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Abstract

Worker fatigue has been known as a significant phenomenon in the manufacturing occu-

pations. In these occupations, physical fatigue is a challenging ergonomic/safety issue as it

lowers productivity and boosts the incidence of injuries. The objective of this dissertation is to

prevent the fatigue occurrence in the manufacturing occupations by monitoring the individual’s

body using the wearable sensors on the wrist, torso, ankle, and hip coupled with a heart rate

sensor. Specifically, this research, 1) examines whether the commercially wearable sensors, ex-

tracting appropriate ergonomic-related metrics, can be used to detect the occurrence of fatigue

on an individualized level for different occupational tasks, 2) proposes a comprehensive frame-

work consisting of four phases including detection, identification, diagnosis, and recovery to

manage fatigue in manufacturing occupations using wearable sensors. Overall, the goal of this

research is to develop analytical models that present important findings for accident and injury

prevention by managing fatigue in the manufacturing occupations.
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Chapter 1

Introduction

1.1 Problem Description and Significance

Occupational accidents and injuries stand for a challenging safety problem. The UNs Interna-

tional Labour Organization (ILO) estimates that there are 313 million occupational accidents

causing injuries. In addition, it estimates 160 million occupational diseases annually, ensuing

in 2.3 million worker related fatalities [3]. The ILO estimated that occupational accidents and

diseases cost the global economy $3 trillion annually, which was 4% of global Gross Domes-

tic Product in 2015. It is critical to note that workplace fatalities are only one indicator of

occupational safety performance. The Bureau of Labor Statistics collects detailed non-fatal

occupational injuries and diseases and found that the rates/amount of affected workers is much

higher, with an occurrence rate of 9.3 per 100 full-time workers in 2015 [4]. Moreover, the

Bureau of Labor Statistics estimated that there were over 1.5 million occupational accidents

plus injuries, resulting in a median leave of 10 days from work in 2015 [4].

Worker fatigue is a common root-cause of occupational injuries since it results in impaired

musculoskeletal function and increased risk-taking behavior. Physically demanding work sub-

ject to long duration, repetition, or high workload in the long term without proper recovery

can result in fatigue [5]. In a study involving 606 construction workers, Zhang et al. (2015)

[6] showed that there is a significant negative correlation between being fatigued and physi-

cal/cognitive function. Fatigue has adverse consequences on motor control and strength capa-

bility [7]. It can lead to the loss of balance [8], which is the main cause of slips and fall fatalities

in the workplaces [9]. Additionally, fatigue impairs decision-making and concentration, caus-

ing a decrease in performance and alertness [10, 11]. These consequences result in increased
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injury risk, a reduction of work performance and job quality as well as an increment in the

accidents related to human errors [12, 13]. Fatigue prevalence is estimated to be 57% in U.S.

advanced manufacturing workers [14], 60% of the Japanese working populations [15], and 15-

20% of the Canadian workforce [16]. Ricci et al. (2007) [17] reported that the health-related

loss in productivity time for fatigued workers exceeds double their non-fatigued counterparts.

The financial ramifications of fatigue outcomes are estimated to cost U.S. employers approxi-

mately $136 billion annually [17]. Due to its high prevalence and severe consequences on the

well-being of the industrial workers, fatigue has turned into a critical research topic.

The goal of this dissertation is to investigate how to detect fatigue in the manufacturing

occupations by monitoring the individual’s body using wearable sensors. Although fatigue has

been studied widely, there is not a standard/accepted definition of fatigue [18]. Lu et al. (2017)

[14] used the term fatigue to express the lower level of strength and capacity resulting from

work activities. In Figure 1.1 the fatigue mechanism is shown for occupational tasks.

Occupational Activity

Low Force

Low Reps

High Reps

Physiological Perspective

Biomechanical Perspective

Pre-Fatigue Signals
• Increase in heart rate 

capacity usage

• Changes in kinematics
• Changes in posture

• Changes in blood flow
• Loss in functional capacity
• Decreased force output

Physical 
Fatigue

Increased Occupational Injury Risk

Figure 1.1: Fatigue process in occupational activities

I focus on manufacturing tasks which can be characterized by repetitive physical work

with low force and extended working hours, high reliance on shift work, awkward postures, and

insufficient recovery time which have been linked to fatigue and injury. The leading causes of

fatigue in occupational activities can be classified into at least two categories: a) physiological,

and b) biomechanical which are shown in Figure 1.1.
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From a physiological point of view, the capacity of the body for a sustained physical

activity depends on the heart’s capacity [19] as indicated in Figure 1.1. The repetitive physical

activities are commonly characterized by high energy demand and restricted blood flow during

the activity [20], due to skeletal muscle “anaerobiosis” [21]. From a biomechnical point of

view, the product between force and repetition is one of the main drivers in fatigue development

[22, 23]. The repetitive occupational tasks will result in changes in kinematics [24, 25] and

postures [26] (Figure 1.1).

There are several pre-signal indicators because of physiological and biomechanical changes

including a decrease in blood flow [20], loss in functional capacity [27] and drop in force out-

put [28], which result in physical fatigue and potential injury as shown in the last phases of the

fatigue process in Figure 1.1.

Traditional approaches for exposure evaluation commonly rely on the visual inspection

performed by a safety observer. However, due to limitations of an individual observer, sam-

pling methods are utilized such that only a few workers are regularly observed and just for

a comparatively short duration [29, 30]. Common observational methods concentrate on one

main risk factor, such as posture or force, or a combined group of factors for a repetitive task

as with the NIOSH Work Practices Guide [31]. These approaches are inadequate for fatigue

detection because they fail to detect the interactive nature of many of the risk factors as well

as the variability of the task performed [22, 32, 33]. Additionally, these approaches do not

consider the characteristics of the individual, beyond general anthropometric and demographic

attributes, such as height, age or body weight [34]. Current approaches to fatigue monitoring

and detection rely either on fitness-for-duty tests to conclude if the worker has enough capacity

before beginning work, monitoring of sleep, monitoring of brain activation [35] or monitoring

local muscle fatigue [36]. The growing availability of sensing technologies, including wearable

devices [37, 38, 39, 40], with health information has the potential to provide real-time mon-

itoring, recording, and communication of individuals’ physical and environmental exposures

[31, 37, 41].

Researchers recommend that the adaptation of these technologies to a work environment

would be a feasible and potentially valuable addition for injury prevention [37, 41]. Most of
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the current studies on the applications of wearable sensors at the workplace have concentrated

on posture analysis [42] or task classification [37]. However, there is a lack in a) how to best

combine the data from multiple wearable sensors, b) successful use of these data for fatigue

detection, c) identifying successful measurement variables for fatigue detection, d) identifying

more informative sensors, and e) using wearable sensors in practice.

This dissertation aims to develop and examine the use of wearable sensors for data-driven

occupational exposure assessments in manufacturing occupations. It provides a measurement

of fatigue status along with the identification of informative sensors that allows data-driven

decisions to intervene in manufacturing work environments, which maximize both safety and

performance.

1.1.1 Sensor Selection

The selection of accelerometer locations has a significant impact on the accuracy of results

[43]. Sensor placement relies on the task and its corresponding risk. Most of the manufac-

turing tasks, such as manual material handling and supply insertion, include a high amount of

lifting and walking. Studies show that the lifting strategies change during the activity [44],

for example, individuals change their strategy from bending the knees to bending the trunk

[26]. Therefore, the lifting task is characterized by an increase in trunk bending torque and

trunk flexion. Lifting tasks are accurately described by tracking the upper body (torso) and

wrist with wearable sensors [45, 43]. During repetitive lifting, individuals compensate upon

being fatigued by decreasing the hip movement while increasing trunk motion [46, 47]. By

using a sensor placed on the hip, the motion produced through lifting, walking and standing

can be detected [48]. Additionally, the ankles play an important role in maintaining balance

in the sagittal plane during walking and standing [49]. Studies have been conducted to mon-

itor physical fatigue while walking through the use of an accelerometer placed on the ankle

[50]. For practical use, it is favorable to use a smaller number and simpler set of sensors on

non-intrusive body locations and approximate the kinematics of other target locations using es-

timation techniques [50]. This research uses data collected from four accelerometers placed on

the hip, wrist, torso, and ankle, along with a heart rate sensor, to recognize motion and posture.
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It should be noted that past studies do not address which overall combination of sensors and

sensor locations provide the best results for fatigue detection.

1.1.2 Sensor Measurements

There are several non-invasive measurements for occupational fatigue detection that enable

continuous monitoring of movement such as acceleration and jerk which are used to mea-

sure the intensity of a physical activity and offer motion analysis [51]. Some studies have

observed the effects of physical activity on musculoskeletal pain among worker populations

[52] and found that high intensity occupational physical activity has been associated with in-

creased risks of several chronic health conditions and may be deleterious to the worker’s health

[53, 54, 55]. In addition, the other type of measurements is kinematic which reveal the structure

and function of the foot, posture, and body movement [56, 57]. Evaluating the body kinemat-

ics can be used for the purpose of postural stability analysis to reduce the rate of fall risks

[58, 59]. Studies show that in a lifting task, both movement kinematics and muscle activation

patterns change during physical fatigue development [24] and individuals continually change

their movement strategies to maintain task performance [24, 25]. These kinematic changes due

to physical fatigue may increase the potential risk of injury [60, 46]. For instance, increases in

torso kinematics can increase low back disorder risk [61].

Also, measurements of the body’s spatial orientation (posture) are being used in field-

based research for evaluating the occupational exposure to awkward postures of the low back

and shoulder [62, 63]. Twisting is one of the main factors used for reporting the occupational

low back pain [64, 65, 61]. Furthermore, when the combination of repetitive lifting and torso

bending/twisting is performed, fatigue is most likely to happen [66].

Besides, physiological measures including heart rate have been used for fatigue detection

[67, 68]. Heart rate may show changes besides physical strain, including the emotional stress

[67]. It has been shown that as fatigue progresses, muscular tone increases, which may lead to

blood occlusion [68].

Self-reported fatigue measures such as rating of perceived exertion (RPE) and subjective

fatigue level have also been used as a popular measure in occupational fatigue detection [50,
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69]. Generally, increased discomfort during physical activity is positively related to fatigue

and reduced work capacity [70]. RPE scale is an effective method to quantify and monitor the

intensity of the exercise [71]. There is also a strong relationship between RPE and physiological

variables such as heart rate and lactic acid [72, 73].

1.2 Research Objectives

Two specific objectives are addressed in this dissertation:

• Examine whether the commercially wearable sensors with appropriate metrics extracted

from these sensors can be used to detect the occurrence of fatigue on an individualized

level for different operational tasks.

• Propose a framework consisting of four phases, including detection, identification, diag-

nosis, and recovery to manage fatigue in manufacturing occupations using less number

of commercially wearable sensors.

Overall, the proposed approach in this dissertation provides a framework to develop pre-

dictive models by bringing together information from wearable sensors and data analytics. With

the use of wearable sensor monitoring techniques, practitioners would be able to monitor the

individualized body fatigue, which would consequently reduce the likelihood of work-related

accidental injuries. It is hypothesized that this monitoring allows detection of at-risk individu-

als based on the identification of fatigue and behavior deviations to enable intervention before

the injury. There exists a lack of consensus on how to best combine the data from multiple

sensors and successfully evaluate risk from this data to allow multi-parametric monitoring and

individualized detection of safety risk [39, 74, 75]. This kind of multi-sensor data monitor-

ing approach is essential given the multi-factorial nature of fatigue development. Concerning

effective technological approaches to fatigue measurement, it is necessary that the system be

able to predict, measure, and monitor fatigue in the operational environment, and allow for

intervention when deficits are identified or anticipated with appropriate interventions [35].
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1.3 Dissertation Layout

The remainder of this dissertation is organized as follows: In chapter 2, a data-driven method-

ology is proposed to show the effectiveness of wearable sensors to detect fatigue in several

manufacturing occupations. It should be noted that this research was published in Applied Er-

gonomics in March 2017. Chapter 3 describes a proposed framework for fatigue management

in four phases: detection, identification, isolation, and intervention. Chapter 4 summarizes the

contribution of these studies and pretenses a discussion and direction for future researches.
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Chapter 2

A Data-Driven Approach to Modeling Physical Fatigue in the Workplace Using Wearable
Sensors

2.1 Introduction

Fatigue in the workplace is a multidimensional construct that diminishes a worker’s perfor-

mance. It results from prolonged activity, and is associated with psychological, socioeconomic

and environmental factors [76, 12]. From an occupational health and safety perspective, fatigue

must be managed since it has significant short-term and long-term implications. As noted, oc-

cupational fatigue is comprised of multiple dimensions including mental and physical fatigue.

Physical fatigue is characterized as a reduction in ability to perform a physical task resulting

from preceding physical exertion [77, 78]. In manufacturing environments, physical fatigue

may be most critical because in the short-term, physical fatigue can result in discomfort, di-

minished motor control, and reduced strength capacity [79, 80, 7]. These effects might lead to

reduced performance, lowered productivity, deficits in work quality, and increased incidence

of accidents and human errors [12, 5, 13, 81]. Physical fatigue can also result in longer term

adverse health outcomes, including, e.g., chronic fatigue syndrome [12] and reduced immune

function [15]. “These outcomes have been associated with future morbidity and mortality, work

disability, occupational accidents, increased absenteeism, increased presenteeism, unemploy-

ment, reduced quality of life, and disruptive effects on social relationships and activities” [12].

Important parameters in the development of physical fatigue, and subsequent risk, include

the length of time-on-task, work pace, and the timing of rest breaks [11]. The specific precur-

sor(s) for physical fatigue and/or injury development often goes unidentified [82]. However,

researchers have postulated that through delineation of the quantitative details of relevant vari-

ables, appropriate interventions and injury control can be developed [5]. How to best quantify
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workplace conditions, particularly physical exposures experienced by the worker, remains an

open research question [37]. Traditional approaches to exposure assessment often rely on vi-

sual inspection performed by a trained observer. These approaches fail to capture the interactive

nature of multiple risk factors as well as the variability of the work performed [22, 32, 33]. In

addition, these methods do not take into account the characteristics of the individual, beyond

general anthropometric and demographic attributes, such as height, age or body weight [34].

In particular, these methods fail to account for physical fatigue. Current approaches to phys-

ical fatigue monitoring and detection often rely on fitness-for-duty tests to determine whether

the worker has sufficient capacity prior to starting work, diaries of sleep habits, or intrusive

monitoring of brain activation (using electroencephalography (EEG)) [35] or changes in local

muscle activation (using electromyography (EMG)) [36].

Accurate quantification of physical exposures is an important component of physical fa-

tigue development. The traditional measurement approaches are able to capture what happened

(through statistics and traditional surveillance) and a general overview of how it happened

(video and observational data). The why it happened remains unclear. Improved instrumenta-

tion for data collection has been identified as a critical need for occupational safety and health

[32, 33]. The increasing availability of pervasive sensing technologies, including wearable de-

vices [37, 40, 38, 83], combined with the digitization of health information has the potential to

provide the necessary in situ monitoring, recording, and communication of individuals’ physi-

cal and environmental exposures to address the why [37, 31, 41]. Sensing technology can range

from commercially available, wearable devices, to health monitoring devices (such as blood

pressure monitors that collect and transmit data to health professionals), to dense sensor net-

works (including motion, video, RFID and pressure sensors), all of which provide a vast array

of information regarding a person’s activities. Since conventional camera-based systems re-

quire costly devices, large space in addition time-consuming adjustment experiments, utilizing

the wearable sensor-based system is significantly less costly [84]. Since the late 1990s, there

have been large advances in the field of wearable technology [85]. Currently, wearable sensors

are lower cost, easy to use and have minimal interference with the wearer [84]. They have

become the predominant devices for monitoring mobility and physical activity [86].
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Evidence suggests the translation of these technologies to a work environment would be

achievable and a potentially valuable addition for injury prevention [37, 41, 87, 88, 42]. While

there has been an emphasis on research to develop occupational health and safety sensor sys-

tems and establish their potential in a lab environment [37, 42, 89], most current workplace

applications have been limited to: a) posture analysis [42, 90, 91], b) task classification [37],

c) basic physiological monitoring [88, 92], d) computerized application of traditional observa-

tional tools [93], and e) specialized (industry-specific) physical fatigue detection/management

systems. The specialized physical fatigue applications are limited to the following three do-

mains [82]:

• athletics, where the focus is primarily on monitoring athletes’ performances (e.g., the

Catapult System [94, 95], the Viper Pod by STATSports R© [96], etc.);

• sleep-induced fatigue, in mining (CAT’s Fatigue Risk Management System [97]); and

• driver drowsiness detection systems in transportation (see [82] for a detailed discussion).

In most physically-demanding occupations, e.g. construction, manufacturing, and agri-

culture, there have been minimal workplace applications that are directly related to physical

fatigue detection [82]. To date, there is a lack of consensus on how to best combine the data

from multiple sensors and successfully evaluate risk from this data in situ and in real-time to

enable multi-parametric monitoring and individualized detection of safety risk [83]. Such a

multi-sensor data monitoring approach is essential due to the multi-factorial nature of physical

fatigue development. For effective technological approaches to physical fatigue measurement,

it is essential that the system can predict physical fatigue (prior to a detrimental productiv-

ity/safety impact), measure and monitor physical fatigue in the operational environment, and

allow for intervention when deficits are identified or anticipated with appropriate interventions

[35]. Moreover, considerations of individualized baseline conditions are necessary but often

ignored in a population-based approach to safety. Understanding individual variability in un-

derlying physiological function and monitoring work-generated loading can ensure safety via

early detection of risk and hazards.

This chapter sets the foundation for using minimally-intrusive wearable sensors for mon-

itoring, detecting and diagnosing whole-body fatigue for physically demanding occupations.
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The main objective of this chapter is to develop a data-driven, task-independent method that

can be used to model physical fatigue through the use of inexpensive wearable sensors. To

achieve this objective, We have addressed the following research questions:

(A) What are appropriate metrics for quantifying worker physical fatigue?

(B) Can commercially available wearable sensors be used to detect the occurrence of physi-

cal fatigue on an individualized level for different operational tasks?

(C) What information needs to be extracted from the sensors for different ergonomic targets?

In this chapter, we only examine the detection of physical fatigue (i.e. has it happened or

not) and the development of physical fatigue (i.e. based on Borg ratings, how physically

fatigued is the worker).

The remainder of the chapter is organized as follows. Section 2.2 provides some necessary

background on how whole-body fatigue is measured since this informs our bio-sensor selection.

Then, we present our methodology for model development and evaluation in Section 2.3. WE

provide our results and discuss their ergonomic/safety implications in Section 2.4. We offer our

conclusions and our opinions about future research directions in Section 2.5. We present links

for our de-identified data and code in the Supplementary Materials Section to allow researchers

to replicate and build on this study.

2.2 Justification for measurement/sensor selection

There are several measures for evaluating whole-body fatigue. These measures can be classified

into those that are used in a laboratory setting and those that can be used in field studies [12].

In this section, we focus on the measures that can be deployed in field studies since a primary

aim of this study is to examine whether inexpensive sensors can be used to detect and diagnose

physical fatigue in traditional occupational environments.

One logical measure for assessing physical fatigue in the workplace is to ask the worker to

rate their perceived physical fatigue. Accordingly, self-reported physical fatigue is frequently

assessed in several field-studies (see e.g., [98, 99, 100, 101, 102]). Generally speaking, in-

creased discomfort is positively related to physical fatigue and reduced work capacity [70].

In the literature, there are several different questionnaires and rating scales that are used for
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measuring physical fatigue. For a detailed review, please see [12, 103]. In our analysis, we

use the Borg Rating of Perceived Exertion [104] due to its simplicity and wide use within the

ergonomics literature.

In addition to perceived ratings, there are several other measures that can be used to as-

sess physical fatigue. These include heart rate (HR) [68, 67], force variability [67], tremor

(see references within [12]), changes in posture/gait [68, 67], and the multi-joint coordination

between different segments (i.e. hip, knee, ankle, pelvis, trunk) [105, 106, 107]. The sequential

movement of the body segments is affected and finally controlled by muscular forces, which

under physical fatigue may encounter a change; distinctive patterns of segment movements

and/or muscle activation may develop [108]. Therefore, with physical fatigue, movement coor-

dination can change so as to keep up motor performance in terms of movement accuracy [109].

One study showed that the ankle and hip joint angular displacements remained relatively un-

changed between physical fatigue and non-physically fatigued conditions, but indicated that

most changes in movement amplitude occurred at the knee joint level [108]. Note that, with

the exception of force variability and the multi-joint coordination between different segments,

these measures can be extracted from recreational activity monitors which now include a heart

rate monitor in addition to accelerometers or inertial measurement units (IMUs).

Based on the above discussion and references, a series of physical fatigue indicators have

been selected for this investigation. These indicators, summarized in Table 2.1, represent a

range of physiological and movement parameters that can capture physical fatigue and stress

from physical tasks. In Table 2.1, each physical fatigue indicator is accompanied by the mea-

surement approach and relevant sensor that will be investigated for incorporation in this study.

Deviations in these measures are commonly attributable to safety and health risk. In addition,

they have been used successfully in lab and field environments for evaluating physical fatigue

and risk [102]. An innovative aspect of this chapter is that we use a data analytic approach to

generate features from these measures. We hypothesize that such a data-driven approach can

be more powerful in detecting and modeling physical fatigue. More details on how we generate

features from these sensors are provided in Section 2.3.
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Table 2.1: Whole-body Physical Fatigue Indicators, Measures and Sensors

Physical Fatigue Indicator Measure Sensor

Physiological stress Heart rate Heart rate monitor
Change in posture/motion Accelerations and inclination angles IMU
Decrements in motor control and coordination Movement variability IMU
Physiological tremor Movement variability IMU
Changes in work output and task completion time Movement durations and repetitions IMU

2.3 Method

Our approach, depicted in Figure 2.1, consists of four phases. In Phase 1, the data is collected

through two different types of sensors in 5 total locations. The second phase of data prepro-

cessing consists of four sequential steps: a) data cleaning, where missing/erroneous data are

detected, the data from all sensors are synchronized, and down sampling is applied to account

for the variations in data collection frequency in the recorded datasets; b) jerk calculation from

the raw acceleration data; c) application of dimension reduction techniques to reduce the size

of the data without losing significant amount of information; and d) feature extraction features

(i.e. potential predictors) from the multiple sensors. In Phase 3, several penalized regression

models are applied to the data. Penalized logistic regression and penalized regression mod-

els were used for physical fatigue detection and development, respectively. The fourth phase

involves model evaluation and testing to showcase the utility of our approach. Additional in-

formation on each of these phases is provided in the subsections below.

2.3.1 Data Collection

Participants

In this study, eight participants (3 female, 5 male; age 18 - 62 years) were recruited over a pe-

riod of 3.5 months from the local community. Two of the participants were currently working

in manufacturing and the remainder were students with differing levels of physical work expe-

rience. The experimental procedures were approved by the University at Buffalo Institutional

Review Board and participants provided informed consent at the start of the experiment. All

13



  

 

        Data Cleaning 

        Jerk Calculation    

        Dimension Reduction 

        Feature Extraction 

 

The Five Sensors 
        Heart Rate 

        Accelerometer 
        Ankle, Wrist, Hip, Torso 

Tasks: 
        Assembly 

        Supply Pickup and Insertion 

          Manual Material Handling 
 
 

 

 

 

 

 

 

 

 

Select the “best” models based on the Score Defined in Section 3.3 
 

A) Fatigue Detection Models 
 
 
 
 
 

Handle class imbalance (No 
sampling, RUS, SMOTE) 

 
Develop penalized logistic models 

(Elastic net, LASSO, Ridge) 
 

 

                                               
 
 

 

 

   

Phase 2: Data Preprocessing 

A) Fatigue Detection Models 
 

Use sensitivity/specificity for evaluation 

Phase 4: Model Testing 

B) Fatigue Development 
Models  

 
 
 
 
 

Develop penalized 
regression models 

(Elastic net, LASSO, 
Ridge) 

 
              
 

  Conservative Standard

 

Phase 1: Data Collection  Phase 3: Model Development/Training (six participants were used) 

B) Fatigue Development Models 
 

Use MAE for evaluation 
 

Figure 2.1: An Overview of the Proposed Method

participants were in good health. In Table 2.2, we present the demographic and relevant phys-

ical/medical characteristics of the study participants. Moreover, we highlight whether each

participant was used for model development (i.e., training) or evaluation (i.e., testing). As-

signment was based on the goal of developing a model that was independent of demographic

information. First, participants P1, P4 and P6 (younger and older participants) were selected

for the train set to cover the range of participant age. Second, in order to make the model in-

dependent from gender, participant P3 was assigned to the training set and P8 was assigned to

the testing set. Third, to have consistent ages between groups, P2 and P5 were assigned to the

training set and P7 was added to testing set. Due to the time commitment involved for each

participant in the study, it was difficult to obtain a large sample size. Moreover, note that the

small sample size for training mimics the standard deployment of new technology by industry.

The proposed models in Section 2.3.3 can be applied when n (# of participants) is small.

Equipment

Each participant was instrumented with four inertial measurement units IMUs (see Figure 2.2)

while performing the task. Each IMU was a Shimmer3 (Shimmer, Dublin, Ireland, www.

shimmersensing.com), which is small-sized (51 mm x 34 mm x 14 mm), low-power using,
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Table 2.2: Relevant Demographic, Physical and Physiological Measures for Participants.
Train/Test describes the use of data in model development/evaluation, and RHR denotes the
observed resting heart rate for the participant.

Participant Train/Test Gender Handedness Age Height (m) Weight (kg) RHR
P1 Train Female Right 18 1.66 48.0 42 bpm
P2 Train Male Right 21 1.89 79.7 65 bpm
P3 Train Female Right 29 1.77 70.2 62 bpm
P4 Train Male Left 62 1.71 88.8 71 bpm
P5 Train Male Right 23 1.71 69.3 67 bpm
P6 Train Male Right 59 1.6 73.8 67 bpm
P7 Test Male Right 30 1.72 72.2 74 bpm
P8 Test Female Right 19 1.62 62.5 62 bpm

and equipped with wireless transmission capabilities. The sensor contains a low-noise analog

accelerometer, a digital wide range accelerometer and magnetometer, and a digital gyroscope.

Figure 2.2 shows a Shimmer3 device with the reference coordinate system. The 3-axial data of

acceleration, angular velocity, and magnetic field, all in the sensors body frame (x y z), were

recorded on an SD card at a sampling rate of 51.2 Hz. Each sensor was oriented with the

internal y-axis directed along the segment. The sensors were attached by an elastic strap. A

heart rate monitor chest strap was worn throughout the experiment (Polar CR800X, Polar). Our

sensor selection was informed by Table 2.1.

Figure 2.2: A Shimmer3 device with its reference coordinate system

Experimental Procedure

Participants completed three in-lab experimental sessions, one on each of three different days

and lasting approximately four hours. Each experimental session involved the completion of

one physically fatiguing task that lasted three hours. The session was divided into three one-

hour periods representing a replicated task, with a one minute rest between each period to allow
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for subjective rating collection. At the start of the session participants completed a sleep quality

questionnaire, a risk taking behavior task (Balloon Analogue Risk Task (BART)), and a psycho-

motor vigilance task (using PC-PVT). These measures served as a baseline of sleepiness and

behavior. In addition, the subject was asked to lay in a supine position for five minutes to

measure resting heart rate. After baseline measurements, the participant was provided with

instructions on the relevant physically fatiguing task for the session. The physically fatiguing

tasks were divided into:

(A) Parts Assembly Task (PA-Light): In this task, part assembly operation requiring fine mo-

tor control was simulated. During the task the participants were asked to use Erector

Assembly Kits to build (sub) assemblies based on visual work instructions. During per-

forming the task they had stationary standing position throughout the three one-hour peri-

ods. There are several reasons behind selecting this posture. Firstly, standing in this task

is a widely adopted industrial working posture [110]. Secondly, staying in this posture

in daily working for the long periods can irritate physical fatigue, lower back pain and

solidness in the neck/shoulders, and other health issues [111]. Thirdly, this posture de-

creases the blood flow to the muscles, quickens the onset of physical fatigue, and causes

pain in the leg, back and neck muscles [112]. Also, usually the machine operators and

assembly line workers required in such tasks characterized by extended standing reported

these discomforts [113].

(B) Supply Pickup and Insertion Task (SPI-Moderate): The task included walking with sup-

plies to a bolt box and bending forward for fastening and unscrewing the bolts. This task

was selected to induce a common awkward posture held for a sustained duration used in

many manufacturing processes. Deep torso flexion causes a high flexion moment on the

lumbar spine [44]. Studies have shown that the risk of low back disorders significantly

increases by repeated bending and lifting activities [114, 115, 116]. The tasks’ cycle time

was 2 minutes, which is representative of several high-volume manufacturing industries.

(C) Manual Material Handling (MMH-Most Difficult): Almost 45% of the industrial work-

ers reported that the high levels of walking are one of the main sources of physical fatigue

[14]. This task simulated warehousing operations by picking cartons (whose weight is
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10kg, 18kg, or 26kg), loading them on a 2-wheeled dolly, transporting them to a desti-

nation, and then palletizing them at the destination. Participants palletized the cartons

based on an order sheet provided to them. The median time across all participants used

to move each carton in the cycle was 1 minutes. Participants completed two sets each

of three scenarios. Each scenario involved 18 cartons for a total of 108 cartons moved

during the three hours.

During performing these tasks, the aforementioned sensors one attached at each of the

right ankle, right wrist, hip, and torso (see Figure 2.3). It is clear from the studies of physical

fatigue detection that the position of the sensors plays a critical role in physical fatigue detec-

tion. Sensor placement depends on the task being monitored, and previous studies of activity

monitoring for similar task components were used to guide placement. The MMH and SPI

tasks included extended periods of walking combined with upper extremity movement. Thus,

the hip, ankle, and wrist sensors were hypothesized to provide the best information [45]. In

addition, determination of torso inclination during the task required the sensors on the chest

[48]. These sensors were located only on one side of the body as the goal was to provide a

simplified sensor approach for practical implementation in the workplace, rather than requiring

a full set of sensors across the body.

(a) Part Assembly (b) Supply Pick up & Insertion (c) Manual Material Handling

Figure 2.3: Sensor Placement on a Subjects

The participants were given target performance levels for each task. For MMH, partici-

pants were asked to palletize 16 cartons in three different orders, and each order was repeated

twice. In the SPI task, a cycle time of 2 minutes was given and for PA task there was a cycle
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time of 15 minutes for each subassembly. During each task participants were given instructions

on how to perform the task.

Participants provided their subjective exertion using the Borg 6-20 RPE (Ratings of Per-

ceived Exertions) scale [104] every 10 minutes. This was used to validate physical fatigue

development.

2.3.2 Data Preprocessing

Data Cleaning

First, we used exploratory data analysis methods to check for erroneous data. Possible ex-

amples of erroneous data include: faulty sensor values (too high or too low), noisy data, and

participants deviating from the experimental protocol. For the SPI task session for P1 and P5,

the participants had around 10 min rest during the session and therefore returned to their base-

line state, interrupting physical fatigue development. These two of the subject-task data sets

were eliminated out of the 24 data sets in this phase; therefore, we ended up with 22 subject-

task data sets. Then, we synchronized the sensor data and removed all observations that were

captured prior to the beginning of the experimental procedure or post-procedure. We also re-

moved the data corresponding to the first ten minutes of the session since it reflected: (a) the

lack of familiarity of the participant with the task and (b) the pre-steady state for the partic-

ipant’s heart rate. Down sampling was applied in order to make the data consistent, with a

frequency of 25 Hz. This procedure was performed on all sensors, tasks and participants’ data.

Jerk Calculation

For each of the four IMUs, we calculated jerk from the acceleration data. Jerk is the rate of

change of acceleration, and thus can be calculated by obtaining the derivative of acceleration

with respect to time. We used a numerical approach to obtain the derivative. The inclusion

of jerk in our methodology is motivated by its successful use in detecting physical fatigue in

athletics [95].
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Dimension Reduction

For each of the IMUs and the HR monitor, a massive amount of data is collected over time. We

hypothesize that the size of the data can be significantly reduced without losing much informa-

tion related to physical fatigue detection and development. Specifically, we assume that real-

time in manufacturing, construction and similar occupations can be defined to be within a 10-

minute time window. Thus, it is sufficient to collapse the data from each sensor into appropriate

statistics (hereafter, features) that capture the variability within that time window. In addition,

for the acceleration and jerk data, we hypothesize that the magnitude of the vector is sufficient

for the purposes of physical fatigue detection and modeling. The heart rate data was normalized

to the resting heart rate (RHR) and age-predicted maximum heart rate (HRmax = 220− age)

for the percent heart rate reserve (HRR; calculated as (HRavg−RHR)/(HRmax−RHR)).

Feature Extraction/Generation

We propose six sets of features that may be predictive of physical fatigue occurrence and/or

level. Set 1 contains descriptive statistics for each sensor (summarized in Table 2.3), computed

at 10-minute intervals. Set 2 offers the percent change when compared to the baseline for each

of the features of Set 1. The percent change for any feature, x, is calculated as: (xcurrent −

xbaseline)/xbaseline. We define the baseline for all features to correspond to the window where

physical fatigue is likely to be minimum, i.e., the time window spanning minutes 11-20. Set

3 contains the Cumulative Sum (CUSUM) for Set 1 features. The CUSUM statistic for any

feature x is defined as: CUSUM(x)i = (xi−xbaseline)+CUSUM(x)i−1, where CUSUM[x]0 = 0,

i represents the current time window, and CUSUM(x)0 = 0. The CUSUM statistic is widely

used in the change-point detection literature (see [117] for a detailed introduction). Based on

Sets 1, 2 and 3, we have 21 (7 statistics * 3 feature sets) HRR features, 84 (21*4 locations)

acceleration-related (ACC) features and 84 jerk-related features. Set 4 includes the elements

of the correlation matrix between the four IMUs for each 10 minute window (as observed

from the acceleration data), see Table 2.3. Set 5 includes the percentage change in the defined

correlation features when compared to the baseline (similar to Set 2). Based on Sets 4, 5, we
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have 12 total features (6 for each of Sets 4 and 5). Set 6 includes statistics computed from the

joint histogram of acceleration in the current time window and one of two baselines. For this

feature set, the mean and standard deviation of the overlapping area in the joint histogram were

calculated. There are two baselines in this case; the first as mentioned earlier, and the second is

the previous 10-minute window in the experiment. This feature set is computed for acceleration

only. Table 2.3 shows the elements for the joint histogram set of features. Based on Set 6, we

can compute 16 features (i.e., 2 baselines * 2 features * 4 locations). Thus, in total, we have

generated 217 features.

Table 2.3: Generated Feature Sets
Set Features Explanation

1 Descriptive Statistics
10th percentile, 25th percentile, 50th percentile,

75th percentile, 90th percentile, Trimmed mean, Std
2 Percent change in descriptive statistics (xcurrent− xbaseline)/xbaseline
3 CUSUM of descriptive statistics CUSUM(x)i = (xi− xbaseline)+CUSUM(x)i−1

4 Correlation between the different accelerometers
e.g. Correlation between wrist

Acceleration and hip Acceleration

5
Percent change in correlation
between the accelerometers (ρcurrent−ρbaseline)/ρbaseline

6 Joint histogram
Mean and Std Dev of overlapping area considering

the first 10 minutes and previous time window as baseline

2.3.3 Model Development

A primary objective of this chapter is to determine how to detect physical fatigue and un-

derstand its level based on information extracted from the wearable sensors. We distinguish

between physical fatigue occurrence (a binary outcome reflecting whether physical fatigue has

occurred or not) and development through our analysis of the RPE. Specifically, we define two

binary decision rules for physical fatigue occurrence (y):

yC =


1, ∀ RPE ≥ 13

0, ∀ RPE < 13
, (2.1)

and

yS =


1, ∀ RPE ≥ 15

0, ∀ RPE < 15
. (2.2)
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The reader should note that the first decision rule is more conservative (C), while the second

can be considered as standard (S) based on the Borg scale.

The summary statistics for participants RPEs by task is shown in Table 2.4. It shows that

the RPE for these recorded self-reported exertion ratings are consistent with the results from

studies related to similar manufacturing tasks (see [118, 119]).

Table 2.4: Summary statistics for participants RPEs
Task Average Std Dev Min Max Percentage of RPEs >= 13 Percentage of RPEs >= 15
PA 10.34 2.88 6 17 21 % 8 %
SPI 11.99 3.08 6 19 47 % 21 %

MMH 11.18 2.72 6 16 35 % 15 %

The goal of modeling physical fatigue occurrence is to determine: ya = f (X), where X

is a vector containing the features x, and a = C,S. The actual value of the Borg Scale is used

in modeling physical fatigue development, i.e. yBorg = f (X). If these models are predictive,

one can use the appropriate vector of features X to determine whether a worker is physically

fatigued or not, and to what extent that worker is physically fatigued. Thus, practitioners can

replace the RPE with information extracted from the wearable sensors.

An intuitive approach to model physical fatigue development is to use regression methods

to fit the function f in the above paragraph. Based on the experimental procedure, standard (i.e.

ordinary least square) fitting of the regression model cannot be used since:

(A) We expect potentially significant correlation between the features generated from each

IMU at each time window. From an ergonomics perspective, we expect these IMUs to

offer some overlapping information.

(B) We are proposing a methodology that can allow researchers and practitioners to include

more features (e.g., due to adding additional sensor types). Thus, the number of features

(p) might be close to the number of observations (n).

For these scenarios, the use of penalized regression models is more appropriate (see [120, 121]

for detailed explanations). Below, we provide an overview of how these models are incor-

porated for physical fatigue detection (i.e. penalized logistic regression) and physical fatigue

development (i.e. penalized regression).
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Penalized Logistic Regression for Physical Fatigue Detection

In this subsection, we will drop the subscript for y. The reader should note that we perform this

analysis on both the conservative and standard binary outcomes defined in Equations (1-2). The

first stage in penalized logistic regression is to standardize the entire dataset so that each feature

has a mean of zero and a unit standard deviation. The general function to find the coefficients

in penalized logistic regression models is given by:

max l(β )−λ [α
m

∑
j=1
| β j |+

1
2
(1−α)

m

∑
j=1

β
2
j ], (2.3)

β j represents the regression coefficients, and m is the total number of features (m is equal

to 217). The λ ≥ 0 is a tuning parameter that controls the strength of the penalty. More

specifically, λ shrinks each β j toward the origin and enforces sparse solutions. The value of

α represents different popular parameterizations of penalized regression. In our analysis, we

consider the three parameterizations: LASSO [120], ridge regression [122], elastic-net [123]

for the two different binary outcomes. For a general discussion on these approaches, the reader

is referred to Hesterberg et al. (2008) [121].

Penalized Regression for Understanding Physical Fatigue Development

In this subsection, we utilize penalized regression for an assumed continuous Borg rating,

i.e. yBorg. Consider a standard linear regression between the predicted Borg rating (ŷBorg or

alternatively R̂PE) and the m features:

ŷBorg = R̂PE = β0 +β1x1 +β2x2 + ...+βmxm + ε, (2.4)

where xs, βs, and ε represent the features, coefficients, and residuals for the model, respectively.

It is assumed that ε ∼ N(0,σ2). Now, let us consider the penalized regression model. The

general function to find the coefficients for the different parameterizations of the model is:

min (RPE− R̂PE)T (RPE− R̂PE)+λ [α
m

∑
j=1
| β j |+

1
2
(1−α)

m

∑
j=1

β
2
j ], (2.5)
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where RPE is the actual Borg rating, R̂PE is the prediction, and λ ≥ 0 is the tuning parame-

ter. The value of α represents different popular parameterizations of penalized regression as

explained earlier. In Section 2.4, we examine which method is more suitable for modeling

physical fatigue development based on our data.

2.3.4 Model Evaluation (Testing)

The purpose of this phase is to first compare the performance of ridge regression, LASSO, and

elastic-net for our two penalized logistic regression models and our penalized regression model

based on the six participants identified as “train” in Table 2.2. There are several important

methodological “issues” that need to be addressed in order to identify the “best” model from

the training phase.

First, the number of models examined in any penalized (logistic) regression model can

be narrowed down according to the amount of variation explained by the model (hereafter

fraction deviance). In this chapter, we limited our choice of models to ones whose fraction

deviance is∼70%. This value was selected since, in our experience, higher values would result

in over-fitting. In addition, the selection of a narrow range for the values (i.e ∼70%) reduces

the number of models to be evaluated.

The second “issue” relates to how to measure the performance of these models. For the

two binary models, we use sensitivity and specificity to compute the effectiveness of the models

in predicting the physically fatigued and non-physically fatigued states, respectively. Note that

accuracy is not appropriate since the data is imbalanced (i.e. n f atigued << nnon− f atigued). For

the continuous model, we compute the mean absolute error (MAE). In our estimation, MAE

is the most appropriate performance measure since its interpretation is straightforward. For

example, MAE = 2 means that the prediction is, on average, 2 units on the Borg Scale from the

participants’ reported exertion values.

Third, our modeling approach should result into a practical and applicable model. An

important aspect to, therefore, consider is the portion of possible features used in the model.

For example, a model using all 217 features is not likely to be of practical use. Therefore, we

have avoided on defining those models with the highest performance measure(s) to be “best”.
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Instead, we would like to “reward” models with high performance measure(s) and small pro-

portion of features selected since their interpretation is much easier. Accordingly, we proposed

a scoring system that combines fraction deviance, traditional performance measure (TPM),

and proportion of the factors selected in a single measure. The score (S) for a given model, k,

is defined as:

Sk = FractionDeviance∗T PM ∗ m
rk
, (2.6)

where T PM = Sensitivity∗Speci f icity for the physical fatigue detection case, T PM =MAE for

the physical fatigue development case, m is the # of possible features, and rk is the # of features

selected by model k. Based on Eq. 2.6, a higher value of S would mean that the model is likely

to be good (from fraction deviance and TPM perspectives), and practical (smaller values for r

are encouraged).

One of the potential pitfalls of modeling physical fatigue in well-designed jobs in indus-

try is that the n f atigued << nnon− f atigued . This is especially significant with limited amounts

of training data. In such cases, random sampling for the conservative and standard logistic

regression models would not be appropriate [124, 125]. Thus, the fourth question is to exam-

ine how to handle this problem. Recent approaches in the data analytics community address

this issue through re-sampling [124].Re-sampling is typically applied by either over-sampling

the minority class and/or under-sampling the majority class [125]. In this chapter, we utilize

Random Under Sampling (RUS) and Synthetic Minority Over-sampling Technique (SMOTE).

RUS is a systematic process where some of the cases from the majority class are randomly

removed from the training dataset until the remaining number of cases in the two classification

categories becomes approximately equal. In SMOTE, the minority class is over sampled using

synthetic examples (see [124, 125] for details).

Once the “best” models are selected from the training stage (based on maximizing Sk),

it is important to evaluate how these models perform on subjects that were not included in

the model development step. We test the best models on two participants whose data was not

included in the training step. This step with our dataset since it ensures that the hidden effects

of the physiological, demographic and other individualized characteristics on physical fatigue
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occurrence/development are not considered. For the physical fatigue detection models, we use

sensitivity and specificity to compute the effectiveness of the models in predicting the physically

fatigued and non-physically fatigued states in the two participant identified as “test” in Table

2.2. The MAE is used to evaluate the testing performance for the physical fatigue development

models. The results for the training and testing phases of our models are presented in Section

2.4.

2.4 Results

In this section, we present experimental results for the selected physical fatigue detection and

development models. The results correspond to the different penalized logistic regression and

penalized regression models (with SMOTE, RUS, and random sampling). We divide this sec-

tion into three main subsections: (1) training results of the physical fatigue detection models,

(2) training results of the physical fatigue development models, and (3) results of the evalua-

tion/testing for both physical fatigue detection and physical fatigue development models.

2.4.1 Selected Models for Physical Fatigue Detection

As discussed earlier in Section 2.3.3, three different penalized logistic regression models were

recommended for physical fatigue detection. We applied these three models to data from six

participants and the results showed that the LASSO model performed better than the ridge

regression and elastic-net models. The LASSO model exceeded the others in two important

areas: (1) the model included fewer features and (2) explained a larger portion of the variation.

Therefore, we decided to use only the LASSO model going forward.

The results for the training step of physical fatigue detection models are shown in Table

2.5, which is separated into two groups of models according to the conservative vs. standard

approach. For each group, we label the highest score in bold. In groups with multiple similar

high scores, we use the top 2 models. Practitioners can pick the model with the higher sensitiv-

ity, higher specificity, or the smallest number of selected features. Since our scoring system is

a heuristic, there is no guarantee that favoring one metric would lead to “better” results in the

deployment phase. Two important results can be observed from Table 2.5:
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(A) Performance using standard/conservative scenarios: It is obvious from Table 2.5 that scores

for models when standard scenario was used exceeded those when the conservative sce-

nario was used. This may suggest that the conservative models are over-fit, i.e. when

these models are used on the testing subjects, their performance will be much worse.

Next to, for each of the conservative and standard scenarios, a comparison of the models

reveal that the number of features selected (out of 217) is consistently larger in conserva-

tive scenarios.

(B) Performance using LASSO modeling with the RUS sampling technique: The models in

bold show that the LASSO model with RUS sampling technique is the only model that

performs well in the two groups. Therefore, it is reasonable to select the LASSO model

with RUS sampling as the best option for modeling physical fatigue detection.

Table 2.5: Training Performance of the Different LASSO Penalized Logistic Regression Mod-
els

Conservative/Standard Sampling Tech. Sensitivity Specificity # Features Score
Standard No sampling 0.80 0.99 21 5.73
Standard RUS 0.95 0.89 16 8.03
Standard SMOTE 0.93 0.89 15 8.38

Conservative No sampling 0.96 0.88 22 5.83
Conservative RUS 0.96 0.88 22 5.83
Conservative SMOTE 0.95 0.92 23 5.77

Predictive Features for the Standard Physical Fatigue Detection Scenario

Table 2.6 shows the 16 selected features and their corresponding coefficients for the LASSO

model using RUS sampling for standard physical fatigue detection. The resulting coefficients

are sorted from largest to smallest. The absolute value of those coefficients show the relative

contribution of each feature since the entire dataset was standardized in the first stage of pe-

nalized modeling. The larger the absolute value of the coefficient, the greater the influence

of the feature on differentiating between a physically fatigued and a non-physically fatigued

state. The three most important features all correspond to the wrist movement. These were

followed by features that relate to torso movement. Changes in movement patterns in wrist

and torso are important in detecting physical fatigue. For example, the standard deviation of
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joint histogram1 (i.e., index 1 refers to the joint histogram using the previous time window as

a baseline) in wrist acceleration (Wrist ACC: standard deviation of joint histogram1) shows

that when the acceleration in 2 consecutive time windows are distributed differently from each

other, the body did not follow the same movement as in the previous time window. Therefore a

large standard deviation here means that the participant is feeling more physically fatigued. A

visual depiction of the location of the features of Table 2.6 is provided in Figure 2.4. The figure

highlights how much the wrist is involved in standard physical fatigue detection. The wrist and

torso account for almost 62.5% of the selected features in the model. Interestingly, none of the

heart rate features were selected in the standard physical fatigue detection model.
Definition of the Selected Features Coefficient

Wrist ACC: standard deviation of joint histogram1 0.88

Torso Jerk: CUSUM of standard deviation 0.78

Hip ACC: median 0.39

Wrist Jerk: standard deviation 0.37

Hip Jerk: percentage change of 75th percentile 0.05

Wrist ACC: percentage change of 25th percentile 0.03

Wrist Jerk: 90th percentile 0.001

Ankle Jerk: CUSUM of 10th percentile -0.03

Wrist Jerk: CUSUM of standard deviation -0.05

Hip & Ankle ACC: percentage change of correlation -0.09

Wrist Jerk: percentage change of 10th percentile -0.19

Ankle ACC: percentage change of median -0.27

Ankle ACC: median -0.31

Torso ACC: CUSUM of median -0.78

Wrist Jerk: CUSUM of 75th percentile -1.10

Wrist ACC: CUSUM of trimmed mean -1.20

(Intercept) -1.28

Table 2.6: Selected Features for the Logistic
LASSO Model with RUS Sampling (Standard

Scenario)
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Figure 2.4: The Location of Selected Features
on Body for the Standard Fatigue Detection

Model

Predictive Features for the Conservative Physical Fatigue Detection Scenario

Similar to the standard approach, the 22 selected features and their corresponding coefficients

are shown in Table 2.7. Figure 2.5 likewise shows the placement of sensors and features on

the body. The five most important features were related to hip, wrist, and ankle movements.

These important features show that left tail of the hip movement distribution (Hip ACC: 25th
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percentile) and right tail of the wrist movement distribution (Wrist ACC: 90th percentile) are

associated with physical fatigue in participants. As participants feel or identify physical fatigue,

they change their hip movement. On the other hand, greater variability in ankle movement

(Wrist Jerk: CUSUM of 75th percentile) and the wrist (CUSUM of 75th percentile) during the

experiment was associated with a lack of physical fatigue in the body. In contrast with the

standard scenario, two features that relate to the heart rate have been selected by the model. In

this case, heart rate was involved in detecting physical fatigue, but its importance was not as

significant as the mentioned sensors.

Definition of the Selected Features Coefficient

Hip ACC: 25th percentile 0.88

Wrist ACC: 90th percentile 0.87

Hip Jerk: percentage change of median 0.55

Hip ACC: mean of joint histogram1 0.49

Ankle ACC: mean of joint histogram1 0.43

Ankle Jerk: percentage change of 75th percentile 0.39

Ankle ACC: CUSUM of 25th percentile 0.27

Torso ACC: mean of joint histogram1 0.18

Wrist & Torso ACC: correlation 0.13

Wrist ACC: percentage change of median 0.10

Torso Jerk: CUSUM of standard deviation 0.10

Wrist Jerk: 90th percentile 0.08

Hip & Ankle ACC: percentage change of correlation -0.05

Torso & Ankle ACC: correlation -0.20

HRR: percentage change of standard deviation -0.23

Hip ACC: CUSUM of median -0.24

(Intercept) -0.49

HRR: percentage change of median -0.55

Ankle ACC: trimmed mean -0.57

Torso ACC: percentage change of trimmed mean -0.64

Hip ACC: percentage change of trimmed mean -0.71

Wrist Jerk: CUSUM of 75th percentile -0.76

Ankle ACC: CUSUM of 10th percentile -0.82

Table 2.7: Selected Features for the Logistic
LASSO Model with RUS Sampling

(Conservative Scenario)
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Figure 2.5: The Location of Selected Features
on Body for the Conservative Physical

Fatigue Detection Model
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2.4.2 Selected Model for Physical Fatigue Development

The procedure for selecting the best model for physical fatigue development was similar to the

approach for physical fatigue detection. The LASSO model performed better than the other

penalized regression methods. The performance of using this model had an MAE = 1.34, r =

21, and score = 5.40 for the training data. The 21 selected features and their corresponding

coefficients are presented in Table 2.8 and visualized in Figure 2.6.
Definition of the Selected Features Coefficient

(Intercept) 11.33

Ankle Jerk: percentage change of 75th percentile 0.76

Hip ACC: median 0.61

Hip ACC: mean of joint histogram1 0.49

Wrist ACC: standard deviation of joint histogram1 0.29

Torso ACC: mean of joint histogram1. 0.26

Ankle ACC: CUSUM of standard deviation 0.18

Wrist & Torso ACC: correlation 0.17

Torso Jerk: CUSUM of standard deviation 0.13

Wrist ACC: 90th percentile 0.01

Torso & Ankle ACC: correlation -0.02

Hip ACC: CUSUM of median -0.02

HRR: percentage change of 10th percentile -0.03

Torso ACC: percentage change of trimmed mean -0.09

Ankle ACC: percentage change of 25th percentile -0.10

Torso ACC: CUSUM of median -0.10

Ankle ACC: median -0.13

Torso ACC: percentage change of median -0.14

Ankle ACC: percentage change of median -0.18

Ankle ACC: CUSUM of 10th percentile -0.33

Hip ACC: percentage change of trimmed mean -0.77

Wrist Jerk: CUSUM of 75th percentile -0.99

Table 2.8: Selected Features for the LASSO
Model with RUS Sampling
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Figure 2.6: The Location of Selected Features
on Body for the Physical Fatigue

Development Model

Table 2.8 shows that the first five important features correspond to the wrist, hip and an-

kle movement. The wrist was the body part common to both physical fatigue detection and

development models. Table 2.8 highlights that the percent change of third quartile in ankle
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movements (Ankle Jerk: percentage change of 75th percentile) in each time window were cor-

related with increasing physical fatigue. Additionally, large hip movements (Hip ACC: median)

are strongly indicative of a participants having physical fatigue. In contrast, greater variabil-

ity in the movement of the wrist (Wrist Jerk: CUSUM of 75th percentile) indicates that the

participant is not physically fatigued. The selected variables yielded by these models provide

strong evidence that the wrist status has a profound effect on physical fatigue detection and de-

velopment, followed by the hip, ankle, and torso which also play an important role in physical

fatigue modeling, while heart rate is less of an indicator.

2.4.3 Testing of the Models

Implementation of Selected Physical Fatigue Detection Model on Two Test Participants

The selected models from section 2.4.1 were used to test their implementation for physical

fatigue detection on the two participants (P7 and P8) who were not used during the training

stage.Table 2.9 shows the performance of the standard physical fatigue detection model corre-

sponded similarly to its training performance. The performance of the conservative physical

fatigue detection model was slightly worse than its training performance. Thus, our scoring

heuristic provides some insight into selecting “suitable” models from the training step. An ad-

ditional interesting observation from Table 2.9 is that the standard LASSO model detected all

physically fatigued states for the two test participants since its sensitivity = 1.

Table 2.9: Performance of Selected Physical Fatigue Detection Models on “Test” Participants

Conservative/Standard Sampling technique Penalized logistic model Sensitivity Specificity
Conservative RUS LASSO 0.65 0.70

Standard RUS LASSO 1.00 0.79

Implementation of Selected Physical Fatigue Development Model on Two Test Participants

Similar to the testing of the physical fatigue detection models, the physical fatigue development

model from Section 2.4.2 was tested on the two participants, resulted in an MAE = 2.16. An

MAE of 2.16 indicates that the RPE prediction was on average 2 units off from the recorded

RPE for test participants. This result is particularly good since RPEs are perceived measures

of physical fatigue (i.e., highly variable and not very accurate).
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Figure 2.7 shows the time series plots for the recorded (black) and predicted (gray) RPE

for the 2 test participants. These plots provide insights for how each model performs for a

given task and a given “test” subject. Both models perform “better” for the Supply Pick up and

Insertion and Manual Material Handling tasks when compared to the less physically fatiguing

Parts Assembly task. This observation is based on the similarity of trends between the predicted

and recorded values of the RPE.

 

Figure 2.7: Predicted RPE (Gray) vs. Actual (Black) - P7 (top) and P8 (bottom)

Overall, the attached sensor to the wrist played an important role in detecting the oc-

currence of physical fatigue and estimating its level. The “best” model for physical fatigue

detection was the standard LASSO model with RUS sampling. The “best” model for physical

fatigue development was the LASSO. In addition, the physical fatigue detection model per-

formed better than the physical fatigue development model in the testing step. Therefore, if

we were to recommend a single model of those developed in this study, we would recommend

using the standard approach for physical fatigue detection that corresponds to the RUS-based

Standard Logistic Regression LASSO model.
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2.5 Discussion and conclusion

2.5.1 Summary of the resulting models

Worker physical fatigue is an important safety concern in manufacturing environments and

monitoring physical fatigue is essential to prevent accident and injury occurrences. From a

hypothetical point of view, the utilization of predictive models for physical fatigue modeling

can provide a chance to better incorporate the understanding of the physiology and psychology

of fatigue. Model predictions can be tested and the results can be utilized to refine the model

and the understanding of the basic phenomena [126]. In the majority of physical fatigue models

the attention is on the impact of circadian rhythmic, sleep loss, and the resultant sleepiness on

becoming physically fatigued [11, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135]. These

models are typically confined to workrest and/or sleep-wake information as the inputs rather

than the nature of the manufacturing work. For industrial workers, the nature of the work

and the work setting can impact the utilization of non-work periods in forming sleep-wake

behavior [126]. Only a few of the available physical fatigue models join the work processes

into the assessment of the physical fatigue-related risk connected with a work schedule [11].

In this study we attempted to model physical fatigue by considering responses to the nature

of the work. Therefore, we simulated three basic manufacturing tasks (MMH, SPI, PA) so

as to induce physical fatigue. Then we developed a data-driven approach to dealing with the

occurrence of physical fatigue and estimating its level. While the models were built from data

on three tasks performed for four hours each, the outputs provided are independent of task,

an important consideration for practical implementation. To our knowledge, no other studies

have examined physical fatigue modeling for three common, but disparate, manufacturing tasks

performed for an extended duration.

The selected features and their coefficients for the best model for physical fatigue detection

were shown in Table 2.6. In previous studies that have used IMUs for monitoring physical

activity and work tasks, although not necessarily physical fatigue, popular features computed

from the acceleration signal are the mean [48, 136, 137, 138, 139, 140, 141, 142], variance

or standard deviation [137, 138, 140, 142, 143], and the correlation between acceleration axes
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[48, 142]. In this study, six feature sets were developed to capture the physical fatigue-related

information while reducing the size of the data and accounting for the time dependency. The

features which corresponded to the wrist, torso and hip sensors had the main contribution to

physical fatigue detection. These features are shown in Table 2.10. For the three simulated

manufacturing tasks, upper extremity movement was a main component of the task. As seen in

Table 11, the largest absolute coefficients were associated with the wrist sensor as well as the

highest number of features. This is consistent with previous studies that showed the wrist as a

significant location for sensor placement [48, 136, 137].

Table 2.10: Dominant features for the standard physical fatigue detection model

Definition of the Selected Features Coefficient
Wrist Acceleration: standard deviation of joint histogram1 0.88

Torso Jerk: CUSUM of standard deviation 0.78
Hip Acceleration: median 0.39

Wrist Jerk: standard deviation 0.37
Torso Acceleration: CUSUM of median -0.78
Wrist Jerk: CUSUM of 75th percentile -1.10

Wrist Acceleration: CUSUM of trimmed mean -1.20

In understanding the resulting model, it is important to understand the specific features

that were selected in the penalized regression process. Those features with positive coefficients

are contributing to the determination of physical fatigue, while those with negative coefficients

are mitigating factors. Significant features contributing to the determination of physical fatigue

in this model include:

• Wrist Acceleration Standard Deviation of the Joint Histogram 1: This represents the

variation in the overlapped distribution area between two consecutive time windows.

Therefore, a higher similarity in the wrist acceleration between two consecutive periods

is an indication the participant is not physically fatigued. Whereas, high variability from

one time period to the next would indicate physical fatigue.

• Torso Jerk CUSUM of Standard Deviation: A measurement of the deviation in torso jerk

or smoothness compared to the baseline state. A larger variability from baseline suggests

a change in the smoothness of the body movements, contributing to physical fatigue.
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• Hip Acceleration Median: A measure of the central tendency of the hip acceleration

distribution, if the participant maintains a high level of hip acceleration, then they are

more likely to report feeling physically fatigued.

• Wrist Jerk Standard Deviation: This feature measures the variation in the wrist jerk,

or variation in the change in acceleration. Higher variability in the smoothness of the

movement led to detection of physical fatigue.

On the other hand, the following features had a negative relationship with physical fatigue

detection:

• Wrist Acceleration CUSUM of Trimmed Mean: The trimmed mean is the mean after re-

moving 5% from the beginning and end of the time window. If the participant maintained

a higher wrist acceleration compared to the first time window, then they were less likely

to report physical fatigue.

• Wrist Jerk CUSUM of 75th Percentile: This feature shows the sum of the deviation in

locations of the right tail of the wrist acceleration distribution over the time windows

compared to the first time window. If the distribution of the wrist jerk skewed to the

right, indicating a larger value of high jerk, then physical fatigue would not be present.

As with the previous feature, if the participant maintains a high wrist acceleration, not

slowing down, then they are not physically fatigued.

• Torso Acceleration CUSUM of Median: Representing the sum of the variation in the

median of the torso acceleration. Slowing down, a negative deviation in torso accelera-

tion, from the beginning of the experiment would indicate the participant was physically

fatigued.

As these results demonstrate, the features with negative coefficients were related to the

CUSUM comparing the overall level and variation of movement from the start of the task.

Whereas those with positive coefficients were more often related to movement variability. Pre-

vious work has shown that wrist acceleration, which is used to characterize the hand movement
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pattern, is useful for estimating biomechanical demands and physical fatigue for exercise tasks

such as swimming [144, 145]. Industrial workers who need to move their hands and wrist

repeatedly and/or powerfully are at greater risk for cumulative trauma disorders (CTD) [136].

The results of the current models are consistent with these findings and suggest that moni-

toring wrist movements is important. In current bio-mathematical models of physical fatigue

prediction, population variability is not accounted for in determining the final physical fatigue

score, thus 50% of individuals will have a predicted physical fatigue score greater than the av-

erage value predicted by developed models and half will be underneath that [126]. Our study

gives solid confirmation that in the lab-based experiment the penalized logistic LASSO model

with RUS sampling in standard approach performs better than the current generation of bio-

mathematical model. Its estimation for physical fatigue state (0 or 1) was 100%.

In the best model for physical fatigue level prediction the features which have larger co-

efficients corresponded to the wrist, hip and ankle sensors. These features are shown in Table

2.11.

Table 2.11: Dominant features for the physical fatigue level prediction

Definition of the Selected Features Coefficient
Ankle Jerk: percentage change of 75th percentile 0.76

Hip Acceleration: median 0.61
Hip Acceleration: mean of joint histogram 1 0.49

Ankle Acceleration CUSUM of 10th percentile -0.33
Hip Acceleration: percentage change of trimmed mean -0.77

Wrist Jerk: CUSUM of 75th percentile -0.99

• Ankle Jerk Percentage Change of 75th Percentile: This feature shows the percentage

change in right tail of the ankle jerk distribution over the time window compared to the

first time window. If the participant maintains a high level of ankle jerk in right tail of its

distribution, then physical fatigue is developing.

• Hip Acceleration Median: As described above.

• Hip Acceleration Mean of Joint Histogram 1: The mean in the overlapped distribution

area between two consecutive time windows. If the participant maintains a high level of

hip acceleration then the participant would indicate physical fatigue.
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The features with a negative relationship with predicting the physical fatigue level in-

cluded:

• Wrist Jerk CUSUM of 75th Percentile: As described above.

• Hip Acceleration Percentage Change of Trimmed Mean: This represents the percentage

change of trimmed mean of hip acceleration over the time window compared to the first

time window. This feature shows that if participants kept consistent hip movement over

all time windows, then it likely corresponds to their walking behavior and less likely to

reported physical fatigue.

• Ankle Acceleration CUSUM of 10th percentile: This feature shows the sum of the de-

viation in location of the left tail of the ankle acceleration distribution over the time

window. Slowing down, a negative deviation in ankle acceleration, from the beginning

of the experiment would indicate the participant was physically fatigued.

Similar to the physical fatigue detection model, these results show the features with nega-

tive coefficients were related to the CUSUM features, whereas those with positive coefficients

were more related to the distribution of the movement. The results of this model confirmed the

previous results that monitoring wrist movement is imperative.

Considering both of the best models for detecting physical fatigue and predicting its level,

the primary sensors in modeling physical fatigue were located at the wrist and hip. The selected

features in these models showed that monitoring the distributions of the movements (Set 1),

percent change of movements (Set 2), movement variability (Set 3), and similitude between

current movements and the first time window (Set 6) were generally powerful. In this study

the heart rate features were not as critical as the movement features. While heart rate has

traditionally served as an indicator of physical fatigue, the changes in movement were stronger

predictors. This may have resulted from the specific manufacturing tasks simulated and the

development of a single model that covers the different tasks. In both the SPI and PA tasks, the

task did not impose a high cardiovascular load and the heart rate remained relatively consistent

throughout the three-hour period. More variability was observed in the movement. This is
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consistent with a previous study on monitoring activity in activities of daily living, where heart

rate was not a main element of the resulting model, while IMUs on the wrist and thigh were

included [138].

2.5.2 Implementing physical fatigue modeling in the workplace

It is critical for the reader to note that there is currently very little published data on how models

are being utilized as a part of work environment settings (see [129, 130, 131, 133, 134, 135,

146]). Typical implementations take the sleep-wake history to develop work schedules and shift

work rotations [126]. However, these models do not coordinate the nature of the work being

attempted and its potential impact on physical fatigue and safety. For instance, in aviation it

is well established that the level of workload and exposure to risk is not steady over a flight,

but this is not considered by models [147]. While the models developed in this study may be

applicable to a number of tasks, the more important outcome of this study is the description

of a modeling approach that could be applied. To implement the proposed modeling approach

from this study in a manufacturing workplace, the following aspects must be considered.

First, the safety critical workers in workplaces, who are inclined to end up physically

fatigued while doing their jobs should be distinguished [147]. These workers will be a suitable

sample to develop the predictive physical fatigue model since the difference between their

physically fatigued and not physically fatigued states during their jobs will be distinguishable

when modeling. Therefore, in order to identify these critical workers, meeting with the workers

in workplace is viewed as essential to the process [147]. Second, in developing a valid physical

fatigue model the data need to cover a variety of conditions and should be recorded over an

extended period for different workers. It should be noted that more data in this stage will

help to develop a strong predictive physical fatigue model. Third, the assigned tasks for those

critical workers who will be monitored with the same model should be standardized. The

result of the predictive physical fatigue model is highly dependent on the manufacturing task

condition (i.e. amount of workload, work condition, works’ speed, trained workers). Consistent

task circumstances for the workers with the same tasks would help to avoid variation in the

predictive physical fatigue model. The purpose of physical fatigue modeling to detect the
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occurrence of physical fatigue or its level should be defined, since each of them need differing

sensors and predictive model. Based on the results in this chapter, the wrist sensor was the

fundamental sensor which should be utilized. Therefore, for physical fatigue detection the

sensors on wrist, torso and hip are required. For physical fatigue level prediction, the wrist,

hip and ankle sensors are required. Next, the working hours of the critical workers needed to

be divided to short intervals (i.e. in this study we selected 10 minutes). Then, after recording

the data, the model can be developed by defining the statistically important features (Sets 1,

2, 4, 6) proposed in this study. The R programming language (https://www.r-project.org/)

and MATLAB which were used to generate the results in this study can be accessed through

the following Github Repository: https://github.com/zahrame/Fatigue-modeling.git in order to

implement predictive physical fatigue models in the workplace. After developing the model,

the predictive model can be used to predict the occurrence or level of physical fatigue in the

other workers in the workplace.

2.5.3 Study limitations and future research

There are a few main limitations that must be acknowledged for this study. First, the sample

size is small as a result of the long time commitment required for each participant. However, the

sample size is consistent with other studies that have focused on lab-based modeling of physical

fatigue [148]. In addition, since the study was completed as a within-subjects design some of

the variability in responses across tasks was minimized. Each participants 180 minutes of data

was also divided into 18, 10-minute segments, allowing the models to be built from a larger

number of data points. Future studies are needed to investigate whether the current models are

valid when applied to a larger sample. Second, all of the participants were physically healthy

and most were young adults. Some of the physical and health characteristics may be different

from a standard industrial population. There is limited evidence on the role of demographic and

other individual differences in the development, recognition, tolerance, and accommodation of

physical fatigue [149]. The effect of different demographic variables (i.e. age, sex, economic

status, race, and marital status, personality traits, and circadian rhythms) needs to be explored in

future models of physical fatigue. Third, the participants had limited training time (10 minutes)
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to become familiar with the task. Therefore prior experience and physical fitness may have

affected the initial results recorded at the start of the experiment. Fourth, the modeling in

this study was assessed only based on the worker’s self-reported Borg rate level, which may

be biased based on other factors outside the physical fatigue level, including motivation and

discomfort. This perception would affect the results of physical fatigue modeling, therefore,

for the future research this issue should be considered. This study focused on the work process

to model physical fatigue, so in order to enrich the model from a human work performance

perspective, further analyses concerned with quantitative performance measures (e.g., number

of defects in a time window and average task completion time over a time window) should also

be examined. Moreover to evaluate the effect of job conditions on physical fatigue, measures

including shift work, job/task rotation, pace constraints and repetitiveness for tasks need to

be investigated. The results in this study showed that participants’ physical fatigue level were

close to those of the predicted values in MMH and SPI task (Figure 2.7), but it performed poorly

with the PA task. Therefore, it is necessary to identify what type of tasks are most amenable to

physical fatigue modeling in order to implement preventive actions for exposed workers. We

recommend that future ergonomic studies consider different sensor combinations to improve

modeling physical fatigue for tasks concentrated primarily on the upper extremity. This would

allow for a more precise analysis of the relationships between this task and related factors.
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Chapter 3

A data analytic framework for physical fatigue management using wearable sensors

3.1 Introduction

The advancements in automation, computation, information, sensing and software systems led

to a new paradigm of advanced manufacturing systems [150]. An important managerial goal in

advanced manufacturing is to investigate how workers can be better integrated in the evolving

cyber-physical infrastructure so that the impact of their skills can be maximized [151]. Thus,

the role of labor within the manufacturing firm has transformed, where the following changes

have been observed: (a) a reduction in mundane tasks [152], (b) an increased dependency on

highly-trained workers [153], (c) an increase in worker’s autonomy and responsibility [154],

and (d) the introduction of new job duties [154]. From a worker’s perspective, this expanded

role has significant financial rewards [155]. However, there is a growing body of evidence,

which suggests that the associated workloads result in high levels of fatigue and other negative

health outcomes [156, 157, 153, 158, 14].

As discussed in chapter 2, an important first step in managing fatigue is the rapid and

accurate detection of its occurrence. Fatigue detection techniques can be divided into two

categories: qualitative and quantitative. Qualitative methods are centered around the use of

fatigue surveys [14]. From a practical perspective, the utility of such methods is limited to

investigations aiming to assess workloads and/or redesign jobs. However, they are not suitable

for real-time, shop-floor-wide fatigue detection, since they are not scalable and are potentially

disruptive. For example, consider a situation where there are 70 workers on the shop-floor

and their fatigue ratings are measured every 5 minutes. The administration of surveys in this

situation would require a large number of surveyors, and would disrupt production (reducing
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the productivity of workers [159]). The quantitative approaches, of the second category, rely

on using one or more sensor technologies to model changes in human performance, that we

showed in chapter 2.

This chapter proposes a framework for using wearable sensors to manage worker fatigue

in manufacturing environments. A framework is proposed instead of a model to allow for the

detection/diagnosis of multiple fatigue modes. The main premise is that advanced manufactur-

ing firms require specialized labor [153, 14]. Thus, the jobs can then be grouped by the type

of activities. This is reasonable since the main tasks performed by a CNC, computer numerical

control, machinist are different from those done by a welder. The proposed framework is made

of four phases: (a) detection, where the goal is to detect if/when a worker has become fatigued,

(b) identification, where the most important variables for diagnosing fatigue are identified, (c)

diagnosis, where the information captured from phases (a-b) is used to pinpoint the fatigue

mode, and (d) recovery, where a suitable intervention is applied to return to a non-fatigued

state. The phases are adapted from the structured methodology used by quality engineers for

fault detection and diagnosis [160]. Note that none of the existing quantitative approaches

for fatigue modeling present information on the identification, diagnosis and recovery stages

needed for managing fatigue.

The proposed framework utilizes wearable sensors for three main reasons. First, based on

a survey of U.S. manufacturing safety professionals, 54.1% of the respondents were “in favor

of using wearable technologies at work to track [occupational safety and health] risk factors”

[161]. From the responses, Schall et al. (2018) [161] estimated that U.S. manufacturing firms

would spend, on average, an estimated $68.67 per worker for a wearable device. Second, the

use of wearables presents a unified benchmark of performance that does not depend on the

cycle time of the process. The third, and perhaps the most important reason, wearables present

an individualized view of the performance of the worker. Unlike other outcomes, e.g., work

quality which may be affected by upstream performances.

There are several differences regarding this chapter when compared to chapter 2. First,

we focus on the whole fatigue process from fatigue detection to fatigue diagnosis, however, in

chapter 2, we only focused on fatigue detection. In chapter 2 we did not consider the modeling
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to a specific manufacturing task since there was no focus on diagnosis. Second, in this chapter,

we would show that fatigue can be predicted when the number of the sensors is limited. Third,

isolation and diagnosis phases are proposed in this chapter, where they have not been discussed

in chapter 2.

The remainder of the chapter is organized as follows. In Section 3.2, an overview of the

relevant literature on fatigue management in manufacturing environments is presented. Our

proposed framework for detecting, identifying and diagnosing fatigue root-causes is discussed

in Section 3.3. In Section 3.4 two case studies are investigated to evaluate the utility of the

framework in managing fatigue during two manufacturing tasks. Our concluding remarks and

future research suggestions are presented in Section 3.5. We offer our code and data as supple-

mentary materials to encourage adoption in practice and further investigations by researchers.

3.2 Literature review

The literature on physical fatigue detection in manufacturing environments can be classified

into: (a) exhaustion detection, and (b) occupational fatigue detection. In the first group, stud-

ies attempt to identify extreme fatigue, i.e. exhaustion, which results in an inability to generate

muscle forces and consequently, a worker’s inability to perform the job [162]. Since exhaustion

in the manufacturing workplace is often on the muscle level (localized fatigue), the associated

literatures [163, 44, 164, 165, 166, 167, 168, 169, 170, 50] is characterized by: (i) primarily

utilizing invasive EMG and EEG sensors, (ii) focusing on one task element only (e.g., lifting or

walking), and (iii) no attempt to generalize the developed models to focus on a more complex

task. In the second group, the studies focused on detecting occupational fatigue, which is less

extreme than exhaustion, where the workers are still able to perform their job at a diminished

level. Those studies, e.g. [166, 171, 167, 50], have often utilized pervasive sensors includ-

ing IMUs and heart rate monitors . In addition, in chapter 2 we have developed a generalized

model for detecting fatigue across multiple manufacturing tasks. However, the model involved

over 20 predictors and lacked the interpretability that makes it effective for the consequent

phases of fatigue identification, diagnosis and recovery. Table 3.1 summarizes the literature in

the two groups. In this chapter, we focus on occupational fatigue since it is: (i) a precedent
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to exhaustion, and (ii) more aligned to the working environment in advanced manufacturing

environments. Moreover, our proposed framework is evaluated using multiple complex manu-

facturing tasks in an attempt to showcase its potential generalizability.

Table 3.1: A summary of the two major research streams of fatigue modeling

Category Paper Tasks Sensors Method
[172] Walking EMG Statistical test
[173] Walking 3D optical tracking LDA, SVM, KNN, NB
[170] Walking IMUs SVM

Exhaustion [163] Lifting EMG Time frequency analysis
[44] Lifting EMG Statistical test
[164] Lifting EMG Statistical test
[169] Squat Infrared cameras Linear regression, HMM
[166] Walking EMG Linear regression
[171] Walking Accelerometer Statistical test

Occupational fatigue [167] Walking Reflective markers Statistical test, LDA
[50] Material handling IMUs SVM
[174] Material handling, supply inser-

tion & part assembly
IMUs, HR Penalized logistic regression

* where LDA=linear discriminant analysis, SVM=support vector machines, KNN= k-nearest neighbors, and HMM=hidden Markov models.

From a detailed review of the literature, we could not identify any papers that discuss the

identification and diagnosis of fatigue. This may be attributed to the implicit assumption in

the literature that management or the individual worker can handle those stages once fatigue

has been identified. However, as indicated in Levenson (2017) [175], “workplace fatigue is a

systems problem”, and there needs to be a systematic approach to identify its root-causes. This

is a critical gap since the end goal is intervening to prevent the unwanted negative consequences

on the worker and the production process.

3.3 Methodology

Figure 3.1 presents an overview of the four phases of the proposed framework for managing

physical fatigue. The first phase is comprised of five main steps: (a) sensor selection, where

practitioners should identify appropriate sensors for fatigue detection; (b) data preprocessing

and feature generation, where the sensors’ data are prepared for analysis; (c) model construc-

tion and validation, where statistical and data analytic models are trained for distinguishing

between fatigued and non-fatigued states; (d) measuring usefulness, where models are eval-

uated based on accuracy, sensitivity, specificity, etc.; and (e) ease of use analysis, where the

best model in step (d) is evaluated by constraining the number of sensors used. Note that steps

(d) and (e) are based on the Technology Acceptance Model (TAM) [176]. The outcome from
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Phase 1 is the selection of an appropriate model for prospective analysis. In Phase 2, the subset

of features/predictors that are most frequently used in predicting the fatigue state is identified.

This subset presents insights into what features are most predictive, which is an important in-

put to the following phase. Phase 3 utilizes visual analytic methods (specifically an interactive

parallel coordinates plot) to help management understand how the variation in the values of the

predictors impact the fatigue state (i.e. from 0 to 1). Based on the insights gained from the fault

diagnosis phase, a suitable evidence-based intervention can be selected in Phase 4.

Phase 1: Fatigue Detection

Testing Data/Labels

Training Data/Labels

Cross 
Validation 

(Participants 
Out Testing)

Test Fold

Statistical models

Single Classifiers

Ensemble models

Learning AlgorithmSensors

Heart Rate

IMU

• Ankle
• Wrist
• Hip
• Torso

Train Fold

Phase 4: Fatigue Recovery

Intervention 
Based on 

Fatigue Type

Convert to Non-
Fatigued State

No

Yes

Best Subset of 
Features

Parallel Coordinate 
Plot

Phase 2: Fatigue Identification

Pinpoint 
Fatigue 

Location 
and Type

Phase 3: Fatigue Diagnosis

IF

Calculate Average Sensitivity, 
Specificity, Accuracy & 

Consistency across Bootstrap 
Model and Cross Validation 

Model

Select Model with Highest 
Performance

Model Validation / Evaluation

Select Sensors:
• Ease of Use (Less Sensors)
• Usefulness (High Performance)

Sensor Combination Testing

Test Bootstrap model on Test 
Fold

Data Cleaning
Jerk Calculation   
Posture Calculation
Dimension Reduction
Feature Extraction

• Statistical
• Biomechanical
• Individual

Fatigued
Heart Rate Sensor

Whole Body Fatigue 

IMUs

Localized or Isolated Fatigue 

Best Subset Selection of 
Features on Train Fold

Figure 3.1: An overview of proposed method

3.3.1 Phase 1: Fatigue Detection

Sensor Selection

Cavuoto & Megahed (2017) [177] discussed several fatigue indicators, which included heart

rate, heart rate variability, tremor and performance. They suggested that these indicators can be

monitored using pervasive wearable sensors. In a follow-up work, in chapter 2 we showed that

four IMU sensors (located at the ankle, hip, torso and wrist) coupled with a heart rate sensor can

be used to detect fatigue in different manufacturing tasks. Similar to chapter 2, we suggest using

these wearable sensors for fatigue detection in this chapter. More importantly, our framework

presents a systematic approach to answer the question: “what are the gains associated with

wearing an extra sensor?” In essence, this question attempts to quantify whether the hassle

and cost associated with wearing an extra sensor can be justified with a significant/practical
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improvement in fatigue detection. This question, which has not been addressed in the literature,

is tackled in the usability analysis in Phase 1.

Data Preprocessing

Cleaning

The first step in analyzing data is to ensure that the data is correct and cleaned. For wearable

sensors data, four main cleaning steps are proposed. First, a low-pass filter should be applied on

the acceleration data for noise removal. Second, collected data should be visualized to check for

any additional erroneous data, i.e. data that were not corrected through the automated filtering

in step 1. Possible examples of erroneous data include faulty sensor values (too high and/or

too low), and participants who had not experienced fatigue based on their subjective fatigue

ratings. Third, the data from the different sensors should be synchronized and any observations

that were captured outside of the experimental window should be eliminated. The fourth step

involves the normalization of the heart rate data through the computation of: percent heart

rate reserve (%HRR). Note that %HRR accounts for both an individual’s resting heart rate

(RHR) and his/her age-predicted maximum heart rate HRmax = 220− age. The %HRR can be

computed as:

%HRR =
Heart Rate−RHR

HRmax−RHR
×100. (3.1)

The interpretation of the % HRR is a percentage of an individual’s heart rate capacity being

used. Since it accounts for both their resting and maximum heart rates it allows for standardiz-

ing the heart rate data. For example, if the %HRR =50, this means that the person is using 50%

of their heart rate capacity, i.e. is half way between his/her resting and maximum heart rates.

Jerk and Posture Calculation

The four IMUs (attached at the ankle, wrist, hip and torso) measure the acceleration associated

with a person’s dynamic motion. From the acceleration profile, other components of motion

can be computed. Jerk, which is the derivative of acceleration with respect to time, should be

computed since it has been shown to be effective in detecting fatigue in several occupational
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settings (see e.g., Catapult Sports (2018) [178] for several applications in professional sports).

In addition, changes in work posture are also indicative of fatigue [177]. In this chapter, the

approach of Baghdadi et al. (2018) [50] is used for posture calculation, where: (a) a Kalman

filter is first used to calculate position in the three (xyz) directions, and then (b) posture is

estimated from the positional data. The reader is referred to Baghdadi et al. (2018) [50] for

more details on posture calculation.

Dimension Reduction and Feature Extraction

Based on the aforementioned data preprocessing steps, one would have 12 acceleration profiles

(4 IMUs× 3 directions [x y z]) and 4 jerk profiles (rate of change of the magnitude of the ac-

celeration profile for each IMU) each sampled at 25 Hz. In addition, there is a %HRR profile

sampled at 1000 Hz. These profiles cannot be directly used in predictive models and thus,

features summarizing these profiles need to be generated. In this article, we propose utilizing

features that would summarize the profiles based on a non-overlapping time window of the 17

profiles. The selection of the length of the time window should depend on: (a) length of the

cycle for task, (b) consequences of fatigue on the worker and production, and (c) managing the

trade-off between false alarms and early detection.

To capture the changes within the profile and provide insights to the later isolation and

diagnosis phases, three sets of features are generated from the 17 profiles. The first set cor-

responds to statistical features from the acceleration, jerk, posture and %HRR. For each of

these profiles, the mean and coefficient of variation (CV) are computed for each time-window

to capture the intensity and variation changes. Features capturing the intensity and spread are

commonly used in the fatigue detection literature (see e.g., [48, 138, 179]). The second set

corresponds to biomechanical features, which allow for identifying and diagnosing the type of

fatigue. This set includes features such as: number of steps in the time interval, mean step time

and length, and mean foot/hip oscillations. The biomechanical features used in our framework

are depicted in Figure 3.2. Note that these features are calculated for each time window. Those

features are computed based on the code provided by Baghdadi et al. (2017) [50]. The third,

and last feature set contains both age and gender, which may be used to explain performance
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differences across different individuals (see [180, 181] for more details). A description of the

proposed features for each of the three sets is provided in Table 3.2.

𝐼𝑡: torso vertical impact

𝑂𝐻: hip oscillation

𝜔: leg rotational velocity in sagittal plane

𝜑: leg rotational oscillation

𝑂𝐹: foot oscillation

𝐷: step length

𝐻: leg raise 

𝑡𝑠: step time

𝑡𝐹𝐶: foot contact time

𝜃: back bent angle

𝑡𝐵: time bent

Figure 3.2: Biomechanical features illustration

Model Construction and Validation

Cross validation

A leave p-participants out cross validation approach can be used to split the preprocessed

dataset into training and testing sets. Cross validation is commonly used to avoid overfit-

ting [192]. A typical approach to cross validation is dividing the dataset into 10 folds, where

the models are selected based on the average/median prediction performance across 10 non-

overlapping test datasets. The literature suggests that 10-fold cross validation may reduce the

variation between the train and test performance [124]. Note that in fatigue detection studies

such as ours, each participant’s data maybe autocorrelated. Thus, the plain k-fold cross valida-

tion approach is not suitable since the train and test datasets are not independent. To alleviate

this problem, we recommend leaving p participants out for the cross validation, where the value

of p corresponds to approximately 10% of the participants in the data analytic study.

Feature Selection and Dimension Reduction

When the number of potential features/predictors is large, the computational complexity for

training a classification algorithm increases. Feature reduction is typically applied to reduce the

computational burden. More importantly, it leads to: (a) an improved prediction performance,

and (b) an increased generalization capability. Algorithms for feature selection/reduction can

48



Table 3.2: Generated feature sets

Category # Feature Definition Justification

Statistical

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

%HRR.Mean
Wrist.jerk.Mean
Wrist.ACC.Mean
Wrist.xposture.Mean
Wrist.yposture.Mean
Wrist.zposture.Mean
Hip.jerk.Mean
Hip.ACC.Mean
Hip.xposture.Mean
Hip.yposture.Mean
Hip.zposture.Mean
Torso.jerk.Mean
Torso.ACC.Mean
Torso.xposture.Mean
Torso.yposture.Mean
Torso.zposture.Mean
Ankle.jerk.Mean
Ankle.ACC.Mean
Ankle.xposture.Mean
Ankle.yposture.Mean
Ankle.zposture.Mean
%HRR.CV
Wrist.jerk.CV
Wrist.ACC.CV
Wrist.xposture.CV
Wrist.yposture.CV
Wrist.zposture.CV
Hip.jerk.CV
Hip.ACC.CV
Hip.xposture.CV
Hip.yposture.CV
Hip.zposture.CV
Torso.jerk.CV
Torso.ACC.CV
Torso.xposture.CV
Torso.yposture.CV
Torso.zposture.CV
Ankle.jerk.CV
Ankle.ACC.CV
Ankle.xposture.CV
Ankle.yposture.CV
Ankle.zposture.CV

Average percent of heart rate reserve
Average wrist jerk or smoothness magnitude
Average wrist acceleration magnitude
Average wrist angular position in sagittal plane
Average wrist angular position in transverse plane
Average wrist angular position in coronal plane
Average hip jerk magnitude
Average hip acceleration magnitude
Average hip angular position in coronal plane
Average hip angular position in transverse plane
Average hip angular position in sagittal plane
Average torso jerk magnitude
Average torso acceleration magnitude
Average torso angular position in sagittal plane (bending)
Average torso angular position in transverse plane
Average torso angular position in coronal plane
Average ankle jerk magnitude
Average ankle acceleration magnitude
Average ankle angular position in coronal plane
Average ankle angular position in transverse plane
Average ankle angular position in sagittal plane
Coefficient of variation in %HRR
Coefficient of variation in the wrist jerk
Coefficient of variation in the wrist acceleration magnitude
Coefficient of variation in the wrist angular position in sagittal plane
Coefficient of variation in the wrist angular position in transverse plane
Coefficient of variation in the wrist angular position in coronal plane
Coefficient of variation in the hip jerk magnitude
Coefficient of variation in the hip acceleration magnitude
Coefficient of variation in the hip angular position in coronal plane
Coefficient of variation in the hip angular position in transverse plane
Coefficient of variation in the hip angular position in sagittal plane
Coefficient of variation in the torso jerk magnitude
Coefficient of variation in the torso acceleration magnitude
Coefficient of variation in the torso angular position in sagittal plane
Coefficient of variation in the torso angular position in transverse plane
Coefficient of variation in the torso angular position in coronal plane
Coefficient of variation in the ankle jerk magnitude
Coefficient of variation in the ankle acceleration magnitude
Coefficient of variation in the ankle angular position in coronal plane
Coefficient of variation in the ankle angular position in transverse plane
Coefficient of variation in the ankle angular position in sagittal plane

[182]
[183]
[48]
[44]
[47]
[184]
[185]
[186]
[170]

Biomechnical

43
44
45
46
47
48
49
50

51

52
53

Number of steps
Mean step time
Mean step length
Time bent
Mean back bent angle
Mean hip oscillation
Mean foot oscillation
Mean leg rotational
velocity in sagittal plane
Mean leg rotational
oscillation in sagittal plane
Mean torso vertical impact
Mean back rotational
position in sagittal plane

Number of gait cycles during the fixed time interval
Average duration of each gait cycle
Average length of each gait cycle
The duration spent in bent posture
Average angle of torso in bent posture w.r.t vertical axis
Average side-to-side range of motion in hip
Average side-to-side range of motion in foot
Average angular velocity of leg in sagittal plane

Average angular range of motion for leg in sagittal plane

Average value of peak vertical acceleration in torso

Average range of bending posture while doing the task

[187]
[50]
[26]
[188]
[189]
[51]
[190]
[191]

Individual 54
55

Age
Gender - [180]

[181]

be categorized into three main groups [193]: (1) filter methods, where univariate statistical ap-

proaches are typically used to select features based on their relationship to the response, (2)

wrapper methods, where the important features are kept based on their prediction performance,

and (3) embedded methods, which involve the use of methods such as LASSO for selecting
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the most predictive features. We refer the reader to the discussion in Feng & George Shan-

thikumar (2017) [194] for a detailed overview of the application of feature selection methods

in production and operations management.

Since the end goal of our proposed framework is to enable the diagnosis of fatigue and

the recommendation of an appropriate intervention, we recommend a two-step approach for

feature selection. In the first step, simple filter approaches (e.g., information gain or correlation

analysis) should be combined with visualizations (e.g., time series charts, parallel coordinates

plot, and scatter diagrams). The goal of the first step is to provide practitioners with an under-

standing of how fatigue affects and/or is associated with changes in the potential predictors.

From this step, any features that are unchanged in the fatigued and non-fatigued states should

be removed. The reader should note that the insights gained from the visualization will also be

utilized in diagnosing the root-causes of fatigue. In the second step, several structured wrap-

per and/or embedded methods (e.g., best subset selection and LASSO) should be examined.

Preference should be given to techniques that result in a small number of features (i.e. more

interpretable) and a relatively large prediction performance (i.e. good fatigue detection with a

low false alarm rate).

Bootstrapping

To further prevent over-fitting and the bias associated with selecting a training dataset, we rec-

ommend the application of bootstrapping [195], which is a computational procedure that uses

intensive re-sampling with replacement. An important assumption behind bootstrapping is that

the sample distribution is a good approximation to the population’s distribution. Recent studies

have shown an improved performance of analytical models when bootstrapping is deployed

(e.g., see [196, 197]).

Analytical modeling

The analytical classification models can be categorized into: (a) Statistical models, (b) Single

classifiers, and (c) Ensemble models. The pros and cons of using these methods [198, 2] are

shown in Table 3.3. Note that we do not include more advanced deep learning models since
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they often require special computing resources (i.e. graphical processing units, GPUs) and

would be quite difficult to implement for a large number of workers.

Table 3.3: Comparing the three different analytical categories. Table is adapted from Wang
(2016) [2]

Statistical models Single classifiers Ensemble models
High accuracy in general X
High speed of learning against # of variables and samples X
High tolerance to redundant variables X X
High tolerance to collinearity X X
High dealing with overfitting X
Less complexity and easy parameter handling X

Several classification methods, i.e. statistical models, single classifiers, and ensemble

models, are viable candidates for utilization in fatigue prediction. From our framework’s per-

spective, it is impossible to predetermine which methods will work best for a given application.

This is due to the fact that these methods are data-driven and thus, are application-dependent.

In the following paragraphs, we highlight some commonly used methods within each category.

Statistical models attempt to build a relationship between the input variables and response

through the use of parametric methods. Examples include: logistic regression and penalized

logistic regression. Those are classification techniques where the probability of a dichotomous

outcome is a function of the predictors/features [199, 200]. A key difference between the

two aforementioned approaches lies in how they handle sparse datasets. Specifically, logistic

regression’s performance can vary significantly with sparse data [201]. On the other hand,

based on the result in chapter 2 the penalized logistic regression approach usually provides a

more consistent performance.

In the single classifier category, some commonly used classifiers include: decision trees

(DT), naive Bayes (NB), artificial neural networks (ANN), k-nearest neighbors (kNN), and sup-

port vector machines (SVM). Those non-parametric approaches are commonly used in several

production and operations management applications. The reader is referred to [200, 202, 203,

204] for examples of those applications. We recommend exploring one or more of those models

for fatigue classification.

For the third category, ensemble models are comprised of several single classifiers, where

the final classification of the response is based on some voting or weighting procedure [205].

The premise for these methods is that combining a large number of single classifiers allows for
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a more diverse representation of the data and consequently, a more accurate prediction. Com-

monly used ensembles include [204]: (a) random forests (RFs), which are ensemble classifica-

tion algorithms that utilize trees as base classifiers to generate many classifiers and aggregate

their results via voting [206]; (b) bagging [207], where bootstrapping is used to generate a new

training dataset, and combine several base learners to fit a weak learner to the data; and (c)

boosting [208], which creates different base learners by sequentially reweighing the instances

in the training set. Boosting gives different weights to the base learners based on their accu-

racy. The final model obtained by the boosting algorithm is a linear combination of several

base learners weighted by their own performance. For a more detailed introduction on the

aforementioned analytical models, the reader is referred to [209, 210].

Measuring Usefulness

To evaluate the performance of the analytical models, we recommend using four performance

measures: (a) accuracy, which presents the percentage of correct classifications made by a

given model, (b) sensitivity, which captures the ability to detect the fatigued cases, (c) speci-

ficity, which measures the correct classification of non-fatigued cases, and (d) a newly proposed

consistency metric, which is a simple metric that captures the absolute difference between the

metrics in (b) and (c). This metric can be used by practitioners to gage whether a model is

equally capable of predicting both the fatigued and non-fatigued states. The mathematical for-

mula below show how each of these metrics is computed first for each fold, and then averaged

across all folds:

Accuracy j =
1
n

n

∑
i=1

T Pi j +T Ni j

T Pi j +T Ni j +FPi j +FNi j
. (3.2)

Mean Accuracy =
1
m

m

∑
j=1

Accuracy j. (3.3)

Sensitivity j =
1
n

n

∑
i=1

T Pi j

T Pi j +FNi j
. (3.4)

Mean Sensitivity =
1
m

m

∑
j=1

Sensitivity j. (3.5)
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Speci f icity j =
1
n

n

∑
i=1

T Ni j

T Ni j +FPi j
. (3.6)

Mean Speci f icity =
1
m

m

∑
j=1

Speci f icity j. (3.7)

Consistency j = |Sensitivity j−Speci f icity j|. (3.8)

Mean Consistency =
1
m

m

∑
j=1

Consistency j. (3.9)

where TP, TN, FP, FN denote the number of true positives, true negatives, false positives, and

false negatives, respectively. i denotes the number of the bootstrapping samples, j is the number

of the training or testing data sets, n is the number of bootstrapped samples, and m is the number

of folds in the leave p-participants-out cross validation.

Ease of Use Analysis

In addition to evaluating its usefulness, an important aspect for technology adoption is usability.

In the context of our framework, usability can be measured using two metrics: (a) total number

of features selected, and (b) total number of sensors needed to generate these features. In

general, models are more interpretable if the number of features are smaller (assuming no

significant differences in prediction capabilities). Workers and more practitioners will also

be more inclined to adopt the framework if it requires less sensors since it will: (i) be much

cheaper; for example, requiring one IMU instead of four, would reduce the cost by a factor

of four; (ii) make the process less invasive to the worker; and (iii) reduce the time needed for

the worker to wear and strap all the sensors. Therefore, our framework will not only consider

prediction performance, but it will also evaluate how the prediction performance varies while

restricting the number of sensors that can be used. At this stage, one would have a model that

can accurately predict the fatigue state (based on the leave p-participants out cross validation

approach), while having a relatively small number of features. This model can now be deployed

for near real-time prediction.
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3.3.2 Fatigue Identification

Once the model is deployed and fatigue is identified, it is important to understand how the

predictors’ change when an individual becomes fatigued. Typically, machine learning models

are thought of as “black boxes”, where it is difficult to understand how the predictors affect the

response. However, an important aspect of recovering from fatigue is being able to diagnose its

root-causes. Since we favor having a lower number of features in our model selection (see Sec-

tion 3.3.1), we hypothesize that the chosen prediction model will have a relatively low number

of features. Thus, one can use a parallel coordinates plot to depict how the chosen features

vary with the dichotomous response. The use of such a plot will enhance the interpretation of

the model and assist practitioners in diagnosing the type of fatigue in the next phase.

3.3.3 Fatigue Diagnosis

In this phase, one would determine which type of fatigue occurred. Since this framework

focuses only on physical fatigue, there are two main types of fatigue that are possible [177]:

(a) whole body fatigue, and (b) localized muscle fatigue. Based on the parallel coordinates plot

from the previous phase, one would identify the important features for prediction. If the features

are derived from only one IMU (as in our first case in Section 3.4.1), one would conclude that

the worker is experiencing localized muscle fatigue, near that IMU’s location. Alternatively, if

the features are derived only from the heart rate sensor (see Section 3.4.2), this implies that the

worker is experiencing whole body fatigue. The last possibility would include features selected

from one or more IMU and the heart rate sensor. In this case, the individual is experiencing

a combination of whole-body fatigue (i.e. respiratory related) and localized fatigue. Based on

the diagnosis, one can assign appropriate interventions in the next stage.

3.3.4 Fatigue Recovery

From a management perspective, it is important to prescribe interventions that eliminate/reduce

the safety hazards. In essence, “safety does not happen by accident” [211] and thus, it is im-

portant to intervene to eliminate/mitigate the sources of fatigue. We recommend utilizing the
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safety design hierarchy [212] from safety engineering. This hierarchy presents a structured

approach for interventions, where practitioners should consider six actions in order of effec-

tiveness. Since this is a well-known concept to safety professionals, we do not detail this

further.

In our estimation, the fatigue diagnosis stage allows practitioners to directly pinpoint the

hazard (i.e. type of fatigue). Practitioners can then prescribe interventions from a large number

of options, including: (a) redesigning the task (which can eliminate the development of fatigue),

(b) assigning rest breaks (which can reduce the level of fatigue before it reaches potentially

dangerous levels), and (c) job rotation (where workers would essentially cycle between harder

and easier jobs). The type of intervention assigned will depend on the resources available to

safety practitioners and the constrains of their production operations. For this reason, we only

recommend the adoption of the safety design hierarchy without providing a recommendation

for the type of interventions to be assigned. The reader is referred to the survey of [14] for

a discussion of the type of interventions used by advanced manufacturing workers and safety

professionals in combating physical fatigue at the workplace.

3.4 Case Studies

To evaluate the performance of the proposed framework, we examine two case studies. The

first case study involves a simulated manual material handling (MMH) task, and the second is

a supply pick-up and insertion (SI) task. Both case studies replicate typical fatiguing manu-

facturing tasks (see the survey in [14] for details) in a controlled lab environment in order to

facilitate the data collection process. Since the data collection, data preprocessing and model

construction steps are the same for the two tasks, we only explain them in detail in Sections

3.4.1 and 3.4.1.
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3.4.1 Case Study 1: Manual Material Handling

Data Collection, Preprocessing and Feature Generation

Twenty four participants (9 females, 15 males; mean age 36.37 years with the standard devia-

tion of 16.67 years) were recruited over a period of 11 months from the local community. Five

of the participants were manufacturing workers, and the remainder represented a convenience

sample of students with varying degrees of physical work experience. All participants reported

that they were in good physical and mental health. In addition, they were screened by complet-

ing the Physical Activity Readiness Questionnaire (PAR-Q) [213] at the start of the session to

assess their eligibility to participate. They also provided informed consents at the start of the

experiment. All study procedures were approved by the university’s institutional review board

(IRB).

Participants completed one three-hour experimental session for the simulated MMH task

and another for the SI task. The order of the two experiments was randomized and participants

had to complete the experiments in different days. The MMH task involved palletizing and

transporting several weighted containers (see Figure 3.3). Each participant was asked to per-

form the task at a set pace for three hours continuously (without breaks) to induce fatigue. Per

the discussion in Section 3.3.1, four IMUs placed at the ankle, hip, wrist and torso, and a heart

rate monitor on the chest were used for data collection. Furthermore, participants provided

their subjective exertion (RPE) using the Borg Scale [104] every ten minutes.

Figure 3.3: A participant carrying out the MMH task, adopted from chapter 2
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The four step data cleaning procedure discussed in Section 3.3.1 was deployed for our

case studies. After using the low pass filter for de-noising the IMU data, we used RPE ≥ 13

as a cutoff for fatigue in step 2 per the analysis in chapter 2. Based on step 2, a total of nine

participants were removed from the data for the following reasons: (a) three participants did not

get fatigued by the end of the experiment; (b) three reported being fatigued within the first half

an hour of the experiment (i.e. they may have been fatigued prior to conducting the experiment);

(c) the IMUs failed to record data for two of the participants during the experiment; and (d) one

of the participants deviated from the experimental protocol by taking two 10-minute bathroom

breaks. As a result, we ended up with 15 participants whose data were deemed reliable for

analysis. After synchronizing the data from the sensors in step 3, we removed the first 10

minutes of experimental data to avoid capturing the learning effect [58]. Then, the % HRR

was computed in step 4 as explained in the methodology section. After step 4, the jerk and

posture profiles were generated based on the procedure of Baghdadi et al. (2018) [50] which

was highlighted in Section 3.3.1.

To reduce the computational burden and to maintain a balanced dataset for training, we

have only kept 20% of the data for each participant. These 20% corresponded to: (a) 10%

(i.e. 10%× 180 minutes = 18 minutes) at the beginning of the experiment, after the first 10

minutes are removed, where the participants are not fatigued, and (b) 10% at the end, where

the participants are fatigued. The rationale for removing the 80% of the data is two-fold.

First, the separation ensures that the differences between the fatigued and non-fatigued data for

each participant are maximized, while the differences within each group are minimal. Second,

based on chapter 2, we can assume that the size of the data can be decreased without losing

much information related to fatigue detection. For each participant, we coded the response as 0

(for the first 18 minutes) and 1 for the latter 18 minutes to reflect the non-fatigued and fatigued

states, respectively. Recall that our data cleaning procedure ensured that these values reflect the

estimated RPEs by each participant.

Based on the discussion in Section 3.3.1, it is important to set the size of the time win-

dow prior to generating the features in Table 3.2. In our case studies, we have used a non-

overlapping time window of 2 minutes. This means that each of the 18 minutes was divided
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into nine fractions of two-minute periods. The rationale for selecting two-minutes for the time

window was mainly based on the observation that the average cycle time for MMH was approx-

imately one minute. Therefore, each two-minute time interval is guaranteed to include at least

one cycle of the task. Based on this decision, we generated the proposed features from each

sensor for each two-minute time window. The reader can replicate our analysis by consulting

our data and code (see the Supplementary Materials Section).

Model Construction and Validation

As a first step for feature selection, time series plots of all features were constructed to evaluate

which features were virtually unchanged from the non-fatigued to fatigued states. Based on the

visualizations, 15 (of the 55 candidate) features were dropped. The second step (where wrapper

or embedded methods are used) of feature selection is applied after the training and test sam-

ples are generated using the leave p-participants out cross validation approach. Based on the

discussion in Section 3.4.1, we had 15 participants with reliable data for this case study. Thus,

p = 2 (i.e. 2/15 = 13%) was used for the leave p-participants-out cross validation approach

to split the data into training and test sets. This resulted into 105 possible training/test sets

(15!/((15− 2)!× 2!) = 105), which we would evaluate to obtain an estimate of the variation

in the performance of our analytical models.

Prior to deploying the analytical models, two additional tasks were carried out. First, the

last step of variable selection was deployed using two popular methods: best subset selection

and LASSO (refer to Section 3.3.1 for details). Second, to reduce the bias from model training

and improve the performance of the predictive models bootstrap resampling with replacement

was applied to the training data. The sample size for each bootstrap sample was n = 234,

which was based on 13 participants × 18 samples per participant. For our analysis, we used

200 bootstrap samples (each having n = 234) based on the recommendation of Pattengale et al.

(2009) [214].

To develop the fatigue prediction models, several methods were applied during our pre-

liminary analysis of the data. The models evaluated included: logistic regression, penalized
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logistic regression, decision trees (DT), naive Bayes (NB), k-Nearest Neighbors (kNN), sup-

port vector machines (SVM), and three ensemble models (random forest (RF), bagging, and

boosting). Due to their relatively poor performance, DT, NB and kNN were eliminated. In ad-

dition, models using best subset selection typically had better prediction performance with less

features than their LASSO counterparts. Therefore, our case study focused on using the best

subset selection with the following five analytical models: (a) logistic regression, (b) SVM, (c)

RF, (d) RF with bagging (hereafter bagging), and (e) RF with boosting (hereafter boosting). In

addition, we compared these five models to the approach in chapter 2 since it was the only re-

search that considered multiple tasks in the context of occupational fatigue (see Table 3.2). To

ensure that the comparison is fair, we considered two different variants of the penalized logistic

regression approach with LASSO proposed in chapter 2. The first is utilizing their approach

and features (on our data), and the second involves using their methodology with our features

and data. In our estimation, this allows us to better evaluate whether our proposed method is

superior to theirs. The reader should note that they did not consider model interpretation in their

feature generation and thus we expect that our features are easier to interpret by practitioners.

Fatigue Detection Results

In Table 3.4, the predictive performance of our five models is compared with the two variants

from chapter 2. The table shows the mean (and standard deviation in parentheses) for each

of our four metrics. In addition, the average number of features selected by each model is

also presented. The reported results are based on 105 constructed test datasets from the two-

participants-out cross validation. For the first three numeric columns, a higher value is desired

since it reflects a better prediction performance. The consistency column captures the average

absolute difference between the sensitivity and specificity for each model, evaluated on the 105

test datasets. It is noted that the smaller the consistency is, the similar performance in detecting

fatigued and no-fatigued states simultaneously would be. Moreover, a smaller number of fea-

tures facilitates the interpretation of the model, which is important in the fatigue identification

and diagnosis phases.
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Table 3.4: Mean performance and the corresponding standard deviation of the classification
methods for fatigue detection in MMH task, (the recommended model is in bold)

Category Model Sensitivity Specificity Accuracy Consistency # of Features
Bagging 0.872 (0.13) 0.869 (0.15) 0.870 (0.09) 0.143 (0.17) 5.35
Boosting 0.871 (0.13) 0.872 (0.15) 0.870 (0.08) 0.147 (0.17) 5.352

BSS Random Forest 0.879 (0.14) 0.879 (0.15) 0.879 (0.09) 0.152 (0.18) 5.352
Support Vector Machine 0.811 (0.18) 0.828 (0.17) 0.820 (0.11) 0.198 (0.19) 5.352
Logistic Regression 0.790 (0.17) 0.766 (0.20) 0.778 (0.11) 0.227 (0.20) 5.352

LASSO Penalized Logistic Regression* 0.802 (0.20) 0.916 (0.11) 0.859 (0.11) 0.175 (0.20) 18.943
Penalized Logistic Regression 0.810 (0.13) 0.775 (0.17) 0.793 (0.08) 0.197 (0.16) 11.133

* features used in the model are only those generated in chapter 2

Four main observations from Table 3.4 need to be highlighted. First, as expected from

the preliminary analysis, the number of features selected with the best subset selection are

much less than those selected by the LASSO model. This means that the usability of the

analytical models with the BSS model is much higher than that with LASSO since practitioners’

need to monitor and understand approximately five features (instead of 11 or 19). Second, the

performance of all seven models is relatively high with an overall average accuracy greater

than 0.77. Third, the performance of the three ensembles is better than the remaining models.

Fourth, the penalized logistic regression in chapter 2 outperforms its variant with our features

from a prediction perspective. However, this comes at the cost of adding eight features to the

model (i.e. ≈ 70% increase in the variables used). Based on these observations and this case

study, one can conclude that our framework has shown higher detection performance (with less

features) when compared to competing models from the literature.

The next logical research question is to examine how the prediction performance varies

while limiting the number of sensors used. To evaluate this question, we utilize the bagging

model since Table 3.4 showed that it had the lowest consistency and had similar prediction

performance to the two other ensembles. Table 3.5 reports the prediction results, when features

are limited to those from one, two, three, four and all sensor combinations. Note that the values

that are not shown in the table (e.g. Ankle, Hip, Wrist and HR sensors) reflect scenarios when

a prediction was not possible. This means that the main features that detected the fatigue were

eliminated with the added constraints on which possible features to select from.

From the results in Table 3.5, one can see that the prediction performance does not vary

significantly as the number of sensors’ are changed. For example, the average accuracy varies

from 0.850 to 0.871 (with a standard deviation u 0.09) as the number of sensors vary. This is
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Table 3.5: Mean performance and the corresponding standard deviation of the Bagging model
for fatigue detection using different sensor combinations for the MMH task (the recommended
model is in bold)

#
sensors Sensor Combination Sensitivity Specificity Accuracy Consistency

5 Ankle Hip Wrist Torso HR 0.872 (0.13) 0.869 (0.15) 0.870 (0.09) 0.143 (0.17)

4

Ankle Hip Wrist Torso 0.875 (0.13) 0.868 (0.15) 0.871 (0.09) 0.141 (0.17)
Ankle Hip Torso HR 0.850 (0.15) 0.875 (0.13) 0.862 (0.09) 0.142 (0.16)

Hip Wrist Torso HR 0.877 (0.12) 0.863 (0.15) 0.870 (0.08) 0.144 (0.15)
Ankle Wrist Torso HR 0.872 (0.12) 0.864 (0.15) 0.868 (0.08) 0.146 (0.16)
Ankle Hip Wrist HR - - - -

3

Wrist Torso HR 0.877 (0.12) 0.864 (0.15) 0.870 (0.08) 0.141 (0.15)
Ankle Torso HR 0.844 (0.15) 0.874 (0.13) 0.859 (0.09) 0.141 (0.16)
Ankle Hip Torso 0.850 (0.15) 0.875 (0.13) 0.862 (0.09) 0.142 (0.16)

Hip Wrist Torso 0.877 (0.12) 0.863 (0.15) 0.870 (0.08) 0.143 (0.16)
Hip Torso HR 0.859 (0.15) 0.874 (0.14) 0.866 (0.10) 0.143 (0.16)

Ankle Wrist Torso 0.873 (0.12) 0.863 (0.15) 0.868 (0.08) 0.145 (0.16)
Ankle Hip HR - - - -
Ankle Hip Wrist - - - -
Ankle Wrist HR - - - -

Hip Wrist HR - - - -

2

Wrist Torso 0.877 (0.12) 0.864 (0.15) 0.870 (0.08) 0.141 (0.15)
Ankle Torso 0.844 (0.15) 0.874 (0.13) 0.859 (0.09) 0.141 (0.16)

Hip Torso 0.859 (0.15) 0.875 (0.14) 0.867 (0.10) 0.143 (0.16)
Torso HR 0.842 (0.15) 0.859 (0.14) 0.850 (0.10) 0.144 (0.16)

Ankle Hip - - - -
Ankle HR - - - -
Ankle Wrist - - - -

Hip Wrist - - - -
Hip HR - - - -

Wrist HR - - - -

1

Torso 0.842 (0.15) 0.859 (0.14) 0.850 (0.10) 0.144 (0.16)
Ankle - - - -

Hip - - - -
Wrist - - - -

HR - - - -

only true if the torso IMU is included in the analysis. Based on this observation, we recommend

only using the torso IMU sensor for detecting fatigue in manual material handling environments

(that are similar to those analyzed in our case study). While the prediction performance is

almost the same, the costs incurred by the firm are much lower, and the usability of the system

by using only one sensor is significantly improved. This is an important practical takeaway,

which has not been reported in previous studies investigating fatigue in MMH tasks (see the

references in Table 3.1).

Fatigue Identification Results

A first step in understanding fatigue is to examine how frequently a feature is selected all of the

105 two-participants-out cross validation bagging model test sets. In this section, we limit our

analysis to two cases: (a) when all five sensors are utilized, and (b) when only the torso sensor

is used. The results for these analyses are shown in Figures 3.4a and 3.4b, respectively. From
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both figures, one can see that all three categories of features (i.e. statistical, biomechanical, and

individual features) are selected in our models. For the five sensor case, one biomechanical

feature (mean back rotational position, i.e. feature #53 in Table 3.2) and five statistical features

appeared in more than 65% of the models. All other remaining features appeared in less than

10% of the models. On the other hand, age becomes a much more predictive factor if we only

rely on the torso sensor. In that case, back rotational position is still selected in 100% of the

models.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% of feature's appearance in the models

Back rotation position
Wrist jerk Mean

Torso zposture Mean
Wrist jerk CV
Ankle jerk CV
Hip jerk CV

Wrist ACC Mean
Torso ACC Mean

Torso yposture Mean
Hip ACC Mean
Ankle ACC Mean
Hip ACC CV

Mean leg rotational velocity in sagital plane
Torso ACC CV
HRR Mean

Age
Ankle xposture Mean
Ankle yposture CV
Mean step length
Torso jerk Mean

Hip zposture Mean
Wrist ACC CV

(a) using all five of the sensors

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of feature's appearance in the models

Back rotation position
Torso zposture Mean

Age
Torso ACC Mean
Torso jerk Mean

Torso yposture Mean
Torso jerk CV
Torso ACC CV

Torso xposture Mean
Mean back bent angle

(b) using the torso sensor only

Figure 3.4: Important features visualization in the MMH task using the Bagging model
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Once a list of predictive/important features is established, we then investigate how those

features vary as the participant transition from the non-fatigued to fatigued states. As high-

lighted in Section 3.3.2, this analysis can be done visually using a parallel coordinates plot.

Figure 3.5 depicts this analysis (using the median model sorted by accuracy) for the five sen-

sors and one sensor cases. Note that the lines graphed in these plots represent the average values

per variable for each of the two participants in the test set examined by the median model.

Fatigue state

1

 3

21 9

89

97 114

10

13 124

7 0  105 98
Torso 

zposture Mean
Back rotation 

position
Hip 

jerk CV
Ankle 

jerk CV
Wrist 

jerk Mean
Wrist 

jerk CV

(a) using all five of the sensors

Fatigue state Torso ACC Mean Torso yposture Mean Back rotation position

1 4 74 8

76930

(b) using the torso sensor only

Figure 3.5: Features visualization for the median Bagging model in the MMH task

From Figure 3.5a, one can see that all of the six features highlighted in 3.4a are present

in the median model. It is interesting to note that only the wrist features exhibited a consistent

pattern across both participants when examining the fatigued cases (black line) and the non-

fatigued cases (gray line). Specifically, the coefficient of variation for wrist jerk tended to be

higher, and the mean wrist jerk tended to be lower in the fatigued cases. For the remaining four

features, there were not any consistent patterns for both test subjects. Similarly from Figure

3.5b, one can see that only the torso ACC mean feature showed a clear separation between the

fatigued and non-fatigued states for both participants. We hypothesize that these two figures
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may provide justification for why the ensemble models outperformed the logistic regression

models. Specifically, these plots may suggest interactive and non-linear effects that can be

trained for and captured using the ensemble models.

Fatigue Diagnosis Results

From the fatigue identification results, one can conclude that the type of fatigue is localized at

the back. This conclusion is supported by: (a) the prediction performance is almost unchanged

(and high) when only the features from the torso sensor are used for prediction, and (b) the

mean back rotational position was selected as an important feature in 100% of the models.

This was the only feature that was selected in 100% of the models. Our results are consistent

with findings in the ergonomics literature, which suggest that manual material handling may

lead to a higher prevalence of back injuries [215].

3.4.2 Case Study 2: Supply Pick up and Insertion

Task Description and Data Preparation

Similar to the task in chapter 2, we examined supply pickup and insertion task. The task

involved walking while carrying supplies, and then bending forward to unscrew and fasten

bolts at the supply box (destination). A snapshot of the experiment is provided in Figure 3.6.

The task’s cycle time was set for two minutes to mimic the activity in chapter 2. By design,

this activity should be less fatiguing than the MMH task of the first case study.

Figure 3.6: Sensor placement on a participant for SI task, adopted from chapter 2
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The mechanism used to collect and preprocess data is similar to that used in case study

1. The four step data cleaning procedure suggested in Section 3.3.1 resulted in having 13

participants (instead of 15 for the first case study) with reliable/clean data. Then, the sensor

data were synchronized after removing the initial ten minutes of the experiment. After down

sampling, the jerk, posture, and % HRR profiles were computed. Similar to the MMH task, the

first 18 minutes of the data (after removing the learning period) were labeled as not fatigued

and the last 10 minutes were marked as fatigued.

From those two-eighteen minute periods, we generated the list of features in Table 3.2.

Based on the visual feature selection procedure, 41 of those features were retained for fur-

ther analysis. The leave-two-participants-out cross validation resulted in 78 training and test

datasets. This is smaller than the datasets used in the first case study since the number of

participants with reliable data was smaller. Two hundred bootstrap samples with fixed sample

size (11 participants × 18 samples per participant = 198) were used to evaluate the stability of

proposed models.

To reduce the computational burden, we only examined the seven models analyzed in case

study 1. This means that we did not examine whether the kNN, NB or decision trees performed

adequately for this task. The results for using these seven models for fatigue detection are

presented in the following subsection.

The predictive performance of the seven models is summarized in Table 3.6. Similar to

Table 3.4, this table shows the mean (and standard deviation in parentheses) for each of the

four performance measures as well as the average number of features selected by each model.

The reader should note the reported results are based on 78 constructed test datasets from the

two-participants-out cross validation.

Table 3.6: Mean performance and the corresponding standard deviation of the classification
methods for fatigue detection in SI task, (the recommended model is in bold)

Category Model Sensitivity Specificity Accuracy Consistency # of Features
Bagging 0.863 (0.12) 0.910 (0.10) 0.886 (0.08) 0.097 (0.13) 6.346
Random Forest 0.876 (0.12) 0.918 (0.10) 0.897 (0.08) 0.100 (0.13) 6.346

BSS Boosting 0.868 (0.12) 0.893 (0.12) 0.880 (0.09) 0.118 (0.13) 6.346
Support Vector Machine 0.728 (0.19) 0.847 (0.16) 0.787 (0.12) 0.226 (0.16) 6.346
Logistic Regression 0.525 (0.28) 0.723 (0.21) 0.624 (0.12) 0.391 (0.27) 6.346

LASSO Penalized Logistic Regression* 0.674 (0.19) 0.925 (0.15) 0.800 (0.14) 0.257 (0.23) 16.179
Penalized Logistic Regression 0.748 (0.22) 0.824 (0.06) 0.786 (0.10) 0.151 (0.16) 20.868

* features used in the model are only those generated in chapter 2
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There are two main observations to be made pertaining to the results in Table 3.6. First, the

number of features selected with the best subset selection are much less than those selected by

the LASSO model. This means that the usability of the analytical models with the BSS model

is much higher than that with LASSO since practitioners’ need to monitor and understand

approximately six features (instead of 16 or 21). Second, the prediction performance of the

three ensembles is much higher than all other models. Note that the performance gap is much

larger in this task than in the MMH task. Based on this case study, our framework has shown

higher detection performance (with less features) when compared to competing models from

the literature.

Next, we examine how the prediction performance varies while restricting the number of

sensors used when performing SI task. To gage this question, we utilize the random forest

model since Table 3.6 showed that it had the highest prediction performance. Table 3.7 shows

the prediction results when features are limited to those from one, two, three, four and all sensor

combinations. Similar to the earlier example, the values, which are not shown reflect scenarios

when a prediction was not possible.

From the results in Table 3.6, one can observe that the prediction performance does not

vary significantly as the number of sensors’ are changed. For instance, the average accuracy

varies from 0.854 to 0.897 (with standard deviations u 0.05) as the number of sensors vary.

Note that this observation only holds if the heart rate sensor is included in the analysis. Ac-

cordingly, using solely the heart rate sensor is appropriate for detecting fatigue in supply pick

up and insertion environments (that are similar to those analyzed in our case study). Similar

to the earlier case study, this is a novel contribution (showcasing that one sensor can present

similar performance to multiple sensors with a much higher usability).

Fatigue Identification Results

As in case study 1, we follow the two-step approach for fatigue identification. First, we exam-

ine how frequently a feature is selected from all of the 78 two-participants-out cross validation

random forest model test sets. We limit the analysis to two cases: (a) when all five sensors are

utilized, and (b) when only the heart rate sensor is used. The results from these analyses are
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Table 3.7: Mean fatigue detection performance (and the corresponding standard deviation) of
the random forest model using different sensor combinations for the SI task (the recommended
approach is in bold)

#
sensors Sensor Combination Sensitivity Specificity Accuracy Consistency

5 Ankle Hip Wrist Torso HR 0.876 (0.12) 0.918 (0.10) 0.897 (0.08) 0.100 (0.13)

4

Ankle Hip Wrist Torso 0.863 (0.13) 0.911 (0.05) 0.887 (0.07) 0.097 (0.12)
Ankle Hip Torso HR 0.853 (0.13) 0.893 (0.12) 0.873 (0.09) 0.107 (0.13)

Hip Wrist Torso HR 0.853 (0.17) 0.911 (0.14) 0.882 (0.13) 0.121 (0.14)
Ankle Hip Wrist HR 0.834 (0.16) 0.921 (0.10) 0.877 (0.10) 0.132 (0.16)
Ankle Wrist Torso HR 0.826 (0.19) 0.955 (0.05) 0.890 (0.04) 0.138 (0.19)

3

Hip Wrist Torso 0.867 (0.08) 0.904 (0.08) 0.885 (0.05) 0.100 (0.09)
Ankle Hip HR 0.856 (0.07) 0.887 (0.07) 0.871 (0.04) 0.117 (0.15)

Hip Wrist HR 0.831 (0.07) 0.923 (0.06) 0.877 (0.04) 0.124 (0.14)
Ankle Torso HR 0.825 (0.08) 0.935 (0.06) 0.880 (0.04) 0.131 (0.14)

Wrist Torso HR 0.818 (0.07) 0.927 (0.06) 0.872 (0.04) 0.131 (0.15)
Hip Torso HR 0.852 (0.07) 0.874 (0.08) 0.863 (0.05) 0.132 (0.16)

Ankle Wrist HR 0.820 (0.06) 0.957 (0.04) 0.888 (0.04) 0.147 (0.19)
Ankle Hip Wrist - - - -
Ankle Hip Torso - - - -
Ankle Wrist Torso - - - -

2

Torso HR 0.823 (0.08) 0.896 (0.07) 0.859 (0.05) 0.109 (0.12)
Ankle HR 0.828 (0.08) 0.917 (0.07) 0.872 (0.04) 0.114 (0.13)

Hip HR 0.837 (0.07) 0.904 (0.07) 0.870 (0.05) 0.117 (0.14)
Wrist HR 0.818 (0.08) 0.920 (0.06) 0.869 (0.05) 0.123 (0.14)

Hip Torso - - - -
Ankle Wrist - - - -
Ankle Hip - - - -
Ankle Torso - - - -

Hip Wrist - - - -
Wrist Torso - - - -

1

HR 0.820 (0.08) 0.889 (0.07) 0.854 (0.05) 0.102 (0.13)
Ankle - - - -

Hip - - - -
Wrist - - - -

Torso - - - -

shown in Figures 3.7a and 3.7b, respectively. Neither cases included any individual features

(which is different from the earlier case when age appeared in both). Only statistical features

were selected in the one sensor model, which is perhaps not surprising since none of the biome-

chanical features can be generated if only the heart rate sensor is used. For the five sensor case,

one biomechanical feature (mean leg rotational oscillation in sagittal plane), i.e. feature #51 in

Table 3.2 and three statistical features appeared in more than 50% of the models. On the other

hand, in the single sensor case, all the statistical features (HRR CV, HRR Mean) created using

the heart sensor were selected in 100% of the models.

Second, we investigate how those features range as participants transition from the non-

fatigued to fatigued states. Figure 3.8 illustrates this analysis (using the median model sorted

by accuracy) for: (a) the five sensors, and (b) the one sensor cases. Recall that the lines graphed

in these plots represent the average values per variable for each of the two participants in the

test set examined by the median model. The conclusion is similar to that of case study 1, where
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(b) using the heart rate sensor only

Figure 3.7: Important features visualization in the SI task using the Random Forest model

only one feature had different values for the non-fatigue (gray line) and fatigue cases (black

line) across the two test participants. However, here, this effect is only observed for the one

sensor case. Specifically, in Figure 3.8b, the mean HRR is higher in the fatigued state. This

result makes sense since an increased heart rate is a fatigue symptom (see Cavuoto & Megahed

(2017) [177] for more details).

Fatigue Diagnosis Results

From the fatigue identification results, one can conclude that the participants experience whole-

body fatigue in the SI task. This conclusion is based on the ability to accurately detect the

non-fatigue and fatigue states through the use of only the heart rate sensor. The elevated mean

percent HRR shown for both participants in Figure 3.8b supports this conclusion.
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Figure 3.8: Features visualization for the median Random Forest model in the SI task

3.5 Discussion and Conclusion

3.5.1 Summary of the Main Contributions

In this chapter, we proposed an integrated framework for managing fatigue in manufacturing

workplaces using minimally-intrusive wearable sensors. Based on the case studies in Sec-

tion 3.4, this study makes three main contributions. First, we demonstrated the capability

of using a unified modeling approach for managing physical fatigue in different occupational

tasks/settings. The case studies show the ability to detect, identify, and diagnose fatigue in mul-

tiple occupationally-relevant settings. The ability to identify/diagnose fatigue through the use

of wearable sensors has not been shown prior in the literature. Second, the insights from the

fatigue identification phase of our framework can be used to inform sensor placement and se-

lection. We demonstrated that the prediction performance using one sensor is equivalent to that

of using all sensors for our two case studies. Third, we showed that the importance of different

types of features varies with different manufacturing tasks. Significant features contributing to
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the determination of physical fatigue in the manual material handling using the torso sensor

includes:

• Torso Acceleration Mean: This feature represents the average of the torso acceleration.

Slowing down the activity when compared to the corresponding activity pace at the be-

ginning of the experiment would suggest that the participant was physically fatigued.

Results regarding the torso acceleration during the MMH task is consistent with those

reported the literature. Since torso flexion is identified as a critical factor to increase the

risk of low back pain [61], increases in torso kinematics would increase the overall low

back disorder risk [61].

• Torso Y Posture Mean: This feature measures the average angular position of the torso in

the transverse plane. It is associated with the twisting and lateral bending. The increased

twisting angle has been observed for the fatigued participants during the task. In the

MMH task, taking a step instead of twisting the torso may reduce the risk of low back

pain [61]. Despite twisting is one of the factors for reporting the occupational low back

pain [64, 65, 61], there is no well-known prevention strategies for torso twisting and

lateral bending [61].

• Back Rotation Position: This feature measures the average range of torso bending in the

sagittal plane while doing the MMH. Results in this study show that a larger bending

angle contributes to physical fatigue. When the combination of repetitive lifting and

torso bending is performed, fatigue is most likely to happen [66]. Fatigued torso muscles

can affect the stability of spine [216]. In addition, the increase motion in different planes

will increase the loading on the spine [217], and will increase the risk of low back pain

[61, 64].

On the other hand, the important features for the supply insertion task are:

• HRR Mean: this feature measures the average percentage of an individuals heart rate

capacity. Results suggested that the fatigued participants used the higher capacity of

their heart. Our result is consistent with the literature that high heart rate could be an
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indicator of fatigue [218]; fatigue is associated with the increase in the percentage of

maximum capacity [219, 220].

• HRR CV: this feature measures the variability in using heart rate capacity. Results show

that largest variability in maximum heart rate capacity may indicate physical fatigue. This

is consistent with the literature; heart rate variability is an indicator of physical fatigue

[221, 222, 223].

Thus, researchers and practitioners should consider this finding when developing models

for detecting/managing fatigue in other production settings.

3.5.2 Relevance to Operations Management Practice and Research

In our estimation, the proposed framework and the case study findings have significant im-

plications for both practice and research. From a practical perspective, we have shown that

changes in a worker’s physical performance can be detected and modeled using wearable sen-

sors. Utilizing the principles behind the technology adoption model, we have shown that fa-

tigue associated specialized jobs can be detected using one sensor (without a loss in prediction

performance). The emphasis on fatigue identification and diagnosis through visual analytical

approaches allows practitioners to identify the risks, which are to be tackled through an appro-

priate intervention strategy. In essence, our framework can provide near real-time insights into

the well-begin of shop-floor workers and their associated productivity levels. This informa-

tion can be incorporated into the safety and productivity components of the SQDCM (safety,

quality, delivery, cost, and morale) lean production effectiveness dashboard.

Our framework attempts to bridge the gaps between predictive and prescriptive analytics

in the context of human performance modeling. The sequential nature of our framework at-

tempts to overcome the “black box” nature of machine learning algorithms. We have shown

that the sequential application of predictive models when combined with visual analytic tools

can provide insights for prescriptive interventions. Furthermore, this study demonstrates that

futuristic production environments can capture in real-time the well-being of their workers in
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addition to the data typically captured on the equipment. This can allow for more dynamic

operational interventions (e.g., work-rest scheduling models).

3.5.3 Limitations and Suggestions for Future Research

There are a few limitation that may influence the interpretation of our results. First, the sam-

ple sizes are small as a result of time committed by each participant. Second, the participants

for our two case studies varied in age and experience. Some of them represented a conve-

nience sample of undergraduate and graduate students who may have a limited experience with

manufacturing operations. Others were recruited from industry, and as such, are much more

experienced/trained. Thus, our 10 minute training window may not be sufficient for some par-

ticipants, i.e. the baseline performance for the non-fatigued state may not reflect their true

steady-state performance. Third, the fatigue detection models are based on the participants’

perceived ratings of exertion. Different participants may have varying levels of pain tolerance.

Thus, we implicitly assume that the aliasing of perception and fatigue will have the same ef-

fect on performance as fatigue alone. This assumption is reasonable based on the ergonomics

literature. Specifically, Mehta and Cavuoto (2015) ([224] [p. 94]) state that “... muscle activa-

tion, perception of discomfort, and/or motivation, might have a greater contribution to fatigue

development than peripheral factors”. Fourth, the evaluation of our framework’s performance

was limited to focused lab experiments. Future studies should evaluate how this framework

performs in the field.

In our estimation, there are three main streams of research that can capitalize on our frame-

work and findings. First, studies should investigate how our framework can be extended to

simultaneously monitor and manage fatigue for hundreds of workers. While our current pre-

diction performance is excellent for an individual worker (and for typical predictive modeling

applications in the literature), it will suffer from a high false alarm rate if implemented across

the shop-floor. To alleviate this issue, future research should consider: (a) reducing the fre-

quency of data collection, which would increase the average time (but not samples) between

false alarms; and (b) controlling the false discovery rate [225], which is designed for testing
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multiple hypotheses. Second, there are several information systems, ethical and legal impli-

cations that arise from collecting workers’ performance data. Policies that account for these

implications are needed. Third, there is an excellent opportunity for operations research mod-

els that can optimize recovery (or alternatively minimize fatigue development) while meeting

the demands of the production schedule and the resource constraints. Such models will benefit

from the data-driven/real-time nature of our framework.

Supplementary material

In this study, the R programming language (https://www.rproject.org/) and MATLAB were

used to generate the results. Our modeling raw data, code and result files are available in the fol-

lowing repository: https:// www.dropbox.com/sh/i884pib7gb4n3u9/AACCdaonvdcysXcpMw9

a0DYca?dl=0.
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Chapter 4

Conclusion and Summary of Dissertation Contributions

4.1 Dissertation Contributions

Occupational fatigue has been known to be a potential cause of accidents and injuries in man-

ufacturing occupations. However, the management of occupational fatigue has been limited by

a dependence on subjective methods such as surveys or personal interventions for managing

individuals’ accidents or injuries. Development of wearable technology allows for better mon-

itoring of manufacturing workers. The combination of these technologies with advancements

in data science is leading to various research opportunities on the application of the Internet

of Things (IoT) as a robust method for the fatigue management in occupational environments.

These developments provide a path towards the implementation of fatigue management in prac-

tice. However, it is essential to study what equipment, sensors, type of data collection, and

which analyses are more efficient and user-friendly for fatigue management. This study aimed

to provide a solution for these research issues which are vital in manufacturing occupations.

This dissertation has several contributions to the literature related to creating safe manufactur-

ing workplaces through data-driven approaches, which includes: 1) exploring the effectiveness

of wearable sensors in fatigue detection, 2) comprehensive framework for fatigue management,

3) exploring technology adoption models for user-friendly sensor selection, 4) developing use-

ful metrics for fatigue measurement.

In chapter 2, we have the first model (Penalized Regression Model) which proves that

wearables can be used for detecting fatigue on the individual level in manufacturing occupa-

tions. We showed that combining accelerometers with a heart rate monitor provides optimal

results since we can capture multiple features of fatigue development in the tested manufactur-

ing tasks. Then, in chapter 3, we demonstrated that the unified modeling approach consisting
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of data collection, cross-validation, feature selection, bootstrapping and model development

with the wearable sensors can detect fatigue with high performance in the complex tasks such

as manual material handling and supply insertion, which are common tasks in most of the oc-

cupational environments. In this framework, the proposed modeling approach performs well

as long as the torso or heart rate sensor is present for the manual material handling and supply

insertion tasks, respectively. We were able to satisfy the constraints regarding ease of use and

usefulness by reducing the number of sensors to two while achieving the desired accuracy and

financial benefits. Regarding practicality, we recommend using a BioHarness sensor in which

the embedded accelerometer is used to monitor both the heart rate and torso simultaneously.

We showed how both statistical (e.g., HRR mean) and task-related features (e.g., back rotation

position) generated from these sensors are essential in predicting the fatigue status of the work-

ers and determining the fatigue type in manufacturing tasks, which would allow for improved

intervention strategies for specific workers after fatigue diagnosis.

4.2 Future Work

Common methods for fatigue detection in occupational tasks rely on using IMUs and heart rate

sensors. The current work showed fatigue management in occupational tasks based on using

the torso and heart rate sensors. Going forward, it is imperative to explore the performance of

the proposed fatigue management framework when put into practice. Therefore, future work

can test the proposed framework for fatigue detection/diagnosis within workforces such as

warehousing or construction.

In order to implement the developed analytical model into practice, the output from the

analytical model can be monitored over time. In chapter 3, we showed that the state of an indi-

vidual whether he/she is fatigued or not can be obtained from the analytical model. The output

of the analytical model was a binary variable (fatigued or non-fatigued); however, the probabil-

ity of being fatigued can also be obtained from the model. Therefore, to a) properly implement

the analytical model into practice and b) manage the trade-off between false alarms and early

detection of fatigue, the popular quality tool called control chart should be used to monitor the

probability of being fatigued over time. Through the use of a control chart, it is possible to
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measure the performance of the model in practice in terms of generating false signals when

the individual is not fatigued as well as the performance of the model in detecting the fatigued

individual. We can design the control chart considering practitioners’ criteria. For example,

what should be the performance of the analytical model if we aim to detect the fatigued state

for an individual with the probability of more than 90% when the individual is fatigued? By

using the standard control chart, we can detect large shifts in the average probability of fatigue.

However, there are several control charts such as EWMA or CUSUM in the literature of sta-

tistical process control (SPC) that detect small shifts in the process parameter. Also, several

sensitizing rules are recommended in the SPC literature to detect an out of control situation.

For example, if we observe 2 out of 3 observations more than 0.4 for the probability of being

fatigued, given an upper control limit of 0.5, we may classify the individual as feeling fatigued.

Therefore, an overall control chart can be used to monitor the probability of being fatigued in

practice using the output of the analytical model, and it will inform a practitioner to select the

appropriate analytical model that satisfies particular fatigue detection criteria.

In addition, while developing a fatigue detection model, other factors may have a signifi-

cant effect on the development of physical fatigue such as a) Task-related factors (task duration,

amount of walking, rest duration, and task difficulty) and b) Individual related factors (expe-

rience, history of injury, amount of exercise). By investigating how these factors influence

fatigue development, better intervention strategies may be established. Based on the current

findings for fatiguing body type, the interventions such as modifying work-rest scheduling, job

rotation, task redesign should be further developed and evaluated.

4.3 Overall Conclusion

This dissertation contributes to the increasing, but yet limited, research on the occupationally

related fatigue detection using wearable sensors. The findings suggest that occupational fa-

tigue can be measured by using torso and heart rate sensors, particularly for the complex tasks

such as manual material handling and supply insertion. Substantially, the low-cost sensors and

fatigue management framework recommended in this research may have implications for de-

termining the work-rest scheduling process. Furthermore, the visual analytics representation of
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important features may signify specific fatiguing body parts while the output of the analytical

models can be used for monitoring the probability of fatigue over time to detect fatigued work-

ers in general. The results of this dissertation can contribute to determining whether specific

recovery accommodations may be needed after fatigued workers have been identified in order

to improve their quality of life, increase their workplace productivity, and reduce work-related

musculoskeletal disorders with the goal of achieving both productivity and safety.
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