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Abstract 

 

The ability to rack an enemy missile while in-flight, whether to accurately predict the point of 

impact (POI), the point of origin (POO) or to destroy the missile in-flight, is greatly enhanced if 

the missile type and/or physical characteristics (type, size, payload, etc.) are known as a priori. 

Given the missile type/characteristics, a conditional missile tracking system can be developed 

using simulated missile fly-outs (6-DOF) based on the physics of that missile type. If the missile 

type or characteristics are unknown, assuming the known classes of missiles in the enemy’s 

arsenal, a rapid missile classification must be incorporated into the refined posterior tracking 

system. This tracking system is a two-stage tracking system. In the first stage, within a few 

milliseconds of radar detection, the missile is rapidly and accurately classified within into one of 

k classes. In the second stage, the specific tracking system tailored to that specific class is 

engaged for more accurate tracking. 

In this thesis, we focus on deep learning neural networks (DNN) to solve the rapid missile 

classification problem in this application. We demonstrate the superior performance of DNNs 

over single layer neural networks, as well as, classical generalized linear model, using 6-DOF-

fly-outs of three similar short-range rocket classes. We show that we can achieve 100% corrected 

classification within milliseconds of flight on our testing data (independent fly-outs). 
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Chapter 1 

Introduction 

The main focus in this thesis is the use of deep learning neural networks (DNN) and/or neural 

networks in aerospace applications.  Neural networks (NN) have been used successfully to solve 

non-linear regression problems (continuous response), as well as, the supervised and 

unsupervised classification problems (nominal or ordinal responses), across a plethora of fields 

and applications. For example, Carpenter, Hartfield and Burkhalter (2012) used a NN regression 

approach in surrogate modeling of various aerodynamic coefficients to speed up the process for 

reverse-engineering of missiles, in real time. Carpenter, Hartfield and Ahuja (2017) successfully 

applied ANNS for surrogate modeling of surface vorticity and Carpenter, Hartfield and Zhou 

(2018) addressed both the rocket identification problem (classification) and the tracking problem 

(regression).  

ANNs can be applied to either multivariate regression problems or the classification problems. 

In the regression context, neural networks can be viewed as a flexible class of nonlinear 

regression models, which, as Ripley shows, can be used to approximate any continuous 

functions, both univariate and multivariate. More specifically, any continuous function 𝑓: ℛ𝑝 →

ℛ𝑘 can be approximated uniformly on compacta by a general class of functions that includes 

neural networks and projection pursuit regression (with linear outputs in the hidden layer). 

Because of this, neural networks are considered to be universal function approximators.   
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In this thesis, we focus on deep learning neural networks (DNN) to solve the rapid missile 

classification problem in aerospace applications. In particular, we show that DNNs improve over 

the neural network approach used Carpenter, Hartfield and Speakman (2016).  We demonstrate 

the superior performance of DNNs over single layer neural networks, as well as, classical 

generalized linear model, using 6-DOF-fly-outs of three similar short-range rocket classes. We 

show that we can achieve 100% correct classification within milliseconds of flight on our testing 

data (independent fly-outs). 

The ability to track an enemy missile while it is in-flight, whether to accurately predict the 

point of impact (POI), point of origin (POO) or to destroy the missile in-flight, is greatly 

enhanced if the missile type and/or physical characteristics (type, size, payload, etc.) are known a 

priori. Given the missile type/characteristics, a conditional missile tracking system can be 

developed using simulated missile fly-outs (6-DOF) based on the physics of that missile type. If 

the missile type or characteristics are unknown, assuming the known classes of missiles in the 

enemy’s arsenal, a rapid missile classification must be incorporated into the refined posterior 

tracking system. This tracking system is a two-stage tracking system. In the first stage, within a 

few milliseconds of radar detection, the missile is rapidly and accurately classified within into 

one of k classes. In the second stage, the specific tracking system tailored to that specific class is 

engaged for more accurate tracking.  

In Chapter 2, we describe the concepts behind Deep Learning, In Chapter 3, we introduce the 

aerospace application that we focus on in this thesis and the associated data. In Chapter 4, we 

show the results.  Lastly, in Chapter 5, we describe further research.  
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Chapter 2 

Deep Learning 

The main statistical learning topic in this thesis is Deep Learning (DL) or Deep Neural 

Networks (DNN).     Deep Learning is a machine learning algorithm designed to mimic the 

structure and function of the brain in the form of artificial neural networks. In other words, 

DNNs are feedforward, artificial neural networks (ANN) with multiple layers of non-linear 

hidden units, see Figure 1 for an illustration.  Over the past few years, developments in machine 

learning algorithms and computer hardware have led to various deep learning methods of 

learning feature hierarchies such as a wide array of deep architectures including neural networks 

with many hidden layers (Vincent et al., 2008) and graphical models with many levels of hidden 

variables (Hinton et al, 2006). According to the theoretical results reviewed by Bengio (2009),in 

order to learn the kind of complicated functions that can represent high-level abstractions, deep 

architectures may be needed. And Rumelhart (1986) showed the experimental results with deep 

architecture can be obtained with deep neural networks model.  

In this modern “big-data” era, data sets are not only growing in terms of the number of 

observations, but in terms of the number of the dimensions of the feature space, so finding the 

optimal output representation with a shallow model of Machine Learning algorithms using one 

or two layers of data transformation is not always possible.  In these situations, DL provides a 

multi-layer approach to learn data representations, typically performing with a multi-layer neural 

network. Deep learning approaches such as Deep Feedforward Neural Network (DFNN), 
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Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) have been proved 

highly successful in predicting a wide variety of problems (i.e. image classification, pattern 

recognition, sequential tasks, object detection, speech recognition, autonomous driving, etc.). 

And feedforward neural networks are especially widely used in classification problems.  

 

Figure 1: Illustration of the basic difference between NN and DNNs. 

 

In this chapter, we describe Neural Networks (NN) with Deep Neural Networks (DNNs). In 

Sections 2.1-2.3, of this chapter, we describe the basic NN in detail, including the mathematics, 

activation functions, and the algorithms for training these simple neural network, respectively.  

In Section 2.4, we describe the deep learning neural network (DNN). 

 

2.1 Basic Neural Network 

In this section, we describe the basic neural network and all of its various components. In 

Section, 2.1.1., we describe the basic structure or architecture of a feed-forward, single hidden 
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layer, neural network with back-propagation and, in Section 2.1.2., we go into detail about the 

different activation functions. 

 

    2.1.1 Neural Network structure 

A Neural Network, in general, is made of the following parts: input layer, hidden layer and 

output layer. For basic neural network, it only has one input layer, one hidden layer and one 

output layer. All units in the neural network are also called neurons. All input variables (input 

neurons) are fed to the input layer and the output layer is composed of all output variables 

(output neurons). The units in hidden layers are hidden neurons, they are derived from applying 

non-linear function (activation) of a linear combination of its inputs.  

The Figure 2 shows a neural network for classification with one input layer (8 input neurons), 

one hidden layer (4 hidden neurons) and one output layer (4 output neurons).  

 

 

 

 

 

 

 

 

 

Figure 2: Neural Network with one hidden layer (8:4:4) 
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 The neural network in Figure 2 is a classic feedforward neural network. And it can be 

mathematically generalized by following notations in Hastie, et al. (2008). In the Figure 2, we 

are showing a 4-class classification since there are 4 output neurons. There are 4 target 

measurements 𝑌𝑘, 𝑘 = 1,2,3,4, each being coded as a 0-1 variable for the 4th class. There are 8 

input neurons 𝑋𝑛 (𝑛 = 1, … ,8) in the input layers.  

      Derived features 𝑍𝑚 (m = 1, … , 𝑀) are linear combinations of the 8 inputs which are 

“activated” by the activation function 𝜎(. ). The targets 𝑌𝑘 (𝑘 = 1,2,3,4) are the linear 

combinations of the derived features 𝑍𝑚 (m = 1, … , 𝑀). 

      𝑍𝑚 = 𝜎(𝛼0𝑚 + 𝛼𝑚
𝑇𝑋), 𝑚 = 1, … , 𝑀, 

      𝑇𝑘 = 𝛽0𝑘 + 𝛽𝑘
𝑇𝑍, 𝑘 = 1, … ,4, 

     𝑓𝑘(𝑋) = 𝑔𝑘(𝑇), 𝑘 = 1, … ,4, 

where 𝑍 = (𝑍1, 𝑍2, … , 𝑍𝑀) is the derived features vector, 𝑋 = (𝑋1, 𝑋, … , 𝑋8) is the input vector, 

T = (𝑇1, 𝑇2, … , 𝑇4) is the output vector referred to as the target vector. The function 𝑔𝑘(∙) is the 

identity function of neural nets taking nonlinear regression approach, it gives a final 

transformation of the output vectors T.  

 

      2.2 Neural Network Activation 

      An activation function is actually a non-linear transformation function that computes a 

“weighted sum” of its inputs, adds a bias and then decides whether the information that the 

neuron is receiving is relevant for the given information or should it be ignored.  

𝑌 = 𝛴(𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑖𝑛𝑝𝑢𝑡) + 𝑏𝑖𝑎𝑠 

(2.1.1) 
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   Here, the range of the value Y is (−∞, +∞). The standard of taking the information into 

account or not depends on different activation function, such as sigmoid, tanh and ReLU.  Figure 

3 illustrates a sigmoid function =
1

1+𝑒−𝑥
 . 

 

 

 

 

 

 

 

                                                 Figure 3: Sigmoid activation function 

       As illustrated, we see that the sigmoid function is nonlinear, and any combinations of this 

function will still be nonlinear. From the above Figure 3, it’s easy to find out any small changes 

in X will lead a big change in Y which would give a good shot for classification prediction. 

However, Y would respond less to changes in X when Y is going toward to the end. This 

indicates that the gradient in that area will be small, which will bring the problem of 

“disappearing gradients” letting network refuse to learn further. 
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  For Tanh function 𝑓(𝑥) = tanh(𝑥) =  
2

1+𝑒−2𝑥 − 1: 

 

 

 

 

 

 

Figure 4: Tanh activation function 

       The tanh function is actually just a scaled sigmoid function, since tanh(𝑥) =

2 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) − 1, and it is also nonlinear. Compared with sigmoid function, even though the 

gradient is stronger because of its steeper derivatives, it still has the vanishing gradient problem.  

      For ReLU function (Rectified Linear Unit), 𝑓(𝑥) = max ( 0, 𝑥 ) :  

 

 

 

 

 

 

 

Figure 5: ReLU function 

      The range of ReLU function is [0, ∞), which means it only gives an output if x is positive, 

otherwise 0. Although it looks like linear, it is nonlinear in nature. The benefit of running ReLU 

activation function is due to its sparsity. If we are given a big neural network with a lot of 
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(2.1.3) 

(2.1.2) 

(2.1.4) 

neurons, using sigmoid or tanh will be very costly since they will cause activations to be 

processed to describe the output of a network by using almost all neurons.  It is because ReLU 

only allows positive values to pass that it will definitely speed up the process and make the 

activations sparse and efficient. Therefore, ReLu tends to provide a lighter network with fewer 

neurons so that it can bring down the possibility of occurrence of a dead neuron.  

      In summary, Sigmoid function will work better if classification is binary, tanh functions are 

not widely used because of the dead neuron problem, and ReLU is one of the most widely used 

activation function and usually yields better results compared with Sigmoid and Tanh. 

 

      2.3 Neural Network Backpropagation 

  The unknown connecting parameters between layers are often called weights, and these 

values are produced for modelling fit. For the neural net given above, it consists of M(n+1) + 

K(M+1) weights. We assume 𝜃 be the vector of length M(n+1) + K(M+1) containing the weights 

               {𝛼0𝑚, 𝛼𝑚, 𝑚 = 1,2, … , 𝑀} and {𝛽0𝑘, 𝛽𝑘, 𝑘 = 1,2, … 𝐾}, 𝑤ℎ𝑒𝑟𝑒 𝐾 = 4. 

  For regression problem, we use sum-of-squared errors to be the error function measuring fit: 

𝑅(𝜃) = ∑ ∑(𝑦𝑖𝑘 − 𝑓𝑘(𝑥𝑖))2,

𝐾

𝑘=1

𝑁

𝑖=1

 

where N is the total number of observations. 

  For classification problem, we use squared error or cross-entropy (deviance): 

𝑅(𝜃) = − ∑ ∑ 𝑦𝑖𝑘 log 𝑓𝑘(𝑥𝑖) ,

𝐾

𝑘=1

𝑁

𝑖=1

 

where N is the total number of observations. 

  In this way, the classifier will be 𝐺(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑓𝑘(𝑥). 
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(2.1.5) 

(2.1.6) 

(2.1.7) 

(2.1.8) 

  In neural network, gradient descent called back-propagation is commonly used to minimize 

𝑅(𝜃). Actually, the process of how neural networks assess its own accuracy and automatically 

adjust the weights across all the node connections to try to improve that accuracy is called 

backpropagation. Generally, the backpropagation is used to train Deep Neural Network.  

       Assume 𝑧𝑚𝑖 = 𝜎(𝛼0𝑚 + 𝛼𝑚
𝑇𝑥𝑖) and 𝑧𝑖 = (𝑧1𝑖, 𝑧2𝑖 , … , 𝑧𝑀𝑖), the backpropagation for 

squared error loss will be: 

𝑅(𝜃) ≡ ∑ 𝑅𝑖

𝑁

𝑖=1

= ∑ ∑(𝑦𝑖𝑘 − 𝑓𝑘(𝑥𝑖))2,

𝐾

𝑘=1

𝑁

𝑖=1

 

with derivatives 

                                    
𝜕𝑅𝑖

𝜕𝛽𝑘𝑚
= −2(𝑦𝑖𝑘 − 𝑓𝑘(𝑥𝑖))𝑔′𝑘(𝛽𝑘

𝑇𝑧𝑖)𝑧𝑚𝑖, 

𝜕𝑅𝑖

𝜕𝛼𝑚𝑙
= − ∑ 2(𝑦𝑖𝑘 − 𝑓𝑘(𝑥𝑖))𝑔′

𝑘
(𝛽𝑘

𝑇𝑧𝑖)𝛽𝑘𝑚𝜎′(𝛼𝑚
𝑇𝑥𝑖)𝑥𝑖𝑙 .

𝐾

𝑘=1

 

      Based on these derivatives, the new gradient descent at the (r+1)st iteration will become: 

𝛽𝑘𝑚
(𝑟+1) = 𝛽𝑘𝑚

(𝑟) − 𝛾𝑟  ∑
𝜕𝑅𝑖

𝜕𝛽𝑘𝑚
(𝑟)

,

𝑁

𝑖=1

 

𝛼𝑚𝑙
(𝑟+1) = 𝛼𝑚𝑙

(𝑟) − 𝛾𝑟  ∑
𝜕𝑅𝑖

𝜕𝛼𝑚𝑙
(𝑟)

,

𝑁

𝑖=1

 

where 𝛾𝑟 is the learning rate, which is: 

𝜕𝑅𝑖

𝜕𝛽𝑘𝑚
= 𝛿𝑘𝑖𝑧𝑚𝑖 , 

𝜕𝑅𝑖

𝜕𝛼𝑚𝑙
= 𝑠𝑚𝑖𝑥𝑖𝑙  . 

      The 𝛿𝑘𝑖 and 𝑠𝑚𝑖 are the “errors” in the hidden layer and output layer units from the present 

model respectively. By definitions, these errors satisfy 
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(2.1.9) 
𝑠𝑚𝑖 = 𝜎′(𝛼𝑚

𝑇𝑥𝑖) ∑ 𝛽𝑘𝑚𝛿𝑘𝑖

𝐾

𝑘=1

, 

which is known as backpropagation equations. The new gradient descent can be calculated with 

backpropagation (also known as two-pass algorithm procedure) applying this equation. In the 

forward pass, using the formula (2.1.1), the fixed weights and predicted values 𝑓𝑘̂(𝑥𝑖) can be 

given. In the backward pass, we compute errors 𝛿𝑘𝑖 first, and then get the errors 𝑠𝑚𝑖 through 

(2.1.9). Then, we apply both errors into the equation (2.1.8) to compute the gradients for the 

updates in (2.1.7).  

 

2.4 Deep Neural Network 

      As mentioned previously, a deep neural network is an ANN with multiple hidden layers. By 

increasing more hidden units and layers, it can help to run a deep and highly parameterized 

neural networks to improve the prediction performance. Especially for the high dimensional data.  

      Not like machine learning, features of data have to be defined before modeling, in Deep 

Neural Networks, the hidden layers offer the auto-identify features to the means. The structure of 

deep neural network is shown as below: 
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Figure 6: Deep feedforward neural network 

      Similar to the regular neural networks, deep feedforward neural network is also mainly 

composed of three parts: one input layer(𝑥1, 𝑥2, … , 𝑥𝑝), multiple hidden layers, and one output 

layer(𝑦1, 𝑦2, … , 𝑦9). 𝑊(∙) is the weight function adding weight from each neuron in the last layer 

to each neuron in the next layer. Because Deep Neural Networks can perform successive non-

linear transformations across each layer which equips itself with a strong ability to model very 

complex and non-linear relationship. DNNs is also fit for solving traditional regression and 

classification problems. Especially, when the dimensions of the data are very large. However, if 

the number of observations and feature inputs decreases, traditional shallow machine learning 

methods and regular neural network tend to perform just as well, sometimes, even more efficient. 

      In deep neural networks, there are many DNN extensions models. For instance, Deep 

Feedforward Neural Networks (DFNN) is extensively used for pattern recognition and visual 

classification tasks and object detection. Convolutional neural networks (CNN) is often used for 

image/video recognition, recurrent neural networks (RNN) is commonly used for pattern 
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recognition and sequential tasks like time series prediction, sequence labeling and sequence 

classification. Long short-term memory neural networks (LSTM) are advancing automated 

robotics and machine translation.  

      However, overfitting is a serious problem in such networks since it is hard for large networks 

to deal with overfitting by combining the predictions of many different large neural nets at test 

time. Geoffrey Hinton, et.al., (2014) found out that Dropout is a useful technique for addressing 

Neural Networks’ overfit problem. Generally, Dropout can sample from an exponential number 

of different “thinned” networks during training. And when we are running the model for test 

dataset, it can approximate the effect of averaging the predictions of all these thinned networks 

by simply using a single untinned network that has smaller weights. This process has been 

proven that it is able to reduce overfitting significantly and give major improvements over other 

regularization methods. 
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Chapter 3 

Application of DNN in Aerospace 

Rapid Projectile Classification in Support of Missile Tracking 

As we mentioned in the introductory chapter, in this thesis, we focus on the projectile 

(munitions, rockets, missiles) classification problem.  The ability to track an enemy missile while 

it is in-flight, whether to accurately predict the point of impact (POI), point of origin (POO) or to 

destroy the missile in-flight, is greatly enhanced if the missile type and/or physical characteristics 

(type, size, payload, etc.) are known a priori. Given the missile type/characteristics, a conditional 

missile tracking system can be developed using simulated missile fly-outs (6-DOF) based on the 

physics of that missile type. If the missile type or characteristics are unknown, assuming the 

known classes of missiles in the enemy’s arsenal, a rapid missile classification must be 

incorporated into the refined posterior tracking system. This tracking system has two stages. In 

the first stage, within a few milliseconds of radar detection, the missile is rapidly and accurately 

classified within into one of k classes. In the second stage, the specific tracking system tailored 

to that specific class is engaged for more accurate tracking.  

For our application we decided to work with the classification of short range munitions. Figure 

7 displays images of three rockets/RAM-threats for which we demonstrate our approach in this 

paper, along with their physical descriptions.  These munitions are the types of munitions that are 

often shot from on enemy camp to the other. During the height of the war in Iraq, our US bases 

places were constantly under attack with these types of weapons.  The US forces would literally 
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like to have the capability to detect, identify and either shoot these out of sky before they hit on 

the base or at least predict the point of impact (POI).  Also, they may want to “reverse-track” 

these munitions to determine the point of origin (POO), so that they may target the enemy.    

 

 

 

 

 

 

 

 

 

Figure 7: Description of Example Threat/Target Physical Parameters used in this paper. It is 
clear that the 70 mm and 107 mm rockets have similar physical characteristics, as well as, expected flight 

performances, but the 122 mm rocket is much bigger than both with typically longer  range and time of flight. 

 

It is clear that the 70 mm and 107 mm rockets have similar physical characteristics, as well as, 

expected flight performances, but the 122 mm rocket is much bigger than both with typically 

longer range and time of flight.  Figure 8 provides illustrations typical flight trajectories for the 

70, 107 and 122 mm rockets using in this paper. The upper left panel shows the range over time 

for three simulated rockets, the upper right shows the speed over time, the lower left shows the 

altitude over time and the lower right the altitude over the downrange values.  
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Figure 8: Example trajectory data for the 70, 107 and 122 mm rockets using in this paper. 

The upper left panel shows the range over time for three simulated rockets, the upper right 

shows the speed over time, the lower left shows the altitude over time and the lower right 

the altitude over the downrange values.  

 

When we set out to work on this problem, the goal was to do threat-type classification and 

identification employing conventional radar measurement of the threat's position in the radar 

frame transformed to Cartesian coordinates, which represent cross range, down range and 

altitude. The radar data are converted to Cartesian ENU coordinates. These coordinates are 

rotated and translated to match coordinate system in the training data (3DOF); see Figure 9.  The 

converted trajectories will serve as the input into the previously trained and validated Neural Net 

Prediction models while Target type and caliber are predicted. No additional data input sources 

or signal processing are is required. The neural network approach can provide, valuable threat 
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information such as point-of-origin (POO) estimation, point-of-impact (POI) prediction and 

prediction of type/caliber. 

 

 

 

Figure 9: Graphical representation of how the raw radar data is converted to inputs. Radar 

data converted to Cartesian ENU coordinates. The coordinates are rotated and translated to match 

coordinate system in the training data (3DOF). The converted trajectories, (x,y,z,time), are input into 

the previously trained and validated NN prediction models 

 

Simulated Data for Fly-outs (3DOF): Obviously, for this project, we cannot actually obtain 

real radar data on real rocket fly-outs so the data we used was simulated (3DOF) data that we 

obtain from Dr. Hartfield in the Department of Aerospace Engineering.  The three degree-of-

freedom (3DOF) simulations are based on equations of motion from fundamental physics, 

translational degrees-of-freedom only. The motion of the mass center is simulated. Assumes a 

flat, non-rotating, constant gravity earth model.  The position, velocity and acceleration vectors 

are calculated. The parameters required to model threat target are, thrust vs. time (rockets), V0 

(mortars), mass vs. time, drag coefficient vs. Mach number. The Simulation is stochastic via 

randomization of parameter can be randomized. These simulations are based on validated using 

actual measured trajectories. See Figure 10 for graphical description of the forces acting on the 

threat target, modeled in the 3DOF simulations, and Figure 11 for a graphical description of this 

process. 



18 

 

 

Figure 10: Forces acting on the threat target which are modeled in our 3DOF simulations. The 

motion of the mass center is simulated. Assumes a flat, non-rotating, constant gravity earth 

model.  The position, velocity and acceleration vectors are calculated. The parameters required to 

model threat target are, thrust vs. time (rockets), V0 (mortars), mass vs. time, drag coefficient vs. 

Mach number. The Simulation is stochastic via randomization of parameter can be randomized. 

These simulations are based on validated using actual measured trajectories 

 

 

Figure 11:  Threat target dynamic three degree-of-freedom (3DOF) simulation. The three degree-

of-freedom (3DOF) simulation are based on equations of motion from fundamental physics, 

translational degrees-of-freedom only.  

 

In Section 3.1., we provide the background information and data description for this 

application. In Section 3.2., we describe the training, validation and testing data sets.                                                                       
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3.1 Data Description 

      The data were imported into R studio Version 1.0.153 and analyzed using various procedures 

in R. There are 1194864 observations (for three missiles in total) in our stimulated missile radar 

data.  The data has 1500 simulated trajectories/flights, 500 trajectories for each caliber (70mm, 

107mm and 122 mm), and every observation has the conventional radar measurements of the 

threat’s position in the radar frame transformed to Cartesian coordinates (cross rage, down rage 

and altitude). The converted trajectories, (x, y, z, time) are the inputs in our model,  

      Our goal is to classify three different types of rocket in less than 1 to 2 seconds. The graph 

below shows the basic information about these three rockets: 

       

 

 

        

 

 

  

 

 

 

 

      

 

Figure 12: Basic trajectory information about three rockets 

(a) Altitude versus Time (b) Downrange versus Time 

(c) Cross range versus Time (d) Altitude versus Downrange 
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      From the figure 12, we can see that 70s and 107s tend to have very similar flight trajectories. 

There is also a great amount of variability for the 122s. 

      Before we start the analysis, we divide the data from each class into three data sets for 

training, validation and test respectively. We use the training data set to build the predictive 

models, and during the training process, we evaluate the models using validation data set. Once a 

final model has been selected, this model will be tested using the independent data “test dataset” 

.The figure below graphically describes this process for an experiment with 3 classes of missile 

and 500 fly-outs for each class. 

 

 

 

 

 

 

 

 

 

Figure 13: Process of data management.  

 

      After we partitioned the data, the summary for the datasets is shown in the below figure. 
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Figure 14: Case study summary. In this figure, TOF stands for Time Of Flight, TOA represents 

Time Of Apogee, and Apogee is the maximum value of altitude for all flights. This figure shows 

us that 122 mm rockets fly longest and highest , at the meantime, it also flies furthest. Besides, 

it’s also easy to see, not only 70mm and 107 mm rockets have similar physical characteristics ( 

which we know from the figure 7), they also have the similar time of flight and apogee. Also, 

when the size is getting bigger, it’s not necessary that the further and higher the rockets will fly. 

The above figure clearly indicates that 70mm rockets fly higher and further compared with 

107mm rockets.  

 

3.2 Neural Network  

3.2.1 Analysis Workflow 

      Put cross range (x), downrange(y), altitude (z) and time in the input layer, feed three classes: 

rocket 70mm, 107mm and 122 mm into the output layer. 
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                                       Figure 15: Regular Neural Network architecture 

 

3.2.2 Fitting Neural Network 

     I use R package “nnet” to construct standard neural network with one hidden layer of sigmoid 

function neurons. There are several parameters which have always provided better results when 

changed from their defaults. One is to add a small decay to the weights, so they decrease over 

time unless reinforced by new data. The second is to increase the maximum number of iterations 

before training halts, from 100 to 100000. 

 

      In addition, there is another very vital parameter, the number of hidden neurons to take in the 

hidden layer. There are some thumb rules that people use, such as never more than twice the 
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number of inputs or 1/30 of your training samples, but these are not specific enough to reliably 

give a good result. Based on our data, I tried several numbers. 

      The table below shows the prediction accuracy on the test data with time less than 15 

seconds. 

 Size 70 Size107 Size 122 

Hidden units 10 98.75% 99.41% 98.96% 

Hidden units 15 95.03% 98.47% 96.47% 

Hidden units 120 99.55% 98.97% 98.83% 

 

Table 1: Prediction accuracy based on test data within 15 seconds 

       Below are the fitted predicted probability plots for each of the three missile calibers, based 

on a feed-forward neural network with one hidden layer under 15 seconds. The plots represent 

the computed probabilities as a function of time on the independent Testing data. 
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Figure 16: Regular Neural Network predicted probability plots under 15 seconds 

 

      According to the above plots, we can see it’s hard to 100% classify the missile in the first 5 

seconds based on one-hidden layer neural network.  

     Here are the probability plots after running one-hidden layer neural network with 30 seconds. 

 

 

 

 

 

 

 

 

 

 

Figure 17: Neural Network predicted probability plots under 30 seconds 
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      The above plots indicated that based on the one-hidden layer neural network with 30 

seconds, we can start classifying three calibers 100% correctly after 6-7 seconds.  

 

3.3 Deep Neural Network 

3.3.1 Deep Neural Network workflow 

      Among all neural network approaches in deep learning, we choose deep feed-forward neural 

network to improve the prediction accuracy for our missile radar data. We build deep neural 

network in R using Package “ keras”. 

 

Figure 18: Deep Neural Network architecture 

      Before we decide on the four hidden layers, we compared the neural networks with different 

hidden layers, according to the thumb rules, deep neural network usually choose 4-30 hidden 

layers. The process of choosing number of hidden layers will be shown in detail in next session. 

 

3.3.2 Fitting deep feed-forward neural network 

      To find an optimal DNN model, the first task is to tune different parameters, such as 

increasing epochs. Epoch describes the number of times the algorithm sees the entire dataset. In 
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another word, the more complex the features and relationships in the data, the more epochs you 

will require for your model to learn, adjust the weights and minimize the loss function. 

      The below plots show how the loss function improve for each epoch based on the deep feed-

forward neural network with ReLU activation function.  

 

 

 

 

 

 

 

 

 

 

Figure 19 Deep Neural Network probability plots varying from number of hidden units  

H = 10,10  

Accuracy: 91.18% 

H = 30,30 

Accuracy: 94.55 % 

H = 60,60  

Accuracy: 95.07% 
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      According to the above plots, we see that the accuracy will get better when the number of 

hidden units is increasing. Even though it looks hidden units 60 gives a better accuracy than 30, 

but since it will cost hidden units 60 more time to finish modeling, and the accuracies are similar 

to each other, we choose 30 as our number of hidden neurons for deep feed-forward neural 

network to classify the three calibers.  

      After we choose hidden units 30, then we need to decide on the number of hidden layers. 

 

 

Figure 20: Deep Neural Network probability plots varying from number of hidden layers 

 

      The above plots are the fitted predicted probability for each of three missile calibers, based 

on four hidden layers with different number of hidden units. Based on the time of correctly 

classifying and its accuracy distribution, 4 hidden layers looks do a better job. 

      However, with these four hidden layers containing 30 hidden units, we still cannot get 100% 

correct classification in the first 5 seconds. Then we transform the data inputs and put it into the 

new deep feed-forward model again. 

 

 

Hidden 30,30 

Accuracy: 94.55 % 
Hidden 30,30,30 

Accuracy: 95.13 % 

Hidden 30,30,30,30 

Accuracy: 97.52 % 
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3.3.3 Deep Feed-forward Neural Network Analysis Modeling 

      For deep feed-forward neural network modeling, I use “keras” R package and convert x, y, z 

and time into a long multivariate vector. 

Figure 21: Multivariate Missile Classification 

 

      In this way, if we subset the data into 2000 ms (two seconds), there would be 40 time points ( 

2*20) totally in the subset data set, so the input becomes : 

 

      For the training dataset, I subset the dataset with the first 1000 ms, and put the input vector of 

length 60 (20 Xs, 20Ys, and 20Zs) in the input layer into the network. With 4 hidden layers, 

containing 25 units each, the network becomes complex, but is able to produce 100% correct 

classification for the independent Testing data. 

 

Figure 22: Rapid Missile / Rocket Classification Process 
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       After we run the above deep feed-forward neural network modeling with the updated 

transformed inputs, our prediction accuracy tables are as below:  

 

Figure 23: Rapid Missile / Rocket Classification Accuracy Table 

      From the above table, we can see with the 1000 ms neural network, we can classify three 

missiles 100% correctly. And with the time increasing, the accuracy is also developing.  
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Chapter 4 

Conclusion and Discussion 

       In this thesis, we presented two methods to obtain the correct classification for the missile 

radar data in the first 5 seconds. In chapter 2, we performed regular neural network ( one-hidden-

layer neural network) to classify the three missiles. We compared the accuracy varying from 

different hidden units and pick the optimal hidden units for the final basic neural network model. 

In the test dataset, we proved the we can classify three rockets in the first 5 seconds around 98% 

correctly. In chapter 3, we performed deep neural network with and without transformed inputs 

(x, y, z and time). For the untransformed dataset, we used the “keras” R package to construct 

deep feed-forward neural network models for different hidden layers. By experimenting on 

different hidden layers and units, we finally pick the optimal one. For the transformed dataset 

which we transformed the four inputs into three multivariate input vectors, after trying different 

number of hidden layers and units based on the thumb rule, we found out the deep feed-forward 

neural network with 4 hidden layers each containing 25 units is able to provide 100% 

classification in the 1.25 seconds.  In a word, we have shown that advanced machine learning 

techniques, like deep learning (Deep Neural Network) can perform very well when it comes to 

the classification problem for the complex data.  

       Future research will focus on expanding the design space to cover more general collections 

of missiles, the use of higher fidelity data. And develop recurrent neural network to treat the 

inputs as a times series data and add the memory ability into the neural network so that it can 
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classify the objects in a shorter time with 100% accuracy. The other aspect of future research 

will be working on if there is a possibility that we can combine the recurrent neural network 

(RNN) with deep feedforward neural network (DNN) as RNN is good for time series prediction 

and DNN is good for pattern recognition.  

       In addition, in our paper, we don’t have the issue of overfitting because the data we have is 

stimulated and we already split the data into training, validation and testing datasets. Therefore, 

we don’t use the technique Dropout to solve the overfitting problem which neural networks 

usually bring out.  

       Finally, based on our deep feed-forward neural network model, it can provide a statistical 

approach for missile engineers to get the high-efficiency classification in a relatively short time 

given the first 1-2 second data sets. 
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