

Designing Efficient Single Page Web Applications

by

Nyruthya Sanandan

A thesis submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Master of Science

Auburn, Alabama

December 15, 2018

Keywords – single page applications, design approach,

web application development

Approved by

Dr. David A. Umphress, Chair, Professor of Computer Science and Software Engineering

Dr. James Cross, Professor of Computer Science and Software Engineering

Dr. Xiao Qin, Professor of Computer Science and Software Engineering

ii

Abstract

 Traditional web applications rely on the client-server model to request and render data on

the browser. Although this architecture has been popular for over a decade, waiting for

information as the server caters to different types of clients makes the user experience appear to

be slow. Client-side machines have computing capabilities, that when used can share the

computing load with the servers. Contemporary single page applications take advantage of these

client-side machines to minimize the delay by providing client-end software with the capabilities

of requesting only required data from the server and updating only portions of the presented

information, without constant redundant data being on the network.

This study provides an initial design approach for contemporary applications. The

proposed design approach helps developers to analyze all the aspects of the application that

needs to be built – architecture, file structure, separation of code, and distribution of computing

between client and servers. This study also provides a step–by-step method for designing

contemporary applications. An application was built using the proposed method to validate the

proposed design approach.

iii

Acknowledgments

 I take this opportunity to thank all those who helped me through the duration of this

thesis. I would like to especially thank my advisory committee chair, Dr. David A. Umphress,

Computer Science and Software Engineering department, for the support he has provided me

with from the beginning of this research. His office, lab resources and ideas were always open to

me when I needed them the most. He made sure I had everything I needed and guided me when I

was in trouble.

 I would like to thank my friends and colleagues who brainstormed with me and

exchanged knowledge, thereby making the process intuitive.

 Lastly, I would like to thank my family for their continuous encouragement throughout

my years of coursework. This accomplishment would not be possible without them.

iv

Table of Contents

Abstract ... ii

Acknowledgments ... iii

List of Tables .. v

List of Figures .. vi

List of Abbreviations .. vii

Problem Description ... 1

 Introduction ... 1

 Traditional and Contemporary Web Applications .. 1

 Thesis Objectives .. 2

Review of Web Application Design ... 3

 State-Of-The-Practice in Designing Web Applications .. 3

 Characteristics that Distinguish Contemporary Web Applications 3

Proposed Design Approach for Contemporary Web Applications ... 5

 Architecture... 5

 Framework .. 8

 Model .. 15

 User Interface ... 15

 Weaving JavaScript and CSS into the Application .. 17

 Accessing the Model and Server-side Code ... 20

v

Designing a Contemporary Web Application .. 22

 Architecture... 23

 Framework ... 26

 Model ... 27

 User Interface .. 28

 Weaving JavaScript and CSS into the Application... 30

 Accessing the Model and Server-side Code ... 33

Future Efforts .. 35

Bibliography ... 36

Appendix A: Source Code ... 38

vi

List of Tables

Table 3.1: Key Features of Existing JavaScript Frameworks .. 12

Table 4.1: ProjectTimeLogger Requirements .. 22

Table 4.2: Prioritized ProjectTimeLogger Components .. 24

vii

List of Figures

Figure 3.1: Distributing Data Storage and Retrieval between Client and Server 6

Figure 3.2: Workflow of the News Application ... 8

Figure 3.3: MVC Pattern .. 9

Figure 3.4: MVP Pattern .. 10

Figure 3.5: MVVM Pattern .. 11

Figure 3.6: a) Files structured based on features of news application 14

Figure 3.6: b) Files structured based on type of file for the news application 14

Figure 3.8: Using AngularJS to Create a Container for Dynamic Views 16

Figure 3.9: An Example of a Login View .. 16

Figure 3.10: JavaScript code to add dynamic views to index.html page 17

Figure 3.11: JavaScript file showing routing using AngularJS framework 19

Figure 3.12: Distribution of Computation between Client and Server for News Application ... 20

Figure 4.1: Distribution of data based on source for ProjectTimeLogger 23

Figure 4.2: Component Relationship ... 25

Figure 4.3: Workflow of ProjectTimeLogger ... 26

Figure 4.4: Files structured based on file type .. 27

Figure 4.5: Model in the form of tables in a remote database .. 28

Figure 4.6: Index.html page without a dynamic view ... 29

Figure 4.7: Login template in ProjectTimeLogger .. 29

viii

Figure 4.8: Login template without adding it to index.html page .. 30

Figure 4.9: JavaScript file (app.js) that controls the application .. 30

Figure 4.10: a) Index.html page with the login view .. 31

Figure 4.10: b) Index.html page with the register view .. 31

Figure 4.11: Index.html page with projectlist view .. 31

Figure 4.12: projectlistCtrl code to retrieve, process and display project details 32

Figure 4.13: Index.html page with the projectdetails view for project ‘SF’ 32

Figure 4.14: php script to retrieve project details of selected project ... 33

Figure 4.15: Distribution of Computation between Client and Server for ProjectTimeLogger . 34

ix

List of Abbreviations

CSS Cascading Style Sheets

HTML Hypertext Markup Language

HTTP Hyper Text Transfer Protocol

JS JavaScript

1

Problem Description

1.1 Introduction

 The web browser has emerged as a general-purpose computing platform through which

application functionality is delivered over a network. Driving this trend is technology that shifts

the focus of work in a client-server architecture from relying on the server to deliver the

computation results that are rendered by the client to relying on the server to deliver executable

instructions that are carried out by the client. The trend has been disruptive to the software

industry in terms of how functionality is provisioned to the user, where computation takes place,

and how data is managed. While technical mechanisms are in place for leveraging browsers as a

general-purpose platform, sound techniques for engineering software around those mechanisms

has lagged. Missing, in particular, are guidelines for designing software that rely on cutting-edge

web-based architectures.

1.2 Traditional and Contemporary Web Applications

 Traditional web applications rely on a client-server relationship in which software

running on a client renders in a human-readable format the result of computations performed by

and sent from software running on a server. The client treats the server as messenger which

delivers one HTML page at a time. The page contains content of interest to the user, together

with instructions on how to render it and, optionally, computational instructions that can be

carried out by the client. The interaction pattern is a repetition of the following: 1) the client

requests information from a server, 2) the server replies with a response, and 3) the client

displays the response, replacing the entirety of what was previously displayed. From the user

perspective, the client becomes unresponsive from the time it makes a server request until the

time the information is rendered. This causes a noticeable delay that can, depending on the

speed of the network and processing capabilities of the server, range from distracting to

debilitating.

Contemporary web browser technology attempts to minimize the delay by providing

client software with the capability of 1) requesting information from the server without having to

wait for a response, 2) updating a portion of information presented to the user without having to

download and refresh the entire display, and 2) executing a predetermined, but safe and rich

range of programming instructions accompanying the server response. In contrast to traditional

web applications which rely on the delivery of separate, independent, and relatively-static HTML

pages to accomplish tasks, contemporary web applications are delivered as software which runs

on the client, interacting dynamically and asynchronously with the server to update selected

portions of the information displayed to the user.

Because the majority of features are carried out by the server, traditional web application

development has relied on classical software engineering design approaches which revolve

around a centralized computer performing input and output. Contemporary web applications do

2

not fit the classical model: computing is distributed among client and servers; the degree to

which computing is distributed depends on the computational capabilities (i.e., hardware) of the

client and the nature of the network connection to servers; the nature of computing allocated to

the client hinges on the programmability of the client's software environment; and so forth. In

short, contemporary web applications require an approach to design than do traditional web

applications. But what is that approach?

1.3 Thesis Objectives

 The goal of this thesis is to provide an initial design approach for contemporary web

applications. The specific objectives are to

• Identify the properties of contemporary web application design that distinguish it from

traditional web application design.

• Propose a semi-formal method for designing contemporary web applications.

• Validate the method with a sample application.

• Suggest areas of further work.

3

Review of Web Application Design

2.1 State-Of-The-Practice in Designing Web Applications

 Traditional web development approaches do not take full advantage of the client-side

computing capabilities. They only use them to render data received from a server into readable

views. Today’s browsers are run-time environments for applications that do not have to be

installed on a device and can be accessed from anywhere. Traditional applications require the

developer to create multiple pages of content, only one of which is visible to the user at any point

in time. Every time a user requests more information, the client sends a request to the server,

where it is processed. The client receives information and displays it on the screen. This happens

every time a user visits a page that has not been cached, even if the new page only contains a few

items that are different from the current page. When the server needs to send HTML files to the

client instead of just data, it causes complex applications to wait for data and HTML files from

the server each time a request is made and thus making the application slow.

2.2 Characteristics that Distinguish Contemporary Web Applications

 Contemporary applications take advantage of existing client-side resources by

distributing the computation across both the server and the client, thus reducing delays caused by

the network and having the potential to offer a more natural user experience. Contemporary

applications in the form of single page applications request one HTML page from the server and

render the information in the client-side browser initially. During this request, the client also

downloads JavaScript and CSS bundles from the server, which are then used to retrieve required

data from the server as needed and render data into readable views on the client. The content is

rendered on the client-side browser and JavaScript is used to load new content and make sure

that only the new content is rendered. Everything else on the page remains unchanged. This is

much faster as only small sections of the page are loaded instead of an entire page.

 In addition to improving the user experience, single page applications are simpler to

deploy because they have only one “index.html” file with HTML, one file with CSS, and one file

with JavaScript. Thus, there are only three files to deploy. These three files can be uploaded to a

static content server such as Apache or Amazon web storage to deploy the front end of the

application. These files can be uploaded to different content servers too. When the client needs

data from the server, the request can be processed by creating an interface using server-side

code, such as PHP or NodeJS, that allows the server to respond to the client with requested data.

This also makes versioning easy in a single page application when compared to a traditional

application. Some servers scale for a large number of users and uploading the front-end to the

static server ensures scalability of the application, in terms of the front end. Since the front-end

and the back-end of the application are not tightly coupled, the back-end code can be reused to

create native applications such as mobile platform, VR platform, etc.

 Single page applications provide a spectrum of features that developers can use to make

the most of both the client-side and server-side computing capabilities but, to do so, developers

require more discipline than they would for a traditional application. Firstly, since single page

applications use JavaScript code to retrieve and render data on the client-side, it is important to

note that these applications require JavaScript to be supported and enabled on the client-end.

4

Another point to consider before creating a single page application is the feasibility of creating a

non-traditional application based on the amount of data, the complexity of the application, and

the service it will provide to the end users because a contemporary framework requires greater

architectural and security expertise than a traditional application would. Since single page

applications send and receive only parts of the data that are required at that point in time, content

retrieval is much faster even with a rich UI. LinkedIn, for example, realized a 20% faster page

load rate with a single page architecture when compared to a traditional architecture [Veeravalli,

2017]. If the application provides multiple services to its users, developers can divide these

services into modules that are loaded individually so as to reduce the page load times.

 Single page applications require special attention with respect to search engine

optimization. When the content is readily available on the server in a traditional application,

search engines can index and crawl the content without any extra effort from the developer.

Single page application content is not available until the page is loaded on the browser, thus

affecting search engine optimization. Although the majority of search engines do not handle

client-side rendering, Google has been working to handle indexing and crawling JavaScript

rendered code, which would enable developers to create single page applications without having

any drawbacks. Google’s search engine renders and indexes JavaScript using a two-wave

process. The first wave requests source code and indexes any HTML and CSS that are present.

The second wave, that can occur a few hours to a few weeks later, returns to the page and fully

renders and indexes the JavaScript generated content [Burkholder, 2018].

Contemporary web applications may also seem more complex in terms of development.

But, this is because traditional applications have been built using the client-server architecture

since the development of web applications began.

One of the other reasons why contemporary applications are not as popular is that there

are few sources, in the form of books or papers or articles online, for guiding developers in

designing single page applications. Many sources explain how single page applications work,

how they are different from traditional applications, the pros and cons of building a single page

application, and how a framework can be used to build one, [Sherman, 2018] but developers may

find it difficult to process this overwhelming data and use this variety of information to actually

build a contemporary application that is easy to build and maintain. We could find no defined

method specific to designing single page applications, to include - the UI, the content of the

application, the service it provides to its users, the amount of data that will be on the network, the

client-side computing capabilities, source-code management, maintainability of the software and

the security needed to be implemented.

5

Proposed Design Approach for Contemporary Web Applications

The idea of creating a contemporary application is to distribute computing between the

client and the server such that the application can run on the client side with minimum support

from the server. Developers need to be able to decide what parts of the application need to be

computed on the client and what parts need to be computed on the server. To do this, we can

present six steps that start with the application residing entirely on the client. We then distribute

computing such that only components that cannot reside on the client are transferred to the server

for computing.

3.1 Architecture

The goal of this step is to divide the application into components; to determine

interactions among components, the dependencies between the components, the flow of data

between the components, and the direction of data flow; and to, formulate a workflow of the

application.

3.1.1 Components based on source of content

 The content to be delivered to the users of the application must be determined. The

content could be static or dynamic, its source could be from user inputs from an HTML file, or

from a file that is locally stored on the machine in which the application exists, or it could be

data from a remote location.

If the content is received from user inputs on an HTML file, the data storage and retrieval

can reside on the client side. Similarly, if the source of the content is locally stored, the data

storage and retrieval can reside on the client side. However, if the content of the application is

stored on a remote location, the client can only retrieve the content by making a request to this

remote location server, thus handling the data retrieval of the application on the client-side and

handing the data storage to the server. This is depicted in Figure 3.1.

6

Figure 3.1: Distributing Data Storage and Retrieval between Client and Server

3.1.2 Components based on features

Once the content of the application is known, developers need to deduce what

information is to be presented to the users of the application and how the information is

presented to the users. This can be done by listing all the features the application provides to its

users and prioritizing these features based on importance.

For example, if an application must present its users with news, its features could be, say,

displaying: 1) international, national and local news, 2) political news, 3) weather forecast, 4)

advertisements, 5) events for that week, 6) sports news, 7) comics, 8) puzzles, and 9) job

opportunities. This application needs to present a variety of information to its users. Each

category of information that is displayed to its users can be termed as a feature. For users that do

not want to spend a lot of time reading all the information on the application, each feature of the

application can be displayed to the user separately in sections and the users can pick what section

of the news they would like to read. Prioritizing the list of features in an ascending order of

importance to its users can help with displaying information for users who would like to read all

the information offered to them. Giving international, national and local news, political news,

weather forecast, and sports news a high priority and giving events for that week, comics,

puzzles, job opportunities and advertisements a low priority would make users view the high

priority items first and the low priority items towards the end.

7

Thus, two decisions are made in this step: 1) dividing content into features that the

application provides, and 2) prioritizing the features in an order of importance of its users.

3.1.3 Component interaction

In this step, components ascertained from the previous action are closely inspected for

interaction and dependencies. Developers need to know how one component of the system

affects the other components. This is the first of two steps in discovering the valid and invalid

states of an application. Single page applications require the developers to administer the

outcomes of valid and invalid states because the client is responsible for navigation, and this

means that there are no page loads and so the users will not get an error message unless the

developers provide the application a means to let the user know that something went wrong.

Developers need to analyze the consequences of a failed component and implement what

happens in such a case.

For instance, in the above-mentioned news application, if the default view that is loaded

with the index.html file is not displayed to the user, for reasons like slow internet speeds, or

disabled JavaScript in the client machine, and this default view contains UI elements that let the

user navigate to other parts of the application, the developer needs to decide what the application

should do.

3.1.4 Data flow between components

 Finding the data flow between the components is the second of two steps in discovering

the valid and invalid states of an application. Single page applications rely on data flowing

between its components, so that the application can use AJAX to make requests to the server for

portions of information. If one component fails to provide data to other components as intended,

the developers need to handle what must be done to make the application continue to provide

intended services to its users.

For instance, in the above-mentioned news application, the locations of the users need to

be found before the users can view the local news, or the weather forecast for their area. Thus,

local news and weather forecast depend on finding the users’ locations. If, for some reason, the

application fails to acquire user locations, the developer needs to decide what the application

should do.

3.1.5 Define the states of the application

 Based on the details deduced in the previous two steps, the developers must be able to

formulate the valid states of the application, how these valid states intend to communicate with

each other, and how data flows from one state to another. Once the valid states of the application

are defined, the developers need to anticipate how each valid state can fail and cause the

application to reach an invalid state. Assuming all states that are not in the list of valid states to

be invalid states, the developers can return to a valid state by navigating the application to a valid

state as soon as an invalid state is encountered.

 For instance, assume in the news application above that users are allowed to create an

account and save two locations as their favorite locations for fast access of local news and

weather forecast, and the application is unable to connect to the Internet to request data for the

8

two favorite locations when requested. In this case, the application was in a valid state before the

user requested information about the favorite locations and it moved to an invalid state after the

user requested for the new information. The developers need to provide a way for the users to

navigate from such invalid states to a valid state. This can be done by providing a way to request

new information again or by navigating the user to the valid state before the invalid state was

encountered.

 At the end of analyzing the architecture of the application, the developers need to create a

workflow, considering all the valid states of the application and factors that may cause the

application to encounter an invalid state.

 For instance, the workflow of the news application is depicted in Figure 3.2. The blue

boxes indicate components of the application that need to be present throughout the lifespan of

the application, the green boxes indicate the components with high priority, and the box in grey

indicates components with low priority. The arrows in black indicate valid state transitions and

the arrows in orange indicate what the application does when the application encounters an

invalid state while being in a valid state.

Figure 3.2: Workflow of the News Application

3.2 Framework

The goal of this series of steps is to identify the architectural pattern and the structure for

the application based on the architectural decisions in the previous step.

9

3.2.1 Architectural pattern

The outcomes of Section 3.1.4 and 3.1.5 not only allow developers determine the

workflow of the application but also gain a high-level understanding of what the views of the

applications contain. For instance, in figure 3.2, the boxes in green are not only the valid states of

the application but, they can also be the individual views of the application. Thus, for the news

application mentioned earlier, each category of news can be displayed to the user as a separate

view. The term view refers to the content of the application that is visible to the user at any given

point in time.

The model and the views of the application need to interact with one another to display

the correct information from the model and make sure any changes in the view are reflected to

the model. The interaction between a view and a model can be categorized into three basic types:

a) Controllers – A controller is a link between the model and the view. It provides the

user with input by displaying the relevant views in the appropriate parts of the screen.

A controller allows developers to collect data from the user interaction, process data,

and update or store data in the model.

Figure 3.3: MVC Pattern

As shown in figure 3.3, the controller processes incoming requests from users via the

view, then processes the request through the model and then passes back the results to the

view. There is a many to one relationship between the view and the controller. This

means that one controller can be responsible for multiple views.

b) Presenters – A presenter contains business logic of the user interface for the view.

When a user invokes an event in the view, the event is delegated to the presenter,

which is decoupled from the view and the view can interact with the presenter via an

interface. In this pattern, the views contain little-to-no logic. Instead, the presenter

observes the model and updates the views when models change. The presenter

retrieves data, manipulates data and determines how the data should be displayed in

the view. Thus, the concept of direct data binding is eliminated.

10

Figure 3.4: MVP Pattern

As shown in figure 3.4, the presenter addresses all user interface events on behalf of the

view. It receives input via the view, processes the data through the model, and passes the

results back to the view. The view and the presenter communicate to each other by an

interface. There is a one to one relationship between the view and the presenter. This

means that a presenter is responsible for only one view.

c) ViewModel – A ViewModel exposes the properties related to the model for data

binding. It can contain interfaces to services and data to fetch and manipulate the

properties the ViewModel exposes to the view. The view and the ViewModel

communicate via data binding, method calls, or events. The view handles its own UI

events and then maps the events to the ViewModel. The view is not responsible for

maintaining its state. The state of the view is synchronized with the ViewModel when

data from the view is bound to the data in the ViewModel interface.

Figure 3.5: MVVM Pattern

11

As shown in figure 3.5, the ViewModel is responsible for displaying methods and

functions that assist in maintaining the state of the view, manipulating the model based

on the actions in the view, and triggering events in the view. There is a many to one

relationship between the view and the ViewModel. This means that one ViewModel is

responsible for many views.

 The three patterns mentioned above guide developers in separating their code into

sections such that the view is responsible for the user interface, the model is responsible for the

application data, and the code to make the view and the model interact is separate from the view

and model itself. The main point to consider while deciding a pattern is how the view interacts

with the model. In the case of single page applications, since the developers are responsible for

navigation, having a many-to-one relationship between the interaction and the view is

recommended because the interaction, in the form of a controller, or presenter, or ViewModel,

needs to compute what view is displayed to the user at any given point. Each view must have a

way to interact with the model and the interface between the views and the model must be able to

monitor the state of the application.

In the case of a web application, developers deal with three languages at once: JavaScript,

HTML, and CSS. It can get difficult to perfectly match what parts of the application code fit in

with parts of a design pattern. To overcome this uncertainty, developers must make sure that the

data or content of the application is segregated into the model and data manipulation takes place

in one section of the application code, the views contain HTML that is displayed to the users and

the manipulation of the views take place in a different section of the application code, and the

interaction between the view and the model and the manipulation to the interaction takes place in

a separate section of the application code. Before developers can dive into writing code to build

an application, it is necessary to understand how the code must be separated into sections, such

that each section addresses a different aspect of the application. This separation of layers helps

developers build an application that is clean, easy to follow and read, and easy to maintain.

After developers determine the architectural pattern of the application, they can map

these architectural needs into one of the existing JavaScript frameworks. A JavaScript

framework is a collection of JavaScript libraries that provide developers with built-in features to

develop web applications. It provides a skeleton structure for creating an application that

arranges the parts of the application where the framework is implemented. For example, if the

news application mentioned in the previous section requires the weather view to have a carousel

that displays the weather forecast of five cities to the user, a developer can build a carousel from

scratch (HTML, CSS and JavaScript code) or use code from a framework to provide the feature

to save time.

Narrowing the search to find a suitable framework can be an intimidating task as there

are numerous JavaScript frameworks available to developers that offer a wide range of features

to build a web application. Frameworks are tools that developers use to make their task simple.

The specific needs of the application should always be the main criteria when selecting a

framework. Table 3.1 highlights key features of three frameworks: Backbone.js, Knockout and

AngularJS.

12

FEATURES KNOCKOUT BACKBONE.JS ANGULARJS

Documentation Good documentation

that is easy to

understand

Simple library.

Documentation not as

extensive as Knockout

or AngularJS.

Relies heavily on

Underscore.js

More complex than

Knockout and

Backbone.js.

Requires more time

investment.

Getting started is easy

if developer is aware

of Knockout because

data binding is similar.

Well organized

tutorials.

Model

framework

MVC and MVP May not perfectly fit

with the original

MVVM definition but it

is close

MVW framework

Model Model needs to be

explicitly declared by

the framework as a

JavaScript object.

Models can have logic

in addition to data,

such as validation,

default data and

custom functions.

No restriction on what

can be used as the data

source (Implicit).

If input comes from an

input field (HTML

form), add a custom

attribute called data-

bind to each field.

No restriction on what

can be used as the data

source (Implicit).

If input comes from an

input field (HTML

form), add a custom

attribute called ng-

model to each field.

Front End Models and views are

created

programmatically

using JavaScript code

by extending

Backbone.js objects.

This enables

developers to inherit a

lot of built in

functionality.

Has a native templating

mechanism that allows

developers to capture

HTML and use it as a

template for other

items.

Allows developers to

add special behaviors

to HTML code or the

DOM. AngularJS also

allows developers to

create their own

directives.

User interaction Leaves many

decisions to the users

to pick tools required

for their specific

needs.

Easily extensible UI

by modifying and

extending default

function using custom

binding and custom

functions.

Does not force user to

work in a particular

way.

Offers solutions for

routing and data access.

Can function in a part

of the application, so it

does not get in the way

of other frameworks.

More abstract that

Knockout and

Backbone.js. It

provides ready-made

UI elements.

13

Debugging and

testing

No specific debugging

tools, but works with

JavaScript testing

tools such as Jasmine.

knockout.toJSON()

converts a knockout

view-model to JSON

object, so that users

can see how data is

changing in real time.

There are some plugins

to help with debugging.

Jasmine can be used for

unit testing.

Relatively difficult to

debug.

Built-in testing tools.

Batarang – an

extension on Google

Chrome to monitor the

application’s model

and performance.

Jasmine can be used

for testing.

Plugins to run

automated test cases

exist.

Ideal for unit-testing

because of dependency

injection.

Data Binding Data-binding available

but syntax can get

complicated when

model size increases.

Requires more code to

bind the model and the

view. There is no data

binding readily

available.

Two-way binding

keeps the model and

the view synchronous.

Without this,

developers would need

to write a lot of code

that keeps the model

and the view in sync

constantly.

Routing Does not provide users

with routing; provided

through third party

libraries

Provides developers

with directives to

implement routing

Provides developers

with directives to

implement routing

Table 3.1: Key Features of Existing JavaScript Frameworks

3.2.2 File structure

Based on the architectural pattern selected in the previous step, developers need to

determine the file structure of the application. Files can be categorized based on the features of

the application or the type of files. If files are categorized based on the features of the

application, each feature must have a folder that consists of the HTML, CSS, JavaScript and

other types of files required to execute that feature. If developers need to modify a feature, they

would know to make changes to files in its folder. If files are categorized based on the type of

file, the application source must contain one folder for each type of file: HTML, CSS, JavaScript

and other required files. If developers need to modify a feature, they would know to make

changes in all the files that contain code for that feature in all the required folders.

For instance, in the news application mentioned in the previous section, as shown in

figure 3.6 a, if the files were to be categorized based on the features of the application, the

application would consist of 10 folders, one each for international news, national news, local

news, political news, weather news, sports news, comics, puzzles, jobs and advertisements. Each

14

folder would then consist of 1) a HTML file that displays details about that feature, 2) a CSS file

that contains styles for the HTML layout, 3) a JavaScript file that controls the events in the UI

and binds data to its model and 4) if required, a server-side script file that send and receive

information to and from the server.

Figure 3.6: a) Files structured based on features of news application b) Files structured based on

type of file for the news application

Using the same example, if the files in the news application were to be categorized based

on the type of files, as shown in figure 3.6 b, the application would consist of 4 folders, one each

for 1) HTML files to display each type of news, 2) CSS files to add styles to the HTML files, 3)

JavaScript files to control the events in the UI and bind data to its model and 4) if required,

server-side scripts to send and receive information to and from the server.

 For large applications, developers may use a hybrid file structure that divides the

application into features and for each feature, the files can be structured based on type of files.

This makes adding new features easy and allows for multiple developers to work on the project

together without changing files that do not belong to the feature that they are working on.

3.3 Model

 Once the framework has been selected, the content of the application can be translated

into a model for the application. Based on the application, the developer must choose what kind

of storage is required. The data could be stored locally on the client machine, or through data

15

storage services available online, such as Amazon cloud storage service or Firebase hosting, or

user inputs from HTML forms itself, to name a few.

3.4 User Interface

 A single page application consists of one HTML page and bundles of CSS and JavaScript

files. The index page of a single page application is similar to creating a web page but a portion

of the page is reserved for the dynamic content that is downloaded by the browser using AJAX.

The entire application runs as a single web page and the presentation layer of the application is

managed from the browser. In this type of contemporary application, the “pages” of the

application are not really pages. They are parts of the screen that the user can see at different

times and are independent sections of the application’s content called “views”. These views are

shown to the user on demand at specific placeholders by executing JavaScript code to render

content to the view. The index page of the application generally has a container which is used to

replace views as necessary. Views are attached to the DOM dynamically, such that one view is

replaced by another view when the user navigates. The elements in the UI can be styled as

required and the corresponding CSS files must be placed in the folders, based on the type of file

structure chosen in the steps above.

 Using the workflow from Section 3.1.5, developers must create individual views for each

component identified. The parts of the application that need to run throughout the lifespan of the

application can be put on the initial HTML page. This can include headers that contain navbars

or sidebars, a label that displays a username, a sign-out button, etc. and footers that may contain

quick links to forums or a different web page, if any.

 For instance, for the news application mentioned as an example in the previous sections,

the component of the application that need to run throughout the lifespan of the application was

determined to be the location of the user, the high priority components were the blocks in green

that displayed the various types of news (international, national, local, political, weather and

sports) and the low priority components were determined to be comics, puzzles, jobs and ads.

Individual views must be created for each of these components.

3.4.1 Index.html page

 First, an index.html page needs to be created that contains a section for dynamic contents

to load as a user navigates or requests for additional information. This can be done without the

help of any frameworks by assigning an ‘id’ attribute to a <div> block and updating the contents

of the block by accessing the div element using JavaScript code. But, JavaScript frameworks

provide attributes that can be added to HTML tags to achieve this dynamic content loading. For

example, as shown in figure 3.8, AngularJS allows developers to add custom HTML attributes to

tags that make dynamic content loading easy. The controller defined in the JavaScript files

manages routing and the content provided by routing is put into the “ng-view” directive that acts

as a container.

16

Figure 3.8: Using AngularJS to Create a Container for Dynamic Views

3.4.2 Dynamic views

After the index.html page is set up with a container, the dynamic views must be created.

These views can be created using HTML code snippets or they can be created dynamically using

JavaScript by updating the DOM elements.

Figure 3.9: An Example of a Login View

Figure 3.9 shows a view created using a HTML code snippet. It does not contain <html>,

<head> or <body> tags because the application appends these views into the container that was

created in the index.html page.

 The news application requires ten dynamic views. The views must be kept in the correct

folder based on the file structure selected for the application. If the ads in the ads view of the

application is retrieved from an ad server, the JavaScript code must request for information from

the ad server and map the response from the server to the ad view, thus splitting computation

between the client and the server. If the ad view, as a whole, needs to be retrieved from a server

then, the JavaScript code must map the response from the ad server to the container in the

17

index.html page. This would make the news app a hybrid web application in which a part of the

application is a single page application and the other part of the application uses a traditional

approach by requesting information from a server every time the user navigates to that view.

This thesis does not cover hybrid applications and finding a design approach for a hybrid

application will be added to the future efforts.

3.5 Weaving JavaScript and CSS into the Application

 The JavaScript code in a single page web application is responsible for the client-side

computing, monitoring the state of the application, creating dynamic views, and switching

between the dynamic views as requested by the user.

3.5.1 Creating dynamic views

As shown in figure 3.10, dynamic views can also be built using JavaScript code by

modifying the DOM elements. When the user requests for new data or navigates to a new view,

developers must first ensure the application is in a valid state. If the state is valid, the DOM

elements can be updated with the new view.

Figure 3.10: JavaScript code to add dynamic views to index.html page

3.5.2 Monitoring the state of the application

 Based on the workflow of the application identified in Section 3.1.5, developers must

make sure that if the application encounters an invalid state, the JavaScript code leads the

application to a valid state without causing the application to crash. The two important points to

consider to monitor the state of the application are: 1) assign URLs to the address bar of the

browser for every view and check the address bar of the browser for a valid URL when

navigating from one view to another, and 2) if the request from a server was not fulfilled as

expected, allow users to navigate to a valid view by cancelling the request or allow users to

request for the service from the server, limiting the number of times the user can resubmit a

18

failed request. AngularJS, for example, provides a way to assign URLs for the dynamic views

when handing the routing in the application. This is shown in figure 3.11. When the JavaScript

code encounters an invalid URL that is not listed in the app.config() function, it automatically

routes the application to the view that is linked to the default “/” URL.

3.5.3 Navigation between views

Once the index.html page and the dynamic views are built and the model is set up, the

interaction between them must be created based on the architectural pattern chosen in the

previous section. If developers chose to use a MVC pattern, for example, one or more controllers

need to be built for the application. The application needs one controller to control the routing

(navigation of the views) and maintaining the state of the application. This controller is usually

termed as the application controller and drives the other controllers of the application to function

as expected. It hands over control from one controller to another depending on the state of the

application and the view that is displayed to the user at any given time.

The news application from above must possess the user location before the index page

can display news of any type. If the application uses an existing API to get the user location from

a remote server, the application controller must request service from the remote server. If the

controller receives information as expected, it saves the state of the application and hands control

over to the international news controller, which then displays international news for the location

of the user, provided the news is available locally. If the application uses an API to get

international news for a particular location, the international news controller then requests for

new information and processes this information and displays the information as defined by the

international view. If the user requests for sports news while the application is displaying

international news to the user, the application controller removes the international news view

from the container and adds the sports news view to the container in the index.html page. The

application controller then transfers control from the international news controller to the sports

news controller. Figure 3.11 shows how AngularJS allows developers to add a controller for

every view.

19

Figure 3.11: JavaScript file showing routing using AngularJS framework

 A developer might be tempted to add all the JavaScript code into one file but there are

disadvantages to doing so: 1) If all the JavaScript code is in one file, the file size would be large

and the initial download for the application would take more time. 2) If a new feature needs to be

added to the software, the JavaScript file would need to be modified and this could cause the file

to get corrupt if the new code is not written correctly. 3) Collaboration would be a messy task if

multiple developers need to work on the same JavaScript file. 4) With multiple JavaScript files,

one for every view, source code can be divided and uploaded to different web servers flexibly.

3.5.4 Client-side computation

 Once the JavaScript code is set up to implement routing, monitor the states of the

application, and creating dynamic views, developers can start using the JavaScript code to

perform client-side computing required for the application. Any computation that is not done by

the server or received from the server is managed by the client-side machine. For instance, in the

news application, the client requests for puzzles from the server for that day. If the response from

the server is a solved crossword puzzle with information on which cells are meant to be empty,

the client can compute what the unsolved crossword puzzle must appear to the user and display

the unsolved puzzle to the user. The client can also compute what the application does when the

user solves the crossword correctly or incorrectly. The client-side computing can include a way

to help users with clues or solve the crossword puzzle if required.

3.5.5 Adding styles to HTML page and views

The index.html page and the views of the application can have style sheets linked to them

individually or in one file. The <link> tag can be used to specify the source of the style sheet.

20

This also allows developers to use existing frameworks like Bootstrap to quickly create views

with remote CSS files.

3.6 Accessing the model and Server-side code

 The HTML, CSS, and JavaScript code help developers create a single page application

that looks appealing and does not reload every time the user navigates. If there is any kind of

data that must be accessed from the model that is in the form of a database, developers need to

handle that using server-side code. Developers are free to choose a scripting language that they

are comfortable to work with. There are many server-side scripting languages such as PHP, ASP,

ASP.NET, JSP, or NodeJS. NodeJS allows the user to work in a full stack development

environment using JavaScript, allowing developers to use a single programming language for the

application. But, if developers are already aware of a different server-side scripting language and

time is of an essence, they can choose the one that would take the least amount of time for them.

If existing APIs are being used by the application, there would be no need to write server-side

code.

 For instance, for the news application, if the users can create accounts for themselves and

store five locations as their favorites, the application could use a local database to store user

details and location preferences and use existing APIs to find current user locations and the news

for the locations. In such a case, code is necessary to access data from the local database and

existing APIs can be called using JavaScript code.

Figure 3.12: Distribution of Computation between Client and Server for News Application

Figure 3.12 shows the distribution of computation between the client and the server for

the news application based on all the assumptions made in each step. In summary, developers

21

must start by assuming the application to be built is a client-side application and analyze various

aspects of the application development process such as 1) architecture, 2) file structure, 3)

framework, and 4) dividing the application into a model, a view and an interface that lets the

model and the view communicate. Once these aspects are studied and the developers have a

workflow of the application, a contemporary application can be developed.

22

Designing a Contemporary Web Application

To validate the proposed design approach in the previous chapter, an application, named

ProjectTimeLogger, was developed that allowed its users to create a profile (register), sign in to

the application and log how much time the user spent on working on a project. The requirements

of the application are shown in Table 4.1.

REQUIREMENT NUMBER REQUIREMENT SPECIFICATION

R1 Users should be able to create a profile and login to the

application.

R2 Users must be able to add projects to the application.

R3 Users must be able to see a list of all the projects added to the

application along with a few details of the application – last

modified date, the current iteration of the project, total

amount of time spent on the project and the last activity

performed on the project.

R4 On selecting a project from the list, the user will be shown

more information about that project – total time spent on that

project, amount of time spent on the current iteration of the

project, amount of time spent on the current activity

throughout the project and amount of time spent on the

current activity in the current iteration of the project.

R5 The user will be able to start, pause and stop a timer which

will log the time spent on that project, which in turn will add

to the total time spent on the project.

R6 The user will also be able to enter time manually, if they do

not want to run the timer.

R7 The user should not be able to change previously logged

time.

R8 The user should be able to mark the end of an iteration. This

should increment the iteration number.

R9 The user should be able to mark a project as completed. Once

a project is marked completed, the user should not be able to

make any changes to the project. However, the user may view

all the logged data of a completed project.

R10 A user must be able to customize the activities that can be

performed during the process of development of the project.

Table 4.1: ProjectTimeLogger Requirements

23

4.1 Architecture

4.1.1 Determine components based on source of content

 Each requirement in table 4.1 is an individual component of the application. Requirement

R1 from table 4.1 suggests that user information for login and register needed to be stored in a

remote database, so that the application can be used from any client-side machine. Requirement

R2 requires users to be able to add projects to a list, which suggests that a list of projects must be

stored for every user. Since this data must be available to the user on any client-side machine, the

list of projects must be stored in a remote location. Requirements R3 and R4 suggest that the user

must be able to view the details of any selected project. Thus, this data needs to be stored

remotely as well. Requirements R5 and R6 states that the user should be able to start a timer or

manually enter time to log the amount of time spent working on a project. Thus, the application

needs to compute time (start, stop and reset timer, or enter time in HTML input field) and store

the new time in the remote location for future use. Requirements R8, R9 and R10 suggests that

more details about a project need to be stored for the user to access from any client-side machine.

Figure 4.1 shows this distribution of data storage and retrieval for ProjectTimeLogger.

Figure 4.1: Distribution of data based on source for ProjectTimeLogger

24

4.1.2 Determine components based on features

The components of the application were defined based on the requirements and they were

each given a priority as shown in Table 4.2.

PRIORITY REQUIREMENT

NUMBER

REQUIREMENT SPECIFICATION

P1 R1 Users should be able to create a profile and login

to the application.

P2 R2 Users must be able to add projects to the

application.

P3 R3 Users must be able to see a list of all the projects

added to the application along with a few details

of the application – last modified date, the current

iteration of the project, total amount of time spent

on the project and the last activity performed on

the project.

P4 R4 On selecting a project from the list, the user will

be shown more information about that project –

total time spent on that project, amount of time

spent on the current iteration of the project,

amount of time spent on the current activity

throughout the project and amount of time spent

on the current activity in the current iteration of

the project.

P5 R5 The user will be able to start, pause and stop a

timer which will log the time spent on that project,

which in turn will add to the total time spent on

the project.

P7 R6 The user will also be able to enter time manually,

if they do not want to run the timer.

P6 R7 The user should not be able to change previously

logged time.

P8 R8 The user should be able to mark the end of an

iteration. This should increment the iteration

number.

P9 R9 The user should be able to mark a project as

completed. Once a project is marked completed,

the user should not be able to make any changes

to the project. However, the user may view all the

logged data of a completed project.

P10 R10 A user must be able to customize the activities that

can be performed during the process of

development of the project.

Table 4.2: Prioritized ProjectTimeLogger Components

25

4.1.3 Determine component interaction

Users must register and login before they can use ProjectTimeLogger to log time. This

must be the entry point to the application. If the registration of a new user fails, the application

must notify this error to its user and allow the user to try and register again. If the login of a user

fails, the application must allow the user to try and login again, and if the user needs to register

before logging in, the application must provide access to the user to navigate to the register view.

If the server fails to respond to a user request for the list of projects or project details, the

application must notify this error to the user and allow the user to try and fetch the list of projects

or project details from the remote server. Lastly, after computing the time that needs to be logged

for a project, the client must send this data to the server and update the project records. If the

server is unable to update the new logged time, the application needs to notify this error to the

user and allow the user to try and log the computed time again.

4.1.4 Determine data flow between components

ProjectTimeLogger requires that users register with their details before they can login.

The users need to login after creating an account using their email address and password. Once

the login is successful, the UserID of the user is stored as a session variable. Whenever new

information is requested from the server, the application checks for the session variable and if it

is available, information is provided to the user but, if the session variable is not available, the

user is asked to login to the application again. The application resets the session variable when

the user signs out of the application or when the application reaches an unknown state. This

ensures that users are only able to see data pertaining to them and that users without an account

cannot modify existing data in the model. When a user successfully logs in, they can see a list of

projects that they have added to the application and an option to add more projects. When a user

adds a project, the user can view the new project in the list of projects. When the user selects a

project from the list of projects, the corresponding ProjectID is stored as a part of the session

variable. Thus, the inputs for features - login, show list of projects, add a project, and log time

are all dependent on the successful registration feature for a user; and the features - show list of

projects, add a project, and log time are dependent on the successful login feature for a user. This

can be viewed as a containment relationship depicted by figure 4.2 below.

Figure 4.2: Component Relationship

26

4.1.5 Define the states of the application

 Figure 4.3 shows the states of ProjectTimeLogger. The block in blue is requested from

the server and it must be displayed to the users throughout the lifespan of the application. The

blocks in green are high priority components and the block in grey is a low priority component.

Figure 4.3: Workflow of ProjectTimeLogger

4.2 Framework

4.2.1 Determine the architectural pattern

 In Section 4.1.1, the application data storage was distributed between the client and the

server. The majority of the data is stored in a remote server that can be accessed by any client-

side machine. This data is the model of the application. The index.html page and the dynamic

templates are the views of the application. The third aspect of this application’s pattern needs to

compute which view is shown to the user at any given time, make sure that the data shown to the

user is the right data from the model, compute the session variables that ensure the application is

always in a valid state, and keep a consistent look while the user navigates from one view to

another.

 Developing the application requires the application pattern to offer 1) routing between

views to create a single page application, 2) the ability to use a data source of choice and data

binding to update the time spent on each activity as required both, in the view and in the model

27

and 3) easy to use APIs for routing and binding. AngularJS provides developers with a powerful

controller that not only handles routing and data binding, but it also provides a user service that

can be used as local storage to handle session data.

4.2.2 Determine the file structure

 The data of ProjectTimeLogger will be available in a remote server, as determined from

Section 4.1.1. The size of the files does not play a role in determining the file structure as the

application code that consists of HTML, CSS, and JavaScript files along with code that accesses

data from the model will be stored in a single local web server. ProjectTimeLogger can have

multiple features added to it in the future such as: 1) multiple user access, 2) creating tasks in

each project and assigning these tasks to individuals, and 3) creating reports for each project, etc.

The file structure must allow the developers to add new features to the application easily.

ProjectTimeLogger needs to be a single page application, that contains one html page and this

html page needs to let the browser download the required CSS and JavaScript files, which in turn

allow for “navigation” in the application. Storing all the CSS files together and the JavaScript

files together would make development easier. Thus, the files of ProjectTimeLogger are

structured based on the type of files.

Figure 4.4: Files structured based on file type

4.3 Model

 The model of the application contains user data and project data stored in a remote server.

ProjectTimeLogger requires a data storage that will allow the application to add multiple users

and the users to add multiple projects. The application does not have a limit to the number of

projects that can be added by a user. When a user logs time in a project for an activity, the

application must store the logged time as a new entry instead of updating existing project

information, so that the application can display information about how much time a user has

spent in an activity in a project. The data of the application is stored in the form of tables in

MariaDB, provided by XAMPP web server package.

28

Figure 4.5: Model in the form of tables in a remote database

As shown in figure 4.5, the user details are stored in a ‘user’ table, the list of projects for

the users is stored in a ‘project’ table, and the details of the projects are stored in a

‘projectdetails’ table. The three tables are in a database named ‘projecttimelogger’.

4.4 User interface

 The big difference in creating a single page contemporary application from creating a

traditional one is how the “pages” are set up and how navigation occurs in the application. There

is only one HTML page that contains a section for parts of the application that need to be visible

to the users at all times and a section reserved for dynamically generated content.

4.4.1 Index.html

 The index.html file contains the parts of the application that need to be visible to the user

at all times. It contains one section where dynamically generated content is added or replaced as

necessary.

The index.html page of ProjectTimeLogger has a navbar that displays the name of the

application and a sign out button when a user has logged in to the application; and has a

container for dynamic views. Figure 4.6 shows the index.html page with no dynamic views

added to the container. This layout makes the size of index.html page small.

29

Figure 4.6: Index.html page without a dynamic view

4.4.2 Dynamic views

 The dynamic views, also known as templates, can be created using HTML snippets or by

using JavaScript code. The templates for ProjectTimeLogger were created with HTML snippets

because the layout of the application is static and unchanging. The templates do not require

<html>, <head>, or <body> tags in them because they are placed in a container in the index.html

page during run time. Figure 4.7 shows the template for the login view of ProjectTimeLogger.

The <link> tag on line 1 adds a remote stylesheet to the view. This makes it easy for developers

to create views quickly by using existing frameworks like Bootstrap.

Figure 4.7: Login template in ProjectTimeLogger

 Figure 4.8 shows how the login view would appear to users if it was not placed in the

index.html file. The index.html page must contain references to stylesheets to give the

30

application a consistent look. The figure also shows a message in the bottom of the page for

success and error. The JavaScript code controls the visibility of these messages based on the

success or failure of the login feature of the application. The next section shows how JavaScript

is used to control what aspects of the application the user can view at any given time.

Figure 4.8: Login template without adding it to index.html page

4.5 Weaving JavaScript and CSS into the HTML page and views

 ProjectTimeLogger has two types of JavaScript controller files. The first type of

controller is used to control the entire application, monitor the state of the application and

maintain the session variables. The second type of controllers are used to control the individual

views of the application.

4.5.1 Monitoring the state of the application

Single page applications do not refresh the page when the user navigates from one view

to another, causing the URL in the address bar of the browsers to remain constant. This might

seem confusing to the users because they will not be able to bookmark pages in the browser for

future references. ProjectTimeLogger addresses this issue by using the feature provided by

AngularJS to change a part of the URL when a new view is added to the index.html page. Figure

4.9 shows how app.js handles URLs and session data in ProjectTimeLogger to ensure the

application always shows a valid view to its users.

Figure 4.9: JavaScript file (app.js) that controls the application

31

4.5.2 Navigation between views

As shown in figure 4.9, the $routeProvider lets the developer set up all the template

pages, its controllers, and the URL that the users can see on the browser when they navigate to

that view. This, in turn, makes it easy for the controller to handle the back and forward buttons in

the browser. When the URL contains /login, for example, the $routeProvider lets loginctrl.js act

as the controller for that view. This allows computation to be distributed and developers don’t

end up with one bulky JavaScript file.

Figure 4.10: Index.html page with a) the login view and b) the register view

Figure 4.10 shows the index.html page with the login template and the register template.

A page load does not occur when the user clicks on the register button on the login page. The

app.js uses the $routeProvider to change the URL in the address bar of the browser and the

control is transferred from loginCtrl to registerCtrl, which is then responsible for any

computation on the register view.

4.5.3 Client-side computation

Figure 4.11: Index.html page with projectlist view

As shown in figure 4.11, when a user logs in to ProjectTimeLogger, the application

displays a list of projects that the user has added to the database. The $routeProvider changes the

URL in the address bar and transfers control from loginCtrl to projectlistCtrl. projectlistCtrl is

32

responsible for requesting project data from the database in the model and mapping the response

into the necessary fields in the view. Figure 4.12 shows the projectlistCtrl JavaScript code that

retrieves project details from the database using a http post method, processes the information if

there was no error in data retrieval, and stores the project details into a variable called ‘rowdata’,

which is then pushed to the HTML <tr> tag using data binding provided by AngularJS.

Figure 4.12: projectlistCtrl code to retrieve, process and display project details

Figure 4.13: Index.html page with the projectdetails view for project ‘SF’

33

 When the user selects a project from the list of projects, the application displays more

information about the project and allows users to log time by either using the timer or entering

time manually, as shown in figure 4.13.

 The first timer indicates the new time that is going to be logged for the selected project

and the highlighted activity. The second timer displays the total time spent on the highlighted

activity for that project, the third timer displays the time spent in the current iteration of the

project, and the fourth timer displays the total time spent on the selected project. When the user

clicks on the start button, the four timers start to count time: the first timer starts from zero and

the other three timers increment time in one-second intervals. When the user clicks on the stop

button, all the timers stop running and the user can click on the ‘log time’ button to log the time

that is displayed on the screen. The application also provides a ‘reset’ button to reset the timers

to the last logged values for the highlighted activity. If the user decides to enter time manually,

the ‘enter time manually’ button is clicked, which allows the user to enter time in HH:MM

format. The user can then click on the ‘log time’ button to log the manual time. All these

computations are done by the projectdetailsCtrl JavaScript code on the client-side machine. Only

when the user clicks on the ‘log time’ button, the controller sends a request to the server to add a

new entry to the projectdetails table in the remote database.

4.5.5 Adding styles to HTML page and views

 ProjectTimeLogger uses Bootstrap JavaScript package elements for the majority of the

application. Thus, the CSS is added to the index.html page for the individual elements. The CSS

that binds these individual elements together to give the application a consistent user experience

is in the ptlappstyle.css as shown in appendix A.

4.6 Accessing model and server-side code

 The model of ProjectTimeLogger is in a remote database and when users request for

remote data in a view, the corresponding controller must fetch information from the server. For

instance, when a user selects a project from the list of projects, the projectdetailsCtrl requests for

project details from the model by using a http post method. This method, in turn, runs a php

script to fetch the required details from the database. Figure 4.14 shows the php script to fetch

project details from the database.

Figure 4.14: php script to retrieve project details of selected project

34

 At the end of this step, we can conclude that ProjectTimeLogger is a contemporary

application which distributes the computation between the client and the server such that the

application utilizes the client-side computational capabilities and makes requests to remote

server only to get data that is not accessible to the client at all times. Figure 4.15 shows the

distribution of computation between the client and the server for ProjectTimeLogger.

Figure 4.15: Distribution of Computation between Client and Server for ProjectTimeLogger

35

Future Efforts

Although the proposed design approach in this research can be used to build a single page

application, there are multiple steps that can be added to the design process. The following are

the important considerations to add as a step or a set of steps during the design process of

building a single page application:

1. Distribution of dynamically rendered HTML content using JavaScript and using

HTML snippets to determine if the apt distribution of presentation logic allow users

to share more computational logic with the server.

2. An approach to find the invalid and valid states of the application, to reduce the

possibilities of data leakage from the applications.

3. An approach to distribute JavaScript and CSS code in to multiple bundles, to reduce

the initial page load time of the application.

4. Using session tokens with an expiring policy to add a layer of security to the

application.

5. Client-side machines use the back, history and forward keys to help users with

navigation in a traditional application. An approach to store the information about the

visited views and keeping these views in memory for a certain period of time, so that

when the back, forward or history buttons are used, the application handles the user

request before trying to request data from the server.

36

Bibliography

Web development with Django notes Summer 2012, by Dr. David A. Umphress, Computer

Science and Software Engineering Department, Auburn University.

Event driven engineering notes, by Dr. David A. Umphress, Computer Science and Software

Engineering Department, Auburn University.

[Scott, 2016] “SPA Design and Architecture; Understanding Single Page Web Applications”, by

Emmit A. Scott, Jr., licensed to Dr. David A. Umphress, Auburn University.

[Mikowski, Powell, 2014] “Single Page Web Applications”, by Michael S. Mikowski and Josh

C. Powell, licensed to Dr. David A. Umphress, Auburn University.

[Takada, 2012] Single page apps in depth,

http://www.icaretonometer.com/wp-content/uploads/2012/11/singlepageappbook.pdf

[Veeravalli, 2017] Measuring and Optimizing Performance of Single-Page Applications (SPA)

Using RUM,

https://engineering.linkedin.com/blog/2017/02/measuring-and-optimizing-performance-of-

single-page-applications

http://www.icaretonometer.com/wp-content/uploads/2012/11/singlepageappbook.pdf
https://engineering.linkedin.com/blog/2017/02/measuring-and-optimizing-performance-of-single-page-applications
https://engineering.linkedin.com/blog/2017/02/measuring-and-optimizing-performance-of-single-page-applications

37

[Burkholder, 2018] JavaScript SEO: Server Side Rendering vs. Client Side Rendering,

https://medium.com/@benjburkholder/javascript-seo-server-side-rendering-vs-client-side-

rendering-bc06b8ca2383

[Sherman, 2018] How Single-Page Applications Work,

https://medium.com/@pshrmn/demystifying-single-page-applications-3068d0555d46

https://medium.com/@benjburkholder/javascript-seo-server-side-rendering-vs-client-side-rendering-bc06b8ca2383
https://medium.com/@benjburkholder/javascript-seo-server-side-rendering-vs-client-side-rendering-bc06b8ca2383
https://medium.com/@pshrmn/demystifying-single-page-applications-3068d0555d46

38

Appendix A: Source Code

1) index.html

<!DOCTYPE html>

 <head>

 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.5/angular.min.js"></script>

 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.5/angular-

route.min.js"></script>

 <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>

 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>

 <link rel="stylesheet" href="css/ptlappstyle.css" />

 <link rel="stylesheet" href="css/tablestyle.css" />

 <link rel="stylesheet" href="css/sidenavbar.css" />

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css">

 </head>

 <body ng-app="ptlapp" ng-controller="ptlappCtrl">

 <nav class="navbar navbar-inverse navbar-static-top navbarapp">

 <div class="container-fluid">

 <div class="navbar-header">

 Project Time Logger

 </div>

 <ul id="signoutoption" ng-hide="!getsignoutoption()" class="nav navbar-nav navbar-

right">

 Sign Out <span class="glyphicon glyphicon-log-

out">

 </div>

 </nav>

 <div ng-view></div>

 <script src="js/app.js"></script>

 <script src="js/loginCtrl.js"></script>

 <script src="js/registerCtrl.js"></script>

 <script src="js/projectlistCtrl.js"></script>

 <script src="js/addnewprojectCtrl.js"></script>

 <script src="js/projectdetailsCtrl.js"></script>

 </body>

</html>

39

2) login.html

<link href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300' rel='stylesheet'

type='text/css'>

<div class="container-fluid">

 <form class="register-form" name="loginform" ng-submit="logintoprojects()">

 <div class="row">

 <div class="col-md-4 col-sm-4 col-lg-4">

 <label for="email">EMAIL</label>

 <input name="email" id="email" ng-model="email" class="form-control"

type="email" required>

 </div>

 </div>

 <div class="row">

 <div class="col-md-4 col-sm-4 col-lg-4">

 <label for="password">PASSWORD</label>

 <input name="password" id="password" ng-model="password" class="form-control"

type="password" required>

 </div>

 </div>

 <hr>

 <div class="row">

 <div class="col-md-6 col-sm-6 col-xs-6 col-lg-6">

 <button type="submit" class="btn btn-default logbutton">Login</button>

 </div>

 <div class="col-md-6 col-sm-6 col-xs-6 col-lg-6">

 <a ng-href="#/register" class="btn btn-default regbutton">Register

 </div>

 </div>

 <div id="registerstatus" class="registerstatus" ng-hide="!getregistrationstatus()">

 <div class="alert alert-success alert-dismissible">

 Success! Please login.

 </div>

 </div>

 </form>

</div>

40

3) register.html

<link href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300' rel='stylesheet'

type='text/css'>

<div class="container-fluid">

 <form class="register-form" name="registerform" ng-submit="registeruser()">

 <div class="row">

 <div class="col-md-4 col-sm-4 col-lg-4">

 <label for="username">USERNAME</label>

 <input name="username" id="username" ng-model="username" class="form-control"

type="text" required>

 </div>

 </div>

 <div class="row">

 <div class="col-md-4 col-sm-4 col-lg-4">

 <label for="email">EMAIL</label>

 <input name="email" id="email" ng-model="email" class="form-control"

type="email" required>

 </div>

 </div>

 <div class="row">

 <div class="col-md-4 col-sm-4 col-lg-4">

 <label for="password">PASSWORD</label>

 <input name="password" id="password" ng-model="password" class="form-control"

type="password" required>

 </div>

 </div>

 <hr>

 <div class="row">

 <div class="col-md-6 col-sm-6 col-xs-6 col-lg-6">

 <button type="submit" class="btn btn-default regbutton">Register</button>

 </div>

 <div class="col-md-6 col-sm-6 col-xs-6 col-lg-6">

 <a ng-href="#/login" class="btn btn-default logbutton">Login

 </div>

 </div>

 <div id="registerstatus" class="registerstatus" hidden="true">

 <div class="alert alert-danger alert-dismissable">

 Error! Please try again.

 </div>

 </div>

 </form>

</div>

41

4) projectlist.html

<div ng-hide="isloggedin()">

 <nav class="navbar navbar navbar-static-top navbarapp">

 <div class="container-fluid">

 <div class="navbar-header">

 {{welcomeuser}}

 </div>

 <ul class="nav navbar-nav navbar-right">

 Add <span class="glyphicon

glyphicon-plus-sign">

 </div>

 </nav>

 <div ng-hide="!ifnewprojectadded()">

 <div class = "alert alert-success alert-dismissable">

 <button type="button" class="close" data-dismiss = "alert" aria-hidden =

"true">×</button>

 Success! Project added.

 </div>

 </div>

 <div class="wrapper">

 <table id="acrylic" style="width:85%">

 <thead>

 <tr>

 <th>Project ID</th>

 <th>Title</th>

 <th>Modified Date</th>

 <th>Current Iteration</th>

 <th>Current Activity</th>

 <th>Total time</th>

 </tr>

 </thead>

 <tbody>

 <tr ng-repeat="(key,value) in row">

 <td ng-repeat="(key,val) in value" ng-click="showprojectdetails(value)">{{val}}</td>

 </tr>

 </tbody>

 </table>

 </div>

</div>

<div class="alert alert-danger" ng-hide="!isloggedin()">

 Error! Please login.

</div>

42

5) projectlist.html

<div ng-hide="isloggedin()">

 <nav class="navbar navbar navbar-static-top navbarapp">

 <div class="container-fluid">

 <div class="navbar-header">

 {{welcomeuser}}

 </div>

 <ul class="nav navbar-nav navbar-right">

 Add <span class="glyphicon

glyphicon-plus-sign">

 </div>

 </nav>

 <div ng-hide="!ifnewprojectadded()">

 <div class = "alert alert-success alert-dismissable">

 <button type="button" class="close" data-dismiss = "alert" aria-hidden =

"true">×</button>

 Success! Project added.

 </div>

 </div>

 <div class="wrapper">

 <table id="acrylic" style="width:85%">

 <thead>

 <tr>

 <th>Project ID</th>

 <th>Title</th>

 <th>Modified Date</th>

 <th>Current Iteration</th>

 <th>Current Activity</th>

 <th>Total time</th>

 </tr>

 </thead>

 <tbody>

 <tr ng-repeat="(key,value) in row">

 <td ng-repeat="(key,val) in value" ng-click="showprojectdetails(value)">{{val}}</td>

 </tr>

 </tbody>

 </table>

 </div>

</div>

<div class="alert alert-danger" ng-hide="!isloggedin()">

 Error! Please login.

</div>

43

44

6) addnewproject.html

<link href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300' rel='stylesheet'

type='text/css'>

<div class="container-fluid">

 <form class="register-form" name="addnewproj" ng-submit="addnewproject()">

 <div class="row">

 <div class="col-md-4 col-sm-4 col-lg-4" style="width:100%;">

 <label for="email">PROJECT NAME</label>

 <input name="pname" id="pname" ng-model="pname" class="form-control"

type="text" required>

 </div>

 </div>

 <hr>

 <div class="row">

 <div class="col-md-6 col-sm-6 col-xs-6 col-lg-6">

 <button type="submit" class="btn btn-default logbutton">Add</button>

 </div>

 <div class="col-md-6 col-sm-6 col-xs-6 col-lg-6">

 <a ng-href="#/projectlist" class="btn btn-default regbutton">Cancel

 </div>

 </div>

 <div class="row" style="padding: 20px 12px;">

 <div class="alert alert-danger alert-dismissable" ng-hide="ifnewprojectnotadded()">

 Error! Please try again.

 </div>

 </div>

 </form>

</div>

45

7) projectdetails.html

<div ng-hide="isloggedin()">

 <nav class="navbar navbar navbar-static-top navbarapp">

 <div class="container-fluid">

 <div class="navbar-header">

 {{projectname}}

 </div>

 </div>

 </nav>

 <div>

 <table style="width:100%; height:100%;">

 <tr>

 <td rowspan="2" style="width:25%;margin:2%;background-color: #EEEEEE;">

 <div>

 <ul class="ulsnb" style="padding:0px;width:max-content;margin:2%;">

 <li class="lisnb liaactivesnb lia:hover:not(.active)"><a class="asnb liaactivesnb

lia:hover:not(.active)" id="Analysis" ng-click="changeActivity('Analysis');">Analysis

 <li class="lisnb liaactivesnb lia:hover:not(.active)"><a class="asnb liaactivesnb

lia:hover:not(.active)" id="Architecture" ng-

click="changeActivity('Architecture');">Architecture

 <li class="lisnb liaactivesnb lia:hover:not(.active)"><a class="asnb liaactivesnb

lia:hover:not(.active)" id="Project Planning" ng-click="changeActivity('Project

Planning');">Project Planning

 <li class="lisnb liaactivesnb lia:hover:not(.active)"><a class="asnb liaactivesnb

lia:hover:not(.active)" id="Iteration Planning" ng-click="changeActivity('Iteration

Planning');">Iteration Planning

 <li class="lisnb liaactivesnb lia:hover:not(.active)"><a class="asnb liaactivesnb

lia:hover:not(.active)" id="Construction" ng-

click="changeActivity('Construction');">Construction

 <li class="lisnb liaactivesnb lia:hover:not(.active)"><a class="asnb liaactivesnb

lia:hover:not(.active)" id="Refactoring" ng-

click="changeActivity('Refactoring');">Refactoring

 <li class="lisnb liaactivesnb lia:hover:not(.active)"><a class="asnb liaactivesnb

lia:hover:not(.active)" id="Review" ng-click="changeActivity('Review');">Review

 <li class="lisnb liaactivesnb lia:hover:not(.active)"><a class="asnb liaactivesnb

lia:hover:not(.active)" id="Integration Test" ng-click="changeActivity('Integration

Test');">Integration Test

 <li class="lisnb liaactivesnb lia:hover:not(.active)"><a class="asnb liaactivesnb

lia:hover:not(.active)" id="Repatterning" ng-

click="changeActivity('Repatterning');">Repatterning

 <li class="lisnb liaactivesnb lia:hover:not(.active)"><a class="asnb liaactivesnb

lia:hover:not(.active)" id="Postmortem" ng-

click="changeActivity('Postmortem');">Postmortem

 <li class="lisnb liaactivesnb lia:hover:not(.active)"><a class="asnb liaactivesnb

lia:hover:not(.active)" id="Sandbox" ng-click="changeActivity('Sandbox');">Sandbox

46

 </div>

 </td>

 <td style="padding:10px;margin:2%;background-color: #e1e1e1;">

 <div>

 <table style="width:100%;">

 <tr>

 <td>

 <div>

 <table style="width:100%;">

 <tr>

 <td style="border: 2px solid #474747;">

 <div class="panelheading">

 <p style="padding:10px;margin:0px;">New Time</p>

 <p ng-bind="newtime" id="newtimer" style="font-

weight:bold;padding:10px;margin:0px;">{{newtime}}</p>

 </div>

 </td>

 <td style="border: 2px solid #474747;">

 <div class="panelheading">

 <p style="padding: 10px;margin:0px;">Current Activity</p>

 <p ng-bind="thisAct" id="thisAct" style="font-

weight:bold;padding:10px;margin:0px;">{{thisAct}}</p>

 </div>

 </td>

 <td style="border: 2px solid #474747;">

 <div class="panelheading">

 <p style="padding: 10px;margin:0px;">Current Iteration</p>

 <p ng-bind="actThisIter" id="actThisIter" style="font-

weight:bold;padding:10px;margin:0px;">{{actThisIter}}</p>

 </div>

 </td>

 <td style="border: 2px solid #474747;">

 <div class="panelheading">

 <p style="padding: 10px;margin:0px;">Iteration</p>

 <p ng-bind="iteration" id="iteration" style="font-

weight:bold;padding:10px;margin:0px;">{{iteration}}</p>

 </div>

47

 </td>

 <td style="border: 2px solid #474747;">

 <div class="panelheading">

 <p style="padding: 10px;margin:0px;">Current Project</p>

 <p ng-bind="totalTime" id="totalTime" style="font-

weight:bold;padding:10px;margin:0px;">{{totalTime}}</p>

 </div>

 </td>

 </tr>

 </table>

 </div>

 </td>

 </tr>

 </table>

 </div>

 </td>

 </tr>

 <tr>

 <td style="padding:0px;background-color: #d4d4d4;">

 <div>

 <table style="width:100%;">

 <tr>

 <td align="center">

 <input type="button" id="starttimerbutton" value="START" ng-

click="startTimers();" />

 </td>

 <td align="center">

 <input type="button" id="starttimerbutton" value="STOP" ng-click="stopTimers();"

/>

 </td>

 <td align="center">

 <input type="button" id="starttimerbutton" value="RESET" ng-

click="resetTimer();" />

 </td>

 </tr>

 <tr>

 <td align="center" colspan="3" style="padding:10px;">

 <div>

 <button class="collapsible">Enter Time Manually</button>

 <div class="content" style="height:45px">

 <input style="margin-top: 10px;margin-bottom: 10px;" type="text"

id="manualTime" placeholder="HH:MM" />

 </div>

 </div>

48

 </td>

 </tr>

 <tr>

 <td align="center" colspan="3" style="padding:10px;">

 <div>

 <input type="button" id="starttimerbutton" value="LOG TIME" ng-

click="logTime();" />

 </div>

 </td>

 </tr>

 </table>

 </div>

 </td>

 </tr>

 <tr>

 <td colspan="2" align="center" style="padding:10px;background-color: #c7c7c7;">

 <div>

 <button class="collapsibleproject">Project Options</button>

 <div class="contentproject" style="height:45px">

 <input type="button" id="iterationcomplete" value="ITERATION COMPLETE" ng-

click="iterationcomplete();" />

 <input type="button" id="projectcomplete" value="PROJECT COMPLETE" ng-

click="projectcomplete();" />

 </div>

 </div>

 </td>

 </tr>

 </table>

 </div>

 <!-- <div id="stripH" class="stripH">

 <div ng-bind="newtime" id="timerlabel" class="timerlabel">{{newtime}}</div>

 </div> -->

</div>

<div class="alert alert-danger" ng-hide="!isloggedin()">

 Error! Please login.

</div>

49

8) ptlappstyle.css

body, html{

 font-family: 'Open Sans Condensed', sans-serif;

 font-size: 18px;

}

.register-form{

 font-size: 16px;

 left: 50%;

 top: 50%;

 position: absolute;

 -webkit-transform: translate3d(-50%, -50%, 0);

 -moz-transform: translate3d(-50%, -50%, 0);

 transform: translate3d(-50%, -50%, 0);

}

.register-form input{

 margin-bottom: 5px;

 width: 430px;

 height: 40px;

 border-radius: 0px;

}

.register-form label{

 color: #2269a7;

}

.regbutton{

 width: 200px;

}

.logbutton{

 width: 200px;

}

.registerstatus{

 padding-top: 40px;

 text-align: center;

}

.navbarapp{

 margin-bottom: 0px !important;

}

.stripH{

 height: 100px;

50

 background-color: rgba(0,0,0,.065);

}

.timerlabel{

 position: absolute;

 left: 30px;

 line-height: 1.928571;

 font-size: -webkit-xxx-large;

}

.stripV{

 position:absolute;

 width: 150px;

 height: 200%;

 background-color: rgba(0,0,0,.065);

 left: 100px;

 bottom: 0;

}

.newTimer{

 font-size: -webkit-xxx-large;

}

.content {

 padding: 0 18px;

 display: none;

 overflow: hidden;

 background-color: #f1f1f1;

}

.active, .collapsible:hover {

 background-color: #777;

}

.collapsible {

 background-color: #555;

 color: white;

 cursor: pointer;

 padding: 18px;

 width: 100%;

 border: none;

 text-align: center;

 outline: none;

 font-size: 15px;

}

51

.contentproject {

 padding: 0 18px;

 display: none;

 overflow: hidden;

 background-color: #f1f1f1;

}

.active, .collapsibleproject:hover {

 background-color: #777;

}

.collapsibleproject {

 background-color: #555;

 color: white;

 cursor: pointer;

 padding: 18px;

 width: 100%;

 border: none;

 text-align: center;

 outline: none;

 font-size: 15px;

}

.panelheading{

 text-align:center;

 font-size: 16px;

}

52

9) sidenavbar.css

body {

 margin: 0;

}

.ulsnb {

 list-style-type: none;

 margin: 0;

 padding: 0;

 width: 15%;

 height: max-content;

 overflow: auto;

}

.asnb {

 display: block;

 color: #000;

 padding: 0px;

 text-decoration: none;

}

.lisnb {

 display: block;

 color: #000;

 padding: 8px;

 text-decoration: none;

}

.liaactivesnb {

 text-decoration: none;

}

.lia:hover:not(.active) {

 background-color: #555;

 color: white;

 text-decoration: none;

}

53

10) sidenavbar.css

table#acrylic {

 border-collapse: separate;

 background: #fff;

 -moz-border-radius: 5px;

 -webkit-border-radius: 5px;

 border-radius: 5px;

 margin: 50px auto;

 -moz-box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.3);

 -webkit-box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.3);

 box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.3);

 }

 #acrylic thead {

 -moz-border-radius: 5px;

 -webkit-border-radius: 5px;

 border-radius: 5px;

 cursor: text;

 }

 #acrylic thead th {

 font-family: 'Roboto';

 font-size: 16px;

 font-weight: 400;

 color: #fff;

 text-shadow: 1px 1px 0px rgba(0, 0, 0, 0.5);

 text-align: left;

 padding: 20px;

 background-size: 100%;

 background-image: -webkit-gradient(linear, 50% 0%, 50% 100%, color-stop(0%,

#646f7f), color-stop(100%, #4a5564));

 background-image: -moz-linear-gradient(#646f7f, #4a5564);

 background-image: -webkit-linear-gradient(#646f7f, #4a5564);

 background-image: linear-gradient(#646f7f, #4a5564);

 border-top: 1px solid #858d99;

 }

 #acrylic thead th:first-child {

 -moz-border-top-right-radius: 5px;

 -webkit-border-top-left-radius: 5px;

 border-top-left-radius: 5px;

 }

 #acrylic thead th:last-child {

 -moz-border-top-right-radius: 5px;

54

 -webkit-border-top-right-radius: 5px;

 border-top-right-radius: 5px;

 }

 #acrylic tbody tr td {

 font-family: 'Open Sans', sans-serif;

 font-weight: 400;

 color: #5f6062;

 font-size: 13px;

 padding: 20px 20px 20px 20px;

 border-bottom: 1px solid #e0e0e0;

 cursor: pointer;

 }

 #acrylic tbody tr:nth-child(2n) {

 background: #f0f3f5;

 }

 #acrylic tbody tr:last-child td {

 border-bottom: none;

 }

 #acrylic tbody tr:last-child td:first-child {

 -moz-border-bottom-right-radius: 5px;

 -webkit-border-bottom-left-radius: 5px;

 border-bottom-left-radius: 5px;

 }

 #acrylic tbody tr:last-child td:last-child {

 -moz-border-bottom-right-radius: 5px;

 -webkit-border-bottom-right-radius: 5px;

 border-bottom-right-radius: 5px;

 }

 #acrylic tbody:hover > tr td {

 filter: progid: DXImageTransform.Microsoft.Alpha(Opacity=50);

 opacity: 0.5;

 }

 #acrylic tbody:hover > tr:hover td {

 text-shadow: none;

 color: #2d2d2d;

 filter: progid: DXImageTransform.Microsoft.Alpha(enabled=false);

 opacity: 1;

 transition: 0.2s all;

 }

55

11) app.js

var ptlMod = angular.module('ptlapp', ['ngRoute']);

ptlMod.config(function ($routeProvider, $locationProvider) {

 $routeProvider

 .when('/login', { templateUrl: 'templates/login.html', controller: 'loginCtrl' })

 .when('/register', { templateUrl: 'templates/register.html', controller: 'registerCtrl' })

 .when('/projectlist', { templateUrl: 'templates/projectlist.html', controller: 'projectlistCtrl' })

 .when('/addnewproject', { templateUrl: 'templates/addnewproject.html', controller:

'addnewprojectCtrl' })

 .when('/projectdetails', { templateUrl: 'templates/projectdetails.html', controller:

'projectdetailsCtrl' })

 .otherwise({ redirectTo: "/login" });

});

ptlMod.controller('ptlappCtrl', function ($scope,$window,$http,userServices){

 $scope.getsignoutoption = function(){

 return (Boolean(userServices.getloginstatus()));

 };

 $scope.loguserout = function(){

 userServices.setloginstatus(false);

 userServices.setregisterstatus(false);

 userServices.setuserid(null);

 userServices.setusername("");

 $window.location="#/login";

 };

});

ptlMod.service('userServices',function(){

 this.setregisterstatus=function(status){

 this.registerstatus = status;

 };

 this.getregisterstatus=function(){

 return this.registerstatus;

 };

 this.setloginstatus=function(status){

 this.loginstatus = status;

 };

 this.getloginstatus=function(){

 return this.loginstatus;

 };

 this.setuserid = function(userid){

 this.userid = userid;

 };

 this.getuserid = function(){

 return this.userid;

56

 };

 this.setusername = function(username){

 this.username = username;

 };

 this.getusername = function(){

 return this.username;

 };

 this.setNewProjectAdded = function(status){

 this.NewProjectAdded = status;

 };

 this.getNewProjectAdded = function(){

 return this.NewProjectAdded;

 };

 this.gettimeinHMS = function(timerecorded){

 if(timerecorded[2]>59){

 var carryover = timerecorded[2]/60;

 timerecorded[2] = timerecorded[2]%60;

 carryover = String(carryover).split(".");

 timerecorded[1] = +timerecorded[1] + +carryover[0];

 }

 if(timerecorded[1]>59){

 var carryover = timerecorded[1]/60;

 timerecorded[1] = timerecorded[1]%60;

 carryover = String(carryover).split(".");

 timerecorded[0] = +timerecorded[0] + +carryover[0];

 }

 this.timeinHMS = timerecorded[0] +":"+ timerecorded[1] +":"+ timerecorded[2];

 return this.timeinHMS;

 };

 this.settotaltimerecorded = function(timerecorded){

 };

 this.setprojectname = function(projectname){

 this.projectname = projectname;

 };

 this.getprojectname = function(){

 return this.projectname;

 };

 this.setprojectid = function(projectid){

 this.projectid = projectid;

 };

 this.getprojectid = function(){

 return this.projectid;

 };

 this.settotaltime = function(totaltime){

 this.totaltime = totaltime;

57

 };

 this.gettotaltime = function(){

 return this.totaltime;

 };

 this.setiteration = function(iteration){

 this.iteration = iteration;

 };

 this.getiteration = function(){

 return this.iteration;

 };

 this.setactivity = function(activity){

 this.activity = activity;

 };

 this.getactivity = function(){

 return this.activity;

 };

});

12) loginCtrl.js

ptlMod.controller('loginCtrl', function ($scope,$window,$http,userServices){

 $scope.getregistrationstatus = function(){

 return (Boolean(userServices.getregisterstatus()));

 };

 $scope.logintoprojects = function(){

 if(($scope.loginform.email.$valid)&&($scope.loginform.password.$valid))

 {

 $http.post("php/login.php",

 {

 'email': $scope.email,

 'password': $scope.password

 })

 .then(function(result){

 if(result.data.username===undefined)

 {

 alert("Wrong Username or Password, Please try again!");

 $window.location="#!/login";

 }

 else

 {

 userServices.setloginstatus('true');

 userServices.setuserid(result.data.userId);

 userServices.setusername(result.data.username);

 $window.location="#/projectlist";

 }

58

 },

 function(error){

 userServices.setloginstatus('false');

 alert("Please try again!");

 console.error(error);

 });

 }

 };

});

59

13) registerCtrl.js

ptlMod.controller('registerCtrl', function ($scope,$window,$http,userServices){

 $scope.registeruser = function(){

if(($scope.registerform.email.$valid)&&($scope.registerform.username.$valid)&&($scope.regist

erform.password.$valid)){

 $http.post("php/register.php",

 {

 'username': $scope.username,

 'email': $scope.email,

 'password': $scope.password

 })

 .then(function () {

 console.log("User registered.");

 userServices.setregisterstatus(true);

 $window.location="#/login";

 },

 function(error){

 userServices.setregisterstatus(false);

 console.error(error);

 });

 }

 };

});

60

14) projectlistCtrl.js

ptlMod.controller('projectlistCtrl', function ($scope,$window,$http,userServices){

 var usernumber = userServices.getuserid();

 $scope.row = [];

 $scope.isloggedin = function(){

 if(usernumber == null){

 userServices.setNewProjectAdded(false);

 return true;

 }

 else{

 var username = userServices.getusername();

 $scope.welcomeuser = "Welcome, " + username +".";

 return false;

 }

 };

 $scope.addnewproject = function(){

 $window.location="#/addnewproject";

 };

 $scope.ifnewprojectadded = function(){

 return (Boolean(userServices.getNewProjectAdded()));

 };

 $scope.showprojectdetails = function(value){

 //console.log(value);

 //console.log(value[0]);

 userServices.setprojectname(value[1]);

 userServices.setprojectid(value[0]);

 userServices.settotaltime(value[5]);

 userServices.setiteration(value[3]);

 userServices.setactivity(value[4]);

 $window.location="#/projectdetails";

 };

 $scope.projectids =[];

 $http.post("php/getprojectids.php",

 {

 'userid': usernumber

 })

 .then(function(result){

 $scope.projectids = result.data;

 console.log($scope.projectids);

 for(var i=0; i<$scope.projectids.length; i++)

 {

 //console.log(projectids[i].projectId);

 var eachprojectid = $scope.projectids[i].projectId;

61

 $http.post("php/getprojectinfo.php",

 {

 'userid': usernumber,

 'projectid': eachprojectid

 })

 .then(function(result){

 var projectdetails = result.data;

 console.log(projectdetails);

 var rowdata = [];

 rowdata[0] = result.data.info.projectId;

 rowdata[1] = result.data.info.projectName;

 rowdata[2] = result.data.info.modifiedDate;

 rowdata[3] = result.data.info.iterationNumber;

 rowdata[4] = result.data.info.activity;

 var timerecorded = [];

 timerecorded[0] = result.data.time.hours;

 timerecorded[1] = result.data.time.minutes;

 timerecorded[2] = result.data.time.seconds;

 rowdata[5] = userServices.gettimeinHMS(timerecorded);

 $scope.row.push(rowdata);

 },

 function(error){

 console.error(error);

 });

 }

 },

 function(error){

 console.error(error);

 });

});

62

15) addnewprojectCtrl.js

ptlMod.controller('addnewprojectCtrl', function ($scope,$window,$http,userServices){

 console.log(userServices.getNewProjectAdded());

 $scope.addnewproject = function(){

 var userid = userServices.getuserid();

 $http.post("php/addnewproject.php",

 {

 'pname': $scope.pname,

 'userid': userid

 })

 .then(function(result){

 console.log("Project Added.");

 userServices.setNewProjectAdded(true);

 $window.location="#/projectlist";

 },

 function(error){

 console.log("error function");

 userServices.setNewProjectAdded(false);

 $scope.noerrorvariable = false;

 console.error(error);

 });

 };

 $scope.noerrorvariable = true;

 $scope.ifnewprojectnotadded = function(){

 return $scope.noerrorvariable;

 };

});

63

16) projectdetails.js

//make the background of the timers "#d0d9de" colors

ptlMod.controller('projectdetailsCtrl', function

($scope,$interval,$filter,$window,$http,userServices){

 $scope.iteration=0;

 $scope.getinitialvalues = function(){

 var activityname = userServices.getactivity();

 var selectedact = document.getElementById(activityname);

 selectedact.style.backgroundColor = "#bdd6ea";

 iterationnumber = userServices.getiteration();

 };

 $scope.manualTime=0;

 var coll = document.getElementsByClassName("collapsible");

 var i;

 for (i = 0; i < coll.length; i++) {

 coll[i].addEventListener("click", function() {

 this.classList.toggle("active");

 var content = this.nextElementSibling;

 if (content.style.display === "block") {

 content.style.display = "none";

 $scope.manualTime=0;

 }

 else {

 content.style.display = "block";

 $scope.manualTime=1;

 }

 });

 }

 var coll = document.getElementsByClassName("collapsibleproject");

 var j;

 for (j = 0; j < coll.length; j++) {

 coll[j].addEventListener("click", function() {

 this.classList.toggle("active");

 var content = this.nextElementSibling;

 if (content.style.display === "block") {

 content.style.display = "none";

 $scope.manualTime=0;

 }

 else {

 content.style.display = "block";

 $scope.manualTime=1;

 }

 });

64

 }

 //var usernumber = userServices.getuserid();

 $scope.isloggedin = function(){

 var usernumber = userServices.getuserid();

 if(usernumber == null){

 return true;

 }

 else{

 var project = userServices.getprojectname();

 //console.log(project);

 $scope.projectname = "You are currently working on: " + project +".";

 return false;

 }

 };

 $scope.newtime = 00 + ":" + 00 + ":" + 00;

 var iterationnumber = userServices.getiteration();

 $scope.iteration = iterationnumber;

 var activityname = userServices.getactivity();

 var selectedact = document.getElementById(activityname);

 selectedact.style.backgroundColor = "#bdd6ea";

 var userid = userServices.getuserid();

 var projectid = userServices.getprojectid();

 $http.post("php/gettotalprojecttime.php",

 {

 'userid': userid,

 'projectid': projectid

 })

 .then(function(result){

 var timerec = [];

 timerec[0] = result.data[0].hours;

 timerec[1] = result.data[0].minutes;

 timerec[2] = result.data[0].seconds;

 console.log(timerec);

 $scope.totalTimeOld = timerec;

 tph = tph+ +timerec[0]; tpm= tpm+ +timerec[1]; tps= tps+ +timerec[2];

 $scope.totalTime = tph + ":" + tpm + ":" + tps;

 },

 function(error){

 console.error(error);

 });

 $http.post("php/getcurrentiterationtime.php",

65

 {

 'iterationnumber': iterationnumber,

 'userid': userid,

 'projectid': projectid

 })

 .then(function(result){

 /* console.log(result);

 console.log(result.data[0]); */

 var timerec = [];

 timerec[0] = result.data[0].hours;

 timerec[1] = result.data[0].minutes;

 timerec[2] = result.data[0].seconds;

 console.log(timerec);

 $scope.actThisIterOld = timerec;

 ith = ith+ +timerec[0]; itm= itm+ +timerec[1]; its= its+ +timerec[2];

 $scope.actThisIter = ith + ":" + itm + ":" + its;

 },

 function(error){

 console.error(error);

 });

 $scope.thisAct = 00 + ":" + 00 + ":" + 00;

 $scope.thisActOld = 00 + ":" + 00 + ":" + 00;

 $http.post("php/getcurrentactivitytime.php",

 {

 'activity': activityname,

 'userid': userid,

 'projectid': projectid

 })

 .then(function(result){

 /* console.log(result);

 console.log(result.data[0]); */

 var timerec = [];

 timerec[0] = result.data[0].hours;

 timerec[1] = result.data[0].minutes;

 timerec[2] = result.data[0].seconds;

 console.log(timerec);

 $scope.thisActOld = timerec;

 tah=tah+ +timerec[0]; tam=tam+ +timerec[1]; tas=tas+ +timerec[2];

 $scope.thisAct = tah + ":" + tam + ":" + tas;

 // $scope.thisActOld = $scope.thisAct;

 },

 function(error){

 console.error(error);

 });

66

 $scope.changeActivity = function(activityname){

 var oldactivity = userServices.getactivity();

 var selectedact = document.getElementById(oldactivity);

 selectedact.style.backgroundColor = "transparent";

 selectedact = document.getElementById(activityname);

 selectedact.style.backgroundColor = "#bdd6ea";

 userServices.setactivity(activityname);

 var userid = userServices.getuserid();

 var projectid = userServices.getprojectid();

 var pname = userServices.getprojectname();

 var iterationnumber = userServices.getiteration();

 var timeRecorded = 0 + ":" + 0 + ":" + 0;

 $http.post("php/addactivitychange.php",

 {

 'projectid': projectid,

 'userid': userid,

 'pname': pname,

 'iterationnumber': iterationnumber,

 'activity': activityname,

 'timeRecorded': timeRecorded

 })

 .then(function(){

 console.log("addednewactivitychange");

 $scope.getinitialvalues();

 },

 function(error){

 console.error(error);

 });

 };

 $scope.Timer1 = null;

 $scope.Timer2 = null;

 $scope.Timer3 = null;

 $scope.Timer4 = null;

 $scope.timers = false;

 var newh=0; var newm=0; var news=0;

 var tah=0; var tam=0; var tas=0;

 var ith=0; var itm=0; var its=0;

 var tph=0; var tpm=0; var tps=0;

 $scope.startTimers = function(){

 $scope.timers = true;

 $scope.startnewtime();

67

 $scope.startthisacttime();

 $scope.startthisitertime();

 $scope.startTotProjTime();

 };

 $scope.stopTimers = function(){

 if (angular.isDefined($scope.Timer1)) {

 $interval.cancel($scope.Timer1);

 }

 if (angular.isDefined($scope.Timer2)) {

 $interval.cancel($scope.Timer2);

 }

 if (angular.isDefined($scope.Timer3)) {

 $interval.cancel($scope.Timer3);

 }

 if (angular.isDefined($scope.Timer4)) {

 $interval.cancel($scope.Timer4);

 }

 };

 $scope.resetTimer = function(){

 if (angular.isDefined($scope.Timer1)) {

 $interval.cancel($scope.Timer1);

 }

 if (angular.isDefined($scope.Timer2)) {

 $interval.cancel($scope.Timer2);

 }

 if (angular.isDefined($scope.Timer3)) {

 $interval.cancel($scope.Timer3);

 }

 if (angular.isDefined($scope.Timer4)) {

 $interval.cancel($scope.Timer4);

 }

 newh = 0; newm = 0; news = 0;

 tah=0; tam=0; tas=0;

 tah=tah+ +$scope.thisActOld[0]; tam=tam+ +$scope.thisActOld[1]; tas=tas+

+$scope.thisActOld[2];

 ith=0; itm=0; its=0;

 ith = ith+ +$scope.actThisIterOld[0]; itm= itm+ +$scope.actThisIterOld[1]; its= its+

+$scope.actThisIterOld[2];

 tph=0; tpm=0; tps=0;

 tph = tph+ +$scope.totalTimeOld[0]; tpm= tpm+ +$scope.totalTimeOld[1]; tps= tps+

+$scope.totalTimeOld[2];

 $scope.newtime = newh + ":" + newm + ":" + news;

 $scope.thisAct = tah + ":" + tam + ":" + tas;

 $scope.totalTime = tph + ":" + tpm + ":" + tps;

 $scope.actThisIter = ith + ":" + itm + ":" + its;

 };

68

 $scope.startnewtime = function () {

 $scope.newtime = newh + ":" + newm + ":" + news;

 $scope.Timer1 = $interval(function () {

 $scope.newtime = newh + ":" + newm + ":" + news;

 if(news<59)

 {

 news= news + 1;

 }

 else

 {

 news = 0;

 if(newm<59)

 {

 newm= newm + 1;

 }

 else

 {

 newm = 0;

 newh= newh + 1;

 }

 }

 }, 1000);

 };

 $scope.startthisacttime = function () {

 $scope.thisAct = tah + ":" + tam + ":" + tas;

 $scope.Timer2 = $interval(function () {

 $scope.thisAct = tah + ":" + tam + ":" + tas;

 if(tas<59)

 {

 tas= tas + 1;

 }

 else

 {

 tas = 0;

 if(tam<59)

 {

 tam= tam + 1;

 }

 else

 {

 tam = 0;

 tah= tah + 1;

 }

 }

69

 }, 1000);

 };

 $scope.actThisIter = 00 + ":" + 00 + ":" + 00;

 $scope.startthisitertime = function () {

 $scope.actThisIter = ith + ":" + itm + ":" + its;

 $scope.Timer3 = $interval(function () {

 $scope.actThisIter = ith + ":" + itm + ":" + its;

 if(its<59)

 {

 its= its + 1;

 }

 else

 {

 its = 0;

 if(itm<59)

 {

 itm= itm + 1;

 }

 else

 {

 itm = 0;

 ith= ith + 1;

 }

 }

 }, 1000);

 };

 $scope.totalTime = 00 + ":" + 00 + ":" + 00;

 $scope.startTotProjTime = function () {

 $scope.totalTime = tph + ":" + tpm + ":" + tps;

 $scope.Timer4 = $interval(function () {

 $scope.totalTime = tph + ":" + tpm + ":" + tps;

 if(tps<59)

 {

 tps= tps + 1;

 }

 else

 {

 totprojtime[2] = 0;

 if(tpm<59)

 {

 tpm= tpm + 1;

 }

 else

 {

70

 tpm = 0;

 tph= tph + 1;

 }

 }

 }, 1000);

 };

 $scope.logTime = function(){

 var selectedtime=0;

 if($scope.manualTime==0){

 var thistime = $scope.newtime;

 thistime = $scope.newtime.split(":");

 selectedtime = thistime[0] + ":" +thistime[1] + ":" +thistime[2];

 }

 else {

 var timeInHHMM = document.getElementById("manualTime").value;

 if (timeInHHMM.length < 5) {

 window.alert("Enter time in HH:MM format");

 }

 else{

 var times = timeInHHMM.split(":");

 if (times.length != 2) {

 window.alert("Enter time in HH:MM format");

 }

 else{

 // if(!((typeof times[0] === "number")&&(typeof times[1] === "number"))){

 // window.alert("Enter time in HH:MM format");

 // }

 // else

 {

 if (times[1] > 60){

 var carryover = (times[1] / 60);

 carryover = String(carryover).split(".");

 var minutes = times[1] % 60;

 times[0] = +times[0] + +carryover[0];

 times[1] = minutes;

 selectedtime = times[0] + ":" + times[1];

 }

 }

 }

 }

 }

 var activityname1 = userServices.getactivity;

 console.log(activityname1);

 var userid1 = userServices.getuserid;

 console.log(userid1);

71

 var projectid1 = userServices.getprojectid;

 console.log(projectid1);

 var projectname1 = userServices.getprojectname;

 console.log(projectname1);

 var iterationnumber1 = userServices.getiteration;

 console.log(iterationnumber1);

 console.log(selectedtime);

 $http.post("php/lognewtime.php",

 {

 'activityname': activityname1,

 'userid': userid1,

 'projectid': projectid1,

 'projectname': projectname1,

 'iterationnumber': iterationnumber1,

 'timerecorded': selectedtime

 })

 .then(function(){

 console.log("logged new time");

 //change to next activity

 });

 };

$scope.iterationcomplete = function(){

 var iterationold = userServices.getiteration();

 var iterationnew = 1 + (+ iterationold);

 userServices.setiteration(iterationnew);

 var userid = userServices.getuserid();

 var projectid = userServices.getprojectid();

 var pname = userServices.getprojectname();

 var iterationnumber = userServices.getiteration();

 var timeRecorded = 0 + ":" + 0 + ":" + 0;

 $http.post("php/additeration.php",

 {

 'projectid': projectid,

 'userid': userid,

 'pname': pname,

 'iterationnumber': iterationnumber,

 'activity': 'Analysis',

 'timeRecorded': timeRecorded

 })

 .then(function(){

 console.log("addednewiteration");

 $scope.getinitialvalues();

 },

 function(error){

 console.error(error);

72

 });

};

$scope.projectcomplete = function(){

 var userid = userServices.getuserid();

 var projectid = userServices.getprojectid();

 $http.post("php/markprojectcomplete.php",

 {

 'projectid': projectid,

 'userid': userid,

 })

 .then(function(){

 console.log("projectmarkedcomplete");

 },

 function(error){

 console.error(error);

 });

};

});

73

17) login.php

<?php

$dsn = 'mysql:host=localhost;dbname=projecttimelogger';

$username = 'root';

$password = '';

$con = new PDO($dsn, $username, $password);

$data = json_decode(file_get_contents("php://input",true));

try {

 $query = $con->prepare("SELECT * FROM user WHERE email=:email");

 $query->bindParam(':email', $data->email, PDO::PARAM_STR);

 $query->execute();

 $userRow = $query->fetch(PDO::FETCH_ASSOC);

 if ($query->rowCount() > 0) {

 if (strcmp($data->password, $userRow['password'])==0) {

 echo json_encode($userRow);

 }

 }

 }

catch(PDOException $e){

 echo $e->getMessage();

}

?>

74

18) register.php

<?php

$dsn = 'mysql:host=localhost;dbname=projecttimelogger';

$username = 'root';

$password = '';

$con = new PDO($dsn, $username, $password);

$data = json_decode(file_get_contents("php://input",true));

$query = $con->prepare("INSERT INTO user(username,email,password) VALUES(?,?,?)");

$query->bindParam(1,$data->username,PDO::PARAM_STR);

$query->bindParam(2,$data->email,PDO::PARAM_STR);

$query->bindParam(3,$data->password,PDO::PARAM_STR);

$query->execute();

?>

75

19) getprojectids.php

<?php

$dsn = 'mysql:host=localhost;dbname=projecttimelogger';

$username = 'root';

$password = '';

$con = new PDO($dsn, $username, $password);

$data = json_decode(file_get_contents("php://input",true));

try {

 $userData= array();

 $query = $con->prepare("SELECT projectId FROM `project` WHERE

userId=:userid");

 $query->bindParam(':userid', $data->userid, PDO::PARAM_STR);

 $query->execute();

 while($userRow = $query->fetch(PDO::FETCH_ASSOC))

 {

 $userData[]=$userRow;

 }

 echo json_encode($userData);

 }

catch(PDOException $e){

 echo $e->getMessage();

}

?>

76

20) getprojectinfo.php

<?php

$dsn = 'mysql:host=localhost;dbname=projecttimelogger';

$username = 'root';

$password = '';

$con = new PDO($dsn, $username, $password);

$data = json_decode(file_get_contents("php://input",true));

try {

 $userData= array();

 $query = $con->prepare("select projectId, projectName, modifiedDate,

iterationNumber, activity from projectdetails where userId=? and projectId=? order by

modifiedDate DESC limit 1");

 $query->bindParam(1, $data->userid, PDO::PARAM_STR);

 $query->bindParam(2, $data->projectid, PDO::PARAM_STR);

 $query->execute();

 while($userRow = $query->fetch(PDO::FETCH_ASSOC))

 {

 $userData['info']=$userRow;

 }

 $query = $con->prepare("SELECT sum(hour(timeRecorded)) as hours

,sum(minute(timeRecorded)) as minutes ,sum(second(timeRecorded)) as seconds FROM

projectdetails WHERE userId=? and projectId=?");

 $query->bindParam(1, $data->userid, PDO::PARAM_STR);

 $query->bindParam(2, $data->projectid, PDO::PARAM_STR);

 $query->execute();

 while($userRow = $query->fetch(PDO::FETCH_ASSOC))

 {

 $userData['time']=$userRow;

 }

 echo json_encode($userData);

 }

catch(PDOException $e){

 echo $e->getMessage();

}

?>

77

21) addnewproject.php

<?php

$dsn = 'mysql:host=localhost;dbname=projecttimelogger';

$username = 'root';

$password = '';

$con = new PDO($dsn, $username, $password);

$data = json_decode(file_get_contents("php://input",true));

$query = $con->prepare("INSERT INTO project(userId,projectId,projectName) VALUES(?,

NULL, ?)");

$query->bindParam(1,$data->userid,PDO::PARAM_STR);

$query->bindParam(2,$data->pname,PDO::PARAM_STR);

$query->execute();

?>

22) addnewprojectdetails.php

<?php

$dsn = 'mysql:host=localhost;dbname=projecttimelogger';

$username = 'root';

$password = '';

$con = new PDO($dsn, $username, $password);

$data = json_decode(file_get_contents("php://input",true));

$query = $con->prepare("INSERT INTO

projectdetails(logId,projectId,userId,projectName,modifiedDate,iterationNumber,activity,timeRe

corded) VALUES(NULL, NULL,?,?,SYSDATE(),1,?,?)");

$query->bindParam(1,$data->userid,PDO::PARAM_STR);

$query->bindParam(2,$data->pname,PDO::PARAM_STR);

$query->bindParam(3,$data->activity,PDO::PARAM_STR);

$query->bindParam(4,$data->timeRecorded,PDO::PARAM_STR);

$query->execute();

?>

78

23) gettotalprojecttime.php

<?php

$dsn = 'mysql:host=localhost;dbname=projecttimelogger';

$username = 'root';

$password = '';

$con = new PDO($dsn, $username, $password);

$data = json_decode(file_get_contents("php://input",true));

try {

 $userData= array();

 $query = $con->prepare("SELECT sum(hour(timeRecorded)) as hours

,sum(minute(timeRecorded)) as minutes ,sum(second(timeRecorded)) as seconds FROM

`projectdetails` where userId=? and projectId=?");

 $query->bindParam(1, $data->userid, PDO::PARAM_STR);

 $query->bindParam(2, $data->projectid, PDO::PARAM_STR);

 $query->execute();

 while($userRow = $query->fetch(PDO::FETCH_ASSOC))

 {

 $userData[]=$userRow;

 }

 echo json_encode($userData);

 }

catch(PDOException $e){

 echo $e->getMessage();

}

?>

79

24) gettotalprojecttime.php

<?php

$dsn = 'mysql:host=localhost;dbname=projecttimelogger';

$username = 'root';

$password = '';

$con = new PDO($dsn, $username, $password);

$data = json_decode(file_get_contents("php://input",true));

try {

 $userData= array();

 $query = $con->prepare("SELECT sum(hour(timeRecorded)) as hours

,sum(minute(timeRecorded)) as minutes ,sum(second(timeRecorded)) as seconds FROM

`projectdetails` where userId=? and projectId=? and iterationNumber=?");

 $query->bindParam(1, $data->userid, PDO::PARAM_STR);

 $query->bindParam(2, $data->projectid, PDO::PARAM_STR);

 $query->bindParam(3, $data->iterationnumber, PDO::PARAM_STR);

 $query->execute();

 while($userRow = $query->fetch(PDO::FETCH_ASSOC))

 {

 $userData[]=$userRow;

 }

 echo json_encode($userData);

 }

catch(PDOException $e){

 echo $e->getMessage();

}

?>

80

25) getcurrentiterationtime.php

<?php

$dsn = 'mysql:host=localhost;dbname=projecttimelogger';

$username = 'root';

$password = '';

$con = new PDO($dsn, $username, $password);

$data = json_decode(file_get_contents("php://input",true));

try {

 $userData= array();

 $query = $con->prepare("SELECT sum(hour(timeRecorded)) as hours

,sum(minute(timeRecorded)) as minutes ,sum(second(timeRecorded)) as seconds FROM

`projectdetails` where userId=? and projectId=? and iterationNumber=?");

 $query->bindParam(1, $data->userid, PDO::PARAM_STR);

 $query->bindParam(2, $data->projectid, PDO::PARAM_STR);

 $query->bindParam(3, $data->iterationnumber, PDO::PARAM_STR);

 $query->execute();

 while($userRow = $query->fetch(PDO::FETCH_ASSOC))

 {

 $userData[]=$userRow;

 }

 echo json_encode($userData);

 }

catch(PDOException $e){

 echo $e->getMessage();

}

?>

81

26) getcurrentactivitytime.php

<?php

$dsn = 'mysql:host=localhost;dbname=projecttimelogger';

$username = 'root';

$password = '';

$con = new PDO($dsn, $username, $password);

$data = json_decode(file_get_contents("php://input",true));

try {

 $userData= array();

 $query = $con->prepare("SELECT sum(hour(timeRecorded)) as hours

,sum(minute(timeRecorded)) as minutes ,sum(second(timeRecorded)) as seconds FROM

`projectdetails` where userId=? and projectId=? and activity=?");

 $query->bindParam(1, $data->userid, PDO::PARAM_STR);

 $query->bindParam(2, $data->projectid, PDO::PARAM_STR);

 $query->bindParam(3, $data->activity, PDO::PARAM_STR);

 $query->execute();

 while($userRow = $query->fetch(PDO::FETCH_ASSOC))

 {

 $userData[]=$userRow;

 }

 echo json_encode($userData);

 }

catch(PDOException $e){

 echo $e->getMessage();

}

?>

82

27) addactivitychange.php

<?php

$dsn = 'mysql:host=localhost;dbname=projecttimelogger';

$username = 'root';

$password = '';

$con = new PDO($dsn, $username, $password);

$data = json_decode(file_get_contents("php://input",true));

$query = $con->prepare("INSERT INTO

projectdetails(logId,projectId,userId,projectName,modifiedDate,iterationNumber,activity,timeRe

corded) VALUES(NULL,?,?,?,SYSDATE(),?,?,?)");

$query->bindParam(1,$data->projectid,PDO::PARAM_STR);

$query->bindParam(2,$data->userid,PDO::PARAM_STR);

$query->bindParam(3,$data->pname,PDO::PARAM_STR);

$query->bindParam(4,$data->iterationnumber,PDO::PARAM_STR);

$query->bindParam(5,$data->activity,PDO::PARAM_STR);

$query->bindParam(6,$data->timeRecorded,PDO::PARAM_STR);

$query->execute();

?>

28) addactivitychange.php

<?php

$dsn = 'mysql:host=localhost;dbname=projecttimelogger';

$username = 'root';

$password = '';

$con = new PDO($dsn, $username, $password);

$data = json_decode(file_get_contents("php://input",true));

$query = $con->prepare("INSERT INTO

projectdetails(logId,projectId,userId,projectName,modifiedDate,iterationNumber,activity,timeRe

corded) VALUES(NULL,?,?,?,SYSDATE(),?,?,?)");

$query->bindParam(1,$data->projectid,PDO::PARAM_STR);

$query->bindParam(2,$data->userid,PDO::PARAM_STR);

$query->bindParam(3,$data->pname,PDO::PARAM_STR);

83

$query->bindParam(4,$data->iterationnumber,PDO::PARAM_STR);

$query->bindParam(5,$data->activity,PDO::PARAM_STR);

$query->bindParam(6,$data->timeRecorded,PDO::PARAM_STR);

$query->execute();

?>

84

29) markprojectcomplete.php

<?php

$dsn = 'mysql:host=localhost;dbname=projecttimelogger';

$username = 'root';

$password = '';

$con = new PDO($dsn, $username, $password);

$data = json_decode(file_get_contents("php://input",true));

$query = $con->prepare("UPDATE project set isCompleted = 1 where userId =? and projectId =

?");

$query->bindParam(1,$data->userid,PDO::PARAM_STR);

$query->bindParam(2,$data->projectid,PDO::PARAM_STR);

$query->execute();

?>

