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Abstract 

 

 

Energy security and food security are global challenges for people across the world. Research 

examining land use for bioenergy crops is critical because it pertains to issues of food-fuel 

competition. This dissertation is composed of three chapters; first two chapters focusing on 

problems of both energy security and food security by doing an economic analysis of scenario 

where farmers are converting their land from producing conventional crops to adopt bioenergy 

crops as a new agribusiness opportunity, whereas third chapter focuses on only food security 

problem by analyzing the impact of smoking on family’s food security status. Chapter 1 does a 

descriptive analysis and an economic analysis for adoption of switchgrass as a bioenergy crop. 

This study uses real yield data for switchgrass comprising of 21 years of observations from a 

long-term experiment in Alabama. The results show that adoption of switchgrass as a bioenergy 

crop can be a viable addition to the crop-mix which can both improve profitability as well as 

reducing the variability of returns in addition to other important agronomical and environmental 

benefits. Chapter 2 investigates the economic incentives for loss-averse and present-biased 

farmers to divert a share of their land to bioenergy crops (namely, miscanthus and switchgrass) 

by employing an economic model based on prospect theory. Numerical simulation is conducted 

for 1,919 U.S. counties under a range of behavioral preferences to identify the impact of loss 

aversion on bioenergy crop adoption and how this impact is influenced by various biomass 

prices, discount rates, credit constraint scenarios, and policy instruments. Results show that all 
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else equal; if researchers ignore farmer’s loss aversion then they will over-estimate miscanthus 

production and under-estimate switchgrass production. We have also expanded our numerical 

simulation to cover two policy instruments. The aim of Chapter 3 is to see the impact of cigarette 

smoking on food security. The study has used survey data from National Health and Nutrition 

Examination Survey (NHANES). The study finds that cigarette smoking is associated with 

decreased food security and food insecurity worsens due to more smoking. 
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Chapter 1. Will Switchgrass as a Bio-crop be Adopted by Farmers? 

1.1 Introduction: 

People across the world are seeing biofuels as a potential solution to global challenges: energy 

security, economic development and mitigation of climate change. Biofuels such as ethanol are 

renewable fuels and are produced from bio-crops such as corn, sugarcane, miscanthus, and 

switchgrass. They can be used as a substitute for fossil fuels, which are subject to depletion and 

contribute significantly to global warming. The U.S. and Brazil are major ethanol producers in 

the world and account for over 90% of the world’s ethanol production (Worldwatch Institute 

2006). Ethanol can be broadly classified into two categories based upon the raw material used for 

its production: grain ethanol and cellulosic ethanol. Grain ethanol is produced from sugar and 

starch from plants such as corn. On the other hand, cellulosic ethanol is produced from wood, 

crop residues and grass such as switchgrass. Most of the ethanol production in the USA is from 

corn. However, there have been concerns as corn grain can be used to feed people or animals. 

Cellulosic ethanol (such as from switchgrass), on the other hand, does not have a direct influence 

on food prices and food supply (Runge and Senauer, 2007).  

The 2007 Energy Independence and Security Act set a goal of 36 billion gallons of 

renewable fuel use by 2022. It recommends that 21 billion gallons should be produced from 

feedstock other than corn. Although cellulosic biomass demand is increasing and switchgrass is 

one of the promising bio-crops due to its agronomical, environmental, and economic benefits, it 

is still not adopted by farmers commercially for energy use. One of the reasons for non-adoption 

can be farmers’ lack of information about the two most critical factors in adoption of any new 

crop, its profitability and riskiness relative to existing crop systems. Switchgrass production may 

be a profitable alternative, but questions still remain as to its competitiveness with the other 
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enterprise alternatives that farmers can adopt (James et al. 2010).  A farmer will adopt 

production of switchgrass only when it will provide more advantages than conventional options. 

On the other hand, a farmer may prefer conventional options as associated returns and risks may 

be better known and understood. This study seeks to provide a better understanding of the 

potential of switchgrass as a bio-crop using an economic analysis to evaluate profitability and 

risks associated with switchgrass relative to conventional crops. 

Some characteristics of bioenergy perennials make them risky choices. From an 

economic point of view, most of the previous studies have focused on production cost analyses, 

such as making enterprise budgets, ascertaining cost of producing ethanol from switchgrass, or 

ascertaining farmers’ willingness to grow switchgrass as a bio-crop.  A few studies have 

calculated the average profitability of different bio-crops (e.g. Heaton et. al.2004). Also, a few 

studies have calculated the yields and prices at which a producer would cover costs of production 

(Mooney et al., 2009). Further, a few studies went one step ahead and did comparative breakeven 

analyses and calculated the yield or price required for a producer to earn profit at least equal to 

the return on a reference traditional crop (Jain et al., 2010).  

All these studies used secondary or simulated data and haven’t said much about risk. In 

the absence of adequate real yield data on bio-crops, studies have relied on general crop growth 

simulation models (Dolginow et al., 2014). The other approach was to statistically estimate 

yields of bio-crops across time, using a one-period-lagged, linear and plateau function and using 

residuals to simulate the probability distribution of random variability around expected yields 

(Clancy et al., 2012). One study also relied on interview responses and recorded secondary data 

for short-term empirical distributions of bio-crop yields (Bocqueho & Jacquet, 2010).  
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There are two novel parts of this paper, first is the use of actual yield data for switchgrass 

(21 years) from a long-term experiment on switchgrass in south-central Alabama, Macon 

County. Second is a descriptive analysis to assess and review some of the important factors that 

help farmers understand the various advantages/disadvantages that may arise from adopting 

switchgrass as a bio-crop. By doing risk and return analysis using actual yield data and analyzing 

the information gained from literature, this study offers broad insights by explicitly accounting 

for risk in addition to relative profitability. 

 In the section ‘Descriptive Analysis’, some of the important factors that could be 

considered by farmers before adopting switchgrass as a bio-crop are discussed. Then a 

theoretical model is developed in the section on the ‘Conceptual Framework.’ The ‘Methodology 

and Data’ section presents the risk and return analysis. Two hypothetical sample farms of 400 

acres each are used, one sample with 200 acres each of two conventional crops, corn and cotton, 

and, the other with one additional crop of switchgrass taking 5%, 10%, 15%, 20%, and 25% 

acres away from each conventional crop. A simulation with 1,000 iterations calculates profit/loss 

and return on investment (ROI) for different options including the case of market failure of 

switchgrass. Then based on analysis of these sections, this study will offer insights on adoption 

of switchgrass as an energy crop. 

1.2 Descriptive Analysis 

To address the question of adoption of switchgrass, economic analysis alone is not sufficient. A 

farmer may consider some other important factors, which can play an equally important role in 

deciding on the adoption of switchgrass as a bio-crop. In this section, I will review such factors. 

For this, first I will analyze the future of ethanol production in USA, specifically the 

future of cellulosic ethanol. If the future does not seem good, then there is no point in discussing 
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adoption of switchgrass as a cellulosic biofuel feedstock. Next, I will analyze the potential of 

switchgrass as a cellulosic bio-crop by evaluating its agronomical, environmental, economic and 

other benefits. The technical and economic feasibility to convert switchgrass into ethanol will 

also be carefully analyzed. Lastly, current subsidies and various policy regimes will be studied to 

throw light on the support program/subsidy for the farmers, which can strongly influence the 

farmers’ decision. 

1.2.1 Future of ethanol production in USA 

Every year in the last decade ethanol production has increased in the United States. In 2018 the 

U.S. produced 15.8 billion gallons of ethanol which is a 10.5% increase as compare to 2014 

(U.S. EIA, 2018). Ethanol could replace 30% or more of U.S. gasoline demand by 2030 (US 

Department of Energy, 2009). Several policies to promote the use of renewable sources of 

energy including cellulosic ethanol have been implemented in the USA (Zegada et al 2013). 

There is a goal of 36 billion gallons of renewable fuel use by 2022, set by the Energy 

Independence and Security Act of 2007 (EISA). 

 The Renewable Fuel Association (2015) has stated that the production of 14.3 billion 

gallons of ethanol in 2014 had substantial economic impacts including 83,949 direct jobs, 

295,265 indirect and induced jobs, $53 billion contribution to GDP, and $27 billion in 

household. These figures are impressive, and don’t yet take into account other potential benefits 

such as enhanced energy security, improved environmental amenities such as water quality, 

wildlife habitat, and decreased greenhouse gas emissions. From these facts, future of ethanol 

production seems promising in USA. 
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1.2.2 Future of cellulosic ethanol in USA 

Ethanol can be broadly classified into two categories based upon the raw material used for its 

production: grain ethanol (such as from corn) and cellulosic ethanol (such as from switchgrass). 

Cellulosic ethanol offers an attractive bio-based alternative to conventional gasoline (Ragauskas 

et al., 2006; Schemer, 2008). Cellulosic ethanol has lower green-house gas emissions and higher 

energy efficiency as compared to ethanol made from corn grain (Farrell et al., 2006). Using food 

crops (such as corn) for ethanol production raises concerns of food security (Mitchell, 2008) and 

environmental degradation (Pimentel and Patzek, 2005). Therefore, the majority of the petroleum 

importing countries (including U.S.) is interested in utilizing cellulosic biomass as a feedstock 

for ethanol production. The U.S. has a large cellulosic biomass production base and production 

of ethanol from cellulosic feedstock and utilizing it as a substitute for gasoline could help in 

promoting rural development, reducing greenhouse gases, and achieving energy independence 

(Perlack et al., 2005). 

In the USA, the development of cellulosic ethanol is being driven in large part by the 

Energy Independence and Security Act of 2007 (EISA). The Energy Independence and Security 

Act set a goal of 21 billion gallons of cellulosic ethanol production by 2022. It is expected that 

the successful demonstration of at least one conversion technology on a commercial scale will 

help in increasing the confidence of investors in cellulosic ethanol production and thus, will help 

in achieving the policy target of producing 21 billion gallons of cellulosic ethanol by the year 

2022. These facts clearly state that the biofuels (ethanol) will contribute significantly to future 

fuel consumption and the government is focusing on cellulosic bio-crops such as switchgrass. 
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1.2.3 Switchgrass: a potential bio-crop for cellulosic ethanol 

Among the many agricultural crops screened as potential biofuels, the herbaceous bio-crop 

switchgrass has been identified as a promising feedstock for conversion to biofuels (Sanderson et 

al. 1996; McLaughlin et al. 2002; Parrish and Fike 2005).  Switchgrass has been evaluated as a 

biofuel crop in parts of the USA, Canada and Europe (Adler et al. 2006; Berdahl et al. 2005; 

Madakadze et al. 1999; Mclaughlin et al. 2002). According to the Parrish and Fike (2005), a 

number of lowland and upland cultivars of switchgrass are available and cultivars of both 

ecotypes are being considered for biofuels. Switchgrass can be used to produce biofuel and is 

viewed as a potential long-term biofuel feedstock to replace corn (Keshwani and Cheng 2009).  

The potential of switchgrass as a bio-crop for cellulosic ethanol can be analyzed by 

understanding the following benefits: 

1.2.3.1 Agronomical benefits 

Bransby (1998) found that switchgrass is well-adapted to grow in a large portion of the United 

States with low fertilizer applications and high resistance to naturally-occurring pests and 

diseases. Switchgrass requires less water than most crops currently cultivated because of a deep 

and extensive root system (Bransby et al., 1989). Switchgrass requires about 25 inches or less of 

water per season, compared to 26 inches for corn and 39 inches for cotton (Brouwer and 

Heibloem, 1986; Stroup et al., 2003; Smith, 2007). Thus, switchgrass is more drought resistant 

than other crops (Bransby et al., 1989) and may provide higher yields than many annual crops in 

drought years. In addition, switchgrass requires less pesticides and fertilizers than most crops 

currently grown in the United States (Bransby et al., 1989; Rinehart, 2006). 

Switchgrass has high yields and is tolerant of water deficiency and needs low soil nutrient 

concentrations (Sanderson et al. 1999). Switchgrass is a high potential bio-crop with advantages 
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such as cost effectiveness, broad adaptability, better tolerance of wet and dry soil, freeze 

tolerance, efficient use of water and nutrients, and high yields (McLaughlin 2002; Parrish and 

Fike 2005). Bransby and Huang (2014) determined long term biomass yields of eight switchgrass 

cultivars in Alabama and evaluated the effects of weather variables on annual yields of 

switchgrass grown at a single location. They concluded that under similar soil, environmental 

and management conditions, stands of switchgrass should be productive for 20 years or more. 

Their results showed that switchgrass is considerably more tolerant of drought than most of the 

other annual crops. Lots of other research work has also talked about its comparative 

agronomical benefits as a bio-crop. 

1.2.3.2 Environmental benefits 

McLaughlin (2005) established that studies of soil carbon storage under switchgrass indicate 

significant carbon sequestration will occur in soils, improving soil productivity and nutrient 

cycling and substantially augmenting greenhouse gas reductions. Bai et al. (2010) conducted a 

study to analyze the environmental sustainability of using the switchgrass plant material as a feed 

stock for ethanol production. They took air and water emissions into account that are associated 

with growing, managing, processing and storing switchgrass. They even considered 

transportation of stored switchgrass to an ethanol plant and found that using switchgrass for 

ethanol production can reduce the potential of global warming by 5% and 65% for E10 and E85 

respectively (E10 and E85 are terms refer to high-level gasoline-ethanol blends containing 10% 

to 83% ethanol). Ethanol produced from switchgrass, either alone or by co-firing with other 

fossil fuels has a potential of reducing Green House Gas (GHG) emissions (Tillman 2000). Thus, 

there are positive environmental impacts from switchgrass production. 
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1.2.3.3 Economic benefits 

Switchgrass has economic advantages due to its features such as being a perennial crop meaning 

that it does not need to be planted each year and can survive 20 years or more. There is no 

establishment cost in subsequent years to planting. Unlike many other bio-crops, it can grow on 

marginal land. Switchgrass has the capability to show high yields on soil that, due to low 

availability of nutrients or water, would not lend itself to the cultivation of conventional crops 

(Lewandowski et al. 2003).  Thus, for otherwise economically not useful lands, it can prove to be 

a profitable enterprise. Switchgrass can be high yielding on marginal land (Fuentes &Taliaferro, 

2002), so it could potentially be introduced into the feasible product mix by the farmers to 

increase their overall profitability. Moreover, the establishment cost of switchgrass is very low as 

compare to most of other perennial energy crops. The establishment cost of switchgrass is 

approximately 12 times lower than establishment cost of miscanthus (Anand et al. 2017). 

1.2.3.4 Other benefits 

Farmers can also acquire other benefits such as ecosystem services from the production of 

switchgrass. These benefits can be in the form of increased soil organic matter that retains 

moisture and maintains fertility, reduction in soil erosion and fertilizer runoff and provision of 

wild life habitat. There are some studies that have tried to quantify these benefits. Debnath et al. 

(2013) estimated that these intangible benefits could raise the value of a switchgrass crop by $13 

to $46 per ton relative to intangible benefits from no-till wheat. Liebig et al.  (2008) measured 

increases in soil carbon sequestration under switchgrass and found an average increase of 1.1 Mg 

C/ha, which at the value the U.S. Environmental Protection Agency places on carbon emission 

reductions, would be worth $54 per acre (around $15 per ton). These benefits are difficult to 

quantify but play an important role in decision making. 
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1.2.4 Feasibility for conversion of switchgrass into ethanol: refineries’ perspective 

This is really an important aspect for the future of switchgrass as a potential biomass feedstock. 

In 2014, a genetically altered form of ‘bacteriu caldicellulosiruptor bescii’ was created which can 

cheaply and efficiently turn switchgrass into ethanol (Chung, 2014). Without mandates, at 

current prices for fossil fuels cellulosic ethanol is not competitive with gasoline. Currently the 

Food, Conservation and Energy Act of 2008 (H.R. 2419) includes a tax credit of US$ 1.01/gallon 

for cellulosic biofuel refineries (sec 15321), and a cost sharing program matching up to US$ 

45/ton for collection, harvest, storage and transportation of biomass crops (section 9011).  Yu et 

al. (2011) evaluated the potential value of including preprocessing in the biomass feedstock 

supply chain for a bio refinery in East Tennessee using a spatial oriented mixed-integer 

mathematical programming model. The results showed that stretch-wrap bale reprocessing 

technology could reduce the total delivered cost of switchgrass for large scale bio refineries. 

There is a considerable variability in the expected quantity of ethanol that can be 

produced from per dry ton of switchgrass. Schmer et al. (2008) used a conversion rate of 91 

gallons per dry ton. The USEPA (2010) reports conversion rates of 72 gallons per dry ton (p. 

721), 90 gallons per dry ton (p. 285), and 92.3 gallons per dry ton (p. 286), depending on the 

type and maturity of the system. For a given size of bio-refinery, total feedstock requirements, 

acres required, transportation distances, and feedstock cost would lead to different conversion 

rates. Because there is only one commercial-scale cellulosic ethanol plant in operation (in Iowa), 

it is quite difficult to determine what will be the overall cost of converting switchgrass to 

ethanol.  

Thus, gradual development of technology is bringing the attention of bio refineries 

towards switchgrass as a potential biomass feed stock. 
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1.2.5 Subsidies and different policy regimes 

It’s important to understand all current subsidies and policies in relation to biofuels to analyze 

whether there is any push from the government to farmers for adoption of switchgrass as a bio-

crop. The federal government is subsidizing cellulosic biomass production via a few programs 

such as the Biomass Crop Assistance Program (BCAP). To illustrate, in BCAP, an establishment 

cost subsidy to farmers is currently specified to be the lower of 50% of establishment cost or 

$500 per acre. Tyner (2008) claimed that a boom in the ethanol industry is an unintended 

consequence of a fixed ethanol subsidy. In future, the policy chosen will be critical in 

determining the growth of both corn and cellulose ethanol.  Using cellulose for ethanol 

production would reduce the problems associated with using corn —namely, food insecurity, 

reduced corn exports and higher costs for animal feed. According to Tyner, the government 

should provide a tax credit to cellulose processors for each dry ton of cellulose converted into 

fuels in order to assist in launching the cellulose based industry. Babcock et al. (2007) suggested 

that subsidies should be directly targeted at biomass production rather than ethanol production or 

biofuels production because new ethanol production subsidies would simply increase the demand 

for corn, not switchgrass, despite the potentially significant environmental advantages of 

expanded switchgrass production. 

After doing an in-depth literature review in section “Descriptive Analysis”, I can say that 

there are reasonable grounds for promoting more research on switchgrass and taking a first step 

towards thinking of adoption of switchgrass as a bio-crop more seriously. 

After considering all these points, if farmers think about adoption of switchgrass as a bio-

crop, then first they will require information about switchgrass profits and risk estimates to 

compare with of alternative farm enterprises. As mentioned earlier, previous studies doing 
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economic analysis on bio-crops have used secondary data and haven’t said much about risk. This 

study uses actual yield data for switchgrass and offers insights by explicitly accounting for risk 

in addition to profitability. 

1.3 Conceptual framework 

Rational economic decision-makers are assumed to make crop production decisions by choosing 

crop 𝑖 to maximize their profits in light of their risk preferences. The farm model used in this 

study is based on a risk-neutral farmer, who is a profit maximizer deciding whether or not to 

include switchgrass as a bio-crop in his or her crop-mix. The farmer is assumed to grow two 

traditional crops of corn and cotton and has the choice of replacing a portion of these crops with 

switchgrass. The farmer’s overall objective is to maximize profit, which is the net return from 

the selected crop-mix. The profit function (𝜋) is represented by: 

𝜋𝑗 =  ∑[(𝑌𝑖𝑗

𝑖

. 𝑃𝑖) − 𝑉𝐶𝑖𝑗]   − 𝐹𝐶𝑗                     (1) 

Where 𝜋𝑗 represents profit of farm 𝑗, 𝑌𝑖𝑗 represents yield of crop 𝑖 on farm j which is 

stochastic, 𝑃𝑖 represents the selling price of crop 𝑖 which is stochastic except for switchgrass, 

𝑉𝐶𝑖𝑗 represents total variable cost for crop 𝑖 on farm j and 𝐹𝐶𝑗 represents total fixed cost for farm 

j. Profits will be calculated based on 1,000 draws obtained from the yield-price joint distribution 

(using 21 years real yield and price data) under stochastic simulation. These profits will be used 

to analyze the risks and returns for including switchgrass in the crop-mix. 

   Next, in the ‘Methodology and Data’ section, as there is still no market for switchgrass, 

this study will analyze the economic risks and returns at different expected switchgrass prices. 



12 

 

1.4 Methodology and Data 

This section describes data used in the study and simultaneously points out all methods and steps 

undertaken to analyze risks and returns to farmers adopting the switchgrass cultivation as a bio-

crop. For this analysis, two hypothetical sample farms, each of 400 acres size, with and without 

switchgrass are created. 

 The sample farm 1 (base farm) is created with 200 acres each of two traditional crops i.e. 

corn and cotton (corn and cotton each take up half the available land because of rotation). The 

sample farm 2 is created by replacing few acres from each traditional crop with switchgrass i.e. 

land conversion from traditional crops to bio-crops. This study has considered five different 

ranges of land conversion and thus second sample farm is created with one additional crop of 

switchgrass taking 5%, 10%, 15%, 20%, and 25% acres away from each conventional crop. This 

study has put a maximum cap of 25% on land conversion to perennial grasses of total land 

availability (Chen et al. 2014).  

To analyze the risks and returns for including switchgrass in the crop-mix, I have 

calculated and compared return on investment (ROI) for both farms (for all five range of land 

conversion) based on 1,000 draws obtained from yield-price joint distribution. If a farmer, who is 

growing traditional crops, introduces switchgrass in a crop-mix, then definitely such farmer will 

like to earn at least the same earlier ROI, and, preferably with reduced profit variability. A 

critical factor in adopting new crops, such as bio-crops, is their profitability relative to that of 

existing cropping systems. Most farmers will allocate land to bio-crops only if the economic 

returns from these crops are at least equal to returns from the most profitable conventional 

alternatives (Jain et al., 2010). 



13 

 

1.4.1. Data 

For this study, yield, price and cost data are required for corn, cotton and switchgrass. This data 

section will explain the sources of data collection and any processing of data to make it fit for 

running simulation and for calculating ROI. 

1.4.1.1. Yield data 

To start with the data collection, first of all data related to yield is collected. For switchgrass 

yield data, the data used in this study include twenty-one years (during which switchgrass can 

finish one life cycle) of observations for biomass yields, rainfall and age from a long term 

experiment on switchgrass. Plots were planted in 1989 at the Auburn University’s E.V. Smith 

Research and Extension Center in south-central Alabama, Macon county, on a Wickham sandy 

loam (fine-loam, mixed, semi active, thermic Typic Hapludult) soil. Precipitation occurs 

throughout the year, averaging 1,335 mm on an annual basis. They were planted in a randomized 

complete block small-plot experiment with four replicates. The plots were 1.5 m wide and 6.0 m 

long and they were planted with a seed drill with 0.2 m between rows. Nitrogen fertilizer was 

applied at a rate of 84 kg n ha-1 annually. No P and K fertilizer, irrigation, or herbicides were 

applied over complete experiment period. Biomass harvested from each plot was weighted 

immediately after harvesting and subsamples taken out of it were weighted before and after 

drying to determine dry matter content. Annual yields were determined by harvesting plots twice 

each year from 1989 to 2009 (Table 1). Average yield for all four replicates are taken as final 

yield data for the analysis. This study has considered this period as a 21-year framework during 

which switchgrass can finish one life cycle. 

As novel part of this paper is using real yield data for switchgrass in Alabama for 21 

years (1989-2009), therefore, yield and price data for corn and cotton is also collected for these 
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same 21 years for the Alabama. The study has chosen corn and cotton specifically because, as 

per United States Department of Agriculture, corn and cotton are two of the most important and 

commonly grown field crops in Alabama. Moreover, the major crops of Macon County (place of 

switchgrass experimental center) by planted acreage are cotton and corn. The study has used 

state-level yields data for corn and cotton as experimental yield data for corn and cotton is 

unavailable both at state-level and at county-level. The state data (Alabama data) for yields 

related to corn and cotton is taken from the database of United States Department of Agriculture 

(Quick stats, USDA) for same years 1989 to 2009 (Table 2). 

 Detrending – a statistical or mathematical operation is frequently applied in crop yield 

risk assessment as risk analysis provides better insight once trend is removed. In yield data, a 

significant trend is found only with respect to corn. The simplest way to "detrend" a time series 

would be to fit a straight line through the data, using a least square procedure and then a simple 

linear trend in mean can be removed by subtracting this least-squares-fit straight line. 

Application of this approach produced following regression equation which is used to calculate 

predicted yields for corn (figure 1): 

(8.28) (0.66)
70.271 1.6636y x                 (2) 

These predicted yields are subtracted from actual yield data to get error terms (Table 3 and 

Figure 1). As no significant trend is found with respect to cotton and switchgrass, a simple mean 

is found for yield data of cotton and switchgrass and subtracted from actual yield data to get 

errors around the mean. Thus, error terms for all three yields are calculated to be used in finding 

correlation matrix later on in order to run simulations. It is important to remove trend, as if one is 

exploring relationship between two trended time series, then often it will reveal a strong but false 

relationship. While finding the correlation between two time series, the objective is to know 



15 

 

whether variation in one series are correlated with variations in another, and trend blurs the entire 

vision and should be removed. 

1.4.1.2 Price Data 

The state data (Alabama data) for prices related to corn and cotton are taken from the database of 

the United States Department of Agriculture (Quick stats, USDA) for the same years, 1989 to 

2009 (Table 2). The crop prices data is indexed with base year 2014 using Producer Price 

indexes (Table 4). The Producer Price Indexes (PPI) measure the average change in selling 

prices over time from the perspective of the seller. For further analysis these indexed prices are 

used everywhere. For prices, after adjusting for inflation, a mean is found and subtracted to get 

errors around the mean to be used in finding the correlation matrix later on in order to run 

simulations.  

Thus, a set of five error terms (three for yields for corn, cotton, switchgrass and two for 

prices for corn, cotton) are used to find the correlation matrix. The correlation matrix (Table 5) 

shows a moderate positive correlation (0.69) between corn and cotton yields. As I cannot have 

switchgrass yield data for any state other than Alabama (experiment was conducted in south-

central Alabama only), I have calculated correlation between corn and cotton yields for Georgia 

and Texas to do sensitivity analysis. I find a moderate positive correlation i.e. 0.47 and 0.55 for 

Texas and Georgia respectively. For more sensitivity analysis, complete simulation has also been 

done for Georgia later in this study. 

 Due to unavailability of switchgrass market price, it has been taken as $30, $45 and $60 

per ton for doing calculations in different scenarios. The U.S. Department of Energy (2011) 

suggested that a switchgrass price of $60 per ton can attract a sufficient supply of biomass 

feedstock to replace 30% of transportation fuel use by 2030.   
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1.4.1.3 Data for Simulations 

Data related to five variables i.e. yield data for all three crops and price data for two traditional 

crops (there is no market price for switchgrass) will be used for this simulation. In this study, 

simulations are run to obtain 1,000 draws from yield-price joint distribution with the help of 

Cholesky decomposition which is widely used in generating correlated random numbers (RN).  

A set of uncorrelated variables can be transformed into variables with given covariance with the 

help of Cholesky transformation. 

Any symmetric positive-definite matrix, K, may be written as: 

𝐾 =  𝑈𝑇𝐷𝑈                                                       (3) 

Where U is an upper triangular matrix and D is a diagonal matrix with positive diagonal 

elements. Since a variance-covariance matrix Σ is a symmetric positive-definite matrix, therefore 

one can write: 

Σ =  𝑈𝑇𝐷𝑈                                                         (4) 

= (𝑈𝑇 . √𝐷) (√𝐷. 𝑈)                                         (5) 

= (√𝐷. 𝑈)𝑇 (√𝐷. 𝑈)                                          (6) 

The matrix 𝐶 =  √𝐷𝑈 therefore satisfies 𝐶𝑇𝐶 =  Σ. 

 It is called the Cholesky Decomposition of Σ. 

Thus, the Cholesky transformation is represented by a matrix that is square root of the correlation 

matrix of the actual data. To get the correlated random numbers with the given covariance, a 

matrix of uncorrelated random numbers is multiplied by the Cholesky matrix.  

This study has specifically used this approach as Cholesky decomposition is easier to 

understand intuitively and has numerical stability as compared to some other methods. It also 

preserves the variance observed in the data, instead of just the mean value (Table 6). This 
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stochastic approach simply allows calculation of many equally probable situations, which further 

can be processed to quantify and assess uncertainty. By generating 1,000 iterations for these 

variables, study has included randomness through properly identified distributions taken directly 

from actual data.  

1.4.1.4 Cost data 

Variable costs and fixed costs of producing switchgrass were taken from the Alabama 

Cooperative Extension System (Table 7). Variable costs and fixed costs of producing corn and 

cotton were taken from enterprise planning budget summaries – 2015 for Alabama (ACES, 

2015). All the costs are adjusted to current levels. Average variable and fixed costs for both 

sample farms are shown in Table 8.  I have considered two scenarios for my analysis i.e. with 

and without conventional crop insurance. The indemnity payment for crop i  for a conventional 

crop is specified as 

max( ( ) ( ) ,0)i i i i i iI E Y E P Y P  ,         (7) 

where i  is the insurance coverage level for the conventional crop i  ; (.)E  is the expectation 

operator; iY  represents yield of crop i  , and iP  represents the selling price of crop .i  The 

insurance premium has been calculated as ( )iE I  . 

In United States, 80% of major crops’ acreage is covered under subsidized federal crop 

insurance (Shields, 2015), so I have also considered further two scenarios for crop insurance i.e. 

with and without insurance subsidy. Insurance coverage level is taken as 75%, and insurance 

premium subsidy rate is taken as 55%. I have taken these values as 75% is one of the most 

common coverage levels and 55% is the corresponding subsidy rate for this coverage level 

specified by RMA (Shields 2015). 
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1.4.2 Calculation of risks and returns 

 By using the costs, yields and prices data of 1,000 draws, first profits/losses for farm 1 

are calculated by using equation (1). Then, return on investment (ROI) for farm 1 is calculated 

with the following equation: 

𝑅𝑂𝐼 =  
𝜋

𝐶
∗ 100                                       (8) 

Where 𝜋 is the profit function in equation (1) and 𝐶 is the cost function. The cost function (𝐶) is 

represented by: 

𝐶 =  𝑉𝐶 + 𝐹𝐶                                           (9) 

Where 𝑉𝐶 is the total variable cost of the farm and 𝐹𝐶 is the total fixed cost of the farm. 

Then in similar way, profits for farm 2 are calculated with three different switchgrass prices i.e. 

$30, $45 and $60 per ton (for all five range of land conversion). Then, return on investment 

(ROI) for all cases are calculated. The mean ROI with the standard deviation for each case is 

calculated along with frequency for different ranges of ROI. 

1.5 Results 

To see the impact of adoption of switchgrass as a bio-crop on farm profitability, study has 

analyzed mean ROI, median ROI, and probability of having a positive ROI of two sample farms, 

with and without switchgrass. From our results, it can be seen that if farmer include switchgrass 

in the crop-mix, it can improve farm profitability, and also there will be a considerable reduction 

in risk, measured by the standard deviation, coefficient of variation (CV), and in terms of the 

probability of a negative ROI. 

 The results in Table 9 (without conventional crop insurance) show that the sample farm 

1 with only corn and cotton provides 4.23% ROI on an average with a standard deviation of 

20.66% (CV 4.89%). In the sample farm 2, with switchgrass price at $30, $45 and $60, the mean 



19 

 

ROI is considerable higher than mean ROI for farm 1 in all scenarios of land conversion. For 

example, mean ROI ranged between 4.37% and 7.93% for 5% land conversion case and ranged 

between 4.86% and 23.82% for 25% land conversion case. Thus this table shows that on 

average, a farmer will have higher amount of profits from including switchgrass in the crop-mix. 

The median ROI for sample farm 1 is 4.31% and it is really interesting to see that median 

ROI for farm 2 is higher in all the cases and goes up to 4.70%, 14.28%, and 23.95% for 

switchgrass prices $30, $45 and $60 respectively (Table 9). Median ROI for farm 2 ranges 

between 4.32% and 23.95%, which also indicates towards improved profitability. 

An important observation regarding reduction in risk is also made from these results with 

the figures of standard deviation and CV for ROI in all cases. A considerable reduction in risk 

has been observed in case of farm 2 as compare to farm 1. The results in table 9 shows that the 

sample farm 1 provides 4.23% return on investment (ROI) on an average with a standard 

deviation of 20.66% (CV 4.89%), where as in farm 2 mean ROI goes up to 23.82% whereas 

standard deviation goes down up to 15.49%. The CV in all scenarios of farm 2 is less than the 

farm 1 indicating reduction in variability in ROIs to the farmer. To illustrate, in scenario of 15% 

land conversion, the CV of farm 1 is 4.89, whereas CV of farm 2 is only 3.97, 1.76, and 0.72 for 

switchgrass prices $30, $45 and $60 respectively (Table 9). The lower values of CV indicate 

towards low riskiness of farm 2. 

The results in Table 10 (with conventional crop insurance) show the similar results. In 

scenario of 15% land conversion, if there is no insurance subsidy, then sample farm 1 with only 

corn and cotton provides 4.46% ROI on an average with a lower standard deviation of 17.48% 

(CV 3.92%), as compare to case of without conventional crop insurance. In the sample farm 2, 

with switchgrass price at $30, $45 and $60, the mean ROI is considerable higher than mean ROI 
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for farm 1. For example, mean ROI ranged between 4.75% and 23.52%. The CV in all scenarios 

of farm 2 (ranged between 0.63 and 3.28) is less than the CV of farm 1 (3.92) indicating 

reduction in variability in ROIs to the farmer. Similarly, with 55% insurance subsidy, in the 

sample farm 2, with switchgrass price at $30, $45 and $60, the mean ROI (ranged between 6.09 

and 24.85) is considerable higher than mean ROI for farm 1 (5.95). The CV in all scenarios of 

farm 2 (ranged between 0.60 and 2.57) is also less than the CV of farm 1 (2.94) indicating 

reduction in variability in ROIs to the farmer. To do sensitivity analysis, complete above-

mentioned analysis has also been done for Georgia State. It can be seen that results of Georgia 

State (Table 11) are very much similar to earlier results of Alabama (Table 10).  

To analyze riskiness in more detail, I have also calculated the probability of having 

negative ROI. In case of sample farm 1 with only corn and cotton, the farmer expects to incur 

losses 41% of the time (Table 12).  In case of sample farm 2, for switchgrass prices of $45 and 

$60 per ton, there is a significant reduction in number of years of losses. In these scenarios, 

farmer expects to incur losses ranging between only 37% and 6% of the time (25% land 

conversion) and expects to incur losses ranging between 37% and 33% of the time (5% land 

conversion). 

To compare risk for different cases, a chart was created for scenario of 15% land 

conversion with switchgrass price at $30, $45, and $60 per ton (Figure 2). The frequencies of 

different ranges of ROI are depicted in this chart. The red and yellow shaded area in each bar 

represents the frequency of a negative ROI. The green area represents the frequency of a positive 

ROI. I can see a significant reduction in red and yellow shaded area for the farm with 

switchgrass, signifying the reduction of risk for the farmer who includes switchgrass as a bio-

crop in her crop-mix.  
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To further account for risk factors of including switchgrass in the crop-mix, I have also 

analyzed ROI in case of market failure for switchgrass.  The case of 15% land conversion is 

considered for this sensitivity analysis. In the absence of development of biomass market, there 

is a probability that farmer will not be able to sell the switchgrass production. In our simulation 

analysis, I have included a range of probability of market failure from 5% to 25% with a step of 

5%. Results in Table 13 show that in the sample farm 2, with switchgrass price at $30 per ton, 

now the mean ROI is considerable lower than mean ROI for farm 1 in all ranges of market 

failure. But, with switchgrass price at $45 and $60 per ton, still the mean ROI is considerable 

higher than mean ROI for farm 1 in all ranges of market failure. For example, mean ROI ranged 

between 5.97% and 9.28% ($45 per ton switchgrass price) and ranged between 15.90% and 

21.87% ($60 per ton switchgrass price). Thus, this table shows that even after including the risk 

of market failure for switchgrass, on average a farmer will have higher amount of profits on 

including switchgrass in the crop-mix, when switchgrass price is $45 per ton or higher. In case of 

market failure for switchgrass, as expected, there is an overall decrease in average profitability 

and a considerable increase in risk (measured by the standard deviation and CV) on including 

switchgrass in the crop-mix (by comparing Table 13 and third panel of Table 9). 

1.6 Conclusions 

This study shows that adoption of switchgrass as a bio-crop can be a viable addition to the crop-

mix as it can reduce variability of profits and can also improve farm profitability. In addition to 

risks and returns analysis using stochastic simulation, this paper also provides a valuable 

overview about some factors influencing switchgrass adoption. By assessing the competitiveness 

of switchgrass as a bio-crop relative to two common traditional crops i.e. corn and cotton, this 

study concludes that switchgrass can be a viable addition to the crop-mix which can increase the 
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profitability and can reduce the variability of returns. It will be interesting to consider how much 

this positive impact can be increased using policies that provide farmers with payments for 

environmental benefits of switchgrass, as it should be remembered that in addition to economic 

gains, there are many important agronomical and environmental benefits also. Moreover, the 

lower corn and cotton yields on poorer soils will definitely increase this advantage gap. At low 

market prices, switchgrass can turn out to be a poorer investment than corn and cotton, but their 

lower opportunity cost for marginal lands clearly indicates the potential for comparative 

advantage at lesser productive sites. Here, one thing is really important to mention that absence 

of an established market for switchgrass is an important factor affecting variability in profits (i.e. 

risk), so risk minimization solutions to farmers e.g. by means of contracting, insurance options 

etc. can really motivate the adoption of switchgrass. 

 An in-depth literature review of some previous studies has also helped in assessing and 

reviewing information in order to increase the knowledge concerning the economies of 

switchgrass adoption and in understanding some of the important decisive factors, which can 

help farmers to understand various advantages/disadvantages which may arise from adopting 

switchgrass as a bio-crop. This review has revealed that there are reasonable grounds to consider 

switchgrass as a potential bio-crop and taking first step towards thinking of adoption of 

switchgrass as a bio-crop more seriously. 

Further research needs to be conducted to explore the feasibility of using switchgrass 

partly as forage and partly as a biofuel feedstock. As per the news published by Mississippi State 

University Extension service in August 2008, there is some part (usually first 24 inches of 

growth) which has high protein and can be harvested for forage. Producers have the option to 
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grow switchgrass as a “dual-purpose” crop. Biomass production will be lower under this 

scenario, but, due to high forage prices, it can significantly raise the profits of producers.  

Further research is needed to find the right mix of crops. Additionally, a deeper 

investigation of different national and transnational policies promoting different kinds of bio-

crops can be conducted to encourage more farmers to adopt switchgrass as a bio-crop. These 

future research efforts will lead to creation of favorable circumstances for adoption of 

switchgrass as a bio-crop by the farmers and thus will contribute to meet the cellulosic ethanol 

targets set by Energy Independence and Security Act. 
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Table 1. 1 Switchgrass yield (Tons per acre) (Year 1989-2009) 

Randomized complete block design with four replications 

Year Rep 1 Rep 2 Rep 3 Rep 4 Avg. Yield 

1989 8.943 9.065 6.091 6.219 7.580 

1990 17.170 16.577 14.693 13.292 15.430 

1991 15.520 12.418 10.799 11.760 12.620 

1992 11.327 11.332 10.002 10.593 10.810 

1993 12.152 10.001 7.385 10.905 10.110 

1994 12.892 6.769 6.680 8.495 8.710 

1995 7.649 7.054 8.101 7.419 7.560 

1996 7.784 6.086 6.765 7.535 7.040 

1997 6.409 6.854 7.358 6.509 6.780 

1998 11.172 8.186 8.753 9.608 9.430 

1999 11.240 9.367 9.252 11.662 10.380 

2000 12.673 11.381 12.848 16.230 13.280 

2001 17.900 10.400 13.108 13.315 13.680 

2002 16.393 7.490 10.659 11.730 11.570 

2003 10.006 6.780 13.118 13.324 10.810 

2004 11.605 5.878 9.909 11.482 9.720 

2005 12.146 6.551 11.139 11.556 10.350 

2006 13.777 7.076 11.890 12.355 11.270 

2007 11.270 3.934 9.596 11.192 8.990 

2008 12.066 6.364 8.438 10.207 9.270 

2009 15.645 7.314 8.993 12.753 11.180 

Note: Real yield data from a long term experiment conducted at Auburn University’s E.V. Smith 

Research and Extension Center, Macon County, Alabama. Average yield for all four replicates are taken 

as final yield data for analysis. 
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Table 1. 2 Yield and Price Data for Corn and Cotton (Year: 1989-2009) 

 Prices  Yields 

Year Corn  Cotton   Corn   Cotton 

  $/BU $/LB   BU/Acre LB/Acre 

1989 2.75 0.637  81 571 

1990 2.69 0.69  58 476 

1991 2.6 0.566  80 655 

1992 2.35 0.562  94 731 

1993 2.64 0.571  55 524 

1994 2.5 0.691  96 766 

1995 3.5 0.729  75 409 

1996 3.45 0.709  82 734 

1997 2.82 0.673  87 597 

1998 2.31 0.606  63 559 

1999 2.26 0.478  103 535 

2000 2.16 0.528  65 492 

2001 2.35 0.277  107 730 

2002 2.72 0.435  88 507 

2003 2.36 0.596  122 772 

2004 2.48 0.406  123 724 

2005 2.5 0.487  119 747 

2006 2.91 0.446  72 579 

2007 4.54 0.597  78 519 

2008 5.26 0.449  104 787 

2009 3.89 0.657   108 662 

Source: United States Department of Agriculture (Quick stats, USDA) 
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Table 1. 3 Detrending corn yield - Estimation Results 

Year Obs. No. Actual Yield Predicted Yield Error Terms 

1989 1 81 71.9346 9.0654 

1990 2 58 73.5982 -15.5982 

1991 3 80 75.2618 4.7382 

1992 4 94 76.9254 17.0746 

1993 5 55 78.589 -23.589 

1994 6 96 80.2526 15.7474 

1995 7 75 81.9162 -6.9162 

1996 8 82 83.5798 -1.5798 

1997 9 87 85.2434 1.7566 

1998 10 63 86.907 -23.907 

1999 11 103 88.5706 14.4294 

2000 12 65 90.2342 -25.2342 

2001 13 107 91.8978 15.1022 

2002 14 88 93.5614 -5.5614 

2003 15 122 95.225 26.775 

2004 16 123 96.8886 26.1114 

2005 17 119 98.5522 20.4478 

2006 18 72 100.2158 -28.2158 

2007 19 78 101.8794 -23.8794 

2008 20 104 103.543 0.457 

2009 21 108 105.2066 2.7934 

Note: Least-squares-fit straight line is used for detrending. 
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Table 1. 4 Indexed Prices 

Year Corn Cotton 

1989 4.85 1.12 

1990 4.52 1.16 

1991 4.28 0.93 

1992 3.82 0.91 

1993 4.24 0.92 

1994 3.99 1.10 

1995 5.48 1.14 

1996 5.27 1.08 

1997 4.29 1.02 

1998 3.54 0.93 

1999 3.41 0.72 

2000 3.14 0.77 

2001 3.35 0.39 

2002 3.92 0.63 

2003 3.30 0.83 

2004 3.35 0.55 

2005 3.22 0.63 

2006 3.64 0.56 

2007 5.46 0.72 

2008 5.95 0.51 

2009 4.52 0.76 

Note: The crop prices data is indexed with base year 2014 using Producer Price Indexes. 
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Table 1. 5 Correlation Matrix and Covariance Matrix 

Correlation Matrix 

  Corn Yield Cotton Yield SG yield Corn Prices Cotton Prices 

Corn Yield 1.00     

Cotton Yield 0.69 1.00    

SG yield -0.11 -0.10 1.00   

Corn Prices -0.26 -0.14 -0.45 1.00  

Cotton Prices -0.12 -0.30 -0.32 0.33 1.00 

Covariance Matrix 

  Corn Yield Cotton Yield SG yield Corn Prices Cotton Prices 

Corn Yield 303.05     

Cotton Yield 1360.07 12804.51    

SG yield -4.35 -24.79 4.77   

Corn Prices -3.77 -12.80 -0.80 0.67  

Cotton Prices -0.46 -7.68 -0.16 0.06 0.05 
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Table 1. 6 Mean and standard deviations before and after simulations. 

 Crop Prices  Crop Yields 

Before (i.e. of actual data) Corn Cotton  Corn Cotton Switchgrass 

Mean 4.17 0.83  105.21 622.67 10.31 

S.D. 0.84 0.23  18.30 115.95 2.24 

       
After (i.e. of 1,000 draws)       

Mean 4.15 0.83  105.31 623.79 10.35 

S.D. 0.85 0.23   18.76 118.31 2.29 

Note: Simulations are run to obtain 1,000 draws from yield-price joint distribution with the help of 

Cholesky decomposition. 
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Table 1. 7 Establishment and Maintenance Budget for Switchgrass 

     Price or Total 

Item  Unit Amt/Acre Quantity Cost/Unit Cost 
       
1. Variable costs      
       Soil Test each 0.03 0.0250 7.00  0.1750 

       Fertilizer      
       Nitrogen lbs. 50.00 50.0 0.58  29.00  

       Phosphate lbs. 40.00 40.0 0.43  17.20  

       Potash lbs. 40.00 40.0 0.43  $17.20 

      

    Interest on op. cap. dol.  $31.79 5.5% $1.75 
       
    Total variable cost    $65.32 
       
2. Fixed costs      
      

    Estab. cost amort. dol.  $19.79 1.00  $19.79 

    General overhead dol.  $65.32 4.0% $2.61 
       

    Total fixed costs 

 

   $22.41 
       
3. Total of all specified costs   $87.73 

    

Harvest & Transport Budget for Switchgrass 

     Price or Total 

Item  Unit Amt/Acre Quantity Cost/Unit Cost 
       
 1. Variable costs      
    Harvest cost (1 or 2) acre 1.00  1.0 $59.06 $59.06 

    Tractor & equipment acre 1.00  1.0 $65.58 $65.58 
       
    Total variable cost    $124.63 
       
 2. Fixed costs      
    Tractor & equipment acre 1.00  1.0 $19.45 $19.45 

    General overhead dol.  $124.63 4.0% $4.99 
       
    Total fixed costs    $24.43 
       
 3. Other costs      
    Labor(wages &fringe) hour 3.80  3.8 $12.50 $47.46 

Source: Database of Alabama Cooperative Extension System. 
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Table 1. 8 Average variable and fixed costs per farm (in $) 
  

 Farm 1        Farm 2 

(5% land Conversion i.e. 20 Acres of Switchgrass)     

Average Variable Costs 145200 142860 

Average Fixed Costs 36400 35520 

(10% land Conversion i.e. 40 Acres of Switchgrass)     

Average Variable Costs 145200 140520 

Average Fixed Costs 36400 34640 

(15% land Conversion i.e. 60 Acres of Switchgrass)     

Average Variable Costs 145200 138180 

Average Fixed Costs 36400 33760 

(20% land Conversion i.e. 80 Acres of Switchgrass)     

Average Variable Costs 145200 135840 

Average Fixed Costs 36400 32880 

(25% land Conversion i.e. 100 Acres of Switchgrass)     

Average Variable Costs 145200 133500 

Average Fixed Costs 36400 32000 

Source: Enterprise planning budget summaries for Alabama, from the database of Alabama Cooperative 

Extension System. 
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Table 1. 9 ROI tables for different cases (in %) (Without conventional crop insurance) 

 Farm 1 ROI Farm 2 ROI Farm 2 ROI Farm 2 ROI 

   (at $30 sg price)  (at $45 sg price)  (at $60 sg price) 

(5% land Conversion i.e. 20 Acres of SG) 

Mean 4.23 4.37 6.15 7.93 

Standard Deviation 20.66 19.91 19.72 19.53 

Median 4.31 4.32 6.20 7.98 

CV 4.89 4.56 3.21 2.46 

(10% land Conversion i.e. 40 Acres of SG) 

Mean 4.24 4.50 8.11 11.72 

Standard Deviation 20.66 19.14 18.77 18.45 

Median 4.31 4.44 8.14 11.82 

CV 4.88 4.26 2.31 1.57 

(15% land Conversion i.e. 60 Acres of SG) 

Mean 4.23 4.62 10.12 23.38 

Standard Deviation 20.66 18.34 17.83 16.94 

Median 4.31 4.56 10.16 23.65 

CV 4.89 3.97 1.76 0.72 

(20% land Conversion i.e. 80 Acres of SG) 

Mean 4.24 4.74 12.20 19.66 

Standard Deviation 20.66 17.52 16.88 16.42 

Median 4.31 4.65 12.27 19.71 

CV 4.88 3.69 1.38 0.84 

(25% land Conversion i.e. 100 Acres of SG) 

Mean 4.24 4.86 14.34 23.82 

Standard Deviation 20.66 16.67 15.94 15.49 

Median 4.31 4.70 14.28 23.95 

CV 4.88 3.43 1.11 0.65 
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Table 1. 10 ROI tables for 15% land Conversion case (in %) (with row crop insurance) 

 

Farm 1 

ROI Farm 2 ROI Farm 2 ROI Farm 2 ROI 

(Without insurance subsidy)  

 (at 30 sg 

price) 

 (at 45 sg 

price) 

 (at 60 sg 

price) 

Mean 4.46 4.75 10.26 23.52 

Standard Deviation 17.48 15.61 15.25 14.85 

CV 3.92 3.28 1.49 0.63 

Median 2.81 3.43 8.87 23.17 

(With insurance subsidy @ 

55%)         

Mean 5.95 6.09 11.59 24.85 

Standard Deviation 17.51 15.64 15.29 14.91 

CV 2.94 2.57 1.32 0.60 

Median 4.37 4.80 10.32 24.53 
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Table 1. 11 ROI tables for 15% land Conversion case (in %) (with row crop insurance) - Georgia 

 

Farm 1 

ROI Farm 2 ROI Farm 2 ROI Farm 2 ROI 

(Without insurance subsidy)  

 (at 30 sg 

price) 

 (at 45 sg 

price) 

 (at 60 sg 

price) 

Mean 4.79 5.06 10.55 23.78 

Standard Deviation 17.80 15.90 15.47 14.84 

CV 3.72 3.14 1.47 0.62 

Median 3.31 3.59 9.40 22.99 

(With insurance subsidy @ 

55%)         

Mean 6.46 6.56 12.05 25.27 

Standard Deviation 17.80 15.92 15.49 14.88 

CV 2.76 2.43 1.29 0.59 

Median 4.95 5.18 10.91 24.47 
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Table 1. 12 Frequency Tables for ROI Percentages  
(Out of Total 1,000 cases)   

 Farm 1 ROI Farm 2 ROI  Farm 2 ROI Farm 2 ROI 

(5% land Conversion i.e. 20 Acres of SG)  (at $30 sg ) (at $45 sg) (at $60 sg) 

Losses more than 20% 124 110 95 79 

Losses less than 20% 285 297 276 253 

Profits up to 20% 373 383 393 408 

Profits more than 20% 218 210 236 260 

(10% land Conversion i.e. 40 Acres of SG)         

Losses more than 20% 124 102 66 43 

Losses less than 20% 285 302 261 212 

Profits up to 20% 373 394 422 416 

Profits more than 20% 218 202 251 329 

(15% land Conversion i.e. 60 Acres of SG)         

Losses more than 20% 124 92 45 8 

Losses less than 20% 285 307 240 75 

Profits up to 20% 373 405 436 335 

Profits more than 20% 218 196 279 582 

(20% land Conversion i.e. 80 Acres of SG)         

Losses more than 20% 124 80 30 11 

Losses less than 20% 285 310 191 109 

Profits up to 20% 373 420 457 388 

Profits more than 20% 218 190 322 492 

(25% land Conversion i.e. 100 Acres of SG)         

Losses more than 20% 124 66 23 1 

Losses less than 20% 285 316 153 63 

Profits up to 20% 373 441 463 336 

Profits more than 20% 218 177 361 600 
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Table 1. 13 ROI tables in case of market failure for Switchgrass (in %) (15% land conversion) 

 

Farm 1 

ROI Farm 2 ROI Farm 2 ROI Farm 2 ROI 

(5% Market Failure Probability)  

 (at 30 sg 

price) 

 (at 45 sg 

price) 

 (at 60 sg 

price) 

Mean 4.23 4.06 9.28 21.87 

Standard Deviation 20.66 18.64 18.40 18.49 

Median 4.31 3.81 9.49 22.52 

CV 4.89 4.59 1.98 0.85 

(10% Market Failure 

Probability)         

Mean 4.24 3.52 8.44 20.43 

Standard Deviation 20.66 18.85 18.81 19.62 

Median 4.31 3.38 8.71 21.33 

CV 4.88 5.35 2.23 0.96 

(15% Market Failure 

Probability)         

Mean 4.23 2.99 7.69 19.00 

Standard Deviation 20.66 19.04 19.18 20.60 

Median 4.31 2.97 8.09 20.67 

CV 4.89 6.36 2.50 1.08 

(20% Market Failure 

Probability)         

Mean 4.24 2.41 6.81 17.41 

Standard Deviation 20.66 19.29 19.61 21.59 

Median 4.31 2.81 7.73 19.69 

CV 4.88 8.01 2.88 1.24 

(25% Market Failure 

Probability)         

Mean 4.24 1.85 5.97 15.90 

Standard Deviation 20.66 19.47 19.94 22.33 

Median 4.31 2.44 7.21 18.78 

CV 4.88 10.52 3.34 1.40 
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Figure 1. 1 Detrending of Corn Yield data 
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Figure 1. 2 Graph showing frequencies of different ranges of ROI (Case: 15% land 

conversion, Frequency out of total 1,000 cases) 
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Chapter 2. Adopting Bioenergy Crops: Does Farmers’ Attitude toward Loss Matter? 

2.1 Introduction 

Perennial bioenergy crops such as miscanthus (Miscanthus × giganteus) and switchgrass 

(Panicum virgatum) are promising feedstocks for cellulosic biofuels and can provide a range of 

environmental benefits such as soil carbon sequestration, reduced nitrogen leaching and low 

carbon fuel (Hudiburg et al. 2016). The recent Billion-ton study (USDOE 2016) envisions these 

two bioenergy crops meeting a dominant share of the billion tons of biomass supply in 2030. The 

commercial scale production of these perennial bioenergy crops has not commenced yet due to, 

in part, farmers’ lack of information about these crops’ profit profiles, particularly in risk 

dimension (Miao and Khanna 2014, 2017a, b). Several studies have examined the bioenergy 

crops profitability and the price at which farmers would be willing to produce various types of 

energy crops, in particular, for cellulosic biofuels in the U.S. (Epplin et al., 2007; Khanna et al., 

2011, Anand et al., 2017). A few studies have examined breakeven prices of bioenergy crops 

against conventional crops as a measure of bioenergy crop profitability (e.g., Miao and Khanna, 

2014). 

In addition to profitability, few studies have also analyzed the riskiness of bioenergy crop 

production and the effects of farmer’s risk aversion on breakeven price and incentives to produce 

these crops by using expected utility theory framework. There is however growing evidence that 

farmers are not only risk averse but also loss averse and that prospect theory can provide a better 

prediction of individual decision making under risk and uncertainty than expected utility theory 

(e.g., Kahneman and Tversky, 1979; Tversky and Kahneman, 1992; Barberis, 2013). Bio-energy 

crop adoption involves a large amount of upfront investment, long-term commitment of land, 

potential crop failure, variability in yields that is not protected by crop insurance, and risk of 
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biorefinery shutdown which may induce significant losses for farmers (Khanna, Louviere, and 

Yang, 2017; Smith et al.,2011). Therefore, the attitude toward loss is expected to be an important 

factor that will influence farmers’ decision to grow these perennial bio-energy crops. However, 

there is a dearth of research in this regard. 

In context of risk dimension, there is empirical evidence that farmers typically tend to be 

averse to risk and use discount rates that are higher than market rates of return in making crop 

investment decisions (Khanna et al. 2017; Bocquého et al., 2015). Dolginow et al. (2014) 

compare the riskiness of miscanthus, switchgrass, and corn in north-eastern Missouri while Miao 

and Khanna (2014) do so in the rainfed region of the United States, and Skevas et al. (2016) 

explore the risk of bioenergy crop returns in the southern Great Lakes region. Using expected 

utility theory, Miao and Khanna (2017a, b) investigate the effects of risk aversion and high 

discount rates on incentives to produce miscanthus and switchgrass in rainfed regions of the 

United States and the effectiveness of risk mitigating policy instruments such as insurance for 

bioenergy crops, establishment cost subsidies, and the Biomass Crop Assistance Program on the 

production of bioenergy crops. Clancy et al. (2012) and Mathiou et al. (2014) examine risk-

averse farmers’ willingness to produce willow and miscanthus in Ireland and Poland 

respectively. However, none of these studies account for farmers’ loss aversion when examining 

their adoption decisions. Although loss aversion sounds similar to risk aversion, but it is actually 

a more complex behavior where people express both risk aversion and risk seeking behavior 

while decision making under risk and uncertainty. In loss aversion, individual’s utility is concave 

over gains and convex over losses. The present study aims to fill this gap by employing the 

prospect theory (also known as loss aversion theory) that explicitly incorporates decision 

makers’ loss preferences. While decision making under risk and uncertainty, prospect theory 
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considers individual’s reference point rather than utility of wealth and values gains and losses 

differently. 

 While prospect theory has been widely applied in various fields of economics (see a 

comprehensive review by Barberis, 2013) its application to analyze crop adoption choices are 

few. Among these, Liu (2013) shows that risk or loss averse farmers are more likely to delay 

adoption of genetically modified cotton while Bocquého et al (2015) survey 102 farmers in 

eastern France and find that farmers who are more sensitive to losses are less willing to adopt 

miscanthus. Our study significantly differs from Bocquého, Jacquet, and Reynaud (2015) in 

terms of both methodology and data. We employ a numerical simulation approach to examine 

the effect of loss aversion on the share of land that farmers would be willing to convert to energy 

crop production under various loss preference parameters, credit availability, biomass prices, and 

discount rates. We simulate the impacts on county-level bioenergy crop production for about 

2,000 counties in the rainfed region of United States. We also analyze the impacts of two policy 

instruments, namely establishment cost subsidy and subsidized energy crop insurance, on 

bioenergy crop production under various scenarios of farmers’ loss preferences. 

The purpose of this study is two-fold. First, we examine the impact of loss aversion on 

the extent to which farmers will allocate land to two alternative energy crops, miscanthus and 

switchgrass, instead of conventional crops (corn and soybeans in this study) under alternative 

biomass prices, discount rates and credit constraint scenarios. We first develop a conceptual 

framework that models a representative farmer’s optimal land allocation problem between 

conventional crops (corn rotated with soybeans) and bioenergy crops (miscanthus and 

switchgrass) based on prospect theory. We use county-specific simulated yields of miscanthus, 

switchgrass, corn and soybeans under 27 years of weather conditions to incorporate weather 
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induced temporal variability in yields and then model joint distributions of crop yields and 

prices. We incorporate spatial heterogeneity in the risk of losses across the 1,919 U.S. counties 

east of the 100th Meridian rainfed region of the United States and examine the effect of loss and 

time preferences and credit constraint on the county-specific allocation of land to bioenergy 

crops at various biomass prices. We develop biomass supply curves to examine the effect of loss 

aversion on the quantity and mix of biomass feedstocks and the amount of land allocated to 

energy crops. We also examine the spatial pattern of energy crop production in the rainfed region 

of the United States under alternative scenarios.  

Second, we examine the effectiveness of two types of policy incentives, an establishment cost-

share subsidy and subsidized energy crop insurance that can reduce the likelihood of losses from 

adopting energy crops although in differing ways. While an establishment cost share subsidy 

reduces the upfront costs of establishing an energy crop and losses in the early years of 

establishment due to crop failure, subsidized crop insurance reduces losses in post-establishment 

years due to inter-annual variability in yields and consequently in annual incomes. We choose 

these two instruments because a) establishment cost subsidy is currently specified in the Biomass 

Crop Assistance Program (BCAP) that was established in the 2008 Farm Bill and re-authorized 

in the 2014 Farm Bill; and b) subsidized crop insurance is commonly provided for conventional 

crops and has been proposed for energy crops to offset the disincentives for switching from 

conventional crops (Farm Service Agency, 2013). 

We compare the implications of an establishment cost subsidy and subsidized energy 

crop insurance for land allocated to these energy crops. We also examine the effects of these 

policies on the spatial pattern of energy crop production in the rainfed US. To the best of our 

knowledge, this is the first study that takes into account farmers’ loss preferences when modeling 
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farmers’ adoption of bioenergy crops and also the policy analysis in the rainfed region of the 

United States. 

Our results show that ignoring farmer’s loss aversion may over-estimate miscanthus 

production and under-estimate switchgrass production as compared to studies that assume that 

farmers are risk averse. Our results also indicate that bioenergy crop production on marginal land 

is relatively less sensitive to accounting for farmers’ loss aversion. Therefore, the results lend 

support to possible policy interventions that encourage biomass production on marginal land, for 

example, interventions allowing biomass harvesting on land in the Conservation Reserve 

Program (CRP) without imposing a program payment reduction.1 We also find that when farmers 

are credit constrained, biomass production from bioenergy crops is more sensitive to farmers’ 

loss aversion than when farmers are not credit-constrained.2 This indicates that the availability of 

credit to farmers mitigates the effect of their loss preferences for bioenergy crop production. 

Results also show that impact of loss aversion under high discount rate is larger as compared to 

that under scenario with low discount rate. Moreover, geographical configuration of miscanthus 

and switchgrass adoption may differ significantly when farmers’ loss aversion parameters, credit 

constraint status, and discount rates change. Policy simulation results show that establishment 

cost subsidy favors miscanthus production whereas subsidized energy crop insurance program 

favors switchgrass production. We also find that for the efficacy of these two policy instruments 

                                                           
1 As of 2017, CRP participants who harvest biomass on CRP land receive a 25% payment 

reduction. We refer readers to Anderson et al. (2016) for a study regarding using CRP land as a 

potential source of biomass production. 
2 Credit constraint is relevant to bioenergy crop adoption because the establishment of bioenergy 

crops will incur large costs and potential adopters may have difficulties to obtain loans to finance 

such establishment. Kirwan (2014) states that “. . . 6.2% of large commercial 

farms with over $500,000 in sales reported having been turned down for a loan.” Since potential 

adopters for bioenergy crops are more likely to be young and beginning farmers (Gedikoglu 

2015), we expect that credit constraint may be more of an issue for these farmers.    
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(measured by biomass increased by per dollar of government outlay) depends on farmers’ loss 

aversion parameters and discount rate.   

2.2 Conceptual framework 

In this section we first discuss the key components of prospect theory and then display a 

representative farmer’s optimal land allocation decision problem under a framework applying 

prospect theory. In addition to reflecting disutility from income volatility, prospect theory 

considers a few more features regarding people’s preferences toward risky enterprises.  

First, unlike expected utility theory, when evaluating returns, prospect theory 

differentiates gains from losses relative to a reference point of return. Returns higher than the 

reference point are gains whereas returns lower than the reference point are losses. For a loss 

averse decision maker, the magnitude of disutility from a certain amount of loss is larger than the 

magnitude of utility from the same amount of gain. This feature is reflected in prospect theory’s 

value function. Suppose that there are m n  possible realizations for an enterprise’s random 

profit t  in year t where m and n are the number of losses and gains, respectively. Let ,t k be a 

realization of ,t  where { ,1 ,..., 1,1,..., }mk m n     . We sort the realizations in ascending 

order so that , ,t k t k    if and only if .k k   The probability that ,t k  occurs is , .t kq  Following 

Tversky and Kahneman (1992), the value function for a profit realization ,t k  is specified as 

, ,
,

, ,

( )            if 
( )

( )  [       if  ] ,
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

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                                         (1) 

where R  is the reference point,   is the loss aversion parameter, and   is the risk aversion 

parameter. When 1   (respectively, 1   or 1  ) then the farmer is loss averse 

(respectively, loss neutral or loss loving). Similarly, when 1   (respectively, 1   or 1  ) 

then the farmer is risk averse (respectively, risk neutral or risk loving). 
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Second, prospect theory accounts for experimental observations that decision makers 

tend to overweight events with small probabilities but underweight events with large 

probabilities (Kahneman and Tversky, 1979). This feature is reflected by a probability weighting 

function. Following Tversky and Kahneman (1992), the probability weighting functions can be 

specified as: 
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where ,t k  is the accumulative probability of profit realization ,t k ;   and   are non-stochastic 

parameters. If ,t k R   then , ,Pr{ }t k t t k    whereas if ,t k R   then , ,Pr{ }.t k t t k    It 

is readily checked that ( )w   and ( )w   are strictly increasing functions with both domain and 

range as [0, 1], such that (0) (0) 0w w    and (1) (1) 1w w   . The decision weight for profit 

realization ,t k  is then specified as: 
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                                          (3) 

Unlike the sum of probabilities being equal to 1, sum of decision weights is not necessarily equal 

to 1 (Tversky and Kahneman 1992). Based on equations (1) and (3), the enterprise’s prospective 

value to the decision maker in year t is , ,( ).t k t k

k

d v 


  

Based on prospect theory, we then consider a representative farmer who optimally 

allocates a unit of land between conventional crops and a bioenergy crop to maximize her 
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prospective value from her land. It consists of two types of land: high quality land at portion hs  

and low quality land at portion 1 ,l hs s   where superscripts h and l stand for high and low 

quality land, respectively. For high quality land, the farmer decides the optimal land division 

between two uses: growing conventional crops (labeled as c) and growing an energy crop 

(labeled as e). For low quality land, the farmer decides the optimal land division among three 

uses: keeping under original use (labeled as o) such as idle or pasture, growing conventional 

crops, and growing an energy crop. 

 Let ijx  denote land acreage under use { , , }ci e o  and quality type { , }j h l . Clearly, we 

have ch eh hx x s   and ol cl e llx x x s   .3 Furthermore, let ij

t  be the profit per unit of land with 

use i and quality j in year t. Therefore, for a given set of land-use allocation, ijx , the farmer’s 

profit from her land in year t is: 

.t

ij ij

t

i j

x                                                                    (4) 

Let 
ij

ty  denote the stochastic yield of crop { , }i c e  in year t on land with quality type

{ , }j h l . Price of crop i in year t is represented by
i

tp . The price of the conventional crop is a 

stochastic variable, whose distribution is known to the farmer. For bioenergy crops, production is 

assumed to occur under a long term fixed price contract between the farmer and a biorefinery to 

ensure certainty of supply of biomass for the biorefinery (Yang, Paulson, and Khanna, 2016).4 

Under such a contract, biomass price is fixed at 
e

tp  over its lifespan and we assume that this 

                                                           
3 Based on the land-use assumption on high quality land, we have 0.ohx    
4 For simplicity, the present study focuses on potential for losses on the supply side of biomass 

market and does not consider demand risk caused by, say, biorefinery shutdown. Including 

demand risk in the model will further complicate the analysis but will not add much additional 

insight we seek to provide on the effect of loss aversion on biomass production. 
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price is the same for miscanthus, switchgrass, and corn stover. The fixed and variable costs of 

producing crop i in year t are represented by 
i

tf  per unit of land and 
i

tv  per unit of yield, 

respectively. Because more than 80% of major crops’ acreage is covered under highly subsidized 

federal crop insurance in the United States (Shields, 2015), we include indemnity payments and 

premium subsidy payment provided by crop insurance in farmer’s profits from conventional 

crops. In this study we consider revenue insurance which is widely used for conventional crops 

by US farmers (Shields 2015). The indemnity payment per unit land in year t and on land type

{ , }j h l  for a conventional crop is specified as  

proj harv harv
max{ E( ) , ]max[ ,0},

cj c cj cj

t t t tt t
p p yy p                                         (5) 

where c  is insurance coverage level for the conventional crop; E(·) is the expectation operator; 

proj

tp  and harv

tp  are respectively projected price and harvest price established by Risk 

Management Agency (RMA) (2011) of U.S. Department of Agriculture (USDA). The profit per 

unit of land for the conventional crop in year t on land with quality type j can then be written as 

(1 ) ],( E[) ccj cj cj cj cj cj
t t t t t t

c
tv fp y                                            (6) 

where c  is insurance premium subsidy rate for the conventional crop.  

Yield of a perennial energy crop depends on the crop’s age. Assuming a T-year lifespan, 

we define the first T   years in the lifespan as the establishment period and years 1   to T is 

the mature period. Since we are also interested in how credit constraint will affect biomass 

production, we consider the profit of growing bioenergy crops over the lifespan with and without 

credit constraint. When there is no credit constraint, then the farmer can obtain a loan to finance 

the establishment cost of bioenergy crops and then payback the loan in mature years with an 

annuity. When there is credit constraint, however, then such a loan is not available.  
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The two policy instruments considered in the analysis, namely establishment cost subsidy 

and subsidized energy crop insurance, will affect farmers’ profits from energy crops if they are 

implemented. Let g denote the one-time establishment cost subsidy per unit of land during a life 

cycle of an energy crop. When farmers are credit-constrained, the presence of establishment cost 

subsidy will simply reduce farmers’ establishment cost by amount g. When farmers are not 

credit-constrained, however, then the presence of establishment cost subsidy will reduce the 

amount of loan by g and hence reduce annuity payment in mature years repaying the loan. In the 

case of subsidized energy crop insurance, because biomass price is assumed to be fixed under 

long-term contracts, revenue insurance is equivalent to yield insurance. Let 
e  be insurance 

coverage level for energy crops. The energy crop insurance indemnity can be written as,  

max[  - ,  0]E( )ej

t

ee ej ej

t t tp y y  .                                                (7)   

Let e  be the premium subsidy rate of energy crop insurance. Therefore, when subsidized 

energy crop insurance is in place then its impact on the profit from growing an energy crop is 

(1 )E[ ].ej e ej

t tZ       

To ease exposition of profits from growing an energy crop, we further introduce three 

indicators, credI ,  estaI ,  and insuI ,  which equal 1 if there are credit constraint, establishment cost 

subsidy, and insurance for energy crops, respectively; they equal 0 otherwise. Then, the energy 

crop’s profit in tth year of a lifespan on land with quality type j can be specified as 
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where esta

1 ,...( , ,, I ),ej ej gA f f r  is the annuity the farmer needs to pay back due to the loan for the 

establishment cost. Note that the annuity is affected by establishment cost subsidy because in the 
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presence of the subsidy the amount of loan needed to cover the establishment cost will be 

smaller.  

Since the farmer’s problem is to decide how much land should be allocated to the energy 

crop, a natural reference point to be used to differentiate gains and losses is the expected profit 

from original land use when energy crop is absent. Therefore, we set the reference point to be the 

expected profit from devoting all high-quality land to conventional crop and keeping all low-

quality land under its original use such as idle or pasture. That is, we have 

E( ).h ch l olR s s                                                          (9) 

Note that R is constant across time because it is an expected value of returns that have the same 

distributions across time. By inserting equations (6) and (8) into equation (4) we obtain the total 

profit the farmer obtains from her land under a given set of land allocation ijx . Based upon the 

prospect theory we have described above; the farmer’s optimization problem can be specified as:  
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where   is the tenure of the land; [0,1]   is a value discount factor; kt  is profit realization k 

in year t (see equation (4)) and ktd  is the associated decision weight in year t to be determined 

based on the cumulative probability of an outcome in each year (see equation (3)), and | ij

t x  is 

the set   in year t for a given set of land allocation, .ijx  Recall that { ,1 ,..., 1,1,..., }m m n      

where m and n are the number of losses and gains, respectively. Set | ij

t x  is determined in the 

following way. First, for a given set of land allocation{ , , ,, }ch eh o cl elx x x xx , we obtain N (N=1,000 

in this study) realizations of profit from the land. Second, we subtract the reference point profit 

R  from profit under each realization. Finally, we sort these differences ascendingly and identify 
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the number of losses, m, and gains, n, for set | ij

t x  (negative differences indicate losses and 

positive differences indicate gains). Although we consider a ᴦ-year period in the study, our 

analysis is basically a static analysis. This is not a dynamic analysis in which new information 

appears in the future that can lead to a change in land use decisions unlike Song, Zhao, and 

Swinton (2011). However, unlike their analysis which considers one representative farmer and 

two return processes (switchgrass and corn-soybean) for a discrete choice between switchgrass 

and corn-soybean we characterize the spatial and temporal variability in crop yields using 

DayCent model and estimate the spatial heterogeneity in riskiness and returns to energy crop 

production across the rainfed region of the United States. Moreover, unlike Song, Zhao and 

Swinton (2011) that examine the incentives to delay investment in switchgrass production, we 

are interested in examining the effect of loss and time preferences of landowners, interest rates, 

land quality and credit availability on the mix of feedstocks that would be produced under 

various biomass prices, credit constraint and discount rates.  

2.3 Simulation Approach and Data 

Our simulation includes 1,919 counties in the rainfed region of the United States. For simplicity, 

each county is assumed to be represented by a farmer who optimally allocates her land among 

various uses under the aforementioned framework. Following previous literature (e.g., Jain et al., 

2010; Chen et al., 2014; Miao and Khanna, 2017a, b), we assume that the lifespan of miscanthus 

is 15 years whereas the lifespan of switchgrass is 10 years. We consider a 30-year land tenure 

framework (i.e., 30   in equation (10)) under which miscanthus can finish two lifecycles and 

switchgrass can finish three in order to avoid accounting for terminal values of standing crop 

since switchgrass and miscanthus have different lifespans. We assume that low quality land is 

originally in a low-risk-low-return activity (e.g., enrollment in a conservation program) and, 
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therefore, the profit per unit of low quality land under its original use, ,ol  is approximated by 

land rent payments of the Conservation Reserve Program. We use corn rotated with soybeans to 

represent conventional crops. Corn stover, as a by-product of corn, may be harvested for 

biomass. Further, following Miao and Khanna (2017b) we only allow the representative farmer 

in a county to choose either miscanthus or switchgrass but not both for bioenergy crop adoption.5 

That is, a farmer first chooses the prospective value maximizing land allocation between 

miscanthus and the conventional crops and then, separately, between switchgrass and the 

conventional crops. Then the farmer selects the bioenergy crop under which her land generates 

larger maximum prospect value. The simulation is conducted by using MATLAB®.  

For the simulation, we employ a copula approach to estimate a joint yield-price 

distribution for each county in order to reflect stochastic crop yields, stochastic prices of corn 

and soybeans, and the correlations among these yields and prices. Copula approach has been 

utilized to model joint distributions due to its flexibility (Yan, 2007; Du and Hennessy, 2012).6 A 

joint yield-price distribution is estimated for each county for up to eight yields and two crop 

prices. The eight yields are yields of corn grain, corn stover, soybean grain, and miscanthus (or, 

separately, switchgrass) on both high and low-quality land.7 The two prices are corn and soybean 

grain prices. In the simulation we obtain 1,000 draws from the estimated yield-price joint 

                                                           
5 This is a simplifying assumption which significantly reduces the computational burden.  
6 See Item A in the Supporting Information for details about the copula approach utilized in the 

analysis. 
7 Not every county has all these eight yields. For example, a county may only have corn and 

miscanthus yields on high-quality land. We refer readers to Miao and Khanna (2017b) for 

detailed description regarding the crop yield data availability and for the copula approach 

employed in this study. 
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distributions, where each draw is a yield-price vector.8 Biomass price is not included in the joint 

yield-price distribution, as it has been assumed to be a constant. In the remaining part of this 

section we describe data and parameters used in the simulation. 

2.3.1 Crop yields 

Due to the lack of large scale commercial production, we obtain county-level yield data for both 

miscanthus and switchgrass on high and low-quality land by using DayCent model. DayCent is 

the daily time-step version of the CENTURY biogeochemical model that is widely used to 

simulate plant growth based on information of precipitation, temperature, soil nutrient 

availability, and land-use practice (Del Grosso et al. 2011, 2012; Davis et al. 2012).9 County-

level weather information over 1980-2003 assuming a 24-year cycling of weather condition is 

used as part of the input for the DayCent model simulation that provides us with 27-year annual 

yield data. Table 1 presents summary statistics of the data simulated by DayCent. We can see 

that on high and low-quality land, the average yield of miscanthus is 27.2 and 26.8 metric tons 

per hectare (MT/ha) at 15% moisture and for switchgrass the two corresponding numbers are 

14.1 and 12.7 MT/ha, respectively.  

                                                           
8 These 1,000 draws for a county are used repeatedly for the county in each year within the 30-

year period. In the interest of tractability, we do not obtain a different set of 1,000 draws for each 

year. We believe this provides a reasonable illustration of the effect of loss aversion as long as 

the draws appropriately reflect the correlation among crop yields as well as the correlation 

between yields and prices.  
9 In DayCent model, the high-quality land is approximated by land under crop production 

whereas the low-quality land is approximated by land under pasture. Together with land 

management practice and observed daily weather information, properties of dominant soil type 

of cropland and pasture land in each county are used in input files to simulate crop yields on high 

quality land and low-quality land, respectively. We refer readers to Miao and Khanna (2017b) 

for a detailed description about calibration and validation of DayCent yield simulation. 
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Miscanthus is assumed to have no harvestable yield in the first year of a lifecycle. If the 

first-year establishment is successful then the farmer will obtain 50% of mature yield in the 

second year, and full mature yield in the third year and onward within the lifecycle. For 

miscanthus, we also assume that there is a 10% probability of a complete crop failure in the first 

year of establishment by following Skevas et al. (2016), as extreme cold weather can completely 

destroy miscanthus rhizomes. In the case of complete crop failure, the grower will have to re-

establish in the second year, and therefore she will have no harvest in the second year, 50% of 

mature yield in the third year, and full mature yield in the fourth year and onward of the 

lifecycle. Note that there will be establishment cost again in the second year in case of a 

complete crop failure. For simplicity we assume that the re-establishment will be successful for 

sure. For switchgrass, we assume that there is no crop failure by following Skevas et al. (2016) 

and the yield reaches its full potential in the first year of a lifecycle. 

Although historical yield data for conventional crops are available from National 

Agricultural Statistics Service (NASS) of USDA, in order to ensure consistency in the 

methodology underlying yield estimates across all crops considered in this study, we have also 

utilized DayCent model to obtain simulated yields for corn grain, corn stover, and soybean grain 

on both high and low-quality land. Use of DayCent-simulated corn and soybean yields provides 

an additional advantage that we do not need to rely on arbitrary assumptions to obtain corn or 

soybean yields on low quality land, or to obtain corn stover yield. 

Following Miao and Khanna (2017a,b), we assume that corn is grown continuously in 

those counties that do not have soybean yield data in the DayCent simulated dataset. In counties 

with soybean data, corn is assumed to be rotated with soybeans. Our data show that corn grain 

harvested on high and low-quality land are 139.1 bushel/acre and 127.2 bushel/acre, respectively 
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(Table 1), indicating that on average corn grain yield on low quality land is about 9% lower than 

that on high quality land. For soybeans, however, the yield difference between low quality land 

and high-quality land is only about 3%. Yields for corn stover harvested on high and low-quality 

land are 2.6MT/ha and 2.4MT/ha, respectively. We assume that farmers harvest a fixed portion 

(30% in this study) of produced stover, as there is no consensus yet on how much corn stover 

should be left in the field to maintain soil organic carbon and to manage erosion.10 

2.3.2 Crop Prices 

In the simulation, we use three different types of prices of corn and soybeans: received prices, 

projected futures prices, and harvest futures prices. State-level received prices from NASS are 

used to calculate realized profits of corn and soybeans, whereas projected futures prices and 

harvest futures prices are used to calculate crop insurance indemnity for corn and soybeans. 

These futures prices are determined by following RMA (2011) rules based on Chicago Board of 

Trade (CBOT) futures prices. We obtain the CBOT futures prices of corn and soybeans over 

1980-2010 from Barchart.com. All these prices have been converted to 2010 dollars using the 

Gross Domestic Product implicit price deflator. Following Miao and Khanna (2017b), prices in 

each year are assumed to be drawn from the same price-yield joint distribution obtained by using 

the aforementioned copula approach.11 As we have discussed above, biomass price is assumed to 

                                                           
10 Due to lack of knowledge of how advances in technology or crop management will improve 

energy crop yields, we do not include an upward yield trend for these crops in DayCent 

simulations. Introducing a yield trend parameter will add another layer of uncertainty to the 

results. Accordingly, to ensure consistency we do not assume yield trends for conventional crops 

either. 
11We do not consider the autocorrelation of prices across years or the possibility that the 

distribution of conventional crop prices may be affected by land conversion from conventional 

crop to energy crop production. Taking these factors into account will make the analysis more 

complex and less transparent without affecting the core insights of the study. 
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be fixed over the farmer’s planning period under a long-term contract, and we have considered 

farm-gate biomass prices which do not include transportation cost from farms to bio-refineries. 

To see the impact of different biomass prices on farmers’ decisions, we use a range of biomass 

prices from $20/MT to $100/MT with a step of $10/MT.  

2.3.3 Production Costs 

The county-specific production costs of the crops considered in this study are basically the same 

as those used in Chen et al. (2014) and Miao and Khanna (2017a,b). The method and 

assumptions underlying the calculation of these county-specific production costs of miscanthus, 

switchgrass, corn, and soybeans in the rain-fed region are described in Khanna, Dhungana, and 

Clifton-Brown (2008), Jain et al. (2010), and Chen et al. (2014). The only adjustment about the 

costs that we make is that for miscanthus, if the first-year establishment is successful then we 

exclude the re-establishment cost in the second year of a lifecycle. We do so because we assume 

that the first-year establishment is either a complete failure with probability 0.1 or a complete 

success with probability 0.9.12 In the first year of establishment, the cost of miscanthus is about 

$3,108/ha (Table 1), including expenses on rhizomes, planting machinery, fertilizer, and land 

preparation. For simplicity we assume that there are no returns to scale for establishment costs. If 

the first-year establishment is a failure, then the farmer will have to incur the same total 

establishment cost again in the second year. If the first-year establishment is a success, then in 

the second year and onward, production costs include expenses on fertilizer, labor, fuel, and 

machinery for harvesting, baling, transportation, and storage. We divide these costs into variable 

                                                           
12 Chen et al. (2014) and Miao and Khanna (2017a, b), however, assume that the first-year 

establishment is always successful but 10% replanting rate in the second year is required. 
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cost and fixed cost. On average the variable cost is $17.2/MT and the fixed cost is $166/ha 

(Table 1).  

For switchgrass, the variable cost is the same as that of miscanthus. The fixed cost, 

however, differs in the first three years of a lifecycle due to different management in these years. 

On average the fixed cost of switchgrass is $333/ha, $255/ha, and $252/ha for the first, second, 

and third year, respectively, within one lifecycle. For conventional crops, the production costs 

including fertilizer, chemicals, seeds, harvesting, drying, and storage are collected from crop 

budgets compiled by state extension services (Chen et al. 2014). For corn, the average annual 

fixed and variable costs are $136.5/acre and $1.3/bushel, respectively, whereas for soybeans, the 

two corresponding costs are $107.4/acre and $1.5/bushel, respectively. For corn stover, the 

variable cost ($17.5/MT) is close to that of miscanthus and switchgrass while the fixed cost 

($48.5/ha) is much lower than that of the two bioenergy crops. We assume that within a county 

the fixed and variable costs for a crop are the same on low and high-quality land.  

2.3.4 Discount Factor, Risk and Loss Aversion Parameters, Land Availability, and Farm Size 

The discount factor, ,  in equation (10) is calculated by 1/ (1 ),r    where r is discount rate. 

The discount rate takes two values in our simulation: 2% for low discount rate and 10% for high 

discount rate. The values for risk and loss aversion parameters are directly obtained from the 

literature. Tversky and Kahneman (1992) take value of risk aversion parameter at 0.88   and 

value of loss aversion parameter at 2.25.   For the two parameters in probability weighting 

functions (i.e.,   and  ), they set  = 0.61 and  = 0.69. These values are used by Babcock 

(2015) as well. In the simulation we vary the loss aversion parameters, discount rate, as well as 

credit constraint status to study how biomass production responds to these variations. 
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Studies have shown that due to various reasons, farmers’ willingness to convert land to 

biomass production is limited. Skevas, Swinton, and Hayden (2014) document that the loss of 

amenity value of land is a concern when farmers consider growing bioenergy crops. Based on a 

survey on 1,124 private landowners, Swinton et al. (2017) find that the landowners are only 

willing to rent up to 23% of their land to bioenergy crop production even the proposed rents are 

double of market rents. Therefore, for each county we limit the amount of land that can be used 

for bioenergy crops to no more than 25% of the sum of high and low quality land in the county.13 

The average acreage of high and low quality land per county is 28,841 hectares and 4,507 

hectares, respectively, prior to any land availability restriction for perennial energy crops (Table 

1). Farm size is one of the factors that determine the magnitudes of losses and gains for a farm. 

Following Miao and Khanna (2017b), we use data for county-level average farm size from the 

2012 Census of Agriculture. The average farm size across counties in our dataset is 139 hectares. 

2.4 Profitability and riskiness 

Before we discuss the simulation results regarding bioenergy crop adoption, we first examine the 

profitability and riskiness of the conventional crops and bioenergy crops covered in this study. 

We use a crop’s expected 30-year net present value (NPV) of profits as a measure of the crop’s 

profitability.14 We do so because crops covered in this study have different lifespans (1 year for 

the conventional crops, 15 years for miscanthus, and 10 years for switchgrass) and thus the use 

of expected 30-year NPV of profits makes the profitability comparable across crops. Table SI-1 

and Table SI-2 present summary statistics for crop profitability and riskiness when biomass price 

                                                           
13 We later relax this 25% limit assumption in the sensitivity analysis and find that our major 

findings carry over. 
14 Following Miao and Khanna (2017b), we assume the interest rate to be 10% for the NPV 

calculation. 
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is assumed to be $50/MT or $100/MT. These two prices are chosen because $50/MT 

(respectively, $100/MT) is a price close to the average breakeven price of biomass grown on 

marginal land (respectively, cropland) as calculated by Miao and Khanna (2014). When biomass 

price is $50/MT, then the conventional crops are the most profitable ($6,264/ha and $5,580/ha on 

high and low-quality land, respectively) and miscanthus is the least profitable ($1,417/ha and 

$1,304/ha on high and low-quality land, respectively). When biomass price is $100/MT, 

however, then miscanthus is most profitable and the conventional crops are the least (see Table 

SI-1). As expected, profitability of a crop on high quality land is higher than that on low quality 

land. Across the three crops, the difference between high quality land profitability and low-

quality land profitability is smallest under miscanthus. For instance, when biomass price is 

$50/MT, miscanthus’ profitability difference between high and low-quality land is only $113/ha 

($1,417/ha minus $1,304/ha, an 8% difference). For the conventional crop and switchgrass, the 

corresponding numbers are $684/ha (an 11% difference) and $433/ha (a 19% difference), 

respectively.     

The four maps in the upper panel of Figure SI-1 depict profitability difference between 

miscanthus and the conventional crops under two biomass prices ($50/MT and $100/MT) and 

two land types (high and low quality). The four maps in the lower panel are the counterparts for 

profitability difference between switchgrass and the conventional crops. We find that the 

profitability difference between miscanthus and the conventional crops on low quality land is 

larger than that on high quality land. This is intuitive because the profitability of conventional 

crops on low quality land is much lower than that on high quality land whereas for miscanthus 

the profitability on these two types of land is close. Figure SI-1 shows that miscanthus and 

switchgrass, relative to the conventional crops, are more profitable in the southeastern U.S. and 
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less profitable in the north Great Plains. One possible explanation is that the average yields of 

miscanthus and switchgrass are highest in the southeastern U.S. but lowest in the north Great 

Plains (see Figure 1 in Miao and Khanna, 2014).  

Regarding crop riskiness we first examine the coefficient of variation (CV) of profits for 

each crop. The county-level CV of profits from a crop grown on land with a certain quality in 

each county is calculated based on the 1,000 yield-price draws generated by using the 

aforementioned copula approach.15 The CV values associated with profitability in Table SI-1 are 

averages of county-level CVs across all counties. From Table SI-1 we can see that the average 

CV is significantly affected by biomass prices. When biomass price is $50/MT, then miscanthus 

(with CV around 2) is riskier than the conventional crops (with CV around 0.5) and switchgrass 

(with CV around 1). When biomass price is $100/MT, however, the CV of miscanthus’ 30-year 

NPV of profits is the lowest across the three types of crops (see the 3rd panel in Table SI-1). 

To explore a crops’ loss prospect, we also calculate the probability of having a negative 

30-year NPV of profits (within years) for each crop (Table SI-1) and probability of having 

negative yearly profits (between years) for each crop (Table SI-2). The calculation is conducted 

for each county on both high and low-quality land under biomass prices $50/MT and $100/MT, 

respectively.16 Results show that under biomass price at $50/MT, the average probability of 

having a negative 30-year NPV of profits from growing miscanthus on high and low quality land 

                                                           
15 Note that each yield-price draw is corresponding to a realization of profit. Therefore, we 

obtain 1,000 realizations of profits from the 1,000 yield-price draws. Then the county-level CV 

of profits is the standard deviation of the 1,000 realizations of profits divided by the mean of 

these 1,000 realizations of profits. 
16 For a crop grown on a type of land in a county, the probability is calculated by counting 

number of draws that result in a negative 30-year NPV in the county and then dividing this 

number by 1,000, which is the total number of draws for each crop, land quality, and county 

combination. The values presented in Table SI-1 are averages across counties.  
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is about 28.4% and 29.9%, respectively (see Table SI-1). At the same biomass price, the 

corresponding numbers for switchgrass is 10.8% and 16.8%, respectively, which are much lower 

than those of miscanthus. When biomass price is $100/MT then the probability of having a 

negative 30-year NPV of profits from miscanthus is 2.4% on high quality land and 2.8% on low 

quality land. For switchgrass, the two corresponding probabilities are 1.1% and 1.9%, 

respectively. 

Maps in Figure SI-2 show the difference in probability of negative 30-year NPV of 

profits between bioenergy crops and the conventional crops, and maps in Figure SI-3 show the 

difference in probability of having loss (between years) between bioenergy crops and the 

conventional crops. We find that when biomass price is $50/MT then for almost every county the 

probability of having a negative 30-year NPV of profits from growing bioenergy crops is larger 

than that from growing the conventional crops. However, when biomass price is $100/MT, then 

for most counties in the Midwest and some counties in the southeastern United States the 

probability of having negative NPV from growing bioenergy crops is smaller than that from 

growing conventional crops. In the north Great Plains, growing bioenergy crops endures larger 

probability of having negative 30-year NPV of profits than does growing the conventional crops 

under both prices. The geographical patterns of biomass profits and probabilities of having 

negative NPV will in part determine the geographical configuration of biomass production when 

farmers’ loss aversion is considered. We examine the impact of loss aversion next. 

2.5 Simulation Results under Laissez-faire Scenarios 

We first conduct our simulations for eight scenarios under which policy interventions on biomass 

production are absent. These eight scenarios are the combinations of two discount rates (2% and 

10%), two credit constraint status (credit constrained and not credit constrained), and two loss 
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aversion parameter values ( 1   for loss neutral and 2.25  for loss averse). Under each of 

these eight scenarios, we study the representative farmer’s optimal land allocation in each county 

under biomass prices ranging from $20/MT to $100/MT with a $10/MT step. Then we compare 

simulation results across the eight scenarios to identify the impact of loss aversion on bioenergy 

crop adoption and how the impact is influenced by discount rate and credit constraint. We use 

biomass production and land devoted to bioenergy crops as measures of bioenergy crop 

adoption.  

2.5.1 Effect of loss aversion on biomass production  

Figure 1 presents simulated biomass supply curves for corn stover, miscanthus, switchgrass, and 

total biomass grown on both types of land under the eight scenarios.17 It shows that biomass 

production from miscanthus and switchgrass commences effectively at biomass price of $50/MT 

or higher. From the figure we find that in most cases supply of miscanthus is elastic when 

biomass price is between $60/MT and $80/MT but inelastic when biomass price is larger than 

$80/MT. This is because when biomass price rises from $60/MT to $80/MT, in many counties 

miscanthus production just surpasses the margin to be profitable when compared with 

conventional crops and switchgrass. Therefore, miscanthus production is sensitive to biomass 

price when the price is in the $60-80/MT range. When biomass price increases above $80/MT, 

however, then acreage for bioenergy crops in many counties reaches the 25% limit of total land 

and hence becomes less responsive to biomass prices. Supply of switchgrass is inelastic due to its 

low yield and hence low competitiveness relative to miscanthus. Across the eight scenarios, corn 

stover production is insensitive to biomass price and may even slightly decrease as biomass price 

                                                           
17 Figures SI-4 and SI-5 in the online Supporting Information (SI) present the supply curves for 

biomass produced on high and low-quality land, respectively. 
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increases from $50/MT to $100/MT. This is because a) profits from corn stover only account for 

a small portion of total profits from growing corn, hence increase in corn stover profit does not 

change overall profits from growing corn much; and b) as biomass prices rises to $100/MT, corn 

acreage faces increasing competition from bioenergy crops. 

The four graphs in the upper panel of Figure 1 show that when farmers are credit 

constrained, then all else equal, miscanthus production under loss averse scenario is much lower 

than that under loss neutral scenario. The opposite is true for switchgrass, which indicates that 

when farmers are credit constrained, ignoring loss aversion may overestimate miscanthus 

production while underestimate switchgrass production. This finding is intuitive because on 

average miscanthus has the highest probability of having negative 30-year NPV of profits among 

the crops covered in this study (see Table SI-1). Moreover, when farmers are credit constrained 

and hence cannot finance miscanthus’ high establishment costs by using loans, then high 

establishment costs and no harvest in the establishment period will result in high losses in that 

period when compared with only growing the conventional crops. Therefore, for a loss-averse 

farmer who is credit constrained, miscanthus will be less appealing. 

When farmers are not credit constrained, however, accounting for loss aversion has small 

impacts on biomass production (see supply curves in the four graphs of the lower panel of Figure 

1). One explanation is that in the absence of credit constraint, farmers can finance their 

establishment costs so that the loss in the establishment period is significantly reduced and hence 

returns across periods become less volatile. Moreover, the low or even negative correlation 

between miscanthus yield and corn yield (see Table 1 of Miao and Khanna (2014)) provides 

farmers with diversification benefits from having a mix of the two crops. As the availability of 

credit reduces the loss in establishment period, this diversification benefits becomes more 



63 

 

appealing under the loss aversion scenario when compared with that under the loss neutral 

scenario. This is because a mix of crops with low or negative yield correlation will make the 

overall profits less likely to fall below the reference profit.  

We can see that the availability of credit to farmers mitigates the effect of the farmers’ 

loss preferences on perennial energy crop production. This finding is consistent with the one in 

Miao and Khanna (2017b) who find that when farmers are not credit constrained then biomass 

production is insensitive to changes in risk aversion. Therefore, our results lend support to policy 

interventions (e.g., the Biomass Crop Assistance Program) that provide establishment cost shares 

for bioenergy crop growers.  

In order to examine the impact of credit constraint, loss aversion, and discount rate on 

biomass production, we present the optimal biomass production under two scenarios (credit 

constraint, loss aversion, and high discount rate scenario vs. no credit constraint, loss neutral, and 

low discount rate scenario) with biomass price being set to be $50/MT or $100/MT (see Figure 

2).18 Overall, we find that the impact of loss aversion is the largest in absolute terms when 

biomass price is high, farmers are credit constrained, and discount rate is high. Figure 2 show 

that when biomass price increases from $50/MT to $100/MT then expansion in miscanthus 

production mainly occurs at the extensive margin (i.e., new counties commencing miscanthus 

production). The same pattern holds for switchgrass production (see Figure 2). However, when 

we shift from the credit constraint, loss aversion, and high discount rate scenario to the no credit 

constraint, loss neutral, and low discount rate scenario, then the expansion in miscanthus 

production mainly occurs at the intensive margin (i.e., existing producing counties produce 

                                                           
18 To save space, we include maps for total biomass production and corn stover production under 

the same scenarios in the SI (see Figures SI-6 and SI-7). 
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more). This pattern of expansion is particularly evident when biomass price is $100/MT. When 

biomass price is $50/MT, however, the pattern of expansion is not quite obvious because the 

overall miscanthus production is low. For switchgrass, the same scenario change causes the 

number of producing counties to decrease (see Figure 2). Moreover, when biomass price is 

$50/MT, then miscanthus and switchgrass production is mainly distributed in counties outside of 

the central Midwest. However, when biomass price is $100/MT, then miscanthus production 

mainly occurs in the Midwest while switchgrass production still occurs outside the Midwest. 

This is because a) miscanthus has relatively high yield and low risk in the Midwest (see Table 1 

in Miao and Khanna (2014)); and b) switchgrass cannot compete with corn or miscanthus in this 

region. 

We further explore the impact of loss aversion on biomass production in greater detail, 

showing the optimal biomass production under four loss-and-time preferences combinations with 

credit constraint and with biomass price being set to be $50/MT or $100/MT (see Table 2).19 In 

Table 2, comparison between columns 1 and 2 (cases of high discount rate) shows that when 

biomass price is $50/MT then accounting for loss aversion will decrease miscanthus production 

from 0.4 million MT to almost zero. However, it will increase switchgrass production from 1 

million MT to 1.4 million MT. Similar results hold when comparing columns 3 and 4 under the 

$50/MT biomass price. Overall, when biomass price is as low as $50/MT, the impact of loss 

aversion is small in absolute terms because at this price bioenergy crops are generally not much 

viable. 

Under the $100/MT price and with high discount rate, when loss aversion is accounted 

for then miscanthus production on high quality land decreases from 213.3 million MT to 128.8 

                                                           
19 Table SI-3 includes the counterpart results under scenarios without credit constraint. 
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million MT (see columns 1 and 2 in Table 2), which is a 40% decrease, whereas miscanthus 

production on low quality land only decreases by 19%. The reason for the smaller decrease in 

miscanthus production on low quality land is that, as we have discussed above, the profitability 

difference between miscanthus and the conventional crops on low quality land is larger than that 

on high quality land (see the 3rd panel in Table SI-1), which causes miscanthus to be more likely 

viable on low quality land even when loss aversion is considered. For switchgrass, the 

comparison between columns 1 and 2 in Table 2 shows that when loss aversion is accounted for 

then total switchgrass production on high quality land increases from 10.7 million MT to 34.6 

million MT, which is a 223% increase, whereas the production on low quality land increases 

only by 80%. The larger increase in switchgrass production on high quality land is because that 

switchgrass has much higher profitability and much lower probability of having a negative 30-

year NPV on high quality land than on low quality land (see the 3rd and 4th panels in Table SI-1). 

In sum, we find that for both miscanthus and switchgrass the production on low quality land is 

less sensitive to loss aversion than production on high quality land is. This finding underscores 

the importance of marginal land for producing bioenergy crops. 

 By comparing columns 3 and 4 in Table 2 (cases of low discount rate), we find that at 

$100/MT biomass price when loss aversion is accounted for then miscanthus production on high 

and low-quality land decreases only by 5% (from 237.5 million MT to 225.7 million MT) and 

4% (from 77.2 million MT to 73.8 million MT), respectively. We can see that the impact of loss 

aversion is smaller when discount rate is low as compared to when discount rate is high. This is 

because a lower discount rate implies a larger prospective value discount factor (recall that

1/ (1 )r   ). As a result, returns in mature period of a bioenergy crop will be valued more and 

losses in the establishing period will account for a smaller portion of a bioenergy crop’s overall 
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prospective values. Therefore, impact of losses in the establishing period will be mitigated by a 

lower discount rate (i.e., a larger discount factor).  

Figure SI-6 shows that the Midwest is the major biomass producing region across all 

scenarios. This is mainly because farmers’ risk preferences, discount rate, and credit situation are 

unlikely to change farmers’ decision on whether to provide corn stover in the Midwest (see 

Figure SI-7) as corn stover is even profitable at $40/MT biomass price and profits from corn 

stover only accounts for a small portion of total profits from growing corn. Moreover, when 

biomass price is $100/MT, then the Midwest also becomes the major producing region for 

miscanthus (see Figure 2). 

2.5.2 Land use for miscanthus and switchgrass  

Land use for bioenergy crops is critical because it pertains to issues of food-fuel competition and 

of ecosystem services associated with biomass production. Table 3 presents acreages devoted to 

miscanthus and switchgrass under four scenarios with credit constraint. By comparing columns 1 

and 2 (cases of high discount rate) in the table, we find that acreages on both types of land 

devoted to miscanthus is lower under loss aversion scenario when compared with those under 

loss neutral scenario at both price levels. The same conclusion holds when comparing columns 3 

and 4 (cases of low discount rate) in Table 3. Specifically, when biomass price is $100/MT, then 

accounting for loss aversion will decrease use of high quality land for miscanthus from 

21,391,023 acres to 12,251,082 acres (a 42% decrease), whereas for low quality land the 

decrease is only 22%. For switchgrass, however, the comparison of columns 1 and 2 shows that 

when accounting for loss aversion, then land used for switchgrass increases on both types of land 

for both biomass prices. Specifically, when the biomass price is $100/MT, then accounting for 

loss aversion will increase use of high quality land for switchgrass from 1,951,209 acres to 



67 

 

6,278,952 acres, which is a 221% increase, whereas for low quality land the increase is only 

71%. Again, this is due to switchgrass’ higher profitability and lower probability of having a 

negative 30-year NPV on high quality land as compared to on low quality land.  

By comparing columns 3 and 4 in Table 3 (cases of low discount rate), we find that when 

discount rate is low and when loss aversion is accounted for then miscanthus acreage on high and 

low-quality land decreases by only 6.4% and 6.5%, respectively. For switchgrass, however, the 

acreages on high and low-quality land increases by 169% and 26%, respectively. These results 

are consistent with the impacts of loss aversion on miscanthus and switchgrass production when 

discount rate is low. That is, the impact of loss aversion on biomass production is smaller when 

discount rate is low as compared to when discount rate is high. 

When farmers are not credit constrained, then in most cases accounting for loss aversion 

slightly increases land devoted to miscanthus production (see Table SI-4). The same reasons for 

why loss aversion slightly increases miscanthus production under scenarios without credit 

scenarios apply here. For switchgrass, the impact of loss aversion under scenarios without credit 

constraint depends on biomass price. When biomass price is $50/MT and when discount rate is 

high, then accounting for loss aversion will increase total land devoted to switchgrass from 

114,056 acres to 197,255 acres, a 73% increase (comparing columns 1 and 2 in Table SI-4). At 

the same biomass price but low discount rate, the increase is much lower, from 65,275 acres to 

84,194 acres, a 29% increase (comparing columns 3 and 4 in Table SI-4). When biomass price is 

$100/MT, however, under scenarios without credit constraint accounting for loss aversion has 

only negligible impact on land acreage devoted to switchgrass, regardless the discount rate 

levels. One explanation is that at a high biomass price such as $100/MT, losses from growing 

bioenergy crops are unlikely and hence loss aversion parameters have no significant impact on 
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bioenergy crop production. Nevertheless, even when biomass price is as high as $100/MT, credit 

availability and discount rate are still critical in determining biomass production (see Tables 3 

and SI-4).  

Figure 3 includes maps for county-level land devoted to miscanthus under various 

scenarios. The counterpart maps for switchgrass are included in Figure SI-8. In Figure 3, we can 

see that as we move from credit constraint, loss aversion, and high discount rate scenario (maps 

in the upper panel) to no credit constraint, loss neutral, and low discount rate scenario (maps in 

the lower panel), miscanthus production expands in both extensive and intensive margins. In 

contrast, figure SI-8 shows that for switchgrass the same scenario change results in reduced 

production. When biomass price is $50/MT then land devoted to miscanthus is mainly located 

outside of the Midwest, regardless land quality; whereas when biomass price is $100/MT then 

the Midwest becomes the major producing region for the crop (see Figure 3). From Figure SI-8 

we can see that both high and low-quality land devoted to switchgrass is located outside of the 

central Midwest. Particularly, when biomass price is $100/MT then Michigan and Wisconsin can 

be major producing states of switchgrass, depending on credit availability as well as farmers’ 

loss and time preferences (see Figure SI-8).  

2.5.3 Sensitivity Analyses 

In this subsection we conduct two sets of sensitivity analyses regarding our simulations under the 

laissez-faire scenarios. Because under the “no credit constraint” scenarios the effect of loss 

aversion on biomass production is relatively small, we focus on scenarios with credit constraints 

hereafter for the sensitivity analyses and for the policy intervention simulations. The first set of 

sensitivity analyses pertains to relaxing the assumption that farmers can only devote no more 

than 25% of their total land to energy crop production. In this subsection we completely relax 
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this assumption so that farmers can allocate up to 100% of their land to energy crops. We doing 

so to explore whether or not the impact of loss aversion on biomass production is significantly 

influenced by the land availability constraint we have imposed in the simulation. In the second 

set of sensitivity test we let the farmers evaluate gains or losses based on 30-year net present 

value of profits, instead of evaluating based on annual profits. By doing so we examine how the 

effect of loss aversion on biomass production is influenced by the temporal framework by which 

the farmers evaluate their gains and losses.    

Table SI-5 in the SI presents the simulation results when we remove the 25% land limit 

for energy crop production. We find that although biomass production from the energy crops 

significantly increased, especially when biomass price is $100/MT, similar pattern of the impact 

of loss aversion and discount rate on biomass production exists when compared with results with 

the 25% land limit. Specifically, everything else equal, loss aversion dis-incentivizes miscanthus 

production while incentivizes switchgrass production. High discount rate has similar impact. For 

instance, when biomass price is $100/MT then under the scenario of loss neutral and high 

discount rate, total miscanthus production is 1,144.3 million MT and total switchgrass 

production is 41.5 million MT (see column 1 in Table SI-5). Under the same price but under the 

scenario of loss averse and high discount rate, however, the two numbers become 307.2 and 

337.2, respectively (see column 2 in Table SI-5), indicating that loss aversion disincentives 

miscanthus production but incentivize switchgrass production.  

Table SI-6 includes biomass production when farmers evaluate gains and losses of the 

30-year NPV instead of gains and losses at the annual basis. Specifically, we first obtain an 

empirical distribution of the 30-year NPV for each county based on the 1,000 draws from the 

copula approach; then we feed this empirical distribution of NPV into equation (10). Note that 
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because the evaluation of gains and losses no longer occurs on an annual basis,   in equation 

(10) now equals 1 and kt  becomes NPV

k , where NPV

k  is the 30-year NPV of profits from all 

land uses under land allocation { , , , , }.ch eh ol cl elx x x x x  We find that the simulation results under 

the 30-year NPV scheme (Table SI-6) are close to the results under scenarios where farmers 

without credit constraint value gains and losses of profit on an annual basis (Table SI-3). For 

example, under the 30-year NPV scheme, when biomass price is $100/MT then under the “loss 

averse and high discount” scenario, the production of miscanthus and switchgrass is 289.5 and 

13.1 million MT, respectively (see column 2 of Table SI-6). Table SI-3 shows that when farmers 

are not credit constrained and when they evaluate gains and losses on an annual basis, then under 

the same conditions of biomass price, loss preferences, and discount rate, the production of 

miscanthus and switchgrass is 300.6 and 8.1 million MT (see column 2 of Table SI-3). When 

farmers are credit constrained, however, these two numbers become 184.9 and 43.6 (see column 

2 of Table 2), which are quite different from the results under the 30-year NPV scheme.  

The reason that the results under the 30-year NPV scheme (Table SI-6) are similar to 

those under the no credit constraint scenarios (Table SI-3) is as follows. Everything else equal, 

the 30-year NPV of profits is not affected by the farmer’s credit constraint status. In other words, 

obtaining a loan to finance the establishment cost and then paying it back in mature years of an 

energy crop will not affect the NPV of the profits from growing the energy crop, as long as the 

discount of the loan is the same as the discount assumed to calculate the NPV. Therefore, the 

simulation results based on the 30-year NPV of profits being evaluated by the value function are 

similar to the results under the “no credit constraint” scenario. 
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2.6 Impact of policy interventions 

In this section we examine the effects of two policy interventions, namely establishment cost 

subsidy and subsidized energy crop insurance, on biomass production under various loss 

preferences and discount scenarios. In the simulation we set the one-time establishment cost 

subsidy to be the lower of 50% of establishment cost and $500 per acre, by following the BCAP 

of the 2014 Farm Bill. We consider establishment cost subsidy only in first year. If a crop failure 

occurs in the first year, then farmers will have to incur full establishment cost in the second year 

without receiving any establishment cost subsidy in that year. For energy crop insurance, we 

assume that the coverage level is 75% of average energy crop yields and the premium subsidy 

rate is 55%. These two values are chosen because 75% is one of the most popular coverage 

levels farmers choose for conventional crops and 55% is the corresponding subsidy rate for the 

75% coverage level specified by RMA (Shields 2015). 

Table 4 presents the impact of the establishment cost subsidy on biomass production 

under four scenarios with credit constraint as well as various loss preferences and discount rates. 

To ease exposition in the table we report biomass production changes caused by the 

establishment cost subsidy. The changes are calculated as by using biomass production with the 

policy intervention minus the production without the policy intervention (i.e., production in 

Table 2). For instance, 1.9, the first number in column 1 of Table 4, should be interpreted as 

when farmers are credit constrained and when biomass price is $50/MT, then under the “loss 

neutral and high discount” scenario the presence of establishment cost subsidy will increase 

miscanthus production on high quality land by 1.9 million MT.  

From Table 4 we can see that in most cases the presence of establishment cost subsidy 

increases miscanthus production but decreases switchgrass production. This is because the large 
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difference in establishment costs between these two energy crops results in large difference in 

establishment cost subsidy received by the two crops. Table 1 shows the average establishment 

costs for miscanthus and switchgrass are $3,108/ha. and $249.4/ha., respectively. Therefore, 

based on the rule for establishment cost subsidy (i.e., the lower of 50% of establishment cost and 

$500/acre), it is readily checked that on average the establishment cost subsidy for miscanthus is 

about $1,236/ha., whereas the subsidy for switchgrass is only about $127.5/ha. This difference in 

establishment cost subsidy between miscanthus and switchgrass (almost 10 times) tends to 

incentivize miscanthus production but dis-incentivize switchgrass production.   

Nevertheless, the overall impact of establishment cost subsidy on energy crop production 

is positive. For example, at biomass price $100, for a loss averse farmer in the case of high 

discount scenario, there is an increase of 76.2 million MT of biomass production (see column 2 

in Table 4). The corresponding annual government outlay is $1,143.56 million.20 Dividing the 

biomass increased by subsidy outlay, we can see that when biomass price is $100/MT and when 

farmers are credit constrained, then under the “loss averse and high discount scenario” one dollar 

of establishment subsidy will increase energy crop production by 0.07 MT. 

The impact of subsidized energy crop insurance on biomass production is presented in 

Table 5. We find that across all the scenarios presented in Table 5, the presence of subsidized 

energy crop insurance incentivizes switchgrass production. Regarding miscanthus production, 

however, when biomass price is $50/MT then the impact of subsidized energy crop insurance is 

positive but in most cases with a smaller magnitude than that on switchgrass production. When 

biomass price is $100/MT then in most cases the presence of subsidized energy crop insurance 

                                                           
20 Note that since biomass production change is measured in an annual basis, to ease exposition 

we annualize the establishment cost subsidy even though the subsidy occurs only in the first year 

of the lifecycle of an energy crop. 



73 

 

has negligible or even negative impact on miscanthus production. A possible explanation is that 

yield risk of switchgrass is much larger than that of miscanthus (see Table 1), which causes 

insurance premium and hence premium subsidy directed to switchgrass to be larger than those to 

miscanthus.21 Therefore, the presence of energy crop insurance incentivizes switchgrass 

production more than it does to miscanthus production. The difference between the incentivizing 

effect on switchgrass and that on miscanthus can be large enough to cause a county switch from 

growing miscanthus to grow switchgrass. This is why in some cases miscanthus production is 

reduced by the presence of the subsidized energy crop insurance.      

 Overall, the subsidized energy crop insurance increases the total biomass production 

from the two energy crops. The magnitude of the increase, however, is smaller than that caused 

by establishment cost subsidy, especially when biomass price is $100/MT. This is because, in 

part, the government outlay under subsidized energy crop insurance is smaller than that under 

establishment cost subsidy (see Tables 4 and 5). When we compare the amount of biomass 

production increased per dollar of government outlay, however, we find that when biomass price 

is $100/MT, then the subsidized energy crop insurance outperforms the establishment cost 

subsidy except under the scenario of “loss averse and high discount” (comparing the last row in 

the panel of “biomass price = $100/MT” in Tables 4 and 5). This is because when biomass price 

is $100/MT and when farmers are credit constrained, loss averse, and face high discount, then 

the effect of establishment cost subsidy reaches the largest due to the subsidy’s impact on 

mitigating credit constraint and smoothing utilities across periods.  

                                                           
21 Table 1 shows that the mean yields of switchgrass are about half of those of miscanthus yields 

whereas the standard deviation of switchgrass yields are close to those of miscanthus yields. This 

indicates that the coefficient of variation (CV) of switchgrass yields are about twice as large as 

the CV of miscanthus yields. 
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Moreover, we find that increase in biomass production increased by per dollar 

government outlay is much higher when biomass price is $50/MT than when biomass price is 

$100/MT. This is because under a price as high as $100/MT, farmers have already found 

growing energy crops profitable and any further support will not result into additional biomass 

production. 

2.7 Conclusions 

By employing prospect theory, we find that farmers’ attitude toward loss matters when 

considering bioenergy crop adoption; but the magnitude depends on credit availability, discount 

rate, biomass price, and crop types. Our results indicate that if farmers are credit constrained then 

accounting for loss aversion will decrease miscanthus production but increase switchgrass 

production. However, corn stover production is insensitive to whether loss aversion is 

considered. If farmers are not credit constrained then accounting for loss aversion has much 

smaller impact on bioenergy crop production, indicating that the availability of credit to a farmer 

mitigates the effect of the farmer’s loss preference on perennial energy crop production. Our 

results show that biomass production on low quality land is less sensitive to farmers’ preferences 

toward losses than production on high quality land is. This finding indicates that policymakers 

should target those areas where share of low quality land is larger for promoting biomass 

production. Moreover, results show that impact of loss aversion is larger when discount rate is 

high as compared to scenario when discount rate is low. Our results also show that accounting 

for loss aversion, credit constraints, and discount rates may predict different geographical 

configuration of miscanthus and switchgrass production, indicating the importance of loss 

preferences, credit availability, and time preferences in determining crop choices.  
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By comparing the impacts of two policy instruments, we find that BCAP establishment 

cost subsidy favors miscanthus whereas subsidized energy crop insurance favors switchgrass. 

We also find that the efficacy (measured by biomass production increased per dollar of 

government outlay) of policy intervention is much higher when biomass price is at $50/MT than 

when biomass price is at $100/MT. Whether the efficacy of subsidized energy crop insurance is 

larger than that of establishment cost subsidy depends on farmers’ loss preference, discount rate, 

and biomass price.  

The present paper focuses on the supply side of the biomass market and examines how 

farmers’ preference toward loss affects potential biomass supply. However, the development of 

biomass markets faces “the chicken or the egg” dilemma in that biorefineries have little demand 

for energy-crop biomass because they do not see much supply for such kind of biomass and 

growers have little interest to adopt energy crops because they do not see much demand for these 

crops (Khanna et al. 2017; Luo and Miller 2017; and Yang et al. 2016). Future research can be 

directed to understanding the barriers to the biomass market development on the demand side 

while accounting for farmers’ loss preferences in their decision-making. Future research can also 

be directed to analyze the potential incentives for switching out of energy crops if crop prices 

were to increase in the future and the timing of the adoption and de-adoption decisions by using 

a stochastic dynamic programming approach. 
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Table 2. 1 Summary Statistics of Data Utilized in the Simulationa 

  Mean S.D. Min. Max. 

Yieldsb 

miscanthus on high quality land (MT/ha) 27.2 2.9 3.5 48.3 

miscanthus on low quality land (MT/ha) 26.8 2.8 2.8 47.4 

switchgrass on high quality land (MT/ha) 14.1 2.8 0.4 32.1 

switchgrass on low quality land (MT/ha) 12.7 3.3 0.4 31.1 

corn stover on high quality land (MT/ha) 2.6 0.6 0.01 6.9 

corn stover on low quality land (MT/ha) 2.4 0.54 0.02 6.5 

corn grain on high quality land (bu./acre) 139.1 39.2 0.7 304.5 

corn grain on low quality land (bu./acre) 127.2 34 0.5 297.3 

soybeans on high quality land (bu./acre) 42.9 20 1 112.3 

Soybeans on low quality land (bu./acre) 41.5 19.5 0.1 109.2 

Costs 

miscanthus      

(Yr 1) 
establishment cost ($/ha) 3,108 46.2 3,033.6 3,247.9 

 (Yrs 2-15) 
variable cost ($/MT) 17.2 2 14.2 19.6 

fixed cost ($/ha) 166 29 113.1 258.7 

switchgrass  variable cost ($/MT) 17.2 2 14.2 19.6 

(Year 1) fixed cost ($/ha) 332.7 22.8 294 392.9 

 establishment cost ($/ha) 249.4 20 223 319 

(Year 2) fixed cost ($/ha) 254.9 53.9 143.5 368.3 

(Yrs 3-10) fixed cost ($/ha) 251.6 40.6 169.1 354.1 

corn stover variable cost ($/MT) 17.5 2.1 12.6 21.7 

  fixed cost ($/ha) 48.5 10.9 20.3 75 

corn variable cost ($/bushel) 1.3 0.4 0.8 2.7 

 fixed cost ($/acre) 136.5 28.6 91.4 221.8 

soybeans variable cost ($/bushel) 1.5 0.3 0.8 1.8 

  fixed cost ($/acre) 107.4 45.4 59.4 195.9 

  corn projected price 4.1 1.2 2.6 7.8 
 

 harvest price 3.8 1.3 2.2 8.1 

Pricesc 

 
received price 4 1.3 1.9 9.1 

 ($/bushel) soybeans projected price 9.5 2.9 5.4 17.2 
 

 harvest price 9.3 3 5.4 19.3 

    received price 9.2 2.6 5.3 17.3 

Acreage (hectare per county) 
High quality land 28,841 38,228 202 252,448 

Low quality land 4,507 4,680 0 42,154 

Note: a Costs and prices are in 2010 dollars; MT refers to metric tons of biomass with 15% moisture content. b 

Corn grain and stover yields are under corn-soybean (CS) rotation. Under corn-corn rotation, yields are 

assumed to be 12% lower than that under CS rotation. c The received price is state-level annual average price 

while the projected price and harvest price are futures prices calculated following RMA (2011). 
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Table 2. 2 Biomass Production under different scenarios with credit constraint (Million MT). 

  Loss Neutral Loss Averse Loss Neutral Loss Averse 

Biomass Type Land Type High Discount High Discount Low Discount Low Discount 

    [1] [2] [3] [4] 

When biomass price is $50/MT 

Corn Stover High Quality  95.8 95.8 95.7 95.7 

 Low Quality  13.0 12.9 12.7 12.9 

 All land 108.8 108.7 108.4 108.6 

Miscanthus High Quality  0.3 0.0 3.9 0.7 

 Low Quality  0.1 0.0 4.4 1.3 

 All land 0.4 0.0 8.3 2.0 

Switchgrass High Quality  0.7 1.0 0.3 1.0 

 Low Quality 0.3 0.4 0.1 0.3 

 All land 1.0 1.4 0.4 1.3 

Total Biomass High Quality  96.8 96.8 99.9 97.4 

 Low Quality  13.3 13.3 17.2 14.5 

 All land 110.2 110.1 117.1 111.9 

When biomass price is $100/MT 

Corn Stover High Quality 83.1 87.4 81.7 82.6 

 Low Quality  9.0 9.6 8.5 8.7 

 All land 92.1 97.0 90.2 91.3 

Miscanthus High Quality  213.3 128.8 237.5 225.7 

 Low Quality  69.4 56.1 77.2 73.8 

 All land 282.7 184.9 314.7 299.5 

Switchgrass High Quality  10.7 34.6 1.8 4.7 

 Low Quality  5.0 9.0 3.2 4.2 

 All land 15.7 43.6 5.0 8.9 

Total Biomass High Quality 307.1 250.8 321.0 313.0 

 Low Quality 83.3 74.6 88.9 86.6 

  All land 390.4 325.5 409.9 399.6 
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Table 2. 3 Land use under different scenarios with credit constraint (Acres)  

        Loss Neutral           Loss Averse            Loss Neutral    Loss Averse 

Land Type       High Discount             High Discount             Low Discount      Low Discount 

               [1]             [2]             [3]      [4] 

When biomass price is $50/MT 

For Miscanthus         

  high quality land                   24,368                       1,192                    358,734                     59,574  

  low quality land                     6,748                          323                    397,726                   120,048  

  total land                   31,116                       1,514                    756,461                   179,622  

For Switchgrass     

  high quality land                 123,094                   182,235                      57,234                   186,704  

  low quality land                   51,387                     66,197                      15,205                     58,245  

  total land                 174,481                   248,432                      72,439                   244,949  

When biomass price is $100/MT 

For Miscanthus         

  high quality land            21,391,023              12,251,082               24,514,886              22,943,734  

  low quality land              6,749,915                5,259,230                 7,859,570                7,345,123  

  total land            28,140,937              17,510,312               32,374,456              30,288,857  

For Switchgrass     

  high quality land              1,951,209                6,278,952                    333,262                   895,990  

  low quality land              1,003,224                1,713,005                    622,258                   844,793  

  total land              2,954,433                7,991,957                    955,520                1,740,783  
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Table 2. 4 Impact on Biomass Production due to BCAP support (with Credit Constraint) 

  Loss Neutral Loss Averse Loss Neutral Loss Averse 

Biomass Type Land Type High Discount High Discount Low Discount Low Discount 

    [1] [2] [3] [4] 

When biomass price is $50/MT 

Absolute Change in Biomass Production (Million MT)  

Miscanthus High Quality  1.9 0.4 9.9 3.9 

 Low Quality  2.1 0.6 7.9 5.4 

Switchgrass High Quality  -0.1 0.01 -0.3 -0.2 

  Low Quality -0.01 0.2 0.0 -0.03 

Net change in biomass production (Million MT) considering both Miscanthus and Switchgrass 

together 

 Total land 3.9 1.2 17.5 9.1 

Net BCAP support payment (Annuity $ Million) considering both Miscanthus and Switchgrass 

together 

  Total Land 15.90 5.04 96.91 41.06 

Increase in biomass production (Million MT) per Million $ of BCAP support (Annuity) 

  Total Land 0.24 0.24 0.18 0.22 

When biomass price is $100/MT 

Absolute Change in Biomass Production (Million MT)  

Miscanthus High Quality  18.2 90.6 5.0 15.2 

 Low Quality  5.7 16.1 1.2 3.8 

Switchgrass High Quality  -6.8 -26.5 -0.7 -3.1 

  Low Quality  -1.1 -4.0 -0.1 -1.1 

Net change in biomass production (Million MT) considering both Miscanthus and Switchgrass 

together 

 Total Land 16.0 76.2 5.4 14.8 

Net BCAP support payment (Annuity $ Million) considering both Miscanthus and Switchgrass 

together 

  Total Land 1212.51 1143.56 1291.99 1278.21 

Increase in biomass production (Million MT) per Million $ of BCAP support (Annuity) 

  Total Land 0.01 0.07 0.004 0.01 

Note: As per BCAP [sec. 9009], one-time establishment cost subsidy is limited to 50% of cost of 

establishment, not to exceed $500 per acre.    
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Table 2. 5 Impact on Biomass Production due to subsidized energy crop insurance (with Credit 

Constraint) 

  Loss Neutral Loss Averse Loss Neutral Loss Averse 

Biomass Type Land Type High Discount High Discount Low Discount Low Discount 

    [1] [2] [3] [4] 

When biomass price is $50/MT 

Absolute Change in Biomass Production (Million MT)  

Miscanthus High Quality  0.1 0.0 0.3 0.2 

 Low Quality  0.1 0.1 1.2 0.3 

Switchgrass High Quality  0.3 0.3 0.3 0.3 

  Low Quality 0.5 0.5 0.2 0.6 

Net change in biomass production (Million MT) considering both Miscanthus and Switchgrass together 

 Total Land 1.0 0.9 2.0 1.4 

Net insurance subsidy payment (Annuity $ Million) considering both Miscanthus and Switchgrass together 

  Total Land 4.61 4.72 10.53 6.33 

Increase in biomass production (Million MT) per Million $ of insurance subsidy payment (Annuity) 

  Total Land 0.21 0.20 0.19 0.22 

When biomass price is $100/MT 

Absolute Change in Biomass Production (Million MT)  

Miscanthus High Quality  -3.6 -3.5 1.7 -0.4 

 Low Quality  0.0 -1.8 0.4 0.3 

Switchgrass High Quality  5.8 8.7 0.9 2.5 

  Low Quality  1.5 3.1 0.6 1.0 

Net change in biomass production (Million MT) considering both Miscanthus and Switchgrass together 

 Total land 3.7 6.5 3.6 3.4 

Net insurance subsidy payment (Annuity $ Million) considering both Miscanthus and Switchgrass together 

  Total Land 166.63 200.45 171.28 164.07 

Increase in biomass production (Million MT) per Million $ of insurance subsidy payment (Annuity) 

  Total Land 0.02 0.03 0.02 0.02 

Note: Insurance premium subsidy rate is taken as 55%, and insurance coverage level is taken as 75% 
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Figure 2. 1 Aggregate Biomass Supply Curves 

C
re

di
t c

on
st

ra
in

ed
 

Loss Neutral 

High Discount

Loss Averse 

High Discount

Loss Neutral 

Low Discount

Loss Averse 

Low Discount
B

io
m

as
s 

pr
ic

e 
($

/M
T

)

Biomass (Mil. MT) Biomass (Mil. MT) Biomass (Mil. MT) Biomass (Mil. MT)

B
io

m
as

s 
pr

ic
e 

($
/M

T
)

B
io

m
as

s 
pr

ic
e 

($
/M

T
)

B
io

m
as

s 
pr

ic
e 

($
/M

T
)

B
io

m
as

s 
pr

ic
e 

($
/M

T
)

Biomass (Mil. MT) Biomass (Mil. MT) Biomass (Mil. MT) Biomass (Mil. MT)

B
io

m
as

s 
pr

ic
e 

($
/M

T
)

B
io

m
as

s 
pr

ic
e 

($
/M

T
)

B
io

m
as

s 
pr

ic
e 

($
/M

T
)

N
ot

 c
re

di
t c

on
st

ra
in

ed

0

10

20

30

40

50

60

70

80

90

100

0 150 300 450
0

10

20

30

40

50

60

70

80

90

100

0 150 300 450

0

10

20

30

40

50

60

70

80

90

100

0 150 300 450

0

10

20

30

40

50

60

70

80

90

100

0 150 300 450

0

10

20

30

40

50

60

70

80

90

100

0 150 300 450
0

10

20

30

40

50

60

70

80

90

100

0 150 300 450

0

10

20

30

40

50

60

70

80

90

100

0 150 300 450

0

10

20

30

40

50

60

70

80

90

100

0 150 300 450



 

82 

 

M
is

ca
n

th
u
s

S
w

it
ch

g
ra

ss
Credit Constraint

Loss Aversion

High Discount Rate

Biomass price $50/MT.

No Credit Constraint

Loss Neutral

Low Discount Rate

Biomass price $50/MT.

Credit Constraint

Loss Aversion

High Discount Rate

Biomass price $100/MT.

No Credit Constraint

Loss Neutral

Low Discount Rate

Biomass price $100/MT.

Legend

MiscTotal_CC_LossAver_HighInte_50

N
o 

Pro
du

ct
io

n

(0
, 2

0]

(2
0,

 3
0]

(3
0,

 5
0]

(5
0,

 1
00

]

(1
00

, 2
50

]

(2
50

, 5
00

]

> 5
00

Legend

MiscTotal_NoCC_LossNeutral_LowInte_50

0.
00

00
00

0.
00

00
01

 - 
20

00
0.

00
00

00

20
00

0.
00

000
1 

- 3
00

00
.0

00
00

0

30
00

0.
00

000
1 

- 5
00

00
.0

00
00

0

50
00

0.
00

000
1 

- 1
00

00
0.

00
00

00

10
00

00
.0

000
01

 - 
25

00
00

.0
00

00
0

25
00

00
.0

000
01

 - 
50

00
00

.0
00

00
0

50
00

00
.0

000
01

 - 
49

16
74

.9
01

44
7

Legend

MiscTotal_CC_LossAver_HighInte_100

0.0
00000

0.0
00001 - 

20000.0
00000

20000.0
00001 - 

30000.0
00000

30000.0
00001 - 

50000.0
00000

50000.0
00001 - 

100000.0
00000

100000.0
00001 - 

250000.0
00000

250000.0
00001 - 

500000.0
00000

500000.0
00001 - 

11
04567.4

95384

Legend

MiscTotal_NoCC_LossNeutral_LowInte_100

0.0
00000

0.0
00001 - 

20000.0
00000

20000.0
00001 - 

30000.0
00000

30000.0
00001 - 

50000.0
00000

50000.0
00001 - 

100000.0
00000

100000.0
00001 - 

250000.0
00000

250000.0
00001 - 

500000.0
00000

500000.0
00001 - 

1592635.3
02203

Legend

MiscTotal_CC_LossAver_HighInte_50

No Production
(0, 20]

(20, 30]
(30, 50]

(50, 100]

(100, 250]

(250, 500]
> 500

Legend

SwitTotal_CC_LossAver_HighInte_50

0.0
00000

0.0
00001 - 

10000.0
00000

10000.0
00001 - 

20000.0
00000

20000.0
00001 - 

40000.0
00000

40000.0
00001 - 

60000.0
00000

60000.0
00001 - 

100000.0
00000

100000.0
00001 - 

200000.0
00000

200000.0
00001 - 

11
3021.4

97788

Legend

SwitTotal_NoCC_LossNeutral_LowInte_50

0.0
00000

0.0
00001 - 

10000.0
00000

10000.0
00001 - 

20000.0
00000

20000.0
00001 - 

40000.0
00000

40000.0
00001 - 

60000.0
00000

60000.0
00001 - 

100000.0
00000

100000.0
00001 - 

200000.0
00000

200000.0
00001 - 

11
3021.4

97788

Legend

SwitTotal_CC_LossAver_HighInte_100

0.
00

00
00

0.
00

00
01

 - 
10

00
0.

00
00

00

10
00

0.
00

000
1 

- 2
00

00
.0

00
00

0

20
00

0.
00

000
1 

- 4
00

00
.0

00
00

0

40
00

0.
00

000
1 

- 6
00

00
.0

00
00

0

60
00

0.
00

000
1 

- 1
00

00
0.

00
00

00

10
00

00
.0

000
01

 - 
20

00
00

.0
00

00
0

20
00

00
.0

000
01

 - 
53

88
12

.2
64

28
2

Legend

SwitTotal_NoCC_LossNeutral_LowInte_100

0.0
00000

0.0
00001 - 

10000.0
00000

10000.0
00001 - 

20000.0
00000

20000.0
00001 - 

40000.0
00000

40000.0
00001 - 

60000.0
00000

60000.0
00001 - 

100000.0
00000

100000.0
00001 - 

200000.0
00000

200000.0
00001 - 

275079.1
28607

Legend

SwitTotal_CC_LossAver_HighInte_50

No Production
(0, 10]

(10, 20]

(20, 40]

(40, 60]

(60, 100]

(100, 200]
> 200

 

Figure 2. 2 Average County-Level Miscanthus and Switchgrass Production (1,000 MT per year) 
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Figure 2. 3 Miscanthus acreage on high and low-quality land (1,000 Acres)  

Note: For the first and second maps in the first row, only four and three counties produce miscanthus, respectively. They are all in the 

southeastern region. 
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Figure 2. 4 Change in Biomass Production (Million MT) due to policy instruments. 

Case: Credit Constraint, Loss Aversion, High Discount Rate 
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Chapter 3. Does Food Insecurity Worsen due to Smoking? 

3.1 Introduction 

A household is considered food secure when it has access to nutritionally adequate and safe food 

at all times to live a healthy life. Even in a developed country like the United States, inadequate 

access to food remains a serious concern for many people. Concern about food insecurity has 

great importance because of its relationship with poor mental and physical health (Laraia, 2013). 

Anderson (1990) has defined food insecurity as “limited or uncertain ability to acquire 

acceptable foods in socially acceptable ways.” As per the recent report from the U.S. Department 

of Agriculture (USDA) (2018), about 12% of U.S. households were considered food insecure 

during at least some part of the year in 2017, meaning that these households did not always have 

access to nutritionally adequate and safe food. Of these food insecure households, more than a 

third (approximately 4.5% of U.S. households) was among the group having very low food 

security.  

 While an inverse relationship between food insecurity and income has been found in the 

aggregate, not all households below the poverty line are food insecure and not all food insecure 

households are poor. When Gundersen, Krieder, and Pepper (2011) examined the relationship of 

food insecurity to household income, they found that some households that were far below the 

poverty threshold self-reported that they were food secure and some households even at 

relatively high incomes continued to report food insecurity. These findings make it clear that 

food insecurity is related to other characteristics of households beyond income alone. To make 

sound decisions about policies and programs targeted at reducing food insecurity, it is critical to 

understand these other characteristics. 
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  The level of food insecurity in a household may in part be explained by competing 

demands, such as expenses related to chronic diseases, high rents, high state and local taxes or 

money spent on addictions. Kirkpatrick and Tarasuk (2011) found a positive relationship 

between housing costs and food insecurity in Toronto, Canada. Bartfeld and Dunifon (2006) 

found that higher median rent is associated with higher food insecurity for households with 

children in the United States. They also found that a 1% increase in the tax burden was 

associated with a 1.7% increase in the odds of food insecurity. Out of these competing demands, 

addiction costs such as smoking, drinking, and gambling should also be considered, as addiction 

costs, which may be hidden from other household members, may take a major share of income. 

 One of the most common addictions is cigarette smoking. Smoking may affect food 

security in a simple way, that is, money spent to purchase cigarettes or other tobacco products is 

not available for food purchase. In December 2014, the average price per pack of cigarettes in 

the US was $6.18 (Boonn, 2014). By state, the average price per pack of cigarettes ranged from 

$5.12 in Missouri to a high of $10.66 in New York, as of November 2016 (Orzechowski and 

Walker, 2016). A cigarette smoker who smokes only a pack a day can spend roughly $2,500 a 

year on cigarettes; people with heavy smoking habits can bear costs that reach or exceed about 

$5,000 to $6,000 per year. Due to addiction, the cigarettes may take precedence over food 

purchases when income is tightly constrained.  

Smoking is more common among low income adults than higher income adults (Jamal et 

al., 2014), and low-income households have lower disposable income than high income 

households making even a modest cigarette habit take up a fairly large portion of income. 

Farrelly et al., (2012) estimated that in New York State, a market where cigarette prices are 

relatively high, low-income households (income < $30,000 per year), smokers spend roughly 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721304/#bb0025
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24% of their annual household income on that purchase of cigarettes. The purchase price of 

cigarettes is not the only cost that smokers incur throughout their lives. Smoking is also related 

to financial strain through smoking-caused diseases (Brook and Zhang, 2013). 

 The relationship between smoking and food insecurity has not been widely researched, 

although a few studies on food insecurity and the food stamp program participation have touched 

this issue. Armour, Pitts, and Lee first explored this relationship in 2001. They found that 

smoking among the household heads or spouses is associated with an increase in food insecurity. 

Another study found that living with an adult smoker is a risk factor for food insecurity among 

household children (Cutler-Trigges et al., 2008). Mykerezi and Mills (2010) included smoking 

status of the household head as an independent variable in their model of food insecurity and 

found it to be significant, although the impact of smoking on food insecurity was not a focus of 

their study. These studies ignored the possible endogeneity problem, that the stress of food 

insecurity may increase the likelihood of smoking as has also been hypothesized (Duffy and 

Zizza, 2016). Thus, to smoke or not to smoke could be a self-selection decision partly caused by 

food insecurity, leading to a potential problem of endogeneity. Also, previous studies have 

modeled smoking as a binary variable, ignoring the impact that higher levels of cigarette 

consumption may have as compared to more moderate smoking. 

 The aim of this study is to examine the endogeneity problem and also to see the impact 

of increased smoking on food security. The novel part of this paper is to use quantity of cigarette 

smoking (average number of cigarettes per day) as an explanatory factor in the food security 

model to evaluate whether food insecurity worsens due to more smoking.  

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721304/#bb0120
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3.2 Conceptual Framework 

There is an imperfect correlation between poverty and food insecurity. Not all households below 

the poverty line are food insecure, and not all food insecure households are poor. Employing a 

theoretical model can assist in developing a rationale for the observed discrepancies between 

food insecurity and poverty. I can say that a household spends its income on two types of 

commodities i.e. food and an aggregate of all other goods. In the classic utility maximization 

problem, the household allocates its limited resources between food and other needs to maximize 

utility, 𝑈,  

   ,        U U F NF              (1) 

Subject to the budget constraint 𝐼, 

.    .                F NFI P F P NF       (2) 

Where 𝐹 is a composite commodity for all nutritionally adequate and safe food items consumed 

and 𝑁𝐹 is a composite commodity for all other goods. 𝑃𝐹 and 𝑃𝑁𝐹 are prices for food and all 

other goods respectively. The Lagrangian function is thus 

     ,     .    .        F NFMax U U F NF I P F P NF         (3) 

Where utility is maximized over 𝐹 and 𝑁𝐹, and 𝜆 is taken as the marginal utility of income.  

The model shows that the share of income available for nutritionally adequate and safe food 

(required for food security) will decrease if there is an increased expenditure on other goods. The 

imperfect correlation between food insecurity and poverty indicates the importance of factors 

other than income that can affect the budget constraint. Both the relative utility of 𝐹 and 𝑁𝐹 and 
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their relative prices will affect the share of income spent on food. One of the competing demands 

on household income could arise from the costs associated with smoking. 

3.3 Data 

The study uses survey data from the 2011-2012 and 2013-2014 rounds of the National Health 

and Nutrition Examination Survey (NHANES). NHANES is designed to assess the health and 

nutritional status of adults and children in the United States. The survey combines interviews and 

physical examinations. The Survey examines a nationally representative sample of about 5,000 

persons each year. This study collects demographic data, food security data, income data and 

smoking data, among other things.  

The NHANES sample design is a clustered design and incorporates differential 

probabilities of selection. The NHANES sampling procedure consists of four stages. In stage 1, 

primary sampling units (PSUs) are selected such as single counties. In stage 2, the PSUs are 

divided into segments such as city blocks. In stage 3, households within each segment are listed, 

and a sample is randomly drawn. Then finally in stage 4, individuals are chosen to participate in 

NHANES from selected households. Typically, individuals within a cluster are more similar to 

one another than those in other clusters 

Food security status is calculated from the 10 core-item food security module of the U.S. 

Department of Agriculture. For example, one of the question is “'(I/we) couldn’t afford to eat 

balanced meals.' Was that often, sometimes, or never true for (you/your household) in the last 12 

months?” The full text of the questionnaire module can be found in (Coleman-Jensen et 

al.,2015). Based on the responses of these questions, households are classified either as fully 

food security, marginally food security, or as having low food security or very low food security. 

Households having full food security and marginal food security are considered food secure, 
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whereas, household having low food security and very low food security are considered food 

insecure.  

 While the NHANES classifies food security/insecurity into four discrete categories, these 

status levels can reflect meaningful ranges based on an underlying continuous scale. The 

categorical responses to the food security questions can also be coded into a continuous scale 

using the Rasch model, which is based on item-response theory. Special software can be used to 

calculate Rasch scale values; however, when there are only small portions of missing values, a 

simpler direct imputation method can be employed. Accordingly, for this study, a Rasch scale of 

food insecurity was developed following the procedures outlined in Bickel et al. (2000). A higher 

value on this scale indicates worsening food insecurity.  

3.4 Methods 

Different regression models are used to explore the relationship between food security and 

smoking, which can be represented by the following general equation: 

0 1 2sec   +  +  + uFood urity Smoking X               (4) 

where ‘X’ is a set of control variables. Control variables included in the model are age of survey 

participants, family size, poverty income ratio, gender, race, citizenship status, education and 

marital status. In one approach for our model, the dependent variable i.e. food security status is 

taken as a binary dependent variable representing food security as ‘1’ and food insecurity as ‘0’. 

In a model where the dependent variable is binary, our objective is to find the probability of 

something happening. Thus, I estimate the probabilities of a household being food secure i.e. 

Pr( 1/ )i i iY X P   . In another approach for our model, the dependent variable i.e. food security 

status is taken as a continuous variable (using the Rasch model). When the dependent variable is 
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the continuous scale, the model estimates how much each explanatory variable affects the level 

of food insecurity.  

The objective of using different models is to improve the understanding about said 

relationships, and also to view and analyze these relationships from multiple perspectives. In 

further sub-sections, I will discuss different models used to explore the relationship between food 

security and smoking. As discussed earlier that smoking is more common among low income 

adults than higher income adults, thus, I have also made one subset of data for families within 

200% of poverty level i.e. low-income households. Thus, I am using two sets of data for my 

analysis i.e. data for all households, and data for only low-income households. 

3.4.1 Probit Model 

 The two common approaches to develop a probability model for a binary response variable 

(food security in this study) are the Logit model and Probit model. In most applications, both 

models are similar. The main difference is that the logistic distribution has slightly fatter tails, 

i.e. the conditional probability approaches 0 or 1 at a slower rate in the Logit model than in the 

Probit model. Therefore, there is no compelling reason to choose one over the other. The Logit 

model uses the standard logistic distributions, whereas the Probit model uses a standard normal 

distribution. This study has applied the Probit model to explore the relationship between food 

security and smoking, which can be represented by the following two regression equations: 

0 1 2 3 4 5

6 7 8 9

sec   +  +  +  +  +  + 

 +  +  + Age + u                                                     (5)

sec

Food urity FamilySize PIR SmokingStatus Gender Race

Citizenship Education MaritalStatus

Food

     

   



0 1 2 3 4 5

6 7 8 9

  +  +  +  +  +  + 

 +  +  + Age + u                                                     (6)

urity FamilySize PIR SmkQty Gender Race

Citizenship Education MaritalStatus

     

   


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Food security is modeled in both equations as a binary variable (0 for food insecure and 1 for 

food secure). FamilySize is the total number of people reported in the family. PIR is the ratio of 

income to the poverty level. Gender is coded as 1 for female, 0 for male. Race is a set of binary 

variables representing Hispanic, non-Hispanic African American, and non-Hispanic white. (The 

omitted category is "other," which includes mixed race.) Citizenship status is a binary variable 

with the value 1 if the respondent is a U.S. citizen, 0 otherwise. Education is also represented by 

a set of binary variables, for low education (no high school degree), high school education, and 

college degree or more. (The omitted category for the regression was arbitrarily chosen as high 

school education.) Marital status takes the value 1 if the respondent is married or living with a 

partner, and 0 otherwise. Age is reported in years. SmokingStatus, in the first equation, takes the 

value 1 if the respondent reports currently smoking, in the second equation; smoking is measured 

by a continuous variable of daily cigarette use. 

  These equations will help us to know the impact of ‘smoking status’ and ‘smoking 

quantity’ on food security status individually. The marginal effects of smoking on the probability 

of food security are calculated after the model is estimated. 

3.4.2 Reducing the problem of endogeneity 

One aim of this study is to examine the possible endogeneity problem due to the decision to 

smoke. Before I take care of this particular endogeneity problem, I will also take care of another 

possible endogeneity problem. As discussed earlier, food insecurity disproportionately affects 

households near the poverty level i.e. not all households below the poverty line are food 

insecure, and not all food insecure households are poor. There is a probability that there may be 

unobserved factors associated with poverty that are also associated with food insecurity. This 

situation will raise an endogeneity problem.  
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The most common technique to solve for endogeneity problem is the introduction of an 

instrument variable in the model. Thus, we need a variable that is correlated with poverty, but 

not associated with food security. However, it is really very difficult to find such a variable. 

Thus, to reduce this problem of endogeneity, this study runs models (same as in equation 5 and 

6) to explore the relationship between food security and smoking on just households within 

200% of the federal poverty level as well as for all households.  

3.4.3 Probit Model with survey correction 

As NHANES data (used in this study) are not obtained using a simple random sample, thus 

survey correction must be taken into account. If while calculating variance estimates, one 

assumes simple random sampling, then the variance estimates are generally too low, and thus 

significance levels will be overstated, because they do not account for the differential weighting 

and the correlation among sample persons within a cluster. In complex survey design, 

independence of observations and equal probabilities of selection may no longer hold. Thus, for 

survey correction, one must account for the design effects of stratification, design effects of 

clustering, and should also account for the unequal probability of sampling with the help of 

weights.  

A simple weight is assigned to each sample person, which is a measure of the number of 

people in the population represented by that sample person. Probit models with survey 

corrections are run to explore the relationship between food security and smoking to get more 

precise variance estimates and significance levels. The models in (5) and (6) are run both with 

and without survey corrections to see the impact of failing to make these corrections on the 

estimated significance of the explanatory variables.  
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3.4.4 Endogenous – Treatment regression Model 

A second objective of this study is to examine the possible endogeneity problem due to a self-

selection decision to smoke. To control for the endogeneity of the treatment, a control-function 

approach is commonly used. In this approach, residuals from the treatment model are included as 

a regressor in the models for the potential outcomes. 

Thus, two models are run in this Endogenous – Treatment regression model. The first model 

is a choice model – to see whether the respondent is in a group or not. In this study, if one 

smokes then he/she will be in the group, otherwise not. A regression for observing a positive 

outcome of the smoking status is modeled with a Probit Model, which can be represented by the 

following equation: 

0 1 2 3 4 5

6 7 8

  +  +  + Age +  +  + 

 +  +  + u

SmkStat FamilySize PIR Gender Race

Citizenship Education MaritalStatus

     

  


       (7) 

 The residuals from this first choice regression model are included as a regressor in the 

second regression model. The second model then examines the effects of independent variables 

on the outcome, i.e. food security.  

I use two approaches here; one using ‘Survey Linear Regression with Endogenous Treatment 

(‘etregress’ in STATA)’, in which the smoking is represented by a binary variable in the second 

stage regression model. This approach will take care of the possible endogeneity problem due to 

self-selection decision but will not tell about impact of increased smoking on the food security. 

This approach also takes care of the survey corrections. In the second approach, by using 

‘Endogenous – Treatment Regression Model (‘Proc Qlim’ in SAS)’, in which the variable 

‘smoking quantity’ is included in the second regression model. This approach will tell about 

impact of increased smoking on the food security. However, this approach does not take care of 
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the survey corrections and significance levels will be overstated. This second regression model 

can be represented by the equation (6). 

      In SAS PROC QLIM and in STATA ETREGRESS it is possible to estimate a treatment 

model and outcome model when both dependent variables (treatment and outcome) are binary 

variables, but in the case of the outcome model, this would be similar to running an Ordinary 

Least Squares (OLS) on a binary dependent variable. Therefore, for these two approaches, I have 

coded food security variable into the continuous variable on a ‘Rasch’ scale.  

To test for self-selection bias, the study examines the relationship between the residuals for 

stage 1 and stage 2. If the unobservables in the treatment model (stage 1) are correlated with the 

unobservables in the outcome regression model (stage 2), it shows that we have biased estimates 

without correction. It simply means that unobservables in the choice model of being a smoker are 

also affecting the outcome regression model.  

3.5 Results 

Among all households, 17.66% households are food insecure (Table 1), whereas among the low 

income households (i.e. within 200% of poverty level), roughly 33% households are food 

insecure (Table 2). For smoking, respondents were asked, “Do you now smoke cigarettes?” and 

“Average number of cigarettes per day during the past 30 days.” Among all households roughly 

23% are smokers (on average 13.95 cigarettes per day), whereas in low-income households 

31.4% are smokers (on average 13.14 cigarettes per day). The average number of cigarettes per 

day has been converted to half packs (10 cigarettes). Questions about smoking were asked only 

of respondents who are 20 years of age or older at the time of the survey. For our analyses, I 

considered only the domain of respondents aged 20 to 60.  
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Household income is measured using the ratio of family income to poverty as provided in 

the NHANES data. Summary statistics for variables used in this study is given in Table 1 (for all 

households), and in Table 2 (for low-income households). There are a few interesting findings 

such as, among all households, roughly 39% people are college graduate or above (Table 1), 

whereas among low income households, only 17% people are college graduates or above (Table 

2). Among all households, 10% people didn’t finish high school (Table 1), whereas among the 

low income households, roughly 19% people didn’t finish high school (Table 2). Among all 

households, 17% are Hispanic, whereas among the low income households, roughly 25% are 

Hispanic. In the case of non-Hispanic African Americans, these figures are 12% and 17% for all 

households and for low-income households’ respectively. 

First of all, this study has run the Probit models on all households to find the impact of 

‘smoking status’ and ‘smoking quantity’ on food security status. Table 3 shows the results of the 

Probit model on all households for ‘smoking status’ as one of the explanatory variables. The 

variable ‘smoking status’ has a negative sign, which means that households in which the 

respondent is a smoker are less likely than households where the respondent doesn't smoke to be 

food secure. The mean value of the marginal effect of ‘smoking status’ on the probability of food 

security is 0.0628, which signifies that, if the respondent is a smoker, the household is roughly 

6.3% less likely to be food secure. Table 4 shows the results of the Probit model on all 

households for ‘smoking quantity’ as one of the explanatory variable. The parameter estimate 

has a negative sign for the variable ‘smoking quantity’ which means that for each additional half 

pack of cigarettes smoked per day, you are less likely to be food secure. Mean value of marginal 

effect of ‘smoking quantity’ on the probability of food security is 0.005,which signifies that, for 

each additional half pack of cigarettes, household is roughly 0.5% less likely to be food secure. 
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For the reasons discussed earlier in this study (to take care of one type of possible 

endogeneity in this study), the regression models are also run on families within 200% of the 

federal poverty level i.e. low-income families. Table 5 shows the results of the Probit model on 

low-income families for ‘smoking status’ as one of the explanatory variables. In this case also, 

smoking has a negative sign. Here, the mean value of the marginal effect of ‘smoking status’ on 

the probability of food security, 0.0856, is higher than for the case of all households (0.0628), 

which signifies that if a respondent is a smoker in a low-income household, this low-income 

household is roughly 8.56% less likely to be food secure than households where the respondent 

doesn't smoke. 

Similarly, Table 6 shows the results of the Probit model on low-income families for 

‘smoking quantity’ as one of the explanatory variables. In this case also, for each additional half 

pack of cigarettes, low-income households are less likely to be food secure. The mean value of 

the marginal effect of ‘smoking quantity’ on the probability of food security is 0.0502,which 

signifies that, for each additional half pack of cigarettes, a low-income household is roughly 5% 

less likely to be food secure, which is ten times higher as compared to the case of all households 

(i.e. 0.5% only). 

Table 7 to Table 10 shows the results for the Probit model for the cases whose results are 

mentioned in Table 3 to Table 6 (impact of ‘smoking status’ and ‘smoking quantity’ with respect 

to all households and low income households), but with survey corrections. The values of 

parameter estimates are the same, but larger standard errors result in smaller ‘t-values’. It 

signifies that ignoring survey corrections will lead to smaller variance estimates, and thus 

significance levels will be overstated.  
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Tables 11 and 12 show the results of models with survey correction when food insecurity 

is taken as a continuous variable for all households and low income households, respectively. 

Results show a positive sign for the variable 'smoking quantity’ which means that for each 

additional half pack of cigarettes the respondent smokes per day, a household’s food insecurity 

level will increase. For example, in case of low income households, for each additional half pack 

of cigarettes, food insecurity will increase by roughly 0.07 scale points 

 Table 13 shows the results for the Endogenous – Treatment regression model without 

survey corrections for low-income households, which gives a statistically significant positive 

value of 0.029 for the variable smoking quantity in the second stage model. In this second stage 

model, the dependent variable is scale of food insecurity, which simply means that, for each 

additional half pack of cigarettes, food insecurity will increase by roughly 0.03 scale points. To 

test for self-selection bias (possible endogeneity), I examine the relationship between error terms 

for two stages involved in this method. ‘Rho’ in results represents the correlation coefficient 

between error terms of first and second model. In our results, I have a statistically significant 

negative value of 0.2777 for ‘rho’. If it is not statistically significant, it signifies that there are no 

effects of self-selection, and if this is significant, then one should use Endogenous – Treatment 

regression model to correct for possible endogeneity due to self-selection bias. 

Table 14 shows the results of linear regression with endogenous treatment with survey 

corrections, which gives a statistically significant positive value of 1.13 for the variable 

‘smoking status’, when scale of food insecurity is the dependent variable. It signifies that the 

respondent being a smoker is going to increase household insecurity by 1.13 scale points in 

comparison to non-smoker. In these results with survey corrections, I don’t have a statistically 

significant value for ‘rho’. If it is not statistically significant, it signifies that there are no effects 
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of self-selection. So, in a model with survey corrections, there seems no problem of endogeneity 

due to self-selection decision problem. Thus with ‘Endogenous – treatment’ models, this study 

has tried to address the possible problem of endogeneity due to self-selection decision problem. 

If smoking is not endogenous, it would appear that the observed correlation between smoking 

and food insecurity may be working through the budget constraint. That is, people aren't 

smoking because they are food insecure; rather, food insecurity is made worse by smoking. 

3.6 Limitations 

A limitation of all studies that use the USDA food security model is that the level of food 

security is self-reported. Households may experience objectively similar food hardship, but one 

respondent may minimize the problem or be embarrassed to report it. Smoking is also self-

reported and people may under-report their actual cigarette use. Further, in the NHANES data, 

the smoking status is reported only for the respondent. If there are other adults in the household 

who smoke, their smoking may also reduce the available resources to purchase food, meaning 

that the effect of household smoking on household food security may be under-estimated in this 

study. 

3.7 Conclusions 

Many American households struggle to bring in sufficient income to meet basic needs related to 

nutritionally adequate and safe food. Due to addiction, expenditures on cigarettes may impose an 

extra financial strain on these low-income households. The results indicate that cigarette 

smoking is associated with decreased food security and also food insecurity worsens due to more 

smoking. The results indicate that in low-income households, if the respondent is a smoker, that 

household is roughly 8.5% less likely to be food secure and for each additional half pack of 

cigarettes smoked per day, that low-income household is roughly 5% less likely to be food 
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secure. The results indicate that the smokers may substitute cigarettes for nutritional and safe 

food, which adversely affects household food security. This assessment can guide Food 

Assistance and Tobacco Control Programs to work together to formulate effective policies. If 

successful, households will be able to free up family funds that might be used to reduce food 

insecurity. In recent years, due to a consistent increase in federal and local tobacco excise taxes, 

cigarette pack prices have been increasing. From evidence it is clear that higher tobacco prices 

both encourage users to quit tobacco use and reduce tobacco initiation in young people 

(Chaloupka et al., 2011). However, an unintended consequence of these increased prices may be 

to worsen food security in low-income families. 

As discussed earlier, one of the aims of this study is to see the impact of increased 

smoking on food security. Even with the data of only low-income households, this study has 

found that those who reported smoking more cigarettes per day are more likely to find it difficult 

to maintain food security for their households. It is critically important to develop policies that 

encourage smokers to quit which would in turn reduce food insecurity. 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721304/#bb0180
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Table 3. 1 Summary Statistics for All Households (Respondent Age 20 – 60) 

Continuous variables 

Variable Label Minimum Maximum Mean SE 

Mean 

Age Age in years at screening 20.00 60.00 39.93 0.36 

Family Size Total people in the Household 1.00 7.00 3.32 0.04 

PIR Ratio of family income to poverty 0 5.00 2.87 0.08 

Categorical variables 

Variable N Mean SE of Mean 95% CL for Mean 

Married 7906 0.60 0.014 0.577 0.634 

College graduates 7917 0.39 0.019 0.352 0.431 

Didn’t finish High school 7928 0.10 0.008 0.080 0.116 

Citizen 7902 0.89 0.009 0.872 0.912 

Hispanic 7928 0.17 0.019 0.128 0.206 

Non-Hispanic black 7928 0.12 0.014 0.093 0.153 

Non-Hispanic white 7928 0.62 0.027 0.568 0.678 

Female 7928 0.51 0.005 0.496 0.519 

Scale – food insecurity 7786 0.97 0.052 0.864 1.080 

Table of smokers 

smoker Frequency Wgt Freq SD of Wgt Freq Percent SE Percent 

0 5981 130389836 5853684 77.10 0.97 

1 1867 38718754 1969509 22.90 0.97 

Table of Food Secure People 

Food security Freq Wgt Freq SD of Wgt Freq Percent SE Percent 

0 1738 29859150 1515908 17.66 0.95 

1 6110 139249441 6486360 82.34 0.95 

Average Cigarettes Per day 

Smokers Variable Minimum Maximum Mean SE of Mean 

1 Smoke qty 1.00 999.00 13.95 0.75 

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 
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Table 3. 2 Summary Statistics for Low-Income Households (Respondent Age 20 – 60) 

Continuous variables 

Variable Label Minimum Maximum Mean SE Mean 

Age Age in years at screening 20.00 60.00 37.69 0.48 

Family Size Total people in the Household 1.00 7.00 3.66 0.07 

PIR Ratio of family income to poverty 0 2.00 1.03 0.02 

Categorical variables 

Variable N Mean Std Error of Mean 95% CL for Mean 

Married 4285 0.51 0.019 0.474 0.554 

College graduates 4289 0.17 0.016 0.14 0.208 

Didn’t finish High school 4296 0.19 0.014 0.159 0.219 

Citizen 4272 0.83 0.017 0.794 0.864 

Hispanic 4296 0.25 0.028 0.195 0.310 

Non-Hispanic black 4296 0.17 0.022 0.126 0.218 

Non-Hispanic white 4296 0.50 0.038 0.417 0.575 

Female 4296 0.52 0.007 0.505 0.535 

Scale – food insecurity 4167 1.80 0.060 1.673 1.920 

Table of smokers 

Smoker Frequency Wgt Freq SD of Wgt Freq Percent SE of Percent 

0 2908 49087174 2432068 68.59 1.51 

1 1310 22480407 1625236 31.41 1.51 

Table of Food Secure People 

Food security Frequency Wgt Freq SD of Wgt Freq Percent SE of Percent 

0 1454 23466497 1393290 32.79 1.40 

1 2764 48101084 2631593 67.21 1.40 

Average Cigarettes Per day 

Smokers Variable Minimum Maximum Mean SE of Mean 

1 Smoke qty 1.00 999.00 13.14 0.85 

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 
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Table 3. 3 Probit model - All Households for smoking status (Dependent variable: Food 

Security) 

Parameter Estimates 

Parameter DF Estimate SE t Value Pr > |t| 

Intercept 1 -0.0293 0.000776 1421.6749 <.0001 

Age at screening 1 0.00743 7.518E-6 977196.074 <.0001 

Family Size 1 -0.0338 0.000080 179083.420 <.0001 

Ratio of family income to poverty 1 0.3328 0.000098 11448779.6 <.0001 

Smoker 1 -0.2828 0.000274 1061446.31 <.0001 

Female 1 -0.00060 0.000242 6.1248 0.0133 

Hispanic 1 -0.1530 0.000522 85997.7909 <.0001 

Non-Hispanic black 1 -0.0704 0.000545 16702.5805 <.0001 

Non-Hispanic white 1 0.0711 0.000476 22351.8343 <.0001 

Citizen 1 -0.0352 0.000435 6520.2294 <.0001 

Didn’t finish High school 1 -0.1249 0.000343 132438.587 <.0001 

College graduates 1 0.4241 0.000332 1629902.60 <.0001 

Married 1 0.1532 0.000255 360870.746 <.0001 

Analysis Variable : Marginal effect of smoker on the probability of Food Security=1 

Mean Std Dev 

0.0628016 0.0388241 

 

Classification Table 

Prob 

Level 

Correct Incorrect Percentages 

Event Non- 

Event 

Event Non- 

Event 

Correct Sensi- 

tivity 

Speci- 

ficity 

False 

POS 

False 

NEG 

0.500 8236 222 1852 238 80.2 97.2 10.7 18.4 51.7 

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 
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Table 3. 4 Probit model - All Households for smoking quantity (Dependent variable: Food 

Security) 

Parameter Estimates 

Parameter DF Estimate Standard Error t Value Pr > |t| 

Intercept 1 -0.1416 0.000768 33995.1462 <.0001 

Age at screening 1 0.00818 7.441E-6 1208964.28 <.0001 

Family Size 1 -0.0341 0.000080 182694.030 <.0001 

Ratio of family income to poverty 1 0.3413 0.000098 12127720.1 <.0001 

Cigarette pack (half)  1 -0.0225 0.000054 172225.165 <.0001 

Female 1 0.0173 0.000240 5164.1588 <.0001 

Hispanic 1 -0.1124 0.000521 46469.4260 <.0001 

Non-Hispanic black 1 -0.0620 0.000545 12960.3262 <.0001 

Non-Hispanic white 1 0.0636 0.000475 17889.8251 <.0001 

Citizen 1 -0.0642 0.000436 21678.4671 <.0001 

Didn’t finish High school 1 -0.1404 0.000342 168195.629 <.0001 

College graduates 1 0.4692 0.000329 2037595.80 <.0001 

Married 1 0.1528 0.000255 359777.698 <.0001 

Analysis Variable : Marginal effect of cigarette Pack (half) on the probability of Food Security=1 

Mean Std Dev 

0.0050145 0.0030905 

 

Classification Table 

Prob 

Level 

Correct Incorrect Percentages 

Event Non- 

Event 

Event Non- 

Event 

Correct Sensi- 

tivity 

Speci- 

ficity 

False 

POS 

False 

NEG 

0.500 8262 190 1878 201 80.3 97.6 9.2 18.5 51.4 

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 
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Table 3. 5 Probit model - Low Income Households for smoking status (Dependent variable: 

Food Security) 

Parameter Estimates 

Parameter DF Estimate Standard Error t Value Pr > |t| 

Intercept 1 0.5265 0.00111 225002.333 <.0001 

Age at screening 1 -0.00458 0.000014 103087.453 <.0001 

Family Size 1 -0.0275 0.000105 69046.2770 <.0001 

Ratio of family income to poverty 1 0.2835 0.000338 703912.287 <.0001 

Smoker 1 -0.2373 0.000373 404110.951 <.0001 

Female 1 -0.0538 0.000336 25729.5372 <.0001 

Hispanic 1 -0.2246 0.000726 95798.8088 <.0001 

Non-Hispanic black 1 -0.0268 0.000753 1268.4825 <.0001 

Non-Hispanic white 1 -0.0138 0.000682 411.0118 <.0001 

Citizen 1 -0.0570 0.000554 10590.9643 <.0001 

Didn’t finish High school 1 -0.00770 0.000448 296.1614 <.0001 

College graduates 1 0.3500 0.000517 457630.077 <.0001 

Married 1 0.0583 0.000354 27066.4753 <.0001 

Analysis Variable : Marginal effect of smoker on the probability of Food Security=1 

Mean Std Dev 

0.0855856 0.0099446 

 

Classification Table 

Prob 

Level 

Correct Incorrect Percentages 

Event Non- 

Event 

Event Non- 

Event 

Correct Sensi- 

tivity 

Speci- 

ficity 

False 

POS 

False 

NEG 

0.500 2189 111 1231 107 63.2 95.3 8.3 36.0 49.1 

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 
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Table 3. 6 Probit model – Low Income Household for smoking quantity (Dependent 

variable: Food Security) 

Parameter Estimates 

Parameter DF Estimate Standard Error t Value Pr > |t| 

Intercept 1 0.4882 0.00111 194137.875 <.0001 

Age at screening 1 -0.00410 0.000014 81299.7160 <.0001 

Family Size 1 -0.0286 0.000105 74349.3097 <.0001 

Ratio of family income to poverty 1 0.2849 0.000338 711658.870 <.0001 

Cigarette pack (half)  1 -0.1395 0.000223 389388.944 <.0001 

Female 1 -0.0614 0.000337 33179.7570 <.0001 

Hispanic 1 -0.2149 0.000727 87477.4072 <.0001 

Non-Hispanic black 1 -0.0310 0.000753 1697.8738 <.0001 

Non-Hispanic white 1 -0.00021 0.000684 0.0919 0.7617 

Citizen 1 -0.0668 0.000554 14570.0577 <.0001 

Didn’t finish High school 1 -0.00566 0.000449 158.9518 <.0001 

College graduates 1 0.3603 0.000514 491317.750 <.0001 

Married 1 0.0656 0.000355 34125.5022 <.0001 

Analysis Variable : Marginal effect of cigarette Pack (half) on the probability of Food Security=1 

Mean Std Dev 

0.0502665 0.0058197 

 

Classification Table 

Prob 

Level 

Correct Incorrect Percentages 

Event Non- 

Event 

Event Non- 

Event 

Correct Sensi- 

tivity 

Speci- 

ficity 

False 

POS 

False 

NEG 

0.500 2202 104 1234 91 63.5 96.0 7.8 35.9 46.7 

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 
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Table 3. 7 Probit model with Survey Correction – All Households for smoking status 

(Dependent variable: Food Security) 

Parameter Estimates 

Parameter Estimate SE t Value Pr > |t| 

Intercept -0.0293 0.1698 -0.17 0.8642 

Age at screening 0.00743 0.00179 4.16 0.0002 

Family Size -0.0338 0.0280 -1.20 0.2372 

Ratio of family income to poverty 0.3328 0.0224 14.89 <.0001 

Smoker -0.2828 0.0615 -4.60 <.0001 

Female -0.00060 0.0402 -0.01 0.9882 

Hispanic -0.1530 0.0973 -1.57 0.1257 

Non-Hispanic black -0.0704 0.0903 -0.78 0.4411 

Non-Hispanic white 0.0711 0.0899 0.79 0.4349 

Citizen -0.0352 0.0744 -0.47 0.6396 

Didn’t finish High school -0.1249 0.0626 -2.00 0.0544 

College graduates 0.4241 0.0820 5.17 <.0001 

Married 0.1532 0.0635 2.41 0.0218 

 

Classification Table 

Prob 

Level 

Correct Incorrect Percentages 

Event Non- 

Event 

Event Non- 

Event 

Correct Sensi- 

tivity 

Speci- 

ficity 

False 

POS 

False 

NEG 

0.500 8112 1030 1044 364 86.7 95.7 49.7 11.4 26.1 

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 
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Table 3. 8 Probit model with Survey Correction – All Households for smoking quantity 

(Dependent variable: Food Security) 

Parameter Estimates 

Parameter Estimate Standard Error t Value Pr > |t| 

Intercept -0.1416 0.1616 -0.88 0.3876 

Age at screening 0.00818 0.00175 4.68 <.0001 

Family Size -0.0341 0.0285 -1.19 0.2412 

Ratio of family income to poverty 0.3413 0.0224 15.23 <.0001 

Cigarette pack (half)  -0.0225 0.0141 -1.59 0.1216 

Female 0.0173 0.0414 0.42 0.6790 

Hispanic -0.1124 0.0990 -1.13 0.2649 

Non-Hispanic black -0.0620 0.0929 -0.67 0.5092 

Non-Hispanic white 0.0636 0.0922 0.69 0.4952 

Citizen -0.0642 0.0743 -0.86 0.3936 

Didn’t finish High school -0.1404 0.0620 -2.26 0.0305 

College graduates 0.4692 0.0797 5.89 <.0001 

Married 0.1528 0.0630 2.42 0.0212 

 

Classification Table 

Prob 

Level 

Correct Incorrect Percentages 

Event Non- 

Event 

Event Non- 

Event 

Correct Sensi- 

tivity 

Speci- 

ficity 

False 

POS 

False 

NEG 

0.500 8150 989 1079 315 86.8 96.3 47.8 11.7 24.2 

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 
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Table 3. 9 Probit model with Survey Correction – Low Income Households for smoking 

status (Dependent variable: Food Security) 

Parameter Estimates 

Parameter Estimate SE t Value Pr > |t| 

Intercept 0.5265 0.2082 2.53 0.0166 

Age at screening -0.00458 0.00331 -1.39 0.1755 

Family Size -0.0275 0.0288 -0.96 0.3464 

Ratio of family income to poverty 0.2835 0.0736 3.85 0.0005 

Smoker -0.2373 0.0750 -3.16 0.0034 

Female -0.0538 0.0629 -0.86 0.3982 

Hispanic -0.2246 0.1049 -2.14 0.0399 

Non-Hispanic black -0.0268 0.1087 -0.25 0.8067 

Non-Hispanic white -0.0138 0.1070 -0.13 0.8979 

Citizen -0.0570 0.1006 -0.57 0.5751 

Didn’t finish High school -0.00770 0.0789 -0.10 0.9229 

College graduates 0.3500 0.1368 2.56 0.0154 

Married 0.0583 0.0781 0.75 0.4607 

 

Classification Table 

Prob 

Level 

Correct Incorrect Percentages 

Event Non- 

Event 

Event Non- 

Event 

Correct Sensi- 

tivity 

Speci- 

ficity 

False 

POS 

False 

NEG 

0.500 8396 1385 689 80 92.7 99.1 66.8 7.6 5.5 

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 

 

 

 

 

 

 

 

 

 



 

110 

 

Table 3. 10 Probit model with Survey Correction – Low Income Households for smoking 

quantity (Dependent variable: Food Security) 

Parameter Estimates 

Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 0.4882 0.2008 2.43 0.0208 

Age at screening -0.00410 0.00320 -1.28 0.2087 

Family Size -0.0286 0.0286 -1.00 0.3242 

Ratio of family income to poverty 0.2849 0.0731 3.90 0.0005 

Cigarette pack (half)  -0.1395 0.0522 -2.67 0.0118 

Female -0.0614 0.0615 -1.00 0.3258 

Hispanic -0.2149 0.1030 -2.09 0.0449 

Non-Hispanic black -0.0310 0.1053 -0.29 0.7700 

Non-Hispanic white -0.00021 0.1097 -0.00 0.9985 

Citizen -0.0668 0.0972 -0.69 0.4966 

Didn’t finish High school -0.00566 0.0789 -0.07 0.9433 

College graduates 0.3603 0.1352 2.67 0.0119 

Married 0.0656 0.0773 0.85 0.4022 

 

Classification Table 

Prob 

Level 

Correct Incorrect Percentages 

Event Non- 

Event 

Event Non- 

Event 

Correct Sensi- 

tivity 

Speci- 

ficity 

False 

POS 

False 

NEG 

0.500 8392 1380 688 73 92.8 99.1 66.7 7.6 5.0 

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 
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Table 3. 11 Model with Survey Correction – All Households for smoking quantity 

(Dependent variable: Food Insecurity as a continuous variable) 

Parameter Estimates 

Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 2.3268733 0.15249524 15.26 <.0001 

Age at screening -0.0097271 0.00156820 -6.20 <.0001 

Family Size 0.0256760 0.03312601 0.78 0.4440 

Ratio of family income to poverty -0.3438277 0.01788451 -19.22 <.0001 

Cigarette pack (half)  0.0379869 0.02147471 1.77 0.0864 

Female -0.0064242 0.03859886 -0.17 0.8689 

Hispanic 0.1312978 0.09380042 1.40 0.1712 

Non-Hispanic black 0.1911024 0.09131669 2.09 0.0444 

Non-Hispanic white -0.0396458 0.07542839 -0.53 0.6028 

Citizen 0.0312538 0.08549097 0.37 0.7171 

Didn’t finish High school 0.2129976 0.08948385 2.38 0.0234 

College graduates -0.2916287 0.04986841 -5.85 <.0001 

Married -0.1096995 0.06233108 -1.76 0.0880 

 

Fit Statistics 

R-Square 0.2030 

Adjusted R-Square 0.2026 

Root MSE 1.5467 

Denominator DF 32 

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 
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Table 3. 12 Model with Survey Correction – Low Income Households for smoking quantity 

(Dependent variable: Food Insecurity as a continuous variable) 

Parameter Estimates 

Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 2.0202161 0.39093588 5.17 <.0001 

Age at screening 0.0106917 0.00534759 2.00 0.0541 

Family Size 0.0118047 0.04948918 0.24 0.8130 

Ratio of family income to poverty -0.5846372 0.14155482 -4.13 0.0002 

Cigarette pack (half)  0.0759183 0.03170965 2.39 0.0227 

Female 0.0807740 0.09588818 0.84 0.4058 

Hispanic 0.0625749 0.20417758 0.31 0.7612 

Non-Hispanic black -0.0376362 0.20201903 -0.19 0.8534 

Non-Hispanic white -0.0918149 0.18844213 -0.49 0.6294 

Citizen 0.2054359 0.17134641 1.20 0.2394 

Didn’t finish High school -0.0504650 0.14416887 -0.35 0.7286 

College graduates -0.7394652 0.20406480 -3.62 0.0010 

Married -0.0193060 0.12226666 -0.16 0.8755 

 

Fit Statistics 

R-Square 0.1353 

Adjusted R-Square 0.1347 

Root MSE 1.1145 

Denominator DF 32 

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 

 

 

 

 

 



 

113 

 

Table 3. 13 Endogenous – Treatment Regression Model (Low Income Households) 

Model 1: Dependent variable: Smoker (Binary variable) 

Model 2: Dependent variable: Food Insecurity Scale (Continuous variable) 

Parameter DF Estimate Standard Error t Value Pr > |t| 

scale.Intercept 1 2.850884 0.594741 4.79 <.0001 

scale.Age 1 0.006088 0.006321 0.96 0.3355 

scale.FamilySize 1 0.013809 0.042476 0.33 0.7451 

scale.Poverty Income Ratio 1 -0.528034 0.162651 -3.25 0.0012 

scale.cigarette pack half 1 0.029865 0.017166 1.74 0.0819 

scale.female 1 0.375262 0.164223 2.29 0.0223 

scale.hispanic 1 0.489376 0.328792 1.49 0.1366 

scale.non-hispanic black 1 0.117246 0.300802 0.39 0.6967 

scale.non-hispanic white 1 0.300020 0.323518 0.93 0.3537 

scale. Didn’t finish High school 1 0.025849 0.178780 0.14 0.8850 

scale. College graduates 1 -0.347845 0.403664 -0.86 0.3888 

scale.Married 1 0.114353 0.151173 0.76 0.4494 

_Sigma.scale 1 2.501246 0.090602 27.61 <.0001 

smoker.Intercept 1 -0.831143 0.124000 -6.70 <.0001 

smoker.Age 1 0.005179 0.001906 2.72 0.0066 

smoker. Poverty Income Ratio 1 -0.223662 0.046673 -4.79 <.0001 

smoker.female 1 -0.296885 0.045721 -6.49 <.0001 

smoker.hispanic 1 -0.235302 0.087566 -2.69 0.0072 

smoker. non-hispanic black 1 0.097130 0.084665 1.15 0.2513 

smoker. non-hispanic white 1 0.486848 0.081057 6.01 <.0001 

smoker.citizen 1 0.519014 0.077101 6.73 <.0001 

smoker. Didn’t finish High school 1 0.126578 0.059278 2.14 0.0327 

smoker. College graduates 1 -0.812581 0.080164 -10.14 <.0001 

_Rho 1 -0.277717 0.147392 -1.88 0.0595 

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 
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Table 3. 14 Linear Regression with endogenous treatment with survey corrections (Low 

Income Households) 

    Estimate Standard Error t value P value 

scale           

  age 0.008257 0.0049259 1.68 0.103 

  familysize 0.0082411 0.049434 0.17 0.869 

  poverty income ratio -0.4984522 0.1458003 -3.42 0.002 

  female 0.1393001 0.1015698 1.37 0.18 

  hispanic 0.1917146 0.1992718 0.96 0.343 

  non-hispanic black 0.0036583 0.1831286 0.02 0.984 

  non-hispanic white -0.1620763 0.1704827 -0.95 0.349 

  didn’t finish High school -0.1299032 0.1418365 -0.92 0.367 

  college graduates -0.4721692 0.2433687 -1.94 0.061 

  married -0.0185092 0.1209067 -0.15 0.879 

  1.smoker 1.133934 0.4178292 2.71 0.011 

  _cons 1.807839 0.4110875 4.4 0 

            

smoker             

  age 0.0073283 0.0042068 1.74 0.091 

  poverty income ratio -0.2788823 0.0805219 -3.46 0.002 

  female -0.2086832 0.0649422 -3.21 0.003 

  hispanic -0.3771282 0.119786 -3.15 0.004 

  non-hispanic black -0.0887797 0.1544597 -0.57 0.569 

  non-hispanic white 0.2521945 0.1590227 1.59 0.123 

  citizen 0.5521057 0.0938307 5.88 0 

  didn’t finish High school 0.1950377 0.0667392 2.92 0.006 

  college graduates -0.9481319 0.1245815 -7.61 0 

  _cons -0.7570052 0.2286479 -3.31 0.002 

            

            

  /athrho -0.1523178 0.1027741 -1.48 0.148 

  /lnsigma 0.8047527 0.0243073 33.11 0 

            

  rho -0.1511507 0.1004261     

  sigma 2.236143 0.0543546     

  lambda -0.3379946 0.2298701     

Note: The study uses survey data from National Health and Nutrition Examination Survey (NHANES) 

2011-12 and 2013-14 
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Appendix 1: Supporting information (SI) for Chapter 2 

Item A. Copula Approach 

In this item we briefly discuss the copula approach utilized in our analysis to obtain the joint 

yield-price distributions. For a more detailed discussion about the approach, its application, and 

the examination of estimation results, we refer readers to Item 3 of the online supporting 

information of Miao and Khanna (2017). 

Sklar (1959) showed that any continuous l-dimensional joint distribution, 1( ,..., ),lF z z  

can be uniquely expressed by l marginal distributions and an l-dimensional copula function, 

where the latter is an l-dimensional joint distribution with standard uniform marginal 

distributions. That is,  

1 1 1,..., ( ),..., )() )( ( ,l l lF z Cz z F zF                                               (SI-1) 

where ( )·C  is the copula function; and ( )i iF z  is the marginal distribution of random variable 

{1,.,  .., }iz i l . Define   , i i iF z   then the copula function in equation (SI-1) becomes 

1 1

1 1 1,..., ( ),...,) ),( )( (l l lC F F F                                             (SI-2) 

where 1(·),  {1,..., }iF i l   is the inverse marginal distribution function of random variable lz . 

Due to its popularity in risk management, we utilize the Multivariate Gaussian Copula (MGC) in 

our simulation (Zhu, Ghosh, and Goodwin 2008). The MGC is  

1 1

1 1( ,..., ; ) ( ( ), ... , ( ); ),l l lC                                                   (SI-3) 

where 𝜌 is a dependence matrix that captures dependence between the marginal distributions; 

Φ ( )l   is the l-dimensional multivariate standard normal distribution with mean zero and 
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correlation matrix as 𝜌, and 
1Φ ( )   is the inverse distribution function of the standard one-

dimensional normal distribution.  

Based on the MGC, once we identify the marginal distributions, ( )i iF z ,  1, ,  , i l   and 

the dependence matrix,  ,  then we can obtain the joint distribution, ( ,·)F  by equations (SI-1) 

and (SI-3). In our study, we estimate marginal distributions of crop yields by using the 27-year 

crop yield data obtained from DayCent model and estimate marginal distributions of crop prices 

by using futures prices in the same years as those of crop yields. We assume that crop yields 

have beta distributions and crop prices have log-normal distributions. Once we estimate the 

marginal distributions, the estimation of the copula is performed by using command “copulafit” 

of MATLAB®. We refer readers to Miao and Khanna (2017) for details regarding how to obtain 

random draws from the estimated copula and an evaluation about the copula estimation. 

 Another approach that is widely used in the literature to obtain joint yield-price 

distributions is the deviate approach in which correlated price and yield deviates are generated 

(e.g., Paulson and Babcock 2008; Claassen, Cooper, and Carriazo 2011). It has the advantage of 

simplicity but lacks solid statistical foundation and flexibility when compared with the copula 

approach. 
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Table SI-1. Profitability and Riskiness (Probability of Negative 30-year NPV) of Crops 

  Mean S.D. Min. Max. CV 

When biomass price is $50/MT 

Profitability (30-year NPV of profits, $/ha)a:           

Conventional crops on high quality land 6,264 2,700 -4,111 36,748 0.4 

Conventional crops on low quality land 5,580 2,584 -3,390 37,480 0.5 

Miscanthus on high quality land 1,417 2,063 -9,942 12,861 1.7 

Miscanthus on low quality land 1,304 2,042 -9,565 11,792 2.1 

Switchgrass on high quality land 2,277 1,652 -3,747 13,157 0.9 

Switchgrass on low quality land 1,844 1,672 -3,747 11,882 1.0 

Probability of having negative yearly profits (%)b:         

Conventional crops on high quality land 0.9 4.9 0.0 72 5.5 

Conventional crops on low quality land 0.9 4.8 0.0 68 5.4 

Miscanthus on high quality land 8.0 2.8 7.3 40 0.3 

Miscanthus on low quality land 8.2 3.4 7.3 38 0.4 

Switchgrass on high quality land 10.8 9.7 0.0 73 0.9 

Switchgrass on low quality land 16.8 11.4 0.0 98 0.7 

When biomass price is $100/MT 

Profitability (30-year NPV of profits, $/ha)a:           

Conventional crops on high quality land 7,162 2,756 -3,005 38,667 0.4 

Conventional crops on low quality land 6,398 2,656 -2,794 38,716 0.4 

Miscanthus on high quality land 12,890 4,356 -9,517 40,816 0.3 

Miscanthus on low quality land 12,635 4,309 -9,444 38,955 0.3 

Switchgrass on high quality land 9,762 4,156 -3,747 36,857 0.4 

Switchgrass on low quality land 8,685 4,207 -3,747 34,583 0.5 

Probability of having negative yearly profits (%)b:         

Conventional crops on high quality land 0.3 2.8 0.0 60 8.1 

Conventional crops on low quality land 0.3 2.7 0.0 55 8.5 

Miscanthus on high quality land 7.4 0.5 7.3 12 0.1 

Miscanthus on low quality land 7.5 0.7 7.3 17 0.1 

Switchgrass on high quality land 1.1 1.8 0.0 10 1.7 

Switchgrass on low quality land 1.9 2.5 0.0 14 1.3 

Note: a The county-level CV of profits from a crop grown on land with a certain quality in each county is 

calculated based on the 1,000 yield-price draws generated by using the copula approach. The CV values 

presented here are averages of county-level CVs across all counties. b The CV values for probability of having 

negative yearly profits are calculated by using mean and standard deviation values in this table. 
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Table SI-2. Profitability and Riskiness (Probability of Negative Yearly profits) of Crops 

  Mean S.D. Min. Max. CV 

When biomass price is $50/MT 

Profitability (30-year NPV of profits, $/ha)a:           

Conventional crops on high quality land 6,264 2,700 -4,111 36,748 0.4 

Conventional crops on low quality land 5,580 2,584 -3,390 37,480 0.5 

Miscanthus on high quality land 1,417 2,063 -9,942 12,861 1.7 

Miscanthus on low quality land 1,304 2,042 -9,565 11,792 2.1 

Switchgrass on high quality land 2,277 1,652 -3,747 13,157 0.9 

Switchgrass on low quality land 1,844 1,672 -3,747 11,882 1.0 

Probability of having negative yearly profits (%)b:         

Conventional crops on high quality land 0.9 4.9 0.0 72 5.5 

Conventional crops on low quality land 0.9 4.8 0.0 68 5.4 

Miscanthus on high quality land 8.0 2.8 7.3 40 0.3 

Miscanthus on low quality land 8.2 3.4 7.3 38 0.4 

Switchgrass on high quality land 10.8 9.7 0.0 73 0.9 

Switchgrass on low quality land 16.8 11.4 0.0 98 0.7 

When biomass price is $100/MT 

Profitability (30-year NPV of profits, $/ha)a:           

Conventional crops on high quality land 7,162 2,756 -3,005 38,667 0.4 

Conventional crops on low quality land 6,398 2,656 -2,794 38,716 0.4 

Miscanthus on high quality land 12,890 4,356 -9,517 40,816 0.3 

Miscanthus on low quality land 12,635 4,309 -9,444 38,955 0.3 

Switchgrass on high quality land 9,762 4,156 -3,747 36,857 0.4 

Switchgrass on low quality land 8,685 4,207 -3,747 34,583 0.5 

Probability of having negative yearly profits (%)b:         

Conventional crops on high quality land 0.3 2.8 0.0 60 8.1 

Conventional crops on low quality land 0.3 2.7 0.0 55 8.5 

Miscanthus on high quality land 7.4 0.5 7.3 12 0.1 

Miscanthus on low quality land 7.5 0.7 7.3 17 0.1 

Switchgrass on high quality land 1.1 1.8 0.0 10 1.7 

Switchgrass on low quality land 1.9 2.5 0.0 14 1.3 

Note: a The county-level CV of profits from a crop grown on land with a certain quality in each county is 

calculated based on the 1,000 yield-price draws generated by using the copula approach. The CV values 

presented here are averages of county-level CVs across all counties. b The CV values for probability of 

having negative yearly profits are calculated by using mean and standard deviation values in this table. 
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Table SI-3: Biomass Production without credit constraint (Million MT)  

  Loss Neutral Loss Averse Loss Neutral Loss Averse 

Biomass Type Land Type High Discount High Discount Low Discount Low Discount 

    [1] [2] [3] [4] 

When biomass price is $50/MT 

Corn Stover High Quality  95.8 95.8 95.6 95.6 

 Low Quality  13.0 12.9 12.6 12.6 

 All land 108.8 108.7 108.2 108.2 

Miscanthus High Quality  0.3 0.4 5.5 5.6 

 Low Quality  0.1 0.1 6.7 6.7 

 All land 0.4 0.5 12.2 12.3 

Switchgrass High Quality  0.5 0.8 0.3 0.4 

 Low Quality 0.1 0.2 0.0 0.1 

 All land 0.6 1.0 0.3 0.5 

Total Biomass High Quality  96.7 97.0 101.3 101.5 

 Low Quality  13.2 13.3 19.4 19.5 

 All land 109.9 110.2 120.7 121.0 

When biomass price is $100/MT 

Corn Stover High Quality 82.4 82.4 81.4 81.4 

 Low Quality  8.8 8.8 8.4 8.4 

 All land 91.2 91.2 89.8 89.8 

Miscanthus High Quality  227.5 227.5 241.8 241.8 

 Low Quality  73.0 73.0 77.63 77.60 

 All land 300.6 300.6 319.4 319.4 

Switchgrass High Quality  4.1 4.1 1.0 1.0 

 Low Quality  4.0 4.0 2.9 2.9 

 All land 8.1 8.1 3.9 3.9 

Total Biomass High Quality 314.1 314.2 324.1 324.2 

 Low Quality 85.8 85.8 89.0 88.9 

  All land 399.9 399.9 413.1 413.1 
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Table SI-4: Biomass Production without credit constraint (Million MT)  

  Loss Neutral Loss Averse Loss Neutral Loss Averse 

Biomass Type Land Type High Discount High Discount Low Discount Low Discount 

    [1] [2] [3] [4] 

When biomass price is $50/MT 

Corn Stover High Quality  95.8 95.8 95.6 95.6 

 Low Quality  13.0 12.9 12.6 12.6 

 All land 108.8 108.7 108.2 108.2 

Miscanthus High Quality  0.3 0.4 5.5 5.6 

 Low Quality  0.1 0.1 6.7 6.7 

 All land 0.4 0.5 12.2 12.3 

Switchgrass High Quality  0.5 0.8 0.3 0.4 

 Low Quality 0.1 0.2 0.0 0.1 

 All land 0.6 1.0 0.3 0.5 

Total Biomass High Quality  96.7 97.0 101.3 101.5 

 Low Quality  13.2 13.3 19.4 19.5 

 All land 109.9 110.2 120.7 121.0 

When biomass price is $100/MT 

Corn Stover High Quality 82.4 82.4 81.4 81.4 

 Low Quality  8.8 8.8 8.4 8.4 

 All land 91.2 91.2 89.8 89.8 

Miscanthus High Quality  227.5 227.5 241.8 241.8 

 Low Quality  73.0 73.0 77.63 77.60 

 All land 300.6 300.6 319.4 319.4 

Switchgrass High Quality  4.1 4.1 1.0 1.0 

 Low Quality  4.0 4.0 2.9 2.9 

 All land 8.1 8.1 3.9 3.9 

Total Biomass High Quality 314.1 314.2 324.1 324.2 

 Low Quality 85.8 85.8 89.0 88.9 

  All land 399.9 399.9 413.1 413.1 
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Table SI-5. Land use for Miscanthus and Switchgrass without credit constraint (in Acres) 

 Loss Neutral Loss Averse Loss Neutral Loss Averse 

Land Type High Discount High Discount Low Discount Low Discount 

  [1] [2] [3] [4] 

When biomass price is $50/MT 

For Miscanthus        

  high quality land 28,162 29,390 498,700 521,413 

  low quality land 8,261 8,872 599,368 613,340 

  total land 36,422 38,261 1,098,068 1,134,753 

For Switchgrass     

  high quality land 93,724 157,800 55,129 70,818 

  low quality land 20,332 39,456 10,146 13,376 

  total land 114,056 197,255 65,275 84,194 

When biomass price is $100/MT 

For Miscanthus        

  high quality land 23,125,743 23,130,013 25,139,538 25,142,081 

  low quality land 7,221,634 7,217,365 7,960,891 7,958,347 

  total land 30,347,378 30,347,378 33,100,428 33,100,428 

For Switchgrass     

  high quality land 772,027 772,027 183,532 183,532 

  low quality land 804,824 804,824 565,930 565,930 

  total land 1,576,851 1,576,851 749,462 749,462 
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Table SI-6: Biomass Production with credit constraint (Million MT) 

Case: - Land conversion limit 100% 

  Loss Neutral Loss Averse Loss Neutral Loss Averse 

Biomass Type Land Type 

High 

Discount 

High 

Discount 

Low 

Discount 

Low 

Discount 

    [1] [2] [3] [4] 

When biomass price is $50/MT 

Corn Stover 

High 

Quality  95.6 95.6 94.3 95.6 

 Low Quality  11.3 11.4 10.2 11.3 

 All land 106.9 107.0 104.5 106.9 

Miscanthus 

High 

Quality  2.8 0.0 28.0 0.6 

 Low Quality  1.1 0.0 24.3 1.0 

 All land 4.0 0.0 52.3 1.6 

Switchgrass 

High 

Quality  2.7 2.8 0.5 2.9 

 Low Quality 0.7 0.7 0.1 0.6 

 All land 3.4 3.5 0.6 3.4 

Total 

Biomass 

High 

Quality  101.1 98.5 122.8 99.1 

 Low Quality  13.2 12.0 34.6 12.9 

 All land 114.3 110.5 157.3 112.0 

When biomass price is $100/MT 

Corn Stover 

High 

Quality 14.3 45.7 9.0 17.7 

 Low Quality  1.4 2.6 1.0 1.5 

 All land 15.7 48.3 10.0 19.2 

Miscanthus 

High 

Quality  1001.0 224.4 1071.1 953.9 

 Low Quality  143.3 82.8 150.5 139.9 

 All land 1144.3 307.2 1221.6 1093.8 

Switchgrass 

High 

Quality  28.7 297.5 6.8 38.4 

 Low Quality  12.8 39.6 10.2 14.6 

 All land 41.5 337.2 17.0 53.1 

Total 

Biomass 

High 

Quality 1043.9 567.7 1086.9 1010.0 

 Low Quality 157.5 125.0 161.7 156.1 

  All land 1201.5 692.6 1248.6 1166.0 
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Table SI-7: Biomass Production with credit constraint (Million MT)  

 Case: - Considering 30-years combine decision weighted utility. 

  Loss Neutral Loss Averse Loss Neutral Loss Averse 

Biomass Type Land Type 

High 

Discount 

High 

Discount 

Low 

Discount 

Low 

Discount 

    [1] [2] [3] [4] 

When biomass price is $50/MT 

Corn Stover 

High 

Quality  95.8 95.7 95.5 95.4 

 Low Quality  13.0 13.0 12.6 12.6 

 All land 108.7 108.7 108.1 108.1 

Miscanthus 

High 

Quality  1.4 1.5 7.0 7.3 

 Low Quality  0.1 0.1 7.0 7.1 

 All land 1.5 1.6 14.0 14.4 

Switchgrass 

High 

Quality  0.6 0.9 0.3 0.4 

 Low Quality 0.3 0.4 0.1 0.2 

 All land 0.9 1.3 0.4 0.6 

Total Biomass 

High 

Quality  97.8 98.1 102.8 103.2 

 Low Quality  13.4 13.5 19.7 19.9 

 All land 111.2 111.6 122.5 123.1 

When biomass price is $100/MT 

Corn Stover 

High 

Quality 82.6 82.6 81.6 81.6 

 Low Quality  8.8 8.8 8.4 8.4 

 All land 91.4 91.4 90.1 90.1 

Miscanthus 

High 

Quality  216.8 216.8 230.8 230.8 

 Low Quality  72.7 72.7 77.4 77.4 

 All land 289.5 289.5 308.3 308.3 

Switchgrass 

High 

Quality  8.7 8.7 5.1 5.1 

 Low Quality  4.3 4.3 2.9 2.9 

 All land 13.1 13.1 8.1 8.1 

Total Biomass 

High 

Quality 308.2 308.2 317.6 317.6 

 Low Quality 85.8 85.8 88.9 88.9 

  All land 394.0 394.0 406.4 406.4 
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Table SI-8: Biomass production (Million MT) on Total Land under different scenarios for a range of biomass prices 

  Loss Neutral High Discount   Loss Averse High Discount   Loss Neutral Low Discount   Loss Averse Low Discount 

Credit Constrained 

Biomass Price CS MIS SG Total  CS MIS SG Total  CS MIS SG Total  CS MIS SG Total 

20 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

30 2.6 0.0 0.0 2.6  2.6 0.0 0.0 2.6  2.6 0.0 0.0 2.6  2.6 0.0 0.0 2.6 

40 89.2 0.0 0.0 89.2  89.2 0.0 0.3 89.5  89.2 0.1 0.0 89.3  89.2 0.0 0.3 89.5 

50 108.8 0.4 0.9 110.1  108.7 0.0 1.4 110.1  108.4 8.3 0.4 117.1  108.6 2.0 1.3 111.9 

60 111.0 7.7 3.9 122.7  111.2 1.9 4.9 118.0  108.2 53.8 0.6 162.6  110.1 22.9 3.8 136.8 

70 109.7 42.3 7.5 159.5  110.9 16.4 12.0 139.3  99.8 187.4 1.5 288.7  105.3 108.7 5.9 219.9 

80 103.4 135.8 14.6 253.8  106.8 68.8 24.8 200.4  92.1 281.8 2.9 376.8  97.8 210.1 8.6 316.5 

90 95.4 244.0 15.0 354.3  101.7 134.6 34.0 270.3  90.5 304.9 4.2 399.5  93.0 275.7 8.5 377.2 

100 92.0 282.7 15.6 390.4   97.0 184.9 43.6 325.5   90.2 314.8 4.9 409.9   91.3 299.5 8.9 399.6 

Not Credit Constrained 

Biomass Price CS MIS SG Total  CS MIS SG Total  CS MIS SG Total  CS MIS SG Total 

20 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

30 2.6 0.0 0.0 2.6  2.6 0.0 0.0 2.6  2.6 0.0 0.0 2.6  2.6 0.0 0.0 2.6 

40 89.2 0.0 0.0 89.2  89.2 0.0 0.1 89.3  89.2 0.1 0.0 89.3  89.2 0.2 0.2 89.6 

50 108.8 0.4 0.6 109.9  108.7 0.5 1.0 110.2  108.2 12.1 0.3 120.7  108.2 12.4 0.4 121.0 

60 110.7 14.6 3.0 128.3  110.7 14.5 3.2 128.3  106.5 79.7 0.5 186.7  106.5 79.7 0.5 186.7 

70 108.0 74.9 4.5 187.3  108.0 74.8 4.6 187.4  95.8 236.6 1.1 333.5  95.8 236.5 1.1 333.4 

80 98.4 209.5 6.8 314.6  98.3 209.4 6.9 314.6  90.7 295.1 2.1 388.0  90.7 295.1 2.2 388.0 

90 93.2 275.9 7.3 376.4  93.2 275.5 7.6 376.3  90.0 310.3 3.5 403.8  90.0 310.3 3.5 403.8 

100 91.2 300.6 8.1 399.9   91.2 300.6 8.1 399.9   89.8 319.4 3.9 413.1   89.8 319.4 3.9 413.1 

Note: CS - Corn Stover, MIS - Miscanthus, SG - Switchgrass, Total - Total Biomass          
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Figure SI-1. Profitability Difference between Bio-energy Crops and the Conventional Crops ($/ha)   

Note: Each map depicts the county-level value of the expected 30-year NPV of miscanthus (or switchgrass) profits minus that of 

conventional crop. So red colors or negative numbers indicate that miscanthus (or switchgrass) has low profitability than does the 

conventional crops; green colors or positive numbers indicate the opposite.  
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Figure SI-2. Difference in Probability of Having Negative 30-year NPV of Profits between Bio-energy Crop and the 

Conventional Crops (%) 

Note: Each map depicts the county-level probability of having negative 30-year NPV of profits of miscanthus (or switchgrass) minus 

that of the conventional crops. Red colors (or positive numbers) indicate that probability of negative 30-year NPV of Miscanthus or 

Switchgrass is larger than that of the conventional crops; green colors (or negative numbers) indicate the opposite.
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Figure SI-3. Difference in Probability of having loss (between years) between Bioenergy Crop and the conventional crops. (%)  

Red color (or positive number) indicates that loss probability of Miscanthus/Switchgrass is larger than that of row crops; 

Green color (or negative number) indicates the opposite 
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Figure SI-4. Biomass Supply Curves on High Quality Land  
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Figure SI-5. Biomass Supply Curves on Low Quality Land  
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Figure SI-6. Average County-Level Total Biomass Production (1,000 MT per year)  
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Figure SI-7. Average County-Level Corn-Stover Production (1,000 MT per year)  
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Figure SI-8. Land Use for Switchgrass on high quality land and low quality land for two different biomass prices under 

different scenarios (1,000 Acres)
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Figure SI-9. Graph showing Value Function in Prospect Theory (upper graph), and 

Probability Weighting Functions in Prospect Theory (lower graph). 
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Figure SI-10: Biomass production (Million MT) from Switchgrass for a range of biomass 

prices. 
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