
Guidelines for Practical Algorithmic Design for Industrial Designers 
 

by 
 

Andrew Davis Edge 
 
 
 
 

A thesis submitted to the Graduate Faculty of 
Auburn University 

in partial fulfillment of the 
requirements for the Degree of 

Master of Industrial Design 
 

Auburn, Alabama 
May 5, 2019 

 
 
 
 

Keywords: Industrial Design, Algorithm, Computer-Aided Design, Generative Design, Digital 
Fabrication, Visual Programming  

 
 

Copyright 2019 by Andrew Davis Edge 
 
 

Approved by 
 

Jerrod Windham, Chair, Assistant Professor Industrial Design 
Christopher Arnold, Associate Professor Industrial Design 

Benjamin Bush, Assistant Professor Industrial Design 
 
 
 
 
 
 



ii 
 

 
 
 
 
 

Abstract 
 
 

 Algorithmic design is the use of a particular set of instructions to define the 

building process for a product or geometry. New computer-aided technologies have 

emerged which allow for a closer connection between the designer’s concept and its 

creation. Using algorithmic design processes to assist in computer-aided design can be 

very powerful, but unwieldy if used improperly or in the wrong context. This study 

researches the properties and benefits of algorithmic design and algorithmic modelers in 

order to develop a set of guidelines to assist the industrial designer through the 

algorithmic design process, particularly in deciding when and in what context algorithmic 

design is an appropriate avenue for the designer to take. This research also provides a set 

of commonly used algorithmic concepts and techniques to aid in the algorithmic 

modeling process. Additionally, the guidelines and techniques are demonstrated through 

an industrial design project wherein a concept cell phone case is designed, evaluated, and 

brought through the algorithmic modeling process.   
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Definition of Key Terms 
 
 

3D Model: Mathematical representation of a geometry within a 3D modeling software 

3D Printing: The manufacturing of solid objects by the deposition of layers of material 

(such as plastic) in accordance with specifications that are stored and displayed in 

electronic form as a digital model ("Dictionary and Thesaurus | Merriam-Webster", 

2018). 

Abstraction: The process of removing physical, spatial, or temporal details (Colbourn, 

2007) 

Algorithm:  A step-by-step procedure for solving a problem or accomplishing some end 

("Dictionary and Thesaurus | Merriam-Webster", 2018) 

Algorithmic Design: The process of using algorithms to define systems or geometric 

forms 

Computer Aided Design (CAD): The use of computers (or workstations) to aid in the 

creation, modification, analysis, or optimization of a design (Narayan, 2013) 

Digital Fabrication: Process by which machining tools and other digitally-controlled 

manufacturing methods are used, in order to replicate the designs created in a CAD 

software 

Generative Design: The process of defining limits, forces, and other constraints on a 

system and producing an output that fits within the parameters 
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Geometry: A branch of mathematics that deals with the measurement, properties, and 

relationships of points, lines, angles, surfaces, and solids ("Dictionary and Thesaurus | 

Merriam-Webster", 2018) 

Industrial Design: Design concerned with the appearance of three-dimensional machine-

made products and the study of the principles of such design ("Dictionary and Thesaurus | 

Merriam-Webster", 2018) 

Iteration: A procedure in which repetition of a sequence of operations yields results 

successively closer to a desired result ("Dictionary and Thesaurus | Merriam-Webster", 

2018) 

Parameter: Any of a set of physical properties whose values determine the 

characteristics or behavior of something ("Dictionary and Thesaurus | Merriam-Webster", 

2018) 

Visual Programming: The use of a graphical interface to form programs and functions 

rather than a text-based interface 

Working Drawing: A scale drawing of an object to be made or structure to be built 

intended for direct use by the workman ("Dictionary and Thesaurus | Merriam-Webster", 

2018) 
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Chapter 1: Introduction 

 

Problem Statement 

 

An algorithm is an unambiguous set of properly defined instructions (Tedeschi, 

2016). This is a simple statement, but these sets of instructions can be used to define 

near-infinitely complex systems. Algorithmic modeling allows for the utilization of these 

algorithms for the formation of geometry within computer-aided-design (CAD) 

programs. The benefits of learning these strategies and programs can be invaluable to a 

designer, granting methods to create geometries and utilize information sets which would 

be difficult, if not impossible, to imitate through traditional CAD software packages. 

However, algorithmic modelers can be difficult to operate, and require a greater time 

commitment than traditional CAD packages. At its core, the algorithmic design process 

requires a completely different method of thinking and planning in order to create desired 

geometry. Moreover, the study and use of algorithmic design has been largely in the 

realm of architecture, as seen in textbooks, online resources, and even college 

curriculums. In a modern design environment, industrial designers and traditional CAD 

modeling have a close relationship, but algorithmic modeling is a fringe activity. This 

document will not be a comprehensive algorithmic modeling guide, but by developing 

guidelines for the use of algorithmic modelers for industrial designers, opportunities can 

be created for industrial designers to take advantage of the benefits of the algorithmic 

design process and demystify its operation and implementation.  
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Need for Study 

 

The rise of digital fabrication has provided an opportunity for nearly anyone to 

manufacture or prototype parts and products, with the main requirement being that they 

have a properly defined “digital” model of their part or system.  The translation from 

digital design model to digital fabrication is becoming faster and more fluid every day, 

therefore, so too must the connection between design concept and digital design model 

become more fluid. Often, with the introduction of new design technologies or 

manufacturing techniques, the possibilities for production in new geometries and forms 

are expanded. With the introduction of algorithmic modelers, geometries with increased 

complexity can now be created and controlled with greater ease, shortening the gap 

between design concept and digital model.  

Algorithmic modelers provide increased flexibility for parametric design 

processes. The methods by which algorithmic designs are built, with defined inputs 

producing predictable outputs, allow for easily variable inputs to create near infinitely 

variable outputs. This rise in parametric power doesn’t come without cost though, as 

there is more set-up work earlier in the design process for algorithmic systems. The 

benefits of algorithmic design are many, but the ability to utilize it effectively is difficult 

to master. This study will focus on creating a set of guidelines for industrial designers for 

the use of algorithmic modelers, answering what algorithmic design is, how to use it 

effectively in product design, and importantly, under what circumstances algorithmic 

design should be used. This document will also outline common algorithmic modeling 

terms, features, and algorithmic methods which can serve as a starting point for industrial 

designers to form their own algorithmic system designs upon.   
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Objectives 

 

The areas of research listed below will be used to develop guidelines for the 

practical use of algorithmic design within industrial design. This thesis will also provide 

examples of use for different strategies and methods in algorithmic design.  

 

Objectives: 

• Research algorithmic design theory 

• Research case studies for common algorithmic design processes 

• Research methods for implementing algorithmic design 

• Research common uses for algorithmic design and translate into industrial design 

use cases 

• Develop guidelines for industrial designers to know when and how to use 

algorithmic design in their models 

• Perform an industrial design project process that demonstrates the use of the 

guidelines. 

 

Assumptions 

 

The information and guidelines conveyed in this study are a product of the current 

technological climate. The methods and strategies for algorithmic modeling processes are 

presented in their current programs and their details are subject to change as technology 

progresses. Additionally, the information presented here uses digital fabrication, such as 

3D printing, as an eventuality for the models since there is a basis of using complicated 
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algorithmic designs in digital form to control CNC systems. However, the complex 

geometry that can be created within algorithmic modelers may not be producible through 

certain manufacturing or digital manufacturing processes. It is assumed that the designers 

can recognize the limits and constraints of the manufacturing processes they plan to use. 

This document lists several key considerations for the decision to use or not use 

algorithmic design. These considerations can help industrial designers, but they must be 

able to evaluate their own skills and the design situation at hand to determine their best 

course of action.   

 
Scope and Limitations 

 

Considering the immense space that algorithmic design could encompass, this 

study will be limited to algorithmic design and formulation of geometric shapes to be 

used within computer-aided-design programs. This is not to say that algorithmic design is 

only a tool for 3D modeling; it is an abstract way of thinking that can be applied to any 

number of situations. It should also be understood that although this document will 

include many examples of works and methods related to algorithmic design, there are no 

real limits to what can be created; therefore, many strategies and specific methods might 

not appear here. Industrial design is a large, varied field including UX, systems design, 

packaging, branding, etc. and there may be ways in which the concepts behind 

algorithmic modeling can help in these areas, but references to the industrial design 

process in this document will be in regards to form development and physical geometry 

concerns only.   
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Anticipated Outcomes 

 

The end result of this study should produce a set of guidelines for use by 

industrial designers, which will help ease their introduction into algorithmic modeling 

and provide them with insights into how, why, and when to use algorithmic modeling. 

This study will describe various methods and strategies for developing algorithmic 

models for the formation of geometries used with industrial design and will attempt to 

translate common use cases in algorithmic modeling into possible design application 

spaces within industrial and product design. Providing industrial designers with 

guidelines for the use of algorithmic modeling will allow them to take advantage of the 

many benefits that come with the algorithmic design process, but also, importantly, will 

allow them to know which situations will and will not be good candidates for algorithmic 

design work. This document will also provide an extensive industrial design example 

project to demonstrate the use of the guidelines and an algorithmic modeler.   

.  
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Chapter 2: Literature Review 

 

Working Drawings 

 

The translation of designs from the minds of the creators to the creations 

themselves often requires a design planning process as a translation medium. This 

process allows for organization, prediction, and alteration of ideas before any physical 

formation begins, and before the large construction costs. The methods by which these 

design plans and working drawings are formulated has varied throughout history and the 

nature of these methods can inform the nature of the designs. In the opening lines 

of AAD, Algorithms-Aided Design: Parametric Strategies Using Grasshopper, Tedeschi 

(2014) states:   

 

Architects have always drawn before building, an act that differentiates 

architecture from the mere construction. Drawings have been the architect’s 

medium to organize ideas, resources, space, etc. and represent the architects’ 

faculty to predict design outcomes. As methods of representation have evolved, 

new styles have emerged. [...] Tools such as perspective in the Renaissance and 

projective geometry in Modernism have marked leaps forward in design. 

However, these tools have been dependent on a stable set of instruments for 

centuries: paper, drawing utensils, ruler and compass. In this model, each creative 

act is translated into a geometric alphabet by gestures, which establish a direct 

link between the idea and the sign (p. 15).  
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However, the origins of design planning and working drawings begin further back 

than even pen and paper. Some of the earliest known, but surviving, working drawings 

were found in 1979 on the walls of the Temple of Apollo at Didyma, which began 

construction ~334 BCE. Haselberger (1985) details how these drawings provide some 

insight into early planning and construction methods, where the plan and the material 

were one and the same. The Temple of Apollo working drawings depict plans for 

columns, etched into the walls and marbles where they would be constructed. The reason 

these drawing survive is due to the fact that this portion of the temple was never finished 

and the etched plans were never brought to completion. Even though the designers of 

these columns created detailed drawings, there was room for the designer to insert their 

own flair and ideas into the final form. Shown in Figure 1, the original blueprint lines, 

shown in red, were altered during the carving process, adding cutouts and detailed 

changes.  

 

 

Figure 1: Left: Representation of the Didyma blueprint carvings shown in red. Right: 
Finished column at the Temple of Apollo. © Scientific American 1985, Haselburger. 
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The relationship between the designer and the construction medium seen at the 

Temple of Apollo was direct, a 2D representation on the 3D building material. This 

relationship can still be found today in small construction projects and woodshops where 

designers will draw their next cuts onto a material, but it is not suitable for the increased 

complexity and scale of modern manufacturing.   

 

With the advent of paper, clear examples are found of its use in working drawings 

and architectural plans such as in Figure 2, the Plan A1 of the Facade of the Strasbourg 

Cathedral. These plans were painstakingly produced by hand when needed. Early 

construction plans found in the Middle Ages, such as Plan A1, are orthographic 

representations of the final work, or in other words, 2D representations on a 2D 

medium (Holcomb & Bessette, 2009). The relationship between designer and 

construction medium has now shifted away from the material itself. Plans are developed 

with increased complexity and allowing for better transferring of design information.   
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Figure 2: Plan A1 of the Facade of the Strasbourg Cathedral, (Holcomb & Bessette 2009) 

 

The Renaissance introduced perspective drawings into the design process. Filippo 

Brunelleschi is often regarded as the father of perspective drawings, as he helped codify 

and document rules and strategies for their creation (Argan & Robb, 1946). His 

techniques can also be seen in works such as his elevation of Santo Spirito, a perspective 

drawing of the church interior. Brunelleschi was able to show his patrons a representation 
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of what the final construction of Santo Spirito would look like, based only from the 2D 

floor plans currently available. The standard has now moved into 3D representations on a 

2D medium, allowing for more information to be conveyed by the designer, without 

expanding the medium (Argan & Robb, 1946)  

 

 

Figure 3: Perspective drawing for the Church of San Spirito in Florence (as cited 

in Argan & Robb, 1946) 

 

Similarly, Leonardo Da Vinci, another Renaissance artist and engineer, was a 

master of perspective drawing but also was one of the first to successfully represent 

designs as technical drawings similar to what a modern designer or engineer would 

develop. Da Vinci’s drawings often included exploded views, detail views, section views, 

and copious notes. The detail and forward-looking thought process behind the drawings 
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allowed Da Vinci to evaluate his concepts, while they still just existed on paper 

(Isaacson, 2018). This analysis is shown in his drawings of a concept perpetual-motion 

machine, shown in Figure 4. After sketching out and evaluating his design, he deemed it 

as an impossible venture.   

 

 
 
Figure 4: Da Vinci’s water screw perpetual motion machine. (as cited in Isaacson, 2018) 

 

As the Industrial Revolution begins, it’s shown that the beginnings of mass 

production have created the need for increased precision and repeatability in parts and in 

designs. This need for precision requires increased sophistication in the part drawings and 

technical drawings of the time, as well. French mathematician, Gaspard Monge, was the 

first to develop descriptive geometry, a set of standardized rules and methods for 

representing 3D geometries in a 2D space for the purposes of production (Carlbom & 
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Paciorek, 1978). Even today the “Front, Right, Top, Perspective” layout popularized by 

Monge is used in technical/engineering drawings to describe parts. Monge also described 

various methods of projecting and translating geometric views, shown in 

his Géométrie Descriptive.   

 

 

Figure 5: Projection illustrations in Géométrie Descriptive ( as cited in Monge, 1798) 

 

From the Industrial Revolution to the 1960’s, the methods by which engineers and 

designers produced working drawings remained largely unchanged. As projects and 

designs grew larger and larger, however, the physical act of creating the working 

drawings fell to the now well-established profession of draftsmen. Draftsmen are skilled 

workers who create and document designs using tools not altogether different from those 
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found even in the Middle Ages: straight-edges, curve tools, compasses, etc. As projects 

grew increasingly complicated, more and more draftsmen were required to tackle them, 

each working on a separate portion of the project until whole floors of company buildings 

were devoted as draftsmen workspaces. This was the norm until the invention of the 

computer in the 1960’s and subsequent CAD programs made draftsmen rooms, such the 

one shown in Figure 6, obsolete. Working drawings are still used in documentation and 

construction, but now they are created on the computer. Even with modern advances, the 

standard design process is using the computer to translate the design from the creator’s 

mind, the concept, to a 3D representation, the model, which is then translated to a series 

of 2D representations, the working drawings, which are then used to create the object. 

This process still relies on several translations and a series of steps, which separate the 

designer from the end result.     

 

 
Figure 6: General Motors Styling Section drafting room, 1960’s (“The Old Motor”, 2015) 
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Computer-Aided Design 

 

In Computer Aided Design and Manufacturing, (Narayan, 2013) defines computer aided 

design as: 

The use of computer systems to assist in the creation, 

modification, analysis, or optimization of design. [...] CAD 

helps the designer to visualize the product and its component 

sub-assemblies and parts. This reduces the time required to 

synthesize, analyze and document the design. This productivity 

improvement results not only into lower design cost but also 

into shorter design project completion times. (p. 3) 

 

These programs are used in many different fields including animation, medicine, 

and computer science, but are an indispensable part of the modern design and engineering 

process. This study will focus mainly on 3D solid modeling as opposed to organic 

modeling and, at times, more specifically on parametric modeling. Three dimensional 

modelers allow us to develop geometry, create part drawings, perform various analysis on 

parts, send those models to be manufactured by digital manufacturing processes, and 

much more. CAD programs so greatly simplified the design process they eliminated the 

need for massive amounts of draftsmen to be employed by companies. The beginning of 

the digital era in the early 1960’s, was marked by the advent of the computer and the 

explorations into applications for this new device.   

In 1963 MIT PhD candidate Ivan Sutherland showcased his thesis, Sketchpad. 

Sketchpad was the first of many things, including the first interactive graphics program, 
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the first non-procedural programming language, and the first object-oriented software 

system. Put simply though, Sketchpad was a computer drawing system, which allowed 

the user to create lines and shapes, define relationships, copy and paste sketch entities, 

and even allowed for some rudimentary 3D visualization of sketches. Although not his 

full intention on the outset, when Sutherland developed his Sketchpad system, he became 

the inventor of the field of computer-aided-design.   

 

 

Figure 7: Computer scientist working with the Sketchpad program (“Computer History 

Museum”, 2019) 

 

In 1968, soon after Sutherland’s breakthrough, Pierre Bezier, a French 

mathematician, developed UNISURF, the first wireframe modeling CAD system. A 



 16 

wireframe modeler operates by defining the boundaries of a form with curves. The Bezier 

curve, popularized but not invented by Bezier, is a mathematically defined curve that 

wireframe modelers utilize to approximate a 3D form. This development led to the 

modeling of curved surfaces within a digital space.  

 

 

 
Figure 8: The Mathematical Basis of the Unisurf CAD System (Bezier, 1986), with 

graphics depicting surface representations made from Bezier curves.  

 

Throughout the 1970s, many CAD programs were developed in-house at large 

automotive and aerospace firms: General Motors, Ford, Lockheed, Northrop, etc. Each 

company wanting to gain an advantage over others with more and more advanced 

systems. However, this segmentation of the CAD systems meant that there were no 

standards or means of communication between the systems. Large clients of multiple 

firms, such as the United States Air Force, pushed for more standardization between the 

different CAD systems. This led to the formation of the IGES (Initial Graphics Exchange 

Specification), a digital exchange format for CAD systems, in 1980. This allowed 
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competing CAD programs to communicate with each other, narrowing the divide among 

the programs (“Cadazz”, 2004). 

In 1981, IBM shipped the first personal computer (PC) and signaled a new need 

for CAD systems to operate on these workstations. Officially founded in 1982, Autodesk 

released the first CAD software for PC, AutoCAD, which became the primary CAD 

system worldwide, by the late 80’s. AutoCAD however, was still primarily a 2D 

program, mostly used for technical drawing representations of parts and floor plans.   

 

 
 

Figure 9: Original AutoCAD interface 
 

 
The first 3D CAD software available to the public was PTC’s (Parametric 

Technology Corporation) Pro / Engineer, released in 1987. Pro / Engineer was the first 

3D CAD system to be based entirely on solid models, and history based features and 

constraints, otherwise known as parametric modeling. 3D modelers allow for models to 

be fully defined in 3D space, so information can be ascertained from any possible angle 

without having to redraw the model by projecting the model onto a 2D surface. In other 

words, if the model is designed fully in 3D, all 2D representations of the model are trivial 
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to develop. The other main benefit that Pro / Engineer brought was an interface which 

was much more usable than its predecessors, now including dropdown menus, icons, 

input boxes, etc. (“Cadazz”, 2004). 

 

 

Figure 10: Original Pro/Engineer interface 

 
Over the next 20 years after the release of Pro / Engineer, the story of CAD is one 

of incremental changes. In the modern technological environment, CAD programs are 

incredibly powerful and readily available to anyone with a computer, not just employees 

of large manufacturers. File standardization above and beyond the original IGES is now 

the norm, allowing all the major CAD programs to communicate. AutoCAD, Solidworks, 

CATIA, Autodesk Inventor, PTC Creo, and Rhino 3D, are just a few among today’s most 

popular programs, all descendants of the original programs of the 1960’s.   
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Parametric and Direct Modeling 
 

Within the 3D solid-modeling field, there are two main categories of modeling, 

parametric and direct modeling. These categories are notoriously difficult to define, and 

the lines between the categories can be blurred in certain programs. Generally, parametric 

modeling allows the user to define features with specific parameters that form and change 

the model, and these features are captured within a design history. If built correctly, these 

features can be adjusted and updated to further define form of the model, and can be 

retroactively changed. The parametric design environment usually allows for parent-child 

relationships to be made between models, so changes in one model file will be reflected 

in other files that call upon the original file. This relationship allows families of models to 

be created where design changes can be made at any point. The mathematical definitions 

behind the features of a parametric model also allow for easy integration into 

manufacturing tools and digital fabrication methods (Narayan, 2013) 

 

 

Figure 11: Feature tree from Solidworks 
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Alternatively, direct modeling programs create and adjust geometry through direct 

means, by moving selected faces, control points, and parts. Usually, direct modelers do 

not capture any design history during use so, once a change is made, it is not possible to 

adjust that change later in time. Direct modeling allows for a straightforward 

“sculpting” strategy, but can lead to problems in fields where changes may be needed in 

the future.   

There are some programs such as Fusion360, shown in Figure 12, which are 

hybrid systems between parametric and direct modeling, where the designer can utilize 

both methods in the same design file. 

  

 

Figure 12: Fusion 360 modeling interface 
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Algorithmic Design 
  

Algorithmic design is not just constrained to the digital realm In Expressive Form, 

Terzidis (2003) describes an algorithm as: 

 

“…a computational procedure for addressing a problem in a finite number of 

steps. It involves deduction, induction, abstraction, generalization, and structured 

logic. It is the systematic extraction of logical principles and the development of a 

generic solution plan.” (p. 94) 

 

Any set of instructions or steps which have inputs and a predictable output can be 

thought of as an algorithm. Baking a cake, tying shoelaces, and doing laundry, all can be 

broken down into individual actions and, with enough detail, can be described in such a 

way that a “Baking Cake Algorithm” or “Laundry Algorithm” can be produced.   

Algorithmic modeling, while it does have its own set of connotations and uses, is, 

at its core, a more in-depth form of parametric modeling. It allows for clearly defined 

steps to be put down which will eventually create geometries and designs. Algorithmic 

designs can be either Inventions or Discoveries (Terzidis 2003). Inventions occur when 

the designer defines actions for the algorithm to take so that a specific outcome will be 

reached. A Discovery-based algorithm occurs when the designer provides bounds and 

directions for the algorithm to move in, but the final outcome is not fully predictable. 

This is also known as generative design, but the focus of the guidelines of this document 

will be upon the Inventive side of algorithms. It will be shown later though, that even in 

Inventive systems, there can be enough variability in the parameters created to have 

somewhat unpredictable outputs.   
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 The program that is being used to model the algorithm often limits the depth of 

parametric control needed for algorithmic design. Many 3D modeling programs do offer 

tools that can help create fully parametric models, but the ability to create changeable 

variables and control relationships between different elements is much more easily done 

in a visual programming language or algorithmic modeling program. Sakamoto (2008) 

explains:  

 

“The instrumentation of parametric setups into architectural practice is starting to 

shift the role of the architect in the design processes: from the design of specific 

shapes to the determination of those geometrical / algorithmic relationships 

describing the project and its components. The design shifts from drawing 

surfaces to setting up rules of interdependency – genotypes – leading to potential 

differentiation – phenotypes.” (p. 118) 

 

Algorithmic modeling is used in a wide range of applications but most notably 

within the fields of architecture, engineering and digital fabrication. In architecture it 

allows for many different factors to be taken into account at once, lighting, walking 

space, seating, heat, ventilation, noise and can help create solutions that balance all of 

these. In engineering, algorithmic modeling is being used to help create optimized 

structures, which can withstand higher stresses with less material. In fabrication, 

algorithmic modeling is helping create geometries that would otherwise be impossible to 

model using digital manufacturing techniques such as 3D printing and advanced CNC 

methods to fabricate these forms. Figure 13 shows an example of algorithmically 

designed architecture where the structure of walls and ceiling of the Serpentine Pavilion 
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were determined using a tessellation algorithm. The structure takes into account views to 

the street, surrounding building heights, and sun-paths (Agkathidis, 2016).  

 

 

Figure 13: Serpentine Gallery Pavilion 2003 
 

It is important to note that there are two outputs to the algorithmic modeling 

process: the model, and the method. The algorithmic modeling process will produce a 3D 

model of the design to be used for fabrication, rendering, etc., but the algorithm itself is 

valuable as well. The algorithm can be reused in other contexts by different people. It is 

easily sharable and can be adjusted for different uses.   

 
Visual Programing 

 

Algorithmic modeling is often completed through the use of visual programming 

languages (VPL). A visual programming language is one that allows the user to code 

systems and, in this case, define geometry, through a graphical interface instead of 

through lines of code. The step-by-step nature of algorithmic modeling lends itself to an 

object-based coding environment, and the graphical interface of a visual programming 
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language allows for people with little coding experience to work more effectively. 

Typically, a visual programming language has a workspace where the user can place 

nodes and connections. Nodes can either perform a certain function or be given a certain 

value. Nodes that perform functions usually have a place to connect inputs and outputs. 

By connecting values to the inputs of functions, which then output values, which can then 

be input into other functions and so on and so on, complex systems can be created 

without ever having to “write” a line of code. Visual programming languages often act as 

introductory systems into the world of coding for young coders and non-coding 

professionals. It gets rid of the need to learn the specific syntax and punctuation 

requirements that are found in most text-based coding systems (Levy, 2017).  

 

 
Figure 14: Scratch, a visual programming interface 

 

The two algorithmic modeling systems this document will cover are Grasshopper 

3D and Autodesk Dynamo. These programs are VPL systems where the user can place 

nodes that perform functions that create geometry, perform actions upon that geometry, 
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or can provide information and data about geometry. By stringing together nodes, 

complicated data transformations can create complicated geometries, which are not 

possible in other programs. There are, of course, more VPL programs used for the 

purpose of creating 3D geometry, but Grasshopper and Dynamo are the most widely used 

and easily available programs.  

 

Grasshopper 

 

 Grasshopper 3D, or simply Grasshopper, is a VPL and algorithmic modeling 

environment created by David Rutten at Robert McNeel & Associates. Originally, 

Grasshopper was a downloadable plug-in command, which ran within Rhino 3D 

software, but now has been integrated into the standard Rhino toolset for Rhino 6.0. In its 

current form, the Grasshopper environment appears as separate windows where the nodes 

and connections can be placed which define geometry, which are visually represented 

within the Rhino environment in the original window. The user can build geometry in 

Rhino, which can then be used as inputs for algorithmic processes in Grasshopper, which 

the user can then “Bake” back into the Rhino environment to be further manipulated 

using traditional processes. There is also a large community of users and creators who 

develop Grasshopper tools for download which are easily installable into Rhino 

(Grasshopper, 2018).  
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Autodesk Dynamo 

 

Dynamo Studio is an algorithmic program developed by Autodesk. It is also a 

VPL and environment which operates in a very similar fashion to Grasshopper 3D. 

Details aside, one of the main differences is that Dynamo can operate as a standalone 

product but typically is used in conjunction with Autodesk Revit, and architectural 

modeling (BIM) software. In Dynamo, the VPL workspace is layered on top of the 

geometry visualizations instead of in two windows, as seen in Grasshopper (Dynamo 

Primer, 2018).   

 

Generative Design 

 

Generative design is the use of algorithmic processes and modelers to create 

forms and solutions that are not explicitly dictated by the algorithm writer. A generative 

design process has the user defining goals, constraints, and other general rules for a 

system to follow, and the system will attempt to abide by them. Generative design is used 

in generative form-finding, optimization, and processes where the ultimate design is to be 

discovered and not dictated. Generative Design (Agkathidis, 2016) describes four areas 

of generative cases: design processes driven by nature, geometry, context, and 

performance. Design driven by nature is an attempt to mimic the forms and patterns 

found in the natural world. Design driven by geometry is created by following 

mathematical principals and geometrical proportions to develop form. Design driven by 

context is based upon the particular situation at hand: the historical, 

cultural, geographical, and material particularities of the situation can drive the design of 
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a project. Design driven by performance attempts to maximize or minimize a certain 

aspect of a design, be it weight, strength, openness, temperature etc.   

There are multiple programs available for use to leverage algorithmic modeling 

for generative design but one of the most easily available ones is the Kangaroo Physics 

program created by Daniel Piker, which is now included with Rhino 6. 

 

Digital Fabrication & Mass Customization 
 

Digital fabrication is the manufacturing of designs through the use of CAD models and 

digital plans in conjunction with numerically controlled machines. Traditionally, digital 

models help create working drawings, which are then manufactured during secondary 

processes where the drawings are re-interpreted by the creator of the product or part. 

With digital fabrication though, the 3D model is used to provide digital information 

directly to the manufacturing tool, such as a laser cutter, CNC mill, or 3D printer (Dunn, 

2012). Since the model is created through purely digital means, every aspect of the model 

is recorded digitally and is constructed according to those records, so there is no 

possibility for human misinterpretation. The use of digital fabrication techniques also 

allows for high customization for manufactured designs. Where traditionally, processes, 

molds, and other systems of manufacture must be developed specifically for every part, 

digitally manufactured designs can update and adapt to new digital plans, instantly. For 

instance, in order to fix a design flaw in a part that has been 3D printed, only the digital 

model must be altered. If the same part was injection molded and required a design flaw 

to be fixed, the mold must be physically altered, an expensive and time-consuming 

process. This increased ability to manufacture customized goods has allowed for the rise 

of mass customization, where end users can dictate the design of their personal product. 
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These systems can be seen already in use by companies such as Nike with their Nike ID 

system and computational design company, Nervous System with their customized 

jewelry and puzzle products.  

Digital manufacturing tools are also becoming increasingly cheap, providing 

small scale manufacturing opportunities for DIY users and community production 

centers. While digital manufacturing processes are relatively inexpensive, they typically 

cannot provide the mass production capabilities of traditional manufacturing 

processes. Some digital manufacturing tools, such as 3D printing, can also create parts 

and models that are not possible through any other manufacturing process. Since 3D 

printing is an additive process, typical design concerns such access for tooling, creating 

draft angles, and eliminating undercuts are no longer necessary. There are still special 

concerns for producing successful 3D prints, but generally, the geometric limits of what 

can be produced are still nearly removed.   

There are, of course, more pros and cons to digital manufacturing and each 

specific tool has its benefits and limitations, but the overall trend allows for a quicker 

connection between designer and manufactured product, which may be again 

improved by the use of algorithmic design techniques.    
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Chapter 3: Guidelines for Algorithmic Modeling 

 

Overview 

 

 This chapter will provide a set of guidelines which will help industrial designers 

implement algorithmic modeling into their design process. These guidelines have been 

formed based on the preceding research into the tools and techniques of algorithmic 

modeling as well as case studies involving its use and hands on experience developing 

algorithmic models. It is important to remember that these are merely guidelines though, 

and that every design situation is different and presents its own challenges. Algorithmic 

modeling is a niche technique which cannot, and should not, be used in every 

situation. This being said, the guidelines are designed to help answer when and how 

algorithmic modeling techniques should be applied within the context of the industrial 

design field. Within these guidelines, the reader will also find a brief overview of 

common algorithmic techniques and terms that can help designers implement their 

concepts.   

The guidelines presented in the following section can be thought of as a timeline 

of activities and decisions that the industrial designer must undergo in order 

to successfully use algorithmic design as part of their design process. Generally, the 

timeline follows the path shown in Figure 15. The process is, first, the evaluation of the 

problem or design prompt at hand and the development of a geometric or form solution, 

then an evaluation of the design and situation using specific considerations and a decision 

to use algorithmic modeling, then form abstraction from a concept to a geometric set of 

instructions, implementation of those instructions into a modeling system, and, finally, 



 30 

integration of the algorithmic modeled concept or part into the full design solution. By 

following this process, the industrial designer should be able to successfully integrate 

algorithmic designs into their work in order to save time and effort or be able to evaluate 

a situation so that they can jump directly to other methods of modeling, avoiding 

algorithmic processes altogether.  

 

Figure 15: Algorithmic Design Process Guidelines 
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Goal Evaluation & Physical Solution 

 

The first step of the Algorithmic Design Process Guidelines does not require any 

algorithmic work; it only requires the general ability of industrial designers to evaluate 

the requirements, limitations, and goals of their given charge. It is then assumed that from 

a properly evaluated design problem, a physical solution can begin to develop through the 

many techniques and methods available to industrial designers, such as sketching, 

physical prototype modeling and other methods of generating form concepts. Algorithmic 

design can work in many contexts; however, this document is focused on algorithmic 

design and modeling that is most closely associated with physical geometries. 

Therefore, best utilization of algorithmic modeling and these guidelines requires ensuring 

that the solution for a given design situation requires a physical form.  

 
Design & Situation Assessment 

 

Before the question of “how” a physical design should be created using 

algorithmic design and modeling should be discussed, it must be decided if the situational 

benefits of using algorithmic design outweigh the cost of using it. Using algorithmic 

modelers can be a time intensive process even for experienced users. Those educated in 

the use of traditional 3D solid parametric modelers such as Solidworks or Fusion360 may 

find the visual programming languages more difficult to navigate and more difficult in 

which to define their concepts thoroughly.  Also, wherein the “sculpting” nature of 

traditional modelers can provide a sense of progress for the users as their models are 

formed through the additive steps of extrusions, fillets, and other manipulations, 

algorithmic modeling processes often don’t provide a finalized representation of the form 



 32 

until the entirety of the work has been completed. This can make the design process 

murky and mysterious to both the designer and to interested parties, such as clients and 

team members.   

The next five topics of discussion are all key considerations to take into 

account when determining if the design situation in question would be an appropriate 

use-case for algorithmic design modeling. This is not to say that a design falling heavily 

under one area of consideration or under multiple areas of consideration absolutely 

necessitates the use of algorithmic modeling. Again, every design situation is 

different, and these considerations are meant to give the designer pause to reflect and 

evaluate the design itself, the system in which it will operate, and their own modeling 

skills before jumping into a new design process.  

 

Consideration 1: Integrity of the Design 

 

In the current industrial design process, after the designer has performed the 

necessary research for the formation of their concept, they will begin developing form 

model drawings on paper or a digital medium. Sketches provide a loose, fast, low-cost 

method for testing out ideas. The industrial designer will be able to further and further 

define their model through their sketches until a final form is suitable enough to move 

into the next step, CAD. The process of moving into the 3D, computer-realm and away 

from 2D drawings is an assertion from the designer that this version of their concept is 

properly formed enough to justify the time requirements of CAD. This does not mean 

that experimentation is completely out the window yet, of course. There is still plenty of 

opportunity to change the design by adjusting lengths, adding chamfers and fillets, and 
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adding any number of features that can alter the model. The general strategy behind CAD 

modeling, though, dictates that the designer’s modeling process moves from the general 

to the specific, with large forms being defined first and the details being added 

afterwards. This is all to say that the industrial designer is typically confident that the 

general design of the model will be a shaped certain way as the CAD process begins; it’s 

much easier to change the small details of a CAD model than it is to change the larger 

form shapes once the design is complete. For example, it would be nearly impossible to 

model a whole product, which has an overall circular shape, and then attempt to change it 

to an overall square shape while still retaining the detail work of the model. To do this, 

the designer would likely need to restart the modeling process entirely.   

 The common-enough sentiment in the design field, “Don’t jump into CAD too 

early,” is a warning against designers spending too much time in CAD when their design 

development has not been not fully formed. This sentiment is, perhaps, even more 

relevant when speaking of algorithmic modeling. In algorithmic modeling, every aspect 

of the model is defined, in detail, leaving little room for the designer to attempt to 

experiment with the overall concept or form they have in mind. Once again, this does not 

mean that there is not opportunity for the user to make changes to their design. In fact, 

the heightened parametric power of the algorithmic modeler makes it a great tool 

for making adjustments to the model and discovering novel designs, which will be 

discussed in Consideration 3. However, algorithmic modeling is heavily based upon 

building relationships between items within a system, so unless they are built with care 

and forethought, algorithmically defined networks such as these can make it difficult to 

perform significant changes upon the overall design at a later time. The defined 

relationships are often situational and tied to a specific function or geometric entity. If 
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that entity or tool is fundamentally changed, such as our example of moving from a circle 

to a square, the-relationships built upon the logic and foundation of a circle may now be 

ill defined, rendering the model broken. Gaining an understanding of what aspects of a 

model can and cannot be changed easily later in the design process requires experience 

using algorithmic modelers and a deep understanding of the tools and functions at work. 

Even with this understanding, drastic changes to the design intent can be difficult to work 

with, so it may be better to err on the side of caution when using algorithmic modelers. A 

note here: changing the overall design intent of a model after working on it is different 

than making branching large adjustments, which will be discussed in Consideration 4.  

If it is assumed that the designers’ intent is to create objects and complete models 

in a timely manner and is not working in an experimental fashion, it can be recommended 

that before the designer decides to use algorithmic modeling, they should consider 

whether or not their concept is defined enough to properly abstracted into mathematical 

terms which can then be implemented into algorithmic modeling systems. If the general 

direction of their design is not fully fleshed out, they may consider going back to the 

drawing board to continue their design process before proceeding. The more clearly they 

can describe the geometry of their design, the more easily they will be able to dictate that 

design to the modeler. It may be wise here to remind the reader of the dichotomy of 

algorithmic forms described in Expressive Form (Terzidis, 2003): the invention and the 

discovery. The “invention” side still follows the advice of Consideration 1 because it 

requires the designer to be able to fully express their intent of their design to the system. 

For the “discovery” side, better known as generative design, the details of the design are 

not fully defined, so it may be tempting to think that Consideration 1 is less of a 
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requirement. However, generative designs still require that designers have a full 

understanding of the limits, forces, and goals which they are trying to work within.  

The designer should also be aware of which portions of their design will undergo 

algorithmic processes. Algorithmic modelers can define a geometry in full, but it may 

save time to model the product through standard CAD processes and only model select 

portions of their design, such as a particular part or surface, through algorithmic 

modeling.   

In summary, if designers believe that their design or concept is near-fully formed 

and that they can confirm the overall design and design details with some certainty, they 

might consider using algorithmic modeling. This does not yet mean that their design 

should be used in algorithmic systems, just that having only a general idea of their design 

may preclude them from using algorithmic design entirely.  Again, if the design is only a 

partially formed idea, still in need of development, the designer should wait to begin 

using algorithmic design.  

 

Consideration 2: Geometric Complexity 

Geometric complexity is a relative phrase that may be difficult to define. 

Traditional 3D solid-modelers are, indeed, capable of producing complex models of 

products or buildings with many parts, interactions, and forms, which one could say are 

complex, in comparison to primitive forms, such as cubes or spheres. When referring to 

the geometric complexity which algorithmic design is known for, it is the complexity in 

the definition of the individual forms and not the complexity of the overall design. 

Algorithms allow the designer to easily define details and change parameters in ways that 

would take massive amounts of time and effort in standard modelers.  
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Tiling patterns, interweaving surfaces, fading structures, data-driven-designs, and 

random designs are all examples of geometric complexities that can be created in 

algorithmic modeling. Standard modelers do have the capacity to create rudimentary 

patterns, usually circular, rectilinear, or even patterns along paths, but these tools are 

often limited in what features can be patterned and can be resource-intensive actions for 

the modeler to compute.  

Geometric complexities can serve functional or aesthetic purposes for the 

designer depending on their needs. Complex geometries can be applied to forms to give 

them new physical characteristics: making them lighter, more porous, or more textured. 

These physical changes may allow the form to operate better as a product or satisfy other 

design criteria. This document will not discuss the theories and complexities of design 

aesthetics other than to say that algorithmic designs and the complexities that can arise 

from it could be regarded as visually stimulating or, at the very least, novel. This 

aesthetic feature may be leveraged to make a product more appealing to an end consumer 

even if it does not serve any functional purpose.   

In conclusion, if an industrial designer would like to implement complex 

geometric forms into their design for whatever purpose, it may be beneficial for them to 

consider using algorithmic design to define these forms since creating the same forms in 

standard 3D solid modelers may be incredibly time intensive, if not impossible. If the 

designer believe they can create their design in a timely manner in a standard modeler, it 

may wise to do so. 
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Consideration 3: Fine Adjustment Parameters 

 

In a standard 3D modeling environment, the designer will usually create sketches, 

define the details of these sketches using dimensions, and then use those sketches to 

create solid forms through extrusions or other similar methods. Values like these 

dimensions, extrusion lengths, radii, and others are all parameters that are saved within 

the system. In a parametric modeler, the designer can go back and edit the values of these 

parameters, and the system will attempt to update the solid model with this new 

information. Changes within these values will be referred to as “fine adjustments” in that 

changes to them do not change the internal logic of the system or the structure of the flow 

of information through it. Parameters can be changed individually when needed, but 

sometimes defining single parameters that are used in multiple places can provide a much 

faster, easier to manipulate system when changes are required, such as the parameter 

system found in Fusion360. This system lets the user create general parameters and 

define a value for them. For example, the designer could set “length” to be equal to 

10mm and can simply enter “length” when prompted with a value entry box for a 

dimension, or an extrusion distance. If the “length” parameter is then changed to be 

20mm, the model will update all of the parts accordingly.  

 

 



 38 

 
 

Figure 16: Fusion Parameter System 

 

The ability to control these parameters lets the designer continually update and 

modify their design. Often though, in practice, it can be difficult to see how changing a 

parameter will affect the model if the system has grown too complicated. These 

relationships can even break the model if changes that disrupt the flow of logic are 

made.   

Since algorithmic modelers use linked relationships to define the geometry of the 

model, it can be easier to see exactly how a parameter will affect the design than in 

standard modelers. It could even be argued that the act of having to physically link values 

to functions may provide a more in-depth understanding for the internal logic of the 

model. The way in which algorithmic modeling VPLs show parameters as adjustable 

entities and their connections to the other entities, which they drive, are invaluable to the 

designer’s ability to more easily update and change their system. VPLs such as 

Grasshopper and Dynamo also have added functionality such as number sliders, data set 

inputs, and organizational tools, which can give the user a greater ability to quickly 

experiment and prototype with their model. These fine adjustments can create an 

infinitely variable geometry.   
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In summary, the amount of fine tuning to be made to the designer’s model or the 

number iterations of designs needed should be a consideration for the designer before 

they begin using algorithmic modeling. For example, if the design situation has very 

specific, absolute dimensions without need for form experimentation, it may not be wise 

for the designer to proceed in using algorithmic modeling. If the designer is unsure of the 

specific dimensions, or is open to experimentation in the form, they may be well served 

to use algorithmic modeling over traditional modelers. This is not to say that traditional 

modelers such as Fusion360 or Solidworks cannot provide fine parametric adjustments 

such as these, just that the nature of VPL algorithmic modelers can provide faster, easier 

adjustments.   

 

Consideration 4: Diverging Designs 

 

Generally, in an algorithmic modeling VPL such as Grasshopper and Dynamo, 

the logic of modeling runs from left to right, with strings from outputs on the left 

informing inputs of functions on the right, which in turn create their own outputs. A 

similar logic can be found in standard 3D modelers used by industrial designers, which 

have a kind of function history, where entities are formed and organized based on when 

they were created and how they relate to other entities.   
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Figure 17: Solidworks History Tree 
 
 

While these systems are sometimes referred to as trees, they often operate more 

like timelines, with a linear flow of logic where each item is built upon the last. Changes 

early in the timelines can have great effects on the rest of the model, making it difficult to 

make significant changes without disrupting the rest of the work done. If large changes 

are to be made, another separate version of the model is usually saved and becomes an 

independent entity, unlinked from the original version.   

In an algorithmic modeler, there is the logical flow from left to right, but there is 

also room for expansion, vertically. The outputs of a certain function can be used to 

inform wholly different areas of modeling which can operate independently from one 

another. If the design-needs dictate that one set of functions be used in some cases but not 

others, entire processes can be added or removed from the logic flow without breaking 

the system.   

These branching modeling systems allow for many designs to be available in one 

system without the need to create different, separate, saved versions of a model. Where 
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fine adjustments allow the designer to create small parametric changes to their design by 

adjusting values and parameters, a diverging design can create large changes by inserting 

or removing branches of function from the modeling logic. These changes can drastically 

alter the design of the model and can provide great opportunities for experimentation 

without removing or altering the original modeling logic or opening a different modeling 

system.   

If the designer believes that their model may require additional updates in the 

future, which can be implemented as an alternate branch to their original design, they 

may consider using algorithmic modeling. In the field of industrial design, the ability to 

create alternate versions and iterations of models is beneficial, and algorithmic VPL 

modeling can make this process easier to visualize and execute.  If the design is a 

singular product which won’t be updated in the future with different options, standard 

modeling may be the preferred choice. 

 

Consideration 5: Transferring Design Power 

 

The rise of mass customization, giving users more control over the design 

process, requires a method of rapidly changing designs to suit users’ needs or to give the 

customization power to users directly through some sort of interface. Both of 

these situations can be fulfilled more easily with algorithmic modeling than compared to 

traditional modeling software. The customization could be as simple as a small variable 

change along a specific parameter, or as complex as implementing a wholly different 

paneling mechanic on a surface through a diverging design. There are also situations 

where data-driven designs can be created which import whole data sets to be used as 
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inputs for specific functions. For the designer, the requirement for customizations, and 

therefore rapid iterations, is fulfilled by parametric power of algorithmic systems, 

previously discussed in Considerations 3 and 4. However, the ability to provide the user 

with an interface in which they can experiment with parameters to create their own 

custom designs can be done more easily through algorithmic systems. In this scenario, 

the designer is responsible for not only creating the functioning model system, but also 

determining which parameters and controls the users will be able to control in an 

interface.   

Additionally, if the designer could potentially hand off a design to another 

designer or coworker, using a VPL algorithmic modeler is a more transparent design 

environment than a traditional modeler. This may allow alterations to be more easily 

made by this secondary party.   

In conclusion, if the designer intends on creating a system wherein individual 

users or those not involved in the original design process will have the ability to 

customize and dictate designs, it may be recommended that they use algorithmic 

modeling instead of traditional modelers.  

 

Considerations Summary 

 

 By reviewing these considerations of the particular design-situation at hand, the 

designer should now be able to make an informed decision into whether or not they 

should proceed into the use of algorithmic modeling and begin form abstraction. 
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Again, all or just one consideration could apply to the situation, but this doesn’t 

affect the decision to use algorithmic modeling, necessarily. For instance, a design could 

be fully formed, with only one iteration needed, with very defined parameters, with no 

alternate designs, and no need to transfer the design power, leading the designer to 

believe that they do not need algorithmic modeling, but if the design is also suitably 

complicated, this one factor may push the designer towards using algorithmic design.  If 

they have decided against using algorithmic techniques, they should begin using standard 

modelers to do their CAD work. 

 

Form Abstraction 

 

If the industrial designer has decided that the physical design and design situation 

necessitate the use of algorithmic modeling, the designer must now begin the process 

of transferring concept ideas into a form which algorithmic modeling VPLs can read and 

understand. The translation between a concept on paper and a series of logical steps that 

define the form is a difficult one, but with enough practice and understanding, can be 

manageable. Abstraction is “the process of removing physical, spatial, or 

temporal details” from a system. (Colburn & Shute, 2007). This allows the designer to 

think through the discrete steps of the algorithm without being bogged down with the 

many details they will have to define in the VPL. This also allows the designer to focus 

more on the interactions between the elements, ensuring that the designs can work in any 

number of situations, not just a particular one.  
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For instance, a designer may have decided that the best course of action is to 

model a cube, but sometimes an algorithmic modeler can define identical geometries in 

different ways. A cube could be described as a cuboid where length, width, and height are 

all equal to the same given value, all centered with a corner at point (0,0,0). A cube could 

also be described as a series of 6 ruled surfaces with shared points between lines along 

sides of each surface. The abstraction of geometry requires an understanding of the 

vocabulary and mathematical descriptions that algorithmic modelers use to define forms. 

If the concept cannot be at least partially abstracted by the designer and put into terms 

that can be found in algorithmic modeling VPLs, the designer may find it difficult to 

begin the implementation process. This idea is not too foreign to the designer as they 

already use abstraction to form their traditional cad models, changing  thinking from the 

physical designs to terms like “extrusion”, “sweep”, “loft” etc.   

Merely thinking through which tools will be used in the VPL is an abstraction, but 

it could be helpful to sketch the different steps on paper, without diving too far into the 

details of each step.  The upcoming section, Algorithmic Design Methods and Tools, will 

include definitions and concepts that can help the industrial designer understand how to 

better define their concept for the implementation process, and the Abstraction portion of 

Chapter 5 will provide an example of an abstraction.   

 

 Modeling Implementation 

 

Now that the geometric goal has been defined, and that geometric form has been 

at least somewhat abstracted into mathematical terms, it is now time for the designer to 

begin using a visual programming language for the purposes of algorithmic modeling. 
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There are two VPLs that this document focuses on, Grasshopper and Autodesk Dynamo. 

There are differences between the two, but for the general purposes of modeling using 

algorithmic design, they operate in a very similar fashion. The exact ways that a designer 

should go about modeling the concept in Grasshopper or Dynamo cannot be fully 

described, since every situation requires specific nodes and connections to be made. It 

is similar to describing to someone “How to cook” or “How to use Solidworks.” The best 

solution to these general problems is to become familiarize with the tools and 

techniques at hand and view common use cases of how they are implemented. 

Once properly familiarized with the tools or have found a use case that resembles the 

design direction to be followed, the designer can then begin to construct the algorithm 

that follows the abstraction. In Chapter 4, Algorithmic Design Methods and Tools, 

specific terms, tools, methods, and techniques, which the reader can use to help with the 

construction of their algorithmic designs, are described.  

 

Model Integration 

 

Once the design abstraction has been fully implemented into a VPL and 

computed, the VPL will show a rendered version of the design. This is not the end of the 

design process, however. The VPL algorithmic design must be extracted and placed into 

a standard modeler such as Solidworks or Fusion360 or Rhino so that the designer can 

continue working around the model to make it into a full product or prepare it for 

rendering or digital fabrication. This process is different depending on which VPL being 

used and which programs to transfer the model to. For instance, in Grasshopper, one can 

just “Bake” their design directly into the Rhino workspace they are using. Alternatively, 
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the designer could use exporting nodes which take in geometry as inputs and export to a 

specified file location. For example, the Dynamo Export to SAT node takes in geometry 

and saves it as a .sat file, which can be opened in Solidworks or Fusion360 along with 

many other standard modeling software.   

The integration step can sometimes cause problems in the algorithmic design 

process that the designer should be prepared for. Sometimes surfaces won’t bake 

properly, sometimes the model will be unintentionally scaled, or the model could have 

surfaces missing. The designer must troubleshoot these problems and find work-arounds 

to get to the final form or file that they need.   
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Chapter 4: Algorithmic Design Methods and Tools 

 

Due to the sheer number of tools and features available for use within algorithmic 

modelers, not all of them can be described within this text. What can be described are 

general geometric terms, which have associated components that are easily searchable 

within Grasshopper or Dynamo for use within designs. For demonstration purposes, often 

a Dynamo node will be shown, instead of a Grasshopper node, because the Dynamo 

nodes are more clearly labeled with a title, inputs on the left side, and outputs on the right 

side. Additionally, some common algorithmic techniques which may work as a starting 

point for new designs are also described.   

 

Geometric Terms 

 

Points 

 

A point is zero-dimensional primitive meant to describe a unique location within a 

space. Points have no volume, length or area. By themselves, points do not describe any 

solid geometries, but provide references for additional items such as lines, planes, 

surfaces etc. They are the most basic of building blocks for defining geometry and are 

used widely through algorithmic modeling.  

Points are most commonly defined through the use of coordinates, a set of 

numbers that define a location in a coordinate system. In two dimensions, points are 

commonly defined by coordinates in a Cartesian (x,y) notation, where the point lies an x 

distance in the x-direction and a y distance in the y-direction. A similar system exists for 
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a three-dimensional coordinate, where an added z-direction is introduced resulting in an 

(x,y,z) notation. Note the general use of “direction”. Generally, coordinate systems will 

follow axes (x-axis, y-axis, etc.) but this is not always the case such as when coordinate 

systems describe parametric points along surfaces, which may have non-linear u and v 

axes.   

As expected, within algorithmic modelers, points are usually defined through 

coordinate systems of some sort. Dynamo and Grasshopper both have options to define 

points as Cartesian, cylindrical, and polar coordinates. The example node shown in 

Figure 17 takes in Cartesian x, y, z values as inputs and outputs a point. This node can 

also input lists of x, y, z values to output multiple points.  

 

 

Figure 18: Dynamo node for creating a point with Cartesian coordinate inputs. 

 

The Point.ByCoordinates node assumes that the coordinate system has an origin 

at (0,0,0). If a different coordinate system is required, there exist other nodes that operate 

in the same way, but require an input coordinate system.   
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Vectors 

 

 A vector, more specifically a Euclidean vector, is a mathematical representation 

of an object that has a magnitude and a direction. In algorithmic modeling, vectors are 

often used to help define a direction for other geometries, such as defining an extrusion 

direction. By themselves though, vectors are not solid geometry. Vectors can be created 

in multiple ways, but can usually be extracted from straight-line geometries.  The node 

shown in Figure 18 creates a vector from the origin point (0,0,0) to a point at a defined 

(x,y,z).  

 

 

Figure 19: Dynamo node for a creating a vector using a coordinate point. 

 

Curves 

 

 For both Autodesk Dynamo and Grasshopper, Curve is used as a generic term to 

describe curves and lines of all sorts. Curves can be straight lines, arcs, circles, splines, 

polygons, NURBS Curves, polycurves and more. Anything that one might define as a 

sketch entity in another CAD program is a Curve. A Curve is more accurately defined as 

the infinite number of points that can be found by plugging t into a set of parametric 

equations, such as  (𝑥 = 3𝑡, 𝑦 = 5 − 𝑡), where  0 ≤ 𝑡 ≤ 1. This simply means that all 



 50 

Curves have a starting point and an ending point, even Curves such as circles. Also, these 

starting and ending points are defined at 𝑡 = 0 and 𝑡 = 1, with every possible point 

between being defined by 0 < 𝑡 < 1.  

 A straight line is commonly defined as line connecting two points, and while this 

is the most common way of defining a line and is easily done in algorithmic modelers, it 

is not the only way.  

 

 
 

Figure 20: Dynamo Node for a line using start point and endpoint inputs.  

 

Straight lines can also be defined by using a starting point, line direction, and 

length, or in other non-obvious ways, such as a best fit line through a set of points, or as a 

tangent line from another Curve at a given point.  

 

     

Figure 21: Dynamo nodes showing alternative straight-line creation techniques.  
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A polyline is a Curve that is made of two or more lines that have been joined 

together. A polyline that is described as “closed” is one where the last and first points of 

the polyline occupy the same space. Some nodes in Dynamo and Grasshopper can 

connect a series of points together to form straight lines between consecutive points, and 

then join them together to create a single polyline. The decision to make it a closed 

polyline can be toggled by a simple true/false input.   

 

  

Figure 22: Polylines showing open (left) and closed (right) forms.  

 

Two Curves, the arc and the circle, are very similar in that they usually require a 

center point and a radius which all of their described points lie on. The arc is only a 

portion of a full circle, however. There are also nodes and components available to 

describe ellipses and other irregular arcs without a constant radius. 
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Figure 23: Dynamo node for a circle, with a center point and radius input. 

 

The acronym NURBS stands for Non-Uniform Rational B-Splines. NURBS are 

representations of curves, surfaces, and solids that are easily transferable to other systems 

since they are so mathematically well-defined. A NURBS Curve is one that utilizes 

control points to define how a Curve moves through space. This process is similar to how 

splines and Bezier curves are defined in standard modelers. The location of the control 

points, the curve degree, weight values and knots are all aspects of the NURBS curve that 

define it, and can be controlled in algorithmic modelers.  

 

Planes 

 

 A plane is a two-dimensional object which extends in all directions within the 

dimensions. It can be thought of as an object that describes a geometric flat surface. 

Planes have an origin, an x-direction, and a y-direction. They also have a z-direction that 

is normal to the plane surface, but objects that do not share the same z-coordinate as the 

plane are “out-of-plane” and will not intersect it. Planes do not have any volume and are 

mainly used to help describe other geometries that can be created in algorithmic 

modelers.  
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Surfaces 

 

 In the same way that Curves can be thought of as being a continuous string of 

points between two values, a continuous set of Curves together define a surface. Where 

Curves are defined by a parametric function using variable t, Surfaces use parametric 

coordinates (𝑢, 𝑣) to define points in space. Again, 𝑢 and 𝑣 are both greater than or equal 

to zero and less than or equal to one. Shown in Figure 24 is how any point on the surface, 

regardless of whether or not the surface is planar, can be defined by 𝑢 and 𝑣. 

 

 

Figure 24: (U,V) Coordinates on a plane graphic from The Dynamo Primer 

 

An isocurve is a Curve that follows along a surface, where either the	𝑢 or 𝑣 

parameter remains constant while the other parameter encompasses the full domain of 

values. Isocurves can be thought of as a cross section of a surface at a certain value.  
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Figure 25: Isocurves on a surface in one direction.  

 

Every point on a surface has additional corresponding data such as normal vectors 

and perpendicular planes, which can be extracted through some nodes or components. A 

perpendicular plane is one in which the axes are tangent to the 𝑢 and 𝑣 isocurves at any 

particular point, and the normal vectors are vectors which are perpendicular to the 

corresponding perpendicular plane.  
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Figure 26: Lines along normal vectors across a surface 

 

As one might expect, a NURBS surface is one that is made up of a network of 

NURBS curves in the 𝑢 and 𝑣 directions. Again the points, degree, and weight of the 

NURBS Curves can be adjusted to affect the shape of the surface.  

 

Solids 

 

Unlike the geometries previously discussed, solids are geometries that have a 

volume. Solids are made up of one or more surfaces and have a definitive “inside” and 

“outside” to them. Cubes, Cylinders, Spheres, and other basics shapes are all solids, along 

with shapes created from standard modeling methods such as closed extrusions, lofts, 

sweeps, and revolutions. A solid is made up of different parts that describe its topology: 

vertices, edges, and faces.   

Vertices are the positions on a solid that are occupied by a single point. For 

instance, a cube has eight vertices, one at each of its corners. A solid does not necessarily 
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need a “sharp” point, though, to have vertices. A cylinder has vertices where the corners 

of the surfaces that make up the body of the cylinder meet.   

Edges are Curves, which are defined by the shape of the geometry. A cube has 12 

edges, where the surfaces of each side come in contact with each other. Again, some 

shapes, which may not appear to have edges, do. At first glance, a cylinder has two 

circular edges on top and bottom of the cylinder, which outline the “caps”. There is also a 

third edge where the curved surface that makes up the cylinder body wraps back to make 

contact with itself again.   

Faces are surfaces that make up the sides of solid geometry. This is fairly easy to 

understand since solids require surfaces to be created in the first place. A cube 

has six faces and a cylinder has three. There are some instances that are not as clear 

though, such as a cone, which has two faces, and spheres which are made up of only one 

face. The different topologies can be extracted and singled out for use in creating other 

geometries, if needed.   

Note that sometimes the terminology surrounding certain features may change 

depending on the program being used. Dynamo mostly uses the term Solid when 

referring to solids with the vertex, edge, and face topology we’ve discussed, but 

Grasshopper may use BREP to refer to the same thing. BREP stands for boundary 

representation, and is also a solid, which is “bound” by surfaces.  

 

Meshes 
 
 
 Meshes are geometric systems that are made up of many small triangular, and 

sometimes quadrilateral, surfaces. These surfaces have vertices and faces as part of their 

topology, which can be indexed and selected individually. Meshes do not require the 
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mathematical definitions of NURBS surfaces so, in general, the control a designer has 

over a mesh is more limited than that of a NURBS surfaces; however much more 

complicated geometries can be described by meshes and they are more computationally 

lightweight. The lack of mathematic definitions means that meshes can be manipulated 

locally without affecting the whole model. This concept is shown in an excerpt from the 

Dynamo Primer, shown in Figure 26. 

 

 
Figure 27: NURBS surface showing how control points affect the whole system (left) and 

a mesh surface showing how edited control points only affect the local faces (right). 
 

Data Management 

 

Inputs 

 

 Algorithmic design and visual programming languages rely on the exchange and 

manipulation of data between nodes and components. Algorithmic tools usually require 

specific inputs in order to operate correctly, and there exist many types of inputs which 
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can be used in order to build a model.  Nodes take in inputs, and produce outputs, which 

can then be used as inputs on other nodes, like the set shown in Figure 28. 

 

 

Figure 28: Nodes & Connections in Grasshopper 

 

Numbers are the most widely used inputs in algorithmic modeling. This is 

understandable since numbers are used to define dimensions, distances, sizes and other 

factors in standard solid modelers. It is important to note here that sometimes nodes and 

components may require an integer value to operate. An integer is a whole number such 

as 1, 12, 100, as opposed to a number with a decimal, such as 1.2, .5 and 10.2. 

Algorithmic modelers have several options to input numbers, such as static number 

inputs, number sliders, dials, and more complicated routes like using a connected excel 

sheet to define values.   

A string is a type of data that represents text. Strings are used heavily in many 

types of coding systems; they’re even the basis for the traditional “Hello World” coding 

lesson, but they may not be as important for 3D modeling. There are still situations such 

as creating labels or cutting in decals where the designer may need them, though, and 

algorithmic VPL modelers do have tools to accept strings as inputs.   
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Color is another input available for use, and images can be used as input in VPL 

algorithmic systems. There exist nodes and components that can pull in images and 

sample their contents to determine the color and brightness of a photo at different points. 

Color information and associated numbers can then be used as data to inform other 

components to create geometries and perform other functions.   

Algorithmic modeling centers around geometric modeling techniques; therefore it 

should be no surprise that different geometries are actually data types to be transferred 

from one component to another. The previously listed geometries such as Points, Curves, 

Surfaces, Solids, Meshes and more are all different types of geometry which can be 

accepted as inputs for other tools. This also means that geometries that are created in 

other programs can be pulled into Dynamo or Grasshopper to be used as inputs.   

 

Lists 

 

A list is an organized collection of items. In algorithmic modeling, lists contain 

data types like those listed above. A list can be full of numbers, strings, or geometries. A 

list can be just one item, many multiple items, or even contain other lists.   

In order to understand how a list operates the designer needs to know where items 

are on the list. The position of an item is called its indices. The numbering convention of 

indices may be strange to those unfamiliar with coding languages, since it doesn’t begin 

with one, but starts its numbering at zero. This means that the first piece of data in a list is 

always at index 0. Items in lists and the list itself can have many functions performed on 

them. Items can be extracted at certain indices; lists can be counted, can be reversed, 

chopped into pieces, shifted, truncated, combined with other lists, filtered to only allow 
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certain values through, and any number of other alterations that can be combined to 

change the contents of the list to match the requirements of the current system being 

designed.   

When using two lists as inputs into a function, such as multiplying two lists of 

numbers together, unexpected problems can occur, especially when the lists have 

different lengths. How can a list with three numbers be multiplied with a list that 

has four numbers? The answer is by defining the list lacing. Lacing is the way in which 

items in lists interact with items in another list. There are three types of lacing: Shortest 

List, Longest List, and Cross Product. Shortest List lacing takes the shorter of the two 

lists and only provides interaction for that number of items. This can be seen in Figure 29 

where excess items in the longer list have no interactions with that of the first list.  

 

 
Figure 29: Shortest List Lacing 

 

Longest List lacing determines the number of items in the longest list and 

provides interaction for all of those items. This means that the last value in the shorter list 
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will be reused to interact with the remaining values of the longer list. This relationship is 

more easily seen in Figure 30. 

 

 

Figure 30: Longest List Lacing 

 

Cross Product lacing is used in cases where the designer would like every item in 

a list to interact with every item in another list, no matter the lengths of either list.   

 

 

Figure 31: Cross Product Lacing 

 

It is important to understand the structure of lists if one is to manage the data 

within them. Lists are generally organized into metaphorical trees. A simple list 
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containing ten items can be visualized as a tree (the list) with ten branches (the items). If 

the list contains ten lists each with ten items in them then the list can be visualized as a 

tree (the top-level list) with ten branches (the sub lists) with ten twigs attached to each 

(the individual items). Algorithmic modelers have tools and methods such as level 

selecting, list flattening, list grafting, which can alter this tree structure in order to fit the 

needs of the situation at hand.   

 

Algorithmic Techniques 

 

Algorithmic modelers can give unprecedented freedom in creation to the 

industrial designer. The designer is only limited by the ability to properly dictate a 

concept to the modeler. However, there are noticeable trends for common algorithmic 

techniques that can be found in various textbooks, user guides, and real-world 

implementations. This section will provide a brief explanation and examples of use of 

these common techniques,  largely leaving out the details of the implementation, but 

perhaps these technique descriptions will show the designer what is possible, or provide a 

starting point for more in-depth work. These techniques are not in any particular 

order and can be used in conjunction with one another. Additionally, the examples shown 

will not include the full coding procedures, but rather general strategies for their 

creation. The full code for each example is available at: 

https://drive.google.com/drive/folders/1_iYBf6XisuOJ3Yhe0WXgLgz12W5Bn9bP?usp=

sharing 
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Repetitions 

 

Here, a repetition will refer to copying geometry in a repeating fashion, multiple 

times. This can be done in traditional modelers through patterning tools, such as 

rectangular or circular patterning tools, but in an algorithmic modeling system the user 

has greater control over what can be repeated and in what way. There is also opportunity 

to alter the repeated geometries so that its properties change on each repetition. The size, 

orientation, and shape, among other attributes, can be altered to create more interesting 

repetitions. Creating patterns of geometry in algorithmic modelers often relies on the 

designer to create a list of positions or changes that then inform a simple tool such as a 

“Move” or “Scale” component or node.   

For this example, a list of coordinate positions has been created to serve as the 

center for a series of circles. The positions all have different z values, so the associated 

circles line up in a vertical stack. The radii of the circles are also defined to be associated 

with list of increasing values. For both the positions and the radii of the circles, a list of 

changing information is needed to define the circles’ characteristics. The information 

about the circle is created first, then applied to a circle-creating node, where in a 

traditional modeler, a circle would be created and then patterned in a certain direction.   
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Figure 33: Circles of increasing radii and decreasing z-positions 

 

With the circles now created, they can now be used as the basis for other 

functions. Next, a polygon function will be used that has two inputs: a circle as the base, 

and the number of sides the polygon should have. By applying the list of circles created 

to the polygon function and inputting an increasing list of polygon side counts, a stack of 

polygons with an ever-increasing number of sides has been created.  
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Figure 34: Stack of polygons with creasing radii and side counts with decreasing z-values 

 

 Next, the polygon curves will be used to extrude the shape into the negative z 

direction to form a solid in order to better visualize what has been created.  

 

 

Figure 35: Stack of 10 solid polygon parts 
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 Since the nature of repetitions in algorithmic modeling is that of using lists to 

define inputs to nodes, if it is necessary to change any aspects of the model only the 

information in the lists created needs to be changed. In this case the number of initial 

circles, radii, and polygon sides are all tied to the same input list, so by increasing the 

length of this list, more and more polygon stacks can be created. Figure 35 shows a stack 

with 10 units, while Figure 36 shows a stack with 25 units.  

  

 

Figure 36: Stack of 25 solid polygon parts 

 

 One of the benefits of using algorithmic design is being able to quickly see how 

designs change at different scales. These polygon stacks may be relatively simple but 

when increasing the list length up to around 65, seen in Figure 37, the shape takes on a 

different quality as the polygons converge towards full circles. Again, the only difference 

between these different sized examples was a single input number. Repetitions such as 
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these can help create interesting visual patterns, provide unique textures to be applied to 

handles for example, or define form through small changes.   

 

 

Figure 37: Rendered stack of 65 solid polygon parts 

 

 

 

 



 68 

Divisions 

 

 Instead of creating a body, which is repeated with changing variables like the 

process shown in the repetition section, sometimes it may be better to create a shape and 

divide it into pieces to achieve a similar effect. By using traditional modeling techniques, 

base forms such as a surface or solid can be more easily defined, and then that simple 

form can be input into an algorithmic modeler where it is then divided along parametric 

lines. These parametric divisions can then become the basis of other variations of the 

form.  

In this example, a single lofted surface cylinder shown in Figure 38 was created in 

Fusion360 and then imported into Dynamo.   

 

Figure 38: Curved cylinder surface imported from Fusion 360 to Dynamo 

 



 69 

 Once the cylinder is in place, isolines must be created along its surface in one 

direction. There exist simple nodes, which only need a surface input, parameter list 

inputs, and a selection of either the u or v direction with a switch. To create the list of 

parameters which must be greater than or equal to zero and less than or equal to 1, a basic 

list from 0 to 10 is created, then divided by ten, yielding: [0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1]. 

These parameter points are input into the node and provide the isolines at the different 

positions along the length of the surface seen in Figure 39. 

 

 

Figure 39: Isolines from parameter 0 to 1 in steps of .1 on an imported surface.  

  

Now that the surface has been successfully “Divided” into equal parts, these 

isolines may be manipulated into something different. Since a cylindrical surface was 

used, the isolines in this direction are essentially circles. Every other circle around the 
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central axis can now be scaled down and a loft between them is created to form the 

surface shown in Figure 40. 

 

 

Figure 40: New lofted surface with alternating radii widths.  

 

 Once again, this may seem like a simple model, but one can first see how the 

system operates at a basic level, then see how changing one of the variables develops 

something which has a wholly different visual effect and structure. In this case, the 

number of isolines will be increased, which divide up the original surface and will 

increase the scaling for a more dramatic look. The surface can even be replaced with one 

which is shaped differently, but using the same code with different variables, the entire 

design takes on a different aesthetic. The result is shown in Figure 41.  
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Figure 41: Left: New input surface shape. Right: New algorithm output with larger 

scaling and more isolines along its length.  

 

 By using a division of a pre-made surface like this, drastic changes can be made 

to a design input from a standard modeler. This can also save the designer time by letting 

them use tools they may already be more familiar with to create the geometries which 

will be imported into the algorithmic modeler. 
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Attractors 

 

One of the benefits of working with data is that certain data types can be 

translated into other data types, easily. A common way this is done is by using an 

attractor system, where the distance from an object or series of objects can inform the 

shape or nature of the geometries. For this next example, data will be translated from 

distance to radii through the use of a remapping function.  

 

 

Figure 42: Large flat solid to use as a base surface. 

 

 This example will start with a flat base with points placed in a pattern along its 

surface. This was done using a grid-dividing node but can be done in many other ways as 

well. The surface with the system of points on top can be seen in Figure 43.  
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Figure 43: Surface with points in pattern 

 

 These points will serve as the location for a set of spheres shown in Figure 44. 

These spheres will initially be set to a constant radius.   

 

 

Figure 44: Grid of spheres of constant size on a surface 
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 Now a remapping node will be used to change the size of the spheres. The 

remapping node will take in one piece of information such the distance from a sphere to 

the left bottom edge of the surface seen in this example, and use that range of numbers to 

define a different range of radii. Simply put, the remapping tool translates the distance 

from the spheres to the edge of the surface to their corresponding radii. Spheres closer to 

the edge of the surface are smaller, while spheres furthest from the edge are bigger.  

 

 

Figure 45: Remapped spheres  

 

By using attractor systems like these, models can be created with great degrees of 

variability in the design without having to painstakingly define information in the system. 

For this example, the original geometry is cut by using the spheres to create a pocketed 

surface. This new geometry can then be patterned for more variation for use in paneling 

or creating some visual  interest in a product.  
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Figure 46: Rendered attractor panels  

 

Surface Grids 

 

It has been shown how to divide a surface into smaller sections, but sometimes a 

more complicated division of the surface may be needed. Luckily, nodes and components 

that are in algorithmic VPLs, or can be easily downloaded, can divide up a surface in 

various ways. These nodes usually take in a surface and apply a pattern such as a square, 
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hexagonal, braced structure, or triangular grid. The outputs of these nodes include the 

lines and points that make up this new grid pattern. For this example, the basic tube 

surface used in previous examples will be used, shown in Figure 47.  

 

 

Figure 47: Basic single tube surface 

 

This surface will be used to apply a hexagonal grid structure. The hexagonal grid 

node requires an input of a surface as well as the number of u and v divisions to form the 

grid. It has a variation factor input, which alters how uniform the sides of the hexagon 

are. This variation factor will be set so that the node creates a sort of inverted hexagon. 

The completed grid lines can be seen in Figure 48.  

 



 77 

 

Figure 48: Surface hexagon grid  

 

 Now that the grid has been created, it can be used as the basis to form a solid 

geometry. A simple way of turning this Curve grid into a solid is to use a pipe node, 

which creates a pipe of a certain size around a curve. For this model, a T-Spline Surface 

node will be used, which takes in curves and creates a smooth T-Spline body around 

them, similar to a pipe node but with better transitions between the curves. This final 

body is shown in Figure 49. This method of using surfaces to define shapes, then creating 

a grid on top can help, creates different wire structures, which may be useful for making 

lightweight but strong parts in product designs.   
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Figure 49: T-spline surface geometry of surface grid 

 

In summary, the different algorithmic techniques shown in this document are just 

a sample of what can be done with algorithmic modeling. These few examples are meant 

to demonstrate how by using geometric terms and the available tools in VPLS, a variety 

of different designs and alterations can be created. Again, the full Dynamo code for each 

of the algorithmic systems shown in this chapter can be found at: 

https://drive.google.com/drive/folders/1_iYBf6XisuOJ3Yhe0WXgLgz12W5Bn9bP?usp=

sharing 
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Chapter 5: Application of Design Guidelines 

 

This chapter will provide an in depth look at an example industrial design project: 

the development of a new phone case. This application project will work through the 

traditional industrial design and product development process, but also apply the design 

guidelines found in Chapter 3 as well as make use of the algorithmic terms, methods, and 

techniques found in Chapter 4. The purpose of this chapter is to show, specifically, how 

these guidelines are meant to be used, as well as provide an in-depth look at the 

algorithmic process including abstraction, successes and failures of the modeling process, 

and the final output.  

 

Application Introduction 

 

For this design application, a design prompt was chosen: Design a new smart 

phone case. The phone case should help keep the users from dropping their phone, but it 

should also consider aesthetics and marketability. This prompt was chosen because not 

only is it a very common product with a large number of users, but the users can be very 

diverse; almost everyone uses a cell phone. This variability will later help illustrate the 

power of algorithmic design. Before any algorithmic work, the process must start with 

the beginning of our guidelines and an evaluation of our goal and development of a 

physical solution. Additionally, it should be noted that for the sake of this project and the 

process it presents, the terms cell phone and smart phone are interchangeable and refer to 

the commonly produced mobile cellular device as well as the smart phone design 

standards which have been established at the time of writing (approximately 5” screen 
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sizes, full touch screen interfaces, front & back cameras, cord charging systems, etc.) For 

reference, an archetype of the kind of phone to be designed for is the Apple iPhone X, 

released in 2017.   

 

Figure 50 Algorithmic Design Guidelines 
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Application: Goal Evaluation & Physical Solution 

 

This application will begin with the standard industrial design process and 

evaluation of the use of a cell phone. Starting with simple observations of a cell phone’s 

use, interviews of people who use them, and hands-on testing, a few statements can be 

translated into goals for our solution.  

 

• Cell phones are more commonly used with a single hand, rather than using both 

hands at the same time. 

• There is preferred hand usage of the phone lasting when using it for more than a 

few seconds. This is usually the more dominant hand.  

• Most phone drops happen during transitional movements e.g. removing from 

pockets, picking it up from a desk, moving phone in front of face, etc.  

• During transitional movements, phones are held in a static place in the hand 

mostly though frictional forces and drops occur when the user doesn’t apply 

enough force, then a “slip” occurs.  

• The exact holding position of the phone varies from person to person, depending 

partially on their hand size as well as the size of the phone.  

• Phone cases can act as a personal or fashion statement; their design and look play 

a major factor in their purchasing. 

 

By using these statements found from the research, concept ideations must be 

made which could fulfill the new design goals: it must help prevent slipping, it must work 
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for a wide range of people, and it must be aesthetically appealing. The concept sketch 

development around these goals can be seen in Figure 51.  

 

 

Figure 51: Concept sketch development of phone case 

 

From this development phase, several final sketches were found to be appealing 

and matched the goals. For this project, the design shown in Figure 51 was chosen to be 

the final design to move ahead with. It provides an interesting geometry, which allows for 

additional grip on the back of the phone case. 
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Figure 52: Finalized Phone Case Concept 

 

Application: Design & Situation Assessment 

 

The situation assessment will take into account not only the specific concept that 

has been chosen but the factors surrounding the project, as well. For the purposes of this 

project, it will be assumed that the designer has a developed knowledge of algorithmic 

systems and that, generally, being able to design faster is an advantage over working 
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slower. The following Considerations will help determine whether the designer should 

proceed into algorithmic modeling.  

 

Application Consideration 1: Design Integrity 

 

 As previously stated, much of the form is already defined due to it being linked to 

the size of the phone which the final phone case will be associated with. The rest of the 

form has already been developed through a series of iterations of sketches. If algorithmic 

modeling is to be used, there is a specific portion of the back which will be integrated 

into the algorithmic process, since the charging port and camera areas need to be 

untouched. The ridges will come off the surface of the case a small amount and then 

return to the base. What is not known though, is whether or not the ridges will wrap 

around the sides of the phone case or if they will just appear on the back and fade away 

toward the sides. The decision in either direction will depend on the capabilities of the 

algorithmic modeling system used, but both options seem like acceptable routes at this 

time.   

So, in summation, the design or design direction is fairly well completed and a 

solid vision of what the end-product will look like is formed. The completeness of the 

design is not an indication that algorithmic modeling necessarily must be used, but that 

the designer may find it difficult to use algorithmic design if it is not complete; it is a stop 

gate before continuing to the rest of the considerations. Since the integrity of this design 

is fairly strong, the process will proceed.   
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Application Consideration 2: Geometric Complexity 
 

 The chosen concept has a fairly simple form, overall. The size of the product is 

determined by the size of the phone which it is associated with. The placement of the 

holes for cameras, buttons, and charging ports are also defined by the specific phone 

chosen. The most interesting parts are the wave shaped ridges which flow along the back 

of the case. Now, these ridges could be somewhat easily created with a series of defined 

curves in a standard modeler like Rhino3D. A curve network could loft these curves 

together to create this back surface, so at face value, the geometric necessity of an 

algorithmic modeler isn’t readily apparent. If it is assumed that the number of ridges 

could potentially be changed to a much larger amount though, then the inherent 

geometric complexity increases. The amount of modeling time to create or edit the curves 

which define the ridges is directly related to the number of ridges in the system, which is 

still uncertain. So, in summation it can be said that the form is not necessarily complex, 

but for some situations it may be. If this were the only consideration to think about, a 

recommendation against algorithmic modeling could be made, but this is not the case.   

  

Application Consideration 3: Fine Adjustment Parameters 

 

 There are several variables that could potentially be adjusted in this design. Since 

this project is already designed for different phone sizes, there is some built in variability, 

but the ridges on the back of the phone case have multiple parameters. Where the ridges 

start, where they end, how they curve, and how far off the surface the ridges move are all 

small adjustments which could be built to be manipulated. The need for customization 

based on variability between people’s bodies as well as variability in their aesthetic 
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choices is high for this particular project, and each design should reflect the needs of the 

end user. It may be the case that limits on these adjustments must be made so that the 

whole system works cohesively, but generally this project contains many variables which 

can be quickly fined-tuned in order to perfectly match the desired design of the end user. 

This consideration is one of the most important aspects of this particular design; the 

ability to make quick design changes almost necessitates the use of algorithmic design on 

its own.  

 

Application Consideration 4: Diverging Designs 

 

 If the model were built in such a way where the portion of the phone case on 

which the ridges were made were isolated as part of the modeling process before the 

ridges were modeled, then that isolated portion could be used for any number of other 

design directions. Instead, it may be decided to use this portion to create a hexagonal 

cutout section, or a wireframe piped section. The ability to take this project in a different 

direction is fairly easy to do, assuming the model is structured correctly, and the need for 

design variety while still maintaining a consistently designed base makes this a great 

project for further iterations upon the same model. The desire for variety is high for the 

users, and alternated future designs are likely. Therefore, the need and ability to 

implement diverging designs, later on, is high for this project.   
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Application Consideration 5: Transferring of Design Power 

 

As previously stated, the personalization aspect of this design means it could 

potentially give the design power to the end user so that they may define how their phone 

case will ultimately look. The phone brand, size, and the sizes and locations of the ridges 

are all variables which could be changed with no design or modeling experience, 

assuming the system is built properly. In this case, allowing the user to control exactly 

what they’re getting could provide a very positive purchasing experience. Additionally, if 

someone else, or another designer, were to want to try to take the phone design in a 

different direction and add in diverging designs or other changes, it could be a somewhat 

easy experience for them as well. Overall, the ability to let the end user or others take 

control of their design is desirable in this situation.   

 

Application Considerations Summary 

 

 After reviewing each of the considerations and assessing the design situation 

through each lens, it can be said that this particular design situation and concept is a 

conceptually complete design, is geometrically complex in certain aspects, will require 

many fine adjustment parameters, would benefit from having diverging design 

possibilities later on, and would benefit from giving the end users control over their 

particular design. Therefore, it can safely be said that this design situation calls for the 

use of algorithmic design for the modeling of this product.   
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Application Form Abstraction 

 

Now that the decision to use algorithmic modeling has been made, there must be 

an attempt to define the parameters, geometry and methods used in the geometry through 

an abstraction before moving into the chosen VPL. This section will follow along the 

thought process of the algorithmic abstraction of our concept design. This will be 

presented as a series of drawings in order to help visualize the discrete steps, but in 

practice this is not entirely necessary.   

The general logic of this design will be to algorithmically create a full phone case 

first, then use the created geometry to isolate the surfaces that the ridges will be added 

onto later. To begin, it can be recognized that the overall dimensions of the phone case 

will be dictated by the phone which is to be used. This algorithmic system will attempt to 

be usable for several different sizes of phones so the length, and width of the phone case 

will be adjustable parameters. These parameters can be defined as the size of a 

rectangular surface which will serve as the base, seen in Figure 53.  

 

 

Figure 53: Base dimensions of the phone case as a surface. 
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Looking through the current phone market it’s evident that several brands have 

converged upon a similar design, which includes rounded corners on their phones. For an 

accurate footprint,  radii will need to be added to the corners of the base surface, which 

will also be an adjustable parameter for different models, shown in Figure 54.  

 

Figure 54: Base surface with added corner radii 

 

So, with a footprint constructed, next the sides of the phone case are created. 

These are usually a near constant radius which curves around the sides of the phone. This 

surface is defined with a sweep along the outside of the established footprint with a 

profile of an arc with a variable size. This swept surface is shown in Figure 55 with a 

section view of the arc used to sweep the profile.   
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Figure 55: Swept surface using arc to define phone case sides. 

 

Next, the sections of the surface that will be used for the ridges must be defined. 

The side surface must be split at variable distances from the edge of the case to form two 

new smaller surfaces, shown in Figure 56. The edges of these split pieces will later define 

the ridge workpiece.   

  

Figure 56: Phone case side surfaces split at a variable distance 
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With the two new surfaces created, now the curved edges can be used as a basis to 

form the new ridge surface workspace. It takes in the curved sides and creates lines from 

one surface to another to define this new surface, shown in Figure 57.   

 

 

Figure 57: Full ridge workspace surface. 

 

Now, it may be possible that this surface with the curves extending around the 

sides may be difficult to work with in the VPL, but this will be attempted anyways. If this 

surface does prove to be too unwieldy, it can be subdivided even further into a 

completely flat plane, shown in Figure 58.   
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Figure 58: Further divided ridge work surface 

 

Regardless of which method is chosen, the next steps will remain roughly the 

same. With the ridge work surface defined, the top view can be viewed to better 

understand it. The lines along the sides of the surface, and one in the middle of the 

surface, will be defined and shown in Figure 59. The start and end points of each of these 

lines will be variable but will likely need to have limits set on their locations. The sizes 

and locations of these lines will define the overall flow of the ridges along the back of the 

phone case. For example, if the lines are very short, and located only in the middle, then 

the ridges will occupy a narrow area in the middle of the surface. It is this variability that 

will actually allow us to create several of the finalized concepts from those that were 

developed earlier, since a few were all similar ridge systems, but with varying locations 

and ridge movements.   
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Figure 59: Ridge work surface with three variable lines defined 

 

Now with the sizes of the lines defined, each line can be subdivided into a series 

of points along its length. The number of points which subdivide each line will be the 

basis for the number of ridges on the surface; the more points there are, the more ridges 

will be created. It is also important to make sure that the number of points is the same on 

each line since they will be connected with splines. Therefore, each point has a 

corresponding point on another line to connect to.   

  

Figure 60: Surface with subdivided lines. 
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The next step is to take each of these points along the lines and connect them with 

a spline. The form of the ridges is starting to take shape, now. Each spline will define the 

center point of a ridge, but each spline may be a hill or a valley in this system.   

 

  

Figure 61: Splines connecting points along subdivided lines. 

 

Now, these lines need to be moved into three dimensions. This is done by moving 

the points on the middle row up a variable amount. Every other point will be moved in 

order to create the ridges.    

 

 

Figure 62: Surface with middle subdividing points moved vertically. 
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With these points now moved vertically, new splines can be defined that will pass 

through the points on the sides and the shifted middle points. It can be seen that 

although this method does form some ridges, more subdivided points are needed to 

achieve the desired wavy effect illustrated in the concept sketches.   

 

Figure 63: Splines running through the translated points 

 

From the top view, shown in Figure 64, it’s shown how each of the new splines, 

as well as the lines from the sides of the base surface, define a new network surface, 

creating the final ridged surface.    

 

Figure 64: Final ridged surface piece 
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The only thing left to do is to take this surface piece and add back in any side 

surfaces which were hidden or removed in the building process. Cuts or holes must also 

be defined, which will be needed for any cameras, charging ports, or fingerprint scanners. 

These will be defined by simple Boolean subtractions from solids which are placed at 

predefined locations based on the type of phone selected. Figure 64 shows the final 

abstracted form of the phone case, with full sides and cutouts.   

 

 

Figure 65: Finalized Phone Case Abstraction 

 

Through this abstraction process one can see how attempting to define the 

geometry using mathematical and geometric terms allows the designer to test the validity 

of their design for algorithmic systems without having to fully jump into the modeling 

process. The variables and steps which will be needed for the modeling process can also 

be defined and planned. After working through this abstraction, work in the chosen 

modeling environment can begin.  
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Application Modeling Implementation 

 

For the implementation of this algorithmic design, Grasshopper will be used as 

the chosen VPL. It is the more commonly used and written about software, so I believe 

that it is the better choice for a document such as this. This algorithmic nature of these 

systems means that the following construction is possible in other systems, but the minute 

details such as node or component names and small logical flows may be different.  

To begin, since each design will be for a particular brand of phone, it may be 

beneficial to start with a phone brand “selector” which will choose from several defined 

brands. For this project, three phone types will be used: the Apple iPhone XR, Apple 

iPhone XS, and the Google Pixel 3. Given what is known from the abstraction process, a 

few key dimensions for each phone are measured: the active area height and width, the 

thickness, and the radii of the corners of the phone. Using this information, a selector 

system is created which activates the associated dimension, for use in the algorithm, 

through the use of several Stream Filter components, shown in Figure 66. A Stream Filter 

component produces a defined output from a list based on a selected input. 
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Figure 66: Phone Selection and Stream Filter systems 

 

Once a phone is selected and the corresponding dimensions are activated, these 

dimensions are used to define the x and y coordinates of two points through a Construct 

Point component. A third point is defined at (0,0) for construction purposes. These points 

are then used as inputs for a Rectangle From 3 Points component. This creates a 

rectangular curve with one corner at the origin with dimensions equal to that of the 

selected phone brand.   
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Figure 67: Construct Points and Rectangle From 3 Points components. 

 

 

Figure 68: Rectangle Curve as a result of the Rectangle From 3 Points components. 
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Next, a curve which will define the round outside surface of the phone case must 

be made. To do this, a point is defined on the rectangular curve at a distance equal to the 

curvature of the phone’s corners. A second point is defined at the same location, but at a 

negative Z distance equal to the thickness of the selected phone. These two points are 

used to define an Arc component, which is tangent to the rectangle curve and has a 

diameter equal to the phone thickness, shown in Figure 69. A Fit Curve component is 

then used to change the Arc output to a general Curve output.   

 

 

Figure 69: Components defining an arc 

 

 

Figure 70: A defined curve the same thickness of the selected phone case 
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Next, the rectangular curve is used as an input for the Fillet component, which 

places radii on each of the corners equal to the phone corner radii selected. This new 

filleted curve is used with a Boundary Surface component to create a surface in the shape 

of this filleted curve, shown in Figure 71.   

 

 

Figure 71: Fillet & Boundary Surface components. 

 

Figure 72: Surface of the filleted curve 

 

This filleted surface created is a defined “back” of the phone case, but the other 

surfaces still must be added to form the initial geometry of the full phone case. Using 
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both the arc shaped curve and the filleted curve created earlier, a Sweep 1 Rail 

component can be used to define the “side” of the phone case. The filleted curve is used 

as the rail, and the arc is used as the sections.  

 

 

Figure 73: Sweep 1 Rail component 

 

 

Figure 74: Sweep of arc around filleted curve. 
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In order to create the rounded work surface of a variable size on the back of the 

phone case, this sweep needs to be split at certain points in order to create edges to work 

from. To do this, an Iso Curve component is used to define two curves on the rectangular 

surface at specified distances along its length. These curves are then extended past the 

limits of the sweep using an Extend Curve component. These two curves are then 

extruded into a surface in the negative Z direction, so that the surfaces fully intersect with 

the swept surface. In order to make sure that the surfaces are the appropriate sizes, the 

Extend Curve distance and Extrude Curve distances are equal to the selected phone 

thickness. This ensures that the surfaces always fully intersect with the swept surface. 

The full components for the creation of these surfaces are shown in Figure 75.   

 

 

Figure 75: Components for defining extruded surfaces at specified distances along a line, 

which intersect with the swept surface.  
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Figure 76: Swept surface with two intersecting surfaces. 

 

These surfaces will be used as inputs for a Split BREP component, which takes in 

a BREP to be split, and a surface which will define the location of the split. The output of 

the Split BREP component includes each piece of split geometry in a list.  For this case, 

the BREP to be split is the swept surface, and the splitting geometry will be each of the 

two surfaces. The Split BREP component can only receive one “Cutter” geometry at a 

time, so the Split BREP component is used twice, once on the initial cut, and then again 

with the appropriate remaining surface from the first Split BREP command. In order 

to select an item out of a list, a List Item component is used. It uses a list and index 

number as inputs in order to output the item in the list at the desired index. The List Item 

component is useful for selecting a single item out of a list of items and will be used 

extensively throughout this project. In this case, it is used to select the desired surfaces 

which are output from the Split BREP components.   
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Figure 77: Split BREP components with List Item component selectors 

 

The result of this series of components is two end surfaces to the phone case split 

at defined locations, shown in Figure 78. 

 

 

Figure 78: Two end surfaces of the phone case 
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Now that these surfaces are made, the edges of the surfaces can be used to define 

the curved surface in the middle. To do this, points at the ends of the edges will need to 

be selected and then a line will be constructed between these points. To select the desired 

edges of these surfaces, the Deconstruct BREP component is used, which takes in a 

BREP and outputs lists of all the contained Faces, Edges, and Vertices of the geometry. 

One could be curious as to why one would select the Edges of the surface to get specific 

corner points instead of just using the defined Vertices. A difficulty of working with 

this particular algorithmic system is that at different sizes, the direction of certain 

parameters of surfaces, such as u and v directions or normal directions, could reverse. It 

was found that at different Split BREP locations, the selected points from the Vertices 

lists would flip sides, creating an inconsistent algorithmic code. To work around this, the 

edges are selected, then the Curve Closest Point component is used, which takes in a 

curve and a defined point, and outputs the point which is located on the curve  closest to 

the defined point. This work-around assures that no matter the size of the surface or 

surface directions, the same point on the edges are selected each time. For this case, the 

defined point for the Curve Closest Point component is the origin and the Curve inputs 

are the desired edges of the surface. The two points created by the Curve Closest Point 

components are used as start and end points on the Line component, and then this line 

and selected surface edges are combined with the Join Curves Command. Another 

surface edge along with this combined curve is used to sweep the final surface.   
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Figure 79: Deconstruct BREP, Curve Closest Point, Join Curves & Sweep Components  

 

 

Figure 80: New middle swept surface with end surfaces on the sides  

 

This particular method of creating a surface assures that the surface wraps around 

the sides of the phone case and matches the curvature of the previously defined sweep 

surfaces. The next step of this process is to attempt to create isolines along this surface. 

What is quickly evident, though, is that this particular curved surface has some issues 

with the distribution of its isocurves, perhaps due to it being created from several joined 

curves. The components shown in Figure 81 creates isocurves along the curved surface 

by using a Range component to create a set of numbers evenly spaced from 0 to 1. These 

numbers then define the V coordinates in an Iso Curve component.  
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Figure 81: Components creating a set of 75 Iso Curves from 0 to 1 V values. 

 

The result of these components is a series of Iso Curves on the surface, shown in 

Figure 82. It is apparent that although the isocurves values are evenly spaced, the actual 

distribution on the surface is not evenly spaced, with far more isocurves located on the 

curved portions than in the middle sections.   

At this point the decision was made to switch methods and use a flat surface 

instead of a curved surface. This method will not allow for any ridges to be made on the 

sides of the phone case but may save time and effort in trying to work around 

this particular problem.  

 

 

Figure 82: Uneven distribution of Iso Curves on surface 
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After backtracking a bit to the BREP splitting portion of the code, a similar 

method is used by inputting the Swept surfaces as the BREP and planar surfaces as 

splitting tools. This time, additional cuts are made to further subdivide the surfaces. More 

List Item components are added so that all the pieces of the divided surfaces are 

contained and easily found later on if needed. This new organization is shown in Figure 

83.  

  

 

Figure 83: New Split BREP and List Item structure for a flat surface method. 

 

 The subdivided and organized surfaces, shown in Figure 84, have only the flat 

middle work surface left to define, but the edges of the other surfaces will help.  
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Figure 84: Split BREP surfaces with missing center surface 

 

To get the center surface, the edges of the other surfaces can be found by 

deconstructing the individual surfaces surrounding the center. These edges are then used 

as inputs for an Edge Surface component, which creates a planar surface from a series of 

input edge parameters. Additionally, the other surface pieces are collected into a single 

Geometry component, shown in Figure 85. For the time being, these surfaces aren’t going 

to be used, and the rest of the algorithm will focus on the newly created Edge Surface. 

It’s also worth noting how, at this point, the algorithm has almost contracted into a single 

component. Organizing and narrowing down the focus of the algorithm periodically, 

when possible, is helpful for understanding the next steps in the process, and for creating 

branching points for diverging designs. Now that everything is organized and the surfaces 

have been created, this section could be revisited later with a different design intention in 

mind. For now, the algorithm will attempt to continue following the original design 

intent.   
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Figure 85: Creating the Edge Surface and organizing other surfaces. 

 

The result of the most recently created components is shown in Figure 86, with 

the collected surface geometries shown in red, and the new edge surface workpiece 

shown in green.  

 

 

Figure 86: Collected surface pieces and planar surface workpiece 
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Now, everything but the planar surface workpiece will be hidden so it, alone, can 

be focused on. If one recalls the abstraction plan, the next set of steps will create lines 

along the sides and middle of the surface with variable sizes. To begin, the edges of the 

surface are found by deconstructing the BREP, and a middle line is defined by an 

isocurve at where U and V equal .5. This process is shown in Figure 87. What is also 

shown are additional Reparameterize Curve components which take the global 

coordinates of the line input and output a line whose points can be found from a 

parameter from 0 to 1.   

 

 

Figure 87: Creating lines on sides and middle of surface.  
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Figure 88: Surface with lines on sides and middle of surface 

 

Now that the lines have been established, a system to adjust the size of the lines 

must be created. Using a VPL, and coding in general, offers many different avenues to 

accomplish the same action. At first glance it may seem that the easy solution would be 

to use a Scale component along an axis to change the size of the lines. This could work, 

but the design intent is to be able to set a distance from each edge. So instead, a Shatter 

component is used. Shatter takes in a line and a parameter distance along its length and 

splits the line at that point. By splitting each line using two points, three shattered lines 

are created. By selecting the middle line, a line defined by a distance from each edge is 

created. This line is then run through a Divide Curve component, which divides a curve 

into a specified number of points. In order to transfer the points from the lines to points 

on the surface a Surface Closest Point component is used. This system of creating lines 

and defining points on the lines is shown in Figure 89.  



 114 

 

Figure 89: Defining lines and dividing them into points. 

 

 

Figure 90: Truncated lines along the edges of the work surface with point divisions. 
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In the algorithmic abstraction, splines were added at this time to connect the 

points together. Instead, this system will move the center points vertically before 

attempting to create a spline between them. Adding the splines now and after the points 

are moved would be a bit redundant so they will just be moved for now.   

To move the points to form the ridge pattern, every other point must be moved a 

specified distance in the positive Z direction. First, a patterned list must be created. By 

using a Merge component, to combine the desired distance and 0, a two-item list is 

created. This list is repeated with a Repeat Data component which runs for the length of 

the number of points. This creates a list of alternating values between the desired moving 

distance and 0, corresponding to each point. This distance list is used as an input for a Z 

vector which is applied to the Motion input of a Move component. With an input of the 

point list, each point as a translation applied to it based on the repeated pattern. The result 

is that every other point is moved in the vertical direction.   

 

 

Figure 91: Repeat Data and Move Geometry to create alternating movements 
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Figure 92: Points moved vertically in an alternating pattern. 

 

At this point it was decided that the system could use an optional expansion 

beyond what the original abstraction showed. The set of points in the middle of the 

surface would define the center point for the splines. Since splines can take in multiple 

points, why not add more lines and points in between the edges and the center? This 

could create more complex shapes and could be easily turned off if the user preferred the 

original option. Where the middle line was created by an isocurve at .5 along the surface, 

two more isocurves will be added at .2 and .8. Its lines will also be truncated and split 

into a series of points. Now there are five total lines; three in the middle of the surface 

and two lines on the edges. The code from Figure 91 will be repeated three times for each 

set of the middle points. The points along the sides do not undergo any transformation, so 

the code is not applied to them. These transformation sequences are organized in Figure 

93, where Geometry components containing each set of points are lined up in order on 

the left, fed into needed transformation systems, and then output to a geometry node on 

the right. To help keep track of the points, the sets of points are organized sequentially, 

with the first edge corresponding to the top row of geometry, the first set of points at .2 
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isocurve as the second row, the middle line at .5 isocurve in the middle of the stack, then 

the .8 isocurve line next, finishing with the opposite edge curve on the bottom. This 

system may look complicated at first glance, but reading each row from left to right 

shows that it simply transforms the middle three lines in ways which have already been 

explained.   

 

 

Figure 93: Transformation systems for each line on the surface. 
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Figure 94: Complete set of transformed points with newly added lines. 

 

Now that the points have been fully defined, the splines can be run through each 

set of points. Figure 95 shows how the Interpolate (tangency) component is used to 

accomplish this. For this example, the two additional lines which were added in the 

previous section have been disabled for simplicity; their nodes and connecting lines have 

now turned orange and can be ignored. The Interpolate component takes in a set of 

vertices to run the spline through. In this example, the lists of points from the first edge, 

the middle line, and the final edge are placed into the vertices input. Since it is taking in 

three different lists of the same length, it will apply the Interpolate component to the 

corresponding items in each list. So, the first items in each list have a spline put through 

each of them, as do the second, third and so on. This Interpolate component allows for 

tangencies to be defined as well. For the sake of a better design it would be beneficial to 

have the ridged surface match with the surrounding surfaces as smoothly as possible. The 

tangents will be defined as the Y direction so that the splines end and start 

perpendicularly to the sides of the surface. The Match Tree component shown is a tool 
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which allows for the tree structure of a list to be remapped to match a chosen list. This 

was done because, during the movement and organizing process, the middle list of 

points’ tree structure changed. Matching this changed structure to the unchanged edge 

points lists is a simple way of making sure the lists will have the same structure 

before entering into the Interpolate component.   

 

 

Figure 95: Interpolate component creating splines between edges & middle points 

 

 

Figure 96: Splines through edge and middle points on surface 
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To illustrate how the system looks with the additional lines, they have been 

reactivated for Figure 97. The additional lines add more complexity but create more 

variability between designs.  

 

 

Figure 97: Splines through edge and all middle points on surface 

 

Now that the splines in one direction have been created, the splines in the other 

direction between each of the points must be created as well. This is accomplished in 

Figure 98, which is the most complicated looking set of components so far but is actually 

rather simple.  The top and bottom edges must be divided along their length to match the 

locations of the truncated lines created earlier; this is done using several Point on Curve 

components shown in the first red box on the left in Figure 98. These points must be 

inserted in the list of points along each truncated line at the beginnings and ends. The 

second red box in Figure 98 shows how the Insert Item components are used to do this. 

Insert Item takes in a list, an item, and an index inputs and outputs a new list with the 

same values as the original list but with the input item at the location of the input index. 
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This process is repeated for each set of points. The final red box in Figure 98 on the right 

shows a series of Interpolate components which take in each set of points and create a 

spline through each set. These splines need to be tangent to X direction to maintain as 

smooth of a transition as possible.   

 

 

Figure 98: Creating splines along point sets in the other direction. 
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Figure 99: Splines along point sets in the other direction 

 

Splines through the 5-point sets have been created in both the U and V directions. 

These spline sets are then combined into Curve components for organization purposes. 

Each set of curves is now used as the U and V inputs for a Network Surface component, 

which takes in curves from the U direction and the V direction and attempts to create a 

surface along all of the input curves.   
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Figure 100: Network Surface component taking in all defined Interpolate splines 
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Figure 101: The final ridged network surface with showing interpolate splines. 

 

The surface now has enough variability to fit our abstraction concept, but it can be 

pushed further. Next, an attractor system will be used to define the height of a ridge point 

as a function of the distance away from a defined line across the surface; Figure 102 will 

show this process. The first red box in Figure 102 defines an isocurve along the surface at 

a certain point using an Iso Curve component. The second box takes in a set of points and 

measures the distance from the points to this new isocurve with a Distance component. A 

Remap Numbers component is used to reparameterize the distance of each point to the 

isocurve as a number from 0 to 1, with points closer to the isocurve being associated with 

0 and points further from the isocurve associated with 1. This 0 to 1 range is now 

multiplied times the height of the Z transformation used for the points, meaning that 

points closer to the isocurve have their heights multiplied by 0 or a very small number 

and points further away from the isocurve have their heights multiplied by larger 

numbers like .9 or 1.   
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Figure 102: Creating an isocurve and using the Remap Numbers component 

 

If the defined isocurve is set all the way to one edge of the surface, it can be seen 

how this attractor affects the heights of the points as they get further away from the 

curve. This is shown in a side profile in Figure 103. 

 

 

Figure 103: Side profile showing the effect of the attractor system. 

 

 Now all the components have been put in place to create the full form of the 

surfaces which make up the phone case. By showing the ridged surface as well as the 

other previously created surfaces, the whole form can be viewed in Figure 104.  
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Figure 104: All created surfaces of algorithmic phone case.  

 

Next, the cut-out features for the cameras, power buttons, volume buttons and 

charging ports must be defined. Each cutout will be created using a slot shaped curve. 

Each slot is created using two arcs that face each other and have connecting lines 

between their ends. Using the dimensions of the cell phone size from the very beginning 

of the algorithm, certain measurements can be taken, with adjustments, to define the 

location and size of the slot. It was the intention that the algorithm work even for circular 

features, where the distance between the arcs would be equal to zero. Figure 105 shows 

the entire slot curve defining process, starting with constants which change depending on 

the given phone, constructing the arcs, connecting the arcs with lines, and then joining 

the curves together.   
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Figure 105: Slot shaped curve defining process 

 

 

Figure 106: Green camera slot Curve on phone case surface 

 

 Once the curve has been defined, it can be extruded from the surface in the +Z 

and -Z  direction, and joined in order to form a surface BREP, shown in Figure 107.  
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Figure 107: Extruding the slot curve and creating a surface BREP 

 

 

Figure 108: Solid BREP slot extrusion intersecting the phone case.  

 

The slot defining, extruding, and BREP creating process is done for each required 

cutout. Figure 109 shows the entire system; although it looks complicated, it is the same 

process shown previously, just repeated for different locations on the phone. Some of the 

cutouts are only for certain phone types, such as the Google Pixel phone’s extra circular 

cutout in the middle of the phone case that the iPhone models do not have.   
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Figure 109: Complete slot extrusion creation system 

 

 

Figure 110: Phone case with all slot extrusions defined. 

 

With all of the extrusions created, they must now be used in conjunction with a 

series of Split BREP components to remove surface pieces from the phone case. Each 
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usage of the Split BREP component creates a new BREP, which is then used as an input 

for the next Split BREP component and so on, until all of the extrusions areas have been 

removed, resulting in the final form shown in Figure 112.   

 

 

Figure 111: Series of Split BREP components removing slots from the phone case 

 

 

Figure 112: Full algorithmic phone case surface with slots removed 

 

With this final surface, the end of the algorithmic process has been reached for the 

current design intention. However, as previously mentioned, one of the benefits of the 

algorithmic design process is the ability to make diverging design paths. This particular 

design created a work surface on the back of the phone case during the building 
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process that is altered using the ridges and then placed back into the phone case with the 

rest of the surfaces. With algorithmic design, this work surface can be easily found and 

used to work towards creating an entirely different design direction.  Figure 113 shows 

the entirety of the algorithmic design in Grasshopper and has a red circle showing where 

the work surface was created, before any of the ridge creating features were added.   

 

 

Figure 113: Entire algorithm with work surface highlighted 

 

 

Figure 114: Showing single surface component containing work surface 
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Figure 115: Single work surface before ridges were defined 

 

When this surface was created, it was mentioned that it could be used at a later 

time for all manner of different designs. An alternate diamond pattern design will be 

applied to this surface now, and then it will be integrated back into the algorithmic flow. 

By taking this work surface and using a Diamond Panel component, downloaded as part 

of the Lunchbox Grasshopper plug in, a diamond grid of a specified number of divisions 

can be constructed on the surface. Scaling each diamond down around each diamond’s 

center creates a second set of smaller diamonds.   

 

 

Figure 116: Diamond panel and scaling process. 
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Figure 117: Diamond Paneling with scaled diamonds 

 

Each of the scaled diamonds are moved in the positive -Z direction, and the edges 

of each diamond panel are extracted using a Deconstruct BREP component. The edges of 

the larger diamonds and the smaller translated diamonds are lofted together, capped, and 

then joined back together. This process is shown in Figure 118, along with an additional 

attractor system shown in the pink box. This attractor system works in a very similar way 

to the one described previously, changing the translation distance of each moved, scaled, 

diamond panel. The reader can review the details of this whole system in Figure 120, but 

the main takeaway is that a system with an entirely different design intent can be created 

in parallel with the other original design, using geometries defined by the original 

design.   
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Figure 118: Entire diamond panel algorithmic system. 

 

 

Figure 119: Final diamond paneling surface with attractor system 

 

This diamond paneling system is then integrated back into the original system 

with minimal difficulty. It is placed just before the slot extruding systems are used to 

create the feature cuts. It is integrated using a stream filter connected to a Boolean Toggle 

component so the switch from one design system to another can be done with the click of 

a button.   
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Figure 120: Diamond paneling system integration. Entire diamond paneling portion 

shown in the blue container box above original algorithm. 

 

 

Figure 121: Completed diamond paneling option for phone case  

  

With the final algorithmic system complete, the only step left is to organize it so 

that it is easy to understand and use if time has passed or if another person needs to use 
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the system. This involves straightening lines of components, organizing components in to 

groups, and naming groups with their functions. The variable components which define 

the shape and style of the phone case were also found and brought to the very front of the 

model so that anyone could immediately begin attempting to adjust settings, shown in 

Figure 122. These adjustable parameters are not the only ones included in the model but 

were the ones specifically chosen to be controlled by the user. Changing these variables 

generally does not break the system in any way.  



 137 

  

Figure 122: Adjustable settings for algorithmic phone case 
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After testing different options and combinations of variables in this system, the 

overall construction seems fairly robust. In some variations, the surface directions may 

flip, causing problems further down the line resulting in a broken model, but usually 

slightly adjusting the size of any number of dimensions can fix this without deviating 

far from the design intent. The following Figures will show the different variation 

possibilities for certain parameters with everything else remaining constant. Firstly, the 

algorithm allows the user to choose which phone they will be using and adjusts the model 

accordingly.  

 

 

Figure 123: Different phone model choices 

 

The algorithm then lets the user specify the size of the workspace on which the 

ridges will be built. Figure 124 shows how the workspace is increasingly moved toward 

the top of the phone, shrinking the space the ridges occupy.  
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Figure 124: Variable ridge workspace sizes 

 

The algorithm then allows the user to define the number of ridges used in the 

model by adjusting the number of line divisions used. This adjustment can create a great 

number of design variations with drastically different looks. Figure 125 shows how using 

a few ridges creates a flowing, subtle surface, where using many ridges can create a 

rougher, sharper surface.  

 

 

Figure 125: Varying number of ridges 
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The locations and size of the lines used along the edges and middle of the surface 

that define the control points for the splines which the ridges follow can be adjusted as 

well. The lines can be compressed or expanded and moved up and down the sides of the 

phone case. Figure 126 shows different variations of lines and how it effects the ridges. 

The first model on the left has a compressed left line, which is lower than an expanded 

right line. The middle model has an expanded left line which is higher than a compressed 

right line. The right model has both compressed left and right lines, but an expanded 

middle line. This is an area of great variability, allowing the user to greatly experiment 

with the design of the case.   

 

 

Figure 126: Variations in lines that define ridge spline control points. 

 

  



 141 

Additionally, more spline control point lines can be added into the model, with 

two optional lines added at 20% and 80% of the width on either side of the middle line. 

The addition of these lines can create more chaotic looking splines but, adds a greater 

depth of control over the ridges.  

 

Figure 127: Left: Model with left, middle, and right control lines. Right: model with left, 

20%, middle, 80% and right control spline lines.  

 

 The last major adjustment allows the user to define the maximum distance that the 

ridges will move off of the surface of the model. Again, choosing a small distance creates 

a subtler design while choosing a larger distance creates a more distinctive look.  
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Figure 128: Variations in ridge height 

 

All of these variations, when put together, can create a large variety of choices for 

the user to define for the final result of the algorithm. While the “inventive” approach of 

algorithmic modeling is restrictive in the sense that the designer must define the limits 

and capabilities of the algorithm, it can allow for a great amount of different design and 

iterations to be developed, as evidenced in Figure 129.  
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Figure 129: Many different design iterations from the same algorithmic system 

 

It has been shown that the building process of the algorithmic system, while it 

does have some minor problems, was a generally straightforward process once the 

abstraction was developed. The success of this model does not guarantee that the 

algorithm was the most efficient method of creating this geometry, but it does accurately 

follow the abstraction process and original design intention. The entirety of the 

Grasshopper model can be found at:  

https://drive.google.com/drive/folders/1_iYBf6XisuOJ3Yhe0WXgLgz12W5Bn9bP?usp=

sharing 

 

Application Model Integration 

 

Now that the algorithmic design is completed, it must be extracted from the 

system. By using Grasshopper as the chosen VPL modeler, this is a fairly simple process. 
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Any component containing geometry can be selected and “baked” directly into the Rhino 

environment. By doing this with the last component of the phone case algorithm, an 

open polysurface is created in Rhino, shown in Figure 130 next to the Grasshopper 

preview surface shown in red.   

 

 

Figure 130: Baked geometry in Rhino environment. 

 

This polysurface has no thickness, so standard Rhino tools must be used to fix 

this. Offset Surface is used to thicken the surface a defined amount. Interestingly, an 

outward offset tends to remove particular surfaces from the geometry, while an interior 

offset works consistently; this means the original dimensions of the phone case may need 

to be adjusted to allow for the interior offset size. Regardless, the phone case is now a 

complete, closed, solid body. This means it can be exported to any number of 

programs. In order to further adjust this particular model, the solid is exported as a .STEP 

file and imported into Autodesk Fusion 360.   
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Figure 131: Phone case model in Fusion 360 

 

The solid model can have any number of adjustments made to it, including fillets, 

cuts, joined extrusions etc. Figures 132 and 133 show fillets being added to the model 

and details like brand names being cut away, respectively.   

 

 

Figure 132: Fillets being added to corners in Fusion 360 
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Figure 133: Brand name added from extruded cuts. 

 

In addition to transferring the design into other modelers, it can also be exported 

into as a mesh for use in rendering environments.  In this case, the model was exported 

from Fusion360 as a mesh in a .OBJ file and imported into Keyshot where it is rendered, 

just as any model would be. This mesh exporting process can be done directly from the 

baked Rhino model, as well, to save time.  

 

 

Figure 134: Keyshot rendering of exported model. 
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Finally, the model can also be exported as a .STL file for use in 3D printing, 

shown in Figure 135, where it has been imported into Ultimaker Cura, a 3D printing 

software.  

 

 

Figure 135: Model in Ultimaker Cura, preparing to be 3D printed. 

 

Application Summary 

 

This project worked through the entire design process from ideation to a fully 

developed 3D model and form for the creation of a phone case. By following the 

guidelines defined in this document, a concept was developed, and the design situation 

surrounding it was evaluated according to the considerations listed to determine its 

validity for algorithmic modeling. Once the design was deemed to be appropriate, an 

abstraction for the algorithmic process was formed for the creation of the model, through 

simple sketches. Now that a roadmap for the algorithmic design was created, 

Grasshopper was used as the chosen algorithmic modeler to define the phone case. By 

building this system, the desired design was algorithmically defined along with additional 
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parameters not initially in the abstraction and the algorithm easily allows for diverging 

design systems to be created. The algorithm has minor issues related to surface flipping 

at specific parameters and some testing will be needed to determine if the hard-coded 

sizes of the phone dimensions are accurate, but overall, the algorithm performs as 

expected and can create a large variety of models that reflect the original design intent. 

The first output of the system, the phone case model, can easily be integrated into other 

modelers, renderers, and 3D printers. The second output, the algorithm itself, is organized 

well, provides great variability to the user, and should be able to be created in other 

algorithmic systems that follow its logical flow.   
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Chapter 6: Conclusions 

 

Summary 

 

This thesis was written to explore the definition of algorithmic design and its 

place within the industrial design process. Humans have always needed plans for how to 

build things, but the methods by which they create and translate their plans have 

continually changed. Plans or instructions on how to complete any process are algorithms 

and recent technologies and programs have emerged which allow algorithms to define 

geometries easier than ever before and to use those computer-defined geometries as direct 

inputs into the manufacturing process. The algorithmic modeler and the algorithmic 

modeling process are somewhat foreign to the typical industrial design education and 

skillset and are processes which consume far more time in their use than traditional 3D 

modelers.   

Given these difficulties, this thesis provides guidelines for the practical use of 

algorithmic modeling as part of the typical industrial design process. First, a concept 

must be developed through traditional industrial design methodologies: research, 

sketching, iteration etc.  Once the final concept is selected, it must be evaluated for its 

viability as a candidate for algorithmic modeling, using several considerations of the 

design and the design situation it is placed in. If it is decided that algorithmic modeling is 

appropriate, the designer must form an abstraction of the algorithm to be used in the 

modeling software, and then the chosen algorithmic modeler must be used to define the 

model before outputting a final geometry for use in other softwares and systems.   
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This thesis also provides explanations of common algorithmic terms which may 

be helpful when working through the abstraction process and may provide insight into 

how different algorithmic modeling components operate. Also provided are examples of 

several commonly used algorithmic techniques which may serve as starting points for 

future designs or merely to show steps which can be used in other modelers.   

This thesis demonstrates that algorithmic design can be efficiently used in the 

industrial design process and provides a detailed look at an industrial design case study of 

the creation of a smart phone case design. It was shown that the guidelines provided 

effectively determine whether a project is suitable for algorithmic modeling and an in-

depth look at a Grasshopper modeling process was performed, resulting in the creation of 

a successful phone case modeling algorithmic system.  

 

Future Research 

 

This thesis focuses on the “inventive” side of algorithmic modeling, as compared 

to the “discovery” side. Future additions to this work could determine what conditions 

and methods are required for effective use of truly generative design systems and whether 

or not these systems are effective at outputting designs that match the designer’s 

intention. Often generative design systems have unpredictable or very organic looking 

outputs, as is their nature, but an evaluation of their output as a product or merely as a 

learning tool for other designs could be beneficial to their use in industrial design. 

Additionally, the nature of algorithms allows for expansion into design territory that isn’t 

3D modeling based, so work could be done in the fields of graphic design, AI, 

organization and more. 
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