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Abstract

This dissertation focuses on graph decompositions of K pnr;λ1, λ2q, the r-partite multi-

graph in which each part has size n, where two vertices in the same part or different parts

are joined by exactly λ1 edges or λ2 edges respectively. Assuming one condition, neces-

sary and sufficient conditions are found to embed a k-edge-coloring of K pnr;λ1, λ2q into

a Hamilton decomposition of K pnr`2;λ1, λ2q. In the tightest case, this assumption is in

fact proved to be a new necessary condition. In addition, it is also proved that there ex-

ists a maximal set of t edge-disjoint Hamilton cycles in K pnr;λ1, λ2q for λ2nt r`3
4

u ď t ď

min
 

t
λ2n2pr´1q

2
u, tλ1pn´1q`λ2n

pr´1q
2

u
(

, the upper bound being best possible. The results proved

in both chapters make use of the method of amalgamations.
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Chapter 1

Introduction

1.1 Basic Definitions

A graph G is an ordered pair pV pGq, EpGqq, where V pGq is called the vertex set and

EpGq is called the edge set. An edge in G is a 2-set tu, vu of vertices. The degree of a

vertex u in G, denoted by dGpuq, is the number of the edges incident with the vertex u in

G. An edge tu, vu is called a loop if u “ v (so multisets are notatioanally useful here). A

loop contributes two to the degree of its incident vertex. Let `Gpuq denote the number of

the loops incident with u in G. The multiplicity of two vertices u and v in a graph G is the

number of edges joining u to v, which is denoted by mGpu, vq. Let ωpGq denote the number

of components of G. A null graph is a graph whose edge set is empty.

A k-edge-coloring of a graph G is a function from the edge set EpGq to the color set

t1, 2, . . . , ku which assign the colors to the edges of G. For 1 ď j ď k, Gpjq is the spanning

subgraph of G induced by the edges colored with j. Let ωpGpjqq “ ωj for 1 ď j ď k. A

k-edge-coloring of G is said to equitable if for all v P V pGq and for 1 ď i ă j ď k,

|dGpiqpvq ´ dGpjqpvq| ď 1,

and is said to be evenly equitable if for all v P V pGq and for 1 ď i ă j ď k,

piq dGpiqpvq is even, and

piiq |dGpiqpvq ´ dGpjqpvq| P t0, 2u.

A Hamilton path in G is a path which contains all the vertices of G. Similarly, a

Hamilton cycle in G is a cycle which contains all the vertices of G. A graph G is said to
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be Hamiltonian if it contains a Hamilton cycle. A k-factor in G is a k-regular spanning

subgraph. So a Hamilton cycle can be considered to be a connected 2-factor, which is an

important fact used in the proof of Theorem 3.7 in Section 3.3.

An H-decomposition of a graph G is a set H “ tHi : i P Iu of edge-disjoint subgraphs

of G such that for each i P I, Hi is isomorphic to H and EpGq “
Ť

iPI

EpHiq. It is useful to

regard to a k-edge-coloring of G as an H-decomposition of G in the case where each color

class Gpjq is an isomorphic copy of H. If Hi is a k-factor for each i P I then H is called a

k-factorization of G, and if Hi is a Hamilton cycle for each i P I then H is called a Hamilton

decomposition of G.

The union of two graphs G and H is a graph, denoted by G Y H, whose vertex and

edge sets are V pGq Y V pHq and EpGq Y EpHq, respectively. The join of G and H is the

graph, denoted by G _ H, whose vertex set is V pGq Y V pHq and edge set is EpG _ Hq “

EpGq Y EpHq Y ttu, vu : u P V pGq and v P V pHqu. The complement of G is the graph G

with the vertex set V pGq “ V pGq such that tu, vu P EpGq if and only if tu, vu R EpGq.

If S is a set of edge-disjoint Hamilton cycles in G, then let EpSq denote the set of edges

in the Hamilton cycles in S. If G ´ EpSq is not Hamiltonian, then the set S is called a

maximal set of edge-disjoint Hamilton cycles in G. The spectrum for maximal sets of edge-

disjoint Hamilton cycles in G is the set SppGq which consists of the sizes of maximal sets of

edge-disjoint Hamilton cycles in G.

Let Kr be the complete graph on the vertex set V “ tvi | i “ 0, 1, . . . , r ´ 1u.

The edge-difference of an edge e “ tvi, vju in Kr ( 0 ď i ‰ j ď r ´ 1) is defined by

Dpeq “ Dptvi, vjuq “ mint|i´ j|, r ´ |i´ j|u. Notice that 0 ď Dpeq ď t r
2
u for all e P EpKrq.

Intuitively, if r is even, the edge-difference r{2 is called the half-difference. Notice that set

of edges of half-difference in Kr (r is even) induce a 1-factor of Kr. This fact is used later

in the proof of Lemma 3.2.

An amalgamation of a graph G to a graph H is a surjective function f : V pGq Ñ V pHq

associated with a bijective function g : EpGq Ñ EpHq such that
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i. For each e “ tu, vu P EpGq with u ‰ v, gpeq “ tfpuq, fpvqu is an edge (a loop if

fpuq “ fpvq) in H, and

ii. For each loop ` “ tu, uu P EpGq, gp`q “ tfpuq, fpuqu is a loop on fpuq in H.

The graph H is called the f -amalgamation of G, and G is said to be a detachment of H.

Notice that the set F “ tf´1puq : u P V pHqu is a partition of V pGq. The vertices in f´1puq

are said to be disentangled from u. Intuitively the amalgamation function f identifies the

vertices in each element of F with a single vertex of H while the bijection g turns the edges

and loops in G into the edges (possibly loops) and loops in H, respectively. So notice that

any edge incident with a vertex in G becomes incident with the corresponding new vertex

in the amalgamated graph H, and any edge whose endpoints are identified becomes a loop

on the new vertex in H.

For each u P V pHq, let ψpuq be a positive integer. Then a ψ-detachment of H is a

graph obtained by detaching each vertex u in H into ψpuq new vertices. So if H is an

f -amalgamation of G then the graph G is a ψ-detachment of H where ψpuq “ |f´1puq|.

Clearly there is a one-to-one correspondence between the edges of the graphs G and H.

Hence an edge-coloring of one of the graphs induces an edge-coloring on the other graph; so

an amalgamation of an edge-colored graph is also an edge-colored graph.

1.2 Outline of the Dissertation

Through this dissertation, all graphs are finite, undirected and usually have loops and

multiple edges. Especially the graph Kpnr;λ1, λ2q is of particular interest, which denotes

the graph with partition tP1, . . . , Pru of the vertex set, each part of size n, in which for

1 ď i ă j ď k

mGpu, vq “

$

’

’

&

’

’

%

λ1 if u, v P Pi

λ2 if u P Pi and v P Pj, i ‰ j.

This dissertation contains two topics that are described in their own chapters.
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In Chapter 2, assuming one condition, necessary and sufficient conditions are found to

embed a k-edge-coloring ofK pnr;λ1, λ2q into a Hamiltonian decomposition ofK pnr`2;λ1, λ2q

(so each color class induces a Hamilton cycle). In the tightest case, this one assumption is

in fact proved to be a new necessary condition. Unlike previous results, of particular inter-

est here is a necessary condition involving the existence of certain components in a related

bipartite graph.

In Chapter 3, the existence of a maximal set of t edge-disjoint Hamilton cycles in

K pnr;λ1, λ2q is proved for any t in the range λ2nt r`3
4

u ď t ď min
 

t
λ2n2pr´1q

2
u, tλ1pn´1q`λ2npr´1q

2
u
(

.
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Chapter 2

Embedding

2.1 History

Decomposing a graph into edge-disjoint Hamilton cycles has been a subject undergoing

intense study in graph theory for many years. The following are two important questions

that are well-studied in the literature:

Problem 1 When does an H-decomposition of G exist?

Problem 2 When can a k-edge-coloring of G be embedded into an H-decomposition of G˚

regarded as a k-edge-coloring (so G is a subgraph of G˚)?

Among the many results on this topic are the following that are particularly germane to

this chapter. In the 1890s, Walecki proved that the complete graph Kn has a Hamiltonian

decomposition if and only if n is odd [15]. In 1982, Hilton [10] found necessary and sufficient

conditions to embed a k-edge-coloring of Km into a k-edge-coloring of Km`n whose color

classes are Hamilton cycles. In 1976, Laskar and Auerbach [13] proved that complete r-

partite graphs in which each part has n vertices is the union of npr ´ 1q{2 Hamilton cycles

and a 1-factor which are mutually edge-disjoint if npr ´ 1q{2 is odd and ě 1 or is the union

of npr ´ 1q{2 edge-disjoint Hamilton cycles if npr ´ 1q{2 is even and ě 2. Additionally,

Hilton and Rodger [11] provided a procedure which constructs a Hamiltonian decomposition

of the r-partite graph Kn,...,n when pr´ 1qn is even, and also conditions which are necessary

and sufficient to embed a k-edge-coloring of the complete t-partite graph Ka1,...,at into a

Hamiltonian decomposition of the r-partite graph Kn,...,n for 2t ď r, 1 ď a1,ď ¨ ¨ ¨ ď at ď n.

Bahmanian and Rodger [3] found necessary and sufficient conditions to settle the ex-

istence of a Hamiltonian decomposition of the graph G “ Kpnr;λ1, λ2q. They partially
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succeeded in embedding a k-edge-coloring of G “ Kpnr;λ1, λ2q into a Hamiltonian decom-

position of G˚ “ Kpnr`t;λ1, λ2q in Theorem 2 of [4] proving the following result under the

assumption
k
ř

j“1

sj ě kt´ λ2n
2
`

t
2

˘

where sj ” ωj pmod rq with 1 ď sj ď r for 1 ď j ď k that:

a k-edge-coloring of G can be embedded into a Hamiltonina decomposition of G˚ if and only

if: piq 2k “ λ1pn´1q`λ2npr`tq´1, piiq λ1 ď λ2npr`t´1q, piiiq every component of Gpjq is

a path (of possibly length of 0) for 1 ď j ď k, and pivq ωj ď nt for 1 ď j ď k. In particular,

a corollary of this result is solved in the case where G “ Kpnr;λ1, λ2q, G
˚ “ Kpnr`t;λ1, λ2q,

and H is a Hamilton cycle of G˚, in the cases t “ 1 and t ě λ1pn´1q`λ2npr´1q
λ2npn´1q

(see [4, Theorem

3 and Corollary 1]).

In Theorem 2.4 of this chapter, the work in [4] is extended to the case where t “ 2,

providing necessary and sufficient conditions for the embedding of a k-edge-coloring of

Kpnr;λ1, λ2q into Hamiltonian decomposition of Kpnr`2;λ1, λ2q under a general condition

(see p‹q of Theorem 2.4). We conjecture that this general condition is also necessary, prov-

ing in Corollary 2.6 that it is indeed necessary in a tightest case (i.e, when |C2|, defined

in Section 3, satisfies equality in Condition pvq of Theorem 2.4). At first sight, consider-

ing just one more of the unsolved values of t may not seem to be a lot of progress. But

as will be clear, the nature of the necessary conditions changes dramatically when t “ 2.

Until now, the embedding has been completely determined by reasonably clear numerical

necessary conditions. But now, when t “ 2, the structure of a graph related to the given

edge-coloring can determine whether or not the embedding is possible. This drastic change

is reminiscent of the long-standing unsolved embedding problem for partial idempotent latin

squares of order n into idempotent latin squares of order n` t when t is small: when t ě n

numerical conditions do prove to be sufficient, but for smaller values of t the existence of

certain components in a closely related graph can prevent such an embedding (see [1, 2]).

For this reason, being able to make the jump in Theorem 2.4 to the case where t “ 2 is in

fact substantial progress over the existing state of knowledge.
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2.2 An Edge-coloring Lemma

Hilton proved that there exists an evenly equitable k-edge-coloring of every finite even

graph (all vertices have even degree) for all k ě 1 in [9, Theorem 8]. In the following lemma,

his proof is manipulated to settle an interesting generalized notion, which produces a 2-edge-

coloring of a bipartite graph that is evenly equitable on specified vertices and equitable on

all the others.

Lemma 2.1. Let B be a finite even bipartite graph with bipartition tV,Cu of its vertex set.

For any subset X Ď C, there exists a 2-edge-coloring σ : EpBq Ñ t1, 2u such that

piq dBp1qpvq “ dBp2qpvq for all v P V ,

(iiq dBp1qpcq “ dBp2qpcq for all c P X,

piiiq |dBp1qpcq ´ dBp2qpcq| “ 2 for all c P CzX

if and only if

pivq |V pDq X pCzXq| is even for each component D of B.

Proof. To prove the necessity, let σ : EpBq Ñ t1, 2u be a 2-edge-coloring of the bipartite

graph B satisfying conditions piq ´ piiiq for a given subset X Ď C. Notice that the number

of the edges with color 1 equals to the number of the edges with color 2 in each component

D of B by piq. This, together with piiq and piiiq, implies that the number of the vertices

c P V pDq X pCzXq with dBp1qpcq “ dBp2qpcq ` 2 is the same as the number of the vertices

c P V pDq X pCzXq with dBp2qpcq “ dBp1qpcq ` 2. Therefore |V pDq X pCzXq| is even for each

component D of B.

To prove the sufficiency, assume that X Ď C and that |V pDq X pCzXq| is even for each

component D of B. Form a new graph B1 from the bipartite graph B by adding exactly

one loop on c (i.e., a single edge contributing two to the degree of c) for each c P CzX. For

all v P V , dBpvq is even by piq. So each component D of B has an even number of edges
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(including loops). Also notice that the degree of each vertex in B1 is even (a loop contributes

2 to the degree of its incident vertex). Therefore each component of B1 has an Euler tour

of an even length. Alternately color the edges of each of these Euler tours with colors 1

and 2. Since the length of each Eulerian tour is even, the color on its first edge is different

from the color on its last edge. Therefore this results in a 2-edge coloring of B1 in which:

for all v P V dB1p1qpvq “ dB1p2qpvq; and for all c P C, dB1p1qpcq “ dB1p2qpcq. The restriction

of this edge-coloring onto the edges of the bipartite graph B is the required 2-edge coloring

σ : EpBq Ñ t1, 2u satisfying the conditions piq ´ piiiq (condition piiiq follows since each

vertex in CzX loses exactly one loop in forming the restriction).

2.3 Main Results

In this section the main result, Theorem 2.4, is proved by using the method of amalga-

mations. This relies on the following result of Bahmanian and Rodger, a more generalized

version of which is proved in [3, Theorem 3.1]. In Theorem 2.2, ψ is the detachment function

producing H from G.

Theorem 2.2 ([3]). Let G be a k-edge-colored graph and let ψ be a function from V pGq into

N such that for each u P V pGq,

p1q ψpuq “ 1 implies `Gpuq “ 0,

p2q dGpjqpuq{ψpuq is an even integer for 1 ď j ď k,

p3q
`

ψpuq
2

˘

divides `Gpuq,

p4q ψpuqψpvq divides mGpu, vq for each v P V pGqztuu, and

p5q Gpjq is connected for 1 ď j ď k.

Then there exists a ψ-detachment H of G in which each u P V pGq is disentangled into

vertices u1, ..., uψpuq, such that for all u P G:

8



piq mHpui, ui1q “ `Gpuq{
`

ψpuq
2

˘

for all 1 ď i ă i1 ď ψpuq if ψpuq ě 2,

piiq mHpui, vi1q “ mGpu, vq{ψpuqψpvq for v P V pGqztuu, 1 ď i ď ψpuq, and 1 ď i1 ď ψpvq,

piiiq dHpjqpuiq “ dHpjqpuq{ψpuq for 1 ď i ď ψpuq and 1 ď j ď k, and

pivq Color class Hpjq is connected for 1 ď j ď k.

Gpjq

V

c1

cj

ck

C

...

..
.

B “ BpG,αq

The dotted path on V in B is solely used to indicate the components of Gpjq.

Figure 2.1: The Bipartite Graph BpG,αq

Define two bipartite graphs B “ BpG,αq and B˚ “ Bpπpαqq associated with a special

edge-coloring, α, of G “ Kpnr;λ1, λ2q as follows; these are critically important in the state-

ment and proof of Theorem 3.2. Recall that tP1, . . . , Pru is the partition of V pGq. For a

given k-edge-coloring α : EpGq Ñ t1, . . . , ku of G in which

each component in each color class is a path (possibly of length 0), (2.1)

9



define the bipartite graph B “ BpG,αq with bipartition tV,Cu of its vertex set where

V “
r
Ť

i“1

Pi, C “ tc1, . . . , cku is the set of color vertices, and for all v P V and cj P C,

mBpv, cjq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if dGpjqpvq “ 2

1 if dGpjqpvq “ 1

2 if dGpjqpvq “ 0,

(2.2)

(see Figure 2.1). Notice that dBpcjq ě 2 and is even for 1 ď j ď k by p2.1q. Under the

assumption that k “ pλ1pn´ 1q ` λ2npr ´ 1qq {2, it will also be important later to establish

properties p2.3q and p2.4q below.

dBpcjq “
ÿ

vPV pGq

mBpv, cjq

“
ÿ

vPV pGq

p2´ dGpjqpvqq

“ 2nr ´
ÿ

vPV pGq

dGpjqpvq, so

k
ÿ

j“1

dBpcjq “ 2nrk ´
k
ÿ

j“1

ÿ

vPV pGq

dGpjqpvq

“ 2nrk ´ 2|EpGq|

“ 2nrk ´ nr pλ1pn´ 1q ` λ2npr ´ 1qq , so

k
ÿ

j“1

dBpcjq “ 2λ2n
2r. (2.3)

Also by p2.2q

dBpvq “
k
ÿ

j“1

mBpv, cjq “ 2k ´ dGpvq. (2.4)

10



V

c1

cj

ck

C

...

..
.

B

x
y

V

c1,1

cj,2

cj,1

ck,1

C

...
...

x
y

B˚

The edges indicated with x and y are selected to be joined with cj,1 because they are

in the same component of Gpjq.

Figure 2.2: The Detached Graph B˚ “ B˚pG, π
`

αq
˘

.

In this context, it is convenient to partition C into two sets C0 and C2: for each i P

t0, 2u define Ci “ tcj P C|dBpcjq ” i pmod 4qu. For each cj P C, choose a set Cpcjq “

ttcj, vj,1u, tcj, vj,2uu of 2 edges incident with cj in B such that vj,1 and vj,2 are in the same

component of Gpjq (i.e., are the two ends of a path). Let πpαq be the set of all k such

2-element sets Cpcjq. Now define the detached graph B˚ “ Bpπpαqq (see Figure 2.2) from

B by detaching each color vertex cj P C, 1 ď j ď k, into two new vertices cj,1 and cj,2

such that the edges tcj, vj,1u and tcj, vj,2u become incident with cj,2 and all the other edges

incident with cj in B become incident with cj,1. Note that dBpvq “ dB˚pvq for all v P V and

dBpcjq “ dB˚pcj,1q ` dB˚pcj,2q for all cj P C. Since dB˚pcj,2q “ 2 for 1 ď j ď k, if dBpcjq “ 2,

then dB˚pcj,1q “ 0. It turns out to be notationally useful to have such vertices of degree 0,

since by themselves they form components of B˚ containing an odd number of vertices of

degree divisible by 4, namely one. The number of such vertices is critical in the statement

of Theorem 2.4.

In the following, edges in Kpnr;λ1, λ2q joining vertices in the same part (or different

parts) are said to be pure (or mixed, respectively). Note that it is assumed that λ1 ‰ λ2 since
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otherwise Kpnr, λ1, λ2q “ λ1Knr, in which case the part structure of the graph is irrelevant.

Proposition 2.3. Let n ą 1, λ1 ě 0, λ2 ě 1 and λ1 ‰ λ2. Let α be a k-edge-coloring of G “

K pnr;λ1, λ2q. If the k-edge-coloring α can be embedded into a Hamiltonian decomposition

of G˚ “ K pnr`2;λ1, λ2q, then

piq k “ 1
2
pλ1 pn´ 1q ` λ2n pr ` 1qq,

piiq λ1 ď λ2n pr ` 1q,

piiiq Each component of Gpjq is a path (possibly of length 0) for 1 ď j ď k,

pivq ωj ď 2n for 1 ď j ď k, and

pvq |C2| ď 2λ1
`

n
2

˘

` λ2n
2.

Proof. Under different conditions, the necessity of conditions piq ´ pivq are proved in [4,

Theorem 2]. Nevertheless the following proofs of piq´ pivq are essentially the same. Suppose

that the k-edge-coloring α of G is embedded into a k-edge-coloring α˚ of G˚ in which each

color class is a Hamilton cycle. Obviously dG˚pvq “ 2k for all v P V pG˚q. Also, there are

exactly λ1pn ´ 1q pure edges and λ2npr ` 1q mixed edges incident with v in G˚. Hence

2k “ dG˚pvq “ λ1pn´ 1q ` λ2npr ` 1q. This proves the necessity of piq.

As each color class G˚pjq is a Hamilton cycle in G˚, it has at most n´ 1 pure edges in

each part of G˚. Since n ą 1 and each part of G˚ has λ1
`

n
2

˘

pure edges, as was shown in [4]

the necessity of piiq follows from the following inequalities:

λ1

ˆ

n

2

˙

ď pn´ 1qk

“
pn´ 1q

2
pλ1pn´ 1q ` λ2npr ` 1qq, so

λ1n ď λ1pn´ 1q ` λ2npr ` 1q, thus

λ1 ď λ2npr ` 1q.
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For 1 ď j ď k, Gpjq is a subgraph of G˚pjq which is a Hamilton cycle in G˚. So the

components of Gpjq can be only paths (possibly of length 0). This proves the necessity of

piiiq.

For 1 ď j ď k, the components of Gpjq are paths (possibly of length 0), so the Hamilton

cycle G˚pjq has exactly two mixed edges joining vertices in V pDq to vertices in Pr`1 Y Pr`2

for each component D of Gpjq. Hence ωj ď 2n since for 1 ď j ď k

ÿ

vPPr`1YPr`2

dG˚pjqpvq “ 4n.

This proves the necessity of pivq.

Suppose cj P C2 and G˚pjq contains no mixed edge in G˚rPr`1 Y Pr`2s. Let D be the

set of all the components of Gpjq. For each D P D, let TjpDq be the set of the two edges in

the path in G˚pjq, each of which joins a vertex in V pDq to a vertex in Pr`1YPr`2. For each

component D of Gpjq, if both edges in TjpDq are incident with vertices in Pr`1 or Pr`2, then

place them in τj,1 or τj,2 respectively, and otherwise place them in τj,3. So tτj,1, τj,2, τj,3u is

partition of YDPDTjpDq. Notice that Gpjq contains
ř3
i“1 |τj,i|{2 components. Clearly |τj,1|

and |τj,2| are even. So, since 2|Pr`1| “
ř

vPPr`1
dG˚pjqpvq “ 2|EpG˚rPr`1spjqq|`|τj,1|`|τj,3|{2,

it follows that |τj,3|{2 is even; that is, there are an even number of the components of Gpjq

which have vertices joined to vertices in the different parts of G˚rPr`1 Y Pr`2s. As cj P C2,

Gpjq contains an odd number of components. Then |τj,1|{2 and |τj,2|{2 have different parity

since |τj,3|{2 is even. In particular, we can assume that |τj,1|{2 ě |τj,2|{2` 1. Thus, since

2n “
ÿ

uPPr`1

dG˚pjqpuq “ 2|τj,1| ` |τj,3| ` 2|E
`

G˚rPr`1spjq
˘

|, and

2n “
ÿ

uPPr`2

dG˚pjqpuq “ 2|τj,2| ` |τj,3| ` 2|E
`

G˚rPr`2spjq
˘

|,

13



it follows that |E
`

G˚rPr`2spjq
˘

| ą |E
`

G˚rPr`1spjq
˘

|. Therefore, if cj P C2 then either there

is at least one mixed edge or there is at least one pure edge in G˚rPr`1 Y Pr`2spjq. This

proves the necessity of pvq.

Theorem 2.4. Let n ą 1, λ1 ě 0, λ2 ě 1 and λ1 ‰ λ2. Let α be a k-edge-coloring of

G “ K pnr;λ1, λ2q. Suppose that

p‹q πpαq can be chosen such that in the detached graph B˚ “ Bpπpαqq, the number of the

components having an odd number of color vertices of degree divisible by 4 is at most

λ2n
2.

Then the k-edge-coloring α can be embedded into a Hamiltonian decomposition of G˚ “

K pnr`2;λ1, λ2q if and only if:

piq k “ 1
2
pλ1 pn´ 1q ` λ2n pr ` 1qq,

piiq λ1 ď λ2n pr ` 1q,

piiiq Each component of Gpjq is a path (possibly of length 0) for 1 ď j ď k,

pivq ωj ď 2n for 1 ď j ď k, and

pvq |C2| ď 2λ1
`

n
2

˘

` λ2n
2.

Proof. The necessity of conditions piq ´ pvq follows from Proposition 2.3.

To prove the sufficiency, consider a k-edge-coloring α : EpGq Ñ t1, ..., ku of the graph

G “ K pnr;λ1, λ2q. By necessary condition piiiq, the property p2.1q is satisfied by α, so form

the bipartite graph B “ BpG,αq and the detached graph B˚ “ Bpπpαqq, as described in the

preamble to Theorem 2.4, choosing πpαq so that Condition p‹q is satisfied.

Recall that the detached graph B˚ is a bipartite graph with the parts tV,C˚u where

V “ Yri“1Pi and C˚ “ tcj,1, cj,2 : 1 ď j ď ku. Notice that for all v P V and 1 ď j ď k,

dB˚pcj,2q “ 2 and dB˚pvq and dB˚pcj,1q are even. Also by the necessary condition pivq:

dB˚pcj,1q ď 4n´ 2 with equality iff ωj “ 2n (in which case cj P C0q (2.5)

14



For the sake of convenience, define a partition of C˚ into two sets: C˚2 “ tcj,1 :

dB˚pcj,1q ” 2 pmod 4q and 1 ď j ď ku Y tcj,2 : 1 ď j ď ku and C˚0 “ tcj,1 : dB˚pcj,1q ”

0 pmod 4q and 1 ď j ď ku (recall that some vertices in C˚0 may have degree 0). Clearly

|C˚0 | “ |C2|. (2.6)

Let D˚ be the set of the components of B˚. For each D P D˚, choose a set SpDq of

npDq vertices in V pDq X C˚0 such that
ř

DPD˚
npDq is as large as possible subject to the two

conditions:

p11q npDq ” |V pDq X C˚0 | pmod 2q for all D P D˚, and

p21q
ř

DPD˚
npDq ď λ2n

2.

Clearly such a set SpDq exists providing that there is at least one set S of npDq vertices

satisfying p11q and p21q. Construct such a set S˚ as follows. If |V pDq X C˚0 | is even, then let

S˚ contains no vertices from V pDq XC˚0 , and if |V pDq XC˚0 | is odd, then let S˚ contain any

single element in V pDq X C˚0 ; then S˚ satisfies condition p11q, and Condition p‹q guarantees

that |S˚| ď λ2n
2, so S˚ satisfies condition p21q.

Now consider the subset N˚ “ YDPD˚SpDq Ď C˚0 of size
ř

DPD˚ npDq. We now show

that |N˚| “ mintλ2n
2, |C˚0 |u. If |C˚0 | ď λ2n

2, then clearly N˚ “ C˚0 since the maximality

of
ř

npDq forces SpDq to be V pDq X C˚0 for each D P D˚. If |C˚0 | ą λ2n
2, then, since p11q

implies that |N˚| ” |C˚0 | pmod 2q, it follows by p21q and the maximality of
ř

npDq that

|N˚| P tλ2n
2, |C˚0 |u; the following argument shows that |C˚0 | ” λ2n pmod 2q, so this parity

forces |N˚| “ λ2n
2.
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Note that for all v P V and 1 ď j ď k,

mBpv, cjq ` dGpjqpvq “ 2, so

dBpvq ` dGpvq “ 2k

dBpvq “ 2k ´ λ1pn´ 1q ` λ2npr ´ 1q

“ 2λ2n by piq.

Therefore

ÿ

vPV

dBpvq ”

$

’

’

&

’

’

%

0 pmod 4q if λ2n is even

2 pmod 4q if λ2n is odd.

(2.7)

If λ2n is even, then the size of C˚0 is even since

2|C˚0 | “ 2|C2| by p2.6q

”
ÿ

cjPC2

dBpcjq pmod 4q

“
ÿ

vPV

dBpvq ´
ÿ

cjPC0

dBpcjq

” 0 pmod 4q by p2.7q.

If λ2n is odd, then r is odd by piq and hence |C˚0 | is odd since

2|C˚0 | “ 2|C2| by p2.6q

”
ÿ

cjPC2

dBpcjq pmod 4q

“
ÿ

vPV

dBpvq ´
ÿ

cjPC0

dBpcjq (since |V | “ nr is odd)

” 2 pmod 4q by p2.7q.

Therefore in both cases |C˚0 | ” λ2n
2 pmod 2q as required.
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Apply Lemma 2.1 to the detached graph B˚ with the subset X “ C˚2 Y N˚ Ď C˚ to

obtain a 2-edge-coloring β˚ : EpB˚q Ñ t1, 2u such that

pa1q dB˚p1qpvq “ dB˚p2qpvq “ λ2n for all v P V ,

pa2q dB˚p1qpcj,2q “ dB˚p2qpcj,2q “ 1 for all cj,2 P C
˚,

pa3q dB˚p1qpcj,1q “ dB˚p2qpcj,1q ” 1 pmod 2q for all cj,1 P C
˚
2 ,

pa4q dB˚p1qpcj,1q “ dB˚p2qpcj,1q ” 0 pmod 2q for all cj,1 P N
˚,

pa5q |dB˚p1qpcj,1q ´ dB˚p2qpcj,1q| “ 2 for all cj,1 P C
˚
0 zN

˚, and

pa6q dB˚p1qpcj,1q ” dB˚p2qpcj,1q ” 1 pmod 2q for all cj,1 P C
˚
0 zN

˚.

Let N “ tcj : cj,1 P N
˚u Ď C2. By way of the the natural one-to-one correspondence between

EpBq and EpB˚q, β˚ can be used to define the 2-edge-coloring β : EpBq Ñ t1, 2u with the

following properties:

pb1q dBp1qpvq “ dBp2qpvq “ λ2n for all v P V ,

pb2q dBp1qpcjq “ dBp2qpcjq ” 0 pmod 2q for all cj P C0,

pb3q dBp1qpcjq “ dBp2qpcjq ” 1 pmod 2q for all cj P N ,

pb4q |dBp1qpcjq ´ dBp2qpcjq| “ 2 for all cj P C2zN , and

pb5q dBp1qpcjq ” dBp2qpcjq ” 0 pmod 2q for all cj P C2zN (by pa2q and pa6q).

Let u1 and u2 be two distinct vertices not in V “ V pGq. Define a new k-edge-colored

graph G1 by adding u1 and u2 to the given k-edge-colored graph G together with the edges

of B as follows: for each edge tv, cju colored i P t1, 2u in B (so v P V and cj P C), add the

edge tv, uiu colored j to G. So for each v P V and 1 ď i ď 2,

mG1pv, uiq “ dBpiqpvq “ λ2n by pb1q. (2.8)
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Define a new graph G2 from G1 by adding λ2n
2 mixed edges joining u1 and u2, and λ1

`

n
2

˘

loops on each of u1 and u2. We now extend the k-edge-coloring of G1 to a k-edge-coloring

of G2 in the following two steps.

Step 1: To make the degrees of the vertices u1 and u2 in each color class of G2 both even and

the same as each other,

pA1q Color exactly one mixed edge joining u1 to u2 with color j for each cj P N , and

pA2q For each cj P C2zN , color exactly one loop with j at one of u1 and u2 , whichever

has a smaller degree in G1 pjq.

By p21q, |N | ď λ2n
2. So there are enough mixed edges to complete step pA1q. To see

that there are enough loops to carry out step pA2q, consider the following. For 1 ď i1 ď 2 and

i2 P t1, 2uzti1u, let κi1 be the number of the colors j P t1, . . . , ku for which dG1pjqpui1q ` 2 “

dG1pjqpui2q; so κ1 ` κ2 “ |C2zN | loops are colored in pA2q. By pb1q, |EpBp1qq| “ |EpBp2qq|.

So κ1 “ κ2 by pb2q, pb3q, and pb4q. Therefore there are enough loops to complete pA2q since

if |C2| ě λ2n
2 (otherwise pA2q does nothing), then

κ1 “ κ2 “
1

2
|C2zN | “

|C2| ´ |N |

2

“
|C2| ´ λ2n

2

2

ď λ1

ˆ

n

2

˙

by necessary condition piiiq

“ `G2puiq for each i P t1, 2u.

Let η : t1, . . . ku Ñ N be the function defined by

2ηpjq “

$

’

’

&

’

’

%

dBpcjq if cj P C0

dBpcjq ` 2 if cj P C2.
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So after Step 1, considering only the edges in G2 colored so far, for 1 ď j ď k and 1 ď i ď 2,

dG2pjqpuiq “ ηpjq. (2.9)

Notice that ηpjq ď 4n for 1 ď j ď k by p2.5q.

Step 2: Greedily assign a color j P t1, . . . , ku to each of the loops and mixed edges in G2 which

are left uncolored in Step 1 as follows:

Let E be a set of all the loops and mixed edges of G2 left uncolored after Step 1. Let

∆pEq be a partition of E into subsets of size 2 each of which consists of either two

mixed edges joining u1 to u2 or a loop on u1 and another loop on u2. Now partition

∆pEq into sets E1, . . . , Ek such that |Ej| “
4n´2ηpjq

4
for each 1 ď j ď k. Then color all

the edges in Ej with color j for all 1 ď j ď k.

Notice that the sum
k
ř

j“1

|Ej| counts the uncolored edges (including loops) in G2 after

Step 1 since

k
ÿ

j“1

|Ej| “
k
ÿ

j“1

4n´ 2ηpjq

4

“

k
ÿ

j“1

n´
1

4

k
ÿ

j“1

2ηpjq

“ kn´
1

4

ÿ

cjPC0

dBpcjq ´
1

4

ÿ

cjPC2

pdBpcjq ` 2q

“ kn´
1

4

k
ÿ

j“1

dBpcjq ´
1

4

ÿ

cjPC2

2

“ kn´
1

4

k
ÿ

j“1

dBpcjq ´
1

2
|C2|

“
1

2
pλ1pn´ 1q ` λ2npr ` 1qqn´

1

4
p2λ2n

2rq ´
1

2
|C2| by piq and p2.3q

“
1

2

ˆ

2λ1

ˆ

n

2

˙

` λ2n
2
´ |C2|

˙

.

19



Therefore all the edges and loops in G2 have been colored.

Let ψ be the function on V pG2q defined by ψpvq “ 1 for each v P V pGq and ψpuiq “ n

for 1 ď i ď 2. We now show that G2 satisfies conditions p1 ´ 5q of Theorem 2.2. Since

n ě 2 and v is loopless for each v P V pGq, condition p1q is clearly satisfied. For all v P V pGq,

dG2pjqpvq “ 2 by p2.2q. For 1 ď j ď k and 1 ď i ď 2

dG2pjqpuiq “ ηpjq ` 2|Ej| by p2.9q

“ ηpjq ` 2
4n´ 2ηpjq

4

“ 2n.

So condition p2q is met. By the construction of G2, `G2puiq “ λ1
`

n
2

˘

for 1 ď i ď 2, so

condition p3q is satisfied since ψpuiq “ n. Notice that for all v P V pGq and 1 ď i ď 2,

mG2pv, uiq “ λ2n by p2.3q and mG2pu1, u2q “ λ2n
2 by the definition of G2. Then condition

p4q follows since for all v1, v2 P V pGq and for 1 ď i ď 2, ψpv1qψpv2q “ 1, ψpv1qψpuiq “ n

and ψpu1qψpu2q “ n2. By considering the k pairs of the edges in πpαq, it is clear that for

1 ď j ď k the color class G2pjq is connected, since in the 2-edge-coloring β of the bipartite

graph B, cj is joined by two edges with different colors to vertices that correspond to the

endpoints of a path forming a component in Gpjq. So G2 satisfies p5q.

By Theorem 2.2, there exists a ψ-detachment G3 of G2,

all of whose color classes are connected, (2.10)

in which the vertex ui is detached into n new vertices ui,1, ..., ui,k for 1 ď i ď 2 such

that:

pB1q mG3pui,j, ui,j1q “ λ1
`

n
2

˘

{
`

n
2

˘

“ λ1 for all i P t1, 2u and j, j1 P t1, . . . , ku;

pB2q mG3pu1,j, u2,j1q “ λ2n
2{n2 “ λ2 for all j, j1 P t1, . . . , ku;

pB3q mG3pv, ui,jq “ λ2n{n “ λ2 for all v P V pGq, i P t1, 2u, and j P t1, . . . , ku;
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pB4q dG3pjqpui,j1q “ 2n{n “ 2 for all i P t1, 2u and j, j1 P t1, . . . , ku.

So for 1 ď j ď k, G3pjq is an Hamilton cycle in G3 (by p2.10q and pB4q), which clearly

contains Gpjq as a subgraph. Furthermore, G3 is isomorphic to G˚ “ Kpnr`2;λ1, λ2q (by

Bp1´3qq. Therefore the k-edge-coloring α of Kpnr;λ1, λ2q is embedded into a Hamiltonian

decomposition of Kpnr`2;λ1, λ2q, as required.

We think that Condition p‹q of Theorem 2.4 is in fact a necessary condition, so we make

the following conjecture.

Conjecture 2.5. Let n ą 1, λ1 ě 0, λ2 ě 1 and λ1 ‰ λ2. Let α be a k-edge-coloring of G “

K pnr;λ1, λ2q. If the k-edge-coloring α can be embedded into a Hamiltonian decomposition

of G˚ “ K pnr`2;λ1, λ2q , then πpαq can be chosen such that in the detached graph B˚ “

Bpπpαqq, the number of the components having an odd number of color vertices of degree

divisible by 4 is at most λ2n
2.

Three corollaries of Theorem 2.4 are now presented. The first corollary shows this

conjecture is true in the tightest case, namely when |C2| meets equality condition pvq in

Theorem 2.4, thus completely settling the embedding problem in this case. The other two

corollaries describe interesting cases where Condition p‹q is clearly satisfied.

Corollary 2.6. Let n ą 1, λ1 ě 0, λ2 ě 1 and λ1 ‰ λ2. Let α be a k-edge-coloring of

G “ K pnr;λ1, λ2q with

|C2| “ 2λ1

ˆ

n

2

˙

` λ2n
2. (#)

Then α can be embedded into a Hamilton decomposition of G˚ “ K pnr`2;λ1, λ2q if and

only if:

piq k “ 1
2
pλ1 pn´ 1q ` λ2n pr ` 1qq,

piiq λ1 ď λ2n pr ` 1q,
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piiiq Each component of Gpjq is a path (possibly of length 0) for 1 ď j ď k,

pivq ωj ď 2n for 1 ď j ď k, and

pvq πpαq can be chosen such that in the detached graph B˚ “ Bpπpαqq, the number of the

components having an odd number of color vertices of degree divisible by 4 is at most

λ2n
2.

Proof. The necessity of conditions piq-pivq follow from Proposition 2.3. So it remains to

prove that condition pvq is necessary. For 1 ď i ď 2 and 1 ď j ď k, let Epi, jq be the set of

the edges in G˚pjq joining the vertices in V “ V pGq to vertices in Pr`i. Let cj P C2. If G˚pjq

has no edges in G˚rPr`1 Y Pr`2s, then |Ep1, jq| “ |Ep2, jq| “ 2n which contradicts cj P C2.

Therefore, by Condition p#q,

|E
`

G˚rPr`1 Y Pr`2spjq
˘

| “ 1 for each cj P C2, and

|E
`

G˚rPr`1 Y Pr`2spjq
˘

| “ 0 for each cj P C0.

(2.11)

That is, for each cj P C2, since G˚rPr`1 Y Pr`2spjq must have exactly one mixed or exactly

one pure edge, it follows that |Ep1, jq| “ |Ep2, jq| or
ˇ

ˇ|Ep1, jq| ´ |Ep2, jq|
ˇ

ˇ “ 2 respectively.

It also follows that

2n “ |Ep1, jq| “ |Ep2, jq| for each cj P C0. (2.12)

The embedding of α into a Hamilton decomposition of G˚ yields the 2-edge-coloring β

of the bipartite graph B “ BpG,αq with colors 1 and 2 defined as follows: an edge tv, cju

in B is colored with color i for 1 ď i ď 2 if and only if the vertex v is joined to a vertex in

Pr`i by an edge colored j. Let X be the subset of C consisting of all the color vertices in C0

together with all the color vertices in C2 for which |Ep1, jq| “ |Ep2, jq|. Notice that

|X| “ |C0| ` λ2n
2 and |X X C2| “ λ2n

2. (2.13)

22



Also, β has the following properties:

pd1q dBp1qpvq “ dBp2qpvq “ λ2n for all v P V ,

pd2q dBp1qpcjq “ dBp2qpcjq for all cj P X, and

pd3q |dBp1qpcjq ´ dBp2qpcjq| “ 2 for all cj P C2zX.

The 2-edge-coloring β satisfies pd1q since mG˚pv, u1q “ mG˚pv, u2q “ λ2 for all v P V and

ui P Pr`i p1 ď i ď 2q; and piiq and piiiq are satisfied by p2.11q, p2.12q, and p2.13q.

Suppose cj P C2XX. Then as noted above, p2.11q implies that there is exactly one edge

in G˚rPr`1 Y Pr`2spjq, and it is mixed, so |Ep1, jq| “ |Ep2, jq| “ 2n ´ 1, which is clearly

odd. So, since each component in Gpjq is a path (see piiiq), there is at least one component

in Gpjq with exactly two vertices, say vj,1 and vj,2 (which are the ends of the path), such

that vj,i is joined to a vertex in Pr`i for 1 ď i ď 2. So the edge tvj,i, cju in B is colored i for

1 ď i ď 2.

Now suppose cj P C0 Y pC2zXq. Then G˚rPr`1 Y Pr`2spjq has no mixed edges. So,

since G˚pjq is connected, there is at least one component in Gpjq (see piiiq) with exactly two

vertices, say vj,1 and vj,2 (which are the ends of the path), such that for 1 ď i ď 2 vj,i is

joined to a vertex in Pr`i. So the edge tvj,i, cju in B is colored i for 1 ď i ď 2.

Therefore for each cj P C, define the set Cpcjq “ ttcj, vj,1u, tcj, vj,2uu to be the set

of these two edges in B, and let πpαq “ tCpcjq : 1 ď j ď ku. This can be used to

define the 2-edge-colored detached graph B˚ “ Bpπpαqq derived from the 2-edge-colored

bipartite graph B. So it remains to check that B˚ satisfies condition pvq. (Recall that

since dB˚pcj,1q “ dBpcjq ´ 2, cj,1 P C
˚
0 or C˚2 if and only if cj P C2 or C0 respectively.) Let

X˚ “ tcj,1 : cj P Xu. Then

pf1q dB˚p1qpvq “ dB˚p2qpvq “ λ2n for all v P V ,

pf2q dB˚p1qpcj,2q “ dB˚p2qpcj,2q “ 1 for all cj,2 P C
˚,

pf3q dB˚p1qpcj,1q “ dB˚p2qpcj,1q ” 1 pmod 2q for all cj,1 P C
˚
2 ,
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pf4q dB˚p1qpcj,1q “ dB˚p2qpcj,1q ” 0 pmod 2q for all cj,1 P X
˚ X C˚0 ,

pf5q dB˚p1qpcj,1q ” dB˚p2qpcj,1q ” 0 pmod 2q for all cj,1 P C
˚
0 zX

˚, and

pf6q |dB˚p1qpcj,1q ´ dB˚p2qpcj,1q| “ 2 for all cj,1 P C
˚
0 zX

˚.

By pf2q, pf3q and pf4q, each of the vertices cj,2 P C˚ and cj,1 P C˚2 Y pX
˚ X C˚0 q is

incident with the same number of the edges colored 1 as the number of the edges colored 2

in each component of B˚. So each component of B˚ must have an even number of vertices

in C˚0 zX
˚ by pf5q and pf6q since it is guaranteed by pf1q that each component of B˚ has the

same number of the edges colored 1 as the number of the edges colored 2. (That is, for each

component D of B˚, half the vertices in V pDq X
`

C˚0 zX
˚
˘

are incident with 2 more edges

colored 1 than 2; and the other half of these vertices are incident with 2 more edges colored 2

than 1.) So, for each component D of B˚, the number of color vertices of degree divisible by

4 in D is |V pDqXpC˚0 zX
˚q|`|V pDqXpC˚0 XX

˚q| ” |V pDqX
`

C˚0 XX
˚
˘

| pmod 2q. Therefore,

condition pvq is necessary since |C˚0 XX
˚| “ λ2n

2 by p2.13q.

The proof sufficency is identical with the proof of Theorem 2.4 except for that here

condition pvq is used instead of condition p‹q.

The second corollary replaces the assumption p‹q in Theorem 2.4 with a condition more

clearly related to the given edge-coloring.

Corollary 2.7. Let G “ K pnr;λ1, λ2q with n ą 1, λ1 ě 0, λ2 ě 1 and λ1 ‰ λ2 and let α be

a k-edge-coloring of G such that the number of the color classes Gpjq with an odd number of

components is at most λ2n
2. Then α can be embedded into a Hamiltonian decomposition of

K pnr`2;λ1, λ2q if and only if

piq k “ 1
2
pλ1 pn´ 1q ` λ2n pr ` 1qq,

piiq λ1 ď λ2n pr ` 1q,
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piiiq Each component of Gpjq is a path (possibly of length 0) for 1 ď j ď k, and

pivq ωj ď 2n for 1 ď j ď k.

Proof. In Theorem 2.4, since dBpcjq ” 2 pmod 4q if and only if Gpjq has an odd number of

components, it is clear in this case that |C2| is postulated to be at most λ2n
2; so condition

pvq of Theorem 2.4 is satisfied. This also implies that Condition p‹q in Theorem 2.4 is always

satisfied, regardless of the choice of Cpcjq for 1 ď j ď k, as the following shows. Each vertex

cj,1 in B˚ has degree divisible by 4 if and only if cj has degree 2 pmod 4q in B. So clearly the

number of the components containing an odd number of vertices cj,1 of degree divisible by 4

is at most |C2|, which is itself at most λ2n
2 by assumption. This completes the proof.

A case that may be of particular interest is where each color class is a Hamiltonian path.

The following settles this problem in a more general setting.

Corollary 2.8. Let G “ K pnr;λ1, λ2q with n ą 1, λ1 ě 0, λ2 ě 1 and λ1 ‰ λ2 and

let α be a k-edge-coloring of G such that each color class Gpjq either has an even number

of components or is a Hamiltonian path. Then α can be embedded into a Hamiltonian

decomposition of G˚ “ K pnr`2;λ1, λ2q if and only if

piq k “ 1
2
pλ1 pn´ 1q ` λ2n pr ` 1qq,

piiq λ1 ď λ2n pr ` 1q,

piiiq Each component of Gpjq is a path (possibly of length 0) for 1 ď j ď k,

pivq ωj ď 2n for 1 ď j ď k, and

pvq |C2| ď λ2n
2.

Proof. Assume α is embedded into a Hamiltonian decomposition of G˚. Conditions piq´pivq

are necessary by Proposition 2.3. Since Gpjq is a subgraph of the Hamilton cycle G˚pjq,

G˚rPr`1YPr`2spjq is a Hamiltonian path inG˚rPr`1YPr`2s so there is at least one mixed edge

25



colored j in G˚rPr`1 Y Pr`2s. Since there are exactly λ2n
2 mixed edges in G˚rPr`1 Y Pr`2s,

the necessity of pvq follows.

By assumption the only color classes with an odd number of components are the Hamil-

tonian paths, so Condition p‹q in Theorem 2.4 is satisfied by the same reasoning used in the

proof of Corollary 2.7.
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Chapter 3

Maximal Set of Hamilton Cycles

3.1 History

Determining whether a graph is Hamiltonian (contains a Hamilton cycle) or not is

one of the earliest problems in the history of Graph Theory (see [8]). Another interesting

problem releted to determining if there are Hamilton cycles in a graph is to find a maximal

set of edge-disjoint Hamilton cycles. In 1989, Hoffman, Rodger, and Rosa [12] determined

that the spectrum for the maximal sets of edge-disjoint Hamilton cycles in Kr is SppKrq “

 X

r`3
4

\

,
X

r`3
4

\

` 1, . . . ,
X

r´1
2

\(

. In 2000, Bryant, El-zanati, and Rodger [5] proved that there

exists a maximal set of x edge-disjoint Hamilton cycle in Kn,n if and only if n
4
ă x ď n

2
.

In 2002, Daven, MacDougall, and Rodger [6] solved the existence problem of a maximal

set of x edge-disjoint Hamilton cycles in the complete multipartite graph Kpnrq “ Kpnr; 0, 1q

except for the smallest value of x in the case n ” r ” 1 pmod 2q by showing in all other

cases that there exists a maximal set of x edge-disjoint Hamilton cycles in Kpnrq if and

only if: r
npr´1q

4
s ď x ď t

npr´1q
2

u; and x ą npr´1q
4

if either n is odd and r ” 1 pmod 4q or

p “ 2 and n “ 1. In 2005, Logan and Rodger [14] solved the existence problem in the

case where r is odd and n “ 3 by proving that if r
npr´1q

4
s ` 1 ď x ď t

pn`1qpr´1q´2
4

u when

r ” 3 pmod 4q or r
npr´1q

4
s ` 1 ă x ď t

pn`1qpr´1q´2
4

u when r ” 1 pmod 4q, then there exists a

maximal sets of x edge-disjoint Hamilton cycles in Kpnrq. In [16], Noble and Rodger proved

that if r ” 1 pmod 4q and n “ 3, then there exists a maximal set of r
3pr´1q

4
s edge-disjoint

Hamilton cycles in Kpnrq.

In Theorem 3.7 of this chapter, these results are extended to multipartite graphs with

2 associate classes. Using the result in [12], here it is proved that if λ2nt r`3
4

u ď t, then

there exists a maximal set of t edge-disjoint Hamilton cycles in Kpnr;λ1, λ2q if and only if
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t ď min
 

t
λ2n2pr´1q

2
u, tλ1pn´1q`λ2npr´1q

2
u
(

by using the method of amalgamtions. It is still an

open problem whether or not λ2nt r`3
4

u is a lower bound for the spectrum SppKpnr;λ1, λ2qq

(see Problem 5).

3.2 A Useful Result

Theorem 3.1 ([15], Walecki Construction). λKr “ Kp1r; 0, λq has a Hamilton decomposi-

tion (or a Hamilton decomposition with a 1-factor leave) if and only if λpr ´ 1q is even (or

odd, respectively).

Let K2s be the complete graph with the vertex set V “ tvj : j P Z2su, and let P be the

Hamilton path
`

e1, e2, . . . , e2s´1
˘

in the complete graph K2s whose vertices are ordered as

follows: v0, v2s´1, v1, v2s´2, v2, . . . , vs´1, vs. For 0 ď i ď s´ 1, let Pi be the Hamilton path in

K2s obtained from P as follows:

e` i “ tvj`i, vj1`iu P EpPiq if and only if e “ tvj, vj1u P EpP q

(reducing the sum in the subscript modulo 2s). Then P0, ..., Ps´1 are edge-disjoint, and

so form a Hamilton path decomposition of K2s made using the Walecki Construction (a

companion result to Theorem 3.1). Here, we can make effective use of this structure. For

1 ď c ď 2s, define q “ t2s´c
2

u. For 0 ď i ď s´ 1, let Pi,1pqq and Pi,2pqq be the two subpaths
`

e1` i, e2` i . . . , eq` i
˘

and
`

e2s´q` i, e2s´q`1` i, . . . , e2s´1` i
˘

of length q in Pi respectively.

For 0 ď i ď s ´ 1, Pi,1pqq and Pi,2pqq are edge-disjoint simply because: they consist of the

first and last q edges of Pi respectively; the length of Pi is 2s ´ 1; and 2s ´ 1 ´ 2q ě 0.

Notice that for 0 ď i ď s ´ 1, c is the number of the components in Pi,1pqq Y Pi,2pqq or

Pi,1pqq Y Pi,2pqq Y tes ` iu if c is even or odd, respectively.

28



Let Qpcqp2sq be the graph with the vertex set V and edge set E “ EpQpcqp2sqq defined

as follows: if c is even and 2s´ c “ 2q ě 2,

EpQpcqp2sqq “
s´1
ď

i“0

`

EpPi,1pqqq Y EpPi,2pqqq
˘

,

and if c is odd and 2s´ c “ 2q ` 1 ą 1, then

EpQpcqp2sqq “ EpQpc`1qp2sqq Y tes ` i : i “ 0, 1, . . . , s´ 1u.

For 1 ă c ă 2s, define an s-edge-coloring of Qpcqp2sq as follows:

• if c is even, then color all the edges in EpPi,1pqqq Y EpPi,2pqqq with color i for 0 ď i ď

s´ 1, and

• if c is odd, then color the edge es` i and all the edges in EpPi,1pqqq YEpPi,2pqqq in the

graph Qpc`1qp2sq with color i for 0 ď i ď s´ 1.

Regardless of whether c is even or odd, Qpcqp2sq is regular of degree 2s ´ c and each color

class of the edge-coloring has 2s´ c edges. So for 1 ď c ď 2s,

Qpcqp2sq satisfies the conditions required to apply Lemma 3.3. (3.1)

Lemma 3.2. If c is even, then the complement of Qpcqp2sq in K2s contains a 1-factor.

Proof. The result is clear in the case c “ 2s, since the graph Qp2sqp2sq has no edges; in other

words,

Qp2sqp2sq “ K2s. (3.2)

Now let c “ 2m with 1 ď m ă s. For each e “ tvj, vj1u P E “ EpQp2mqp2sqq, the

edge-difference Dpeq is positive since Qp2mqp2sq is a loopless graph. It is also obvious that
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for all e P E and for 0 ď i ď s´ 1,

Dpe` iq “ Dpeq (3.3)

since for all e “ tvj, vj1u in E by considering j ą j1 without loss of generality,

Dpe` iq “Dptvj`i, vj1`iuq

“mintpj ` iq ´ pj1 ` iq, 2s´ ppj ` iq ´ pj1 ` iqqu

“mintj ´ j1, 2s´ pj ´ j1qu

“Dptvj, vj1uq

“Dpeq.

By p3.3q, after now we consider only the case i “ 0 for convenience.

v0 v
2s´

1

v1 v
2s´

2

v2 v
2s´

3

u v
. . .e1 e2 e3 e4 e5 eq

Figure 3.1: The Path P0,1pqq in Qp2mqp2sq.

For 1 ď j ď q, let ej be an edge in P0,1pqq (see Figure 3.1), so

ej “
!

v j´1
2
, v2s´ j`1

2

)

if j is odd, and

ej “
!

v2s´ j
2
, v j

2

)

if j is even.

Then for 1 ď j ď q,

Dpejq “ mint2s´ j, ju “ j (3.4)

since q “ s´m and m ă s.
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u v v
s`
2

v
s´
2

v
s`
1

v
s´
1

vs

e 2s
´
1

e 2s
´
2

e 2s
´
3

e 2s
´
4

. . .e 2s
´
q

Figure 3.2: The Path P0,2pqq in Qp2mqp2sq.

For 1 ď j ď q, let e2s´j be an edge in P0,2pqq (see Figure 3.2), so

e2s´j “
!

vs` j´1
2
, vs´ j`1

2

)

if j is odd, and

e2s´j “
!

vs´ j
2
, vs` j

2

)

if j is even.

Then for 1 ď j ď q,

Dpe2s´jq “ mint2s´ j, ju “ j (3.5)

since q “ s´m and m ă s. Now, notice that the differences of the edges in P0,1pqq increase

from 1 to q through the path P0,1pqq by p3.4q while the differences of the edges in P0,2pqq

decrease from q to 1 through the path P0,2pqq by p3.5q. So for 0 ď i ď s´1 and 1 ď j ď 2s´1

it is always the case that

1 ď Dpej ` iq ď s´m. (3.6)

Therefore, by p3.2q and p3.6q, all the edges of half-difference of K2s are in the complement

of the graph Qp2mqp2sq which induce a 1-factor.

As stated in p3.1q, let G “ Qpcqp2sq in the following lemma which was proved in r12s.

Lemma 3.3 ([12]). Suppose 1 ď c ď 2s. Let G be a graph with 2s vertices that is regular of

degree 2s´ c for which there exists an s- edge-coloring in which each color class consists of

2s ´ c edges that induce a subgraph of G consisting of vertex disjoint paths. Then Kc _ G

has a Hamilton decomposition.
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Lemma 3.3 was then used in [12] to prove the following theorem.

Theorem 3.4 ([12]). For r ě 3, there exists a maximal set of x edge-disjoint Hamilton

cycles in Kr if and only if

x P SppKrq “

"Z

r ` 3

4

^

,

Z

r ` 3

4

^

` 1, . . . ,

Z

r ´ 1

2

^*

.

In the following proposition, pa1q is explicitly stated at the end of the proof of Lemma

3.4 in [12]. However, pa2q is a new result we prove here.

Proposition 3.5. For each x P SppKrq, there exists a maximal set Mx of x Hamilton cycles

in Kr such that

pa1q Kr ´ EpMxq is disconnected, and

pa2q if r is even, then Kr ´ EpMxq contains a 1-factor.

Proof. For each x P SppKrq, if x “ pr´1q{2 (so r is odd), then define Hx “ Kr; otherwise, let

Hx “ Kr´2x_Q
pr´2xqp2xq. Notice that for each x P SppKrq, Hx is a spanning subgraph of Kr

and it can be decomposed into x Hamilton cycles by Theorem 3.1 or Lemma 3.3 respectively.

Then let Mx be the set of the Hamilton cycles in any Hamilton decomposition of Hx. Since

Hx “ Kr´EpMxq is obviously disconnected, Mx is a maximal set of x edge-disjoint Hamilton

cycles in Kr.

To prove pa2q, let r be even. As defined above, Hx “ Kr´2x _Q
pr´2xqp2xq where Kr´2x

and Qpr´2xqp2xq are vertex disjoint subgraphs of Kr. Then the complement of Hx in Kr is

the graph Hx “ Kr´2x YQpr´2xqp2xq. Notice that Kr´2x has a 1-factor simply because it has

an even number of vertices. Also the complement Qpr´2xqp2xq has a 1-factor by Lemma 3.2

since r ´ 2x is even. So pa2q follows.

The following theorem, which is also known as Petersen’s Theorem in literature, is very

important for the proof of the main result of this chapter, Theorem 3.7.

Theorem 3.6 ([17]). Every regular graph of even degree has a 2-factorization.
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3.3 Main Result

If S is a set of Hamilton cycles in any graph G, then let EpSq “
Ť

CPS EpCq. Define the

edge-cut rV1, V1sG “ te : e “ tv1, v2u P EpGq, v1 P V1, v2 P V1u for a subset V1 Ď V pGq. Now

we are ready to prove the main result of this chapter.

Theorem 3.7. Let G “ Kpnr, λ1, λ2q with n ą 1, r ą 2, λ1 ě 1, λ2 ě 1, and λ1 ‰ λ2.

Assume that t ě λ2nt r`3
4

u. Then there exists a maximal set of t edge-disjoint Hamilton

cycles in G if and only if:

t ď min
 

t
λ2n

2pr ´ 1q

2
u, t
λ1pn´ 1q ` λ2npr ´ 1q

2
u
(

. (3.7)

Proof. To prove the necessity, let M be a maximal set of t edge disjoint Hamilton cycles in

G. For all v P V , dGpvq “ λ1pn ´ 1q ` λ2npr ´ 1q. So t ď t
λ1pn´1q`λ2npr´1q

2
u. Furthermore,

there must be at least r mixed edges in a Hamilton cycles in the graph G simply because

every Hamilton cycle is connected (see Figure 3.3).

...
...

..
.

..
.

..
.

..
.

..
.

..
.

P1 P2 P3 Pr

Figure 3.3: The Parts of G “ Kpnr, λ1, λ2q.
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Then

rt ďλ2n
2

ˆ

r

2

˙

, so

t ďt
λ2n

2pr ´ 1q

2
u.

So Condition p3.7q is necessary. In what follows, we give the proof of the sufficiency.

For each x P SppKrq, let Mx be a maximal set of x edge-disjoint Hamilton cycles

in Kr on the vertex set V which is obtained as described in Proposition 3.5, and let

Spλ2n
2xq “ tC1, . . . , Cλ2n2xu be the set of Hamilton cycles in λ2n

2Kr formed by exactly

λ2n
2 copies of each Hamilton cycle in Mx. Then Kr´EpMxq is disconnected by Proposition

3.5 pa1q, so Kr has an edge-cut rV1, V2sKr Ď EpMxq. Clearly each e P rV1, V2sKr appears in

exactly λ2n
2 Hamilton cycles in Spλ2n

2xq, so rV1, V2sλ2n2Kr
is an edge-cut of λ2n

2Kr which is

a subset of EpSpλ2n
2xqq. So the set Spλ2n

2xq is a maximal set of Hamilton cycles in λ2n
2Kr.

By Theorem 3.1, λ2n
2Kr can be decomposed into t

λ2n2pr´1q
2

u Hamilton cycles or t
λ2n2pr´1q

2
u

Hamilton cycles and one 1-factor if λ2n
2pr´1q is even or odd, respectively. Notice that if r is

odd, then t
λ2n2pr´1q

2
u “ λ2n

2t r´1
2

u; so let Sptλ2n
2pr´1q
2

uq “ Spλ2n
2t r´1

2
uq as defined in the last

paragraph. But if r is even then λ2n
2t r´1

2
u ă t

λ2n2pr´1q
2

u; so in this case define an additional

set Sptλ2n
2pr´1q
2

uq to be the set of all the edge-disjoint Hamilton cycles in λ2n
2Kr obtained by

Theorem 3.1. So when r is even, the set Sptλ2n
2pr´1q
2

uq is a maximal set of Hamilton cycles

λ2n
2Kr since λ2n

2Kr ´ EpSpt
λ2n2pr´1q

2
uqq is either a null graph or a 1-factor if λ2n

2pr´ 1q is

even or odd, respectively.

If t is in the range λ2nt r`3
4

u ď t ď λ2nt r´1
2

u, then there exists an element x P SppKrq

such that λ2nx ď t ď λ2n
2x since
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2 ď x

ô n
n´1

ď x

ô n ď pn´ 1qx

ô λ2n
2 ď λ2npn´ 1qx

ô λ2nx ď λ2n
2x´ λ2n

2

ô λ2nx ď λ2n
2px´ 1q;

so greedily form a partition Sptq “ tS1, . . . , Stu of the set Spλ2n
2xq in which 1 ď |Si| “ si ď n

for 1 ď i ď t. This is possible simply because |Spλ2n
2xq| “ λ2n

2x, so at the extremes of t in

the range λ2nx ď t ď λ2n
2x, either all sets in Sptq have size n or they have size 1.

Similarly if t is in the range λ2nt r´1
2

u ă t ď min
 

t
λ2n2pr´1q

2
u, tλ1pn´1q`λ2n

pr´1q
2

u
(

, then

greedily form a partition Sptq “ tS1, . . . , Stu of the set Sptλ2n
2pr´1q
2

uq in which 1 ď |Si| “ si ď n

for 1 ď i ď t. Notice that r must be even for this range of t existing. So such a partition

Sptq of the set Sptλ2n
2pr´1q
2

uq exists since if λ2n is even, then

2 ď n

ô r´1
r´2

ď n

ô n ď pn´ 1qx

ô
λ2n2pr´1q

2
ď λ2n

3t r´1
2

u

ô
t
λ2n2pr´1q

2
u

n
ď λ2n

2t r´1
2

u,

and if λ2n is odd, then

2 ď n

ô r´1
r´2

ď n

ô 0 ď npr ´ 2q ´ pr ´ 1q, so

0 ď λ2n
2pnpr ´ 2q ´ pr ´ 1qq ` 1

ô
λ2n2pr´1q´1

2
ď λ2n

3 r´2
2

ô
t
λ2n2pr´1q

2
u

n
ď λ2n

2t r´1
2

u.

For λ2nt r`3
4

u ď t ď minttλ2n
2pr´1q
2

u, tλ1pn´1q`λ2n
pr´1q

2
uu, let S1ptq “ tS1

1 , . . . , S
1
t u in which

each S1
i is the union of the Hamilton cycles in Si; that is,
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S1
i “

ď

CPSi

C.

Notice that for 1 ď i ď t, S1
i is both connected and regular of degree 2si ď 2n since it is the

union of si Hamilton cycles.

Now let G1ptq be the union of the graphs in the set S1ptq; that is,

G1ptq “
t
ď

i“1

S1
i .

So G1ptq is both connected and regular of even degree. Then define

G1ptq “λ2n
2Kr ´ EpG1ptqq

“λ2n
2Kr ´ EpSptqq

to be the complement of G1ptq in the multigraph λ2n
2Kr. So G1ptq is disconnected and

regular.

If G1ptq is regular of even degree, then it has a 2-factorization F by Theorem 3.6. Now

suppose that G1ptq is regular of odd degree. Then λ2n
2pr´ 1q ” 1 pmod 2q. This is possible

if and only if λ2 ” n ” r ´ 1 ” 1 pmod 2q. So r must be even. If λ2nt r`3
4

u ď t ď λ2n
2t r´1

2
u,

then there exists an element x P SppKrq such that λ2nx ď t ď λ2n
2x; so G1ptq can be

decomposed to a 2-factorization F and a 1-factor F by Theorem 3.6 and Proposition 3.5

pa2q since G1ptq is the union of λ2n
2 copies of Kr ´ EpMxq. If λ2n

2t r´1
2

u ă t ď t
λ2n2pr´1q

2
u,

then G1ptq can be decomposed to a 2-factorization F and a 1-factor F due to the Walecki

construction.

Let G1 and G2ptq be the graphs obtained from λ2n
2Kr and G1ptq, respectively by adding

exactly λ1
`

n
2

˘

loops on each vertex. Notice that G2ptq is a spanning subgraph of G1 simply

because G1ptq is a spanning subgraph of λ2n
2Kr.
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Define a partition L “ tL1, . . . , Lλ1pn2q
u of the set of the λ1

`

n
2

˘

r loops in G1 such that

for 1 ď i ď λ1
`

n
2

˘

, each vertex in G1 is incident with exactly one loop in Li; so |Li| “ r.

Now let Eptq “ tE1, . . . , Etu be a partition of a subset of the union F Y L in which

each set Ei has size n ´ si. For λ2nt r`3
4

u ď t ď min
 

t
λ2n2pr´1q

2
u, tλ1pn´1q`λ2n

pr´1q
2

u
(

, such a

partition Eptq exists since

t ď t
λ1pn´ 1q ` λ2npr ´ 1q

2
u by Condition p3.7q

ď 1
n

t
λ1npn´ 1q ` λ2n

2pr ´ 1q

2
u

ô nt ď t
λ1npn´ 1q ` λ2n

2pr ´ 1q

2
u

ô nt ď t
λ2n

2pr ´ 1q ´ 2|EpSptqq|

2
u`

λ1npn´ 1q

2
` |EpSptqq|

ô nt´ |EpSptqq| ď t
λ2n

2pr ´ 1q ´ 2|EpSptqq|

2
u`

λ1npn´ 1q

2

ô nt´
t
ř

i“1

si ď t
λ2n

2pr ´ 1q ´ 2|EpSptqq|

2
u` λ1

`

n
2

˘

ô
t
ř

i“1

n´ si ď t
λ2n

2pr ´ 1q ´ 2|EpSptqq|

2
u` λ1

`

n
2

˘

ô
řt
i“1 |Ei| ď |F| ` |L|.

Now define a pt ` 1q-edge-coloring of G1 by coloring all the edges in S1
i and in Ei with

color i, and color all the other edges in G1 with color t` 1. For 1 ď i ď t` 1, let S2
i denote

the ith color class in the pt`1qedge-colored graph G1. Notice that for 1 ď i ď t, S2
i is regular

of degree 2n since for all v P V ,

dS2
i
pvq “dS1

i
pvq ` 2|Ei|

“2si ` 2pn´ siq

“ 2n
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Also notice that

the color class S2
i is connected for 1 ď i ď t (3.8)

since it contains S1
i which is the union of si Hamilton cycles. However,

the color class S2
t`1 is disconnected by Proposisition 3.5 pa1q. (3.9)

Let ψ be a function from the vertex set V into N defined by ψpvq “ n for all v P V .

We now show that ψ satisfies the conditions p1q ´ p5q of Theorem 2.2. Condition p1q is

satisfied simply because n ě 2. For all v P V , dG2pvq “ 2nt, so dG2pvq{ψpvq “ 2t. Then

condition p2q is satisfied. For all v P V ,
`

ψpvq
2

˘

“
`

n
2

˘

, so
`

ψpvq
2

˘

divides `G2pvq “ λ1
`

n
2

˘

. So

condition p3q is satisfied. For all vj, vj1 P V , ψpvjqψpvj1q “ n2 divides mG2pvj, vj1q “ λ2n
2.

So condition p4q is satisfied. By p3.8q and p3.9q, condition p5q is satisfied for all the color

classes S2
1 , . . . , S

2
t but for S2

t`1. In Theorem 2.2, the condition p5q is needed only for pivq, so

if a color class Gpjq is disconnected then definitely the color class Hpjq is also disconnected

simply because |EpGpjqq| “ |EpHpjqq| while |V pHq| ě |V pGq|. So by Theorem 2.2, there

exists a ψ-detachement G2 of the graph G1, in which the vertices vj, vj1 P V are detached

into n new vetices vj,1, . . . , vj,n and vj1,1, . . . , vj1,n such that:

pg1q dG2piqpvj,τ q “ 2n{n “ 2 for 1 ď i ď t and 1 ď τ ď n,

pg2q mG2pvj,τ , vj,τ 1q “ λ1
`

n
2

˘

{
`

n
2

˘

“ λ1 for 1 ď τ ă τ 1 ď n, and

pg3q mG2pvj,τ , vj1,τ 1q “ λ2n
2{n2 “ λ2 for 1 ď τ ď τ 1 ď n.

Now notice that G2 is isomorphic to the graph G “ Kpnr;λ1, λ2q by pg2q and pg3q. So let

S3
i be the ith color class in the pt ` 1q-edge-colored graph G induced from the edges in the

color class S2ptq. Then for 1 ď i ď t, the color class S3
i is a Hamilton cycle in G by p3.8q and

pg1q. Let S3ptq “ tS3
1 , . . . , S

3
t u. Then S3ptq is a maximal set of Hamilton cycles in G since

G´EpS3ptqq “ S3
t`1 is disconnected by p3.9q. Therefore, the proof of the sufficiency follows.
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Chapter 4

Future Directions

4.1 Some Open Problems

In this dissertation, Chapter 2 focusses on the embedding problem: when can a edge-

coloring of Kpnr;λ1, λ2q be embedded into a Hamiltonian decompostion of Kpnr`2;λ1, λ2q?

The embedding problem has not been settled completely for quite some time. So solutions of

the following open questions are of great interest to those working on these types of problems.

Problem 1. Prove Conjecture conjecture 2.5.

For convenience, this conjecture is restated here.

Conjecture 2.5. Let n ą 1, λ1 ě 0, λ2 ě 1 and λ1 ‰ λ2. Let α be a k-edge-coloring of G “

K pnr;λ1, λ2q. If the k-edge-coloring α can be embedded into a Hamiltonian decomposition

of G˚ “ K pnr`2;λ1, λ2q , then πpαq can be chosen such that in the detached graph B˚ “

Bpπpαqq, the number of the components having an odd number of color vertices of degree

divisible by 4 is at most λ2n
2.

Perhaps this is currently intractible, but it would still be of interest to settle the con-

jecture with some additional restrictions, such as the following problem.

Problem 2. Show that Conjecture conjecture 2.5 is true if |C2| ą γ for some particular

γ ă 2λ1
`

n
2

˘

` λ2n
2.

The following problem also appears to be very difficult.

Problem 3. Solve the embedding problem in case t “ 3.

40



Problem 4. What can be the largest value of t in the embedding problem in order for nu-

merical conditions to be suffcient for the embedding (i.e., until the components are not an

issue in the embedding problem)?

In Chapter 3, maximal sets of t edge-disjoint Hamilton cycles in Kpnr;λ1, λ2q is studied.

The following problem is left open:

Problem 5. Prove whether or not λ2nt r`3
4

u is a lower bound for the spectrum SppKpnr;λ1, λ2qq.
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