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ABSTRACT 

 

The observation of the behavior of concrete gravity dams that are exposed to seismic loads 

is the main factor for the safety evaluation of the dams. In this regard, dam-foundation-reservoir 

interaction can be seen as one of the most significant concerns for the determination of dam safety. 

Moreover, hydrodynamic pressures may present because of dam-reservoir-foundation interaction 

and dynamic loads. As a result of this situation, hydrodynamic forces should be included in the 

safety evaluation to obtain more accurate seismic responses of dams. The dynamic response of 

gravity dams can be sufficiently illustrated using two-dimensional finite element analysis in the 

plane strain condition. This research provides both linear and nonlinear dynamic analyses of a 

roller-compacted concrete gravity dam considering the soil-structure-fluid interaction by using 

ANSYS 17.1 software. To evaluate the impact of hydrodynamic pressures on the dynamic 

response more accurately, different water modeling approaches (Westergaard and Euler) and an 

empty reservoir condition are used. Furthermore, the effects of foundation flexibility, Poisson’s 

ratio, and the presence of alluvium on the seismic response are observed. Nonlinear analyses of 

the dam are performed using the Drucker Prager model. Based on the US Army Corps of Engineers 

(USACE) criteria, the seismic responses of the dam in terms of acceleration, displacement, and 

principal stresses are assessed. Additionally, the influence of the various parameters on the modal 

response of the dam is evaluated regarding natural frequency, the effective damping ratio, and 

Rayleigh coefficients. 

The research reveals that obtained results related to 1st principal stresses from linear 

transient analyses are significantly higher than the results of nonlinear time-history analyses. On 

the other hand, linear time history analyses considerably reduce the 3rd principal stresses 
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compared to nonlinear dynamic analyses. However, linear analyses are useful methods to predict 

the displacements and accelerations on the crest of the dam because the results are substantially 

similar to the outcomes of nonlinear analyses. Based on the attained seismic responses of the Narli 

Dam from nonlinear dynamic analyses,  maximum and minimum principal stresses never exceed 

the tensile and compressive strength of concrete. It can be concluded from the analyses that the 

heel of the dam is the high-stress region in terms of tension while the toe of the dam is more 

susceptible to compressive stresses. Hydrodynamic pressures significantly influence both the 

modal and dynamic responses of the dam. When the reservoir is considered in the finite element 

modeling and compared with the empty reservoir condition, tensile and compressive stresses grow 

up to 70%. On the other hand, the difference in the outcomes of Euler and Westergaard methods 

is approximately 10%. The foundation flexibility has a massive influence on the dynamic features 

of the dam and alters both the modal and seismic response of the dam. Highly flexible foundations 

suffer from excessive principal stresses. As the rigidity of the rock increases, the tensile and 

compressive stresses on the dam body decrease up to 50% and 70%, respectively. Furthermore, 

the Poisson’s ratio of the foundation is the more effective factor that influences the seismic 

response almost 10% more than the Poisson’s ratio of the concrete which alters the seismic 

response about 5%. If the thickness of the alluvium increases in the dam site, the dynamic response 

can change up to 10%. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General 

Dams have enabled a great contribution to the improvement of civilization over time and will 

continue to meet increasing requirements for power, irrigation, and drinkable water supplies. 

Moreover, dams are responsible for the preservation of lives, properties, and surroundings from 

disastrous floods. Concrete gravity dams, which are large hydraulic structures, are designed to 

enable flood control, irrigation, power generation, and other purposes. Using their own weight, 

they resist the external loads and protect their stability. Gravity dams must have enough strength 

to withstand both normal and extreme loads. While some gravity dams have a vertical face on the 

upstream side of the dam, others can have a light slope. On the other hand, the incline for the 

downstream side of the dams can differ between “0.7: 1’’ and “0.8: 1’’. 

Roller-compacted concrete is used to build gravity dams because it results in fewer 

construction costs (e.g. material savings), and faster construction compared to earth-fill and rock-

fill dams. Seismic analyses of RCC dams are often required to avoid the collapse of the structure 

which leads to excessive damage to properties and the loss of life. Cracking due to high principal 

stresses on the dam body is the most crucial safety issue when gravity dams are subjected to 

earthquakes.  
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One of the significant aims of performing a dynamic analysis is to determine the cost-effective 

design of a dam. Furthermore,  the seismic analysis of concrete gravity dams should consider dam-

reservoir-foundation interaction to determine the effects of foundation flexibility and water level. 

Therefore, dam-foundation-water interaction should be evaluated to obtain the most accurate 

results during time-history analyses (Chopra and Lokke, 2015). Moreover, hydrodynamic forces 

happen on the upstream face of the dam body due to the oscillation between the dam and reservoir 

and should be included in the analysis. 

Dynamic analysis methods are associated with the dynamic features of the dam-foundation-

water system, and ground motions determined for the construction site. Due to the rapid 

improvements of computer technology, the finite element model is widely used for not only linear 

dynamic analysis but also nonlinear analysis. Analysis results should include displacements and 

accelerations of the dam crest and principal stresses on the upstream and downstream faces of the 

dam. After completing the analyses, the determination of the over-stressed regions plays a 

significant role in estimating the possible cracking points on the structure. 

The safety evaluation of the seismic response is a complex process and depends on some 

important factors such as using a proper model, boundary conditions, material properties, and the 

foundation-dam-water interaction. During the 20th century, several seismic analyses of concrete 

gravity dams have been performed to understand how the dams behave towards the ground 

motions. According to previous records, the failure of dams generally occurs because of foundation 

issues (e.g. rigidity of the rock), bad construction, insufficient spillway, strong earthquakes, etc. 

(Thandavesware, 2009) 

Some important examples of strong ground motions that have affected the dams across the 

world are described below: 
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1. The Crystal Springs Dam (California) is a 46.9 m high curved gravity dam that resisted 

the 1906 San Francisco Earthquake (moment magnitude M8.3, estimated) without any 

obvious damage (FEMA, 2005). 

2. The Koyna Dam (India) is a 103.6 m high concrete gravity dam which withstood the 

Richter Magnitude M6.4 earthquake in 1967. While the peak horizontal acceleration was 

0.51g, the peak vertical acceleration was determined to be 0.36g. Significant cracks have 

occurred on both upstream and downstream surfaces of the non-overflow sections. On the 

other hand, there were no cracks on the overflow sections of the dam. After performing the 

dynamic analysis of the dam, the results demonstrated that tensile stresses of non-overflow 

sections passed the tensile strength of the concrete up to three times. However, the tensile 

stresses of overflow sections were almost equal to the tensile strength of the concrete 

(FEMA, 2005). 

3. Hoover Dam (Nevada) is a 221.2 m high gravity-arch dam which experienced the Richter 

Magnitude M5 and survived without any cracking (FEMA, 2005).  

4. Sengari and Aono (Japan) are concrete gravity dams which were influenced by the Richter 

Magnitude M7.2 in 1995. The dams did not experience any damage due to ground motion 

because the dams are located on the sufficiently rigid foundation and felt minimal impacts 

of the earthquake (FEMA, 2005). 

5. Shih Kang (Taiwan) is an example for the failure of a concrete gravity dam based on  past 

records. The dam has a 21.4 m height and was affected by the Richter Magnitude M7.6 and 

failed under the 0.51g PGA in 1999 (USSD, 2017). The dam was also affected by fault 

rupture. 
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1.2  Objectives 

The main objectives of the thesis are: 

1. To determine the dam-foundation-reservoir interaction effects on the seismic response of 

the concrete gravity dam. 

2.  To identify the hydrostatic pressure effect on the earthquake analysis of the concrete 

gravity dam by using both the empty reservoir and full reservoir conditions. 

3.  To evaluate the durability of the dam using both linear and nonlinear dynamic analyses 

when the structure is subjected to several earthquakes. 

4.  To find out the impact of the foundation flexibility on the linear response of the structure. 

5. To determine the influence of the Poisson’s ratios on the dynamic response of the concrete 

gravity dam using linear time-history analysis. 

6. To obtain the changes in the behavior of the dam under the presence of different alluvium 

thicknesses via linear dynamic analysis method. 

7. To propose a theory on the proper combination of foundation flexibility, Poisson's ratio, 

and alluvium thickness. 

1.2 Scope of the Research 

The research has been reported in six chapters, and a summary of each section is described 

below. 

Chapter 1: This section contains a brief explanation about the general characteristic features 

of concrete gravity dams, the need and objectives of carrying out the research, and some significant 

examples of occurred earthquakes that have impacted the dams. 



5 
 

Chapter 2: This chapter comprises a literature review of essential studies and methods which 

are relevant to concrete gravity dams. 

Chapter 3: This chapter includes the modeling of the Narli Dam considering structure-fluid-

foundation interaction. 

Chapter 4: This chapter deals with modal, linear, and nonlinear dynamic analyses of the 

roller-compacted concrete gravity dam. 

Chapter 5: This section includes the influence of several parameters on the seismic responses 

of the dam.  

Chapter 6: This chapter summarizes the whole research and shows significant conclusions 

attained from the thesis. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Review of Past Studies on the Dynamic Behavior of Dams 

 Some researchers have already worked on the seismic behavior of dams considering dam-

reservoir-foundation interaction based on distinct water modeling techniques. Westergaard (1933), 

for example, performed the first hydrodynamic analysis for the dam-fluid systems and assumed 

water is incompressible. He came up with the idea that the effect of the reservoir should be created 

by added mass on the dam body to evaluate the linear response of the structure-fluid system. On 

the other hand, Chopra proposed that the water incompressibility estimation does not provide the 

exact impact of hydrodynamic pressure on the dam body (Chopra, 1967; Chopra, 1970). Based on 

Chopra’s studies, the dam and reservoir only interacted with each other at the dam-reservoir 

interface. Furthermore, the infinite reservoir must be interrupted using proper boundary condition 

to simplify the finite element modeling. “Sommerfeld boundary condition” is an appropriate 

boundary to truncate some portion of the reservoir. Chopra and Hall (1982) evaluated the impact 

of hydrodynamic pressure on the seismic response of the dam using time-domain analysis. In work 

presented by Fenves and Chopra (1985), the structure-fluid-rock interaction using frequency-

domain analysis has been studied, and they found that the bottom absorption of rock increases the 

effective damping ratio of the system while it reduces the structure response under dynamic 

loading conditions.  Zienkiewicz and Taylor (1991) provided the solution of equations of motion 
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for the reservoir-structure using FEM.  Fathi and Lotfi (2008) carried out the dynamic analysis of 

concrete gravity dams using different reservoir lengths. They claimed that when the reservoir 

length increases, the rigidity of the foundation reduces and oscillation between foundation and 

reservoir is inclined to vanish. Bayraktar (2009,2010) considered near- and far-field ground motion 

conditions in the seismic analyses of the concrete gravity dams. Based on the results, plastic 

deformations of the structure exposed to near-fault ground motions increase compared to far-field 

earthquakes. Akkose (2010) investigated the nonlinear seismic performance of the concrete gravity 

dams considering dam-reservoir-foundation-sediment interaction and far- and near-fault ground 

motions. According to the nonlinear results, the crest displacements of the dam grow if near-fault 

ground motions are considered instead of far-fault ground motions. However, the accelerations of 

the dam crest do not change when the location of the earthquake is altered. Sevim et al. (2011) 

studied the influence of reservoir length and height on the seismic behavior of dam-reservoir-

foundation interaction system by performing the Lagrange approach. Depending on the dynamic 

analysis results, if the reservoir length increases, the results associated with displacements and 

principal stresses of the dam rises. Moreover, principal stresses generally tend to become higher 

from the base to the crest of the structure. It is clear that there is insufficient research for the 

dynamic analysis of gravity dams considering dam-foundation-water interaction using distinct 

water approaches and their comparisons. 

2.2 Dam Concrete Properties 

Concrete for a gravity dam design must fulfill the design criteria relevant to strength, 

durability, permeability, and any other essential features (USBR, 1977). The strength and elastic 

features of roller-compacted concrete dams are based on the mix components and mix rates. 

Notably, the quality of aggregate and the water-cement ratio are the primary determinants that 
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impact the strength and elastic features of the concrete. The compressive strength, tensile strength, 

shear strength, Young’s Modulus of elasticity, Poisson’s ratio, and unit weight of concrete are 

important factors in the seismic analysis is performed (USACE, 1995a). It is an well recognized 

that Poisson’s ratio and modulus of elasticity for both concrete and foundation impact the stress 

distributions in the dam significantly (USBR, 1977). As the concrete strength increases, the 

modulus of elasticity will also increase. 

In terms of the durability of structures, the minimum compressive strength of RCC should 

generally be at least 14 MPa (USACE, 1995a). However, higher compressive strengths can be 

necessary to meet the required tensile and shear strength if the site of the dam is under high 

seismicity. Therefore, the compressive strength must be increased if the tensile stresses calculated 

by a preliminary analysis on the dam body exceed the estimated tensile strength of the dam. 

Otherwise, excessive tensile cracking may take place on the structure. 

2.3 Finite Element Modeling 

Two-dimensional modeling in the finite element method is usually suitable for gravity 

dams (USACE, 1995b). The dam, reservoir, and rock sections are modeled as a compound 

structural system when using the standard finite element method (USACE, 2003). The dam body 

and foundation can often be assumed linear, isotropic, and homogenous, but it is important to 

verify these assumptions.  

During finite element modeling processes, plane stress or plane strain can be used for the 

selected elements. Both of them have three components: X normal stress, Y normal stress, and XY 

shear stress. However, while the plane stress elements assume the out of plane stress is zero, the 

plane strain elements assume the out of plane strain is zero. For the analyses presented in this 
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paper, the plane strain condition is considered, and the Gauss numerical integration method is 

performed for the calculation of the element matrices. To solve the equations of motion, the 

Newmark method that considers Rayleigh damping in the analysis is applied. When computing 

the analysis of dams, maximum displacements and accelerations, 1st and 3rd principal stresses, and 

1st and 3rd mechanical principal strains are attained.  

Concrete gravity dams, as shown as a typical cross-section in Figure 2.1, are built as 

monoliths which are divided by transverse contraction joints. The 2-D model of the tallest monolith 

or cross-section is generally used for the standard finite element procedures (USACE, 2003). The 

finite element model is able to model the resistance mechanism of the dam because the process 

considers the dynamic conditions of the structure-reservoir-rock system and the features of ground 

motions (USACE, 2003). Finite element modeling considering structure-rock interaction is a 

useful tool for linear elastic static and dynamic analyses and nonlinear analyses since complicated 

geometries, and various material properties can be used for the analyses (USACE, 1995b). The 

boundary conditions that are used for this research differ from the boundary conditions which are 

illustrated in Figure 2.1. 

     
     Figure 2.1 Typically Finite Element Model of Gravity Dam (USACE, 2003) 



10 
 

2.4 Reservoir Modeling Approaches 

 The hydrodynamic pressure from the reservoir influences the dynamic response when the 

structure is exposed to ground motions because it changes mode shapes and the values of modal 

frequency and  effective damping ratio (USACE, 1995a). Thus, it should be included in the 

dynamic analysis using proper methods such as Westergaard and Euler approaches. 

2.4.1 The Westergaard Method  

In 1933, Westergaard created the added mass method which is shown in Figure 2.2. 

According to the method, the dam is assumed as a rigid body and semi-infinite. The surface waves 

in the reservoir are disregarded. The distribution of water pressure happens along the upstream 

surface and thus added masses should be calculated using the distribution of hydrodynamic forces 

on the dam body. It is clear that the pressure will change depending on the depth of fluid. As a 

result, the dam-reservoir interaction can be used as an equivalent added mass model of water when 

the reservoir water is estimated to be incompressible. 

 

Figure 2.2 Distribution of the Hydrodynamic Pressure on Finite Mesh (Altunisik and 

Sesli, 2015) 
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 Added mass can be determined using the following formula (Westergaard, 1933): 

7 w
m(z) H z

8 g
=                                                                                              (2.1) 

where m(z), w, g, H, and z are mass distribution based on the depth of water, unit weight of water, 

acceleration of gravity, maximum depth of reservoir, and water depth from the top surface, 

respectively. 

2.4.2 The Euler Method 

 The Euler method is frequently preferred for the finite element analysis when fluid-dam 

interaction is considered. In this method, the structure is measured by displacements while water 

behavior is expressed with pressures. Particular interface equations must be defined because the 

structure and fluid move together depending on the water-dam interface. 

 The behavior of compressible, non-viscous, and non-rotational water exposed to small 

displacements is explained as the wave equation in the literature (Cook et al., 1989; Zeinkiewicz 

and Taylor, 1991). 

   ( ),xx ,yy ,zz ,tt2

1
P  P  P P

C

 
 


+ + =


                    (2.2) 

in which x, y, and z represent coordinates. C, P,ii, and t are wave velocity of water, the second 

derivative of hydrodynamic pressure based on i variable and time, respectively.  

 Hydrodynamic pressures occur due to boundary conditions. Some proper boundary 

conditions in the literature are shown below: 

   P = 0 (when there is no wave on the free surface)                                        (2.3) 
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sf  P  p g u=    (when there are waves on the free surface)                             (2.4) 

   
nP  p ü      =                                                                                               (2.5)  

in which p, g, ün, and usf are referred to the mass density of water, acceleration because of gravity, 

acceleration of fluid in the normal direction, and displacement of fluid in the vertical direction, 

respectively. 

 Since surface waves can often be ignored when modeling dams (Chopra, 1967), the impact 

of fluid surface waves is not considered in this research. The equation of motion of fluid for the 

finite element method can be written as: 

        
Tp p

f f fsM  K P ü{P"} p R        + = −                                                    (2.6) 

in which [Mp
f ], {P”}, [Kp

f ], {P}, [R]T, and {üfs}represent mass matrix, vector for second derivative 

of hydrodynamic pressure, stiffness matrix, vector for hydrodynamic pressure, matrix for fluid-

structure interface and vector for accelerations due to only dam structure in the water-dam 

interface, respectively. 

 On the other hand, the dynamic equation of motion for the structure can be written as: 

                s s s s s s fs{ }M uü C K F F   + ++ =                                       (2.7) 

where [Ms], {üs}, [Cs], s{ } , [Ks], {us}, {F}, and{Ffs} are mass matrix for the structure, the vector 

for acceleration of structure, damping matrix, the vector for velocity, stiffness matrix of the 

structure, displacement vector, the vector of external load, and the vector for additional external 

load, respectively. 
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 Using the virtual work principle, the vector {Ffs} can be expressed with the following 

formula: 

        fsF R P=                                                                                                              (2.8) 

 By combining the Equations [2.6] and [2.7], the dynamic equation of motion for the whole 

fluid-structure system can be written as: 

sn s fss

fs pf

s

p

s

f

s
[ uM ] [0] [K ] [K ][C ] [0] F

[M ] [M ] [0] [K ]P" [0] [0] P ' P 0

ü            
 +  +  =           
           




                                              (2.9) 

where     
T

fsM p R=   and    fsK R= −  

2.5 Fluid-Dam-Foundation Interaction 

 Stress distributions related to the dam body are influenced by foundation deformations 

(USBR, 1977). Furthermore, stress distributions in the foundation are affected by external loads 

and deformation of the foundation, which are related to the response of the dam and reservoir. 

Thus, proper foundation properties are necessary to determine the accurate seismic analysis of the 

dam (USBR, 1977). The foundation and dam interaction ratios such as the elastic modulus for 

foundation divided by the modulus elasticity of the concrete (Ef/Ec) can be used for the 

determination of the impact of foundation flexibility on the dynamic response of the dam 

(Bakenaz, 2014). 

Dynamic characteristics of dams can be influenced by both the hydrodynamic effects on 

the structure and dam-foundation-water interaction because the dam and water behave differently 

due to hydrodynamic pressures during an earthquake event. Since the length of the reservoir is 

wide, it should be interrupted at the sufficient distance from the dam body. The length of the 
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reservoir should be selected as sufficiently large to obtain nearly accurate results in comparison to 

results for the infinite length of reservoir water (Brahtz and Heilbron, 1933). The reservoir length 

should be selected at least two or three times its depth for the accurate evaluation of the 

hydrodynamic effects on the dam. To determine the reservoir effect more precisely, the Eulerian-

Lagrangian method should be used. The gravity dam-reservoir interaction occurs due to 

hydrodynamic pressures, which influences the structure deformations at the dam-reservoir 

interface (USACE, 2003). When considering this interaction, the energy loss can impact the 

pressures at the water boundary. Uncertainty on the boundary conditions of the fluid-dam-

foundation interaction still persists in current analyses. 

 Due to the different material behavior of foundation, reservoir, and dam structure, 

interaction among them should be considered during the dynamic analysis. To evaluate the effect 

of hydrostatic pressure distribution in the results, the first analysis should be performed with an 

empty reservoir condition, and then the second analysis should be performed with the presence of 

water on the finite element model. 

2.6 Static Analysis 

A static analysis of the structure defines the impact of steady-state loading conditions on it 

without using the time-dependent load effects such as inertia and damping. The displacements, 

stresses, forces, and strains in the structure can be evaluated by carrying out the static analysis. 

The static response of both the loads and the properties of the structure are to change slowly with 

time (ANSYS, 1999). 

According to the static analysis, the dam is a 2-D solid block. Before using other analysis 

methods such as modal and linear dynamic analyses, the static analysis should be performed. It is 
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a fact that the toe of the dam body does not create sufficient stress distribution in the foundation 

when static analysis is used. This situation leads to underestimated base cracking. 

2.7 Modal Analysis 

The modal analysis calculates the natural frequencies and mode shapes which are 

significant factors for the structure design when considering seismic conditions. These parameters 

are also called the vibration characteristics of a structure. The modal analysis exclusively considers 

the linear behavior of a structure and thus any nonlinear properties will be neglected during the 

analysis (ANSYS, 1999). There are several methods in the modal analysis such as Block Lanczos 

and Unsymmetric methods. While the Block Lanczos method is only valid for symmetric 

eigenvalue problems the Unsymmetric method is generally used for water-structure interaction 

problems that are composed of nonsymmetric matrices.  

 The modal analysis approach depends on the simplifying response estimation of each 

natural mode of vibration separately and the total modal responses might be calculated with the 

combination of each vibration mode (Chopra, 1987). The response of the higher modes of 

vibration, foundation-water interaction effects, and the horizontal and vertical accelerations of the 

earthquake are neglected in this approach, but can be considered in the finite element method. 

2.8 The Procedure of a Dynamic Analysis 

 The primary objective of performing a dynamic analysis is to determine the damage level 

of the structure during earthquake motion.  

The procedure of the dynamic analysis comprises the following steps (Subramani and 

Ponnuvel, 2012): 
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1) Review the geological condition and seismologic features of the site where the dam is 

constructed.  

2) Determination of the ground motion sources. 

3) Selection of the maximum credible and operating basis earthquakes for the area. 

4) Selection of the response spectra for the selected earthquakes. 

5) In the case of the time-history analysis, selection of the most proper acceleration records 

which is suitable to the response spectra. 

6) Determination of the dynamic material properties for the dam, foundation, and fluid. 

7) Selection of the dynamic analysis method. 

8) Performing the dynamic analysis. 

9) Evaluation of displacements, accelerations, and stresses from the results of the dynamic 

analysis. 

There are four characteristics which define a specific dynamic analysis method (USACE, 

1995a): 

1) Material behavior: can be either linear-elastic or nonlinear behavior. 

2) Design Earthquake description: could be either a design response spectrum or time-history 

ground motion. 

3) Dimensional type: may be either two-dimensional or three-dimensional representation. 

4) Model format: can be a standardized model, finite element equivalent mass design, and 

finite element-substructure type. 
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2.9 Transient Dynamic Analysis 

 Transient dynamic analysis, which is also defined as the time-history method, is generally 

used to determine the seismic response of a structure under the time-domain loads. By performing 

this type of method, the time-dependent displacements, strains, stresses, and forces of the system 

can be determined considering the combination loads such as static and dynamic loads (ANSYS, 

1999). Although the method is similar to the response spectrum method, the form of the earthquake 

is the acceleration of time histories instead of response spectra, and the results are in the form of 

displacement and stress histories. 

The time-history method is employed to calculate deformations and stresses more precisely 

by using the nature of the seismic response to ground motions (USACE, 2003). When acceleration 

records are applied in the time-history method, the linear analysis calculates the seismic response 

as both magnitudes and time-varying features. Transient dynamic analysis has three types of 

solutions: full, reduced, and mode superposition methods. The full method solves the matrices 

without using reduction in the matrices, and thus it is the most powerful method in the possible 

solutions. However, the full method is considerably expensive in comparison with the other two 

types of the time-history method (ANSYS, 1999).  

Either direct integration or mode superposition methods can be used to solve equations of 

motion for hydraulic structures (USACE, 2003). The direct integration approach implements a 

combined form, which is a step by step method, for the equations of motions without using any 

distinct form. On the other hand, the mode superposition approach first converts the equations into 

modal forms and then solves the equations as a step-by-step combination in the time domain 

(USACE, 2003). 
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 The time-history method is one of the dynamic modal methods and enables more 

meticulous solutions because vibration for each mode is calculated using the Duhamel integral 

technique and all mode responses are algebraically added to each other using the time step 

technique until the end of the earthquake motion. Even if the time-history method is more accurate 

than the response spectrum method, it should be performed based on several ground motions to 

avoid wrong consequences. 

 The response spectrum method could be used for the assessment of structures when the 

dams are exposed to experience low or moderate earthquakes (USACE, 2003). However, the 

restricted representation of the dam-water-foundation impacts, and the neglecting of the time-

domain features of the earthquake and structural response are some limitations for the method that 

does not present valuable time-dependent knowledge. Thus, the time-history method should be 

selected to avoid these limitations of the response spectrum method and to attain more accurate 

representation for the time-domain characteristics of the earthquake and structure (USACE, 2003). 

2.9.1 Seismic Design 

There are a lot of significant factors that influence the response of the dam significantly 

such as the types of materials, strength parameters, and loading conditions (USACE, 1995a). The 

impact of each factor must be considered in the seismic design. This evaluation could be performed 

using a basic cross-section of the dam and material properties. Each factor should also be modified 

separately to obtain the impact of each parameter on the seismic response. On the other hand, pore 

pressures, temperature stresses, and wind and ice loads are not significant parameters on the 

seismic evaluation of the gravity dam (USACE, 1995a). 
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The most critical dynamic factor is the inertia load generated by the response of the dam 

body to ground motion accelerations applied by the earthquake (USACE, 1995a). The structural 

response for the vertical component of ground motions can be similar in amplitude caused by 

horizontal earthquake motions, and both directions should be evaluated in the analysis (Chopra, 

1987). The next significant factor is the hydrodynamic effect resulted from the high reservoir 

condition (USACE, 1995a). Frequency-dependent hydrodynamic pressures resulting from fluid-

structure interaction can be evaluated as an added force, an added damping and an added mass 

(Chopra, 1987). 

 To perform the internal stress analysis of the dam in severe seismicity sites, a dynamic 

seismic analysis must be applied (USACE, 1995b). The structural response associated with 

characteristics of the dam and foundation and the character of the ground motion can be determined 

with a dynamic analysis. A 2-D finite element model is generally checked for both vertical and 

horizontal directions. Although the earthquake can happen in any direction, the seismic analysis 

should be applied for the unfavorable direction (USACE, 1995b). The maximum ground motion 

in the vertical direction has frequently been selected as 1/2 or 2/3 of the seismic load in the 

horizontal direction. Also, the peak acceleration in the vertical direction can be similar to the peak 

horizontal acceleration or can exceed this value (FEMA, 2005).  

The ground motion stemmed from the seismic behavior may lead to micro or minor cracks 

on the RCC dam. Seismic vibrations must be decreased using convenient practices of dam 

engineering principles. At this point, the proper evaluation of seismic behavior of concrete gravity 

dams is a significant criterion to reduce the seismic vibrations. Additionally, the design earthquake 

should be performed using the 5% of critical damping for just the concrete dam body. However, 
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the damping ratio of the concrete dam body must be altered with the foundation damping to 

represent the whole system (USACE, 1995a). 

2.9.1.1 Maximum Design Earthquake 

MDE is referred to as the maximum design earthquake for which a structure is evaluated. 

The structure must illustrate performance without significant failure when subjected to MDE. 

However, severe damage or economic loss may be acceptable (USACE, 2003). On the other hand, 

while ground motions related to Operating Basis Earthquake (OBE) can be seen as unusual forces, 

Maximum Design Earthquake (MDE) is attributed to extreme loads (USACE, 2007). In 

accordance with MDE, the ground motion can exceed 10% over an expected earthquake for the 

construction site in a century. The Maximum Credible Earthquake (MCE), which is the maximum 

earthquake that is expected to happen, can be accepted as similar with MDE for the critical 

structures (USACE, 2007). 

If structures demonstrate enough strength to remain almost elastic when exposed to MDE, 

linear analyses are acceptable. It is important to note that concrete gravity dams subjected to MDE 

ground motions may perform within the inelastic range, but they should respond in the linear-

elastic-range when exposed to Operating Basis Earthquake (OBE) (USACE, 2007). 

 The strength design code for the MDE conditions of the hydraulic structures can be 

expressed with the following formula (USACE, 2007): 

   DC D L MDE                              Q Q Q Q= + +         (2.10) 

in which QDC is the combined response because of dead, live, and seismic loads to determine safety 

evaluation of the dam. QD, QL, and  QMDE are dead, live, and earthquake loads, respectively. The 

live load effect is represented by the hydrostatic forces. 
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2.9.1.2 Equations of Motion 

The equations of motion are computed based on the degrees of freedom with effective 

forces for hydraulic structures (Clough and Penzien, 1993). The matrix form can be expressed as: 

   ( ) ( ) ( ) ( )m ü t c t k u t p t +  +  =                                                                         (2.11) 

in which m, c, and k are mass, damping, and stiffness matrices, respectively. ü(t),  (t), and u(t) 

are acceleration, velocity, and displacement vectors, respectively. p(t) represents the load effect of 

a ground motion. If the foundation-water-structure interaction is included in the finite element 

model, the matrices and load factor must contain the interaction contribution effects (USACE, 

2003). 

In the standard finite element method, when massless foundation and incompressible water 

are selected, the mass matrix m comprises not only the mass of the dam but also the added mass 

of fluid. Similarly, the stiffness matrix k contains the stiffness from both structure and foundation. 

Additionally, the load factor is combined with ground motion and inertia effects resulting from the 

dam mass and added mass of water. 

2.9.1.3 Rayleigh Damping 

Rayleigh damping is used to model the other sources of damping that are not captured in 

the analysis. Rayleigh damping is not fundamental, and it is just a computationally simple way to 

include damping. Hence, it can be used for performing seismic analysis of hydraulic structures. 

As a simple explanation, a damping matrix can be formed with the linear combination of 

mass and stiffness matrices and applying Rayleigh damping coefficients. 

        C M K=   +                                                                                               (2.12) 
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where α and β are Rayleigh damping coefficients. [C], [M], and [K] are damping, mass and 

stiffness matrices, respectively. 

 Rayleigh damping coefficients can be calculated using frequency values obtained from the 

modal analysis and with selected proper viscous damping (ANSYS, 1999). 

   1 2

1 2

w w
2  

w w


 =  

+
                                                                                        (2.13) 

   
1 2

2
 

w w


 =

+
                                                                                                       (2.14) 

in which ξ and w represent viscous damping and natural frequencies of the system, respectively.  

Figure 2.3 Rayleigh Damping (ANSYS, 1999) 

 

2.9.2  Massless Foundation Modeling 

 The design earthquake should be performed considering the 5% of critical damping for 

just the concrete dam body. However, the damping ratio must be altered with the foundation 

damping. The two characteristic features of the foundation are the modulus of elasticity and 

damping ratio which have a considerable contribution to the seismic response (USACE, 1995a). 
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Instead of using only the damping ratio of the dam body, the damping ratio of the connected dam-

foundation model must be applied in the dynamic analysis.  

It is important to note that if the modulus of elasticity for rock is low, the damping ratio of 

the connected system is significantly higher than the damping ratio of the concrete structure alone. 

The foundation has two types of damping: (1) material and (2) radiation. Thus, the effective 

viscous damping ratio of the connected model is required to represent the whole system in the 

analysis (USACE, 1995a). 

The simplified earthquake analysis method, created by A. K. Chopra, depends on the 

fundamental mode of vibration (Fenves and Chopra, 1987). The fundamental frequency values of 

the finite element model must be obtained to determine the impact of the damping ratio on the 

dynamic response of the concrete. The damping parameter for the rock can have a significant 

contribution to the seismic response, so it should be determined carefully (USACE, 1995a). 

The effective damping ratio for the whole system can be determined using the following 

graphs and formulas in Figure 2.4 and the Equations 2.15 and 2.16 (Fenves and Chopra, 1987). 
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Figure 2.4 Chopra’s Graphs for the Massless Foundation Dynamic Analysis Method 

(Chopra and Fenves, 1987) 
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The Effective Damping Ratio Formula for Full Reservoir Condition (Chopra and Fenves, 

1987): 

( ) ( )3

r 1 f f b                                                                                         1/ R  / R = +  +   (2.15)    

 The Effective Damping Ratio Formula based on Empty Reservoir Condition (USACE, 

1995a): 

( ) ( )3

eff f 1 f1/ R    +  =                                                                    (2.16) 

Where 

𝜉` = the effective viscous damping ratio for the full reservoir condition 

𝜉1 = the viscous damping ratio for the gravity dam only 

𝜉𝑒𝑓𝑓 = the effective viscous damping ratio based on the empty reservoir condition 

Rf =  the ratio of the deformation modulus of foundation to Young’s modulus of concrete 

Rr = the ratio of total depth of water to the height of the dam 

𝜉𝑓 = added damping ratio because of structure-foundation interaction taken from Figure 2.4 

𝜉𝑏 = added damping ratio due to hydrodynamic effects taken from Figure 2.4 

2.9.3 Linear Elastic Analyses 

 A dynamic analysis should begin with simplified techniques and pursue a more complex 

analysis as needed (USACE, 2003). Unit weight, Young’s Modulus, and Poisson’s ratio of the 

concrete should be applied in the linear seismic analysis. It is important to note that if the seismic 

analysis considers the foundation in the model, the modulus of elasticity and Poisson’s ratio of the 
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rock are necessary for the analysis. Structural properties remain constant within each time-step for 

linear elastic behavior. 

 The selected earthquake is used as an inertial force implemented statically to the dam body 

because of the horizontal acceleration of the structure (USACE, 1995b). The other type of loading 

is called hydrodynamic forces, which are caused by the reservoir towards the structure. Depending 

on static and dynamic conditions of the structure, the stress analysis is performed to identify the 

stress distributions on the dam body and structural sufficiency of the rock.  

If the linear-elastic time-history analysis is implemented, the allowable tensile stress will 

be the primary criterion to evaluate the acceptable response (USACE, 1995a). The dynamic 

response is evaluated as admissible for linear analysis when the tensile stresses are within 

allowable values. If the ground motion results in critical tensile cracking at the dam body-rock 

interface, more refined analyses are required to determine cracking such as a nonlinear time-

history method (USACE, 1995a). As shown in Figure 2.5, the regions that are more susceptible to 

tensile cracking should first be evaluated using linear seismic analysis and pursue more refined 

analyses if needed. Also, the regions that are more prone to tensile cracking, as shown in Figure 

2.5, can change due to the geometry of the dams. 
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Figure 2.5 High Tensile Stress Regions for Gravity dam exposed to Ground Motions 

(USACE, 2007) 

 

 When ground motions resulting from earthquakes occur in the upstream direction, the heel 

of the dam and high-level water areas will be more susceptible to tensile cracking. If ground 

motions happen in the downstream direction, on the other hand, slope discontinuity areas and the 

toe of the dam will be critical for the potential cracking. 

 According to the acceptance criteria of compressive stresses, the compressive strength of 

concrete should be higher than 1.5 times the compressive stresses for new hydraulic structures 

(USACE, 1995a; USACE, 2000). In general, the tensile strength of concrete should be higher than 

the tensile stresses. If the tensile stress exceeds more than 150% of the flexural strength, evaluation 

of cracking must be determined using the nonlinear analysis (USACE, 1995b). 
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Linear analysis is adequate if the estimated damage level is under the acceptance curve, 

which is shown in Figure 2.6, for the dam structure. Otherwise, massive damages must be 

evaluated using a nonlinear time-history analysis, which is a type of more refined analyses 

(USACE, 2003). The dam response will be in the linear elastic range with no significant damage 

when the demand-capacity ratio is less than or equal to 1. Furthermore, the nonlinear response of 

the structure will be acceptable if the demand-capacity ratio does not exceed 2.0 (USACE, 2007).  

 

    Figure 2.6 Performance Curve for Concrete Gravity Dams (USACE, 2007) 

 

 Although tensile cracking in new gravity dams located in severe seismic areas, and in 

existing dams established in all seismic areas is permitted, it should be restricted to minor cracking 

that needs little repair (USACE, 1995a).  

The dynamic response of the structure is acceptable when the DCR (demand-capacity ratio) 

for each result is less than or equal to the allowable value (DCR ≤ Allowable value). 
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2.9.4 Nonlinear Time-History Analysis 

Nonlinear time-history analysis is the most effective method to determine the seismic 

response of structures since the method contains the direct integration procedure for the equations 

of motion (USACE, 2007). By using this procedure, the displacements and stresses can be 

identified within short time increments from the initial conditions. Thus, the method uses the 

procedure associated with the step-by-step integration. Through this method, the equations of 

motion could be established for the initial condition and after each short time increment (USACE, 

2007).  One of the most important advantages of the time-history method is that it can be performed 

for not only linear analysis but also for nonlinear analysis. 

During nonlinear transient dynamic analysis, the induced stresses and displacements are 

obtained from the direct integration procedure for the equations of motion, which is a step-by-step 

integration method (USACE, 2007). Acceleration time histories for the earthquake demands 

should be computed as a seismic input for the nonlinear dynamic analyses. Then, the results should 

be compared with  the capacity of the structure and decided for whether the performance is 

sufficient or not (USACE, 2007). Based on nonlinear dynamic analysis results, the designer should 

be decided on whether the tensile cracking leads to the failure of the dam. 

2.9.4.1 The Drucker Prager Model 

 The Drucker Prager model is applicable to granular (frictional) materials such as concrete 

and rock. The yield surface of this approach, which is illustrated in Figure 2.7, is pressure 

dependent (ANSYS, 1999). 

     
0.5

T  

e m  3 1/ 2 s M s  =  +   
 

                                                    (2.17)            
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where σe, β, and σm are the modified equivalent stress, a material constant, and hydrostatic pressure, 

respectively. 

 

Figure 2.7 Yield Surface for Drucker Prager Plasticity (ANSYS, 1999)  

 

If the increase takes place in hydrostatic pressure σm, this situation leads to an increase in 

the yield strength σy when the material is in the compression part. 

 Since the hardening part of the element is not used in this thesis, the material is elastic-

perfectly-plastic. Also, the yield criterion of the Drucker Prager plasticity model can be expressed 

in the following form (ANSYS, 1999): 

     
0.5

T  

e m y3 1/ 2 s M s  =  +    −
                                                                 (2.18) 

 The material constant β and yield strength σy are defined as (ANSYS, 1999): 
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( )

2 sin

3 3 sin

 
 =

 − 
                                                                                     (2.19) 

( )
y

6 (c).cos

3 3 sin

 
 =

 − 
                                                                                 (2.20) 

in which ɸ represents the angle of internal friction and c is cohesion (shear yield stress). 

 The yield stress in compression is a higher value compared to the yield stress in tension. 

When uniaxial tensile σt and compressive σc yield stresses are known, these values can be 

transformed into material parameters ɸ and c by using the following formulas. 

   
( )

c t

c t3

 
 =

  +
                                                                                     (2.21) 

   
( )

c t
y

c t

2

3

 
 =

  +
                                                                                                                              (2.22) 

   1 3 3
sin

2 3

−
 

 =   +  
                                                                            (2.23) 

   
( )y 3 3 sin

c
6 cos

   − 
=

 
                                                                           (2.24) 

 Dilatancy angle ɸf  is the additional parameter and is responsible for the amount of 

volumetric expansion dilation in the analysis. 

 If ɸf = ɸ, associated plasticity. 

 If ɸf < ɸ, less volumetric expansion will happen. 

 If ɸf = 0, no shear-induced dilation will occur. 
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2.9.4.2 The Newmark Method 

The internal force is not linearly proportional to nodal displacement and stiffness matrices 

for the nonlinear systems. The load depends on the current displacement (ANSYS, 1999). 

The semi-discrete equation of motion for the nonlinear dynamic analyses by the Newmark-

Raphson method can be expressed with the following formula (Newmark, 1959; Hughes, 1987): 

           ( )   i a

n 1 n 1 n 1 n 1 n 1u{ }M ü C F F+ + + + ++ + =                                   (2.25) 

Where; 

{ün+1} = acceleration vector {ü(tn+1)} at time tn+1 

 n 1+ = velocity vector {u̇(tn+1)} at time tn+1 

{un+1} = displacement vector {u(tn+1)} at time tn+1 

{Fa
n+1} = applied force {Fa

n+1(tn+1)} at time tn+1 

{Fi
n+1({un+1})} is only depending on the current displacement {un+1} at time tn+1 

 By applying the residual vector {Rn+1({un+1})} in Equation 2.25, we can obtain: 

( )    ( )         a i

n 1 n 1 n 1 n 1 n 1 n 1 n 1R u F F u C *  { } { M} * ü+ + + + + + +− = − −                                                 (2.26) 

The linearized form of the time integration procedure will be (ANSYS, 1999): 

( )  ( )     k k i k

n 1 n 1 n 1 n 1 n 1 n 1R U   R U   u u  0{ } { } / { }+ + + + + ++   =                                                    (2.27) 

Where; 

{Uk
n+1} is the assumption of {un+1}at the kth iteration. 
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{∆uk
n+1}is the increment for displacement of {un+1} at the kth iteration. 

 Combining Equations 2.26 and 2.27 results in the following formula: 

    ( ) ( ) T k k

0 1 n 1 n 1 n 1 n 1{ } ] { }a M a C [K u R U+ + + +
  +  + =                                                               (2.28) 

Where; 

2

0a  1/ t=                                                                                                                                               (2.29) 

1a / t =                                                                                                                                       (2.30) 

in which α and 𝛿 represent Newmark’s parameters. 

[KT
n+1({uk

n+1})] is the tangent stiffness matrix at time tn+1 

 Also, the vectors for the displacement and velocity, which are demonstrated in Equations 

2.25 and 2.26, can be calculated by the following formulas: 

   n 1 n n n 1[( ü 1 ü t) { } }]+ +  = + − +                                                                                         (2.31) 

    2 

n 1 n n n n 1u { } [( ) { } { }u ü t 1/ ü t]2 ü+ += + + −  +                                                                                          (2.32) 

in which; 

{ün} is the acceleration vector {ü(tn)} at time tn 

 n  is the velocity vector {u̇(tn)} at time tn 

{un} is the displacement vector {u(tn)} at time tn 
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2.10 Safety Evaluations of Concrete Gravity Dams 

Even if many dams exposed to strong earthquakes survive without severe damages, high 

dams which are located near major faults can suffer from extensive cracking when seismic loads 

are applied (Chopra and Chakrabarti, 1973). 

Leger and Leclerc claimed that the cracking begins at the dam base in the upstream 

direction (Leger and Leclerc, 1996). Cracking at the top of the dam occurs in the downstream 

direction most of the time. 

 

       Figure 2.8 Possible Cracking Profiles for Concrete Gravity Dams Exposed to Various 

Types of Ground Motions (Leger and Leclerc, 1996) 

The accurate prediction of the stresses and deformations in the dam body subjected to 

seismic motion is highly significant for the evaluation of safety for the dams that will be exposed 

to further ground motions. In this way, the earthquake resistant dams can be designed in the future.  
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 Maximum and minimum principal stresses originated from both seismic and static loads 

should be illustrated using contour or vector plots (USACE, 2003). Vector plots can be more 

beneficial in comparison to contour plots because vector plots point out not only the magnitude of 

stresses, but also their directions. In this way, the direction of tensile cracking may be estimated 

with vector plots (USACE, 2003). While the maximum stresses represent the largest tensile 

(positive) stresses on the dam body, the minimum stresses provide the largest compressive 

(negative) stresses. Additionally, tensile and compressive stresses generally happen at different 

times during ground motion. Using those vectors, overstressed regions can be determined. 
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CHAPTER 3 

 

MODELING OF THE ROLLER-COMPACTED CONCRETE GRAVITY DAM  

 

3.1 Introduction 

Since the longitudinal length (thickness) of the gravity dam is considerably greater than its 

other two dimensions, the 2-D plane structure has generally been performed in the finite element 

modeling. Dam and foundation are commonly considered as linear and elastic, and fluid is 

commonly assumed to be acoustic, inviscid, and incompressible. It is important to remember that 

fluid is assumed as compressible for only the Euler method. Also, the dam and foundation are 

performed using plane strain conditions. To create a model associated with the reservoir water, 

proper representation of boundary conditions and initial conditions with acoustic elements is 

required. 

 This research studies the seismic behavior of the Narli concrete gravity dam using water-

reservoir-foundation interaction. In this research, the composite finite element-equivalent mass 

system model is considered as a model configuration for the dynamic analysis. The modeling of 

this method uses finite elements for both the dam body and rock.  

The foundation should be a rectangular shape with a height at least 1.5 times the height of 

the structure and with a width at least 3 times the base width of dam-foundation interface (USACE, 

1995a). For this model, however, boundary conditions should be used along the base of the 
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foundation instead of at the dam-foundation interface where the ground motion is applied. Thus, 

the foundation is estimated massless to implement the earthquake ground motion on the ground 

surface (dam-foundation interface). In this way, wave propagation never occurs in the massless 

rock, and the earthquake records are transferred to ground surface without using alteration 

(USACE, 1995a). Therefore, the massless foundation approach is selected in all modeling 

presented herein.  

To reduce the boundary condition effects, reservoir length in the upstream face of the dam 

and foundation length in the downstream face of the dam are accepted two times the maximum 

dam height. Since the length of the reservoir is wide, it should be interrupted at the sufficient 

distance from the dam body. The reservoir length should be selected at least 2 or 3 times its depth 

for the accurate evaluation of the hydrodynamic effects on the dam (Zienkiewicz and Taylor, 

2000). 

3.2 Dam-Foundation-Reservoir Model of the Narli Dam 

The Narli Dam will be established on the Dalaman River in 2019, which is located in 

Mugla, Turkey. The reservoir will be used for energy purposes. The water in the reservoir will be 

delivered to the hydroelectric plant via energy tunnel, which has 4199 m length. 

  The cross section of the concrete gravity dam is shown in Figure 3.1. The maximum height 

of the dam is 99.5 m.  The upstream slope is 1:0.60  from the base of the dam to 51 m height, and 

the slope is vertical from 51 m to the maximum dam height. The downstream slope was designed 

as 1:0.8. The crest width is 10 m, and the crest length is 299.0 m. The maximum operation water 

level is 97.5 m, which is 2.0 m below the maximum height. 
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Figure 3.1 Geometry of Non-Overflow Section of Dam-Reservoir-Foundation System 

 

3.3 Material Properties of the Dam-Foundation-Reservoir System  

According to the geological and geotechnical assessments on the construction site, the 

deformation modulus of the foundation has been determined as Ef  = 2.854 GPa using laboratory 

experiments (GF Proje ve Muhendislik, 2018 [GF Project and Engineering, 2018]). The foundation 

has been estimated as a B ground type from the seismic risk analysis report. The velocity of shear 

waves for dynamic deformation modulus of the foundation is generally selected between 760 m/s 

and 1500 m/s for B ground type based on ASCE 7-02 and ASCE 7-05 codes. The assumed 

approximate value for the Narli Dam is 1130 m/s. 

Maximum shear modulus calculation can be performed with the following equation: 

( )
2

max sG V=                                                                                                         (3.1) 

where ρ is total mass density, and Vs is the velocity of shear waves. 
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Dynamic modulus of elasticity for the foundation can be calculated using the following 

equation: 

 ( )dynamic maxE G 2 1=   +                                                                                     (3.2)     

where Gmax is the maximum shear modulus, and υ is Poisson’s ratio of the rock. 

Assumed Poisson’s ratio for the foundation of the Narli Dam is 0.30.  

The specified 28-day compressive strength of concrete has been determined as 15 MPa 

using preliminary analyses for the Narli Dam (GF Proje ve Muhendislik, 2018 [GF Project and 

Engineering, 2018]). By using the target compressive strength,  the modulus of elasticity of 

concrete can be calculated using the following equation, which is valid for normal weight and 

normal density concrete: 

’

concrete cE 4700 f=                                                                                                                  (3.3) 

Weight should be between 1440 kg/m3 and 2560 kg/m3 for normal weight concrete. This value is 

2400 kg/m3 for the Narli Dam. 

 Based on Raphael’s studies (1984), the dynamic tensile strength should be determined by 

increasing the static tensile strength with the factor of 1.5. Also, in work by Raphael, the static 

tensile strength should be increased by the factor of 2.0 to find the apparent dynamic tensile 

strength (Raphael, 1984). 

   
2/3

t cf  2.3 f ’=   (3.4) 
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where ft
’ and fc’ represent tensile and compressive strength of concrete based on psi units, 

respectively. The maximum allowable DCR is 1.5 for roller-compacted concrete gravity dams 

(Cannon, 1995; Raphael, 1984).  

The compressive strength of concrete that is used for the Narli Dam is 15 MPa (2175.57 

psi). Using Equation 3.4 and increasing by the 150% for the dynamic conditions, the flexural 

strength of concrete can be calculated as 3.99 MPa. 

 Using the Cannon (1995) formula, which is mentioned in the USACE (2000) criteria, the 

tensile strengths in the principal direction for the structure and vertical direction for the joints have 

been identified as given below. For dynamic conditions, the tensile strengths have increased by 

150%. 

tp c0.17 =                                                                                                (3.5)                

tv c  0.15 =                                                                                                                    (3.6)                   

tp dynamic tp1.5− =                                                                                                 (3.7) 

tv dynamic tv1.5− =                                                                                                       (3.8) 

where σtv and σtv-dynamic illustrate tensile strengths in the vertical direction, respectively static and 

dynamic. σtp and σtv-dynamic show tensile strengths in the principal direction, respectively static and 

dynamic. 

 Although there are differences between the results for two methods (Cannon, 1995; 

Raphael, 1984), both are accepted in the literature by USACE criteria. Thus, one of them can be 

selected for the evaluation of tensile stresses on the dam body. 
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Table 3.1 Material Properties Used in the Seismic Analysis of the Dam  

Parameters Concrete Foundation Reservoir 

Static Modulus of Elasticity (GPa) 18.4 2.85 2.02 

Dynamic Modulus of Elasticity (GPa) 23 8.6 - 

Poisson’s Ratio 0.20 0.30 - 

Density (kg/m3) 2400 2600 1000 

Compressive Strength (MPa) 15 - - 

Static Tensile Strength in Vertical Direction (MPa) 2.25 - - 

Dynamic Tensile Strength in Vertical Direction (MPa) 3.38 - - 

Static Tensile Strength in Principal Direction (MPa) 2.55 - - 

Dynamic Tensile Strength in Principal Direction (MPa) 3.83 - - 

Sonic Velocity (m/s) - - 1440 

Boundary Admittance - - 1 

 

Required parameters for the dynamic analyses of the Narli Dam are obtained from GF Proje 

ve Muhendislik [GF Project and Engineering, 2018]. 
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3.4 Element Description of the Dam-Foundation-Reservoir System 

 Quad and triangular elements are two of the most prevalent 2-D elements. Whereas quad 

elements are created by four nodes and four combining joints, triangular elements have three nodes 

and one combining joint. Quad elements for dynamic analyses of the concrete gravity dam are 

considered in this research. 

3.4.1 Plane 42 2-D Structural Solid 

Plane 42 element is used for the two-dimensional modeling approach of solid structures 

(ANSYS, 1999). Plane 42 can be selected either as plane stress or plane strain. The element has 4 

nodes that have two degrees of freedom per node (UX-UY). Having plasticity and stress stiffening, 

and large deflection and strain capacities are some significant features of the element (ANSYS, 

1999). The element was used to create  dam structure and foundation in the finite element 

modeling. The solid structural geometry of the element is shown in Figure 3.2. 

 

Figure 3.2 The geometry of Plane 42 Element (ANSYS, 1999) 
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3.4.2 Mass 21 3-D Structural Mass 

Mass 21 is defined as a point element, which has only a single node (ANSYS, 1999).  The 

element has up to 6 degrees of freedom. Each coordinate direction can have different mass and/or 

rotational inertia. The element was used to perform the Westergaard (added mass) method in the 

seismic analysis. The structural mass geometry for the element is shown in Figure 3.3. 

 

Figure 3.3 The geometry of Mass 21 Element (ANSYS, 1999) 

 

3.4.3 Fluid 29 2-D Acoustic Fluid 

Fluid 29 is primarily used for water-structure interaction problems (ANSYS, 1999). The 

element comprises sound wave propagation and structure dynamics implementations. The main 

equation for acoustics, also called 2-D wave equation, is based on discretization between structural 

motion and acoustic pressure at the interface. The element contains four nodes which have three 

degrees of freedom at each node (UX, UY, Pressure). During modal, harmonic, and transient 

analyses, the element can be applied with other two-dimensional elements (ANSYS, 1999). The 

element was used to perform the Euler method in the seismic analysis of the dam. The acoustic 

fluid geometry of the element is shown in Figure 3.4. 
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   Figure 3.4 The geometry of Fluid 29 Element (ANSYS, 1999) 

 

Assumptions (ANSYS, 1999): 

1) The water is compressible (density alters because of pressure variations). 

2) The fluid is inviscid (no dissipative impact because of viscosity). 

3) The density and pressure are identical for each part of the water. 
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CHAPTER 4 

 

DYNAMIC ANALYSES OF THE CONCRETE GRAVITY DAM 

 

4.1 Introduction 

 The primary purpose of this research is to determine and compare the dynamic responses 

of the concrete gravity dam including dam-reservoir-foundation interaction based on different 

reservoir modeling approaches. Then, the seismic response of the dam will be evaluated using 

USACE criteria. 

The finite element modeling of the dam considering dam-water-foundation interaction 

depending on empty reservoir condition, Westergaard, and Euler-Lagrange approaches are 

performed using ANSYS 17.1 software. Solid elements are used for the dam body and foundation. 

According to the Westergaard method, the water effect is considered as the added mass on the dam 

structure. The reservoir is modeled as fluid elements to obtain hydrodynamic effects. For the 

Westergaard approach, no boundary condition is used because the reservoir effects are added mass 

on the dam body. On the other hand, there are important differences between Westergaard and 

Euler methods such as different boundary conditions for the reservoir and different types of 

elements used in the modeling. For all modeling approaches, Plane 42 elements are selected for 

the dam and foundation. Mass 21 and Fluid 29 elements are used to represent for the reservoir for 

Westergaard and Euler methods, respectively.  
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        Figure 4.1 Empty Reservoir Modeling 

 To reveal the exact influence of the reservoir on the dynamic response, the analysis 

primarily should be performed without the presence of water modeling, and then the reservoir 

should be added with either Mass 21 or Fluid 29 elements. The model is divided into 4944 nodes 

and 4775 elements for the empty reservoir modeling as shown in Figure 4.1. Fixed boundary 

conditions are considered for the base of the foundation at the sufficiently far distance from the 

dam-foundation interface. Furthermore, coupled DOFs are used for both sides of the rock. In this 

way, similar movements are obtained for both sides of the rock approximating a simple shear mode 

of deformation. 
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        Figure 4.2 Westergaard Method Modeling 

  

 The finite element model has 22 structural masses to create reservoir effects on the dam 

body associated with the Westergaard approach. Each added mass is equally located in an interval 

of about 4.64 m. The model is divided into 4944 nodes and 4797 elements for the Westergaard 

method as shown in Figure 4.2 and has the same boundary conditions relevant to empty reservoir 

modeling. Each added mass is calculated based on Equation 2.1. Mass distribution m(z) on the 

dam body takes higher values when the distance is farther away from the maximum operating 

water level. As a result of this situation, the maximum mass distribution takes place at the dam-

foundation interface. The aim of using this approach in the research is to investigate the differences 

with results from the Euler method when modal, linear and nonlinear analyses are performed. 

“Mass 21” 

(Added Masses) 
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        Figure 4.3 Euler Method Modeling 

 

 The model has been divided into 5887 nodes and 5717 elements using the proper meshing 

capabilities of ANSYS software as shown in Figure 4.3. Similar boundary conditions of the 

foundation selected for both empty reservoir modeling and Westergaard method are applied for  

Euler method. Additionally, the infinite reservoir interrupts at a sufficiently far away distance from 

the dam body in the finite element modeling using Sommerfeld boundary conditions to obtain 

more realistic results. Since the pressure waves on the top surface of the reservoir are negligible, 

zero water pressure is applied at the maximum water level. It is important to note that although 

Euler-Lagrange method uses some coupled equations to create modeling of water, similar 

equations are applied to dam and foundation for Lagrange-Lagrange method that can be performed  

using Fluid-79 element which is no longer accessible at ANSYS software. 
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4.2 Modal Analysis 

 Even if the modal analysis is not a sufficient method to evaluate seismic response, it should 

be performed to solve out the frequency values and mode shapes of the model.  Natural frequencies 

and modes of vibration enable significant knowledge about the dynamic response of the structure. 

Natural frequencies obtained from the modal analysis are used for the application of Rayleigh 

damping during dynamic analyses. The materials for the foundation and dam are accepted as 

linear-elastic, homogenous, and isotropic when a modal analysis is applied. Massless foundation 

method is not considered for the modal analysis because there is no application of ground motions 

on the dam-foundation-reservoir system. Although the frequency for the first mode of the model 

can be determined using a massless foundation model, higher modes should not be considered as 

massless foundation models to avoid exaggeration of frequency values. All modal analyses are 

performed with considering foundation mass instead of using the massless foundation modeling 

in this thesis. 

4.2.1 Modal Analyses Results 

 The first two mode shapes and frequency values for all approaches are illustrated in this 

section (Figures 4.4-4.9). Natural frequencies that used the calculation of Rayleigh damping of the 

system can be selected from first two frequency results for the model if these values are not close 

to each other. Otherwise, third mode shape and frequency should be considered for the dynamic 

analyses. Natural frequency values for linear and nonlinear seismic analyses and their periods of 

vibration, which are shown in Table 4.1, can be calculated using the following equations: 

   1 1w 2 f=                                                   (4.1) 

   22w 2 f=                                                   (4.2) 
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   1,2 1,2T 1/ f=                                                                                                                                              (4.3) 

where w, f, and T represent natural frequency, frequency obtained from the modal analysis and 

period of vibration of the model, respectively. 

 

          Figure 4.4 Empty Reservoir Condition-Mode Shape 1 

 

          Figure 4.5 Empty Reservoir Condition-Mode Shape 2 



51 
 

 

          Figure 4.6 Westergaard Method-Mode Shape 1 

 

           Figure 4.7 Westergaard Method-Mode Shape 2 
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         Figure 4.8 Euler Method-Mode Shape 1 

     
           Figure 4.9 Euler Method-Mode Shape 2 
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Table 4.1 Modal Analysis Results 

Methods 

Natural Frequency (Hz) Period (sec) 

W1 W2 T1 T2 

Empty Reservoir  8.36 15.02 0.752 0.418 

Westergaard  8.11 14.07 0.775 0.446 

Euler 8.61 14.51 0.729 0.433 

 

4.3 Selected Ground Motions 

According to the Seismic Hazard Analysis Report of the Narli dam,  the maximum peak 

ground acceleration for the dam was assumed as 0.51g (GF Proje ve Muhendislik, 2018 [GF 

Project and Engineering, 2018]). Three acceleration records that occurred on the B ground type of 

foundations were considered for the dynamic analyses of the dam, and all ground acceleration 

records were taken from the General Directorate of State Hydraulic Works (DSI). Those 

acceleration records that were used in the dynamic analyses may not represent actual earthquakes. 

 Based on USACE criteria, at least two ground motions are required for the seismic analysis. 

Therefore, three proper MDE’s are selected to perform dynamic analyses of the dam. The first 

ground motion is referred to Coyote Lake with 0.43 PGA (peak ground acceleration), and the entire 

length of the earthquake recording is 20.28 seconds. The second selected ground motion is 

attributed to Loma Prieta with 0.40 PGA that continues for 30.17 seconds. The last earthquake is 

Palm Springs with 0.38 PGA, and it occurs for 20.015 seconds. The horizontal ground 

accelerations for these three earthquakes are shown below.  
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     Figure 4.10 Ground Acceleration History for 1979 Coyote Lake Earthquake 

 

 

     Figure 4.11 Ground Acceleration History for 1989 Loma Prieta Earthquake 
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    Figure 4.12 Ground Acceleration History for 1986 Palm Springs Earthquake 

  

In regard to USACE criteria, the ground motions take into account for not only horizontal 

direction but also vertical direction. Hence, the vertical ground accelerations of three earthquakes 

are considered as half of the ground motions in the horizontal directions (FEMA, 2005) and applied 

for all dynamic analyses. 
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4.4 Linear Dynamic Analysis of the Narli Dam 

 To consider Rayleigh damping in the analysis, the effective viscous damping ratio of the 

system should be determined based on Equations 2.15 and 2.16 and using Chopra’s graphs  

mentioned in Figure 2.4. Then, Rayleigh coefficients α and β can be calculated, which are shown 

in Equations 2.13 and 2.14, considering the first two natural frequency values obtained from modal 

analyses and the effective viscous damping ratio of the system. 

 The effective viscous damping ratio for the empty reservoir condition will be less than the 

ratio for the other two approaches (Euler and Westergaard Methods) because the additional 

damping resulting from the reservoir is ignored for the empty reservoir condition. Used damping 

ratios and Rayleigh coefficients for the linear dynamic analyses are displayed in Table 4.2. 

Table 4.2 Rayleigh Coefficients and the Effective Damping Ratio Results associated with 

Linear Analyses 

Methods 

Rayleigh Coefficients 

The Effective 

Viscous Damping 

Ratios 

α β ξeff  (%) 

Empty Reservoir  1.894 0.0150 17.6 

Westergaard  1.853 0.0162 18.0 

Euler 1.952 0.0155 18.0 

 

 It is important to note that the ground motions for all EQs shown in Figures 4.11, 4.12, and 

4.13 are given based on unit g. For the dynamic analysis, this unit must be converted to unit m/s2 

when SI units are applied in the analyses. Also, the materials for the foundation and dam are 

accepted as linear-elastic, homogenous, and isotropic in the linear dynamic analyses. The presence 
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of the reservoir can be recognized as either compressible for the Euler method or incompressible 

for the Westergaard method. 

Using a short time interval for the time-history of ground motions such as 0.005 and 0.01 

sec. provides more realistic results than long time intervals for the seismic analysis. Therefore, 

0.005 sec. was chosen as time intervals for all types of ground motions in this research. 

 The reason why the empty reservoir condition has been considered is that the impact of the 

presence of the reservoir on the dynamic response of the roller-compacted concrete gravity dam 

will be investigated. As a result of this situation, the results for Euler and Westergaard methods 

will be compared with the consequences of empty reservoir condition to understand the 

hydrodynamic pressure effect. 

The dam response is estimated based on unit weight and elastic material properties of 

concrete and foundation such as elastic modulus and Poisson’s ratio. Since the time-history method 

enables better representation for the foundation-structure and fluid-structure interaction impacts in 

comparison to the response spectrum method, it was selected for the application of seismic loads 

(USACE, 2003).  

Time-domain analyses are commonly dependent on step-by-step methods that provide 

numerical integration procedures to fulfill the equations of motion. Time intervals with a sequence 

are used to create the response history. The response and loading history during each step are 

calculated from the initial conditions. The static loads are considered as the initial condition of the 

dynamic analysis because the 2-D model of the dams should also be performed considering the 

impacts of static loads (USACE, 2003). 
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4.4.1 Linear Transient (Time-History) Dynamic Analysis Results 

 In this section, the results for displacements, accelerations, compressive stresses, and 

tensile stresses on the dam body will be provided based on all approaches. In the case of the 

massless foundation model in the finite element analysis, there is no displacement at the bottom 

of foundation. In addition, the critical nodes for displacement and acceleration are located on the 

crest of the dam. Thus, displacement-time and acceleration-time histories for the peak of the dam 

during three maximum design earthquakes will be shown with graphs in this section. 

4.4.1.1 Time-History Results for Displacement and Acceleration 

The horizontal displacements and accelerations of the crest of the Narli concrete gravity 

dam in the upstream and downstream directions attained from linear dynamic analyses for three 

distinct methods under three different earthquakes are shown with time-history graphs (Figs. 4.13-

4.30). The maximum horizontal displacements, which are shown in Table 4.3, are obtained as 4.14 

cm, 5.67 cm, and 6.16 cm for empty reservoir condition, Westergaard approach, and Euler method, 

respectively. The maximum horizontal accelerations, which are shown in Table 4.3, are attained 

from the transient analysis and are 1.19 g, 1.15 g, and 1.23 g for empty reservoir condition, 

Westergaard approach, and Euler method, respectively. 

Depending on the given figures, it is clear that the presence of the reservoir highly 

contributes to the crest displacement. Up to a 50% increase in the displacement occurs due to the 

hydrodynamic pressures. On the other hand, the difference in the results of Westergaard and Euler 

methods is approximately 10%. Based on the results, Euler method provides higher estimations 

for the crest displacements than Westergaard method.  
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 The results demonstrate that there is no evidence that the presence of water has a significant 

influence on providing more accelerations for the concrete gravity dam when the added mass 

method was considered. However, about a 25% increase in the crest accelerations takes place when 

the reservoir is assumed as compressible rather than assuming incompressible. Thus, the added 

mass method may be seen as an insufficient approach to figure out the reservoir effect on the crest 

accelerations.  

Figure 4.13 Displacement (m) vs Time 

(sec) History for Coyote Lake Earthquake 

– Empty Reservoir Condition 

 

 

 

 

 

Figure 4.14 Displacement (m) vs Time 

History (sec) for Loma Prieta Earthquake 

– Empty Reservoir Condition 
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Figure 4.15 Displacement (m) vs Time 

History (sec) for Palm Springs Earthquake 

– Empty Reservoir Condition 

 

Figure 4.17 Displacement (m)  vs Time 

History (sec) for Loma Prieta Earthquake 

– Westergaard Method 

 

 

Figure 4.16 Displacement (m) vs Time 

(sec) History for Coyote Lake Earthquake 

– Westergaard Method 

 

Figure 4.18 Displacement (m) vs Time 

History (sec) for Palm Springs Earthquake 

– Westergaard Method 
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Figure 4.19 Displacement (m) vs Time 

(sec) History for Coyote Lake Earthquake 

– Euler Method 

 

Figure 4.21 Displacement (m)  vs Time 

History (sec) for Palm Springs Earthquake 

– Euler Method 

 

Figure 4.20 Displacement (m)  vs Time 

History (sec) for Loma Prieta Earthquake 

– Euler Method 

 

Figure 4.22 Acceleration (m/s2) vs Time 

(sec) History for Coyote Lake Earthquake 

– Empty Reservoir Condition 
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Figure 4.23 Acceleration (m/s2)  vs Time 

(sec) History for Loma Prieta Earthquake 

– Empty Reservoir Condition 

 

 
Figure 4.25 Acceleration (m/s2) vs Time 

(sec) History for Coyote Lake Earthquake 

– Westergaard Method 

 

 

Figure 4.24 Acceleration (m/s2)  vs Time 

(sec) History for Palm Springs Earthquake 

– Empty Reservoir Condition 

 

 
Figure 4.26 Acceleration (m/s2)  vs Time 

(sec) History for Loma Prieta Earthquake 

– Westergaard Method 
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Figure 4.27 Acceleration (m/s2) vs Time 

(sec) History for Palm Springs Earthquake 

– Westergaard Method 

 

 
Figure 4.29 Acceleration (m/s2) vs Time 

(sec) History for Loma Prieta Earthquake 

– Euler Method 

 

 
Figure 4.28 Acceleration (m/s2) vs Time 

(sec) History for Coyote Lake Earthquake 

– Euler Method 

 

 
Figure 4.30 Acceleration (m/s2) vs Time 

(sec) History for Palm Springs Earthquake 

– Euler Method 
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 The observed maximum results associated with the displacement and acceleration of the 

dam crest from the linear analysis in the time-domain are indicated in Table 4.3. Furthermore, the 

research results are compared with the official results, which were obtained by a responsible 

company (G.F. Project and Engineering) for the construction of the Narli Dam. The official results 

were approved by DSI, which is a government company in Turkey. The maximum difference 

between the research and official results of both the displacement and acceleration of the crest of 

the dam is about 8%. The difference can be caused by the different selection of the boundary 

conditions relevant to the foundation. The responsible company selected boundary conditions for 

both sides of the rock as fixed in the y-direction and free in the x-direction. 

Table 4.3 Comparison Time-History Results with Official Results based on Euler Method 

Earthquakes 

Research Results Official Results 

Max. Crest 

Displacement 

(cm) 

Max. Crest 

Acceleration 

(g) 

Max. Crest 

Displacement 

(cm) 

Max. Crest 

Acceleration 

(g) 

Coyote  Lake 6.1 1.19 6.0 1.10 

Loma Prieta 5.5 1.23 5.1 1.27 

Palm Springs 5.4 1.15 5.9 1.10 

*Official Results are obtained from GF Proje ve Muhendislik [GF Project and Engineering, 

2018]. 

 

4.4.1.2 Maximum and Minimum Principal Stress Results  

 

Maximum and minimum principal stresses based on three approaches under three different 

ground motions are presented with the time-history plots (Figures 4.31-4.47). The positive values 

on the figures show the tensile stresses, whereas the negative numbers demonstrate the 

compressive stresses. The maximum principal stresses on the dam body are obtained as 5.61 MPa, 
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7.96 MPa, and 8.46 MPa for empty reservoir condition, Westergaard approach, and Euler method, 

respectively. All attained maximum tensile stresses from the linear transient analyses exceed the 

tensile strength of the concrete. The flexural strength of the structure was calculated as 3.99 MPa 

and 3.83 MPa based on Raphael (1984) and Cannon (1995), respectively. Since the demand 

capacity ratio is more than 2.0,  more refined analyses are required to determine the tensile cracking 

profile of the Narli Dam such as nonlinear transient dynamic analysis. On the other hand, the 

minimum principal stresses on the dam body are attained as 4.43 MPa, 6.66 MPa, and 6.48 MPa 

for empty reservoir condition, Westergaard approach, and Euler method, respectively. In the 

contrast of tensile stresses, compressive stresses never exceed the compressive strength of the 

concrete, which was determined as 15 MPa for the Narli Dam. 

 The time-history figures indicate that the maximum stresses for tension and compression 

should not be expected to occur at the same time even though the happening time for them are 

generally close to each other. By observing time-history plots, it can be stated that the maximum 

tensile principal stresses occur in the upstream face of the gravity dam, whereas the maximum 

compressive principal stresses happen in the downstream face of the structure. Therefore, the 

figures show that the heel of the dam is more susceptible to tensile cracking than the dam toe while 

the toe of the structure is more prone to cracking relevant to compression than the dam heel. 

 The figures clearly illustrate that the presence of the reservoir increases the principal 

stresses on the dam body. The tensile stresses generally decrease between 42% and 58% when 

water is not considered in comparison to the added mass method. When considering the reservoir 

is compressible, moreover, the maximum principal stresses increase between 50% and 73% 

relative to the empty condition. The difference between Westergaard and Euler methods depending 

on tensile stress results is about 10%, and supposing the incompressible water condition 
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(Westergaard approach) underestimates the results than estimating compressible condition (Euler 

approach). Similarly, when the reservoir is considered in the linear transient analysis, the minimum 

principal stresses increase up to 68% and 71% due to hydrodynamic forces for Westergaard and 

Euler methods, respectively. The other critical point is the midpoint of the structure in the upstream 

direction. The maximum principal stress is determined as about 3.80 MPa which is less than the 

flexural strength of concrete, and thus tensile cracking is not expected at this point. 

 As a result, the maximum compressive stress is not a concern for the seismic evaluation of 

the Narli dam. Because of high tensile stress results, on the other hand,  the nonlinear time-history 

dynamic analysis should be performed. 

 

 

 

    Figure 4.31 Maximum Tensile Stress (+) Distributions at 6.08 sec. for Coyote Lake 

Earthquake – Empty Reservoir Condition 

“Principal Stresses (N/m2)” 
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    Figure 4.32 Maximum Compressive Stress (-) Distributions at 6.05 sec. for Coyote Lake 

Earthquake – Empty Reservoir Condition 

 

    Figure 4.33 Maximum Tensile Stress (+) Distributions at 10.025 sec. for Loma Prieta 

Earthquake – Empty Reservoir Condition 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.34 Maximum Compressive Stress (-) Distributions at 10.015 sec. for Loma Prieta 

Earthquake – Empty Reservoir Condition 

 

    Figure 4.35 Maximum Tensile Stress (+) Distributions at 6.32 sec. for Palm Springs 

Earthquake – Empty Reservoir Condition 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.36 Maximum Compressive Stress (-) Distributions at 6.325 sec. for Palm Springs 

Earthquake – Empty Reservoir Condition 

 

    Figure 4.37 Maximum Tensile Stress (+) Distributions at 6.12 sec. for Coyote Lake 

Earthquake – Westergaard Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.38 Maximum Compressive Stress (-) Distributions at 5.9 sec. for Coyote Lake 

Earthquake – Westergaard Method 

 

 

    Figure 4.39 Maximum Tensile Stress (+) Distributions at 9.66 sec. for Loma Prieta 

Earthquake – Westergaard Method 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.40 Maximum Compressive Stress (-) Distributions at 9.655 sec. for Loma Prieta 

Earthquake – Westergaard Method 

 

    Figure 4.41 Maximum Tensile Stress (+) Distributions at 9.06 sec. for Palm Springs 

Earthquake – Westergaard Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 



72 
 

 

    Figure 4.42 Maximum Compressive Stress (-) Distributions at 9.05 sec. for Palm Springs 

Earthquake – Westergaard Method 

 

    Figure 4.43 Maximum Tensile Stress (+) Distributions at 6.12 sec. for Coyote Lake 

Earthquake – Euler Method 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.44 Maximum Compressive Stress (-) Distributions at 5.9 sec. Coyote Lake 

Earthquake – Euler Method 

 

    Figure 4.45 Maximum Tensile Stress (+) Distributions at 9.67 sec. for Loma Prieta 

Earthquake – Euler Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.46 Maximum Compressive Stress (-) Distributions at 9.67 sec. Loma Prieta 

Earthquake – Euler Method 

 

    Figure 4.47 Maximum Tensile Stress (+) Distributions at 9.05 sec. for Palm Springs 

Earthquake – Euler Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.48 Maximum Compressive Stress (-) Distributions at 9.045 sec. Palm Springs 

Earthquake – Euler Method 

 The attained maximum results related to 1st principal stress on the dam body from the linear 

analysis in the time-domain are demonstrated in Table 4.4. The maximum difference between the 

research and official results is approximately 5%. The difference can be resulted from the different 

selection of the boundary conditions relevant to the rock. 

Table 4.4 Comparison Principal Stress Results with Official Results depending on Euler 

Method 

Earthquakes 

Research Results Official Results 

Max. Tensile Stress 

(MPa) 

Max. Tensile Stress 

(MPa) 

Coyote  Lake 8.46 8.35 

Loma Prieta 7.23 7.19 

Palm Springs 6.60 6.94 

*Official Results are obtained from GF Proje ve Muhendislik [GF Project and Engineering, 

2018]. 

“Principal Stresses (N/m2)” 
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4.5 Nonlinear Dynamic Analysis of Narli Dam 

The Drucker Prager approach is used for the dam-foundation-reservoir interaction in non-

linear analysis. The results of linear and nonlinear analyses are compared based on the maximum 

displacements, principal stresses, and cracking on the critical points of the concrete gravity dam. 

Even if the compression values on the dam body never exceed the compressive strength of concrete 

in the linear transient analyses, they are again evaluated using the nonlinear time-history analyses 

to solve out the difference in the consequences. Furthermore, the changes in acceleration and 

displacement results of the dam crest associated with linear and nonlinear analyses will be 

displayed. More importantly, maximum principal stress values will be presented more precisely 

because nonlinear analyses enable more accurate results to estimate the level of damage of the 

structure than linear analyses. Moreover, if any plastic strain occurs after performing nonlinear 

time-history dynamic analysis, it will be discussed in this section. 

The cohesion and the internal friction angle of the concrete for the Drucker Prager model 

are supposed as to be 1.5 MPa and 45°, respectively. Additionally, the cohesion and the internal 

friction angle of the foundation are assumed as to be 1.9 MPa and 27°, respectively (GF Proje ve 

Muhendislik, 2018 [GF Project and Engineering, 2018]). The dilatancy angle for the foundation 

and concrete are identical to the friction angle in the analysis. In this way, the model uses 

associated plasticity. 

4.5.1 Nonlinear Time-History Results for Displacement and Acceleration 

It can be concluded considering Tables 4.5 and 4.6 that linear dynamic analysis is a 

beneficial tool to estimate the displacement and acceleration of the crest of the dam since the 
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variation in two methods are sufficiently low when the massless foundation model is used for the 

Narli Dam. 

Table 4.5 Comparison Nonlinear Displacement Results of the Crest of Dam with Linear 

Results depending on three different approaches 

Earthquakes 

Empty Reservoir 

Condition 
Westergaard Approach Euler Method 

Max. Crest 

Displacement (cm) 

Max. Crest 

Displacement (cm) 

Max. Crest 

Displacement (cm) 

Linear Nonlinear Linear Nonlinear Linear Nonlinear 

Coyote  Lake 4.14 4.05 5.67 5.35 6.16 5.80 

Loma Prieta 3.44 3.45 5.22 5.17 5.58 5.59 

Palm 

Springs 
3.57 3.58 5.11 5.09 5.42 5.53 

 

Table 4.6 Comparison Nonlinear Acceleration Results of the Crest of Dam with Linear 

Results depending on three different approaches 

Earthquakes 

Empty Reservoir 

Condition 
Westergaard Approach Euler Method 

Max. Crest 

Acceleration (g) 

Max. Crest  

Acceleration (g) 

Max. Crest 

Acceleration (g) 

Linear Nonlinear Linear Nonlinear Linear Nonlinear 

Coyote  Lake 1.19 1.15 1.15 1.17 1.19 1.16 

Loma Prieta 0.98 0.97 1.07 1.04 1.23 1.18 

Palm 

Springs 
0.99 0.98 0.99 0.98 1.15 1.10 

 

4.5.2 Nonlinear Time-History Results for Principal Stresses 

In accordance with the nonlinear analyses, Westergaard and Euler approaches presented 

similar values related to the 1st principal stresses on the dam body. On the other hand, up to a 61% 
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reduction in the stresses happens when the reservoir is ignored in the finite element modeling. The 

maximum principal stresses on the heel of the dam in the upstream direction are attained as 2.71 

MPa, 3.15 MPa, and 3.05 MPa for empty reservoir condition, Westergaard approach, and Euler 

method, respectively. In the contrast of linear time-history analyses, the tensile stresses do not 

exceed the tensile strength of concrete that are calculated as 3.99 MPa and 3.83 MPa depending 

on Raphael (1984) and Cannon (1995), respectively. Thus,  failure of the dam caused by the tensile 

stresses on the dam heel under the same strong earthquakes is not expected in the light of nonlinear 

dynamic analyses. 

 By contrast with linear dynamic analysis, obtained 3rd principal stresses for the toe of the 

dam in the downstream direction considerably increase when the nonlinear analysis is considered. 

Maximum compressive stresses, which are demonstrated in Table 4.7, are attained as 5.74 MPa, 

8.16 MPa, and 9.16 MPa for empty reservoir condition, Westergaard approach, and Euler method, 

respectively. Even if significant increasing in the minimum principal stress values occur by 

considering nonlinear time-history analyses, the compressive strength of concrete that is calculated 

as 15 MPa for the Narli Dam are sufficient to meet the criteria for the demand capacity ratio. 

Therefore, damages resulted from the stresses associated with compression under similar ground 

motions are not expected for the Narli Dam when examining the consequences of nonlinear 

transient dynamic analyses. 

 In comparing linear and nonlinear results, linear analyses provide accurate conclusions to 

estimate the effect of hydrodynamic forces on the displacements and accelerations of the dam. 

However, it leads to overestimated results for tensile stresses and underestimated results for the 

compressive stresses compared with the more refined analysis. 
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     Figure 4.49 Maximum Tensile Stress (+) Distributions at 6.08 sec. for Coyote Lake 

Earthquake – Empty Reservoir Condition    

 

    Figure 4.50 Maximum Compressive Stress (-) Distributions at 6.055 sec. for Coyote Lake 

Earthquake – Empty Reservoir Condition  

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.51 Maximum Tensile Stress (+) Distributions at 10.03 sec. for Loma Prieta 

Earthquake – Empty Reservoir Condition 

 

    Figure 4.52 Maximum Compressive Stress (-) Distributions at 10.01 sec. for Loma Prieta 

Earthquake – Empty Reservoir Condition 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.53 Maximum Tensile Stress (+) Distributions at 5.65 sec. for Palm Springs 

Earthquake – Empty Reservoir Condition 

 

    Figure 4.54 Maximum Compressive Stress (-) Distributions at 9.015 sec. for Palm Springs 

Earthquake – Empty Reservoir Condition 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.55 Maximum Tensile Stress (+) Distributions at 6.105 sec. for Coyote Lake 

Earthquake – Westergaard Method 

 

    Figure 4.56 Maximum Compressive Stress (-) Distributions at 6.11 sec. for Coyote Lake 

Earthquake – Westergaard Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.57 Maximum Tensile Stress (+) Distributions at 9.66 sec. for Loma Prieta 

Earthquake – Westergaard Method 

 

    Figure 4.58 Maximum Compressive Stress (-) Distributions at 9.655 sec. for Loma Prieta 

Earthquake – Westergaard Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.59 Maximum Tensile Stress (+) Distributions at 8.125 sec. for Palm Springs 

Earthquake – Westergaard Method 

 

    Figure 4.60 Maximum Compressive Stress (-) Distributions at 9.055 sec. for Palm Springs 

Earthquake – Westergaard Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.61 Maximum Tensile Stress (+) Distributions at 6.12 sec. for Coyote Lake 

Earthquake – Euler Method 

 

    Figure 4.62 Maximum Compressive Stress (-) Distributions at 6.10 sec. for Coyote Lake 

Earthquake – Euler Method 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.63 Maximum Tensile Stress (+) Distributions at 9.65 sec. for Loma Prieta 

Earthquake – Euler Method 

 

    Figure 4.64 Maximum Compressive Stress (-) Distributions at 9.65 sec. for Loma Prieta 

Earthquake – Euler Method 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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    Figure 4.65 Maximum Tensile Stress (+) Distributions at 9.05 sec. for Palm Springs 

Earthquake – Euler Method 

 

    Figure 4.66 Maximum Compressive Stress (-) Distributions at 9.045 sec. for Palm Springs 

Earthquake – Euler Method 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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Table 4.7 Obtained Maximum Tensile and Compressive Stresses from Nonlinear Dynamic 

Analyses 

Method 
Max. Tensile Stress 

(MPa) 

Max. Compressive Stress 

(MPa) 

Empty 2.71 5.74 

Westergaard 3.15 8.16 

Euler 3.05 9.16 

 

 In accordance with the nonlinear analysis, maximum principal plastic strains, which are 

shown in Table 4.8-4.10, happen on the dam-foundation interface. Maximum 1st principal strains 

are obtained as 0.0005, 0.0013, and 0,0014 depending on an empty reservoir, Westergaard, and 

Euler approaches, respectively. On the other hand, maximum 3rd principal strains on the dam-

foundation interface are remarkably negligible. Based on USACE criteria, if a structure is in the 

almost elastic limit when subjected to MDE, the dynamic response of the structure can be 

acceptable. Even though the nonlinear response of the Narli Dam is in the inelastic limit, the 

maximum 1st principal strain values are negligible. Therefore, significant cracking on the dam-

foundation interface is not expected in the light of the nonlinear results. 

Table 4.8 Obtained Maximum Principal Plastic Strain Values from Nonlinear Dynamic 

Analyses based on Empty Reservoir Condition 

Empty Reservoir Condition 

Earthquake 
Max. 1st Principal Plastic Strain  

(m/m) 

Max. 3rd  Principal Plastic Strain  

(m/m) 

Coyote  Lake 0.0005 0.0000278 

Loma Prieta 0.0004 0.0000229 

Palm Springs 0.0005 0.0000251 
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Table 4.9 Obtained Maximum Principal Plastic Strain Values from Nonlinear Dynamic 

Analyses based on Westergaard Approach 

Westergaard Approach 

Earthquake 
Max. 1st Principal Plastic Strain  

(m/m) 

Max. 3rd  Principal Plastic Strain  

(m/m) 

Coyote  Lake 0.0013 0.0000433 

Loma Prieta 0.0010 0.0000498 

Palm Springs 0.0009 0.0000367 

 

Table 4.10 Obtained Maximum Principal Plastic Strain Values from Nonlinear Dynamic 

Analyses based on Euler Approach 

Euler Approach 

Earthquake 
Max. 1st Principal Plastic Strain  

(m/m) 

Max. 3rd  Principal Plastic Strain  

(m/m) 

Coyote  Lake 0.0014 0.0000498 

Loma Prieta 0.0012 0.0000507 

Palm Springs 0.0013 0.0000430 
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CHAPTER 5 

 

THE EFFECTS OF FOUNDATION FLEXIBILITY, POISSON’S RATIO, AND THE 

PRESENCE OF ALLUVIUM ON THE SEISMIC RESPONSE 

 

5.1 Introduction 

The deformation modulus is the same as Young’s modulus (Ef or Ec) for the linear-elastic 

dynamic analyses. The deformation modulus of elasticity impacts the seismic response of the dam 

because it alters mode shapes, the values of modal frequency, and effective damping ratio (USACE 

EP 1110-2-12, 1995). Hence,  the impact of deformation modulus on the seismic response of the 

dam will be figured out using the distinct elastic modulus of both foundation and structure. The 

influence of foundation flexibility (Ef/Ec) can be determined by considering different ratios 

associated with elastic modulus. While higher ratios of foundation flexibility represent a rigid 

foundation, lesser values are referred to as a very flexible foundation. In this chapter, the influence 

of the changes in the foundation flexibility ratio on the dynamic response of the structure 

considering structure-dam-reservoir interaction will be demonstrated. 

The contribution of Poisson’s ratio of both structure and rock to the seismic evaluation of 

the dam will be indicated with performing linear time-history analyses considering several possible 

Poisson’s ratio values. Initially, the analysis will be performed with either different ratios for the 

foundation or distinct values for the structure. Then, the combination of them will be illustrated. 
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To reveal whether the presence of alluvium alters the dynamic response of the structure, 

various finite modeling that contains different alluvium thicknesses will be used. In this way, the 

alluvium will be evaluated whether it is a significant concern for the safety evaluation of the dams. 

All linear time-history dynamic analyses for this chapter are performed based on the 

Coyote Lake earthquake, which is more intense compared with the other two ground motions. 

Since the principal stresses on the dam body caused by the Coyote Lake earthquake are more 

severe than the other two ground motions in former analyses, it was selected for the application in 

this section. Moreover, the differences in the results relevant to several parameters can be 

sufficiently illustrated by the linear analysis. Therefore, linear analyses are considered rather than 

using nonlinear analyses in this section. 

5.2 The Foundation Flexibility Effect on the Seismic Response 

  The baseline foundation flexibility ratio is 0.37 for the Narli Dam. To understand the 

contribution of a more rigid foundation to the dynamic response, the deformation modulus of the 

foundation is increased while Young’s modulus of concrete is used as a constant value. 0.30, 0.50, 

1.0, and 3.0 ratios are selected for this purpose. A ratio of 3.0 would correspond to a shear wave 

velocity of 3460 m/s which can be used for intact crystalline rock. Additionally, the presence of 

water with the Euler method and empty reservoir condition are considered with the linear seismic 

analyses. 

Table 5.1 clearly states that the deformation of modulus for the foundation alters the modal 

analysis results and more rigid foundations achieve higher natural frequency values. Also, the 

reduction in the value of Rayleigh coefficient β  happens due to an increase in the natural frequency 

values when the rigidity of the system increases. More importantly, the additional parameter that 
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affects the seismic response of the dam is the effective damping ratio for the dam-foundation-

reservoir interaction. As shown in Table 5.1, the damping of the system reduces for high rigidity 

foundations. The most significant factor is the additional damping ratio of the rock which decreases 

for more rigid foundations. When the foundation becomes more flexible, the effective damping 

ratio of the whole system increase and the natural frequencies decrease. 

Table 5.1 Natural Frequency, Rayleigh Coefficients and Effective Damping Ratio Results for 

Different Foundation Flexibility Ratios based on Empty Reservoir Condition  

Foundation 

Flexibility 

Ratio 

W1  

(Hz) 

W2 

 (Hz) 
α β 

ξ 

 (%) 

0.30 7.508 13.521 1.882 0.0185 19.5 

0.37 8.360 15.020 1.894 0.0150 17.6 

0.50 9.676 17.291 1.811 0.0110 14.6 

1.00 13.628 22.984 1.711 0.0055 10.0 

3.00 22.990 30.090 2.805 0.0030 8.0 

 

Based on the obtained results from linear seismic analyses, which is shown in Table 5.2, it 

is obvious that the foundation flexibility ratios significantly change the dynamic response of the 

system. Both principal stresses on the dam body and displacement of the dam crest are getting 

smaller values when Young’s modulus of the rock are high values. Thus, more rigid foundation 

materials offer better performance to avoid tensile cracking. On the other hand, the other important 

conclusion attained from results for the empty reservoir condition is that satisfactory reductions 

do not take place for the minimum principal stresses even if the more rigid foundation is selected 

as a construction site. The decrease in the significant parameters of the dynamic analysis results 
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may happen due to lower damping ratios and higher frequency values of the model relevant to less 

flexible foundations. 

Table 5.2 Linear Dynamic Results for Different Foundation Flexibility Ratios based on 

Empty Reservoir Condition 

Foundation 

Flexibility Ratios 

Empty Reservoir Condition 

Max. Crest 

Displacement 

(cm) 

Max. Tensile Stress 

(MPa) 

Max. Compressive 

Stress (MPa) 

0.30 4.31 5.63 4.45 

0.37 4.14 5.61 4.43 

0.50 3.70 5.46 4.41 

1.00 3.39 4.84 4.17 

3.00 2.40 3.98 3.51 

 

Depending on the linear seismic analysis results connected with Euler method, which are 

indicated in Table 5.3 and Table 5.4, it can be again claimed that the changes in the foundation 

flexibility alter modal analysis results, displacements, and the principal stresses on the dam body. 

However, considerable reductions in the stresses do not occur until the rigidity of the foundation 

reaches the ratio of 1.0 compared to empty reservoir modeling. Hence, it can be concluded with 

the Euler method that if the deformation modulus of the rock is at least akin to the elastic modulus 

of the structure, the foundation leads to less demand on the dam in terms of tensile and compressive 

stresses. This conclusion would be only valid for  a dam that has similar characteristic features 

with the Narli Dam and is under similar ground accelerations. 
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Table 5.3 Natural Frequency, Rayleigh Coefficients and Effective Damping Ratio Results for 

Different Foundation Flexibility Ratios based on Euler Method  

Foundation 

Flexibility 

Ratio 

W1  

(Hz) 

W2 

 (Hz) 
α β 

ξ 

 (%) 

0.37 8.610 14.510 1.952 0.0155 18.0 

0.50 9.978 16.412 1.849 0.0113 14.9 

1.00 13.892 20.822 1.667 0.0058 10.0 

3.00 20.929 24.668 1.698 0.0033 7.5 

 

Table 5.4 Linear Dynamic Results for Different Foundation Flexibility Ratios based on Euler 

Method 

Foundation 

Flexibility Ratio 

Euler Method 

Max. Crest 

Displacement 

(cm) 

Max. Tensile Stress 

(MPa) 

Max. Compressive 

Stress (MPa) 

0.37 6.16 8.46 6.48 

0.50 6.00 8.45 6.36 

1.00 5.00 7.17 5.65 

3.00 3.36 5.65 3.75 

 

5.3 The Poisson’s Effect on the Seismic Response 

 The Poisson’s ratio of the concrete and foundation for the Narli Dam is 0.20 and 0.30, 

respectively. However, the ratio can be a value between 0.20 and 0.33 for the concrete. Similarly, 

this ratio for the foundation is taken as a value between 0.20 and 0.35. To understand the Poisson’s 

ratio effect on the dynamic response of the concrete gravity dam, several ratios for both concrete 
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and rock are selected in the linear dynamic analyses. The analyses are computed with empty 

reservoir condition and the Euler method. 

Tables 5.5 and 5.6 show that the changes in the Poisson’s ratio for either concrete or 

foundation slightly alter the modal response of the dam. Poisson’s ratio does not have a significant 

effect, especially for the first modes of the models. In the second mode of the system, changes 

begin and lightly increase with the higher ratios. Moreover, the impact of the Poisson’s ratio on 

the Rayleigh Coefficients and effective viscous damping ratio of the dam model is negligible. 

Table 5.5 Natural Frequency, Rayleigh Coefficients and Effective Damping Ratio Results for 

Different Poisson’s Ratios of Concrete based on Empty Reservoir Condition  

Poisson’s 

Ratio 

W1  

(Hz) 

W2 

 (Hz) 
α β 

ξ 

 (%) 

0.25 8.375 15.067 1.8950 0.0150 17.6 

0.30 8.375 15.073 1.8951 0.0150 17.6 

0.33 8.375 15.080 1.8954 0.0150 17.6 

 

Table 5.6 Natural Frequency, Rayleigh Coefficients and Effective Damping Ratio Results for 

Different Poisson’s Ratios of Foundation based on Empty Reservoir Condition  

Poisson’s 

Ratio 

W1  

(Hz) 

W2 

 (Hz) 
α β 

ξ 

 (%) 

0.20 8.696 14.000 1.8880 0.0155 17.6 

0.25 8.533 14.451 1.8884 0.0153 17.6 

0.35 8.231 15.510 1.8930 0.0148 17.6 

 

According to Tables 5.7 and 5.8, we can come up with the idea that the Poisson’s ratio of 

concrete and rock is not an influential parameter for both modal and dynamic responses of the 

concrete gravity dams when the hydrodynamic forces are negligible in the modeling. However, it 
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is important to note that while the principal stresses take higher values with the increase of the 

ratio for the concrete, they reduce with increasing Poisson’s ratio for the foundation. Additionally, 

displacement on the crest of the dam decreases slightly with higher ratios in both ways. 

 

Table 5.7 Linear Dynamic Results for Different Poisson’s Ratios of Concrete based on Empty 

Reservoir Condition 

Poisson’s 

 Ratio of Concrete 

Empty Reservoir Condition 

Max. Crest 

Displacement 

(cm) 

Max. Crest 

Displacement (cm) 

Max. Compressive 

Stress (MPa) 

0.20 4.14 5.61 4.43 

0.25 4.09 5.71 4.50 

0.30 4.04 5.83 4.58 

0.33 4.01 5.91 4.63 

 

 

Table 5.8 Linear Dynamic Results for Different Poisson’s Ratios of Foundation based on 

Empty Reservoir Condition 

Poisson’s 

 Ratio of 

Foundation 

Empty Reservoir Condition 

Max. Crest 

Displacement 

(cm) 

Max. Crest 

Displacement (cm) 

Max. Compressive 

Stress (MPa) 

0.20 4.20 5.79 4.70 

0.25 4.17 5.71 4.57 

0.30 4.10 5.61 4.43 

0.35 4.06 5.47 4.26 
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Identical to empty reservoir modal analysis results, the first mode of the dam model is not 

affected by the changes of the Poisson’s ratios. However, the second mode alters with changing in 

the ratios, especially for the ratios for the foundation. Even if the reservoir is considered in the 

model, neither Rayleigh Coefficients nor damping ratio vary. 

Table 5.9 Natural Frequency, Rayleigh Coefficients and Effective Damping Ratio Results for 

Different Poisson’s Ratios of Concrete based on Euler Method  

Poisson’s 

Ratio 

W1  

(Hz) 

W2 

 (Hz) 
α β 

ξ 

 (%) 

0.25 8.658 14.552 1.954 0.01551 18.0 

0.30 8.658 14.571 1.955 0.01549 18.0 

0.33 8.658 14.583 1.956 0.01548 18.0 

 

 

Table 5.10 Natural Frequency, Rayleigh Coefficients and Effective Damping Ratio Results 

for Different Poisson’s Ratios of Foundation based on Euler Method 

Poisson’s 

Ratio 

W1  

(Hz) 

W2 

 (Hz) 
α β 

ξ 

 (%) 

0.20 8.878 13.854 1.948 0.0158 18.0 

0.25 8.765 14.238 1.953 0.0157 18.0 

0.35 8.558 14.778 1.951 0.0154 18.0 

 

In light of the results given in Tables 5.11 and 5.12, increasing of the ratio for the concrete 

and decreasing of the ratio for the foundation lead to slight reductions of 1st and 3rd principal 

stresses on the dam body. However, the Poisson ratio cannot be seen as the critical parameter for 

the seismic safety evaluation of the gravity dams based on the dynamic results of both empty 

reservoir condition and the Euler method.  
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Table 5.11 Linear Dynamic Results for Different Poisson’s Ratios of Concrete based on Euler 

Method 

Poisson’s 

 Ratio of Concrete 

Euler Method 

Max. Crest 

Displacement 

(cm) 

Max. Tensile Stress 

(MPa) 

Max. Compressive 

Stress (MPa) 

0.20 6.16 8.46 6.48 

0.25 6.12 8.60 6.55 

0.30 6.06 8.78 6.64 

0.33 6.02 8.90 6.70 

 

Table 5.12 Linear Dynamic Results for Different Poisson’s Ratios of Foundation based on 

Euler Method 

Poisson’s 

 Ratio of 

Foundation 

Euler Method 

Max. Crest 

Displacement 

(cm) 

Max. Tensile Stress 

(MPa) 

Max. Compressive 

Stress (MPa) 

0.20 6.26 8.73 6.68 

0.25 6.21 8.60 6.59 

0.30 6.16 8.46 6.48 

0.35 6.08 8.24 6.35 

   

5.4 The Presence of Alluvium Effect on the Seismic Response 

 The construction site of the dam had 7m-thick alluvium, but all alluvium was removed by 

the construction company. Thus, previous analyses do not consist of alluvium thickness in the 

finite element modeling. To reveal the influence of the lack of the alluvium on the seismic 

response, assorted alluvium thicknesses are considered such as 3m, 5m, and 7m. For this aim, 
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empty reservoir condition and Westergaard method are considered in the linear time-history 

dynamic analyses. The density, modulus of elasticity, and Poisson’s ratio of the alluvium are 

supposed as 1835 kg/m3, 0.12 GPa, and 0.30, respectively (Aydin and Er, 2017). 

 

       Figure 5.1 A Typical Included Alluvium Thickness (5 m) in the Finite Element Model 

 

Tables 5.13 and 5.14 show results using an empty reservoir and the Westergaard approach 

with changing alluvium thickness. The decrease in the alluvium thickness brings about the growth 

of natural frequencies associated with both methods. On the other hand, there is no sufficient effect 

on the Rayleigh Coefficients and damping ratios of the system. 

 

 

 

“Alluvium” 
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Table 5.13 Natural Frequency, Rayleigh Coefficients and Effective Damping Ratio Results 

for Various Alluvium Thicknesses based on Empty Reservoir Condition 

Thickness of 

Alluvium 

(m) 

W1  

(Hz) 

W2 

 (Hz) 
α β 

ξ 

 (%) 

0 8.360 15.020 1.894 0.0150 17.6 

3 8.319 15.000 1.884 0.0151 17.6 

5 8.275 14.950 1.875 0.0152 17.6 

7 8.231 14.900 1.866 0.0152 17.6 

 

 

Table 5.14 Natural Frequency, Rayleigh Coefficients and Effective Damping Ratio Results 

for Various Alluvium Thicknesses based on Westergaard Method 

Thickness of 

Alluvium 

(m) 

W1  

(Hz) 

W2 

 (Hz) 
α β 

ξ 

 (%) 

0 8.110 14.070 1.853 0.0162 18.0 

3 8.074 13.990 1.843 0.0163 18.0 

5 8.036 13.949 1.836 0.0164 18.0 

7 8.000 13.900 1.828 0.0164 18.0 

 

Based on the results shown in Tables 5.15 and 5.16, it can be concluded that the increase 

of alluvium thickness in the dam site impacts the seismic response considerably because it creates 

more vulnerable areas to tensile cracking.  The difference between 0 m and 7 m of alluvium 

thicknesses in terms of maximum principal stress is about 10%. Hence, the removal of the alluvium 

in the site should be performed to reduce cracking caused by tension. However, the 3rd principal 

stresses did rise substantially even if thickness grew from 0 m to 7 m.  
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Table 5.15 Linear Dynamic Results for Various Alluvium Thicknesses based on Empty 

Reservoir Condition 

Thickness of 

Alluvium 

 (m) 

Empty Reservoir Condition 

Max. Crest 

Displacement 

(cm) 

Max. Tensile Stress 

(MPa) 

Max. Compressive 

Stress (MPa) 

0 4.14 5.61 4.43 

3 4.35 5.85 4.54 

5 4.49 6.05 4.57 

7 4.58 6.19 4.52 

 

Table 5.16 Linear Dynamic Results for Various Alluvium Thickness based on Westergaard 

Method 

Thickness of 

Alluvium 

 (m) 

Westergaard Method 

Max. Crest 

Displacement 

(cm) 

Max. Tensile Stress 

(MPa) 

Max. Compressive 

Stress (MPa) 

0 5.67 7.96 6.66 

3 5.87 8.14 6.70 

5 6.01 8.30 6.82 

7 6.16 8.55 6.82 

 

5.5 The Influence of the Combinations connected with Alluvium Thickness and Foundation 

Flexibility Ratio on the Seismic Response 

 Former analyses revealed that whilst the difference in the alluvium thicknesses and 

foundation flexibility ratios make a contribution to modal and dynamic responses of the dam, 

Poisson’s ratios have no remarking outcomes on them. Hence, various combinations, which are 

shown in Table 5.17, are selected depending on distinct alluvium thicknesses and foundation 
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flexibility ratios. In this way, it emerges that whether the concrete gravity dams are prone to 

cracking stemmed from tension on the dam body when they are tackled with a strong ground 

motion. Empty reservoir condition and added mass method are considered for performing linear 

time-history analyses. 

Table 5.17 Various Combinations for Linear Dynamic Analyses associated with Empty 

Reservoir Condition and the Westergaard Method 

The Thickness of Alluvium 

(m) 

Foundation Flexibility Ratio 

0.50 1.0 

3 Combination 1 Combination 2 

5 Combination 3 Combination 4 

7 Combination 5 Combination 6 

 

Tables 5.18 and 5.19 point out that the effective viscous damping ratio of the system 

remains constant when alluvium thicknesses increase with the constant foundation flexibility ratio. 

However, the damping ratios cut down if the rigidity of the rock rises with the constant alluvium 

thickness. Moreover, the foundation flexibility ratio that significantly affects the natural frequency 

and Rayleigh Coefficients values in the modal analysis is the governing factor instead of alluvium 

thickness. 
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Table 5.18 Natural Frequency, Rayleigh Coefficients and Effective Damping Ratio Results 

for Various Combinations based on Empty Reservoir Condition 

Combination 
W1  

(Hz) 

W2 

 (Hz) 
α β 

ξ 

 (%) 

The Narli 

Dam 
8.360 15.020 1.894 0.0150 17.6 

1 9.607 17.216 1.800 0.0110 14.6 

2 13.534 22.902 1.701 0.0054 10.0 

3 9.557 17.159 1.792 0.0109 14.6 

4 13.464 22.833 1.694 0.0051 10.0 

5 9.506 17.090 1.783 0.0109 14.6 

6 13.383 22.733 1.685 0.0054 10.0 

 

 

Table 5.19 Natural Frequency, Rayleigh Coefficients and Effective Damping Ratio Results 

for Various Combinations based on the Westergaard Method 

Combination 
W1  

(Hz) 

W2 

 (Hz) 
α β 

ξ 

 (%) 

The Narli 

Dam 
8.110 14.070 1.853 0.0162 18.0 

1 9.318 15.802 1.747 0.0119 14.9 

2 13.050 20.257 1.587 0.0060 10.0 

3 9.274 15.758 1.740 0.0119 14.9 

4 12.994 20.213 1.582 0.0060 10.0 

5 9.230 15.702 1.732 0.0120 14.9 

6 12.931 20.144 1.575 0.0060 10.0 
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It can be deduced from Tables 5.20 and 5.21 that the tensile stresses on the heel of the dam 

and displacement at the dam crest grow approximately 5% and 3.5%, respectively, if the rigidity 

of the rock is low based on both the empty reservoir condition and the Westergaard method. For 

foundations that have high rigidity, on the other hand, the effect of alluvium on the 1st principal 

stress and displacement disappears. It can be inferred from Tables 5.20 and 5.21, additionally, the 

least efficient combination is Combination 5, which consists of low rigidity and high alluvium 

thickness; while the most efficient combination for the seismic analysis is Combination 2, which 

is composed of high rigidity and low alluvium thickness. When the foundation flexibility ratio 

increases from 0.5 to 1.0, and the alluvium thickness drops from 7 m to 3 m, the displacement, 1st 

principal stress, and 3rd principal stress decline up to 25%, 30%, and 20%, respectively. When the 

reservoir is neglected in finite element modeling, those proportions decrease up to 16%, 20%, and 

10%, respectively. 

Table 5.20 Linear Dynamic Results for Various Combinations based on Empty Reservoir 

Condition 

Combination 

Empty Reservoir Condition 

Displacement 

(cm) 

Tensile Stress 

(MPa) 

Compressive Stress 

(MPa) 

The Narli Dam 4.14 5.61 4.43 

1 3.98 5.68 4.53 

2 3.54 5.01 4.29 

3 4.09 5.90 4.57 

4 3.64 5.25 4.32 

5 4.12 5.95 4.46 

6 3.60 5.10 4.15 
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Table 5.21 Linear Dynamic Results for Various Combinations based on the Westergaard 

Method 

Combination 

Westergaard Method 

Displacement 

(cm) 

Tensile Stress 

(MPa) 

Compressive Stress 

(MPa) 

The Narli Dam 5.67 7.96 6.66 

1 5.98 8.75 5.86 

2 5.03 7.02 5.14 

3 6.14 8.94 5.91 

4 5.12 7.25 5.20 

5 6.23 9.21 6.11 

6 5.16 7.39 5.28 
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CHAPTER 6 

 

CONCLUSIONS 

6.1 Summary 

 The main objective of the research is to determine dynamic responses of the Narli Dam 

under several ground motions that are representative of the seismic hazard in the area and to 

evaluate the dynamic results considering USACE criteria. Moreover, the research considers the 

empty reservoir condition, the Westergaard method, and the Euler method to reveal the 

hydrodynamic pressure effects on the seismic response of the dam. Furthermore, the project aims 

to reveal the possible parameters that can impact the seismic response such as foundation 

flexibility ratio, Poisson’s ratio of concrete and foundation, and the presence of alluvium in the 

dam site. 

 The results of these analyses show that linear time-history analyses predict tensile stresses 

on the dam body that are considerably higher than the nonlinear dynamic analyses. On the other 

hand, the linear transient dynamic analyses showed lower values in terms of compressive stresses 

on the dam body in comparison to nonlinear analyses. The results obtained from both linear and 

nonlinear time-history analyses of the Narli Dam showed that the 3rd principal stresses never 

exceed the compressive strength of the concrete. Moreover, the tensile strength of the concrete is 

insufficient based on estimated tensile stress results associated with linear dynamic analyses which 

would suggest the possibility of cracking. However, the outcomes of nonlinear analyses 

demonstrate that the tensile stresses never exceed the flexural strength of the structure. Hence, 
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significant tensile cracking that causes the failure of the dam is not to be expected on either the 

heel or toe of the dam based on the nonlinear results. Moreover, the maximum principal strains are 

significantly ignorable on the dam-foundation interface. All dynamic results display that the heel 

of the dam is susceptible to more tensile stresses than the toe of the dam, whereas the toe of the 

dam is prone to more compressive stresses than the heel of the dam. 

 The results reveal that the presence of the reservoir in finite element modeling substantially 

influences the seismic response. When the water is assumed as incompressible and included only 

as added mass (Westergaard method), the tensile and compressive stresses grow up to 60% and 

70% on the dam body, respectively. If the reservoir is considered as compressible (Euler method), 

the 1st principal and 3rd principal stresses increase by approximately 70% relative to the empty 

condition. The results of the nonlinear dynamic analyses agree with the linear results, as both show 

about 60% reduction takes place in the stresses when the reservoir is removed from the finite 

element model. Additionally, the presence of the fluid leads to growth in the effective damping 

ratio of the system.  

 It can be concluded from dynamic analysis results that the linear time-history analysis is a 

beneficial tool to estimate the maximum displacement and acceleration on the crest of this dam 

since the results of linear transient analyses are nearly similar to the consequences of the nonlinear 

analyses. This statement is only valid for a dam which has similar features of the Narli Dam and 

is exposed to similar earthquakes.  

 Results attained from various foundation flexibility ratios show that the deformation 

modulus of the foundation directly impacts the dynamic characteristics of the dam-foundation-

reservoir interaction such as mode shapes, natural frequencies, and effective damping ratios. Once 

the elastic modulus of the foundation increases with the constant deformation modulus of the 



108 
 

structure, the natural frequencies considerably increase. But, the effective viscous damping ratio 

decreases as the foundation flexibility ratio rises. The alterations in the modal response of the dam 

significantly change the seismic response. The high flexible foundations increased the tensile and 

compressive stresses compared to more stiff foundations by up to 40% and 26% relying on the 

empty reservoir condition, respectively. When the reservoir is considered in the linear dynamic 

analyses, these percentages increase up to 50% and 70%, respectively.  

 It can be deduced from the research that neither Poisson’s ratio of concrete nor Poisson’s 

ratio of the foundation has a remarkable impact on the modal characteristics of the dam. Similarly, 

the Poisson’s ratios do not dominate the seismic response of the dam. However, it is important to 

note that while increasing in the Poisson’s ratio of concrete raises the principal stresses up to 5%, 

increasing the Poisson’s ratio of the rock declines the principal stresses up to 10%. 

 It can be inferred from the linear results that the presence of the alluvium in the dam site is 

not an influential factor to alter the modal response of the dam. Similarly, the alluvium does not 

sufficiently govern the seismic response in terms of compressive stresses. On the other hand, the 

maximum principal stresses can grow up to 10% when the thickness is increased from 0 to 7 

meters. 

 The combination of foundation flexibility and alluvium thickness has a considerable effect 

on the dynamic response of the gravity dam. Therefore, sites with more rigid foundations and less 

alluvium thickness might lead to less demand on the dam body. 

6.2 Future Scope and Recommendations 

 The research can be extended with the following topics: 

1. Performing dynamic analyses considering the foundation with mass.  
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The viscous boundary condition, which is also referred to as the Lysmer and Kuhlemeyer 

boundary condition, allows the researchers to include the foundation mass in the seismic 

analysis of the dam. In this way, the exact influence of the foundation could be reflected to the 

analysis. The viscous boundary condition provides the absorption of ground accelerations at 

the boundaries and should be applied on the whole surface of the rock. 

2. Using the Lagrange method to create the water effects on the dam body. 

Even though some water approaches were considered in the research, the study can be 

extended with the Lagrange method, which is created by the Fluid 79 element in the model. 

Moreover, the Lagrange method uses different boundary conditions compared to the Euler 

method. In this way, the impact of boundary condition relevant to the reservoir on the seismic 

response of dams can be solved out using both Euler and Lagrange methods. 

3. Performing the dynamic analysis using three dimensional model and revealing the effect 

of the location of contraction joints on the dynamic response. 

If tensile cracking does not happen on the non-overflow sections of the concrete gravity 

dams during time-history analyses, the overflow sections are not a concern in terms of dynamic 

analyses. Therefore, two-dimensional modeling sufficiently presents the seismic response of 

the concrete gravity dam. However, three-dimensional modeling is required to perform the 

dynamic analysis of arch dams since the curve can not be illustrated with the two-dimensional 

model. Moreover, the location of contraction joints on the dam body can be a significant 

parameter on the dynamic response of the dams. Hence, the impact of contraction joints can 

be revealed by using the three-dimensional model of the dams. 
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APPENDIX A: 

Table A.1 Added Mass Calculation regarding to the Westergaard Method 

The Distance from the max. Operating 

Water Level (m) 

The added mass on the Dam Body (kg) 

4.60 57778 

9.20 105644 

13.80 136804 

18.40 162003 

23.00 183756 

27.60 203184 

32.20 220906 

36.80 237306 

41.40 252642 

46.00 267098 

50.25 258977 

54.25 270173 

58.75 280924 

63.00 291278 
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67.25 301277 

71.50 310953 

75.75 320338 

80.00 329455 

84.25 338327 

88.50 346972 

92.75 355406 

97.00 363645 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 
 

APPENDIX B: 

Nonlinear Time-History Graphs related to Displacement and Acceleration 

 

Figure B.1 Displacement (m)  vs Time 

History (sec) for Coyote Lake Earthquake 

– Empty Reservoir Condition 

 

 

Figure B.2 Acceleration (m/s2)  vs Time 

History (sec) for Coyote Lake Earthquake 

– Empty Reservoir Condition 

 

Figure B.3 Displacement (m)  vs Time 

History (sec) for Loma Prieta Earthquake 

– Empty Reservoir Condition 

Figure B.4 Acceleration (m/s2)  vs Time 

History (sec) for Loma Prieta Earthquake 

– Empty Reservoir Condition 
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Figure B.5 Displacement (m)  vs Time 

History (sec) for Palm Springs Earthquake 

– Empty Reservoir Condition 

 

 

Figure B.7 Displacement (m)  vs Time 

History (sec) for Coyote Lake Earthquake 

– Westergaard Method 

 

 

Figure B.6 Acceleration (m/s2)  vs Time 

History (sec) for Palm Springs Earthquake 

– Empty Reservoir Condition 

 

 

Figure B.8 Acceleration (m/s2)  vs Time 

History (sec) for Coyote Lake Earthquake 

– Westergaard Method 
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Figure B.9 Displacement (m)  vs Time 

History (sec) for Loma Prieta Earthquake 

– Westergaard Method 

 

 

Figure B.11 Displacement (m)  vs Time 

History (sec) for Palm Springs Earthquake 

– Westergaard Method 

 

 

 

Figure B.10 Acceleration (m/s2)  vs Time 

History (sec) for Loma Prieta Earthquake 

– Westergaard Method 

 

Figure B.12 Acceleration (m/s2)  vs Time 

History (sec) for Palm Springs Earthquake 

– Westergaard Method 
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Figure B.13 Displacement (m) vs Time 

History (sec) for Coyote Lake Earthquake 

– Euler Method 

 

Figure B.15 Displacement (m) vs Time 

History (sec) for Loma Prieta Earthquake 

– Euler Method 

 

 

Figure B.14 Acceleration (m/s2) vs Time 

History (sec) for Coyote Lake Earthquake 

– Euler Method 

 

Figure B.16 Acceleration (m/s2) vs Time 

History (sec) for Loma Prieta Earthquake 

– Euler Method 

 

 

 



120 
 

 

Figure B.17 Displacement (m) vs Time 

History (sec) for Palm Springs Earthquake 

– Euler Method 

 

 

 

 

 

 

 

 

 

 

 

Figure B.18 Acceleration (m/s2) vs Time 

History (sec) for Palm Springs Earthquake 

– Euler Method 
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APPENDIX C: 

The Detailed Principal Stress Results based on Various Combinations 

 

Figure C.1 Maximum Tensile Stress (+) Distributions of Combination 1 at 6.065 sec. – Empty 

Reservoir Condition 

Figure C.2 Maximum Tensile Stress (+) Distributions of Combination 1 at 6.09 sec. – 

Westergaard Method 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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Figure C.3 Maximum Compressive Stress (-) Distributions of Combination 1 at 6.04 sec. – 

Empty Reservoir Condition 

 

Figure C.4 Maximum Compressive Stress (-) Distributions of Combination 1 at 6.075 sec. – 

Westergaard Method 

 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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Figure C.5 Maximum Tensile Stress (+) Distributions of Combination 2 at 6.03 sec. – Empty 

Reservoir Condition 

 

Figure C.6 Maximum Tensile Stress (+) Distributions of Combination 2 at 6.05 sec. – 

Westergaard Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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Figure C.7 Maximum Compressive Stress (-) Distributions of Combination 2 at 6.01 sec. – 

Empty Reservoir Condition 

 

Figure C.8 Maximum Compressive Stress (-) Distributions of Combination 2 at 6.035 sec. – 

Westergaard Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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Figure C.9 Maximum Tensile Stress (+) Distributions of Combination 3 at 6.07 sec. – Empty 

Reservoir Condition 

 

Figure C.10 Maximum Tensile Stress (+) Distributions of Combination 3 at 6.095 sec. – 

Westergaard Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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Figure C.11 Maximum Compressive Stress (-) Distributions of Combination 3 at 6.04 sec. – 

Empty Reservoir Condition 

 

Figure C.12 Maximum Compressive Stress (-) Distributions of Combination 3 at 6.08 sec. – 

Westergaard Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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Figure C.13 Maximum Tensile Stress (+) Distributions of Combination 4 at 6.03 sec. – Empty 

Reservoir Condition 

Figure C.14 Maximum Tensile Stress (+) Distributions of Combination 4 at 6.095 sec. – 

Westergaard Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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Figure C.15 Maximum Compressive Stress (-) Distributions of Combination 4 at 6.02 sec. – 

Empty Reservoir Condition 

 

Figure C.16 Maximum Compressive Stress (-) Distributions of Combination 4 at 6.04 sec. – 

Westergaard Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 



129 
 

 

Figure C.17 Maximum Tensile Stress (+) Distributions of Combination 5 at 6.075 sec. – 

Empty Reservoir Condition 

 

Figure C.18 Maximum Tensile Stress (+) Distributions of Combination 5 at 6.095 sec. – 

Westergaard Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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Figure C.19 Maximum Compressive Stress (-) Distributions of Combination 5 at 6.045 sec. – 

Empty Reservoir Condition 

Figure C.20 Maximum Compressive Stress (-) Distributions of Combination 5 at 6.085 sec. 

– Westergaard Method 

 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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Figure C.21 Maximum Tensile Stress (+) Distributions of Combination 6 at 6.035 sec. – 

Empty Reservoir Condition 

Figure C.22 Maximum Tensile Stress (+) Distributions of Combination 6 at 6.055 sec. – 

Westergaard Method 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 
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Figure C.23 Maximum Compressive Stress (-) Distributions of Combination 6 at 6.015 sec. – 

Empty Reservoir Condition 

Figure C.24 Maximum Compressive Stress (-) Distributions of Combination 6 at 6.045 sec. 

– Westergaard Method 

 

 

 

“Principal Stresses (N/m2)” 

“Principal Stresses (N/m2)” 


