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Abstract 
 

 
 Reducing harm from global climate change will require public participation and therefore 

public education. Visual data representations such as graphs are often used for communication 

with public audiences but they are rarely designed using available evidence from cognitive 

science research. In the current study, undergraduate students took a pre-survey measuring 

climate change knowledge, climate scientist credibility perception, and perception of risk 

associated with climate change. Participants with low risk perception and low knowledge of 

climate change were then invited to the lab to view and answer questions about climate change 

graphs. Students either viewed original graphs from IPCC Summaries for Policymakers or new 

versions of the same graphs re-designed to fit evidence-based guidelines from Harold et al. 

(2016). Eye-tracking technology, which measures viewers’ eye movements as a proxy for 

attention to different parts of the graphs, was used to evaluate usability. Overall participation in 

the activity increased participant risk perception, climate scientist consensus estimate, and 

perception of credibility of climate scientists. Results indicate many similarities in participant 

use of original and redesigned graphs, but slightly improved performance with original graphs 

primarily due to familiar formatting. Participants perceived the redesigned graphs as more 

credible and more satisfactory and one of the redesigned graphs as more worrying than the 

equivalent IPCC originals. Participant feedback was used to redesign the graphs again for use in 

a small third condition with improved results.  
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INTRODUCTION 

 Climate change is among the greatest threats to human lives in the near future, and 

reducing harm requires public education about the facts and risks associated with global climate 

change (IPCC, 2013). In recent years, there has been a flood of available information on climate 

change science and impacts, especially via visual data representations, which are important tools 

for communicating with public audiences. Unfortunately, visual communication tools such as 

graphs are not usually designed using evidence from cognitive science. However, there exists a 

foundation of cognitive research that can provide guidance for creating data visualizations that 

are effective in aiding comprehension for various audiences (Harold, Lorenzoni, Shipley, & 

Coventry, 2016), and methods such as eye-tracking can provide novel insights to viewers’ 

experiences with such visualizations. 

Few studies have considered climate visualization design as it relates to viewers’ prior 

knowledge (Harold et al., 2016; Atkins & McNeal, 2018). Prior knowledge and perceptions of 

the audience are particularly important to consider for the design of climate change-related 

communication tools. This is because public perceptions of climate change correlate strongly 

with cultural worldviews but do not always coincide with greater knowledge of the scientific 

facts of climate change (Kahan, Jenkins-Smith, & Braman, 2011; Leiserowitz & Smith, 2010). 

However, among undergraduate students, research has shown that knowledge-based approaches 

(i.e. content instruction) are more effective, possibly due to the malleability of belief systems of 

this age group (Aksit, McNeal, Libarkin, Gold, & Harris, 2017). 

Climate Change Perceptions 

In a spring 2018 Pew survey of over 27,000 people across 26 countries, 67% of 

respondents said that global climate change was a “major threat to [their] country,” higher than 
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any other threat, including ISIS (Poushter & Huang, 2019). The United States trailed slightly, 

with only 59% feeling majorly threatened by climate change. In fact, 15% Americans still do not 

believe global warming is happening at all and 24% believe it is due mostly to natural causes 

(Leiserowitz et al., 2019). However, climate literacy in the US is more complicated than belief or 

disbelief. In the same survey, 90% of self-identified liberal democrats agreed that global 

warming is due mostly to human activities compared to 28% of conservative republicans. The 

current study will take place in a region of the US with lower-than-average climate awareness; in 

a 2018 update of a model by the same authors, only 63% of Alabamians responded that global 

warming was happening and 37% said that warming was due to mostly natural causes (compared 

to 70% and 32% national averages) (Howe, Mildenberger, Marlon, & Leiserowitz, 2015). 

Previous research strongly supports the relationship between climate change beliefs and 

cultural worldviews (Aksit et al., 2017; Kahan et al., 2011; Leiserowitz & Smith, 2010; 

Leiserowitz et al., 2019; McCright, Dunlap, & Xiao, 2013; van der Linden, Leiserowitz, 

Feinberg, & Maibach, 2015; van der Linden, Leiserowitz, & Maibach, 2017). However, 

instruction or communication of evidence supporting the existence of anthropogenic climate 

change can impact people’s beliefs and perception of risk associated with climate change (Aksit 

et al., 2017; McCright et al., 2013; van der Linden et al., 2017) 

 One indicator of overall climate literacy is the awareness of the consensus of around 97% 

of climate scientists that human activity is causing current global warming (Cook et al., 2016). 

Several studies have pointed to knowledge of the high scientific consensus as a reliable predictor 

of climate beliefs and support for relevant policy (McCright et al., 2013). This effect, called the 

“gateway belief model,” has been empirically validated. In addition, exposure to the fact of 

scientific consensus around climate change increases laypeople's belief that climate change is 
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happening and is anthropogenic and increases their support for public action (van der Linden et 

al., 2015). In another study, exposure to the 97% scientific consensus reduced the polarization in 

beliefs between conservatives and liberals by 50%, showing the power of fact-based 

communication to overcome ideological differences (van der Linden, et al., 2017). 

Because the gateway belief model is powerful, these authors also tested the messaging 

method for communication of the scientific consensus (van der Linden, Leiserowitz, Feinberg, & 

Maibach, 2014). Participants who viewed a pie chart displaying the 97% consensus, for example, 

estimated that the scientific consensus of climate scientists was 15% higher than they had before 

viewing the pie chart. In the same study, these results were compared to participants exposed to 

the same information in various text and image layouts and showed the pie charts were most 

effective in communicating this consensus. This work was primarily exploratory but represents a 

unique and crucial examination of the effectiveness of visuals in communicating climate change. 

Several authors have created guidelines for creating more effective graphs and data 

visualizations; however, few of these are based on empirical evidence (Harold et al., 2016). 

Existing research on graph effectiveness often relies on survey-based methods, such as recording 

accuracy on data extraction tasks (e.g. Canham and Hegarty, 2010). Cognitive processes during 

tasks are then examined through interviews, which can distract the participants from task 

performance and thus influence results. Eye-tracking analysis, in contrast, can be conducted 

simultaneously with other tasks without interference, and can detect changes and features of 

cognition that may be too minute to detect with other methods (Bojko, 2013). For example, 

Atkins and McNeal (2018) examined expert-novice differences when viewing climate graphs 

and found that novice viewers spent proportionally more time viewing the axes and title than the 

data of the graphs than expert viewers. 
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Otherwise, climate graph research has so far focused on communication with policy- and 

decision-makers, including graphics used in the IPCC Summaries for Policymakers. Harold et al. 

(2016) reviewed climate communication and cognitive science literature to create evidence-

based guidelines for designing more accessible visualizations and applied the guidelines to 

modify a major IPCC graphic (Harold et al., 2016). McMahon, Stauffacher, and Knutti (2016) 

explored participant affective reactions to different designs of visuals including four IPCC 

figures and two infographics and found that participants had less confidence in the infographics. 

This may be related to the authors’ previous work that suggested that participants were highly 

confident in the data presented to them due to the complexity of the figure (McMahon, 

Stauffacher, & Knutti, 2015). 

Graph Reading 

Visual processing of graphs consists primarily of the interaction of top-down and bottom-

up cognitive processing, according to the construction-integration model by Freedman and Shah 

(2002). This model has been used for text and graph comprehension and consists of two stages. 

The first stage represents the construction phase in which prior knowledge is activated based on 

the viewer’s expectations and observation of the visual stimulus presented. In the second stage, 

the viewer integrates discrete observations and judgements of the stimulus into a single 

understandable message. In both stages, bottom-up processes describe the attention to visually 

salient features, i.e., what the eye is drawn to when viewing a stimulus based on aesthetic design. 

Top-down processes depend on the prior knowledge and expectations of the viewer, either 

concerning graphs in general or specific domain knowledge (Freedman & Shah, 2002).  

Top-down processes are often analyzed with expert-novice studies, in which researchers  

compare performance across knowledge gaps either in graph reading or in domain content 
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(Atkins & McNeal, 2018; Stofer & Che, 2014). Experts have more resources for integrating 

discrete observations of a stimulus into a coherent representation (Freedman and Shah, 2002). 

Because bottom-up processes depend on visual salience, these processes are often examined in 

studies that compare design features of graphs. Many studies have shown that graph design can 

significantly alter comprehension and task performance of participants (Hegarty, 2011). Shah 

and Carpenter (1995) found that participants interpreted even very simple graphs differently 

depending on which data was shown on the x, y, or z axis, including graduate students 

experienced in graph comprehension and construction. Renshaw, Finlay, Tyfa, and Ward (2003) 

compared graphs of identical data designed either in accordance with or opposed to best-practice 

design guidelines. The graphs designed in accordance with the guidelines scored significantly 

higher in usability. However, evidence must show whether this kind of work extends to the 

unique domain of climate change, where knowledge and beliefs are particularly mediated by 

social and cultural contexts (Kahan et al., 2011). 

Eye-Tracking 
 

Eye-tracking can also be used to examine real-time visual and attentional processes, i.e., 

the construction and integration related to the visual features of the stimulus (Duchowski, 2007). 

Eye movements have been tracked and studied in some form since the 1800s, but in recent 

decades, improved technology has made eye-tracking much more precise and less invasive. 

Modern eye-tracking uses infrared light shone toward the participant and tracks the reflection 

back from the cornea and the retina. The corneal reflection only moves with the participant’s 

head and is compared by the eye-tracker to the reflection from the retina, which indicates the 

location of the pupil. Humans have a total visual field around 180° but can see in greatest detail 

and brightest color in the center ~5° of the visual field, called the fovea (Duchowski, 2007). The 
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fovea in visual processing is one illustration of the fact that humans, though presented with 

endless stimuli, have limited attention and processing capacity. Therefore, vision is “a piecemeal 

process” relying on the integration of small, discretely perceived areas into one bigger picture 

(Duchowski, 2007).  

Most eye movement consists of only two actions, fixations and saccades, so modern eye-

tracking measures both. Fixations are defined as a period of at least 70ms where the eye is 

stationary, and saccades are the extremely fast movements between fixation points (Bojko, 

2013). Since the fovea is quite small, the area of each fixation is small as well, so fixations can 

be measured precisely. People are effectively blind during saccade movements but view and 

process stimuli during fixations. For this reason, most eye-tracking analysis centers around total 

duration of fixations, number and order of fixations, and fixations in particular areas of interest. 

Eye-tracking is used primarily to understand and compare viewers’ attention to particular visual 

features. When using eye-tracking, researchers can set an Area of Interest (AOI) corresponding 

with features particularly relevant to top-down or bottom-up processing to examine the AOIs 

influence on the user’s attention and task performance. Attention plays a significant role in 

thinking and processing, but eye-tracking is best used in tandem with other research methods 

which provide context for eye movement results, such as usability tasks or interviews (Bergstrom 

& Schall, 2014; Duchowski, 2007; Bojko, 2013). 

OBJECTIVES 

The goals of this study are to compare and evaluate the effectiveness of data 

visualizations of scientific evidence of climate change for communication with undergraduate 

students. The focus of the study is the comparison of original visualizations presented in 

Intergovernmental Panel on Climate Change (IPCC) reports with modifications of those 
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visualizations designed to reflect findings from cognitive science research. 

The primary research questions addressed in this study are: (1) How does graph design 

affect usability of the graph, where usability is characterized by efficiency, effectiveness, and 

satisfaction? (2) How does graph design affect visual attention to the graphs, as shown by eye-

tracking? (3) How does graph design affect participant perceptions of credibility of the graphs 

and of climate scientists overall? (4) How does graph design affect participants’ perception of 

risk associated with climate change? These questions were addressed using mixed qualitative and 

quantitative methods featuring eye-tracking, data extraction tasks, surveys, ranking exercises, 

and interviews, summarized in Table 1. 

Table 1 
 
Alignment of Research Questions, Metrics, and Analysis 
Research Question Dependent Var. Instruments Analysis 
1. How does graph design influence 
usability of graphs?    

1a. Usability: Effectiveness Participant 
accuracy 

Data extraction 
questions 

t-test (A vs. B) 
ANOVA (A, B, C) 

1b. Usability: Efficiency Time to answer 
question 

Eye-tracking 
times 

t-test (A vs. B) 
ANOVA (A, B, C) 

1c. Usability: Satisfaction Participant 
satisfaction rating 

Satisfaction Q’s, 
Rankings 

t-test (A vs. B) 
ANOVA (A, B, C) 

2. How does graph design influence 
attention to graphs? Fixation metrics Eye-tracking t-test (A vs. B) 

ANOVA (A, B, C) 
3a. How does graph design influence 
perception of credibility of graphs? 

Participant 
credibility rating 

Credibility Q’s, 
Rankings 

t-test (A vs. B) 
ANOVA (A, B, C) 

3b. How does graph design influence 
participant perception of credibility 
of climate scientists? 

Credibility rating, 
change from pre-

survey 

Pre- and Post-
survey credibility 

instrument 
Mixed ANOVA 

4. How does graph design influence 
climate change risk assessment? 

Risk assessment 
items, change from 

pre-survey 

Pre- and Post-
survey risk 

assessment items 
Mixed ANOVA 

Note. Non-parametric equivalents may be used (Mann-Whitney in place of t-test, Wilcoxon 
signed rank in place of paired t-test, and Kruskal-Wallis in place of one-way ANOVA) 
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MANUSCRIPT FOR SUBMISSION 

BACKGROUND 

 The United States may bear a higher short-term cost from climate change than almost any 

other country in the world but its citizens are less concerned about climate change than those of 

many other countries (Leiserowitz et al., 2019; Poushter & Huang, 2019). This discrepancy can 

be explained somewhat by American unawareness of climate change; most recently, the Yale 

Program on Climate Change Communication found that, on average, only 74% of registered 

American voters think global warming is happening and 62% think that it is caused mostly by 

human activities (Leiserowitz et al., 2019). However, there are 56% and 62% differences in these 

statistics, respectively, between Americans from opposite ends of our political spectrum which 

illustrates one of the several complexities of climate change literacy in America. 

 This variation can be explained, at least partially, by the cultural cognition thesis 

presented by Kahan et al. (2011). The authors found that awareness around scientific consensus 

on a number of scientific issues, especially climate change, were tightly coupled with 

participants’ worldviews as categorized along spectra of hierarchy and individualism. Awareness 

of the scientific consensus around climate change in particular is known to be important, and in 

one study, educating participants about the consensus led to significantly higher worry around 

the issue and higher beliefs that climate change is happening and is anthropogenic (van der 

Linden et al., 2015). However, educating the public about these issues also requires cultural 

consideration; the participants in the work of Kahan et al. (2011) were more likely to assess a 

fictional expert as knowledgeable and trustworthy if the expert is expressing a view that aligns 

with the participants’ pre-conceived risk assessment of global warming. 

 There is a growing body of research concerning climate change communication with 
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graphs and other data visualizations. Much of this inquiry was reviewed by Harold et al. (2016) 

to compile a set of guidelines to facilitate the design of more accessible graphics to communicate 

climate change (see Table 2). Graph use and comprehension can be assessed through the use of 

eye-tracking technology and the construct of usability (Goldberg & Kotval, 1999; Goldberg & 

Wichansky, 2003; Renshaw et al. 2003). Usability is task-focused and is characterized by 

effectiveness in completing the task, efficiency in completing the task, and user satisfaction with 

the product or interface. These metrics don’t require eye-tracking but the additional instrument 

can enhance usability evaluation. 

Graph design can also affect perceptions of risk, though this topic has been researched in 

far more depth as it applies to medicine than climate change (Ancker, Senathirajah, Kukafka, & 

Starren, 2006; Okan, Stone, & Bruine de Bruin, 2018). Additionally, there is not yet much 

research exploring the relationship between graph design and perceptions of credibility in 

climate change, but there is strong evidence that they may be related (McMahon et al. 2016).  

This study was designed to address each of these topics and is focused on asking how graph 

design affects (1) visual attention to the graphs, (2) usability of the graphs, (3) perceptions of 

credibility of the graphs and of climate scientists, and (4) climate change risk assessment. We 

have employed eye-tracking, survey, and interview methods to answer these questions in an 

explanatory mixed-methods study (Creswell & Clark, 2018). 

METHODS 

Participants first took an online pre-survey via emails to large introductory undergraduate 

classes. The survey included a 21-item climate knowledge inventory, composed of questions 

concerning the facts of Earth’s climate and climate change from Libarkin, Gold, Harris, McNeal, 

& Bowles (2018), questions to gauge participant’s perceptions of risk associated with climate 
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change drawn from Libarkin et al. (2018) and Leiserowitz et al. (2019), an instrument on 

participants’ perception of credibility of climate scientists adapted from McCroskey and Teven 

(1999), items concerning graph literacy and frequency of use from Atkins & McNeal (2018), and  

other demographic and background information items. The climate knowledge inventory from 

Libarkin et al. (2018) was selected for use in this study because it was developed with thorough 

validity and reliability methodology (including Rasch analysis) and has been used with similar 

undergraduate populations (Aksit et al., 2017; Libarkin et al., 2018). The instrument from 

McCroskey and Teven (1999) has also been highly reliable in other uses with undergraduates 

and measures the sub-factors of credibility used in source trust literature without applying the 

construct explicitly to internet use as many other instruments do (Connolly & Bannister, 2007). 

The risk items from Leiserowitz et al. (2019) had not been validated but have been used 

regularly by those authors and provide for comparison with many previous samples. 

Three graphs, each with an A and B version, were initially selected for the study. The A 

version of each graph was originally published in either the Intergovernmental Panel on Climate 

Change (IPCC) Working Group 1 (WG1) Summary for Policymakers (SPM) or the IPCC 

Synthesis Report (SYR) SPM. Each B version of the graphs used the same data as the A version 

but was re-designed to adhere to guidelines for graph accessibility based on cognitive science 

research compiled in Harold et al. (2016), shown in Table 2. A rubric was created to assess 

application of the Harold et al. (2016) guidelines to graph design and the rubric was reviewed by 

the lead author of that publication. After the first re-designs of potential graphs for this study 

were created, the graphs and rubric were distributed to several experts including the lead and 

third authors of Harold et al. (2016) for review, after which the graphs were altered to reflect 

reviewer feedback. The B and C versions of these graphs were designed in Adobe Illustrator. 
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Table 2 
 
Evidence-informed Guidelines to Improve Accessibility of Scientific Graphics of Climate Science 
from Harold et al. (2016) 

 Psychological Insights Associated guidelines to improve accessibility 

 
1. Intuitions about effective graphics do 
not always correspond to evidence-
informed best practice for increasing 
accessibility 

Use cognitive and psychological principles to inform the 
design of graphics; test graphics during their development 
to understand viewers' comprehension of them 

Direct 
Visual 

Attention 

2. Visual attention is limited and 
selective -- visual information in a 
graphic may or may not be looked at 
and/or processed by viewers 

Present only the visual information that is required for the 
communication goal at hand. Direct viewers' visual 
attention to visual features of the graphic that support 
inferences about the data 

3. Salient visual features (where there is 
contrast in size, shape, color, or motion) 
can attract visual attention 

Make important visual features of the graphic perceptually 
salient so that they 'capture' the attention of the viewer 

4. Prior experiences and knowledge can 
direct visual attention 

Choose and design graphics informed by viewers' 
familiarity and knowledge of using graphics and their 
knowledge of the domain, that is, knowledge about what the 
data represents. Provide knowledge to viewers about which 
features of the graphic are important to look at, for example, 
in text positioned close to the graphic. 

Reduce 
complexity 

5. An excess of visual information can 
create visual clutter and impair 
comprehension 

Only include information that is needed for the intended 
purpose of the graphic; break down the graphic into visual 
'chunks', each of which should contain enough information 
for the intended task or message 

Support 
inference-

making 

6. Some inferences may require mental 
spatial transformations of the data; 
experts may have strong spatial 
reasoning skills, non-experts may not. 

Remove or reduce the need for spatial reasoning skills by 
showing inferences directly in the graphic. Support viewers 
in spatial reasoning, for example, by providing guidance in 
text. 

7. The visual structure and layout of the 
data influences inferences drawn about 
the data. 

Identify the most important relationships in the data that are 
to be communicated; consider different ways of structuring 
the data that enable the viewer to quickly identify these 
relationships. 

8. Animating a graphic may help or 
hinder comprehension. 

Decisions to create animated graphics should be informed 
by cognitive principles; consider providing user control over 
the playback and speed of the animation. 

9. Conceptual thought often makes use 
of cultural metaphors. 

Match the visual representation of data to metaphors that aid 
conceptual thinking, for example, ‘up’ is associated with 
‘good’ and ‘down’ is associated with ‘bad’; data with 
negative connotations may be easiest to understand if 
presented in a downwards direction. 

Integrate 
text with 
graphics 

10. When the graphic and the associated 
text are spatially distant, attention is 
split. 

Keep the graphic and accompanying text close together, for 
example, use text within a graphic and locate the graphic 
next to the accompanying body text. 

11. Language can influence thought 
about the graphic. 

Use text to help direct viewers’ comprehension of the 
graphic, that is, by providing key knowledge needed to 
interpret the graphic. 
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Figure 2. Redesign of IPCC graphic SYR SPM.3 by author (Graph 1B) 

Graph 1 (SYR SPM.3) was selected in this study for its relative simplicity and the original 

(Figure 1) and redesign (Figure 2) are presented below. 

Figure 1. Original IPCC graphic SYR SPM.3 (Graph 1A) 
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Graph 2 (WG1 SPM.1) was cropped from its original publication version to reduce complexity 

for both the original (Figure 3) and redesign (Figure 4). 

 

 

Figure 3. Original IPCC graphic WG1 SPM.1 (Graph 2A) 
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Figure 4. Redesign of IPCC graphic WG1 SPM.1 by author (Graph 2B) 
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The original publication version of graph 3 (WG1 SPM.5) and a redesigned version were 

both featured in Harold et al. as an example of the application of the guidelines compiled by 

those authors. Both the original (Figure 5) and redesign (Figure 6) were also cropped for size and 

total content for use in this study. 

 

 

 

 

 

Figure 5. Cropped IPCC graphic WG1 SPM.5 (Graph 3A) 
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Figure 6. Cropped and redesigned IPCC graphic WG1 SPM.5, modified from Harold 
et al. (2016) (Graph 3B) 
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After initial data collection, participant feedback was compiled and a third C version of 

graphs 1 and 2 were created by the author for additional data collection (Figures 7 and 8). 

 

 

 

 

 

 

 

 

 

 

Figure 7. Redesign of IPCC graphic SYR SPM.3 by author (Graph 1C) 
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Figure 8. Redesign of IPCC graphic WG1 SPM.1 by author (Graph 2C) 
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Main Study 

From pre-survey data, students with below-median scores in both climate change 

knowledge and climate change risk perception were invited to the lab to participate in the study. 

In the main phase of the study, participants were randomly assigned to one of two conditions for 

an A/B between-subjects eye-tracking study.  The computer activity part of the experiment was 

designed and performed in Tobii Studio software and recorded with a Tobii TX300 eye-tracker. 

The eye-tracker is attached to the bottom of the monitor, requires no chin-rest or other physical 

restrictions, and samples at a frequency of 300 Hertz. Before the activity, each participant’s eyes 

were calibrated to the eye-tracker which requires that participants sit 50-73cm away and directly 

in front of the screen but allows for shifting and adjustments within that range during the 

activity. Data from the two participants with less than 70% gaze samples (weighted to include 

presence or absence of each eye) were not used for any subsequent analysis. 

Each participant first had unlimited time to read definitions of three key terms used in the 

graphs (anthropogenic, forcing, and anomaly) to provide some context to those who had never 

seen the terms before. Participants then completed a practice question unrelated to the subject 

matter to become acquainted with the system, and then began the experiment that consisted of 

answering questions about three graphs of either the A condition designs or the B condition 

redesigns. The A condition participants viewed three graphs (Figures 1, 3, & 5) from the most 

recent IPCC Assessment Report Summaries for Policymakers. The SPMs are shorter, more 

concise reports and represent the materials intended for a non-expert audience. The B condition 

participants viewed three re-designs of the same IPCC graphs (Figures 2, 4, & 6). After initial A 

and B group data collection, a smaller C condition was also run (n = 9). The C condition 
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consisted of new redesigns of the two graphs created by the researcher based on preliminary 

results from participants (Figures 7 & 8).  

The three graphs in each condition were presented in alternating sequences. For each 

graph, the participants (1) viewed the graph alone, (2) answered three data extraction questions 

about the graph (simple graph-reading not requiring extrapolation or content knowledge), (3) 

answered a graph satisfaction question, and (4) answered a credibility perception question about 

the graph. Each question was multiple choice and the graphs were shown on screen when each 

question was presented. The participants had unlimited view time for each step until they 

advanced the activity with a mouse click. The satisfaction and credibility perception items were 

presented as statements with 4-point Likert scales answer options ranging from strongly disagree 

to strongly agree. The operative words of the credibility statements (misleading, accurate, 

credible) were drawn from an existing instrument (McCroskey & Teven, 1999). One of the many 

instruments designed to measure human-computer interface satisfaction, by Chin, Diehl, & 

Norman (1988), was sampled and adapted to create graph satisfaction items.  

After the graph computer activity, participants completed a post-survey consisting of 

items repeated from the pre-survey concerning risk perception, credibility perception, and 

relevant climate change knowledge and new additional items concerning climate change and 

policy. After the post-survey, participants engaged in a recorded retrospective interview about 

their experience completing the graph activity and strategies used to answer the questions while 

watching the recording of their eyes. Retrospective interviews cued by gaze plot videos can lend 

more specific insight into the processes and difficulties that participants had during the activity 

(Olsen & Strandvall, 2010), and is often recommended over concurrent think-aloud methods 

because it is less likely to alter gaze patterns (Duchowski, 2007). After the eye-tracking 



 21 

retrospection, the recorded interview continued with questions about graphs and climate change 

perceptions and an activity in which graphs were ranked for ease of use, trustworthiness, and 

cause for worry about climate change. The graphs were compared for ease and trustworthiness 

within the participant’s condition (all A, all B, or both C graphs), as data-equivalent pairs (e.g. 

1A vs. 1B), and finally across all graphs presented to the participant. 

Analysis 

 The primary analysis of eye-tracking data was conducted to assess usability of the graphs. 

Eye-tracking data were analyzed by t-test between A and B conditions and by Analysis of 

Variance (ANOVA) between all three conditions. The Tobii Studio software time until 

mouseclick data were used as the metric for total time spent on each graph because it includes 

time that fixations may have not been measured by the eye-tracker but during which participants 

may have still been viewing or deliberating on the question. Fixation count and duration for 

individual areas of interest were plotted and correlated to ensure that the metrics were highly 

related and that using only fixation duration in analyses would suffice (see Figure 11). The Areas 

of Interest (AOIs) used for duration and time to first fixation analyses were equal in size and 

placement for all questions asked for each graph (see Figure 9). Time to first fixation (or TtFF) is 

a metric in the eye-tracking software that counts the time from the introduction of the stimulus to 

the first fixation within an AOI, which can indicate which features are most salient to viewers. 

Fixation duration for each AOI was also normalized to the size of the AOI. This normalization is 

performed because participants would statistically spend more view time in larger AOIs so 

considering the impact of AOI size is valuable. However, because AOIs were data-equivalent, 

raw fixation duration data were interpreted as most meaningful and therefore used for final 

analyses. 
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For comparisons between the participant pre- and post-tests, such as for change in 

credibility perception of climate scientists and risk assessment of climate change, data were 

analyzed with mixed ANOVA to detect effects from both participation (pre/post within-subjects) 

and group membership (A/B/C between-subjects). 

Participant answers to data extraction, satisfaction, and credibility perception questions 

were extracted from Tobii Studio. Data extraction answers were coded as correct or incorrect and 

compared across groups. Individual answer distributions and composites of answers were highly 

non-normal and therefore analyzed with nonparametric tests such as the Mann-Whitney U test 

(between two groups only) and the Kruskal-Wallis H test (all three conditions). Participant ranks 

for ease, trustworthiness, and worry/risk were inverted such that higher values would correspond 

to higher assessment of the variable (i.e., 1st place in trustworthiness inverted to 6 trust “points”). 

Ranked data are ordinal and therefore also analyzed by nonparametric tests, specifically the 

Figure 9. Example of graph question area of interest boundaries (graph 1B) 
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related-samples Wilcoxon signed rank W test since analysis included multiple graph ranks for 

each individual. Additionally, since the C condition was ranking only four graphs rather than six, 

the rank values are not comparable to the A and B groups, but graph ranks can still be compared 

within the C condition. Non-parametric test results are reported with the standardized Z-statistic. 

Recorded interviews were transcribed and data were coded primarily for specific features 

of each graph that contributed to participant perceptions of usability, credibility, and climate 

change risk. An Auburn Geocognition Lab member co-coded excerpts sampled from 25% of 

participants to ensure good inter-rater reliability (93% agreement, Cohen’s Kappa = .69). 

Analysis was performed primarily by searching for co-occurrences between individual graph 

codes, value codes (praise/ease, criticism/difficulty, etc.) and codes for features of graphs 

(amount of information, use of color, organization/layout, etc.). Three a-priori codes were drawn 

from the three factors of McCroskey and Teven (1999) and additional codes for risk perception 

and credibility were used as they emerged from the data. Because the interview pivoted around 

comparing and ranking the graphs, most comments were in reference to specific graphs and 

features. However, participants also spoke generally about risk, credibility, and graphs, so some 

analysis separate from graph features was appropriate. 

RESULTS 

 The 69 total participants in the study were, typically, 19-year-old (M = 19.17, SD = 

1.465, range 18-24), white (n = 60), conservatives (“conservative” n = 35, “very conservative” n 

= 8), who attend church annualy or more often (n = 42). A little over half of the participants were 

women (n = 37). About half were in STEM majors (n = 33) and most were currently enrolled in 

a course that they identified as within STEM (n = 55).  About half were “sympathetic toward the 

environmental movement” (n = 36), none identified as active with it, 26 participants said they 
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were neutral toward it, and 7 were “unsympathetic toward the environmental movement”. 

Participants initially estimated that 72.16% of climate scientists “think that human-caused global 

warming is happening” on average (SD = 18.13). Participant scores on the initial climate 

knowledge inventory was significantly correlated with their self-reported frequency of graph use 

and creation (Pearson’s r = .408, p = .001) and their performance on a 4-item axis identification 

task (Spearman’s ρ = .327, p = .006). The graph measures were also correlated with each other (ρ 

= .287, p = .017), but not with any other variables most relevant to the research questions. 

There was one participant with some kind of colorblindness in each of the A, B, and C 

groups. Participants in each condition were statistically equivalent except the tendency for C-

group members to be in earlier school years (i.e., more freshmen) than the B group, p = .003. 

Each participant group is named for the graphs that they used during the computer activity, 

though by the end of the study the A and B groups saw all of the A and B graphs, and the C 

group saw both the A and C graphs. 

Usability: Effectiveness, Efficiency, Satisfaction 

 Effectiveness, as measured by accuracy on data extraction questions, varied slightly by 

group and by question. On average between all three graphs, participants in condition A 

performed significantly better than participants in condition B, Z = -3.10, p = .002. However, 

when separated by graph, only performance on questions for graph 1 was significantly different, 

Z = -2.82, p = .005 (see Table 3). Further, participants did not perform consistently on items 

overall or by graph (Cronbach’s α = .296 for all 9 items combined, graph 1 α = .434, graph 2 α = 

negative, graph 3 α = .173). Considered as individual questions, group A performed significantly 

better than B on one question for graph 1 and one question for graph 2 (see Figure 10). Group C 
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performed statistically equally to group A on all individual questions and scales, and better than 

group B on the scale of all 6 applicable data extraction questions combined, Z = 2.81, p = .005. 

 

Table 3 
 
Mean Data Extraction Accuracy (out of 3 possible) 
CONDITION Graph 1 Graph 2 Graphs 1-2 Graph 3 Graphs 1-3 
A Mean 2.70* 2.77 5.47 2.60 8.07 

Std. Dev. .702 .430 .860 .563 1.26 
B Mean 2.20 2.57 4.77 2.43 7.20 

Std. Dev. .805 .504 .858 .504 1.06 
C Mean 2.78 2.89 5.67   

Std. Dev. .441 .333 .500   
Total Mean 2.49 2.70 5.19 2.52 7.38 

Std. Dev. .760 .464 .896 .537 1.34 
Note. The Ccondition did not include graph 3. 
*Indicates significant A/B group difference, p < .05. 

Figure 10. Accuracy by question by condition in proportion of correct answers with 95% 
confidence intervals shown. C condition did not include graph 3. Data is coded by graph 
number (G1) and data extraction question number (DE1). 
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In this study, efficiency was measured with total time spent by each participant on each 

question via the Time to First Mouseclick metric in the Tobii software. Participants voluntarily 

advanced through the questions, so efficiency was highly variable between individuals (see 

Table 4). In general, there were very few statistically significant differences between groups. 

Question-by-question, two questions took participants significantly more or less time by 

condition including the second question for graph 1, F(2, 66) = 10.477, p < .001. Tukey HSD 

post hoc comparisons revealed that participants in the B group spent significantly more time on 

that question (M = 37.9, SD = 24.1) than participants in either the A (M = 17.5, SD = 10.5) or C 

groups (M = 21.4, SD = 7.47). The B group participants also took more time than the A group 

participants on the first question for graph 3, t (36.75) = 2.43, p = .020. When questions are 

compiled into composite scores by graph, groups used statistically equal time aside from the B 

group spending more total time on graph 1, F(2, 66) = 4.21, p = .019 (see Table 4). 

 
Table 4 
 
Mean Time Spent on Questions by Graph by Group (seconds) 
CONDITION Graph 1 Graph 2 Graphs 1-2 Graph 3 Graphs 1-3 
A Mean 74.06 63.63 137.7 79.49 217.2 

Std. Dev. 31.10 24.71 41.22 27.63 54.73 
B Mean 99.10* 61.82 160.9 87.52 248.4 

Std. Dev. 40.97 17.88 46.71 54.01 82.62 
C Mean 75.78 54.06 129.8   

Std. Dev. 22.79 18.86 24.85   
Total Mean 85.17 61.60 146.8 83.51 232.8 

Std. Dev. 36.62 21.16 43.48 42.73 71.25 
Note. The C condition did not include graph 3. 
* Indicates significant A/B group difference, p < .05. 
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Lastly, usability is also characterized by user satisfaction with the product or interface. In 

this study, a combination of satisfaction questions during the computer activity and the ranking 

activities afterward were completed to measure participant satisfaction. These quantitative results 

are supplemented by qualitative data about participants’ perceptions of the graphs and features of 

the graphs. From the computer activity Likert-style satisfaction questions (one per graph), there 

were no significant differences between composite scales or individual graphs (see Table 5). This 

stage of the activity is the only point at which A group members were rating only the A graphs, 

etc. Overall participant satisfaction at this stage was correlated with overall performance 

(effectiveness) (Spearman’s ρ = .249, p = .039), but there was no significant relationship with 

overall time spent (efficiency) on the questions. For graph 1 alone, satisfaction was correlated to 

both effectiveness (ρ = .277, p = .021) and efficiency (ρ = .293, p = .015). Graph 3 satisfaction 

was related to efficiency (ρ = .249, p = .039) but not effectiveness. No such relationships exist 

for graph 2. 

 

In the ranking activity after the eye-tracking retrospection, each participant first 

compared the graphs pairwise for satisfaction (A/B or A/C). At this stage, the redesigned 

Table 5 
 
Computer Activity Satisfaction Ratings of Graphs by Group (4-point Likert) 
CONDITION Graph 1 Graph 2 Graphs 1-2 Graph 3 Graphs 1-3 
A Mean 2.77 3.20 5.97 2.37 8.33 

Std. Dev. .626 .664 .890 .765 .922 
B Mean 2.73 3.10 5.83 2.67 8.50 

Std. Dev. .583 .885 1.12 .758 1.41 
C Mean 3.00 3.00 6.00   

Std. Dev. .866 1.12 1.12   
Total Mean 2.78 3.13 5.91 2.52 8.10 

Std. Dev. .639 .821 1.01 .770 1.43 
Note. The C condition did not include graph 3. No significant differences. 
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versions of graphs 2 and 3 (graph B for groups A and B, graph C for group C) were ranked 

higher for ease of use (satisfaction) by most participants (see Table 6).  

 

Later in the interview, each participant also ranked all 6 graphs (A and B conditions) or 4 

graphs (C condition) that they had been presented with. The results for all-graph ranking are 

shown in Table 7. Out of all A- and B-group participants, graph 2B was ranked significantly 

higher than 2A (Z = 4.37, p <.001) and 3B was ranked higher than 3A (Z = 3.16, p = .002). There 

were no significant differences between the A and B groups, i.e., participants who first saw the A 

graphs did not rank them any higher or lower in the final satisfaction ranking activity than those 

who first saw the B graphs. The C group did not rank either of the graph 1 or graph 2 

significantly differently by design. Because the C group saw only 4 graphs rather than 6, the total 

rank points possible for that group was lower and therefore cannot be compared to the other 

groups. 

In the qualitative data, most codes concerning understanding and satisfaction, though 

emergent, described various features of the graphs, related both to the information itself and 

features of the presentation of the information. Different features were associated with ease or 

difficulty (high or low satisfaction) for different graphs (see Table 8). Because the interview 

format pivoted around the comparison of the graphs, features of each graph were often described 

as being similar or in opposition to the same graph of an alternate design. 

Table 6 
 
Pairwise Satisfaction Ranking of Graphs by Group (Proportion Redesigned Higher) 
CONDITION Graph 1 Ease Graph 2 Ease Graph 3 Ease 

A Proportion B .50 .93 .64 
B Proportion B .45 .80 .73 
C Proportion C .56 .67  

Total Proportion B + C .49 .84 .69 
Note. The C condition did not include graph 3. 
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 The actual data representation was by far the most difficult feature for graph 1 and 

especially graph 1B. Participants were completely unfamiliar with the point estimate and error 

design of graph 1B, and many answered the data extraction questions using the length of the 

error line. According to their feedback, this was likely due to the greater visual salience of the 

error line, association with more common graphs like bar and line graphs, and lack of brackets 

on the ends of the lines to trigger recognition of error bars. Based on this feedback, the major 

adjustments made to create graph 1C included making the point estimates much larger and more 

salient and adding brackets to the end of the error bars. However, the error bars generally were 

unfamiliar, with several participants in the A condition also being confused by them or reading 

them as the primary data. Participants were also confused by the representation of time in the 

bar/point estimate format, as referenced in the example data for graph 1B difficulty in Table 8, 

likely also related to their familiarity with line graphs. 

 Graphs 2A and 2B were rated most highly for satisfaction at all stages of the study and 

very few participants had any difficulty understanding the contents of the graph. Instead, praise 

and criticism were primarily in opposition to the other of the two graphs, with different 

Table 7 
 
Satisfaction Ranking of Graphs by Group (rank points) 
CONDITION 1A 1B 2A 2B 3A 3B 1C 2C 
A Mean 3.55 3.34 3.97 5.00* 2.17 2.97   

Std. Dev. 1.90 1.72 1.18 1.04 1.49 1.48   
B Mean 2.77 2.88 4.04 5.04* 2.42 3.85*   

Std. Dev. 1.42 1.88 1.31 1.04 1.17 1.85   
A+B Mean 3.18 3.13 4.00 5.02* 2.29 3.38*   
 Std. Dev. 1.72 1.80 1.23 1.03 1.34 1.71   
C Mean 2.00  2.56    2.56 2.89 

Std. Dev. 1.12  0.73    1.42 1.17 
Note. The C condition did not include graph 3 and only the C condition included the C graphs. 
Because of this, the C group maximum rank is 4 while A and B maximum rank is 6, so these values 
are not directly comparable. 
* Indicates significant A/B graph difference, p < 0.05 
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participants having different preferences for several features of the graph, including the 

separation of graphs (layout) and extra axis text (amount of information). Many participants had 

difficulties understanding the bottom decadal average bar, mostly due to lack of familiarity, but 

others preferred to use it rather than the high variation of values in the annual graph. 

Table 8 
 
Qualitative results: Satisfaction 

Graph  Prominent Codes Example 

1A 

Ease 

Markers/data representation, 
organization, amount of 
information, units/axes, 

representation of 
uncertainty, complexity 

“1A ends the bars at the middle point… It seems 
like more complete than this, because you have 

these little drop-offs on 1B, where it’s like, ‘what 
about all this data in between 0 degrees to 

positive .5?’” (p104) 

Difficulty 

Markers/data representation, 
organization, representation 
of uncertainty, comparisons 

to line graphs 

“Natural forcings, I didn’t realize that, since there 
wasn’t a color there, that there’s actually 

substance to these things…It went over my head 
that [they] were just brackets, that could be 

possible.” (p073) 

1B 

Ease 
Use of color, organization, 

markers/data representation, 
observed warming, precision 

“1B is a bit simpler in design, but also the color 
coding is super nice. It’s like orange, me, green, 

not me.” (p080) 

Difficulty 

Markers/data representation, 
observed warming, 

organization, amount of 
information, familiarity, 

comparison to line graphs 

“I didn’t understand what these lines meant. 
Where the starting and ending of the changes 
occurred. I only read the temperature, I only 

know how to interpret it, I guess.” (p103) 

2A 

Ease 

Familiarity, trends/values of 
data, organization, amount 

of information, markers/data 
representation 

“It may just be because I’m familiar with line 
graphs the most, but it’s, I think, also just a very 
simple two-axis graph. It’s easier to understand.” 

(p081) 

Difficulty 
Organization, units/axes, 

amount of information, use 
of color 

“2A is a little bit more confusing because the 
graphs are like mashed together. It seems a little 

bit like the line dividing them could be an axis, so 
this could be positive and this could be negative.” 

(p105) 

2B Ease 

Amount of information, 
organization, use of color, 

units/axes, familiarity, 
trends/values of data 

“I think 2B, the yearly average because this is so 
easy to visualize. You look at that and there’s 

clearly a spike. Honestly, we could just do away 
with all these and have 2B. That gets across the 

point.” (p090) 
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2B Difficulty 

Trends/values of data, 
markers/data representation, 

use of color, amount of 
information, precision 

“Probably 2B because it was like scribble-
scrabble. I was trying to figure out, what do I look 

at the most? Which point do I look at, or which 
color do I look at?” (p056) 

3A 

Ease 

Organization, amount of 
information, use of color, 

markers/data representation, 
data salience, precision 

“Seems more straightforward, I guess. Because it 
labels things more clearly. I like how it breaks 

apart the compounds by color… seems easier to 
get all your information instead of having to jump 

around B.” (p102) 

Difficulty 

Amount of information, use 
of color, markers/data 

representation, language, 
organization, precision 

“A lot of words in different colors and numbers. 
You had a lot of small print that you had to read. 

It has a lot of different sections… A lot of 
information, almost too much information in one 

graph to handle.” (p102) 

3B 

Ease 
Amount of information, 

organization, use of color, 
precision, language, key 

“The overall trend in 3B that’s graphed for 
halocarbons is a little bit more easy to understand 

because I don’t have all of the extra shown up 
there. If I do want that information, it’s over here 

on the right for me, which is nice.” (p083) 

Difficulty 

Amount of information, 
organization, language, 

markers/data representation, 
units/axes 

“You have to look more at the little numbers next 
to everything. If I was just looking at 3B I 

wouldn’t pay attention to any of this part because 
it doesn’t look like it has anything to do with the 

graph at all.” (p073) 
 

 Graphs 3A and 3B were described as difficult by many participants. Though the markers 

of 3B were highly similar to 1B, many participants used the numerical data instead of the visual 

representation to answer questions, and therefore did not report difficulty with the data 

representation. Instead, participants were generally overwhelmed and unsure how to handle the 

vast amount of information presented on both graphs and drew little meaning from the language 

used such as “radiative forcing” and various chemical compounds mentioned. The use of color in 

both, primarily graph 3B, helped make a connection to warming and cooling and participants 

were familiar with carbon dioxide and methane, but otherwise it was difficult for participants to 

draw meaning from the data. 
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There were strong relationships between understanding (satisfaction) and the topics of 

risk and credibility. In general, higher understanding was associated with higher risk and 

credibility, because participants felt able to consider these topics only after understanding and 

being able to evaluate the content of the graph. However, some participants also had strong 

associations between risk or credibility and a lack of understanding of the graphs. The emergent 

code for this phenomenon was, “I don’t get it, therefore”. A lack of understanding or complexity 

of the graphs was associated with scientists and credibility overall, described by participant 

p090: 

“…my gut tells me that this one looks more trustworthy, because I don’t know what it’s 

saying…B looks more like scientists would make or use it? You obviously expect them 

to know what they’re doing, and I would expect not to know what they’re doing because 

I don’t have a background in science… If someone explained brain surgery to me, I 

would expect not to know at all what they’re talking about, but I would expect it to be 

credible because they know what they’re talking about if it’s a doctor that is telling me...” 

This participant describes a relationship between author expertise and the product they 

create, and another participant, p074, describes a potential cause when they talked about 

scientists as communicators: 

“If I look at it and don’t understand it, just because the information in it is probably going 

to be more credible, or if scientists would just write an article or themselves, as scientists, 

they wouldn’t think about making it simple for non-scientists to read it… They’re 

thinking about, ‘this is easy for me, because I know what this is, I know what it’s 

saying.’” 
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Risk assessment of climate change, though more strongly related to high understanding 

of the graphs, was also important for participants’ perceptions of difficult graphs, for various 

reasons. Participant p089 describes the difficulty itself as worrying, as well as specific features: 

“The amount of information and the difficulty to understand stresses me out. Also, the 

fact that they use radiation and emissions more than just warming… If it’s more difficult 

to understand, I think I just assumed it’d be bad. Whatever they’re talking about is so 

hard, I can’t even read it, and it must be bad because these bars are long. Then with B I 

can read it and I can tell, ok, I know exactly how much CO2 radiation there is, or how 

much is emitted. It worries me less that I can understand it.” 

More often, however, greater understanding was related to higher risk, as the participants 

could draw meaning from the graphs and connect it to global warming, the likely reason that 

graphs 2A and 2B were rated most worrisome on average. 

Attention 

On average, the eye-tracker captured 92.0% of participants’ weighted gaze samples (SD = 

6.18%) and there was no significant difference between groups. Visual attention to the graphs is 

measured by the eye-tracker both in terms of fixation count within an AOI and total duration of 

those fixations. Typically, and for this study, these measures are highly correlated (see Figure 

11). Because they are highly correlated, this study uses total fixation duration as the primary 

attention metric for subsequent analyses. 

Figures 12, 13, and 14 show the differences between the A and B condition total fixation 

duration (in seconds) for each AOI with a one-to-one reference line. In each of these graphs, 

each data point represents an AOI from one of the data extraction questions posed to participants. 

If a point is above the one-to-one reference line, it means that AOI has a higher B group 



 34 

duration, and therefore that participants in the B condition extraction questions asked in the 

activity spent more time on average viewing that AOI. The Y-distance to the reference line, then, 

would show how many seconds longer the B group viewed the AOI. Points below the line were 

more attended to by the A group by the X-distance more seconds. 

As shown in Figures 12, 13, and 14, there were several statistically significant differences 

between groups for view time in specific AOIs. During the data extraction questions for graph 1 

(Figure 12), the B group paid significantly more attention to the possible answers to questions 1 

and 2, p = .019, p < .001, and the data, p < .001, x-axis, p < .001, and correct answer, p = .017, 

AOI for question 2 (all Tukey HSD post hoc for significant ANOVA). The B group also spent 

longer in one of these same AOIs than the C group (not shown graphically), specifically the 

question 2 data, p = .028. Both the A, p < .001, and B group, p = .003, spent less time viewing 

the question 3 correct answer AOI than the C group. View times for graph 2 were more equal 

(Figure 13) with only a few significant A/B contrasts, specifically in time spent viewing the 

question 1 y-axis (A longer, p = .010) and the question 2 annual data (B longer, p = .028). 

However, the C condition paid significantly more attention to the decadal data during questions 1 

and 3 than either the A, p = .005, p < .001, or B conditions, p = .018, p = .013. When answering 

the data extraction questions for graph 3 (Figure 14), the B group paid more attention to the 

correct answer and y-axis to question 1, p = .002, p = .004, and the title, y-axis, and question text 

for question 2, p < .001, p = .011, p = .018. The A group paid more attention to both the x-axis 

for question 2, p = .004, and the data for question 3, p < .001. 
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Figure 11. Mean fixation count and total fixation duration for each AOI by condition. 

Figure 12. Comparison of A and B fixation duration by AOI type for graph 1 questions 
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Figure 13. Comparison of A and B fixation duration by AOI type for graph 2 questions 

Figure 14. Comparison of A and B fixation duration by AOI type for graph 3 questions 
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Overall, when answering data extraction questions for graph 1, the group using the B 

graphs spent significantly more time than group A on the data, p = .038, the x-axis, p = .001, and 

the answers, p = .007. On graph 2, groups A and B were equivalent, but B spent longer looking 

at the potential answers than the group viewing the C graphs, p = .028. During the questions for 

graph 3, group B paid more attention to the y-axis on graph 3B than the A group did on graph 

3A, p = .016. The B group also paid more attention to the AOI drawn around the data concerning 

the correct answers for the graph 3 data extraction questions, p = .011, however, the correct 

answer AOIs are extremely irregular by question and by graph so any differences should be 

interpreted with caution.  

As reported above, graph 1, especially question 2 of graph 1, had the greatest group 

discrepancies in view time, both overall and for specific AOIs. Figures 15 and 16 show the A 

and B group heat maps for that question, respectively. In graph 1A, attention was focused mostly 

on the question-relevant point estimate and the lower end of the error bar, as well as the 

corresponding values on the lower x-axis. Those same features are the most-viewed areas of 

graph 1B as well, however, because there was a significantly longer total view time, the colors of 

the heatmap are weighted to represent longer durations (see figure keys, upper left corners). 

These observations align with the measured significant difference in attention to the data, x-axis, 

and possible answers noted above. In the Figure 16 of heatmap of Graph 1B, there is also greater 

apparent attention paid to irrelevant data (observed warming and combined anthropogenic), the 

y-axis labels, and multiple answer choices. 
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Figure 16. Heatmap (absolute duration, seconds) of data extraction question 2 for Graph 1B 

Figure 15. Heatmap (absolute duration, seconds) of data extraction question 2 for Graph 1A 
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As shown in Table 9, there were also several significant differences between groups’ first 

fixations in AOIs. On average, the A group fixated more quickly on the data of graph 1, p = .010, 

and the data, p < .001, and title, p = .014, of graph 3. The B group fixated on the x-axes, p < 

.001, and title, p = .019, of graph 2. However, the mean TtFF is not calculated for those who did 

not fixate in the AOI at all, so it is important to note how many users fixated in the AOI during 

the questions at all. Specifically, for each AOI with significant TtFF differences, an equal 

number or more B group participants fixated in the AOI for more questions (higher counts). 

 

 Time to first fixation is an especially relevant metric for participants’ first exposures to 

each graph. As a reminder, each graph was first shown to each participant on its own, with no 

task or questions, for an unlimited time until the participant advanced the activity. There were no 

TtFF differences for graph 1, but when shown graph 2, the A group fixated more quickly on both 

the annual, p = .029, and decadal data, p = .016, and the B group fixated more quickly on the y-

axes, p = .003. When viewing graph 3, the A group viewed the atmospheric driver data more 

Table 9 
 
Mean Time to First Fixation (seconds) and Use of AOIs (count), Data Extraction Questions 

 Graph 1 Graph 2 Graph 3 
 Mean Count Mean Count Mean Count 

Graph A Data 1.21* 89 .482 90 .519* 90 
Graph B Data 2.19 90 .576 90 1.32 90 

Graph A X-axis 9.09 82 6.51 61 12.6 72 
Graph B X-axis 8.13 87 4.20* 90 10.3 66 
Graph A Y-axis 

N/A 8.61 62 5.95 81 
Graph B Y-axis 7.28 67 5.01 88 

Graph A Title 2.08 77 6.65 33 7.06* 39 
Graph B Title 2.98 78 2.63* 38 12.1 58 

Note. Maximum count of 90 (30 participants across 3 data extraction questions). Count of less than 90 
indicates at least one user did not fixate within the AOI during at least one question. 
* Indicates significant A/B difference, p < .05 
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quickly than the B group (p < .001). Participants are most likely to attend to more salient features 

first, including larger objects (Harold et al., 2016), and the graph 2 differences all corresponded 

to notable differences in AOI size (33-43%). However, the graph 3 atmospheric driver AOIs 

were of approximately equal sizes and represent the only major data location difference among 

the graphs. 

Credibility 

Participant perceptions of credibility of climate scientists were measured before and 

immediately after the computer activity with an 18-item 7-point Likert-style instrument   

(McCroskey & Teven, 1999). This study affirmed the reliability of the instrument overall (pre-

survey α = .934, post-survey α = .928), as well as the three sub-factors (competence, pre α = 

Figure 17. Boxplot of participant credibility ratings of climate scientists as measured by an 
instrument by McCroskey and Teven (1999) on the pre- and post-survey by condition. 
Maximum possible rating is 126.  
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.913, post α = .813; goodwill, pre α = .881, post α = .877; and trust, pre α = .916, post α = .922). 

In general, the participants had a significantly higher rating of the credibility of climate scientists 

after completing the activity than before, F(1, 66)= 39.31, p < .001. Effect size of this change 

varied by condition (A group Cohen’s d = .58, B group d = .93, C group d = .87), however there 

was no significant interaction from condition, F(2, 66)= 1.95, p = .150 (see Figure 17). The trust 

sub-factor of the instrument had a significant interaction from group membership, F(2,66)= 3.75, 

p = .029, however, no Tukey HSD posthoc comparisons were significant. 

Participant perceptions of graph credibility were measured at several points throughout 

the experiment. During the initial computer activity, there were no significant differences 

between trust ratings of A/B/C equivalent graphs (see table 10). Participants’ total trust rating of 

the graphs during the activity were significantly correlated with both their perception of 

satisfaction with the graphs, ρ = .575, p < .001, and their performance on the tasks, ρ = .321, p = 

.007. During the interview portion of the study, differences in judgements arose, with results 

showing that between 60% and 94% of participants in each group rated the redesigned graphs as 

more credible (see Table 11). 

Table 10 
 
Computer Activity Credibility Ratings of Graphs by Group (4-point Likert) 
CONDITION Graph 1 Graph 2 Graphs 1-2 Graph 3 Graphs 1-3 
A Mean 2.73 3.10 5.83 3.03 8.87 

Std. Dev. .583 .481 .913 .615 1.38 
B Mean 2.53 3.13 5.67 3.03 8.70 

Std. Dev. .629 .434 .844 .556 1.18 
C Mean 2.78 3.22 6.00   
 Std. Dev. .441 .441 .707   
Total Mean 2.65 3.13 5.78 3.03 8.42 
 Std. Dev. .590 .451 .855 .581 1.54 
Note. The C condition did not include graph 3. No significant A/B/C differences. 



 42 

 

 

In the whole-group ranking activity, summarized in Table 12, the A group participants 

did not rank any of the graphs significantly differently than the B group. Graphs 1B, 2B, and 3B 

were all ranked significantly higher than the corresponding A versions, Z = 2.38, p = .017; Z = 

4.99, p < .001; Z = 4.811, p < .001. Graphs 2B and 3B were ranked higher in both the A and B 

groups separately as well, but within only the A and B groups both designs of graph 1 were 

ranked statistically equally. In group C, graph 1C was ranked higher than 1A, Z = 2.11, p = .034. 

Within the A and B groups, the ranks of 2A were also significantly higher than 1B, Z = 2.60, p = 

.009, 3A higher than 2A, Z = 2.28, p = .022, and 3B higher than 2B, Z = 3.22, p = .001. 

Table 11 
 
Pairwise Credibility Ranking of Graphs by Group (Proportion Redesigned Higher) 
CONDITION Graph 1 Graph 2 Graph 3 

A Proportion B .63 .86 .93 
B Proportion B .61 .87 .79 
C Proportion C .94 .78  

Total Proportion B + C .66 .85 .86 
Note. The C condition did not include graph 3. 

Table 12 
 
Credibility Ranking Results of Graphs by Group (rank points) 
CONDITION 1A 1B 2A 2B 3A 3B 1C 2C 
A Mean 1.72 2.48 2.97 4.52* 3.72 5.59*   

Std. Dev. .922 1.38 1.30 .949 1.28 .946   
B Mean 1.65 2.15 3.33 4.83* 3.81 5.23*   

Std. Dev. .977 1.05 1.43 .761 1.20 1.24   
A+B Mean 1.69 2.33* 3.14 4.66* 3.76 5.42*   
 Std. Dev. .940 1.23 1.36 .872 1.23 1.10   
C Mean 1.44  2.33    3.00* 3.00 

Std. Dev. 1.01  1.12    .866 .667 
Note. The C condition did not include graph 3 and only the C condition included the C graphs. Because 
of this, the C group maximum rank is 4 while A and B maximum rank is 6, so these values are not 
directly comparable. 
* Indicates significantly A/B/C difference, p < .05  
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Therefore, there is a significant difference between every graph pair in order of mean and median 

ranks, so these participants seemed to agree on the trustworthiness order of these graphs, from 

1A, 1B, 2A, 3A, 2B, finally to 3B.  

 Qualitative results indicate a variety of relationships between graph design and 

perceptions of credibility of graphs and their creators. Table 13 describes the most notable codes 

from participant descriptions of credibility as it pertains to design of particular graphs and 

communication of information more generally. Codes and codes commonly associated with them 

by participants are listed roughly in order of prominence in the data.  

 During the retrospective eye-tracking interview, when discussion of credibility first came 

up, many to most of the participants expressed frustration at the lack of a source or citation by 

which to judge credibility. However, for subsequent questions and sections, the vast majority of 

participants instead expressed their judgements of credibility based on aesthetics and the 

communication style and success of the graphs, though with occasional discomfort or lack of 

confidence in those judgements. Generally, aesthetic judgements of the graphs concerned 

associations with intellectual authorities such as scientists, teachers, professors, or other 

academic materials such as textbooks. These judgements didn’t usually correspond to any 

particular traits of those authorities that would deem them trustworthy, but some participants 

referenced potential authors as being well-informed (“know what they’re talking about”) or the 

graph being informed by more quality or plentiful data. 

Many participants also cited the implied effort in creating the graphs as a sign of 

trustworthiness. In graphs, this was evidenced to participants by the presence of more thorough 

axis labeling, color-coding, and other features that were typically present in the B but not A 

graphs and were therefore salient in comparisons. Some participants relayed that increased effort 
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in graph design was indicative of credibility because of the author’s likely passion for the 

subject, and therefore likely high education in that field. More often, though, effort to create the 

graph was related to the author’s desire and intent to communicate the subject effectively and 

was therefore tied to goodwill.  

 
Table 13 
 
Qualitative results: Credibility 

Code (*emergent) Example Associated codes 

*Official, professional, 
fancy, etc.: participants use 
descriptors that imply an 

association with authority or 
advanced status, usually 

based on aesthetics 

“…but this one does look more trustworthy 
because it’s more official… It’s what we’re 
all taught, to trust your, I don’t know, the 

people in charge of you, the official people. 
You trust them.” (p094) “Just some more 

complex graph would make it more credible. 
It doesn’t make sense, but like, the more 

complicated it looks, the more that I think it 
has a fancy purpose, where I guess it’s made 

by someone high up.” (p070) 

Aesthetics, 
organization, 

understanding, 
amount of 

information, 
science 

Competence of author: 
referring to competence 
factor of McCroskey and 
Teven (1999); referring to 

author’s education, 
experience, intelligence, etc. 

“It’s got the most, both of the information of 
course, it’s the most thorough, it’s the most 

well-presented, and it’s the most clear. I 
think the mark of expertise is to get across 

what you are talking about to someone who 
knows nothing about what you are talking 
about, and I think this accomplishes it very 

nicely.” (p076) 

Amount of 
information, 

understanding, 
science, research, 

goodwill, took 
time/effort 

*Took time/effort: 
References to an author 

putting more time, effort, or 
thought into creating a graph, 
not necessarily the research 

behind it 

“Like I said, this looks like they took more 
time to prepare, have more information on 
it…If they took more time to do it and they 

obviously researched into it. They didn’t just 
find a graph, put it on. They took the time to 

look into it and make sure that it told 
everything they wanted to tell.” (p103) 

Amount of 
information, 

understanding, 
organization, 

goodwill, use of 
color 

Goodwill/intentionality: 
inspired by the goodwill 
factor of McCroskey and 

Teven (1999); references to 
the caring or sensitivity of 
the author, intentionality in 

communication 

“It looks like they just put more effort into it 
because they wanted to actually do what they 

created the graph to do. In order for you to 
understand it better… if I knew for a fact that 
everything I’m putting on this graph is right, 
I would want it to be…very clear and make 

sure that everyone looking at it could 
understand exactly what it is.” (p073) 

Understanding, 
amount of 

information, took 
time/effort, 

organization, 
competence 
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*Academia/tests/textbooks: 
references to graphs or 
similarities to graphs in 

academic settings, including 
standardized tests 

“Obviously, anything presented within a 
classroom by a professor, I’m going to 
believe. If I do trust something initially, 
there’s no need to make it seem more 

trustworthy as long as the information is easy 
to read.” (p099) 

Aesthetics, 
understanding, 

familiarity, 
science, prior 
knowledge, 
organization 

*Anyone/child/I could make 
this: verbatim or other 
references to a graph 

potentially being made by a 
non-professional, references 

to school or children 

“The reason 1A is last is because the colors 
make it look more childish. Even though the 
bigger font might make it easier to read, it 
makes it also more childish, which I would 

find less credible.” (p086) 

Use of color, 
complexity, 
aesthetics, 

organization, 
amount of 

information 
*Research amount or quality: 

explicit comments that a 
graph must have been 

founded on more or better 
research or data 

“I guess if you have more data, you’re going 
to think it’s more trustworthy because it has 
things to back it up. It might not be actual 

data but it’s more information than the other 
one had.” (p095)  

Amount of 
information, 
competence, 

took time/effort, 
precision 

*Science: related to 
perceptions of science as an 

institution, scientists as a 
type of person, scientific 

traits or appearances 

“Trustworthy? Probably 1A because it looks 
like a scientist made it… This sounds bad, 
but…It’s not as appealing and sometimes I 
see scientific papers or graphs and it’s like, 
‘Oh, that’s not very appealing, I really don’t 

want to look at that’.” (p080) 

Aesthetics, 
academia, 
official, 

competence, 
amount of 

information 
Honesty: drawn from the 
trustworthiness factor of 
McCroskey and Teven 

(1999); having to do with 
overall honesty and bias in 

graphs 

“I feel like if you are not able to present your 
argument or your evidence in a way that is 

easy for someone else to understand, it 
makes you wonder, like, ‘are you trying to 

dupe me?’” (p090) 

Amount of 
information, 

understanding, 
organization, 

precision, use of 
color 

   
 In comparing individual graphs, there were not major differences in which factors were 

important for assessing credibility (see Table 14). Generally, the amount of information, both 

data and context, was recurrent as an important criterion for participants to judge credibility. 

Amount of information was applied as a single code across data and contextual information 

because participants generally did not or could not distinguish between the two. For example, 

both graphs 1A and 1B were often judged untrustworthy because of their simplicity and scarce 

data, but graph 2B was often ranked above 2A because of the additional contextual data such as 

the additional axis labels and zero Y-axis intercept. For graphs 3A and 3B, participants were 
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generally overwhelmed by the plentiful data, though amount of contextual information such as 

the full names of chemical compounds on 3B were sometimes important. There was the greatest 

divergence of judgement of credibility between and concerning graphs 3A and 3B, often 

manifesting as dissonance between the amount of information presented (associated with high 

credibility) and the difficulty to understand the information in either or both (associated with low 

credibility). 

Table 14 
 
Qualitative results by graph: Credibility 
Graph Prominent Codes Example 

1A 
Aesthetics, understanding, 
anyone/child/I could make 

this, use of color, complexity 

“1A is, I guess, childish. I don’t know. It’s very simple. 
Although I do trust it, maybe not as much as if it was 

more professional-looking.” (p099)  

1B 

Understanding, aesthetics, 
organization, 

official/professional, amount 
of information, complexity 

“Then 1B, I think is actually more credible... Again, since 
it’s more complicated to me it seems like it’s a higher 
level of knowledge than the one I have, which seems 

more credible.” (p084) 

2A 

Amount of information, 
understanding, organization, 

honesty, anyone/child/I 
could make this, aesthetics 

“Because this one seems like something I would draw if I 
were trying to draw a graph really quickly and get out of 
the lab. It’s not bad. It’s got all the information there in a 
more-or-less understandable way. It’s just, there’s extra 

information that’s not really talked about.” (p083) 

2B 

Amount of information, 
understanding, took 
time/effort, research, 
honesty, organization 

“2B because it’s easy to understand. The deal with 
trustworthy is, if it’s easy to understand, it’s not trying to 

hide anything.” (p067) 

3A 

Amount of information, use 
of color, understanding, 

aesthetics, took time/effort, 
competence, goodwill 

“It looks more accurate-looking because it’s numbers. It’s 
not trying, not to help you out but it’s raw numbers, the 

raw facts, and raw information without even that 
description, per se.” (p056) 

3B 

Amount of information, 
understanding, organization, 

official/professional, 
goodwill, aesthetics, 

academia 

“Whoever made 3B really took into consideration who 
would be looking at the graphs. There would probably be 
people who really don’t read graphs and who can easily 
find the information they need just looking at a table.” 

(p061) 
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Risk Perception 

 Participants’ overall risk perception of climate change was measured in the pre- and post-

surveys using several items from Leiserowitz et al. (2019) and frequently used by those authors. 

In our study, these items had scale reliabilities of α = .785 (pre-survey) and α = .844 (post-

survey). Participation in the activity significantly increased participant risk perception, within-

subjects F = 36.0, p < .001. There was no significant effect from group membership, F = 1.206, p 

= .306, and the effect sizes for the A, B, and C groups were d = .66, .72, and 1.22, respectively 

(see Figure 18). Participation in the activity also led to significantly higher perceptions of climate 

scientist consensus around climate change on both continuous and ordinal items, F(1,66)= 9.20, 

Figure 18. Boxplot of participant perceptions of risk from climate change as measured by 
items from Leiserowitz et al. (2019) on pre-survey and post-survey. 
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p = .003, and Z = 2.66, p = .008. For the continuous measure, group effect sizes were d = .27 (A 

group), d = .41 (B group), and d = 1.2 (C group). 

Participants only compared graphs directly for risk in the final ranking activity (phrased 

as, ‘which graphs make you the most to least worried about climate change?’) and those results 

are shown in Table 15. Unlike satisfaction and credibility, participants did rank some graphs 

differently depending on their group membership. Specifically, group A ranked graph 1A higher 

than group B did, Z = 2.02, p = .043, and group B ranked graph 3B higher than group A, Z = 

2.39, p = .017. In the A group, the B group, and both combined, graph 2B was ranked higher 

than 2A, Z = 3.98, p < .001; Z = 3.97, p < .001; Z = 5.60, p < .001. However, there were no other 

significant differences by design. 

 

 Participant discussions of risk assessment did not inspire separate emergent codes. 

Participants sometimes pinpointed graph features in reference to risk assessment, but generally, 

risk was associated only with rising temperatures and occasionally the human causes of it. 

Table 15 
 
Risk Ranking Results of Graphs by Group (rank points) 
CONDITION 1A 1B 2A 2B 3A 3B 1C 2C 
A Mean 3.10 2.66 4.21 5.17* 3.19 2.67   

Std. Dev. 1.42 1.10 1.34 1.28 1.75 1.78   
B Mean 2.35 2.46 4.23 5.23* 3.02 3.67   

Std. Dev. 1.38 1.41 1.23 1.27 1.60 1.38   
A+B Mean 2.75 2.56 4.22 5.20* 3.11 3.15   
 Std. Dev. 1.44 1.25 1.28 1.26 1.67 1.67   
C Mean 2.11  2.28    2.67 2.94 

Std. Dev. 1.27  1.03    1.12 1.07 
Note. The C condition did not include graph 3 and only the C condition included the C graphs. Because 
of this, the C group maximum rank is 4 while A and B maximum rank is 6, so these values are not 
directly comparable. 
* Indicates significant A/B difference, p < .05 
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Therefore, risk assessment was primarily related to the level of understanding of the content of 

the graphs, i.e. in what way each graph communicated climate change to the participant, if at all. 

Though there were some important exceptions as discussed earlier, greater understanding was 

generally associated with greater risk perception. Specifically, graphs 2A and 2B were ranked 

the highest, and 2B higher than 2A, which is related to high understanding of these graphs. 

Participants expressed this in terms of the content as well, often relaying that graph 2 most 

clearly expressed global warming. This is likely in part also because graph 2A and 2B showed 

warming itself, rather than causes and forcings, which the participants did not relate to worry. 

Participants also often attributed worry about graph 2 to the relatively long time span shown, 

which gave them more confidence in the reality of the trend. However, this may be at least a 

partial effect of their relative discomfort with non-line-graphs, since graph 3B was explicit that it 

technically covered a longer time period.  

 Low understanding and perceived simplicity of graph 1 was often referred to while 

explaining risk perceptions. Even for those participants who could understand the values of the 

graph, less worrisome meaning was drawn from them about the phenomena of global warming, 

again primarily because participants were not concerned as much by the causes of the warming. 

For graph 3, understanding and misunderstanding were more polarizing in the topic of worry. 

Some participants expressed that the complicated content and design of both 3A and 3B could be 

worrisome (see Table 16). 
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Table 16 
 
Qualitative Results: Risk 
Graph Prominent Codes Example 

1A 

Understanding, data 
salience/focus, trends/values of 

data, units/axes, time, use of 
color  

“1A is the one that I’ve learned the most because you 
can see the natural forcings have almost no effect… 

Humans have the greatest effect. It just puts it in 
perspective, I guess.” (p054)  

1B 
Understanding, trends/values of 

data, amount of information, 
units/axes, aesthetics 

“It doesn’t make me worry. If it gave me lines that 
went up, increasing or something, I would think, ‘Ok, 
maybe this isn’t good,’ but they’re straight lines, so 

it’d be staying the same.” (p061) 

2A Trends/values of data, time, 
understanding, prior knowledge 

“These two right here. These probably paint the 
clearest picture to me and it’s not the prettiest of 
pictures. It tells us flat out this world is getting 

warmer. Things are melting. It’s getting more tropical, 
which is not exactly a good thing.” (p076) 

2B Trends/values of data, time, 
understanding, prior knowledge 

“I put 2B as the most because it starts at 1850 so it has 
a lot of history. It goes into showing to almost modern 

times. It shows the trend. Trends can typically be 
pretty accurate.” (p081) 

3A 

Understanding, amount of 
information, data salience, 

language, trends/values of data, 
use of color 

“The reason why I chose 3A to be more worried about 
is because I do not know anything on that graph. I feel 

like if I did not know it, then it has to be something 
serious that only climate scientists knew. They were 

trying to tell us something.” (p079) 

3B 
Understanding, amount of 

information, trends/values of 
data, language, data salience 

“Probably 3B. Maybe that’s just because there’s so 
many different gases that they have included… it’s 

hard to be able to see how that changes the 
temperature, but it still makes it look scary, just 

because they use fancy chemicals.” (p082) 
 

DISCUSSION 

This study was explicitly targeting non-expert young adults who were previously 

unconcerned with climate change. Participating in the computer activity and interacting with 

climate change information significantly increased participant risk perception, scientist 

consensus estimate, and perception of credibility of climate scientists. The A group achieved 

higher accuracy overall, but there was variation in performance on individual questions. Because 
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performance on each question did not co-vary, and because they were designed to test different 

features, considering the questions separately, and especially those two with a disparity in 

performance, may be valuable. 

 The computer activity questions indicated no satisfaction differences between graphs or 

conditions, however graphs 2B and 3B were consistently ranked higher than their A counterparts 

by both participant groups in the interview stage of the study. This rating discrepancy could be 

related to any of a myriad of factors, however it is reasonable that participant perceptions of each 

graph would have shifted over the course of spending 20-40 minutes engaging with the graphs 

more thoughtfully and thoroughly during the interview portion as opposed to the quick and task-

based computer activity. For example, one of the participants’ primary complaints about graph 

1B was unfamiliarity, which would likely shift after engaging with the graph further. In 

interviews, higher satisfaction with 2B and 3B were attributed to similar features on both, 

namely the temperature color-coding, the separation of graph sections, and additional text 

defining abbreviations, adding context to axes, etc. It is encouraging that these differences are 

those explicitly encouraged by the guidelines set forth in Harold et al. (2016), suggesting that the 

guidelines may lead to improved user satisfaction. 

 Graph 2 and especially 2B were rated highest in satisfaction overall which coincided with 

the greatest mean accuracy and efficiency in all groups. The participants were extremely familiar 

and comfortable with line graphs, and the additional contextual information on graph 2B assisted 

with difficulties in comprehending temperature anomalies. Many participants had trouble with 

graph 1 and graph 3. In particular, participants were overwhelmed by graph 3 and confused by 

unfamiliar chemical compounds and units, but comfortable with the representation of the data, 

especially because the graphs provide numbers in addition to visual representation. In contrast, 
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the unfamiliar data representation, primarily of uncertainty, of graph 1 (especially 1B) was very 

challenging for many participants.  

Considering each of these metrics in combination lends insight into the experience of 

these participants in engaging with a graph. For example, one of the two questions on which the 

A group performed significantly better than the B group, the second question for graph 1, was 

also one of the two questions which the B group took significantly more time to answer. 

Additionally, graph-by-graph, B took more time to answer the questions for graph 1 overall, the 

same graph for which there was a significant performance difference. Further, for the graph 1 

questions overall and question 2 specifically, the B group paid significantly more attention to the 

data and x-axis. The qualitative data suggests that the greatest challenge of graph 1B was 

determining the values of the data, a task which would require information from both the data 

and x-axis, and particularly relevant for the second question of this graph. Qualitative data 

provides crucial context to eye-tracking data, especially because longer view times can 

correspond with greater difficulty understanding material or greater interest in the information 

(Bergstrom & Schall, 2014). 

However, the insight generated by an evaluation such as this one is of no use without 

application. After the primary data collection stage of this study, a new graph C design was 

created for graphs 1 and 2 based on the feedback of the first 60 participants. The 9 participants 

using the newest graphs had the highest mean data extraction score, most data extraction 

questions with perfect scores, lowest mean time spent on questions, highest computer activity 

credibility ratings, and the highest pre/post change in both risk index and climate scientist 

credibility. The ranking results were not directly comparable to the A and B conditions, but 

within the C condition, the C graphs had higher mean rankings for satisfaction, credibility, and 
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perceived risk. Unfortunately, obtaining statistical significance is difficult due to the small 

sample size. 

 Satisfaction was related to participant perceptions of credibility and climate change risk 

as well, so considering participants’ varying experience with each graph is important. For 

example, like satisfaction, no differences in credibility were detected between graphs during the 

computer activity but strong differences arose during the ranking activity. This could be relevant 

to participant experiences using the graphs or could be an artifact arising from limitations of this 

study discussed below. Nonetheless, as indicated by the ranking activities and associated 

qualitative data, the graphs redesigned with consideration for cognitive science research as 

synthesized by Harold et al. (2016) were perceived as more credible and satisfactory by the 

participants of this study. Previous research suggested that complexity and difficulty may have 

strong ties to perception of higher credibility (McMahon et al., 2016); however, this was not the 

case with the participants of this study, and instead, greater usability enhanced perceptions of 

credibility. The C condition findings suggest that designing graphs with regard for both cognitive 

science and user testing may lead to even greater gains in both user perceptions and performance.  
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CONCLUSION 

 This study was conducted to examine the role of design in influencing non-expert 

undergraduates use and perceptions of climate change graphs. The framework used to make this 

comparison was the application of guidelines published by Harold et al. (2016) which were 

created through the synthesis of decades of research from the fields of cognitive science, 

computer science, and climate change communication research. This study is unique in applying 

usability evaluation to climate change graphs as well as in adding measurements of affect such as 

perception of credibility and risk. The strong influence of culture and worldview on climate 

change beliefs (Kahan et al. 2011) necessitates this integration. 

While this study did not investigate any potential influences of culture, the study was 

conducted in a state with lower-than-national-average belief and worry concerning 

anthropogenic climate change (Howe et al., 2015) and the selection of participants with lower 

risk perception was intentional to include those whom climate change communicators may 

target. Additionally, this low initial measurement left ample room for change and variation in the 

experiment. Not every individual became more worried about climate change as a result of 

completing this study, but mean risk assessment did increase. This is impressive because the 

subject matter of the particular graphs (temperature change and forcings) are not in-and-of-

themselves risky; a study involving graphs showing future projections or costs of climate change 

may be far more impactful on participants. It is encouraging that simply exposing individuals to 

information about climate change, which the participants said they very rarely hear about, 

impacted their perceptions and hopefully likelihood to take action on the topic. 

Graphs are used to communicate complex information because visuals are thought to help 

viewers by allowing the “offloading of cognitive processes onto perceptual processes” (Hegarty, 
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2011, p. 451). Previous studies have shown that differences in graph design can significantly 

impact comprehension (Carpenter & Shah, 1998; Hegarty, 2011; Renshaw et al., 2003; Shah & 

Carpenter, 1995). These studies vary from simple, controlled changes, to entirely different 

designs such as the present study, and have shown that creating visualizations for the best 

outcomes does not always align with our intuitions about design. Further, user-testing can be 

implemented to inform and improve graph design, leading to higher performance, as suggested 

by the C group results in this study and shown in other research (Grant & Spivey, 2003). 

Several of the guidelines for graph accessibility, as outlined by Harold et al., seemed to 

have a positive impact on participant understanding. The redesigned graphs 2B and 3B were 

praised by users for many of the features encouraged by the guidelines, such as color-coding 

axes and temperature values. Though participants using these graphs spent more time in many 

AOIs, on some questions they spent significantly less time viewing axis AOIs, potentially 

implying that the color-coding helped participants encode and remember the meaning. 2B and 

3B also had significantly more text, which can improve novice task accuracy (Gegenfurtner, 

Lehtinen, & Saljo, 2011). On these same questions, the B-group participants paid more attention 

to the data. This may have been caused by unfamiliarity with the data representation, leading to 

increased cognitive load and more time required to make sense of the data. However, it should 

not be assumed that longer view times always indicate difficulty with a task – comparatively 

higher attention, especially to important features, has been observed in high and expert 

performers in a number of graph studies (Atkins & McNeal, 2018; Gegenfurtner et al., 2011; Ho 

et al., 2014; Okan, 2016).  

Additionally, the re-designed graphs were rated higher than the originals for participant 

perceptions of credibility and worry concerning climate change. Participants were in high 
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agreement surrounding credibility perception and most participants associated credibility with 

high usability. Since the SPMs are made for public consumption, this is a positive finding, 

suggesting that credibility does not have to be sacrificed for usability. Participant perceptions of 

risk concerning climate change, and how the graphs affect perceptions of risk, diverged. 

Judgements of risk were the only ranking results that significantly varied by participant 

condition, i.e. which graphs they saw first during the computer activity, specifically for graphs 

1A and 3B. Qualitative data did not provide answers to why this discrepancy may have occurred 

but future work may explore such a question. 

Eye-tracking was crucial in informing the evaluation and redesign of the graphs. The 

most distinct example of the value of this tool was in the use of graph 2. While participants 

performed statistically equally on graph 2 overall, there was a discrepancy in performance for 

question 2 of that graph. Eye-tracking heat maps revealed that those who answered correctly in 

the B condition paid most of their visual attention to the more-relevant decadal anomaly graph 

whereas those who answered incorrectly looked only at the annual graph. This finding informed 

the layout change for graph 2C, namely, moving the two graphs back closer together to 

encourage use of both. In the C condition, only one of nine answered incorrectly, the lowest 

proportion of any condition. 

The overall results of the C condition are a testament to the power of testing 

communication products with the intended audience. In this study, redesigning the graphs based 

on generalized cognitive science research alone shifted participant affect while redesigning 

graphs based on both research and user testing (as suggested by the Harold et al. guidelines) may 

have both shifted affect and improved performance. Future work will include more C condition 

data collection to reach appropriate sample sizes for statistical comparison.  
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From these results, the authors recommend several practices for more effective design 

and evaluation of climate change graphs: 

• Among the various alterations made to the graphs, color-coding axes was the 

most user-praised change. Contextual scaffolding such as “warmer than average” 

text was usually highly praised, but this addition also risks adding visual clutter. 

• Use of color was very important to participants both for understanding and 

judgements of credibility. Minimal and meaningful use of color (i.e., color-coding 

variables to show values or relationships) is perceived as highly credible. 

• Use graphics formats that are familiar to your audience. Participants were 

confused by even minor changes to common graph formats, e.g., error bars on bar 

graph 1A. If a less familiar format is used, include a key, such as on graph 3B. 

The key was perceived as helpful and also more credible.  

• Use eye-tracking with retrospective interview, which adds an excellent qualitative 

explanation to eye-tracking data without added distraction during the activity. 

Additionally, participants may be more prepared to share descriptions after seeing 

other graphs and gaining context for them. 

• Pilot test early and thoroughly. Participant comprehension errors that appeared in 

the first several participants typically persisted, especially because the population 

being sampled was relatively homogenous. 

• Design iteratively based on input from the target population of the communication 

tool. Different audiences may have very different content knowledge and graph 

experience, as well as very different associations with culturally-bound 

perceptions such as risk and credibility. The changes made to the graphs in this 



 58 

study based on user feedback were seemingly more impactful than those based on 

research alone. 

Reliability and Validity 

 The methodology of this study provides several lines of evidence for the reliability and 

validity of the results. As mentioned above, the measurement scales used (credibility, risk) all 

have acceptable Cronbach’s α values ranging from .78-.93 at various implementations and the 

credibility scales have had equal or higher values in use by other authors (McCroskey & Teven, 

1999). Internal validity was supported by the triangulation of multiple measurements throughout 

the experiment and assuring approximate equivalence of participant condition groups. 

Specifically, the surveyed experience and demographics of the groups were compared and found 

to be statistically equal. All participants were also provided a vocabulary primer and a practice 

question to mitigate any differences arising from those usage factors. The order of the graphs 

was also alternated to prevent effects from relevant content. The specific eye-tracking system 

used may improve external validity over other systems because it allows greater natural physical 

movement. The independent variable, graph design based on the Harold et al. (2016) guidelines, 

was reviewed by several authors at both the rubric and graph creation stages. 

The validity of pre-survey and post-survey differences was threatened by variation in the 

amount of time between surveys, i.e., some students participated in the study one week after 

completing the pre-survey while some others had up to a 12-week gap.  The results of this study 

best represent large four-year university traditional undergraduate students and may not be 

generalizable to the general public. Considering this study also examined the role of credibility, 

and the participants found scientists and universities highly credible, the on-campus setting of 
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this study may also limit external validity. The culturally-charged nature of climate change may 

also lead to higher self-selection in research participation than other topics. 

Limitations and Future Work 

Though the satisfaction and credibility constructs were measured in several ways, this 

study is limited by the inadequate measurement at some of these stages. For example, during the 

computer activity, both satisfaction and credibility were measured with only one item per graph. 

Besides the risk of misinterpretation of individual questions (potentially low validity), there is 

also little statistical power offered by single ordinal items (low reliability). Further, the quick 

pace of the questions in the computer activity may more accurately reflect the average person’s 

experience interacting with graphs in the real world. This fact serves as a reminder that, as with 

any communication tool, user testing must be highly specialized to the goals and context of the 

tool to achieve maximum real-world applicability. 

Guided by these lessons, future work may involve more robust quantitative measures and 

a more realistic approximation of the specific format in which a communication tool might be 

presented to the intended audience. Additionally, though many of the examined variables are 

related, this study did not investigate participant motivation or likelihood to act to mitigate or 

adapt to climate change, the ultimate goal of climate change communication. The content matter 

of these graphs was not best suited to that topic either, so future work may explore graphs and 

behavior change, potentially with very different graphs. Lastly, this study was limited by the 

small sample size of the C condition, which will be rectified with additional data collection in the 

near future. 

Experts are known to sometimes prefer visual representations that may “actually impair 

comprehension” (Harold et al., 2016, p. 1082) which proved true in the initial redesign phase of 
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this study. The original graphs used in this study, published in the IPCC Summaries for 

Policymakers, underwent thorough expert review for content and clarity, but improvements can 

still be made through both testing with target audiences and the application of relevant cognitive 

science research. Many of the differences between graphs are aesthetic, which is encouraging, as 

aesthetic adjustments are relatively easy to make for climate change communicators around the 

world. While public understanding of the content of data visualizations is the primary goal, 

affective judgements such as those surrounding credibility and risk are also important to consider 

for any climate change-related communications. Participant perceptions lend insight into the 

public’s relationship with intellectual and scientific authority and may play an important role in 

achieving any progress mitigating the effects of climate change.   

 

 

 



 61 

REFERENCES CITED 

Aksit, O., McNeal, K.S., Libarkin, J.L., Gold, A.U., and Harris, S.E. (2017). The influence of  

instruction, prior knowledge, and values on climate change risk perception among  

undergraduates. Journal of Research in Science Teaching, 55(4), 550-572. 

Ancker, J. A., Senathirajah, Y., Kukafka, R., & Starren, J. B. (2006). Design Features of Graphs  

in Health Risk Communication: A Systematic Review. Journal of the American Medical  

Informatics Association, 13(6), 608–618. 

Atkins, R.M. & McNeal, K.S. (2018). Exploring differences among student populations during  

climate graph reading tasks: An eye tracking study. Journal of Astronomy & Earth  

Sciences Education, 5(2), 85-114. 

Bergstrom, J.R. & Schall, A.J. (2014). Eye Tracking in User Experience Design. Waltham, MA:  

Morgan Kaufman, an imprint of Elsevier. 

Bojko, A. (2013). Eye Tracking the User Experience: A Practical Guide to Research. 

New York, NY: Rosenfeld Media. 

Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension  

of complex graphics. Learning and Instruction, 20, 150-166.  

doi:10.1016/j.learninstruc.2009.02.014 

Chin, J., Diehl, V., & Norman, K.L. (1988). Development of an Instrument Measuring User  

Satisfaction of the Human-Computer Interface. In Proceedings of the SIGHI conference  

on Human factors in computing sysems (pp. 213-218). ACM. 

Connolly, R. & Bannister, F. (2007). Consumer trust in Internet shopping in Ireland: towards the  

development of a more effective trust measurement instrument. Journal of Information  

Technology, 22(2), pp 102-118. 

Cook, J., Oreskes, N., Doran, P.T., Anderegg, W.R.L., Vergheggen, B., Maibach, E.W., ... &  

Nuccitelli, D.. (2016). Consensus on consensus: a synthesis of consensus estimates on  

human-caused global warming. Environmental Research Letters, 11(4), 1-7.  

Creswell, J.W., & Clark, V.L.P (2017). Designing and conducting mixed methods research (3rd  

ed.). Los Angeles, CA: SAGE Publications, Inc. 

Duchowski, A.T. (2007). Eye Tracking Methodology: Theory and Practice (2nd ed.). London,  

England: Springer-Verlag. 

Freedman, E.G., & Shah, P. (2002). Toward a model of knowledge-based graph comprehension.  



 62 

In Diagrammatic Representation and Inference: Second International Conference,  

Diagrams 2002 Callaway Gardens, GA, USA, April 18-20, 2002 Proceedings (18-30).  

https://doi.org/10.1007/3-540-46037-3_3 

Gegenfurtner, A., Lehtinen, E., Saljo, R. (2011). Expertise differences in the comprehension of  

visualizations: a meta-analysis of eye-tracking research in professional domains.  

Education Psychology Review, 23, 523-552. 

Goldberg, J. H., & Kotval, X. P. (1999). Computer interface evaluation using eye movements:  

methods and constructs. International Journal of Industrial Ergonomics, 24, 631–645. 

Goldberg, J. H., & Wichansky, A. M. (2003). Eye tracking in usability evaluation: A  

practitioner's guide. In Hyönä, J., Radach, R. and Deubel, H. (Eds.), The Mind's Eye:  

Cognitive and Applied Aspects of Eye Movements (pp. 493-516). Amsterdam, The  

Netherlands: Elsevier Science BV. 

Grant, E.R., & Spivey, M.J. (2003). Eye Movements and Problem Solving: Guiding Attention  

Guides Thought. Psychological Science, 14(5), 462-466. 

Harold, J., Lorenzoni, I., Shipley, T.T., & Coventry, K.R. (2016). Cognitive and psychological  

science insights to improve climate change data visualization. Nature Climate Change,  

6(12), 1080-1089. 

Hegarty, M. (2011). The cognitive science of visual-spatial displays: Implications for design.  

Topics in Cognitive Science, 3(3), 446-474. 

Howe, P., Mildenberger, M., Marlon, J., & Leiserowitz, A. (2015) Geographic variation in  

opinions on climate change at state and local scales in the USA. Nature Climate Change,  

5, 596-603. 

IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working  

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate  

Change. Geneva, Switzerland: IPCC. 

Kahan, D.M., Jenkins-Smith, H., & Braman, D. (2011). Cultural cognition of scientific  

consensus. Journal of Risk Research, 14(2), 147-174.  

Leiserowitz, A., Maibach, E., Rosenthal, S., Kotcher, J., Goldberg, M., Ballew, M., … Bergquist,  

P. (2019). Politics & Global Warming, December 2018. New Haven, CT. 

Leiserowitz, A., & Smith, N. (2010). Knowledge of Climate Change Across Global Warming’s  

Six Americas. New Haven, CT: Yale Project on Climate Change Communication. 



 63 

Libarkin, J.C., Gold, A.U., Harris, S., McNeal, K.M. & Bowles, R. (2018). Utilizing Rasch  

analysis to develop a measure of climate change understanding. Manuscript submitted  

for publication. 

McCright, A.M., Dunlap, R.E., Xiao, C. (2013). Perceived scientific agreement and support  

for government action on climate change in the USA. Climatic Change, 119(2), 511- 

518. 

McCroskey, J., & Teven, J. (1999). Goodwill: A reexamination of the construct and its  

measurement. Communication Monographs, 66(1), 90-103. 

McMahon, R., Stauffacher, M., & Knutti, R. (2015). The unseen uncertainties in climate change:  

reviewing comprehension of an IPCC scenario graph. Climatic change, 133(2), 141-154. 

McMahon, R., Stauffacher, M., & Knutti, R. (2016). The scientific veneer of IPCC 

visuals. Climatic change, 138(3-4), 369-381. 

Okan, Y., Stone, E. R., & Bruine de Bruin, W. (2018). Designing Graphs that Promote Both Risk 

Understanding and Behavior Change. Risk Analysis, 38(5), 929–946.  

Olsen, A., & Strandvall, T. (2010). Comparing different eye tracking cues when using the  

retrospective think aloud method in usability testing. Proceedings of the 24th BCS  

Interaction Specialist Group Conference (pp 45-53). British Computer Society. 

Poushter, J., & Huang, C. (2019). Climate Change Still Seen as the Top Global Threat, but 

Cyberattacks a Rising Concern. Retrieved December 3, 2019, from 

http://www.pewglobal.org/2019/02/10/climate-change-still-seen-as-the-top-global-threat-

but-cyberattacks-a-rising-concern/ 

Renshaw, J.A., Finlay, J.E., Tyfa, D., & Ward, R.D. (2003). Designing for visual influence: An  

eye tracking study of the usability of graphical management information. In M.  

Rauterberg et al. (Eds.), Human-Computer Interaction – INTERACT’03 (pp. 144-151).  

Amsterdam, Netherlands: IOS Press. 

Shah, P., & Carpenter, P. (1995). Conceptual limitations in comprehending line graphs. Journal  

of Experimental Psychology: General, 124(1), 43-61. 

Stofer, K., & Che, X. (2014). Comparing experts and novices on scaffolded data visualizations  

using eye-tracking. Journal of Eye Movement Research, 7(5), 1-15. 

van der Linden, S. L., Leiserowitz, A. A., Feinberg, G. D., & Maibach, E. W. (2014). How to  

communicate the scientific consensus on climate change: plain facts, pie charts or  



 64 

metaphors?. Climatic Change, 126(1-2), 255-262. 

van der Linden, S.L., Leiserowitz, A.A., Feinberg, G.D., & Maibach, E.W. (2015). The  

scientific consensus on climate change as a gateway belief: Experimental evidence.  

PLoS ONE 10(2): e0118489. 

van der Linden, S., Leiserowitz, A., & Maibach, E. (2017). Scientific agreement can neutralize  

politicization of facts. Nature Human Behavior, 2(1), 2-3. 

 

 

 

 


