled accordingly to indicate the time 

period used in the estimation. Our interest lies in the coefficient of the interaction of two dummy 

variables: north and heat, which identifies the effect of central heating to air quality. 

The results in Column 1 show that both control and treated group experience an increase 

of AQI when in the first window.  Before the heating is turned on, AQI in treated group is 21.1% 

higher compared to control group, which is likely due to geographical climate differences and the 

history of energy-intensive heavy industry development in the north. After the central heating is 

turned on, the average AQI in control group increases by14.9% and in treated group it increases 

by 27.6%. The AQI gap between two groups increases by 33.8% compared to the gap before 

treatment, this indicates that AQI at the mean of 80 in the south increases to 103 (Hazard level 

from 2 to 3) and AQI at the mean of 101 in the north increases to 129. Column 2 shows the results 

from the OLS model estimated using the data in the second window. We expect that when heating 

is switched off, the AQI decreases for both groups, yet column 2 tells a slightly different story. 

When the central heating is off, the AQI in the control group decreases by 14.9%; This means the 
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air quality gets better. Again, the AQI in treated group is higher than that in control group, 19.8% 

before heating is off, and this gap increases to 41.7% after the heat is switched off. On average, 

the AQI still keeps an upward trend when heat is off, and it grows at a slow rate of 7%. This does 

not align with our expectation that when heating is off, the air quality should turn better. It might 

be explained that, although central heating ends and no heating-use coal combustion, the existed 

particulate matter, nitrogen dioxide, sulfur dioxide, etc. are still floating in the air; it is also possible 

that when the central heating is shut down, residents choose alternative heating resource, i.e., coal 

stoves and biomass burning. These offset the decrease of pollutants emission from central heating 

plants.  

The coefficients of both GDP per capita and the square term are negative and significant 

except for the first term; this shows that as the GDP per capita increases, the AQI decreases and 

air quality gets improved. At the mean of 11.4 thousand dollars (all cities in two periods included), 

per 114 dollars increase of GDP per capita suggests a 44% (0.028+2*0.204) reduction of AQI, 

while in the second window the reduction is around 34.4. This does not align with EKC, yet it 

provides another evidence that when income increases the environmental qualities get improved. 

(Stern and Common 2001; Costantini and Monni 2008).  

The population also impact air quality, the estimate is significant though the magnitude is 

small. For an increase of one million in the population in the urban area causes a 5.8% increase in 

the AQI. Number of buses and taxis are used to represent the automobiles; buses contribute to the 

air pollution yet we find that the more taxes, the lower AQI is, considering that more taxies indicate 

a larger city and taxi is a substitution for private automobiles, the mixed effect makes the outcome 

to be positive. Industrial enterprises and electricity usage estimators show that the more industry 

productivity, the higher risk of air pollution. Green cover, which counts the green area in urban 



11 
 

cities, contributes to the air clearing process, per 1000 hectare increase in grassland indicates a 

decrease of 2.4% in AQI. Cities located in higher latitude are more polluted than those in a lower 

latitude. 

Column 3 and Column 4 in Table 3 shows the Ordered Logit regression estimation with 

the discrete variable-hazard level. The Ordered Logit estimation results show that air pollution in 

the treated group is likely to be more hazardous, the central winter heating aggravates the health 

concern in both treated and control group cities. We also calculate the marginal effect of central 

winter heating at means in two windows, as shown in Table 1.4. Generally, the heating causes 

lower probability of the air to be “healthy” and a higher probability of being “unhealthy.” After 

heating, the health concern level of ambient air condition to be 13.96% less likely to be moderate, 

12.47% more likely to be unhealthy for sensitive groups, 5.4% more likely to be unhealthy and 

1.85% to be very unhealthy. In the heating switch-off period, the probability of air to be unhealthy 

or unhealthy for sensitive groups decrease by 1.19% and 3.75% respectively, the probability of the 

air to be moderate and good increase by 2.88% and 2.44% respectively. Other variables perform 

similarly as they are in OLS model, an increase of GDP per capita indicates a higher probability 

of air quality being more hazardous. Cities with higher GDP per capita have relatively better air 

quality.  

To check the sensitivity of outcome in respect to different cutoff point (Nov. 15th and Mar 

15th), we have a robustness check. In this part we spread each window into four quarters, that is, 

day1-2 and day 3-5 (before heat starts), day 6-8 and day 9-10 (after heat starts) at first time window 

in November and same for the second time window in March, which denotes a new dummy 

variable of date. The regression results are reported in Table 1.5.  
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All the tests show that cities in treated group are more polluted than cities in the control 

group, there is no significant AQI change over first two quarters for all cities; in the third and 

fourth quarter, there is no significant change in southern cities, yet the AQI drops dramatically by 

46% on average in northern cities. In the rest of the time subperiods, the interaction terms are not 

significant. These results corroborate our hypothesis that the increase of AQI is caused by the 

central heating, the change in control group before heating is not significant. In the second period 

in March, we find a drop of AQI when comparing the last two quarters. For other quarters of the 

time window, the AQI keeps increasing in northern cities even after the central heating is switched 

off, which might be caused by slow dispersion of air pollutants. 

5. Conclusion 

We study the impact of central winter heating on air quality in China and start a new viewpoint on 

China’s air pollution dynamics. The Huai-River policy is considered as a natural experiment and 

a model is designed regarding the time difference (heating switches on and off) and geographic 

difference of cities (north and south). We find that cities located in northern China are more 

polluted than cities in the south; before heating is switched on, the health impact of the air is 

moderate to health on average, the central heating causes 27.6% higher AQI in northern cities, and 

the air is 13.47% more likely to be unhealthy to the sensitive group. When the heating is switched 

off, AQI in southern cities decreased by 14.9% yet there is still an increasing trend in northern 

cities. We also find that air quality in cities with higher GDP per capita is better. More crowed 

cities, more buses and electricity used by industry also contribute to air pollution. 

Central heating has a long history with the citizens living to the north of Huai-River, it is 

cleaner than self-heating provided by coal or wood (which is common in the rural area), and it is 

much cheaper than air conditioner-based heating. For households in the city, warmth generated by 
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the central heating is the same as air conditioning, but the expenses are less, such that residents 

have no incentive to reject central heating. However, cheaper central heating is not necessary 

cheaper if we include the external social cost of air pollution. Central heating and burning coal, or 

air conditioning with electricity, which one is more socially cheaper? There might be no exact 

answer.  However, we suggest that cleaner energy should be explored to generate heat for 

households in northern China, such as solar and cleaner electricity. 

As many environment scholars suggest, temperature, mildness, wind direction will all 

influence the air quality, though we have assumed that within observed periods these factors are 

static. Expanding the analysis to include these contributions is lest for future research. 
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TABLES: 

 
 

Table 1.1 Air Quality Index and Corresponding Hazardous Level 

Air Quality Index (AQI Values) Levels of Health Concern 

0-50 Good 

51-100 Moderate 

101-150 Unhealthy for Sensitive Groups 

151-200 Unhealthy 

201-300 Very Unhealthy 

301-500 Hazardous 
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Table 1.2 Summary Statistics for Key Variables 

Variable Obs Mean Std. Dev. Min Max 

AQI (Nov.10-19, 2014) 1460 99 48 13 404 

AQI (Mar.10-19, 2015) 2588 90.164 42.744 21 339 

Pollution level (Nov.10-19, 2014) 1460 2.466 0.953 1 6 

Pollution level (Mar.10-19, 2015) 2588 2.294 0.875 1 6 

GDP per capita (thousand) 2588 11.66 8.886 1.665 75.871 

Population (million) 2588 1.455 1.842 0.15 17.87 

Industrial enterprises (thousand) 2588 0.559 1.082 0.010 9.642 

buses(thousand) 2588 1.48 3.072 0.046 30.590 

taxies(thousand) 2588 3.29 6.262 0.125 67.046 

green land (thousand hectares) 2588 0.702 1.469 0.003 13.144 

Industrial electricity use (104 gwh) 2588 0.651 0.962 0.001 7.995 

Latitude (North) 2588 33 6.557 18.250 50.250 
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Table 1.3 Winter Heating Impact on Air Quality (Logged AQI) and Health (Hazard 
Level)  

(1) Heat switch-
on period 

(2) Heat switch-
off period 

(3) Heat switch-
on period 

(4) Heat switch-
off period  

(Nov. 10-Nov. 
19) 

(Mar. 10-Mar. 
19) 

(Nov. 10-Nov. 
19) 

(Mar. 10-Mar. 
19) 

  Log(AQI) (OLS) Hazard level (Ordered Logit) 
GDP per capita -0.028 -0.116*** -0.224* -0.538***  

(0.027) (0.017) (0.137) (0.085) 
GDPpc square -0.204*** -0.114*** -0.960*** -0.583***  

(0.030) (0.015) (0.157) (0.076) 
Population 0.058*** 0.033*** 0.212*** 0.152***  

(0.009) (0.012) (0.040) (0.061) 
Industry 
enterprises 

0.109*** -0.002 0.442*** -0.014* 
 

(0.018) (0.002) (0.094) (0.008) 
Buses 0.018*** 0.002*** 0.099*** 0.007***  

(0.005) (0.000) (0.024) (0.003) 
Taxi -0.023*** -0.001*** -0.100*** -0.005***  

(0.003) (0.000) (0.013) (0.002) 
Greenland -0.024** -0.003*** -0.110** -0.010**  

(0.009) (0.001) (0.047) (0.005) 
Electricity used 
by industry 

-0.003 0.0001*** 0.062 0.005*** 
 

(0.019) (0.000) (0.098) (0.001) 
Latitude 0.013*** 0.004** 0.061*** 0.016*  

(0.003) (0.002) (0.015) (0.010) 
Heat 0.149*** 0.149*** 0.510*** 0.675***  

(0.026) (0.022) (0.135) (0.108) 
North 0.211*** 0.417*** 0.833*** 1.784***  

(0.045) (0.028) (0.225) (0.137) 
North*Heat 0.127*** -0.220*** 0.768*** -0.939***  

(0.042) (0.032) (0.210) (0.154) 
Constant 3.855*** 3.157***      

(0.084) (0.119)    
Observations 1460 2588 1460 2588 
Note: Robust Standard errors in parentheses, * p<0.1     ** p<0.05    *** p<0.01 
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Table 1.4 Marginal Effects of Central Winter Heating at Means 

Hazard 

Level 
Health Concern 

Heat switch-on 

period 

Heat switch-off 

period 

1 Good -5.93%*** -2.44%*** 

2 Moderate -13.96%*** -2.88%*** 

3 
Unhealthy for Sensitive 

Groups 
12.47%*** 3.75%*** 

4 Unhealthy 5.40%*** 1.19%*** 

5 Very Unhealthy 1.85%*** 0.35%*** 

6 Hazardous 0.16%** 0.03%* 

Note: Standard errors in parentheses, * p<0.1     ** p<0.05    *** p<0.01 
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Table 1.5 Robustness Check in the OLS Process 

 

Before Heat Starts 

Day1-2 vs. Day 3-5 

After Heat Starts 

Day 6-8 vs. Day 9-10 

Before Heat Ends 

Day1-2 vs. Day 3-5 

After Heat Ends 

Day 6-8 vs. Day 9-10 

Heat 0.017 0.008 0.204*** -0.167*** 

 
(0.041) (0.036) (0.033) (0.028) 

North 0.440*** 0.344*** 0.172*** 0.409*** 

 
(0.072) (0.058) (0.041) (0.039) 

Heat*North -0.474*** 0.082 0.047 0.001 

 
(0.063) (0.051) (0.040) (0.039) 

Note: Robust Standard errors in parentheses = "* p<0.1     ** p<0.05    *** p<0.01" 
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Chapter 2 Is there Gender Inequality in Children Malnutrition in Ethiopia? 

 
 

1. Introduction 

In many developing countries hunger is a prominent issue. There were some improvements since 

the 1990s, yet the global number of undernourished propulation is still very large (Black et al. 

2013). Child undernutrition is an important public health problem; it is the priority among the 

world’s top ten important challenges reported by the Copenhagen Consensus (T. Sohnesen et al. 

2016). One-quarter of children aged under five in the world are stunted (an estimated 162 million 

in 2012); 15% are underweight, and 8% are wasted. Many countries in Africa are reported of high 

child stunting prevalence rates, 30% or more. The worst-affected countries are concentrated in 

Eastern Africa (te Lintelo and Lakshman 2015). In recent years an increasing number of 

multilateral summits and academic meetings are held on this issue, children malnutrition is 

considered to be a long-term crisis, and it is estimated to cause 45% of child death (Black et al. 

2013). Ethiopia has 80% of the labors in the rural area. In recent years, with the rapid increase of 

population, farmland per capita has become smaller and the situation is worse due to declining soil 

fertility caused by intensive subsistence farming (Kebede 2006).  The Human Development Index 

in Ethiopia is 0.442 which is among the lowest countries and it is also among the countries in the 

world with the highest child undernutrition rates. Taken all together, about 48 percent of children 

under the age of five were undernourished in 2014, that is, about 6.3 million children are in 

malnutrition (FAO 2016). The food price volatility of 2008 and of 2010-2011 also caused 
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households welfare lose in rural Ethiopia and aggregated hunger issue (Bellemare, Barrett and Just 

2013; Arndt et al. 2016). It is very important to study the children malnutrition issue in Ethiopia.   

Policies and commitments are made to fight children hunger issue. In 2000, the Ethiopian 

government signed the Millennium Development Goal (MDG) declarations, in which it is planned 

that by 2015, the mortality of children under five should decrease from 140 to 67 out of 1000 live 

births. There are food aid programs, such as free distribution and “food for work” targeted to poorer 

households (Yamano, Alderman and Christiaensen 2005), and Productive Safety-Net Program 

(PSNP) aiming to support the chronically food-insecure households with predictable income 

transfers (Kebede 2006). Research through the Demographic and Health Surveys implemented in 

2000, 2005 and 2011 provide the evidence that there are substantial improvements in the children 

nutrition status (Ambel et al. 2015), However, the earning from food aid programs are invested 

differently for boys and girls in one household (Quisumbing 2003), adult consumption behavior 

in Ethiopia is also found to be related to gender bias (Koohi-kamali 2008), there are still 

inequalities among regions and between the rich and the poor.  

There is rich literature in empirical research on children malnutrition. Studies show that 

more than one-third of the world’s malnourished children live in India (Davey et al. 2014; 

Panagariya 2013). In the case of Senegal, sustainable nutrition interventions have to be long-term 

and yield higher returns the earlier they reach children (Rieger and Wagner 2015). Kenya continues 

to experience warming and drying, malnutrition rates will increase, and investments in 

infrastructure and expansion of education can mitigate the negative impacts of climate change 

(Grace et al. 2012). A study of Egypt in period 1992-2008 shows that child and household-level 

characteristics are more important than aggregate economic conditions (Rashad and Sharaf 2015). 

There are also a few studies in developed countries, in U.K. and the U.S., findings are that there is 
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a positive relationhsip between adults’ height, earnings and good nutrition in early childhood 

contributes to the height-earnings gap (Case and Paxson 2008). Family income, socio-economic 

factors, parents’ education, breast-fed duration and child age, etc. are commonly considered as 

factors impact children’s health status (Kebede 2005; Atsbeha, Nayga and Rickertsen 2015; 

Zewdie and Abebaw 2013). In addition to the description of current status, studies have been 

carried out regarding the negative effects of malnutrition. Alderman, Hoddinott, and Kinsey (2006) 

found that Child undernutrition may delay in their physical growth and mental development; lower 

intellectual quotient (IQ), greater behavioral problems and deficient social skills; susceptibility to 

contracting diseases. Furthermore, the labor market in the future will be affected. Teller, Charles, 

and Yimer (2015) show that the links among poverty, food insecurity, diseases and child 

malnutrition can have direct consequences for the future of human resource development policies 

of Ethiopia. So, effects made to discover more about and decrease children malnutrition is 

meaningful.  

A part of literature studies the inequality of children malnutrition concerning income 

groups (May and Timæus 2014), socioeconomic inequality (Pulok, Sabah and Enemark 2016; 

Wagstaff and Watanabe 2003), rural and urban divergence (Smith, Ruel and Ndiaye 2005), etc. 

while children nutrition gender inequality is less explored. In this paper, we aim to contribute to 

filling this gap using the case of Ethiopia. It is widely known that gender inequality exists in many 

dimensions, one prominent aspect is schooling (Dercon and Singh 2013; Chaudhury, Christiaensen 

and Asadullah 2006; Tesfu and Gurmu 2013). Findings are that boys get a higher chance to obtain 

education compared to girls, this indicates the potential parents’ preference over boys for girls and 

it may directly cause the disparity in health status over gender.  
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There are several studies that mention the nutrition inequality over gender. In the case of 

Malawi, within household nutritional differences exist along gender, age and birth order, so as to 

rural and urban areas as well as religious groups; the gender of a child is a determinant factor of 

nutrition within a family (Mussa 2015). In South Asia, the empirical evidence of this gender bias 

is conflicting as it depends on where the study was conducted (Dancer et al. 2008). Most studies 

conducted find that a girl child is more likely to be malnourished than a boy child while some Sub-

Saharan African studies find reverse results (Garrett and Ruel 1999). The reason behind the gender 

nutritional inequality can be explained by three concerns of parents (Park and Rukumnuaykit 

2004)--equity, efficiency, and preferences. The equity concern reflects the desire of parents to 

ensure that children are equally well off. If nutritional needs differ by gender, then observed gender 

bias might be due to equity bias. The efficiency concern relates to differences in returns to 

investment in child health. If these returns differ for boys and girls, gender bias can arise from 

efficiency bias (Oyekale 2014). In Ethiopia, there exists considerable diversity in gender norms 

which mostly favor men regarding acquisition and inheritance of properties (Pathak and Singh 

2011).  

Based on the knowledge above, we come up with the hypothesis that in Ethiopia, the girls 

are more likely to be malnourished than boys. As Ethiopia’s economy relies greatly on agriculture 

which requires higher musical quality labor force, and the expected economic return of boys are 

higher than the return of girls, such that the allocation of food source bias to boys and boys are 

relatively better nourished. The contributions are three-fold. Firstly, most studies focus on the 

impact of socio-economic environment on children’ nutrition status; rarely we find literature 

emphasizes the importance of parent’s gender preference that causing the children nutrition 

difference. Secondly, we introduce the Oaxaca Decomposition into the gender inequality in 
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children malnutrition. This method is mostly used in gender-wage-gap analysis but here we show 

that it can be applied to more varied issues. Thirdly, our findings do not agree with most earlier 

literature and this can be referred by other researchers for future study. 

The remining of this paper is organized as follows. In section 2, we give a short description 

of the development of Oaxaca Decomposition method and explain the children malnutrition 

measure employed in this study. In section 3, we introduce the dataset and provide the preliminary 

results with basic statistics description. The last two sections provide the model estimates and the 

conclusion.  

2. Empirical Model 

In this paper, we would like to use a decomposition method to estimate the difference in gender 

regarding predicted probability of being in malnutrition. Following Blinder (1973) and Oaxaca 

(1973), firstly we construct two models that are fitted separately for two groups, girl and boy: 

𝑌𝑌𝑏𝑏 =  𝑿𝑿𝑏𝑏𝛽𝛽𝑏𝑏 + 𝑒𝑒𝑏𝑏, (1) 

𝑌𝑌𝑔𝑔 =  𝑿𝑿𝑔𝑔𝛽𝛽𝑔𝑔 + 𝑒𝑒𝑔𝑔. (2) 

The overall outcome difference can be decomposed by the following equation 

𝑌𝑌𝑏𝑏� − 𝑌𝑌𝑔𝑔� = (𝑿𝑿𝑏𝑏−𝑿𝑿𝑔𝑔)𝛽𝛽𝑏𝑏 + 𝑿𝑿𝑔𝑔(𝛽𝛽𝑏𝑏 − 𝛽𝛽𝑔𝑔) , (3) 

where the left-hand side is the predicted malnutrition status difference, at right-hand side 

the first item shows the difference in malnutrition status between girls and boys due to observable 

characteristics, and the second term shows coefficient difference. Changing the reference group, 

an alternative expression can be  

𝑌𝑌𝑔𝑔� − 𝑌𝑌𝑏𝑏� = �𝑿𝑿𝑔𝑔−𝑿𝑿𝑏𝑏)𝛽𝛽𝑔𝑔 + 𝑿𝑿𝑏𝑏(𝛽𝛽𝑔𝑔 − 𝛽𝛽𝑏𝑏� . (4) 



24 
 

Equation (3) and (4) are not appropriate when our outcome variable malnutrition indicator 

is not continuous variable, in such case the Blinder-Oaxaca decomposition is rewritten in the 

nonlinear (NL) form (Sinning, Hahn and Bauer 2008): 

   ∆𝑏𝑏𝑁𝑁𝑁𝑁= �𝐸𝐸𝛽𝛽𝑏𝑏(𝑌𝑌𝑏𝑏|𝑿𝑿𝑏𝑏) − 𝐸𝐸𝛽𝛽𝑏𝑏�𝑌𝑌𝑔𝑔�𝑿𝑿𝑔𝑔�� + �𝐸𝐸𝛽𝛽𝑏𝑏�𝑌𝑌𝑔𝑔�𝑿𝑿𝑔𝑔� − 𝐸𝐸𝛽𝛽𝑔𝑔�𝑌𝑌𝑔𝑔�𝑿𝑿𝑔𝑔��, (5) 

   ∆𝑔𝑔𝑁𝑁𝑁𝑁= �𝐸𝐸𝛽𝛽𝑔𝑔(𝑌𝑌𝑏𝑏|𝑿𝑿𝑏𝑏) − 𝐸𝐸𝛽𝛽𝑔𝑔�𝑌𝑌𝑔𝑔�𝑿𝑿𝑔𝑔�� + �𝐸𝐸𝛽𝛽𝑏𝑏(𝑌𝑌𝑏𝑏|𝑿𝑿𝑏𝑏) − 𝐸𝐸𝛽𝛽𝑔𝑔(𝑌𝑌𝑏𝑏|𝑿𝑿𝑏𝑏)�. (6) 

Finally, Daymont and Andrisani (1984) extend the decomposition to three components: 

𝑌𝑌𝑏𝑏� − 𝑌𝑌𝑔𝑔� = � 𝑿𝑿𝑏𝑏 − 𝑿𝑿𝑔𝑔�𝛽𝛽𝑔𝑔 + 𝑿𝑿𝑔𝑔�𝛽𝛽𝑏𝑏 − 𝛽𝛽𝑔𝑔� + (𝑿𝑿𝑏𝑏 − 𝑿𝑿𝑔𝑔)(𝛽𝛽𝑏𝑏 − 𝛽𝛽𝑔𝑔) = 𝐸𝐸 + 𝐶𝐶 + 𝐶𝐶𝐶𝐶,  (7) 

where E is the part of raw differential that is due difference in endowments, C displays that 

difference in coefficients, and the last item, CE, represents the interaction effect of E and C.  In 

the nonlinear case, the components are: 

𝐸𝐸 = �𝐸𝐸𝛽𝛽𝑔𝑔(𝑌𝑌𝑏𝑏|𝑿𝑿𝑏𝑏) − 𝐸𝐸𝛽𝛽𝑔𝑔�𝑌𝑌𝑔𝑔�𝑿𝑿𝑔𝑔��  , 

𝐶𝐶 = �𝐸𝐸𝛽𝛽𝑏𝑏�𝑌𝑌𝑔𝑔�𝑿𝑿𝑔𝑔� − 𝐸𝐸𝛽𝛽𝑔𝑔�𝑌𝑌𝑔𝑔�𝑿𝑿𝑔𝑔�� , 

𝐶𝐶𝐶𝐶 = �𝐸𝐸𝛽𝛽𝑏𝑏�𝑌𝑌𝑔𝑔�𝑿𝑿𝑔𝑔� − 𝐸𝐸𝛽𝛽𝑔𝑔(𝑌𝑌𝑏𝑏|𝑿𝑿𝑏𝑏)� + �𝐸𝐸𝛽𝛽𝑏𝑏�𝑌𝑌𝑔𝑔�𝑿𝑿𝑔𝑔� − 𝐸𝐸𝛽𝛽𝑔𝑔�𝑌𝑌𝑔𝑔�𝑿𝑿𝑔𝑔��  . (8) 

In the empirical analysis, our first step is to estimate the model for two subgroups, boys 

and girls, to obtain coefficients for each group separately. Then we predict the conditional y value 

for both boys and girls by applying the other group’s coefficients. Our main interest lies in the 

coefficient difference (part “C”), which is also called “unexplained difference” or “structural 

difference,” and this displays the potential gender inequality in children nutrition status. In the 

following sections, we infer this difference of   𝐶𝐶 = 𝛽𝛽𝑏𝑏�𝑋𝑋𝑔𝑔 − 𝛽𝛽𝑔𝑔�𝑋𝑋𝑔𝑔  = 𝑃𝑃𝑃𝑃𝑔𝑔|𝑏𝑏 − 𝑃𝑃𝑃𝑃𝑔𝑔  if response 

variable is binary and 𝐶𝐶 = 𝑍𝑍𝑔𝑔|𝑏𝑏 − 𝑍𝑍𝑔𝑔if response variable is continuous (Z-score), as “what if a girl 

were to be a boy, will the propensity of being malnourished higher, or lower?”  



25 
 

Measure of malnutrition 

 The most commonly used method of measuring children malnutrition are wasting, stunting, 

and underweight (World Food Programme (WFP) and Center for Disease Control and Prevention 

(CDC) 2005) and they are related to height-for-age, weight-for-age, and weight-for-height in 

respect. HAZ, WAZ and WHZ are standards used in the main body for papers studying children 

malnutrition (Block and Webb 2009; Salvucci 2015; Lazzaroni and Wagner 2016). Measured by 

these indices, children with a score of below minus two standard deviations (-2SD) from the 

reference population are considered as moderately malnourished4. 

Wasting: <-2 WHZ (Z-score for weight-for-height). 

Stunting: <-2 HAZ (Z-score for height-for-age); 

Underweight: <-2 WAZ (Z-score for weight-for-age); 

The Z-score is calculated in by the following formula: 

𝑍𝑍 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
observed value − median value of the reference population

standard deviation value of reference population
 

It is a normalized health index that gives a comparison of the individual to a reference 

group of the children of the same sex at the same age. The reference population database for 

comparison was used to be the National Center for Health Statistics (NCHS), and it is called 

NCHS/WHO international reference population.  Before 1980’s, the reference group consisted of 

healthy well-nourished US children, the sample for ages 0 to 23 months is based on the children 

in the Ohio Fels Research Institute Longitudinal Study from 1029 to 1975 and for ages 2 to 18 

years is based on the cross-sectional surveys from 1960 to 1975 in the USA. Because of the 

                                                 
4 Z-score below 3 is defined as severe malnutrition for children under five, we found very few 
paper using severe malnutrition as the standard in studies of huger problem or children health. 
Hence, in this paper, we use 2 as the critic value to define the malnutrition status. 
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growing evidence that the normal pattern of growth for the healthy preschool children from the 

diverse ethnic background is very similar, the WHO adopted the reference base of NCHS for 

international use and it is widely promoted in measuring children health condition. In recent years, 

some drawbacks of the reference population sample come up with and an international effort is 

underway to develop a new international growth reference, yet before that, the NCHS/WHO 

growth reference curves will remain the reference values developed earlier.  

Wasting is a short-term indicator and captures adequate malnutrition status in the period 

immediately preceding the survey; it is often associated with acute starvation and/or severe 

disease. It may also be the result of a chronically unfavorable condition. This, for example, could 

arise due to weight loss causing illness such as diarrhea. Stunting is an indicator of chronic 

malnutrition or a lack of adequate nutrition for a long period in the population, reflects a process 

of failure to reach linear growth potential because of suboptimal health and/or nutritional 

conditions. This measure is not sensitive to short-term dietary changes. High level of stunting is 

associated with poor socioeconomic conditions and increased risk of frequent and early exposure 

to adverse conditions such as illness and/or inappropriate feeding practices. Underweight reflects 

body mass relative to chronological age and captures both short and long term effects of 

malnutrition, it does not work well in distinguishing between thin, tall children and short, fewer 

weight children, but it is worth analyzing when there is less wasting or stunting information. 

 As our dependent variables (stunting, underweight and wasting) are 0 and 1, we will use 

logit model in estimation. To check the robustness of our results, we also use the standard deviation 

scores which are continuous to perform OLS regressions. 

3. Data Source and Preliminary Results.  
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We use household survey data from Ethiopia Demographic and Health Survey (DHS) 20115. The 

survey was conducted in 11 regions. It contains over 900 questions and around 10 thousand 

observations. As Ethiopia has 80% of labor in the agriculture sector and it is very likely to be 

affected by drought, we created an approximate dummy variable indicating whether the household 

is in drought area (Seleshi and Zanke 2004). 

The following table provide the basic findings. 

Table 2.1 shows a summary of malnutrition status of children in Ethiopia, classed by 

regions. In general, there are nearly half of the children population are stunted; it is most serious 

in northern regions such as Tigray, Affar and Amhara. The distribution of underweight is similar 

to stunting. One possible factor is that in the north area, rain is relatively less compared to south 

area, the drought in the north occurs more frequent. 

Table 2.2 provides information on the malnutrition status classed by age. Children at the 

age of 2 and 3 are more likely to be short compared to those normal children at the same age or 

have weight less compared to same-aged children in the reference group. The newborn babies are 

more likely to be wasted, which means they have smaller weight compare to the referred group. 

Figure 2.2 shows the distribution of z-scores of stunting, underweight, and wasting. And 

as we note in the second section, if one child’s z-score is lower than 2, then the child will be 

included in the malnourished group.  

A comparison of malnutrition rate by gender and age at the mean is provided in the 

appendix, see figure A1-1. 

                                                 
5 We also have DHS 2000 and DHS 2005 dataset, yet they do not provide the z-scores for the 
children. We analyzed the gender ratio in each dataset and the information is provided in appendix, 
see table A1. It shows that over years the gender composition in the surveys does not vary much 
from 0.5. We also find the temperature and rain around survey year were the same to the past 5 
years (See appendix, figure A1-2). The weather in survey year is normal as we expect. 
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 As shown in Figure 2.2, there is nearly half of children population in our sample are 

stunted, which means they are shorter than normal children. The ratios of underweight and wasting 

are relatively small yet they are still a large group. Detailed information is given in Table 2.3. 

 Table 2.3 shows that in the survey sample, girls account for 49.1%, the ratio of the children 

being stunting, underweight and wasting are 42.3%, 30.1%, and 11.8%, in respect. 84.1% of the 

children are living in rural places, which coincide with the Ethiopia economy report as we 

mentioned earlier. In the survey year, there is no strong draught in Ethiopia, the variable draught 

is an indicator that the area is prone to be dry in the history years, there are 25.8% of the households 

in the drought area. Family wealth score serves as an indicator of wealth levels and it is consistent 

with expenditure and income measures (Rutstein 1999). The wealth score is widely used in many 

DHS country-level surveys6, it ranges from -22 to 39 and the mean is 3.23. The average education7 

of parents is 2.92 years. Children aged at 0-12 months, 13-24 months, 25-36 months, 37-48 months 

and 49-60 months account for 20.4%, 8.6%, 1.95%, 2.13% and 2.03%, in respect. Milk is a dummy 

variable, the value is 1 if the parents gave child tinned, powdered or fresh milk. Meat is also a 

dummy variable indicating that the parents gave child meat (beef, pork, lamb, chicken, etc.). The 

Welch t-test8 over gender, see table 2.4, show that malnutrition rates are different over genders, 

but other living environment conditions, such as family wealth, parents’ education, access to milk, 

etc., are not significantly different.  

4. Results 

                                                 
6 For detailed information on how wealth score is generated, see Ethiopia Demographic and 
Health Survey Report 2011. 
7 Here the number of years of education is the sum of parents’. 
8 Compare to Student’s t-test, the Welch’s t-test can be used to test the hypothesis that two 
population have equal means when the two samples have unequal variances and unequal sample 
sizes. 
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We begin with estimating children malnutrition using stunting, underweight and wasting as the 

response variables, as they are binary variables, we adopt the logit model. The dataset is divided 

into two groups by gender. Firstly, we run regressions for girls only, then we calculate the predicted 

probabilities (𝑃𝑃𝑃𝑃�) for the whole dataset. In this process of decomposition, we get the predicted 

probability of being stunting, underweight or wasting of girls, as well as the probability of boys’ 

being stunting, underweight or wasting as if they were girls, that is the 𝑃𝑃𝑃𝑃𝑏𝑏|𝑔𝑔. If we repeat this 

process for boy group, then we will have 𝑃𝑃𝑃𝑃𝑏𝑏  which is the predicted probability of boys being 

malnourished as well as the 𝑃𝑃𝑃𝑃𝑔𝑔|𝑏𝑏  meaning the probability for girls being malnourished as if they 

were boys. Corresponding to Eq (7), We also calculate the endowment difference, and interaction 

difference and they are reported in table 2.5. 

As mentioned earlier, the wasting indicates short-term food shortage effect, stunting shows 

a chronic illness or inadequate nutrition effect, and underweight is an index indicating both short-

term and long-term nutrition status. In table 2.5, the first column is the results of Logistic 

regression over wasting, the second column is stunting and the third column is underweight.  

It is expected that the malnutrition rate in rural and draught area would be higher compare 

to the urban and non-draught area, yet our results show that most of the coefficients are not 

significant, in urban areas the draught does not cause higher malnutrition rate. Both boys and girls 

in rural and draught area have a higher probability of being stunted, for the girls, the odds of 

probability of being stunted increases by 34%, and it is 54.7% for boys than those in the urban and 

non-draught area. However, we find that children in the rural area have a smaller probability of 

being wasted, especially for boys; compare to the children living in urban areas, children at the 

same height in rural areas have higher body weight. We do not find any difference in the 
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probability of being underweight between children in rural and urban, draught and non-draught 

areas.  

A very prominent result is that, for all three aspects of malnutrition, wasting, stunting, and 

underweight, household wealth and parent’s education have a significant positive effect on 

children’s nutrition status, for both boys and girls. The marginal effect of family wealth on 

malnutrition status is similar for boys and girls, and it shows a greater effect on wasting and 

underweight compared to stunting. Per unit increase in wealth score indicate and decrease of odds 

of probability being malnourished by 4.1%-8.6%.  For rich families, there is less likely of being in 

a food shortage, and the child is less likely to be malnourished. The higher education of parents 

indicated a lower probability of children being stunted and underweight, and the effect is slightly 

higher to girls compared to boys, one more year of education indicates a decrease of 3%-4% in 

probability odd of being stunted or underweight. Parents’ education has a positive effect to boys’ 

wasting status, yet there is no significant effect for girls. Better educated parents can bring higher 

income to the family, and the mother will have relatively more knowledge in nutrition, medicine 

and how to take good care of children.  

 If the household head is female, the girls tend to be more likely to be underweight and 

wasted, and the boys have a higher probability of being stunted and wasted. This might be 

explained that if the mother is household head, she has to spend much time on work and less time 

to take care of children. Generally, the access to pipe water does not show a positive effect on 

children’s nutrition status. Drinking milk does not affect the short-term weight, but it shows a long-

term effect on a child’ height. Both boys and girls who are given milk by parents are less likely to 

be stunted, but for underweight and wasting, the effect is not clear. We create five dummy variables 

for children’s age and find that compared to children under 12 months, elder children are less likely 
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to be wasted, but all with a higher probability of being stunted and underweight. Children at the 

age of 25-36 months and age of 37-48 months have a higher probability of being malnourished 

compare to children younger than 12 months.  

 Our interest lies in the last part of Table 2.5, for each type of malnutrition, the endowment 

difference is close to 0 and statistically insignificant, this coincides with the Welch-test results of 

the socioenvironmental variables. The inequality between girls and boys does not come from the 

living conditions, neither is the interaction term significant. The most interesting part is the 

coefficient differences, they are positive and significant. The estimates indicate that with the 

similar home characteristics, if the girls were boys, set all rest living conditions equal, the 

probability odd ratio of being wasted increases by exp (0.294), which is 1.34; the probability odd 

ratio of being stunted increases by exp (0.033), which is 1.034; the probability odd ratio of being 

underweight increases by exp (0.038), which is 1.039; Notice that in this round of regression we 

use the dummy dependent variables, and the higher probability means worse nutritional status, 

then we can conclude that the girls are better treated compared to boys.   

 We also use the z-score to run OLS models, the process is same as above and the results 

are provided in table 2.6. 

Table 2.6 tells the similar story with table 2.5 but in this table, the dependent variables are 

z-scores of children’s height for age, weight for age and weight for height; if the coefficients are 

positive means the item contributes to improving children’s health. Again, we find that household 

wealth and parents’ education are important contributors to children’s nutrition condition. Children 

from the female-leaded family are more likely to be malnourished, and children who drink milk 

are less likely to be stunted.  
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The decomposition results for predicted z-scores align with our findings in Table 2.4.  The 

endowment difference and the interaction terms are not significant. We focus on the coefficient 

difference, that is  𝐶𝐶 = 𝑍𝑍𝑔𝑔|𝑏𝑏 − 𝑍𝑍𝑔𝑔. With the similar home characteristics, if the girls were boys, 

their z-score of weight for height decreased by 0.113, the z-score of height for age decreased by 

0.103, and the z-score of weight for age decreased by 0.087. Then we can conclude that the girls 

are better treated compared to boys. We also process the decomposition for different age groups 

and the results are reported in table 2.7. Children undernutrition gender differences are significant 

for children aged under 36 months, but the gender differences are not significant for elder ones. 

The weight for height index (wasting) which represents the short-term food insecurity effect, 

differences between boys and girls are outstanding.  

5. Conclusion 

Children undernutrition is the priority among the world’s top 10 important challenges reported by 

the Copenhagen Consensus, one-quarter of children aged under five in the world are stunted 15% 

are underweight, and 8% are wasted. African countries are reported to be the most severe area. In 

Ethiopia, there is about 48 percent of children under the age of five were undernourished, that is, 

about 6.3 million children are in malnutrition.  

In this paper, we use the data from Demographic and Health Survey 2011 Ethiopia to look 

into the gender difference in the issue of children malnutrition. We find that girls are better treated: 

under the same condition, if a girl were a boy, the odds ratio of being wasted increases by 1.34, 

the odds ratio of being stunted would increase by 1.03 and the odds ratio of being underweight 

increases by 1.04. Our z-score OLS models also agree with these findings. This surprising results 

may come from the preference of parents, we explored many other literature to find reasonable 

explanation for this phenomenon--girls are preferred in a family can be as a result of the future 
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marriage pressure that the groom’ side have to be rich to obtain a “good” bride (Fafchamps and 

Quisumbing 2005), the family also has to invest more on boy’s schooling (Tesfu and Gurmu 2013). 

It is also found that the in Ethiopia, boys tend to have greater dropout rate than girls in 

immunization (Abebaw 2014). These are the potential reasons for girls being better nourished than 

boys. 

We also find that wealth is important in supporting a child’s nutrition status. Food aid and 

monetary support are necessary to improve the health status, but the effect might not last long. 

Invest in education would have a long-last effect in the future to mitigate children malnutrition 

problem in Ethiopia. 
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FIGURES: 

 
 

 

Figure 2.1 Different Types of Children Malnutrition 
Source: https://www.slideshare.net/nfpcsp/topic-21-diet-diversity 
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Figure 2.2 Distribution of z-scores of Stunting (Height for Age), Underweight (Weight for Age) and Wasting 

(Weight for Height). 
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TABLES 

 
Table 2.1 Rate of Malnutrition by Region 

Region Observation stunting underweight wasting 

Tigray 1152 55.38% 41.15% 17.80% 

Affar 1025 57.76% 50.05% 30.93% 

Amhara 1168 56.08% 40.33% 18.58% 

Oromiya 1680 47.14% 33.63% 19.17% 

Somali 852 41.78% 41.43% 30.75% 

Benishangul-gumuz 937 55.50% 42.80% 21.34% 

Snnp 1510 49.60% 35.50% 17.09% 

Gamblea 794 38.29% 33.50% 27.46% 

Harari 559 36.14% 28.62% 18.78% 

Addis 352 28.69% 14.77% 12.78% 

Dire Dawa 634 42.74% 35.17% 20.66% 
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Table 2.2 Malnutrition Status by Age and Child Sex 

Child sex\age  0 1 2 3 4 

boy 

Wasting 19% 19% 11% 9% 9% 

Underweight 19% 36% 39% 33% 33% 

Stunting 15% 49% 56% 53% 47% 

girl 

      

Wasting 15% 13% 8% 7% 8% 

Underweight 13% 28% 35% 34% 31% 

Stunting 12% 39% 55% 53% 45% 
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Table 2.3 Descriptive Statistics on Children Malnutrition in DHS Ethiopia 2011 

Variable Obs Mean Std. Dev. Min Max 

Girl 9450 0.491 0.500 0 1 

Weight/height z-score 9450 -0.627 1.214 -5 4.66 

Height/age z-score 9450 -1.608 1.760 -6 5.95 

Weight/age z-score 9450 -1.360 1.268 -5.68 4.92 

Wasting 9450 0.118   0 1 

Stunting 9450 0.423   0 1 

Underweight 9450 0.301   0 1 

Rural 9450 0.841   0 1 

Drought area 9450 0.258   0 1 

Family wealth score 9450 -3.247 7.338 -22.229 39.263 

Years of parents’ education 9450 2.927 4.067 0 19 

Female household head 9450 0.176   0 1 

Access to pipewater 9450 0.253   0 1 

Milk (weekly) 9450 0.176   0 1 

Meat (weekly) 9450 0.023   0 1 

Child age=0-12 mon 9450 0.204   0 1 

Child age=13-24 mon 9450 0.086   0 1 

Child age=25-36 mon 9450 0.195   0 1 

Child age=37-48 mon 9450 0.213   0 1 

Child age=49-60 mon 9450 0.203   0 1 
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Table 2.4 Means and Welch’s Test by Child Sex 

  Boy Girl Difference 

Weight/height std. -0.6862 -0.5658 0.001*** 

Height/age std. 0.3197 0.2816 0.000*** 

Weight/age std. -1.6560 -1.5579 0.007*** 

Wasting 0.1331 0.1021 0.000*** 

Stunting -1.4035 -1.3145 0.002*** 

Underweight 0.4389 0.4069 0.000*** 

Rural 0.0743 0.0784 0.4534 

Drought area 0.6042 0.5982 0.0994 

Family wealth score -3.2934 -3.1980 0.5274 

Years of parents’ education 2.9370 2.9166 0.8079 

Number of children in the family 3.8130 3.7462 0.1273 

Female household head 0.1797 0.1730 0.3919 

Access to pipewater 0.2550 0.2514 0.6882 

Milk (weekly) 0.2215 0.2143 0.3065 

Meat (weekly) 0.1797 0.1717 0.4488 

Rural 0.0245 0.0222 0.5491 

Obs 4808 4642  
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Table 2.5 Estimates of Wasting, Underweight, and Stunting Models 

 wasting stunting underweight 

 girl boy girl boy girl boy 

Drural=0 # drought=1 0.281 0.048 0.221 0.362** 0.008 0.199 
 (0.320) (0.282) (0.191) (0.183) (0.233) (0.219) 

Drural=1 # drought=0 -0.351 -0.510*** 0.082 0.217 -0.267 0.006 
 (0.232) (0.191) (0.161) (0.145) (0.176) (0.155) 

Drural=1 # drought=1 -0.420* -0.612*** 0.340** 0.547*** -0.032 0.171 
 (0.248) (0.206) (0.169) (0.155) (0.183) (0.164) 

Family wealth score -0.086*** -0.080*** -0.044*** 
-

0.041*** 
-0.081*** -0.084*** 

 (0.017) (0.015) (0.010) (0.010) (0.012) (0.011) 

Years of parents’ 

education 
-0.011 -0.053*** -0.039*** 

-

0.030*** 
-0.038*** -0.035*** 

 (0.015) (0.014) (0.010) (0.010) (0.011) (0.010) 

Female household head 0.265** 0.250** 0.066 0.193** 0.204** 0.003 
 (0.125) (0.110) (0.087) (0.083) (0.091) (0.086) 

Access to pipewater 0.343** 0.154 -0.052 -0.070 0.128 0.096 

 (0.143) (0.130) (0.096) (0.095) (0.102) (0.097) 

Milk (weekly) 0.214* 0.079 -0.234** 
-

0.442*** 
-0.088 -0.171* 

 (0.124) (0.110) (0.093) (0.089) (0.098) (0.090) 

Meat (weekly) -0.213 -0.203 0.389* -0.073 0.002 -0.240 
 (0.382) (0.296) (0.221) (0.202) (0.251) (0.219) 

Child age=13-24 mon -0.112 -0.048 1.553*** 1.778*** 1.002*** 0.853*** 

  (0.137) (0.121) (0.123) (0.116) (0.125) (0.110) 

Child age=25-36 mon -0.761*** -0.644*** 2.164*** 2.001*** 1.287*** 0.984*** 

  (0.159) (0.135) (0.122) (0.115) (0.122) (0.109) 

Child age=37-48 mon -0.910*** -0.965*** 2.050*** 1.888*** 1.197*** 0.700*** 
 (0.157) (0.142) (0.119) (0.113) (0.119) (0.108) 

Child age=49-60 mon -0.682*** -0.875*** 1.755*** 1.657*** 1.119*** 0.693*** 
 (0.152) (0.138) (0.121) (0.113) (0.122) (0.108) 

Constant -2.056*** -1.340*** -2.065*** 
-

1.948*** 
-1.985*** -1.678*** 
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 (0.267) (0.229) (0.191) (0.181) (0.205) (0.188) 

Cluster yes yes yes yes yes yes 

Observations 4642 4808 
464

2 
4808 4642 4808 

Endowment diff  0.002  0.000 0.002  

Coefficient diff 0.294*** 0.033*** 0.038*** 

CE  0.000  -0.001  -0.001 

Robust standard errors in parentheses “* p<0.1 ** p<0.05  *** p<0.01” 

Note: the child age ranges from 0 to 60 months, age of 0-12 month is considered as the baseline. 
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Table 2.6 Estimates of Z-scores Models 

 weight for height height for age weight for age 

 girl boy girl boy girl boy 

Drural=0 # drought=1 -0.016 -0.018 -0.140 -0.328*** -0.093 -0.214** 
 (0.091) (0.093) (0.122) (0.122) (0.091) (0.092) 

Drural=1 # drought=0 0.240*** 0.286*** 0.084 -0.198* 0.198** 0.063 
 (0.082) (0.078) (0.109) (0.103) (0.081) (0.078) 

Drural=1 # drought=1 0.197** 0.263*** -0.189 -0.549*** 0.005 -0.145* 

 (0.086) (0.084) (0.115) (0.111) (0.086) (0.084) 

Family wealth score 0.036*** 0.042*** 0.033*** 0.027*** 0.044*** 0.044*** 
 (0.005) (0.005) (0.007) (0.007) (0.005) (0.005) 

Years of parents’ education 0.004 0.012** 0.037*** 0.026*** 0.024*** 0.023*** 
 (0.005) (0.005) (0.007) (0.007) (0.005) (0.005) 

Female household head -0.175*** -0.004 -0.021 0.003 -0.140*** 0.017 
 (0.046) (0.046) (0.061) (0.061) (0.046) (0.046) 

Access to pipewater -0.067 -0.090* -0.069 -0.005 -0.085* -0.064 
 (0.051) (0.053) (0.068) (0.070) (0.051) (0.053) 

Milk (weekly) -0.059 -0.109** 0.165*** 0.294*** 0.046 0.080* 

 (0.047) (0.047) (0.063) (0.062) (0.047) (0.047) 

Meat (weekly) 0.045 0.042 -0.091 0.142 -0.007 0.117 
 (0.118) (0.114) (0.158) (0.150) (0.118) (0.113) 

Child age=13-24 mon -0.035 -0.020 -1.362*** -1.468*** -0.640*** -0.665*** 

  (0.055) (0.057) (0.074) (0.074) (0.055) (0.056) 

Child age=25-36 mon 0.257*** 0.219*** -1.915*** -1.825*** -0.831*** -0.748*** 

  (0.055) (0.056) (0.073) (0.074) (0.055) (0.056) 

Child age=37-48 mon 0.216*** 0.361*** -1.833*** -1.687*** -0.874*** -0.643*** 

 (0.053) (0.055) (0.071) (0.073) (0.053) (0.055) 

Child age=49-60 mon 0.114** 0.255*** -1.653*** -1.528*** -0.854*** -0.662*** 
 (0.054) (0.055) (0.073) (0.072) (0.054) (0.055) 

Constant -0.688*** -0.901*** -0.328*** -0.237* -0.735*** -0.812*** 
 (0.091) (0.093) (0.122) (0.123) (0.091) (0.093) 

Cluster yes yes yes yes yes yes 
Observations 4642 4808 4642 4808 4642 4808 
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Endowment diff -0.006 -0.000 -0.005 

Coefficient diff -0.113*** -0.103*** -0.087*** 

CE -0.000 0.006 0.003 

Robust standard errors in parentheses  "* p<0.1 ** p<0.05  *** p<0.01" 
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Table 2.7 Coefficients Differences by Age 

Index\age 0-12mon 13-24mon 25-36mon 37-48mon 49-60mon 

wasting 
0.0385 0.0429** 0.0366** 0.0163 0.00654 

(1.86) (2.64) (2.85) (1.11) (0.43) 

stunting 
0.0237** 0.0892*** 0.0110 0.00921 0.0332 

(3.20) (5.21) (0.56) (0.41) (1.77) 

unweight 
0.0639*** 0.0597* 0.0449 -0.00100 0.0186 

(5.19) (1.97) (1.83) (-0.05) (0.74) 

Weight for height 
-0.161** -0.133* -0.209*** -0.0230 -0.0173 

(-2.98) (-2.43) (-3.63) (-0.51) (-0.26) 

Height for age 
-0.142 -0.223** -0.0690 -0.0182 -0.0566 

(-1.78) (-2.80) (-0.87) (-0.29) (-0.99) 

Weight for age 
-0.175*** -0.178** -0.105 0.0413 -0.00304 

(-4.97) (-3.24) (-1.54) (0.84) (-0.05) 

Robust standard errors in parentheses  "* p<0.1 ** p<0.05  *** p<0.01" 
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Appendix 1 

 
 

Table A1- 1 Gender Ratio in Previous DHS Datasets 

Dataset age Obs % of girl Std.dev 

2011 0 2,254 0.50 0.5001 

2011 1 1,927 0.49 0.5000 

2011 2 2,099 0.49 0.4999 

2011 3 2,311 0.50 0.5001 

2011 4 2,217 0.47 0.4993 

2011 . 846 0.44 0.4969 

2005 0 1,926 0.48 0.4999 

2005 1 1,697 0.49 0.5001 

2005 2 1,693 0.48 0.4995 

2005 3 1,879 0.52 0.4998 

2005 4 1,807 0.50 0.5001 

2005 . 859 0.43 0.4956 

2000 0 1,922 0.48 0.4999 

2000 1 1,845 0.48 0.4999 

2000 2 1,886 0.50 0.5001 

2000 3 2,013 0.50 0.5001 

2000 4 1,894 0.51 0.5001 

2000 . 1,313 0.45 0.4981 
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Table A1- 2 Summarize Statistics of Malnutrition Indices by Gender 

Child sex Obs hasd wasd whsd stunting unweight wasting 

boy 4,808 

-1.6560 -1.4035 -0.6862 0.4389 0.3197 0.1331 

(1.77) (1.28) (1.24) (0.50) (0.47) (0.34) 

[-6, 5.95] [-5.68,4.92] [-5,4.66] [0,1] [0,1] [0,1] 

girl 4,642 

-1.5579 -1.3145 -0.5658 0.4069 0.2816 0.1021 

(1.75) (1.26) (1.19) (0.49) (0.45) (0.30) 

[-5.99,5.84] [-5.46,4.05] [-4.92,4.3] [0,1] [0,1] [0,1] 
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Figure A1-1 Plots of Z-scores by Gender and Age 
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Figure A1-2 Temperature and Rain History in Ethiopia, 2007-2011 
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Chapter 3 Greenhouse Gas Emissions and Economic Growth:  a Measure of 

Environmental Efficiency Based on the Directional Distance Function 

 
 
 

1. Introduction 

Environmental issues such as climate change and environmental degradation are important topics 

in the research of sustainable development. Since the Second Industrial Revolution (also known 

as Technological Revolution), which is driven by the force of large fossil energy consumption, 

greenhouse gas (GHG) emissions increases dramatically. Data from the World Bank show that 

from 1970 to 2012, the volume of GHG emissions doubled and the total energy consumption 

nearly tripled. In the late 20th century when East Asia became one of the most recently 

industrialized regions, the GHG emissions from energy consumption significantly increased, 

leading to a rising concern of global warming and climate change (Kasman and Duman 2014). 

Hence, a study of the environmental performance is of great importance to provide guides in 

alleviating the global warming and GHG emissions abatement. We aim at estimating the 

technical environmental efficiency (TEE) concerning three forms of emissions, GHG, CO2, and 

Nitrous Oxide (N2O). According to the Climate Report from International Panel on Climate 

Change (IPCC) (Solomon et al. 2007), fossil fuel combustion contributes to around 87% of 

human sources of CO2 while agricultural activities cause about 67% of all human sources of 

N2O. The use of CO2 and N2O in this paper can help the researcher to assess the environmental 

performance for each country from both industry and agriculture aspects.  
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CO2 emissions are primarily from fossil fuel consumption. It accounts for the largest 

component of GHG and is associated with climate change as well as global warming. There is a 

rich literature on the study of the relationship between energy consumption and CO2 (GHG) 

emissions ( see Tiba and Omri, 2017, for an excellent review). To understand the environmental 

performance related to CO2, it is necessary to explore literature on the nexus between energy 

consumption, economic growth, and CO2 emissions. There are mainly three strands in the former 

studies (Omri 2013). A large stream of former research focuses on the validity of the 

Environmental Kuznets Curve (EKC) hypothesis, which proposes that there is an inverse U-

shape relationship between environmental pollution level and economic development. A second 

strand is about the causality between energy consumption and economic growth. The main 

findings suggest that higher energy consumption is necessary for economic growth, high energy 

efficiency requires more developed economy. The third strand of research finds that energy 

consumption is one determinant of CO2 emission (Tiba and Omri 2017). In the above literature, 

the most commonly used methodologies ARDL bonds testing, VECM Granger causality, and 

cointegration test, etc., and the data are either longitudinal data for a single country or groups of 

countries such as the OECD countries, OPEC countries, etc. Another important component of 

GHG is N2O. N2O emissions are mainly from fossil fuel combustion, fertilizers, etc. N2O is very 

durable and has an estimated atmospheric lifetime of 114 years. Its 100-year time horizon global 

warming potentials (GWP) is estimated to be 300 times of CO2 (S Solomon et al. 2007). Recent 

years there are, though not many, research on non-CO2 emissions, (Hyman et al. 2002; Marten 

and Newbold 2012; Maza, Villaverde and Hierro 2015). These papers deduce general causal 

linkages, yet not deal with the heterogeneity across countries, which potentially harm the validity 

of the results.  
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Apart from the causality effect in these three items mentioned above, we are interested in 

analyzing the relations using a different function form, the production function with “bad” output 

(undesirable output) to model the environmental performance using the technical environmental 

efficiency.  

In this study, we firstly employ the directional output distance function to model the 

pollution technology which treats good output and bad output jointly, models with different bad 

outputs (GHG, CO2, N2O) under different directional vectors ((0.1, 1), (0.5, 1), (1, 1), (2, 1) and 

(10, 1)) are estimated separately. The TEE is estimated parametrically via a quadratic functional 

form. We also calculate the shadow prices and Morishima elasticities between good output and 

bad output. 

What we care about is the variation of TEE and the cause of it. Regardless of the tools 

used to measure the performance, studies suggest that there exists highly significant difference 

among production unit as regards environmental efficiency (Tyteca 1996). Tyteca describes the 

production unit as an integral black box, on which external and internal pressures can exert 

various kinds of effect. External pressures include economic context, such as energy price, 

openness of the economy; internal pressures can be managerial activities, the production unit’s 

motivation towards environmental protection, etc. We could not observe the details inside the 

black box, yet interesting patterns can be found regards the environmental efficiencies.  

Our objects in following sections are to show how the TEE vary across countries in 

different models and over time. Firstly, how the TEE is related with GDP per capita. In earlier 

literature, the EKC hypothesis is tested, and the relationship is verified to be valid in many cases. 

It is reasonable to predict that in a country with higher GDP per capita, the production efficiency, 
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accounting for the bad output, is higher. Our results show a “U-shape” relationship between 

mean TEE and GDP per capita.  

Secondly, how different directions affect the environmental performance evaluation. 

Extreme cases are 𝒈𝒈 = (1,0) and 𝒈𝒈 = (0,1), with which only the credit of one output is counted, 

regardless of the “contribution” of the other output. We expect the TEE obtained from models 

with different manually-set direction vectors show how the environmental efficiency changes 

when environmental preoccupations come as the main priorities. We find direction vectors affect 

the efficiency estimated only in the N2O model.  

Thirdly, how the TEE evolves. In the second section, we plot the frontier shifts in figure 

3.1. The shifts in technical environmental frontier indicate improvements in technology. Under 

new technology, the equipment is likely to be more efficient than older equipment, if 

environmental protection concept is involved in the invention of new technology. We expect that 

the efficiency increases as the environmentally-poorly-behaved countries learn from the more 

efficient countries.  

2. Methodology 

2.1 Model  

Production efficiency analysis was applied to the environmental performance evaluation since 

the 1980s when the modern concept of sustainable development was brought out, and the energy 

and environmental modeling became very popular (Song, Zheng and Wang 2016; Zhang and 

Choi 2014). To include the pollutants in a production function, the efficiency measure must 

credit both the increase of good outputs and the reduction of bad outputs. There are two widely 

used methodologies, the hyperbolic distance function (HDF) and the directional distance 

function (DDF). The HDF is reciprocal to the Shephard’s distance function, allowing good and 
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bad outputs to vary the same proportion, but in different directions. It provides a Farrell-type 

efficiency measure (Cuesta, Lovell and Zofío 2009; Cuesta and Zofío 2005; Zelenyuk 2014). 

However, the HDF efficiency tends to be overestimated in the presence of a slack variable, and it 

is an overall indicator that could not assign contribution to a specific factor (Zhang and Choi 

2014). The DDF was firstly introduced by Chung, Färe, and Grosskopf (1997), and later 

developed by Chambers, Chung, and Färe (1998) and Färe et al. (2005). This method is mainly 

to analyze the efficiency in the presence of bad outputs. The main advantage the DDF is that 

while it remains the property of crediting both increases of good outputs and subtraction of bad 

outputs, it allows different directions for the factors, which is more flexible and powerful. In this 

paper, we choose to employ the DDF to evaluate the countries’ environmental efficiency and 

compare the efficiency distribution under different directions.  

Following Färe et al. (2005), let’s consider a production process where a unit uses inputs 

x to produce two kinds of outputs, good outputs y, and bad outputs b. The production set can be 

described as 

T = {(𝐱𝐱, 𝐲𝐲,𝐛𝐛): 𝐱𝐱 can produce (𝐲𝐲,𝐛𝐛)},  (1) 

subject to assumptions 

1. Output set is compact for each input, finite inputs can only produce a finite amount of 

output; 

2. inputs are freely disposable: if (𝐱𝐱,𝐲𝐲,𝐛𝐛) ∈ T and 𝐱𝐱′ > 𝐱𝐱 then (𝐱𝐱′,𝐲𝐲,𝐛𝐛) ∈ T; 

3. null-jointness: if (𝐱𝐱, 𝐲𝐲,𝐛𝐛) ∈ T and 𝐛𝐛 = 0 then 𝐲𝐲 = 0; 

4. week disposability of outputs: if (𝐱𝐱, 𝐲𝐲,𝐛𝐛) ∈ T and 0 ≤ 𝜃𝜃 ≤ 1 then  (𝐱𝐱,𝜃𝜃𝐲𝐲,𝜃𝜃𝐛𝐛) ∈ T; 

5. strong disposability of good outputs: if (𝐱𝐱, 𝐲𝐲,𝐛𝐛) ∈ T and 𝐲𝐲′ ≤ 𝐲𝐲 then (𝐱𝐱, 𝐲𝐲′,𝐛𝐛) ∈ T. 
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The boundary of the technology set is considered as the production frontier, and if one 

unit stands on the frontier, the productivity is fully efficient. Inefficient production units are 

confronted with a distance to the frontier, and this distance is calculated by the directional output 

distance function (DODF) defined as 

D��⃗ o(𝐱𝐱, 𝐲𝐲,𝐛𝐛;𝐠𝐠) = max {β: (𝐱𝐱, 𝐲𝐲+ β𝐠𝐠y,𝐛𝐛 − β𝐠𝐠b) ∈ T}. (2) 

This DODF seeks a simultaneous maximum expansion in the good output in direction 𝐠𝐠y 

and maximum reduction of bad output in the direction 𝐠𝐠b, given inputs unchanged. It satisfies 

the following properties:  

1. nonnegative for all feasible output vectors: D��⃗ o(𝐱𝐱, 𝐲𝐲,𝐛𝐛;𝐠𝐠) ≥ 0 iff (𝐱𝐱, 𝐲𝐲,𝐛𝐛) ∈ T;  

2. monotonicity (corresponding to the disposability): If (𝐱𝐱′,𝐲𝐲,𝐛𝐛) ≥ (𝐱𝐱, 𝐲𝐲,𝐛𝐛) ∈ T  then  

D��⃗ o(𝐱𝐱′,𝐲𝐲,𝐛𝐛;𝐠𝐠) ≥ D��⃗ o(𝐱𝐱, 𝐲𝐲,𝐛𝐛;𝐠𝐠); If (𝐱𝐱, 𝐲𝐲′,𝐛𝐛) ≥ (𝐱𝐱, 𝐲𝐲,𝐛𝐛) ∈ T  then  D��⃗ o(𝐱𝐱, 𝐲𝐲′,𝐛𝐛;𝐠𝐠) ≤

D��⃗ o(𝐱𝐱, 𝐲𝐲,𝐛𝐛;𝐠𝐠); If (𝐱𝐱, 𝐲𝐲,𝐛𝐛′) ≥ (𝐱𝐱, 𝐲𝐲,𝐛𝐛) ∈ T  then  D��⃗ o(𝐱𝐱, 𝐲𝐲,𝐛𝐛′;𝐠𝐠) ≥ D��⃗ o(𝐱𝐱,𝐲𝐲,𝐛𝐛;𝐠𝐠); 

3. concavity: D��⃗ o(𝐱𝐱,𝐲𝐲,𝐛𝐛;𝐠𝐠) is concave in (𝐱𝐱, 𝐲𝐲,𝐛𝐛) ∈ T; 

4. weak disposability of desirable output and undesired output: D��⃗ o(𝐱𝐱, θ𝐲𝐲, θ𝐛𝐛;𝐠𝐠) ≥ 0 for 

(𝐱𝐱, 𝐲𝐲,𝐛𝐛) ∈ T and 0 ≤ 𝜃𝜃 ≤ 1; 

5. translation property: D��⃗ o�𝐱𝐱,𝐲𝐲 + α𝐠𝐠y,𝐛𝐛 − α𝐠𝐠b;𝐠𝐠� = D��⃗ o(𝐱𝐱, 𝐲𝐲,𝐛𝐛;𝐠𝐠) − 𝛼𝛼, 𝛼𝛼 ∈ ℛ. 

If we let the direction vector be 𝐠𝐠 = (gy, gb), if D��⃗ o(𝐱𝐱,𝐲𝐲,𝐛𝐛;𝐠𝐠) = 0, this country is efficient in 

the (gy,−gb) direction.  

Like Feng and Serletis (2014), we allow for the inputs and outputs change over time and 

add interaction term of time and production factors, then the quadratic form of the distance 

function is 

           D��⃗ o�𝐱𝐱, y, b, t; gy,−gb� = 𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖𝑥𝑥𝑖𝑖3
𝑖𝑖=1 + 𝛽𝛽1𝑦𝑦 + 𝛾𝛾1𝑏𝑏 + 𝛿𝛿𝜏𝜏𝑡𝑡 
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 + 1
2
∑ ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗3

𝑗𝑗=1
3
𝑖𝑖=1 + 1

2
𝛽𝛽2𝑦𝑦2 + 1

2
𝛾𝛾2𝑏𝑏2 + 1

2
𝛿𝛿𝜏𝜏2𝑡𝑡2 

+∑ 𝛽𝛽𝑖𝑖1𝑥𝑥𝑖𝑖3
𝑖𝑖=1 𝑦𝑦 + ∑ 𝛾𝛾𝑖𝑖1𝑥𝑥𝑖𝑖3

𝑖𝑖=1 𝑏𝑏 + 𝜃𝜃11𝑦𝑦𝑦𝑦 + ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖3
𝑖𝑖=1 𝑡𝑡 + 𝛽𝛽1𝜏𝜏𝑦𝑦𝑦𝑦 + 𝛾𝛾1𝜏𝜏𝑏𝑏𝑏𝑏.  (3) 

To hold the translation property, the restrictions on parameters are 

 𝛽𝛽1 − 𝛾𝛾1 = −1,  

𝛽𝛽2 = 𝛾𝛾2 = 𝜃𝜃11, 

 𝛽𝛽𝑖𝑖1 = 𝛾𝛾𝑖𝑖1 for 𝑖𝑖 = 1,2,3 and 𝛽𝛽1𝜏𝜏 = 𝛾𝛾1𝜏𝜏.  

We also impose symmetry condition: 𝛼𝛼𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑗𝑗𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 = 1,2,3. 

Equation (3) could not be estimated directly as the left-hand side variable is not observed. 

By applying the translation property, the following equation holds, 

 D��⃗ o�𝐱𝐱, y, b, t; gy,−gb� = D��⃗ o�𝐱𝐱, y + αgy, b − αgb, t; gy,−gb� + 𝛼𝛼.  (4) 

Add the stochastic part, we have D��⃗ o�𝐱𝐱, y, b; gy,−gb� = 𝑢𝑢 − 𝑣𝑣 where 𝑢𝑢 ≥ 0 measuring 

the distance of one producer to the frontier and 𝑣𝑣 ∈ 𝑁𝑁(0,𝜎𝜎𝑣𝑣2) is the error term.  

Let 𝛼𝛼 = 𝑏𝑏/gb, rearrange equation (4),  

−𝑏𝑏 = D��⃗ o�𝐱𝐱, y + bgy/gb, b − b, t; gy,−gb� − 𝑢𝑢 + 𝑣𝑣 

       = 𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖𝑥𝑥𝑖𝑖3
𝑖𝑖=1 + 𝛽𝛽1𝑦𝑦� + 𝛿𝛿𝜏𝜏𝑡𝑡 + 1

2
∑ ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗3

𝑗𝑗=1
3
𝑖𝑖=1 + 1

2
𝛽𝛽2𝑦𝑦�2  + 1

2
𝛿𝛿𝜏𝜏2𝑡𝑡2 

+∑ 𝛽𝛽𝑖𝑖1𝑥𝑥𝑖𝑖3
𝑖𝑖=1 𝑦𝑦� + ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖3

𝑖𝑖=1 𝑡𝑡 + 𝛽𝛽1𝜏𝜏𝑦𝑦�𝑡𝑡 + 𝛾𝛾1𝜏𝜏𝑏𝑏𝑏𝑏 − 𝑢𝑢 + 𝑣𝑣 ,  (5) 

where 𝑦𝑦� = 𝑦𝑦 + bgy/gb. 

We generate Figure 3.1 using the real data from the World Bank to illustrates the 

technology set and how the DODF is applied. Coefficient Estimates of            

D��⃗ o�𝐱𝐱, y, b, t; gy,−gb� from equation (5) are used to simulate the production set. Since Japan is 

relatively efficient all through the study period, we employ the average inputs of Japan. The bad 

output, GHG, is rearranged to be from 0 to the maximum value with a step of maximum value 
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divided by the number of observations. We set the distances to be zero and obtain a quadratic 

relation equation between y and b for given inputs. This figure mainly provides three pieces of 

information: 1. It shows a compact output set and the strong disposability of both good outputs 

and bad outputs. If an observed country with GDP and GHG emissions inside the feasible set, 

then any observation with equal GHG emission and less GDP is in this technology set too. 2. 

There are frontier shifts over the years, which implies an improvement of the environmental 

technology. We split the data into three periods, 1991-1999, 2000-2007 and 2008-2012, to show 

that the production feasible set is expanded over the years, allowing to produce more GDP at the 

same level of GHG emissions. 3. The yellow dot in the output set is an example of the 

production unit, China, 2010, and the distance is defined as the point toward frontier in the 

direction of (gy, gb) = (1, 1).  

2.2 Estimation 

Both data envelopment analysis (DEA) and stochastic frontier analysis (SFA) are widely 

used in recent studies. Papers that applies non-parametric DEA include Seiford and Zhu (2002), 

Scheel (2001), Färe, Grosskopf and Hernandez-Sancho (2004), Zhou, Ang and Poh (2008). 

Although the DEA can calculate the efficiency directly, it suffers from two drawbacks: the 

program is nonlinear if the production is not constant return to scale (CRS), and since the DEA 

efficiency estimates are serially correlated, a valid inference cannot be made without 

bootstrapping (Simar and Wilson 2007). The SFA requires a functional form of the distance 

function and allows for a stochastic variation. It provides parameterized productivity form and 

support to make further inferences, such as computing elasticities and shadow prices of bad 

outputs. It is common to set a translog function form in HDF which holds homogeneity property 

and a quadratic function form in DDF which holds translation property. The study by Färe et al. 
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(2005) is a classical paper and enlightens many following researchers, such as Njuki, Bravo-

ureta and Mukherjee (2016), Matsushita and Yamane (2012), Malikov, Kumbhakar and Tsionas 

(2016). In this paper, we also start in the same way as introduced in Färe et al.’s paper. 

Since the estimation of inefficiency depends on the assumption of the distribution of 𝑢𝑢, 

the technical efficiency measure is not consistent. It is also not justified to assume the 

independency of 𝑢𝑢 and the regressors (Schmidt and Sickles 1984). Consider the model 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑡𝑡 + 𝒙𝒙𝑖𝑖𝑖𝑖′ 𝜷𝜷 − 𝑢𝑢𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝒙𝒙𝑖𝑖𝑖𝑖′ 𝜷𝜷 + 𝑣𝑣𝑖𝑖𝑖𝑖,  (6) 

where 𝛼𝛼𝑖𝑖𝑖𝑖 are the intercept of producer 𝑖𝑖 at time 𝑡𝑡. Following Cornwell, Schmidt and Sickles 

(1990), 𝛼𝛼𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑡𝑡𝛿𝛿𝑖𝑖, where 𝑊𝑊𝑡𝑡 is a quadratic vector of t, that 𝑊𝑊𝑡𝑡 = [1, 𝑡𝑡, 𝑡𝑡2] and 𝛼𝛼𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖0 +

𝛿𝛿𝑖𝑖1𝑡𝑡 + 𝛿𝛿𝑖𝑖2𝑡𝑡2, this allows for the correlation between the effects and the inputs, and no 

distribution assumption required for the 𝑢𝑢. In this way we could estimate the individual-specific 

technical environmental inefficiency in different years. 

The time-varying inefficiency 𝑢𝑢�𝑖𝑖𝑖𝑖 is obtained from 

𝑢𝑢�𝑖𝑖𝑖𝑖 = 𝛼𝛼�𝑡𝑡 − 𝛼𝛼�𝑖𝑖𝑖𝑖,  (7) 

where 𝛼𝛼�𝑡𝑡 is the maximum 𝛼𝛼 overall production unit at time t, 𝛼𝛼�𝑡𝑡 = max
𝑖𝑖

(𝛼𝛼�𝑖𝑖𝑖𝑖)  , the inefficiency is 

estimated in a fixed effect frame work.  

By solving the revenue maximization problem 

𝑅𝑅(𝒙𝒙,𝑝𝑝, 𝑞𝑞) = max
𝑦𝑦,𝑏𝑏

{𝑝𝑝𝑝𝑝 − 𝑞𝑞𝑞𝑞: D��⃗ o�𝐱𝐱, y, b, t; gy,−gb� ≥ 0},  (8) 

Where 𝑝𝑝 if the price of good output, we obtain the shadow prices (𝑞𝑞)  

𝑞𝑞 =  −𝑝𝑝 �𝜕𝜕D
��⃗ o(𝐱𝐱,y,b;gy,−gb)/𝜕𝜕𝜕𝜕

𝜕𝜕D��⃗ o(𝐱𝐱,y,b;gy,−gb)/𝜕𝜕𝜕𝜕
�.  (9) 

In our case since the good output is GDP, the price (𝑝𝑝)is set constant to $1. 
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The Morishima elasticity between good output and bad output is  

𝑀𝑀𝑏𝑏𝑏𝑏 = (𝑦𝑦 + gyD��⃗ o(·)) �𝜕𝜕
2D��⃗ o(·)/𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕D��⃗ o(·)/𝜕𝜕𝜕𝜕

− 𝜕𝜕2D��⃗ o(·)/𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕D��⃗ o(·)/𝜕𝜕𝜕𝜕

�.9  (10) 

3. Data 

Our data are from the World Bank. The country level annual data are used to analysis TEE for 

each country with available records in each year. There are three inputs, capital stock, labor, and 

energy. The time range from 1990 to 2012. Since available emission dataset prior 1990 is too 

small, we limited the time to start from 1990. There is one good output GDP, and the price of 

GDP is set to be 1 in the shadow price calculation. The bad outputs include GHG, CO2, and N2O. 

The GHG totals are expressed in CO2 equivalent using the GWP100 metric of the Second 

Assessment Report of IPCC and include CO2, GH4, N2O etc. Carbon dioxide emissions are the 

by-products of energy production and use, accounting for the largest share of greenhouse gases. 

Nitrous oxide is another powerful greenhouse gas, mainly from fossil fuel combustion and the 

overuse of mineral fertilizers and herbicides.  

Table 3.1 shows the mean values of each variable over 1991-2012. 

All the variables have very large ranges, which can be observed that the standard 

deviation is larger than the mean. The Lorenz estimates show that in 2012, the top 10% 

countries, consumed 35% of the energy, fed 70% of the labor in the world, and generated 70% of 

the total GDP, emitting approximately 75% of GHG, 80% of CO2 and 65% of N2O. The average 

annual growth rate of total GHG in the word is 3%, and CO2 for 4%, N2O for 0.5%. Regarding 

the per person emissions, the GHG per capita increased by 4%, CO2 creased per capita by 18% 

while N2O per capita decreased by 30%.  

                                                 
9 For detailed calculation of shadow prices and Morishima elasticities, see Färe et al. (2005) 
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To avoid convergence problems all variables are corrected prior to model estimation, 

three inputs and both good and bad outputs in each model are normalized. Finally, we use the 

bad output to impose translation property. In this way, the length of distance estimated in each 

model is measured as the unit of the bad output, i.e., GHG, CO2 or N2O. 

4. Results and Discussion 

As described earlier, there are three inputs in our model, capital, labor, and energy. One good 

output is GDP, the bad outputs are GHG, CO2 and NO.  

4.1 Model estimates 

We estimate three models with different bad outputs under different direction vectors. Since the 

most commonly used direction set is (1,1), here we use the outputs from models with (1,1) 

direction vector for discussion (see Table 3.2). Tables contain all parameter estimates and results 

of models with other direction vectors are attached in the appendix.  

When we test the monotonicity in outputs, 2429 out of 2434 observations in GHG model, 

all the observations in the CO2 model and 2431 out of 2434 observations in the NO model satisfy 

the property. The violation of monotonicity condition is below the tolerance level, so we do not 

need to worry about this.   

The shadow price of a bad output is the lost value when the productivity of one country 

moves toward the production frontier, or the marginal abatement cost of the bad output.  Take 

the example in Figure 3.1, where China is not efficient. If China moves toward the frontier in the 

direction of (1, 1), the total value added of the total outputs (GDP and GHG) consists not only 

the increase of GDP, but also the value of subtracted GHG, the value of emissions abatement is 

not observed in the data. The shadow price quantifies the relative value of bad output abatement 

to the good output. In this study the good output is GDP and the price is constant $1, and the 
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shadow price of GHG is $0.546 per unit for the normalized data at the mean. The mean shadow 

price of CO2 is $0.960 per unit and N2O is $0.468 per unit. If we rescale the outputs to original 

data, the shadow prices of GHG, CO2, and N2O per ton are $919, $960 and $524. The shadow 

price estimates of bad outputs are different from other literature. Maradan and Vassiliev (2005) 

also employed the directional distance function and cross-country data to calculate the shadow 

prices of CO2, they find that the shadow price ranges from $130 per ton to $1083 per ton (1987 

U.S.$). Some other studies use state or firm level data and obtain different mean shadow price of 

CO2, such as €88 /ton (Molinos-Senante, Hanley and Sala-Garrido 2015), $237/ton (Lee and 

Zhou 2015). The derivation of the difference can be result from the use of different methodology 

and the measures of good output value. 

Since we use the Schmidt and Sickles’s method to obtain the TEE, the efficiencies should 

be considered as “relative efficiency”: a country with higher TEE is more efficient than the one 

with smaller efficiency. If all countries were efficient as the most efficient country in all periods 

of 1990-2012, then there would be approximately 50% reduction of total GHG emissions, and 

there should be 40% less CO2 output and 57% less N2O output. In 2012, the total value of GHG, 

CO2 and N2O abatement, assuming all countries being fully efficient, is 1.98 billion, 3.04 billion 

and 3.32 million, which account for 16%, 25% and 0.3% of the total GDP in the world. 

The definition of Morishima elasticity of substitution is 𝜕𝜕 ln(𝑞𝑞/𝑝𝑝) /𝜕𝜕 ln(𝑦𝑦/𝑏𝑏) and it measures 

the how the GDP and GHG (CO2, N2O) price ratio changes relative to the change of good-bad 

output ratio. We found the elasticities at the means are negative for all three bad outputs, which 

indicates that an increase of good-bad output ratio causes a decrease of the shadow prices, and 

this change is inelastic. The transformation elasticity for CO2 and GDP is super in-elastic and it 
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implies that the marginal abatement cost of CO2 emissions is stable when GDP-CO2 outputs 

adjust. 

4.2 TEE and economic development 

We are interested in finding the relationship between TEE and economic development. A 

graph of all the countries would be too crowded and hard to read, so we choose to scatter a few 

in stead of all. We estimate the Lorenz and concentration curve and find that the top 25% of 

countries generated 90% of the total GHG, we care more about the efficiencies of large 

countries, of which a relative small improvement of technology can produce a large effect on the 

global emission.  So, we graphed the relationship between average TEE and GDP per capita of 

the “large” countries, which contain countries with the top 25% population.  The analysis of TEE 

over countries at different development level can give information on the change of 

environmental efficiency over economic growth process.  

The first graph in Figure 3.2 shows the TEE obtained from GHG model, at a direction of 

(1,1), the leading countries are United States, Japan, and the United Kingdom. The second graph 

shows the TEE obtained from CO2 model, and the leading countries are France, Kenya, and 

Tanzania. The third one shows the TEE obtained from N2O model and the most efficient 

countries are Japan, United Kingdom, and Colombia. We also found that in each model, both 

China and India are ranked lowest among the large countries. These findings coincide with 

Valadkhani, Roshdi and Smyth's (2016) study and provide support to the “paradox of plenty,” 

whereby countries with most rich natural resources exhibit the lowest economic and 

environmental efficiency.  

In general, there is a U shape curve relationship between TEE and GDP per capita.  One 

widely used model in development economics is the “take-off” model. In this model, Rostow 
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designated a set of states of economic growth: the traditional society, the preconditions for take-

off, the take-off, the drive to maturity and the stage of mass consumption (Rostow 1959). The 

stages are closely related to the sustainable development, economically and environmentally 

(Rammel and van den Bergh 2003; Elliott 2012). In early stages an economy mainly stands on 

agricultural outputs, Such as Tanzania, Kenya, and Pakistan (the shares of GDP from agriculture 

in 2012 are 33.2%, 29.1%, 24.5%, compare to China 9.4%), capital and labor may not be fully 

utilized but there is less energy consumption. In such circumstance, the economy is relatively 

environmentally efficient compared to the countries at the middle stages when the force of 

economic growth is largely based on the use of fossil fuels, whose growth are fast, but emissions 

increase dramatically and environmental efficiency is hardly achieved. Well-known countries at 

such “take-off” stage are China and India. Developed countries (at the stage of “mass 

consumption”), such as the United States, Japan, and United Kingdom are more efficient and the 

economy in such countries is closer to sustainable development. 

4.3 TEE at different directions 

In the choice of direction vector for two outputs, the most commonly used vector is (1,1), which 

we explained earlier. Though there have been some attempts to obtain optimal direction sets 

(Färe, Grosskopf and Whittaker 2013; Hampf and Krüger 2013; Atkinson and Tsionas 2016), in 

this paper, we are not going to endogenize the directions or maximize the efficiency. We 

manually assign five direction vectors to each model, (0.1, 1), (0.5, 1), (1, 1), (2, 1), (10, 1), with 

which we can make a comparison over the distributions of TEE under different directions. See 

Figure 3.3.  

Under each direction vector in (0.1, 1), (0.5, 1), (1, 1), (2, 1) and (10, 1), for a production 

unit, if the distance is 1 unit of good output, then this production unit is required to achieve 10, 2, 
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1, 0.5 and 0.1 unit(s) of emission abatement to reach full efficiency. In other words, a smaller 

value of gy/gb indicates greater importance of bad output deduction. The kernels do not provide 

much evidence that TEE has a significant change in GHG and CO2 models with different 

directions. However, we find that the efficiencies are greater (or the same) when gy/gb increases 

in the N2O model. That is, when we ignore the bad credits from the undesired output, the 

efficiency improves. In another word, when we emphasize more about N2O emissions in 

assessing the performance of a country, the less efficient that country is; efficiency can be 

improved if we ignore the environmental concerns and only focus on economic development. At 

a time when climate issue is emerging, it is of great importance to include environmental concern 

into policymaking. 

4.4 TEE change over time 

In earlier section, Figure 3.1 shows shifts of production frontier among three periods. Here we 

also check the changes of TEE over time via Kolmogorov–Smirnov test. The two sample K-S 

test provide the equality of two distribution. We separate the data into two periods, 1991-2000, 

2001-2012, and test the difference between two time windows. The results are given by Table 

3.3. 

The time trend of GHG efficiencies is unclear, a weak conclusion is that the TEE is 

decreasing if GHG is emphasized (𝐠𝐠 = (0.5: 1)) while it is increasing over time when GDP is 

much more important than GHG emissions (𝐠𝐠 = (10: 1))). In the CO2 model, the TEE is 

decreasing over time, consistent for the first three direction vectors, but it is improving over time 

when 𝑔𝑔𝑦𝑦 is large enough. In the N2O model, the environmental efficiencies are increasing in 

general for all the direction vectors. There can be many reasons for efficiency change. 

Technology progress and promotion of education, such as the wide spread of computer increases 
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labor output per capita; learning by doing such that higher capital return in a well-functioned 

finance market. Efficiencies are also related to institutional characteristics.  

Since 87% of CO2 emissions are generated by fossil fuel combustion, the decrease of 

TEE over time can be caused by the over-consumption of energy in the economic growth. From 

1970 to 2012, the CO2 emissions per kilogram of energy (oil equivalent) rise dramatically while 

N2O emissions per kilogram of energy (oil equivalent) have a slightly downward slope over 

time. Since the human-source N2O emissions are mostly from agriculture productivity, such as 

crop cultivation (fertilizer) and livestock production (animal waste), the development of 

agriculture management that precisely quantify the fertilizer needed by crops and scientific 

dispose of animal waste helps increase the agriculture environmental efficiency. This finding 

agrees with Dakpo, Jeanneaux, and Latruffe (2017), in which the authors conducted research 

over sheep farm productivity in French and found that the environmental efficiency is steady 

over 1987-2012 while the mix warming efficiency is slightly increasing. 

5. Conclusion 

Technological Revolution pushed a leap in economic development and lead to large consumption 

of fossil fuels. In the late 20th century, global warming and climate change became an emerging 

issue due to emissions of GHG, including CO2, N2O, CH4 etc. In such circumstances, 

sustainable development, which concerns not only economic growth, but also environmental and 

social development, become a new goal.  

To evaluate the environmental performance, the directional distance function framework 

is applied to estimate the production efficiency. We estimate three models concerning GHG, CO2 

and N2O emissions and calculate the corresponding TEE. There are mainly three findings. 1. The 

relationship between TEE and GDP per capita performs a shallow U shape curve, that is, the 
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TEE is relatively high in the early stage of development and the later stage, but a country 

experiences low efficiency during the “take-off” period. 2. No evidence on the difference 

between TEE obtained from GHG and CO2 models when imposing different direction vectors, 

but results from the N2O model show that countries are generally more efficient when the 

direction vector 𝑔𝑔𝑦𝑦/𝑔𝑔𝑏𝑏 is set to be smaller, which indicates that the more we emphasize the 

importance of N2O emissions, the lower score in environmental performance evaluation. 3. The 

GHG efficiency trend over time is ambiguous across different direction vectors, while the CO2 

efficiency is generally decreasing over time. N2O efficiency is increasing. We also find that there 

is technical change over years, which is shown in Figure 3.1 that there is frontier shifts between 

1991-1999, 2000-2007 and 2008-2012. 

Environmental regulations such as command-and-control, cap, and trade, etc. help reduce 

the social cost of pollutions but also hurt the economic growth. Since the primary human 

activities that generate pollutions are fossil fuel combustion and agriculture productivity, we 

suggest more research and development in clean energy to reduce the input cost, which can both 

mitigate energy crisis and increase the environmental efficiency while keeping the economic 

growth rate. Culture, institute characteristic, and market structure, etc. may also affect the 

environmental performance the country, which is left for further study. 
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Figure 3.1 Outputs Set of y and b and an Example from Data 
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(c) 

 

 

Figure 3.2 Scatter Plot of Average TEE and the Natural logarithm of GDP per capita with 
the Direction Vector (1, 1) of Large Countries 

Note: 1) GHG model.  2) CO2 model. 3) N2O model. Note: In above three graphs, the fitted line 
is predicted by the fractional polynomial regression and the shadow area indicates a 95% 
confidence interval. “Large country” is defined as the country with population among top 25% in 
the world. 
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(c) 
 

 
Figure 3.3 Kernel Distributions 

Note: 1) Kernel distribution of TEE of the GHG model with different directions 2) Kernel 
distribution of TEE of CO2 model with different directions. 3) Kernel distribution of TEE of N2O 
model with different directions. 
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TABLES 
 
 
 

Table 3.1 Descriptive Statistics 

Variable Mean Std.Dev Min Max 

Capital m 106397.60 333134.20 36.61 3564077.00 

Labor t 23389.59 81538.15 91.08 798203.30 

Energy  2334.19 2402.04 9.58 18178.14 

GDP m 385206.50 1307742.00 365.00 16700000.00 

GHG mt (CO2 equivalent)  357.07 1028.79 0.39 12454.71 

CO2 mt 224.72 775.44 0.05 10249.46 

N2O kt (CO2 equivalent) 23332.99 59753.66 35.46 587166.4 
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Table 3.2 Shadow Prices and Elasticity of Transformation, Direction = (1,1) 

Variable/Bad Output 

GHG 

Mean 

CO2 

Mean 

N2O 

Mean 

𝜕𝜕D��⃗ o(𝐱𝐱, y, b; 1,−1)/𝜕𝜕𝜕𝜕 0.462 0.979 0.514 

𝜕𝜕D��⃗ o(𝐱𝐱, y, b; 1,−1)/𝜕𝜕𝜕𝜕 -1.561 -1.021 -1.512 

Shadow Price 0.546 0.960 0.468 

Morishima Elasticity -0.34 -0.001 -0.142 

N 2434 2639 2434 
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Table 3.3 TEE Trends 

Directions GHG Model CO2 Model N2OModel 

0.1:1 ↑ ↓ ↑ 

0.5:1 ↓ ↓ → 

1:1 ↓ ↓ ↑ 

2:1 ↑ ↑ ↑ 

10:1 ↑ ↑ ↑ 

Note: ↑ increasing ↓ decreasing → ambiguous 
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Appendix 2 

 
 
Table A2- 1 GHG Models 

Bad Output GHG 

(gy,gb) 0.1:1 0.5:1 1:1 2:1 10:1 

𝛼𝛼1 -0.191 1.550*** 0.898*** 0.385*** 0.013 

 
(0.140) (0.082) (0.047) (0.028) (0.008) 

𝛼𝛼2 3.375*** 1.907*** 0.424* -0.123 0.098** 

 
(0.571) (0.368) (0.234) (0.147) (0.047) 

𝛼𝛼3 -0.301*** -0.422*** -0.286*** -0.163*** -0.018*** 

 
(0.073) (0.047) (0.030) (0.019) (0.006) 

𝛽𝛽1 -0.438*** -1.257*** -0.757*** -0.374*** -0.093*** 

 
(0.070) (0.033) (0.015) (0.006) (0.001) 

𝛽𝛽2 0.019 -0.129*** -0.059*** -0.016*** -0.000*** 

 
(0.014) (0.006) (0.002) (0.001) (0.000) 

𝛼𝛼12 0.018 -0.013 -0.072*** -0.092*** -0.027*** 

 
(0.023) (0.013) (0.008) (0.005) (0.002) 

𝛼𝛼13 0.090 -0.889*** -0.512*** -0.222*** -0.016*** 

 
(0.097) (0.060) (0.034) (0.019) (0.006) 

𝛼𝛼23 -1.345*** -1.304*** -0.852*** -0.380*** -0.026* 

 
(0.121) (0.081) (0.057) (0.041) (0.014) 

𝛼𝛼11 -0.011 -0.271*** -0.209*** -0.129*** -0.016*** 

 
(0.025) (0.014) (0.008) (0.004) (0.001) 

𝛼𝛼22 -0.293*** -0.107*** -0.058*** -0.033*** -0.005 

 
(0.049) (0.032) (0.020) (0.013) (0.004) 

𝛼𝛼33 -0.002 -0.004 -0.006 -0.004 -0.000 

 
(0.011) (0.007) (0.005) (0.003) (0.001) 
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𝛿𝛿𝜏𝜏 0.141*** 0.083*** 0.039*** 0.019*** 0.005*** 

 
(0.018) (0.012) (0.008) (0.005) (0.002) 

𝛿𝛿𝜏𝜏2 -0.005*** -0.004*** -0.001*** -0.000* -0.000** 

 
(0.001) (0.000) (0.000) (0.000) (0.000) 

𝛽𝛽11 -0.006 0.364*** 0.226*** 0.100*** 0.004*** 

 
(0.031) (0.015) (0.006) (0.002) (0.000) 

𝛽𝛽21 -0.025** 0.024*** 0.026*** 0.011*** 0.001*** 

 
(0.010) (0.006) (0.004) (0.002) (0.000) 

𝛽𝛽31 0.124** 0.672*** 0.270*** 0.052*** -0.000 

 
(0.057) (0.029) (0.013) (0.005) (0.000) 

𝛽𝛽1𝜏𝜏 0.009* 0.045*** 0.017*** 0.001 -0.000*** 

 
(0.005) (0.003) (0.001) (0.000) (0.000) 

𝛼𝛼1𝜏𝜏 0.001 -0.067*** -0.021*** 0.006*** 0.007*** 

 
(0.008) (0.005) (0.003) (0.002) (0.000) 

𝛼𝛼2𝜏𝜏 -0.008 -0.099*** -0.021 0.017 -0.001 

 
(0.042) (0.027) (0.017) (0.011) (0.003) 

𝛼𝛼3𝜏𝜏 0.003 0.007* 0.007*** 0.005*** 0.001 

 
(0.005) (0.003) (0.002) (0.001) (0.000) 

N 2434 2434 2434 2434 2434 

Marishima Elasticity 0.041 -0.183 -0.342 -0.023 -0.0001 

Shadow Price 0.536 -0.158 0.546 0.483 0.825 

Standard errors in parentheses ="* p<0.1  ** p<0.05  *** p<0.01 
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Table A2- 2 CO2 Models 

Bad Output CO2 

(gy,gb) 0.1:1 0.5:1 1:1 2:1 10:1 

𝛼𝛼1 0.027 0.031 0.037* 0.019 -0.024*** 

 
(0.022) (0.022) (0.021) (0.018) (0.009) 

𝛼𝛼2 -0.261*** -0.068 -0.052 -0.173*** -0.109*** 

 
(0.087) (0.081) (0.073) (0.063) (0.037) 

𝛼𝛼3 -0.338*** -0.323*** -0.289*** -0.228*** -0.066*** 

 
(0.010) (0.010) (0.009) (0.009) (0.006) 

𝛽𝛽1 0.035*** 0.007 -0.029*** -0.056*** -0.061*** 

 
(0.011) (0.011) (0.010) (0.008) (0.002) 

𝛽𝛽2 0.013*** 0.004** -0.001 -0.003*** -0.000*** 

 
(0.002) (0.002) (0.001) (0.001) (0.000) 

𝛼𝛼12 -0.013*** 0.001 0.004 -0.003 -0.010*** 

 
(0.003) (0.003) (0.003) (0.003) (0.002) 

𝛼𝛼13 0.091*** 0.048*** 0.004 -0.021 0.010 

 
(0.015) (0.016) (0.016) (0.014) (0.006) 

𝛼𝛼23 -1.531*** -1.388*** -1.150*** -0.793*** -0.127*** 

 
(0.020) (0.021) (0.025) (0.030) (0.022) 

𝛼𝛼11 0.010*** 0.001 -0.011*** -0.022*** -0.015*** 

 
(0.004) (0.004) (0.003) (0.003) (0.001) 

𝛼𝛼22 -0.060*** -0.048*** -0.036*** -0.021*** 0.001 

 
(0.007) (0.007) (0.006) (0.006) (0.003) 

𝛼𝛼33 -0.001 -0.000 0.001 0.002* 0.002*** 

 
(0.002) (0.002) (0.001) (0.001) (0.001) 

𝛿𝛿𝜏𝜏 0.035*** 0.037*** 0.035*** 0.029*** 0.011*** 

 
(0.003) (0.003) (0.002) (0.002) (0.001) 

𝛿𝛿𝜏𝜏2 -0.001*** -0.001*** -0.001*** -0.001*** -0.000*** 

 
(0.000) (0.000) (0.000) (0.000) (0.000) 

𝛽𝛽11 -0.023*** -0.005 0.011*** 0.018*** 0.004*** 
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(0.005) (0.004) (0.003) (0.002) (0.000) 

𝛽𝛽21 -0.012*** -0.024*** -0.026*** -0.019*** -0.002*** 

 
(0.002) (0.002) (0.002) (0.002) (0.000) 

𝛽𝛽31 -0.022** -0.006 0.003 -0.002 -0.006*** 

 
(0.009) (0.009) (0.009) (0.007) (0.001) 

𝛽𝛽1𝜏𝜏 -0.003*** -0.001 0.001 0.001*** 0.000 

 
(0.001) (0.001) (0.001) (0.000) (0.000) 

𝛼𝛼1𝜏𝜏 -0.002 -0.004*** -0.004*** -0.002** 0.003*** 

 
(0.001) (0.001) (0.001) (0.001) (0.000) 

𝛼𝛼2𝜏𝜏 0.009 -0.006 -0.007 0.005 0.008*** 

 
(0.006) (0.006) (0.005) (0.004) (0.003) 

𝛼𝛼3𝜏𝜏 -0.000 0.000 0.001 0.001* 0.000 

 
(0.001) (0.001) (0.001) (0.001) (0.000) 

N 2637 2638 2639 2640 2641 

Marishima Elasticity 0.012 0.004 -0.001 -0.002 -0.000 

Shadow Price 0.992 0.988 0.960 0.923 0.885 

Standard errors in parentheses ="* p<0.1  ** p<0.05  *** p<0.01 
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Table A2- 3 N2O Models 

Bad Output N2O 

(gy,gb) 0.1:1 0.5:1 1:1 2:1 10:1 

𝛼𝛼1 0.145 1.569*** 0.682*** 0.181*** -0.024*** 

 
(0.155) (0.078) (0.044) (0.026) (0.007) 

𝛼𝛼2 3.405*** 1.765*** 0.457* 0.071 0.105** 

 
(0.645) (0.381) (0.237) (0.149) (0.045) 

𝛼𝛼3 -0.201** -0.305*** -0.183*** -0.097*** -0.008 

 
(0.082) (0.048) (0.030) (0.019) (0.006) 

𝛽𝛽1 -0.611*** -1.227*** -0.664*** -0.347*** -0.092*** 

 
(0.077) (0.031) (0.015) (0.007) (0.001) 

𝛽𝛽2 -0.062*** -0.168*** -0.068*** -0.016*** -0.000*** 

 
(0.016) (0.006) (0.002) (0.000) (0.000) 

𝛼𝛼12 0.107*** -0.006 -0.057*** -0.064*** -0.024*** 

 
(0.025) (0.013) (0.007) (0.005) (0.002) 

𝛼𝛼13 0.221** -0.707*** -0.245*** -0.010 0.013** 

 
(0.107) (0.057) (0.030) (0.017) (0.005) 

𝛼𝛼23 -0.836*** -0.922*** -0.573*** -0.231*** 0.015 

 
(0.136) (0.079) (0.050) (0.033) (0.011) 

𝛼𝛼11 -0.154*** -0.310*** -0.201*** -0.114*** -0.015*** 

 
(0.027) (0.013) (0.007) (0.004) (0.001) 

𝛼𝛼22 -0.209*** -0.062* -0.041** -0.027** -0.005 

 
(0.055) (0.033) (0.020) (0.013) (0.004) 

𝛼𝛼33 0.000 0.002 -0.001 -0.002 0.000 

 
(0.012) (0.007) (0.005) (0.003) (0.001) 

𝛿𝛿𝜏𝜏 0.147*** 0.083*** 0.043*** 0.024*** 0.006*** 

 
(0.020) (0.012) (0.008) (0.005) (0.001) 

𝛿𝛿𝜏𝜏2 -0.005*** -0.003*** -0.001*** -0.000** -0.000** 

 
(0.001) (0.001) (0.000) (0.000) (0.000) 

𝛽𝛽11 0.158*** 0.404*** 0.211*** 0.086*** 0.004*** 
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(0.033) (0.013) (0.005) (0.002) (0.000) 

𝛽𝛽21 -0.045*** 0.075*** 0.061*** 0.023*** 0.001*** 

 
(0.012) (0.006) (0.003) (0.002) (0.000) 

𝛽𝛽31 0.175*** 0.695*** 0.217*** 0.010** -0.003*** 

 
(0.064) (0.027) (0.012) (0.005) (0.000) 

𝛽𝛽1𝜏𝜏 0.028*** 0.045*** 0.013*** -0.000 -0.000*** 

 
(0.005) (0.003) (0.001) (0.000) (0.000) 

𝛼𝛼1𝜏𝜏 -0.009 -0.052*** 0.001 0.021*** 0.009*** 

 
(0.009) (0.005) (0.003) (0.002) (0.000) 

𝛼𝛼2𝜏𝜏 -0.034 -0.105*** -0.020 0.012 0.001 

 
(0.048) (0.028) (0.017) (0.011) (0.003) 

𝛼𝛼3𝜏𝜏 0.006 0.007** 0.007*** 0.004*** 0.000 

 
(0.006) (0.003) (0.002) (0.001) (0.000) 

N 2434 2434 2434 2434 2434 

Marishima Elasticity -0.264 0.051 -0.142 -0.0274 -0.0001 

Shadow Price 0.608 0.043 0.468 0.499 0.827 

Standard errors in parentheses ="* p<0.1  ** p<0.05  *** p<0.01 
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