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Abstract

Superconducting electronics based computing is being actively pursued as an alternative

to CMOS-based computing for high performance computing due to their inherent advantages

such as low-power and high switching speed. These circuits are predominantly based on

Josephson junctions. In this work, superconducting digital electronic circuits based on a

device called quantum phase-slip junction are explored. Quantum phase-slip junctions are

dual to Josephson junctions based on charge-flux duality of Maxwell’s equations. Therefore,

incorporating these devices into superconducting computers could lead to certain advantages

that may overcome some of the challenges currently faced by Josephson junction based

circuits, as explained in later chapters in this document.

Three different superconducting logic circuit families are introduced using quantum

phase-slip junctions and Josephson junctions, namely charge-based logic family, comple-

mentary quantum logic family and adiabatic quantum charge parametron logic family, with

different advantages and challenges for each of the circuit families. The various circuits

comprising these logic families have been demonstrated using circuit simulations in a pro-

gram called WRSPICE. For this purpose, a SPICE model has been developed for quantum

phase-slip junctions that can be loaded into WRSPICE.

Charge-based logic family using quantum-phase-slip junctions is inspired from single-

flux quantum family based on Josephson junctions. The presence or absence of a single

charge pulse (i.e. a current pulse of a constant area equal to 2e where e is the charge of an

electron, generated by switching a quantum phase-slip junction) constitutes the logical bit 1

and 0 respectively. Several circuits in this logic family are exact dual versions of single-flux

quantum family, while several additional circuits are designed that are exclusive to charge-

based logic family. It is comprised of logic gates such as AND, OR, XOR, NAND, NOR etc.,
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and various data manipulation circuits such as buffer circuits, fan-out circuits and merger

circuits.

Complementary quantum logic family combines the charge-based logic with quantum

phase-slip junctions and flux-based logic with Josephson junctions. Therefore, it consists of

circuits that convert flux to charge and vice-versa. Additionally, a control circuit has been

designed that has a gate input to turn the output signal ON or OFF. Logic and fan-out

circuits have been demonstrated using circuit simulations that comprise of basic principles

introduced in flux-charge conversion circuits and control circuit.

Adiabatic quantum charge parametron family is a variation of charge-based logic family

that when operated in a certain mode of operation allows switching from logical bit 1 to 0

and vice-versa while dissipating energy less than the thermal energy at that temperature.

Therefore, these circuits are compatible with reversible computing. The switching energy

calculations that correspond to the circuit parameters and its operating conditions required

for adiabatic switching (i.e. when switching energy is below the thermal energy KBT ) are

shown. Universal logic gates such as the Majority gate has been designed and demonstrated

in simulation. Several examples that use Majority gate to achieve logic operations such as

AND, OR, XOR etc. are shown.

Theoretical calculations were performed based on existing physics models for quantum

phase-slip junctions to extract the physical design parameters of the devices based on required

circuit parameters according to simulation. Using the same calculations, materials suitable

for these devices were estimated that provide highest probability of exhibiting quantum

phase-slips. Additionally, the operating temperature of the circuit families introduced for

several materials of interest are obtained from these calculations. The switching speeds versus

power dissipation for varying device parameters are calculated and compared to existing

superconducting technologies using Josephson junctions.

The work presented in this dissertation is intended to generate interest in a new field of

digital logic circuits using quantum phase-slip junctions, the devices that were not previously
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explored for use in classical computing systems. The new circuit families introduced exhibit

several potential advantages over the existing circuits in terms of higher energy efficiency,

faster switching speed as well as ease of operation that may lead to a possibility of higher

integration density.
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Chapter 1

Introduction

1.1 Background and Motivation

Digital computers based on superconducting materials and devices have been of interest

since the discovery of phenomenon called Josephson tunneling in 1962 by B.D Josephson

[7] and their experimental realization [8]. Since then, several electronics applications were

proposed using Josephson junctions (JJs) and related devices known as superconducting

quantum interference devices (SQUIDs superconducting loops comprising JJs) in practical

systems such as qubits [9], milli-meter wave receivers [10], the volt standard [11], magne-

tometers [10] and as fast switches for use in digital circuits [12] and memories [13]. Several

of these applications, particularly with respect to logic applications, were realized very early

after discovery of JJs as suggested by the cited references.

The digital logic circuits using Josephson junctions were viewed as an alternative to

CMOS based circuits for ultra-low power computing with significantly faster switching speeds

[12, 14, 13]. Therefore, In the 1970s and early 1980s, the project involving development of a

prototype computer by IBM Corporation, based on a family of circuits called voltage-state

logic, attracted significant attention [15]. These circuits used zero-voltage of JJs during

its superconducting state as logical ‘0’ and corresponding non-zero voltage of its normal

state as logical ‘1’ [16, 17]. This logic family could not compete with CMOS logic due to

several disadvantages including poor choice of superconducting materials, and mainly, the

use of under-damped Josephson junctions which latch into the voltage state, once switched
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[18], although several improvements were suggested [19, 20]. The drawbacks of a voltage-

state logic family were addressed using single flux quantum (SFQ) logic, which employs

over-damped JJs, which was introduced in 1985 [21] and later experimentally demonstrated

in 1987 [22]. Later, several improvements were suggested for circuits in this logic family

[23, 24, 25].

Superconducting digital electronics is re-gaining interest for high-performance and en-

ergy efficient computation due to potential for high clock rates and low energy operation

[26, 27, 28, 29] as concerns about scaling to exa-scale computing grow with traditional

CMOS based electronic circuits [30, 31]. SFQ logic family and related circuits can offer

up to 3 to 4 orders of magnitude of energy efficiency compared to state-of-the-art silicon

CMOS technology [32, 33, 34, 35] and therefore is more efficient than other beyond-CMOS

technologies as shown in Figure. 1.1 [1]. Additionally, superconducting electronics is also

gaining interest in the area of quantum computing [36, 37, 38, 39] and inter-connectivity.

Flexible superconducting transmission lines can transfer data with significantly low loss at

high-speeds [40, 41, 42, 43, 44, 45, 46, 47].

Furthermore, JJs are known to perform arithmetic and logic operations at compellingly

high clock speeds (a few hundred GHz) [48, 49] as the junctions are scaled to higher critical

current densities. Circuits operating at clock frequencies above 750 GHz have been reported

[50, 51]. The circuits of this technology employ superconducting loops broken with JJs that

store flux quanta as its basic logic element. The state of the element can be measured as

voltage pulses with quantized area [18], as the junction is switched. Therefore, these devices

do not latch on to a state due to switching, and go back to their default state. However, RSFQ

logic has disadvantages in having static power dissipation and in requiring large DC current

biases to supply all the junctions, which, in-turn, introduce difficulties in design. These two

disadvantages were overcome by other technologies that use the same quantized flux logic

but with improved biasing techniques such as low voltage RSFQ [35, 52], energy-efficient

RSFQ (/eSFQ) [33, 53, 34], reciprocal quantum logic (RQL) [54, 55] and adiabatic quantum
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Figure 1.1: The projected gate-switching energy and delay time for several beyond-CMOS
technologies (i.e., SFQ, III-V TFET, and Spin) compared with state-of-the-art silicon CMOS
illustrates that SFQ switching energy is nearly an order of magnitude lower than state-of-
the-art CMOS. [III-V refers to compounds with elements from both columns III and V of
the periodic table.][1]

flux parametron (AQFP) [4, 56]. Although these variations of SFQ circuits overcome several

challenges, there are some challenges that may inhibit scaling of these computers to peta

and exa-scales [28]. Superconducting loops that can store flux quantum occupy a substantial

area. It is challenging to scale existing JJs to junction sizes of a few nanometers, because

as critical current of JJs get smaller, larger inductances, and therefore larger logic cells, are

needed for SFQ loops. A single SFQ logic cell currently, is a loop made of two JJs and an

inductor with an area of Γ20µm x 10 µm.
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In this work, alternative superconducting logic circuit families that are based on super-

conducting devices known as quantum phase-slip junctions (QPSJs) are introduced. QPSJs

are superconducting nano-wire based devices that have been identified as exact duals to

Josephson junctions, based on charge-flux duality [57, 2] of Maxwell’s equations. Due to this

duality, the QPSJs generate quanta of charge that can be used as basic information elements,

instead of quanta of flux (i.e. in circuits with only QPSJs), or in conjunction with quanta of

flux (i.e. in circuits with QPSJs and JJs together). It is possible that this such circuits can

inherently solve the drawbacks of RSFQ [2], along with providing several new possibilities

for high-speed computing. Three new logic circuit families are introduced and demonstrated

using circuit simulations in this dissertation. A brief outline of the dissertation is described

in the following section.

1.2 Outline of Dissertation

In this dissertation, superconducting digital electronic circuits using QPSJs are intro-

duced in the form of three different families of logic circuits. A SPICE model has been

developed for a QPSJ to be able to demonstrate various circuits that were designed. The

logic families comprise of basic switching circuits that generate quantized area (equal to

charge of a Cooper pair 2e) current pulses that define logic bits ’1’ and ’0’. Then the basic

cells are used to design various logic gates such as AND, OR, XOR, NAND etc., that to-

gether form a set of universal logic gates. Additional circuits that enable data manipulation

circuits suitable for buffer, fan out etc., are also designed for each of the families. These

are described in detail in various chapters in the dissertation, the outline of which is given

below.

• In chapter 2, the theoretical background of the QPSJ will be described in detail. The

current density calculation that outlines the definition of phase-slip is shown. Then the

compact circuit model the QPSJs that was used in the SPICE model is introduced with

the help of parallel comparison of the model for JJs. Additional background description
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and the practical implementation examples of a QPSJ available in the literature are

discussed and referenced.

• Chapter 3 describes the SPICE model that has been used for the QPSJ simulations.

The details of development of the SPICE model are available in my master’s thesis

[58]. This chapter describes the basic model with additional features that were added

to the model to be able to simulate the quantized area charge pulses necessary for

logic circuits described. Some example simulations of I-V characteristics are presented

that reproduce some of the measurement results available in literature. The quantized

charge-pulse generation and the switching dynamics of the QPSJ are also demonstrated

in simulation in this chapter.

• Chapter 4 introduces the first of the digital logic circuit families using QPSJs, namely

the quantized charge-based logic family. Several circuits in this family are dual ver-

sions of single-flux quantum (SFQ) circuits, but there are several additional circuits

introduced that are exclusive to QPSJ based circuits. The basic logic cell called the

charge island is introduced, and several basic data manipulation circuits are presented,

along with corresponding simulation results. Then the logic gates and flip-flops are

included that follow the operational principles that are similar to SFQ circuits as well

as additional circuit operational principles that are exclusive to QPSJ based circuits

that simplify certain circuit operations. Some circuits of higher complexity that com-

bine several of the logic and data manipulation circuits introduced, such as adders,

ring oscillators etc., are demonstrated.

• In chapter 5, a digital logic circuit family known as ”Complementary quantum logic

family” that combines both SFQ logic and charge-based QPSJ logic family. Therefore,

circuits that perform flux-to-charge conversion and vice-versa are introduced. Switch-

ing circuits and fan-out circuits are designed. Several logic gates using these circuit

are presented.
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• In chapter 6, a new set of logic circuits that are compatible with reversible computing

are introduced. These circuits are similar to the adiabatic quantum flux parametron

circuits based on JJs. A basic charge parametron circuit has been designed using

QPSJs and capacitors. The potential energy of the circuit has been calculated to

extract the range of parameters that allow adiabatic switching. Then the majority

gate design is introduced using the parametron circuit. Several different logic gates are

then obtained by programming the parametron circuit appropriately.

• In chapter 7, the theoretical calculations are presented to facilitate the physical design,

material choice and measurement conditions for physical implementation of a QPSJ

using a physics model presented by [5].

• Chapter 8 is the final chapter in the dissertation that summarizes various circuits

introduced in the dissertation and compares them with other existing technologies

such as SFQ circuits. A detailed list of advantages and challenges of this technology

and the comparison of energy dissipation and switching delay with other circuit families

is discussed.
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Chapter 2

Theoretical Background of QPSJs

2.1 Superconductivity

The field of superconductivity has been originated with the observation of zero DC re-

sistance in mercury (Hg) low temperatures close to absolute zero by Kamerlingh Onnes in

1911[59]. Several metallic elements, compounds and alloys were then observed to undergo

phase transformations at a low temperature, which is characteristic of the material and is

called the transition temperature (TC) below which, the characteristics of superconductivity

are observed. Superconductivity can be mainly described by two properties in the macro-

scopic scale, namely persistent currents without dissipation and Meissner effect[60, 61].

In this dissertation, the device of interest is known as a quantum phase-slip junction

(QPSJ) based on superconducting nano-wires. The superconducting properties mentioned

above are altered in sufficiently thin nano-wires of certain materials where superconductivity

is suppressed well below transition temperature. These phenomena, namely phase-slips, are

observed as resistive tails below transition[62]. The phenomenon of a quantum phase-slip,

i.e. phase-slip occurring due to quantum tunneling of flux across the nano-wire, explained

later, has been identified as a dual process to Josephson tunneling [7] based on flux-charge

duality [57].

In this chapter, we discuss the theoretical background starting from the basics of super-

conductivity using Ginzburg-Landau theories[63], which will lead to the origin of the idea

of a phase-slip. Various experiments that lead to the understanding of quantum phase-slip
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phenomenon are then briefly discussed. The idea of flux-charge duality explaining relation-

ship between a Josephson tunneling and a quantum phase-slip will then be presented in

some detail. The resistively and capacitively shunted junction (RCSJ) model of a Joseph-

son junction (JJ) [10] will be discussed in detail in parallel with the QPSJ to facilitate the

explanation of its complementary model. A basic introduction to some circuit applications

of JJs will be examined which in later chapters is further explored in the context of QPSJs.

The change in behavior in terms of resistance to electrical current dropping to zero

in some materials at low temperatures close to zero is interpreted as a phase-transition as

explained by Ginzburg-Landau (GL) theories[63] in the macroscopic sense. This theory is

valid for explanation of several phenomena in superconductors, including Josephson tunnel-

ing and phase-slips, sufficient for understanding the circuit models used in this dissertation.

Therefore, in this chapter, the phase-slips are described using GL theory and the microscopic

theory of superconductors (i.e. BCS theory[61]) is not considered.

2.2 Macroscopic Wave Function Description of Superconductors

According to the Ginzburg-Landau theory of superconductivity [64], a phase transition

takes place in superconducting materials below transition temperature TC , where it is ener-

getically favorable for electrons to form a condensate, which is highly ordered compared to a

normal metal phase. In this phase, the superconducting state is defined by a complex order

parameter given by:

Ψ(r) =
√
n(r)eiφ(r) = ψ(r)eiφ(r) (2.1)

Here, |ψ(r)|2 = n(r) is the density of the electrons condensed in the superconducting

state and φ is the position dependent phase factor of the state.

This implies that all the condensed electrons occupy a single quantum state with their

phases overlapped making it continuous while in this condensate. It is noteworthy that the
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phase factor enters the macroscopic wave function. This factor of phase can only have values

modulo 2π and is usually wiped out when averaged over billions of electrons in distinct

quantum states in a normal metal phase. But, in a superconductor, this becomes an element

which gives rise to detectable macroscopic quantum phenomena. We will see later that this

property of superconductors is significant in explaining the behavior of JJs and QPSJs.

2.2.1 Phase-slip in Superconductors

In this section, we discuss the origin of a phase-slip in superconductors. By using the

above description of a macroscopic wave function, we can calculate the current density of

the dissipation-less currents induced in a superconductor by assuming an induced supercur-

rent due to an applied magnetic potential (external magnetic field) with the help of time

dependent Schrodinger equation. This simple calculation will facilitate the explanation of

the origin of a phase-slip due to Josephson tunneling or a quantum fluctuations, which are

responsible for quantum phase-slips that will be discussed in detail in later sections. Details

of calculations (can be found in [65]) are not shown here, and only a simple description of

the flow of calculation is given below.

Let us consider motion of a particle in the presence of a magnetic potential. In our

example, the particle is moving in a superconductor. Therefore, the momentum of particles

in the superconducting state described by equation 2.1 in case of magnetic potential is given

by:

p̄ = −ih̄∇− eA(r) (2.2)

Here, p̄ is the momentum operator of the particle, h̄ is the reduced Planck’s constant,

∇ is the divergence operator and A is the magnetic vector potential.

The behavior in the presence of magnetic potential is considered only for illustrating

supercurrent flow in an example that follows. In practice, a supercurrent can be setup using

either an electric or a magnetic field.
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Figure 2.1: a. Persistent current in a superconducting ring. b. Phase of macroscopic wave
function around the ring.

Now, let us imagine that we setup a supercurrent in a closed ring shown in the Figure

2.1 using an external magnetic field and then turning it down. We see that a persistent

current is setup in the ring, which will take infinite time to decay. Using both equations 2.1

and 2.2, the supercurrent can be calculated as shown in equation 2.3:

j(r) =
e

2m
ψ(r)|p̄|ψ(r) (2.3)

j(r) is the current density as a function of position and m is the mass of the electron.

Substituting equation 2.2 in equation 2.3 gives equation 2.4:

j(r) =
e

2m
|ψ(r)|2 |∇φ(r)− eA(r)| (2.4)

In the presence of a magnetic field, φ(r) is constant and therefore ∇φ(r) is zero. Current is

only a function of magnetic field in the loop shown in Figure 2.1a. But when the magnetic

field is turned off, supercurrent persists in the loop without dissipation unless significant

changes to the environment are made. In this situation, the supercurrent is a function of

∇φ(r), which now cannot be zero and must have a constant value. φ(r) has values modulo
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2π which means 2π ± k is equivalent to k. Therefore, in this case of a loop, we can write:

∫
∇φ(r)dl = 2πn (2.5)

where n is the winding number.

This is the constant value that is directly proportional to the supercurrent in the loop.

The number n is called the winding number of the loop and is illustrated in the Figure 2.1b

as the number of times the phase of the wave function goes over 2π. This example has been

of a superconducting loop but this equation is valid for any continuous superconductor.

Now, the persistent supercurrent without decay is the result of constant winding number

as shown in equations 2.4 and 2.5. When the superconducting order parameter is zero at a

point in the loop, winding number changes to n± 1 and this is called as a phase-slip.

Phase-slips are therefore identified as events in the superconductor where the order pa-

rameter goes to zero and the winding number changes. This also causes a voltage to develop

across the phase-slip region. These events causing suppression of superconductivity in this

way are observed in different situations. Some examples include: phase diffusion through

thermal fluctuations in JJs, when their Josephson energy is in the regime EJ � e2/2CJ

shown in [66]; macroscopic quantum tunneling in JJs whose capacitive energy is much larger

than Josephson energy[67], EJ � e2/2CJ ; thermally activated phase-slips in superconduct-

ing nano-wires whose theory is described in [68, 69, 70] and observed in experiments just

below critical temperatures in superconducting nano-wires [71, 72]; along with quantum

phase-slips due to quantum tunneling of superconducting order parameter between the states

whose phases differ by 2π, experimentally observed in [62, 3, 73, 74, 75, 76, ?, 77, 78]. In

this dissertation, we are mainly interested in quantum phase-slips and the SPICE model

that primarily describes the electronic device based on this phenomenon. The theory de-

scribing the physics of this phenomenon leading to the formulation of a compact model of the
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Figure 2.2: Flux-charge duality in electrical circuits (adapted from [2]).

aforementioned QPSJ device is described in the subsequent sections. Thermally activated

phase-slips based on LAMH[68, 69, 70] are also briefly explained as they are relevant in a

part of the model.

2.3 Flux-charge Duality and Quantum Phase-slips

Quantum phase-slip phenomenon can be described as a dual phenomenon to Josephson

tunneling based on flux-charge duality of Maxwell equations, originally described by Mooij

and co-workers [57]. Later on, this has been extended to define the QPSJ as a dual device to

Josephson junction. In the following sub-section, the idea of flux-charge duality in Maxwell’s

equations, in the context of superconductors will be discussed.

2.3.1 Flux-charge duality

Classical flux-charge duality based on Maxwell’s equations can be observed in lumped

element circuits as shown in Figure 2.2. In continuous case, superconductors and insulators

can be shown to be the exact duals of each other, based on charge-flux duality [79, 80, 81,

82, 83, 84]. The quantities charge and flux current densities can be interpreted as sum of

bound and free quantities based on Maxwell equations as shown below [2]:

JQ = ρQvQ +
dD

dt
(2.6)

Jφ = vφ ×Bf −
dA

dt
(2.7)
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where, JQ is the current density corresponding to charge, ρQ is the charge density moving

at velocity vQ, D is the electric displacement, Jφ is the current density corresponding to flux,

Bf is the magnetic flux density moving at velocity vφ and A is the vector potential and can

be defined in case of superconductors using equation 2.8:

A = ∧ρQvQ (2.8)

where,

∧ = µ0λ
2 (2.9)

Here, µ0 is the magnetic permeability and λ is the magnetic penetration depth in supercon-

ductors.

Using the equations 2.8 and 2.9 along with D = εE, we can define charge and flux

transport in case of superconductors using equations 2.10 and 2.11 respectively [2].

∧dJ
dt

= E → Lk
d2Q

dt2
= V (2.10)

ε
dE

dt
= J → C

d2Φ

dt2
= I (2.11)

Here, Lk is called the kinetic inductance and C is the kinetic capacitance.

These quantities will be encountered in the context of JJs and QPSJs. These equa-

tions take the duality between charge and flux to illustrate the dual relation in charge/flux

transport in superconductors/insulators.

2.3.2 Josephson Junctions and Quantum Phase-slip Junctions

A QPSJ, which is an exact dual to a Josephson junction can now be introduced and

defined based on the theoretical description so far. Consider the Figure 2.3. A JJ, shown in
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Figure 2.3: Duality between Josephson tunneling in JJs and Fluxon tunneling in QPSJs
(adapted from [3]).

the left, consists of two superconducting islands of cooper pairs separated by an insulating

potential barrier, while a QPSJ, shown in right, can be viewed as two insulating islands of

flux-quanta (referred to as fluxons [2]) separated by a superconducting potential barrier.

Therefore, the suppression of superconductivity, discussed earlier, associated with a quantum

phase-slip is due to tunneling of fluxons across a superconducting nano-wire. The idea of

charge-flux duality is not just a classical concept, but the variables-charge and flux, also

obey commutation relations when treated as quantum operators.

The behavior of Josephson junction depends mainly on the phase difference between

the two superconducting electrodes which are separated by an insulating potential barrier.

The tunneling of charges between them is a coherent process, and the current through the

junctions is a function of phase difference between these electrodes. Similarly, the tunneling

of a fluxon across the superconducting potential barrier sets up voltage between the ends

of nano-wire which is a function of charge travelling through the wire. This tunneling of

fluxons is also a coherent process. But dissipation occurs in both JJs and QPSJs causing

this an incoherent process which will be discussed in detail in later sections.
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2.4 Quantum Phase-slip Junctions

QPSJs are therefore formed from superconducting nano-wires, linking two superconduct-

ing electrodes in dielectric region. They show suppression of superconductivity, resulting in

dissipation and voltage drop across the nano-wire associated with a phase difference of 2π

between the ends of the nano-wire, below the transition temperature. In experiments, these

are observed as resistive tails below superconducting transition [85, 86, 75, ?, 87] similar to

thermally activated LAMH phase-slips [68, 69, 70, 71, 72]. Josephson tunneling, however is a

coherent process without dissipation. Therefore, the Quantum phase-slip which is described

by a dual process is also coherent, and has been identified [3, 88] with experimental setups

similar to the approach described in section 1.1.2. Using its quantum nature, a quantum

phase-slip based qubit has also been proposed [89] which is dual to the charge qubit using

Josephson junctions [90]. Nevertheless, we are interested in using QPSJ device in SPICE for

use with classical circuits similar to JJs and therefore, will consider the incoherent process

where dissipation can be measured. This involves usage of the model for QPSJ similar to

RCSJ based device model for a JJ[91]. This model includes parameters to account for dis-

sipation, along with the inductance of the nano-wire, similar to the capacitance in JJ along

with the voltage term depicting the coherent quantum phase-slip. A short description of the

RCSJ model of a Josephson junction will be explained to facilitate the derivation of QPSJ

device model.

2.4.1 Josephson Junction and RCSJ Model

In this section, we explain and briefly derive the equations governing supercurrent,

voltage and phase in DC Josephson effect. Later on, the canonical transformation based

on commutation relation between q and φ will be used to obtain a model for the QPSJ

from the JJ equations [91]. As explained earlier, equation 2.1 defines the charge carriers in

superconducting state and can be used to describe either side of the superconducting regions

of insulating barrier in a JJ (see Figure 2.3). Let us consider the case where voltage V
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is applied between the two superconductors. Then the energy and wave function of both

superconductor regions are eV , ψ1 and −eV , ψ2 respectively. We can write time-dependent

Schrodinger equation on either side of the superconductor as given by equations 2.12 and

2.13 below:

ih̄
dψ1

dt
= eV ψ1 + kψ2 (2.12)

ih̄
dψ2

dt
= −eV ψ2 + kψ1 (2.13)

where φ is the phase difference across the junction.

Substituting equation 2.1 in the above equations and separating it into real and imagi-

nary parts gives the result:

dφ

dt
=

2e

h̄
V (2.14)

for the imaginary part, and

I = ICsinφ (2.15)

for the difference of real parts. IC is the critical current of a JJ. It is the maximum super-

current that can be carried across the junction.

Equations 2.14 and 2.15 define DC Josephson effect at the device level.

The JJ used in circuits does not behave completely like the equation 2.15 describes.

It has dissipation and therefore deviation from completely coherent behavior as described

by equations 2.14 and 2.15. The description which includes this behavior of a JJ is called

RCSJ model. Resistively and capacitively shunted junction (RCSJ) model of a JJ takes

into consideration, the junction’s intrinsic resistance and capacitance. The current biased
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Figure 2.4: Current biased resistively and capacitively shunted Josephson junction (RCSJ
model).

junction shown in Figure 2.4 represents an equivalent circuit model. When the current

applied is above the critical current of the junction, the additional current passes through

the elements R and C of the junction. Total current is hence given by:

I = IJ + IR + ICap (2.16)

which gives:

I = ICsinφ+
V

R
+ C

dV

dt
(2.17)

2.4.2 Charge Transport in a Quantum Phase-slip

A very useful explanation of charge transport in JJs can be derived from RCSJ model.

By replacing V in equation 2.17 with its substitute from equation 2.14, we can get a descrip-

tion of JJ in terms of a second order equation in phase. An energy versus phase plot with

this description of the model is called as washboard potential shown in the Figure 2.5. The

slope in the plot is due to the applied bias current. In a JJ, the charge carrier oscillates in a

potential well, giving rise to sinusoidal current description given by equation 2.15. But with

enough bias current, the height of the potential well is decreased and the charge carrier rolls

off to lower potential wells, losing energy due to dissipation. Under low bias current, the

charge carrier can still travel into next potential well through a process called phase diffusion

[66], where thermal activation is responsible for the particles to cross the energy barrier.
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In highly capacitive Josephson junctions, another possible way exists for charge carri-

ers to transport via tunneling through the potential barrier between potential wells which

are stimulated by zero-point fluctuations. These fluctuations are caused due to the energy

oscillations between kinetic inductance (see equation 2.10) and junction capacitance. This

phenomenon is called as macroscopic quantum tunneling [67].

In superconducting nano-wires, the thermally activated phase-slips can be described

by a similar process to that of phase diffusion but at a different energy scale proposed by

LAMH [68, 69, 70]. These phase-slips are observed as resistive tails below superconducting

transitions in nano-wires, where the value of resistance is given as a function of potential

barrier (Figure 2.5), which is further defined as proportional to the energy needed to destroy

superconductivity, as shown in the following equations.

R(T ) ∝ e−U/T (2.18)

U ≈ ν∆0
2(T )

2
Sξ(T ) (2.19)

where, ∆0 is the superconducting energy gap , ν represents density of states and ξ is

the cross-section of the wire and coherence length at a given temperature T .

Quantum phase-slips follow a similar process as that of macroscopic quantum tunneling

but at a different energy scale derived in detail in [2]. The zero-point fluctuations arise

as a result of oscillations between inductance of the nano-wire and kinetic capacitance (see

equation 2.11). The dissipation in a quantum phase-slip process which allows the charge

carrier to settle in lower-energy potential well arises due to the dielectric constant of the

conducting material, which acts as an effective mass for the fluxon tunneling across the

nano-wire. Therefore, the resistance term that will be shown in resistive and inductive series

junction (RLSJ) model of a QPSJ in next section corresponds to the loss due to dielectric for
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Figure 2.5: Washboard potential description of Phase diffusion/LAMH phase-slip (shown in
red) and Macroscopic quantum tunneling/Quantum phase slip (shown in blue) [2].

the electric field (or voltage drop) along the nano-wire due to the fluxon tunneling across the

wire. This microscopic description manifests as lumped element model in the next section

derived from the dual model to JJ which will be ready to implement in a SPICE model.

2.4.3 Resistive and Inductive Series Junction Model of a Quantum Phase-slip

Junction

As we have already seen, phase-slips are observed when superconductivity is suppressed

and a quantum phase-slip phenomenon can be explained as a dual to Josephson tunneling.

Mooij and Nazarov are the first to realize that a quantum phase-slip process can be described

by the charge-flux duality using quantum conjugates q and φ [57]. Charge and phase quantum

operators satisfy the commutation relation:

[q̂, φ̂] = −i (2.20)

where q is the electric charge and φ is the magnetic flux.
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They also proposed a phase-slip energy dual to the Josephson energy which was later

derived by [2]. In description given by Mooij et. al. [57], they performed canonical transfor-

mation, which satisfies the commutation relations between the resulting expressions, to the

Josephson Hamiltonian to arrive at a qualitative description of a coherent quantum phase-

slip. The details are not discussed here, but the canonical transformations performed are

given below.

(q̂, φ̂)→ (−φ̂/2π, 2πq̂) (2.21)

Es → EJ ;EL → EC ; I ↔ Rq
−1V ;Y (ω)↔ Rq

−1Z(ω) (2.22)

where Es is the phase-slip energy, EJ is the Josephson potential energy, EL and EC are

the inductive and capacitive energies of a QPSJ and a JJ respectively.

Using the above equations, we can perform canonical transformation of equation 2.15

to obtain

V = VCsin(2πq) (2.23)

with VC being the critical voltage of the junction and V , the measurable voltage drop

across the junction.

The compact model describing the dissipation and inductance of the wire [57, 73] is

shown in the Figure 1.6. Notice that this is a series circuit as opposed to parallel circuit as

that of a JJ, which is a result of canonical transformation.

0

−+

V
1
QPSJ

2 L 3 R 0

Figure 2.6: Voltage biased QPSJ in RLSJ model
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The capacitance and resistance terms from the equation 2.17 transform into the following

equations.

V

R
→ IR,C

dV

dt
→ L

dI

dt
(2.24)

The I-V description of a lumped element model of a QPSJ defined by RLSJ model is

therefore given by:

V = VCsin(2πq) + L
dI

dt
+RI (2.25)

Equation 2.25 has been used to develop a SPICE model for a QPSJ with additional

modifications to incorporate transition between normal and superconducting states through

generating constant-area current pulses corresponding to quantized charge of 2e etc., ex-

plained in detail in the next chapter.

2.4.4 Notes

The physics of quantum phase-slips is still an evolving subject and has several unan-

swered questions related to the microscopic operation of the device. Particularly, there are

multiple but similar theories that explain the origin of phase-slip energy such as in [57, 2] etc.

An established theory strongly connected to the material and design aspects of the QPSJs

will enable exploration of these devices for further electronic applications.
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Chapter 3

SPICE Model of a QPSJ

3.1 Quantum Phase-slip Junction

3.1.1 SPICE Model of a Quantum Phase-slip Junction

Quantum phase-slip junctions are superconducting phenomenon where the phase dif-

ference across a nano-wire changes by 2π with the suppression of superconducting order

parameter to zero. This has been observed as a resistance tail below superconducting tran-

sition in experiments [86, 62, 77]. This phenomenon has been identified as a dual process to

Josephson tunneling. While a charge tunnels between two superconducting regions across

an insulating barrier in a Josephson junction, inducing a flux quantum in the corresponding

loop, a QPSJ can be viewed as flux tunneling across a superconducting nano-wire (barrier

for flux) creating a voltage drop at the ends of the wire [2]. Therefore an I-V relationship

of a QPSJ can be obtained by replacing phase by charge, current term by voltage term and

capacitance term by inductance term [57]. The two equations that were used to describe a

QPSJ in the compact model for SPICE are therefore given by:

V = VCsin(q) + L
dI

dt
+RI (3.1)

where,

I =
2e

2π

dq

dt
(3.2)

Here, V is the voltage across the junction, VC is the critical voltage of the junction, L

is the geometric inductance of the junction, I is the current through the junction, R is the
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normal resistance of the junction and q is the charge equivalent in the QPSJ normalized to

the charge of a Cooper pair (2e) and the term 1
2π

to represent q as a phase corresponding to

charge. Therefore, q’s relation to charge 2e is equivalent to relation of superconducting phase

φ and flux quantum Φ0, with e being charge of an electron. In practical implementation,

the various parameters of the junction can be varied by varying the physical dimensions and

material of the junction.

The mathematical description above can be described in a circuit model as shown in

Figure 3.1. The first term in equation (1), which represents voltage across a quantum phase-

slip event, can be re-written to describe the device as a capacitor with kinetic capacitance

Ck, given by:

Ck =
2e

2πVCcos(q)
(3.3)

Hence, the circuit in Figure 3.1 can be treated as a series RLC circuit. We describe

an over-damped QPSJ for the charge-based logic family analogous to the JJ in RSFQ logic,

which will be discussed later. From the circuit and the description given by equations (1)

and (2), we can obtain a damping parameter for a QPSJ, which is given by:

βL =
2πVCL

2eR2
(3.4)

0

−+

V
1
QPSJ

2 L 3 R 0

Figure 3.1: Compact circuit model for QPSJ used in SPICE model development.

βL << 1 indicates an over-damped junction and βL >> 1 represents an under-damped

junction. With βL ∼ 1, the junction is critically damped.

The mathematical definition given for a QPSJ above, along with the circuit description,

has been used to develop a SPICE model for a QPSJ in WRSPICE [92]. In addition to the
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equations above, the time step in solving these equations using numerical methods must be

limited to be smaller than the time scale corresponding to plasma frequency of the junction.

The time step limit ∆t applied to the simulations is given by:

∆t =
0.1

(2π
2e

VC
L

)1/2
(3.5)

The details required for simulating a QPSJ have been setup, enabling simulations of

more complex circuits, which are described in the following section.

3.1.2 SPICE Model Implementation in WRSPICE

The compact model described above is used to develop a SPICE model compatible

with WRSPICE and JSPICE, two programs that are capable of simulating superconducting

circuits involving Josephson junctions along with other devices. A verilog model has been

developed first using the equation and constraints described in the previous section. However,

the ADMS compiler of WRSPICE could not compile the verilog model for QPSJs. Therefore,

the compiler was only used to generate the C++ source files that were then edited to describe

the model accurately according to the compact model equations. The modified nodal analysis

(MNA) stamp of the device is given by the Equation 3.6 and 3.7 below. The time-step limit

equation is added separately to the model and is not part of the MNA stamp. The details of

the development of the SPICE model are described in my master’s thesis [58] and the paper

[92].

[I] = [Y ] [V ] + [RHS] (3.6)
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3.2 Example simulations of QPSJ in WRSPICE

3.2.1 Current Pulses With Quantized Area

The single quantized charge-based logic uses short, pico-second, current pulses as the

basic logic signals. These current pulses have quantized area under the curve, which represent

the total charge traveled along the nano-wire. Therefore, the presence and absence of the

current pulse can form the two logic states, similar to the voltage pulse in RSFQ logic [21].

The explanation for quantized area under the current pulse curve is given by rewriting

equation 3.8 below:

∫
Idt =

∫ 2π

0

2e

2π
dq = 2e = 3.204...× 10−19 C (3.8)

From equation 3.8, the charge of 2e corresponds to the immediate excited energy state

of a fluxon tunneling across the nano-wire which is QPSJ [2]. If the junction is over-damped

(or critically damped), the total charge through the junction with a bias voltage slightly over

VC is restricted to charge 2e through it, with further oscillations damped, without further

excitations. The treatment of charge variable q of a QPSJ is analogous to the treatment of

Josephson junction phase φ.

2e
2π
←→ Φ0

2π
or q ←→ φ
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To illustrate this idea, in Figure 3.2 we show numerical simulation results of a single

current pulse with area of 2e under the curve. Simulation of an RSFQ pulse is also presented

for comparison. Both the junctions are also simulated in under-damped (without a damping

resistor) and over-damped (with a damping resistor) configurations. The circuit setup for

both under-damped and over-damped QPSJs consist of a voltage bias of 0.7VC and a pulse

voltage input in series with a QPSJ. Addition of a series resistor makes it over-damped. A

similar setup has been used for JJ, where a current bias of 0.7IC and a current pulse driving

it. Addition of a parallel resistor makes the junction over-damped. Simulation results for all

the cases (over-damped and under-damped JJ and QPS) are shown in Figure 3.2.

The plot shows quantized area current pulse of a QPSJ very similar to the quantized

area voltage pulse of a JJ, when both the junctions are over-damped. In under-damped

state, both the junctions switch when the input current or voltage goes above the critical

current or critical voltage values and are then latched in that state. This is characteristic

of the hysteresis behavior of both the junctions, where, once switched to a resistive state

above their respective critical voltages or currents, the junctions do not revert back to their

superconducting states until the bias across them is completely zero. In the under-damped

switching behavior of a QPSJ in Figure 3.2, the current across the junction is non-zero even

after its switching state due to the presence of voltage bias and a quasi-particle resistance

across the device.

With over-damped QPSJs, a quantized charge of 2e flows through the junction, similar

to the flux developed across a JJ. Therefore, as in RSFQ, where a loop made of JJs and an

inductor stores one quantum of flux Φ0, an island formed by two QPSJs and a capacitor can

store quantum of charge 2e. An ideal QPSJ is similar to a tunnel barrier, and therefore the

node formed between two QPSJ devices is similar to an island [93, 74].
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Figure 3.2: Comparison of Switching Dynamics of Quantum Phase-slip Junction and Joseph-
son Junction.

3.3 SPICE Simulation of QPSJ I-V Characteristics

In this section, the SPICE simulations of I-V characteristics of a device are presented for

an example quantum phase-slip junction. The operation of a QPSJ can be illustrated using

the equivalent circuit model shown in Figure 3.1. This circuit model can be characterized

by Equations 3.1 and 3.2, and was realized in a SPICE model in WRSPICE [92]. The

coefficients of Equation 3.1 are device parameters that depend on material and dimensions
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of the junction where VC is critical voltage, L is geometrical inductance and R is normal

resistance. Nominal simulated I-V characteristics of a QPSJ are shown in Figure 3.2. Note

that a linear resistance function with a resistance value equal to the normal resistance of

the junction is used here, as opposed to a non-linear, two-part resistance function described

in [92]. This is not expected to have a significant impact on the quantized-charge logic

operation of the devices.

Figure 3.3: I-V characteristics of a quantum phase-slip junction with VC = 1mV , L = 20nH
and R = 1kΩ.

3.4 Device Parameter Evaluation

The junction parameters used to obtain the characteristics shown in Figure 3.2 are some-

what arbitrary and, therefore, they may or may not be applicable for a practical junction.

These parameters depend on the material properties and physical dimensions of the device

and have constraints depending on parameter values that can produce quantum-phase slips.
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These constraints are detailed in [5, 2] in the form of models associating various material and

design parameters to characteristic energies corresponding to quantum phase-slip processes.

The critical voltage VC is related to phase-slip energy by:

VC =
2πEs

2e
(3.9)

where Es is the phase-slip energy, which can be calculated using the model by Mooij et al.

[5]. The normal resistance R is calculated from normal-state resistivity of the given material

and physical dimensions of the nano-wire that forms the QPSJ. The inductance L of the

junction is related to inductive energy EL, which is a function of normal resistance R and

critical temperature of the material [5]. As explained in [5], the parameters satisfying the

condition 0.1 ≤ α ≤ 1, where α = Es

EL
, are expected to be suitable for quantum phase-slip

junctions.

Two different materials, among others hypothesized as suitable for QPSJs [3, 88, 73, 5],

InOx and NbN , are considered for parameter evaluation in this section. Values of a subset

of design parameters satisfying the 0.1 ≤ α ≤ 1 condition for both materials are represented

in Figure 3.4 and Figure 3.5. The details of these calculations are explained in Chapter 7.

Note that there is a range of combinations of design parameters satisfying the conditions for

each material.

By considering an InOx junction of length = 3µm, width = 70 nm and thickness = 20

nm, from the shaded region of Figure 3.4, we obtain the device parameters of critical voltage

VC = 14.7mV , normal resistance R = 300kΩ and inductance L = 2.8nH. Similarly, when we

consider an NbN junction of length = 3µm, width = 10 nm and thickness = 5 nm, we obtain

the device parameters of critical voltage VC = 2.94mV , normal resistance R = 37.2kΩ and

inductance L = 14.2nH. These parameters are directly used with the QPSJ SPICE model

in WRSPICE to obtain I-V characteristics of both the junctions. Figure 3.4 shows the

characteristics of an InOx junction while Figure 3.5 shows the characteristics of an NbN
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junction. The curves are obtained by sweeping voltage across the junctions and measuring

currents in WRSPICE. The Coulomb blockade characteristic of QPSJs [73, 5] are clearly

seen. Since the SPICE model is valid only for transient analysis [92], the curves demonstrate

oscillatory characteristics in some regions.
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Figure 3.4: I-V characteristics of InOx based QPSJ simulated in WRSPICE. VC = 14.7mV ,
R = 300kΩ, L = 2.8nH.

Based on the device model described in Figure 3.1 and Equations 3.1 and 3.2, the QPSJ

is equivalent to a series RLC oscillator. This oscillator must be over-damped in order to

produce quantized-area switching characteristics similar to a Josephson junction in SFQ

logic [18]. Switching characteristics with quantized-area current pulse are demonstrated by

exciting a QPSJ circuit, biased below its critical voltage, using a short voltage pulse that

drives the junction above its critical voltage.

Plots demonstrating current pulses with quantized area equal to 2e, for both InOx and

NbN junctions with parameters taken from Figures 3.4 and 3.5, respectively, are shown in
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Figure 3.5: I-V characteristics of NbN based QPSJ simulated in WRSPICE. VC = 2.94mV ,
R = 37.2kΩ, L = 14.2nH.

Figure 3.9. These junctions are inherently over-damped and do not require additional damp-

ing resistors in series.The integrated area under these curves is equal to 2e, demonstrating

the proper charge pulse.

3.5 Transient Switching Characteristics of a QPSJ Island

A QPSJ can be designed and operated in an appropriate configuration to produce

quantized-area current pulses demonstrating tunneling of a Cooper pair at an instant. This is

similar to a Josephson junction producing a constant area voltage pulse indicating movement

of flux quanta across them. This can be achieved by over-damping the plasma oscillations of

the junction. The QPSJ can be treated as a series RLC oscillator and a damping parameter

can be derived from its characteristic equation as shown in equation below:

βL =
2πVCL

2eR2
(3.10)
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where βL is the damping parameter, VC is the critical voltage of the QPSJ, L is the ge-

ometrical inductance and R is the normal resistance of the nano-wire. The junction is

under-damped if βL >> 1 and over-damped if βL << 1. In order to produce quantized-area

current pulses, the SPICE model and simulation of QPSJ must be modified to recognize

plasma oscillations of the junction. Therefore, the time-step in the device model must be

limited to below the time corresponding to the plasma frequency. The QPSJ model in

WRSPICE is therefore modified to limit the time step given by:

∆t =
0.1

(2πVC/2eL)1/2
(3.11)

A QPSJ may be designed to be either in under-damped or over-damped mode using

Equation 3.4 and by appropriate choice of material properties and dimensions. Analogous

to an SFQ circuit, the island circuit is biased with a DC voltage source Vb as shown in Fig.

3. The DC voltage biases both the junctions to 70% of their critical voltages and therefore

has a value of 140% of VC . An input square voltage pulse is provided as Vin, with sufficient

magnitude, i.e. greater than 150%, to switch the junction.

C

1 QPSJQPSJ

+

−
Vin

−
+Vb

Figure 3.6: Island circuit configuration that is implemented as a quantized charge logic
circuit. Note that the capacitance C can be a parasitic capacitance associated with the
particular circuit design and layout.

When the junction is under-damped, the switching event causes the junction to switch

and latch to a normal state. A result from simulation of the island circuit with both junctions

under-damped is shown in Figure 3.2, where the area under the curve is greater than 2e. A

quantized charge pulse, with area under the curve 2e can be produced by using over-damped

junctions. This is achieved by adding a series resistor to each of the junctions, thereby
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increasing the value of R in Equation 3.1. The simulation result of an over-damped junction

is shown in Figure 3.2, where the area is quantized to 2e.
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Figure 3.7: Simulation result of switching of an island with under-damped junctions.

3.6 Summary

Using the SPICE model developed for a QPSJ, an operation mode of the device feasi-

ble for logic implementation is proposed and demonstrated in simulation. The operation is

based on quantized-charge and is a dual to flux-based logic in SFQ circuits. We have demon-

strated this operation using estimated junction and material parameters of QPSJ that can

be practically implemented. The estimated parameters are an approximation based on a set
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Figure 3.8: Simulation result of switching of an island with over-damped junctions.

of assumptions and we expect that significant experimental work will be needed for experi-

mental verification [5]. The parameter details for obtaining charge pulses in an experiment

are outlined.
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pulse for charge-based logic for two material systems. Area under each pulse is 2e.

35



Chapter 4

Charge-based logic circuits using quantum phase-slip junctions

4.1 Introduction

A QPSJ can be viewed as flux tunneling across a superconducting nano-wire (barrier

for flux) creating a voltage drop at the ends of the wire [2]. Therefore, under the appropriate

operating conditions, QPSJs can be configured to generate quantized-area current pulses

analogous to constant-area voltage pulses in SFQ circuits [18], as described in the previous

chapter. We have developed a SPICE model for QPSJs based on a dual model to JJs [92] and

demonstrated in simulations, the constant-area pulses that demonstrate quantized charge

transport, corresponding to a Cooper pair in QPSJs [94, 95, 96]. In order to implement

logic circuits with these devices, a charge-island circuit element, analogous to an SFQ loop

[18, 21, 22, 23, 24], has been presented in [97], based on single-charge transistor circuits

[93, 74].

In the next section, the basic circuit elements for charge-based superconducting logic

are presented along with design and operation requirements that can be expected to produce

and manipulate the quantized-charge pulses. These circuits represent the building blocks,

that, when used together in different combinations, can form various logic gates that can

be used to scale-up the logic operations to perform more complex computations. In the

following section, design examples and simulation results of some of the logic gates using

the basic components is presented. Finally, differences between SFQ and charge-based logic

is presented, based on simulation and highlighting possible advantages and challenges, with

comparison of speed of operation and energy requirements per switching event.
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4.2 Logic Circuit Elements

The current pulses representing Cooper pair transport across the phase-slip center in the

superconducting nano-wire form the logic bits, with the presence of the pulse representing

logic ”1” and absence of the pulse representing logic ”0”. When a QPSJ is operated below

its critical voltage VC , the current through the device is zero, and the phase-slip center

acts as an insulating barrier between the two electrodes of the device. As an input voltage

pulse above the critical voltage is applied to an over-damped QPSJ, an electron pair tunnels

across the phase-slip center generating a current pulse with a constant area equal to the

charge of two electrons. Therefore, this operation corresponds to a switching from ”0” to

”1” in charge-based logic. All the other logic operations can be performed by using one or

a combination of several logic circuits discussed below.

Figure 4.1: Charge island circuit schematic to generate and/or latch charge on node 1. Note
that the capacitance C can be a parasitic capacitance associated with the particular circuit
design and layout.

4.2.1 Charge Island

The charge-island is comprised of two QPSJs and a capacitor. The two junctions can be

identical or different depending on the application in the logic circuit. A circuit schematic

of the island is shown in Figure 4.1. When phase-slip occurs in both the junctions, the node

1 between both the QPSJs is isolated from the rest of the circuit acting as an island that
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Figure 4.2: Simulation result of an island circuit shown in Fig. 1, illustrating constant-area
current pulse of area = 2e. The critical voltage of both junctions given by VC = 0.7 V.
Capacitance C = 1

2
2e/VC , voltage bias Vb = 1 mV, and magnitude of the pulse input voltage

Vin = 2 mV.

can hold a charge of C.VC , where C is the capacitance of the capacitor. This circuit is a

superconductor analog to a single-electron transistor [98]. In this logic operation, the charge

on the island will be restricted to a single Cooper pair, i.e. 2e. Both the junctions Q1 and

Q2 are biased by DC voltage Vb such that the voltage across each junction does not exceed

the critical voltage VC of either junction. The input voltage Vin is a pulse signal that can

drive the junction Q1 above its critical voltage VC and generate a current pulse. The circuit

shown in Figure 4.1 can be designed to accommodate either no charge on the island at an

instant, or one Cooper pair depending on the application by appropriately designing the

capacitor. If the capacitance C < 2e/VC , the capacitor cannot hold the charge generated by
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exciting Q1 above its critical voltage, and therefore immediately switches the junction Q2.

But if the capacitance C > 2e/VC , then the island traps the charge until another pulse signal

drives it to the output. Note that this circuit can be connected to another circuit instead of

Vin to use the incoming current pulse to Q1 to drive the connected circuit.

The circuit operation is illustrated using WRSPICE simulation, through demonstration

of a constant-area current pulse as shown in Figure 4.2. Different configurations of this

circuit can be used in conjunction with other circuits to design several logic gates, some of

which are shown in the following sections.

4.2.2 QPSJ Transmission Line

Basic operation of QPSJ circuits can be demonstrated by simulating a QPSJ trans-

mission line which propagates quantized charge of 2e along the islands similar to that of

Josephson transmission lines [99, 100, 101, 102]. A QPSJ transmission line can be formed

using a series of islands with a voltage bias and input voltage signal, similar to the single-

electron tunnel junction array reported in [103]. The circuit is shown in Figure 4.3.

Figure 4.3: QPSJ transmission line with a DC voltage bias of 4 × 0.7VC and pulse input
signal, where VC is the critical voltage of each of the junctions.

In the circuit, all the junctions have an equal critical voltage of VC . A DC voltage bias

has been used, at node 5, the value of which is equal to 4× 0.7VC to be able to bias all four

junctions in series. Since each junction, cannot conduct any current until the applied voltage

is above its critical voltage, the charge in the islands is zero at this instant. When the input

pulse signal is applied, the first junction switches as the voltage across it goes above the
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critical voltage of the junction. If the junction is over-damped, a charge of 2e is generated,

which is stored on the first island, i.e. node 2 of Figure 4.3. This charge in turn generates

voltage across the second junction causing it to overcome its critical voltage. Thus, the

charge of 2e, or the current pulse with quantized area of 2e travels along the transmission

line. The simulation result of this circuit with the input voltage and current at each node is

shown in Figure 4.4. A simulation result with multiple current pulses along the transmission

line is shown in Figure 4.5. It is possible to obtain amplification or attenuation of current

pulse amplitude by using junctions of different critical voltage and different capacitor values

similar to that of RSFQ circuits.

4.2.3 QPSJ Pulse Splitter

Fan-out is generally required for implementation of useful digital logic. It is possible to

split the current pulses for fan out with the help of a pulse splitter circuit shown in Figure 4.6,

which employs charge propagation in islands similar to a QPSJ transmission line, employing

different sized junctions. In the circuit shown, the first junction Q1 has a critical voltage of

0.7VC , where VC is the critical voltage of Q2 and Q3. Both the bias voltages are equal to

1.7VC . Without decrease in the amplitude of the current pulse, the input pulse is split into

two output pulses. The simulation result for this circuit is shown in Figure 4.7.

4.2.4 Control Circuit

The control/buffer circuit configuration is unique to charge-based logic, while the charge

island is analogous to a flux loop in SFQ circuits [18].

In the simplest version of this circuit, three QPSJs of different device parameters are

used along with two capacitors. It has two input terminals for DC/pulse voltage sources

and a DC voltage source for biasing the junctions. This circuit is shown in Figure 4.8. The

junctions are designed such that the critical voltage of Q2 is higher than the critical voltage

of Q3. The input voltage Vin2 has magnitude of 0.7VC where critical voltage of Q3 is VC .
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Figure 4.4: Simulation results of QPSJ transmission line illustrating charge 2e traveling
across islands. (a) Total input voltage signal at node 1. (b) Current at node 1. (c) Current
at node 2. (d) Current at node 3.

The input voltage Vin1 is significantly higher than the critical voltage of Q1 to be able to

generate the current pulse. Therefore, when the current pulse is generated at Q1, it switches

Q3 before Q2 when the input Vin2 is high and produces the output ”0” at node 4. But

when the input Vin2 is low, the output is the same as the input Vin1, as the junction Q2 is
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Figure 4.5: Simulation results of QPSJ transmission line with multiple pulses. (a) Current
at node 1. (b) Current at node 2. (c) Current at node 3.

biased by Vb. Hence, the input Vin2 acts as the enable/control input. Furthermore, if the

critical voltage of Q1 is lower than critical voltages of Q2 and Q3, then the circuit becomes

unidirectional, only allowing the current from node 1 to node 4. The input Vin2 can be a

DC bias to use this circuit as a buffer. The simulation result of an example operation of this

circuit is illustrated in Figure 4.9, with circuit parameters chosen to satisfy the conditions

mentioned above.
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Figure 4.6: Pulse splitter: critical voltage of Q1 = 0.7VC and critical voltage of Q2, Q3 =
VC .

4.2.5 QPSJ Buffer

In both the circuits shown so far, the input and output pulses are reciprocal, i.e. the

current, and hence the quantized charge 2e can flow in both directions. A buffer stage can

be designed, as shown in Figure 4.10, and can prevent this reciprocity when introduced in

the transmission lines or in logic circuits. In the circuit, the critical voltage of junction Q1

is 0.7VC , that of junction Q2 is VC and that of junction Q3 is 1.4VC . Therefore, the current

pulse from Q1 switches Q3, before it switches Q2 and prevents signal flow in the direction

from node 1 to node 4. Whereas, when current arrives from the opposite direction, as shown

in Figure 4.11, junction Q1 switches before Q3, allowing the signal through. The bias voltage

at node 4 is equal to 1.5VC to bias both Q1 and Q2. Q3 is biased using a different voltage
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Figure 4.7: Simulation result of pulse splitter circuit shown in Figure 4.6. (a) Total input
voltage signal at node 1. (b) Current at node 1. (c) Current at node 3. (d) Current at node
4.

source, the value of which is equal to 0.7VC . The simulation results for both situations are

shown in Figure 4.11 and Figure 4.12, respectively.
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Figure 4.8: Two input control/buffer circuit with input Vin2 acting as enable/control signal.
This circuit can be used as a direction control buffer circuit when Vin2 is DC bias. VC(Q2)
> VC(Q3) > VC(Q1).

4.2.6 QPSJ Confluence Buffer/Merger Circuit

A confluence buffer circuit is an extension of the buffer circuit with two inputs and an

output. This circuit can be used to merge two signals and generate a corresponding output

pulse without current pulses from one input going to another input. This circuit is shown

in Figure 4.13. Here, Q1 and Q2 have critical voltages of 1.4VC , that of Q3 is VC and that

of Q4 is 0.7VC . The simulation result of this circuit is shown in Figure 4.14.

The circuits discussed so far can be used to manipulate the current pulses, control

direction, fan-in and fan-out of signals. In the next sections, basic flip-flops and other logic

circuits will be presented and discussed.

4.2.7 RS Flip-flop/D Flip-flop

An RS flip-flop or the DC squid of the SFQ logic family is a key component which

can be used in other higher level logic circuits. The corresponding configuration in charge-

based logic has been implemented in a simplest possible circuit using QPSJs, which is an

island formed between two QPSJs. The circuit shown in Figure 4.15 consists of two QPSJs

forming an island with a capacitor along with voltage biases and signals at its two terminals
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Figure 4.9: Simulation result of a control circuit shown in Figure 4.8, illustrating current
pulse at the output only when the control signal is low. The critical voltage of junction Q1
is 0.7 mV, Q2 is 1 mV and Q3 is 1.5 mV. Capacitance C = 0.23 fF, Voltage bias Vb = 1.1
mV, magnitude of the pulse input voltage Vin1 = 1.5 mV and magnitude of the control input
voltage is Vin2 = 1 mV. (a) Input current pulses. (b) Control voltage signal. (c) Output
current pulses.

corresponding to RESET and SET . Both the junctions Q1 and Q2 have critical voltages of

VC . The capacitor between node 3 and ground has a value of 1.5VC/2e, enabling it to store

a charge corresponding to a single Cooper pair at the island, when SET signal is applied.
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(a) (b)

Figure 4.10: Buffer circuit showing current flow situations in both directions. Critical voltage
of Q1 = 0.7VC , Q2 = VC and Q3 = 1.4VC

A DC voltage source biases both the junctions. The input signal at SET , which is Vpulse at

node 1, induces a charge of 2e to the island, and the input signal at RESET , which is Vpulse

at node 4, induces charge opposite to SET and therefore resets the charge on the island.

The simulation result illustrating the function of this circuit is shown in Figure 4.16.

A D flip-flop can be implemented using a similar circuit. The input at RESET is

replaced by a clock signal. Therefore, the input signal switches the first junction and induces

a charge 2e on the island. With the next clock pulse, the charge flows through the OUT

terminal in the circuit performing the function of a D flip-flop.
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Figure 4.11: Simulation result corresponding to circuit in Figure 4.10(a). (a) Signal at node
1. (b) Signal through Q3. (c) Signal at node 4.

4.2.8 T Flip-flop

A T flip-flop can also be implemented using a very similar circuit to RS flip-flop. Both

the RESET and SET inputs are connected to a single clock signal, with the bias voltage

connected as shown in the circuit in Figure 4.17. At each clock pulse, the current pulse

toggles from ON to OFF and vice-versa indicating the presence and absence of charge on

the island with each clock pulse. The simulation result of the circuit is shown in Figure 4.18.

The output current pulse is very similar to the output pulse of RS flip-flop circuit simulation.
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Figure 4.12: Simulation result corresponding to circuit in Figure 4.10(b). (a) Signal at node
1. (b) Signal through Q3. (c) Signal at node 4.

4.3 Logic Gates

The charge island and the control/buffer circuit, in their different configurations, can be

used in various possible configurations to design several logic gates or memory circuits. In

some cases, it is possible to realize the same logic operations in different circuits. Some ex-

amples of logic gates designed using combinations of logic elements discussed in the previous

section are presented below.
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Figure 4.13: QPSJ merger/confluence buffer. Critical voltage of Q1, Q2 = 1.4VC , Q3 = VC ,
Q4 = 0.7VC .

4.3.1 QPSJ Based OR Gate

We will observe that any logic operation can be performed by combining two or more

basic elements discussed so far. An OR gate can be formed by cascading a confluence buffer

and an island formed by QPSJs similar to an RS flip-flop in series. The junctions with

same critical voltages as that of RS flip-flop and confluence buffer. This implementation is

identical to the RSFQ based OR gate. The circuit diagram is given in Figure 4.19. This is

a timed OR gate, and hence has a clock input.

When one or both the inputs are high, the confluence buffer produces a current pulse

corresponding to a charge of 2e at the island, which is the input to the RS flip-flop. With

the next clock pulse, the charge stored on the island can be seen in the current pulse at the

output. When both the inputs are low, there is no charge flow through the output. The

simulation result of this circuit is shown in Figure 4.20.

4.3.2 QPS Based AND Gate

An AND operation in charge-based logic can be obtained by slightly modifying the OR

gate. The confluence buffer part of the circuit is still used here to have a buffered two-input

50



Figure 4.14: Simulation results of a QPSJ merger. (a) Total input voltage signal at node 1.
(b) Current pulse at node 3. (c) Current pulse at node 6. (d) Output signal at node 8.

1 + −Vpulse

−+

Vbias
2 Q1 3

C

Q2 4+ −Vpulse

Figure 4.15: RS flip-flop using QPSJs forming an island with a capacitor. Critical voltage
of Q1, Q2 = VC , C = 1.5VC/2e.

gate, but the island part of the circuit which operates as an RS flip-flop has been replaced

with a buffer circuit from Figure 4.10. At the output node, a clock has been added in series

with the DC bias which makes this circuit a synchronized AND gate. The clock is necessary

for the operation of this gate and a version without clocked gates has not been designed yet.
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Figure 4.16: Simulation results for RS flip-flop circuit in Fig. 14. (a) Input voltage pulse at
SET , i.e. node 1. (b) Input voltage pulse at RESET , i.e. node 4. (c) Output current pulse
at node 4.

1 + −Vclock

−+

Vbias
3 Q1 4 Q2

2

Figure 4.17: T flip-flop circuit obtained from QPSJ island and clock input. Critical voltage
of Q1, Q2 = VC , C = 1.5VC/2e.

It is possible to extend these gate to more than two inputs by adjusting the parameters of

the junctions accordingly. The circuit is shown in Figure 4.21 and the simulation results are

shown in Figure 4.22.
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Figure 4.18: Simulation results for T flip-flop. (a) Clock signal input at node 1. (b) Output
current signal coming out of node 2.

Figure 4.19: QPSJ based OR gate formed by combining a confluence buffer and RS flip-flop.
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Figure 4.20: Simulation results of OR gate implementation using QPSJs. (a) Input current
pulse at node 1. (b) Input current pulse at node 2. (c) Output current pulse at node 9.

When either one of the inputs is high, the junction in the buffer circuit Q5 switches

therefore ensuring the output to be low. When both the inputs are high during the same

clock period, only one of the junctions are negated by the buffer circuit and the output is

still high.
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Figure 4.21: AND gate circuit implemented by replacing RS flip-flop in OR gate with a
buffer circuit.

4.3.3 QPSJ Based XOR Gate

A two input XOR operation using charge-based logic can be implemented in a way very

similar to the OR gate and the AND gate discussed above. A confluence buffer is used for the

two input pulses and the additional buffer gate that has been included for AND operation

has been removed. This ensures two identical inputs cancel each other out, but only a single

pulse at either of the gates will not be affected by a buffer circuit. The circuit is shown in

Figure 4.23 and the simulation result is shown in Figure 4.24.

4.3.4 Alternative Design for XOR Gate

The XOR operation can also be achieved by using the control gate circuit operation

discussed in section 4.4.

Two identical control gates are used in parallel, with both having the data inputs at

both input terminals but their positions swapped from one circuit to another. A simple
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Figure 4.22: Simulation results of AND gate implementation using QPSJs. (a) Input current
pulse at node 1. (b) Input current pulse at node 2. (c) Output current pulse at node 8.

version of the circuit schematic is shown in Figure 4.25, though additional buffer circuits

may be added at the input or output terminals depending on the application of this circuit.

As shown in Figure 4.25, the circuit has two nominally identical control circuits with Q1

and Q4 identical, Q2 and Q5 identical and Q3 and Q6 identical, along with all identical

capacitors. The input voltage signal Vin1is connected to the junctions Q1 and Q6, and Vin2

is connected to Q2 and Q4. When both the inputs are low, no charge transport occurs

through the junctions generating output ”0”.
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Figure 4.23: XOR gate circuit implemented by removing the buffer circuit in AND gate.

When both the inputs are high, the charge 2e is generated at Q1 and Q4, but the

corresponding current pulse signals take the paths through Q3 and Q6, respectively, enabled

by the input signals at these junctions, thereby generating output ”0”. When one of the

inputs is high, the current pulse travels to the output node 4 corresponding to output ”1”.

The simulation results of this circuit with parameters chosen to satisfy the conditions stated

is shown in Figure 4.26. Note that this circuit can also be used as an inverter with one of

the inputs set as clock, or a DC voltage bias. Furthermore, the input signals can be tied

together in different configurations to achieve NAND and NOR gates with more than two

inputs.

4.4 Higher-level Digital Operations

4.4.1 QPSJ Based Half-adder

In order to demonstrate that these individual gate designs shown so far can be used to

perform more complicated logic operations, a half adder has been demonstrated by combining

the AND and XOR gates along with splitters to split the input pulses to both XOR and

AND gates. Figure 4.27 illustrates the schematic of the half-adder circuit. Figure 4.28 shows

the simulation results of the two-input half-adder circuit.
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Figure 4.24: Simulation results of XOR gate implementation using QPSJs. (a) Input current
pulse at node 1. (b) Input current pulse at node 2. (c) Output current pulse at node 8.

4.4.2 QPSJ Based Shift Register

A D flip-flop demonstrated in the previous section can be used to construct a shift

register with identical clocks at each stage. A block diagram demonstrating the entire circuit

is shown in Figure 4.29. The circuit has four shift stages with each stage using a different

but identical clock input. The simulation result of the shift register is shown in Figure 4.30.
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Figure 4.25: Two input XOR gate with both inputs Vin1 and Vin2 connected to two different
terminals of the circuit each. VC(Q2, Q5) > VC(Q3, Q6) > VC(Q1, Q4). Vin1, Vin2 have
magnitudes of 1.5VC(Q1, Q4). C < 2e/VC

4.4.3 QPSJ Based Ring Counter

A ring counter can be constructed using the D flip-flops in a very similar way as a shift

register. A single input pulse is needed to trigger the circuit. An identical clock triggers

each stage and a counter operation can be observed in the simulation result shown in Figure

4.32 for the block diagram of the circuit being shown in Figure 4.31.

4.4.4 QPSJ Based OR-AND Circuit

An OR-AND circuit shown in Figure 4.33 has been implemented. The gates used in

this circuits are all synchronized and therefore use an identical clock. This illustrates that

any other higher-level logic circuits for complicated operation can be implemented using

charge-based logic. The simulation results of this circuit are shown in Figure 4.34.
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Figure 4.26: Simulation result of a two-input XOR gate shown in Figure 4.25. The critical
voltages of junctions Q1, Q4 is 0.7 mV, Q3, Q6 is 1 mV and Q2, Q5 is 1.5 mV. Capacitance
C = 0.23 fF, Voltage bias Vb = 0.7 mV and magnitude of the pulse input voltages Vin1, Vin2

= 1.5 mV. (a) Input current pulses from Q1. (b) Input current pulses from Q4. (c) Output
current pulses at node 4.

4.4.5 QPSJ Based Ring Oscillator

The logic blocks discussed in the previous section can be treated as the fundamental

building blocks for the logic family being discussed. The elements of these blocks can be

combined to form more complicated circuits. To illustrate this, an example of ring oscillator

is implemented. Figure 4.35 shows the block diagram for the ring oscillator. This is based
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Figure 4.27: half-adder circuit schematic

Figure 4.28: Simulation results of Half-adder using XOR and AND gates. (a) Input A. (b)
Input B. (c) Sum (d) Carry.
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Figure 4.29: 4-stage shift register using D flip-flops.

Figure 4.30: Simulation results of shift register. (a) Input data pulses. (b) Output after
stage 1. (c) Output after stage 2. (d)Output after stage 3.
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Figure 4.31: Ring counter using D flip-flops.

Figure 4.32: Simulation results of ring counter. (a) Output after stage 1. (b) Output after
stage 2. (c) Output after stage 3. (d)Output after stage 4.

on Josephson junction based ring oscillator [104]. The corresponding simulation result with

a single voltage pulse input triggering the oscillations in the ring is shown in Figure 4.36.
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Figure 4.33: OR-AND logic circuit implementation.

4.5 Parameter Margin Analysis of Charge-based Logic Circuits

Quantum phase-slip junctions, because of their extremely small junction dimensions and

parameters values like critical voltage, kinetic capacitance and voltage bias required for each

island, can pose a challenge in circuit design if the parameter margins are small. Hence, worst

case analysis of parameters of an island and a series of islands as that of a QPSJ transmission

line has been performed to determine the feasibility of practical implementation charge-based

logic circuits that are presented here. The margins are found to be up to 30% on parameters

like normal resistance of the junction, kinetic capacitance and the series damping resistance,

but only 10% on inductance and bias voltage. In several cases, adjusting the bias voltage is

sufficient to make the circuit function as expected. The parameter margins depend on the

circuit design and can vary, but in principle, the charge-based logic circuits can be designed

have similar parameter margins as RSFQ based circuits. All the circuits that are presented

here have junction sizes and switching parameters in common, and therefore are therefore

expected to have parameter margins of up to 30% on all their parameters except bias voltage

and inductance of nano-wire.
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Figure 4.34: Simulation results of OR-AND gate. (a) Input A. (b) Input B. (c) Input C. (d)
Input D. (e) Output F

4.6 Summary

Quantum phase-slip junctions provide an alternative way to implement logic circuits

using superconductors that may have some advantages such as significant reduction in cir-

cuit complexity, supported by multiple ways to design logic circuits using voltage bias as

opposed to current bias in JJ-based circuits, along with considerably lower power consump-

tion compared to JJ based circuits. The building blocks of charge-based logic circuits have
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Figure 4.35: Block diagram of QPSJ based ring oscillator
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Figure 4.36: Simulation result of a ring oscillator

been demonstrated in simulations, along with examples of the developed logic gates us-

ing previously developed models to support these conclusions. However, there are several

challenges to overcome, particularly in building and testing these junctions. These include
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understanding the details of required materials and design principles required to control

junction parameters to suit charge-based logic operation.
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Chapter 5

Complementary quantum logic circuits using JJs and QPSJs

5.1 Introduction

In this chapter, we explore a new set of circuits, that incorporate both single-flux-

quantum and quantized charge-based complementary quantum logic (CQL) circuits [105].

Therefore, the basic circuits comprise of circuits that convert single-flux quantum voltage

pulses to quantized charge pulses and vice versa to simplify logic and integration operations

of individual flux and charge based logic circuits. Additionally, CQL includes fan-out circuits

that enable single flux input to several charge outputs, or a single-flux input to a charge and a

flux output. Control gate circuit allows controlled switching operation in the form of a charge

input controlling flux output. The operation of these circuits is demonstrated in simulations

using WRSPICE. An XOR gate implementation is presented as an example to illustrate

the operation of these circuits. The developed complementary quantum logic circuits show

promise for higher power efficiency and simpler design in the form of fewer junctions for a

given logic implementation, leading to the possibility of higher integration density.

5.2 Interface Circuits Between SFQ and Charge-based Logic Circuits

Complementary quantum logic circuits comprise of both the SFQ pulses encoded in a

superconducting loop formed by two JJs and an inductor, as well as the quantized charge

pulses encoded on a charge island formed by two QPSJs and a capacitor, as their basic

building blocks. The following circuits employ these blocks and the corresponding signals

generated, in achieving various operations that are essential in a digital logic family.
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Figure 5.1: SFQ voltage pulse to quantized charge current pulse conversion circuit designed
with an SFQ cell and a QPSJ charge island cell. IC(J1) = IC(J2), VC(Q1) = VC(Q2). DC
bias Vbias = 1.4VC . Ibias1 = Ibias2 = 0.7IC .

5.2.1 Flux to Charge Conversion Circuit

The cells corresponding to SFQ loop and charge island can be used in a single circuit

to realize flux to charge conversion. The resulting circuit is shown in Figure 5.1. The two

identical JJs in the circuit are biased with currents that are 70% of their critical currents

IC and the two identical QPSJs are biased using a DC source Vbias with a value of 1.4 x

critical voltage VC of the junction. An input pulse current drives junction J1 to its resistive

state generating a voltage pulse corresponding to a flux quantum in the loop formed by J1,

L and J2, that subsequently switches J2. The critical voltage of the QPSJs are chosen such

that the voltage pulse corresponding to flux quantum at J2 can sufficiently drive the QPSJ

from its Coulomb blockade state to the conducting state, thereby generating a current pulse

of constant area 2e at the output. Simulation results of this circuit showing input current

pulse, voltage from SFQ loop and the output current pulse from Q2 are shown in Figure 5.2.

5.2.2 Charge to Flux Conversion Circuit

The reciprocal circuit of flux to charge conversion circuit shown in Figure 5.1 can be

used for charge to flux conversion. The circuit schematic that can achieve such operation is

shown in Figure 5.3, with the parameters identical to the circuit in Figure 5.1. The simulation

results are shown in Figure 5.4. We note that the shape of the SFQ pulse output presented in

Figure 5.4(c) is different from the shape of the SFQ pulse observed in Figure 5.2(b), but with

equal areas (under the curve), each corresponding to single flux quantum. The difference in
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Figure 5.2: Simulation results of flux to charge conversion circuit shown in Figure 5.1.
IC(J1, J2) = 100µA, VC(Q1, Q2) = 0.7mV, L = 10.4pH, C = 0.23pF. Vbias = 1mV. Mag-
nitude of pulse input Iin = 150µA. (a) Input current pulses to J1 from Iin. (b) SFQ pulse
output from SFQ loop formed by J1, J2 and L measured at node 1 of Figure 5.1. (c) Quan-
tized charge output from the charge island formed by Q1, Q2 and C measured at node 2 of
Figure 5.1.

shape occurs due to the differences in the current pulses (magnitude and duration) applied to

the junctions J1 in each circuit. This also explains the different SFQ pulse shapes that will

be shown in the various other circuits discussed in this chapter. Furthermore, the current

pulse output from the charge island corresponding to quantized charge of 2e is not sufficient

to switch large JJs of critical current of 100µA. Therefore, an input pulse of higher voltage
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Figure 5.3: Quantized charge current pulse to SFQ voltage pulse conversion circuit designed
with an SFQ cell and a QPSJ charge island cell. IC(J1) = IC(J2), VC(Q1) = VC(Q2). Ibias1
= Ibias2 = 0.7IC .

amplitude is used to generate a charge pulse corresponding to ∼1000 Cooper pairs, which

is sufficient to induce an SFQ pulse at the output for circuit components with the specified

parameters. Preliminary simulation results show that, in order to generate a single SFQ

pulse output with only a single Cooper pair pulse input, a JJ with a considerably smaller

critical current (i.e. up to a few micro-amperes) and a QPSJ with a larger critical voltage (i.e.

several hundred milli-volts) are necessary. Practical realization of similar circuits may be

challenging with existing technologies, but may be possible with the development of suitable

devices or circuits (i.e., with QPSJ-based current amplification). We note that circuits such

as these can assist with moving information forward in digital circuits.

5.3 Fan-out Circuits

Fan-out circuit schematic is useful to drive several gates with charge/flux input con-

nected to a flux/charge outputs. Conversion from flux to charge and vice versa enables using

a single input to drive several outputs without decrease in the pulse amplitudes. Further-

more, it is possible to split the input to either charge or flux output in the same circuit.

These two operations are demonstrated in the circuits below.

5.3.1 SFQ Input Splitter to Multiple Quantized Charge Outputs

The circuit shown in Figure 5.5 can be used to split an SFQ pulse input to three

quantized charge outputs. This operation can be extended to a higher number outputs
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Figure 5.4: Simulation results of charge to flux conversion circuit shown in Figure 5.3.
IC(J1, J2) = 100µA, VC(Q1, Q2) = 0.7mV, L = 10.4pH, C = 0.23pF. Magnitude of pulse
input Vin = 2.8V. (a) Voltage pulse input to Q1 with high voltage amplitude from Vin. (b)
Current pulse output from charge island formed by Q1, Q2 and C measured at node 1 of
Figure 5.3. (c) Flux output from the SFQ loop formed by J1, J2 and L measured at node
2 of Figure 5.3.

by including more charge islands at the output of SFQ loop. Furthermore, there are no

restrictions on the junction parameters irrespective of the number of outputs when the islands

are biased with sufficient voltage. This is because the voltage drop at node 1 of Figure 5.5

due to leakage current through connected charge islands is negligible. The simulation results

of the circuit shown in Figure 5.5 are shown in Figure 5.6. The reciprocal circuit operation,
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Figure 5.5: A single SFQ input to three quantized charge outputs with loop and island
circuit parameters identical to that of Figure 5.1. IC(J1) = IC(J2), VC(Q1) = VC(Q2) =
VC(Q3) = VC(Q4) = VC(Q5) = VC(Q6). DC bias Vbias1 = Vbias2 = Vbias3 = 1.4VC . Ibias1 =
Ibias2 = 0.7IC .

i.e. from charge input to several flux outputs is possible provided the critical currents of JJs

are significantly lower (i.e. on the order of a few micro-amperes). Practical realization may

be challenging with present technologies, as mentioned in Section II.B., without internally

amplifying the charge input.

5.3.2 SFQ Input Splitter to SFQ and Charge Quantum Output Splitter

The circuit shown in Figure 5.7 can be used to split a single SFQ pulse input to an

SFQ pulse output and a quantized charge pulse output. Simulations results illustrating this

operation are shown in Figure 5.8.

5.4 Switching and Logic Circuits for CQL Family

5.4.1 Control gate

The signal flow to the output of the conversion circuits can be controlled using a signal

input through a QPSJ similar to control/buffer circuit from [96] resulting in a similar oper-

ation. An example control circuit is shown in Figure 5.9. The JJs J1, J2, QPSJs Q2, Q3,
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Figure 5.6: Simulation results of fan-out circuit shown in Figure 5.5. IC(J1, J2) = 100µA,
VC(Q1, Q2, Q3, Q4, Q5, Q6) = 1mV, L = 10.4pH, C = 0.23pF. Vbias1 = Vbias2 = Vbias3 =
0.7mV. (a) Current input to the SFQ loop formed by J1, J2 and L from Iin. (b) SFQ
voltage pulse output from the loop formed by J1, J2 and L measured at node 1 of Figure
5.5. (c) Output at the charge island formed by Q1, Q2 and C measured at node 2 of Figure
5.9. (d) Output at the charge island formed by Q3, Q4 and C measured at node 3 of Figure
5.9. (e) Output at the charge island formed by Q5, Q6 and C measured at node 4 of Figure
5.9.

along with the inductor L and capacitor C together form the flux to charge conversion cir-

cuit shown in Figure 5.1. An additional QPSJ Q1 is included along with a step input for

switch operation. The critical voltage of Q1 is lower than that of Q2 and Q3, with all other
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Figure 5.7: A fan-out circuit with single SFQ pulse input with two outputs corresponding
to SFQ pulse and quantized charge pulse respectively. IC(J1) = IC(J2) = IC(J3) = IC(J4),
VC(Q1) = VC(Q2). DC bias Vbias1 = 1.4VC . Ibias1 = Ibias2 = Ibias3 = Ibias4 = 0.7IC .

parameters used in the circuit identical to that of Figure 5.1. When the input Vin is high, the

SFQ pulse from J2 switches junction Q1 before junction Q2, resulting in no current pulse

at the output. When the input Vin is low, the SFQ pulse from J2 switches Q2, resulting in

flux to charge conversion. Simulation results illustrating this operation are shown in Figure

5.10. Similar operation can be implemented with charge to flux conversion circuit.

5.4.2 XOR Gate

A two input XOR gate can be implemented using two flux to charge conversion circuits

combined with control gates in parallel. Four inputs are applied to the SFQ cells at junctions

J1 and J3, and at the junctions Q1 and Q4. The input 1 at junction J1 and the input at

Q4 are high at the same time, and the input 2 at J3 and the input at Q1 are high at the

same time. This is illustrated in the circuit shown in Figure 5.11, and the corresponding

simulation results are shown in Figure 5.12. During practical implementation, same input

signals can be used in these cases with appropriate charge/flux conversion circuits. When

both the inputs are ’1’, QPSJs Q1 and Q4 are switched, therefore the signals generated in

both SFQ cells do not travel into the QPSJ charge islands. This results in the output ’0’.

When only one of the inputs is ’1’, the SFQ pulse generated in the JJ corresponding to that

input is converted to quantized charge at the corresponding island, generating the output
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Figure 5.8: Simulation results of fan-out circuit shown in Figure 5.7. IC(J1, J2, J3, J4) =
100µA, VC(Q1, Q2) = 0.7mV, L = 10.4pH, C = 0.23pF. Vbias1 = 1mV. (a) Current input to
the SFQ loop formed by J1, J2 and L from Iin. (b) SFQ voltage pulse output from the loop
formed by J1, J2 and L measured at node 1 of Figure 5.7. (c) Output at the charge island
formed by Q1, Q2 and C measured at node 2 of Figure 5.7. (d) Output at the SFQ loop
formed by J3, J4 and L measured at node 3 of Figure 5.7.

’1’. The output is ’0’ when both the inputs are ’0’, as none of the junctions are switched,

resulting in no SFQ pulses.
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Figure 5.9: Control circuit formed by including an additional QPSJ Q1 at the output of
SFQ loop with a pulse voltage input. IC(J1) = IC(J2), VC(Q2) = VC(Q3) > VC(Q1). DC
bias Vbias = 1.4VC . Ibias1 = Ibias2 = 0.7IC .

5.5 Discussion

CQL circuits provide an a new way to perform digital logic operations in superconduct-

ing electronics that are predominantly based on JJs alone, by utilizing QPSJs, with some

potential advantages. The charge islands formed by QPSJs can generate quantized charge

pulses that are similar to SFQ pulses, but the switching energy of QPSJs to generate a

current pulse is estimated to be order of 1-5 zJ. This is considerably smaller than that of

currently available JJ technologies which dissipate energy in the order of several aJ. Using

JJs and QPSJs together enables convenient fan-out to multiple outputs without a loss of out-

put signal amplitude, in addition to requiring fewer junctions to implement a logic operation

compared to JJ-based circuits.

Although CQL circuits may provide significant advantages, challenges exist in practical

realization of these circuits, pertaining to the material and design of QPSJs for controlled

generation of quantum-phase slips in nano-wires, along with a possible need for lower oper-

ating temperatures (perhaps below 1 K). Other potential issues exist such as interference of

charge noise with the charge on islands. The extent of these issues and possible solutions

may only be evident after sufficient investigation through experiments.
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Figure 5.10: Simulation results of the control circuit shown in Figure 5.9. IC(J1, J2) =
100µA, VC(Q2, Q3) = 1mV, VC(Q1) = 0.5mV, L = 10.4pH, C = 0.23pF. Vbias = 1mV.
Magnitude of pulse input Iin = 200nA. (a) Current input to the SFQ loop formed by J1,
J2 and L from Iin. (b) SFQ voltage pulse output from the loop formed by J1, J2 and L
measured at node 1 of Figure 5.9. (c) Output at the charge island formed by Q2, Q3 and
C measured at node 3 of Figure 5.9. (d) Voltage input Vin that controls the output current.
(e) Current pulse through the QPSJ Q1 when Vin is high measured at node 2 of Figure 5.9.

5.6 Summary

A new family of circuits is introduced that combines the SFQ operation of JJs and

quantized charge operation of QPSJ based circuits to perform digital logic. These circuits

provide an alternative way to perform logic operations that may significantly simplify the
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Figure 5.11: XOR gate operation achieved by introducing additional QPSJs Q1 and Q4 at
the output of SFQ loops, with a pulse voltage input.

design when compared to JJ-based logic families, therefore may improve flexibility when

these circuits are scaled to peta and exa-scale computers. Flux to charge conversion circuits

and vice versa are presented that can be interfacing circuits between JJ and QPSJ based

logic circuits. Logic operations such as an inverter and fan-out to multiple outputs are

demonstrated as examples to illustrate the applications of these logic circuits. However,

substantial developments in technology are required for physical realization of single QPSJs

that exhibit these properties, as well as in testing the circuits discussed in this chapter.
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Figure 5.12: Simulation results of XOR gate shown in Figure 5.9. (a) Input current pulses
Iin1 to generate SFQ pulses in loop J1, L and J2. (b) Input 1 of XOR gate from SFQ
loop J1, L and J2 measured at node 1 of Figure 5.11. (c) Input voltage pulse from Vin2 to
generate quantized charge pulses at Q1. (d) Input 2 of XOR gate from SFQ loop J3, L and
J4 measured at node 2 of Figure 5.11. (e) Output of XOR gate as quantized charge current
pulses from Q3 and Q6 measured at node 3 of Figure 5.11.
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Chapter 6

Adiabatic quantum charge parametron circuits using JJs and QPSJs

6.1 Introduction

Quantum flux parametron [106], a Josephson junction (JJ) analog to the original parametron

circuit [107] has been shown to perform logic operations with energy consumption on the or-

der of thermal energy (kBT ), when operated adiabatically [4]. In this chapter, a parametron

circuit has been developed using quantum phase-slip junctions (QPSJs) that has two degen-

erate ground states that are used as the two switching states of the binary logic system ’0’

and ’1’. Here, a QPSJ-based parametron circuit is demonstrated in simulation, exhibiting

operation that is a dual-operation of an adiabatic quantum flux parametron based on JJs.

The circuit design is explained, along with useful parameters to operate it adiabatically.

Potential energy calculations for this circuit show energy consumption on the order of kBT

at a temperature of 2 K, when appropriate circuit parameters are used. This is followed

by circuit simulation results of various logic circuits that enable universal logic implementa-

tion. Comparison to quantum flux parametron shows possible faster circuit operation and

lower energy consumption when charge parametron is used, therefore highlighting potential

advantages.

6.2 Quantum Charge Parametron Circuit

Figure 6.1 shows two different circuits that are duals to each other based on charge-flux

duality. Figure 6.1(a) is the quantum flux parametron circuit used for adiabatic operation

in [4] using JJs. Figure 6.1(b) is the dual circuit based on QPSJ. The T-junction formed
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by inductors L1, L2 and Lq is replaced by the dual π-junction formed by capacitors C1, C2

and Cq. Similar to the excitation current source is coupled to inductors L1 and L2 in flux

parametron, excitation voltage source is coupled to capacitors C1 and C2. The loops trapping

flux formed by J1, L1, Lq and J2, L2, Lq are replaced by the islands trapping charge formed

by QPS1, C1, Cq and QPS2, C2, Cq. Finally, the input current signal (Iin) parallel to both

the loops is replaced by the input voltage signal (Vin) in series to both the islands. In the

JJ parametron circuit, the excitation source is responsible in switching either of the JJs and

creating a flux in loop. The JJ that is being switched depends on the polarity of the input

signal. The input signal is typically very small i.e. of the order of 0.1Ic, while the output

current is higher than Ic (where Ic is the critical current of both the identical junctions).

Similar to this circuit operation, the excitation source in charge parametron is responsible

for generating charge tunneling on to either of the charge islands on C1 and C2, while the

input voltage signal polarity determines the current direction. The two logic bits 0 and 1

in both the circuits is determined by the output current direction. In JJ parametron, the

output current is the current through the inductor Lq, while in QPSJ parametron, the output

current is the current in the loop formed by QPS1, QPS2 and Cq. It can be shown that, in

both the circuits, it is possible to choose the parameters such as inductances/capacitances,

excitation source magnitudes and frequencies, such that the switching between these logic

states consumes energy less than the thermal energy limit kBT at the operating temperature.

This adiabatic operation enables reversible computing, therefore theoretically reducing the

energy consumption for computing operation to zero, and is explained quantitatively for

QPSJ charge parametron in the following sections.

6.3 Switching Energy of the Charge Parametron Circuit

In order to ensure that the circuit shown in Figure 6.1 has switching energy less than that

of the thermal energy at the operating temperature, the circuit parameters must be tuned

appropriately to establish two degenerate ground states, and during the switching, the energy
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(a) Quantum flux parametron circuit with JJs [4]

(b) Quantum charge parametron with QPSJs

Figure 6.1: (a) Quantum flux parametron circuit with JJs [4] and (b) quantum charge
parametron with QPSJs.

barrier between them is lowered to zero. This is possible by calculating the potential energy

of the circuit and understanding the tunable parameters to tune the switching energy. A

simplified potential energy of the QPSJ charge parametron is given by Equations 6.1 and

6.2. In these equations, the capacitors C1 and C2 of Figure 6.1(b) are considered as short.

This simplification allows illustration of adiabatic operation. The complete circuit analysis

will be shown in later circuits.
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UQCP = ES[
(qout − qin)2

βL
− 2cos(qout)cos(qex)] (6.1)

where,

βL = 2CqVC(
2π

2e
) (6.2)

qout is the normalized output charge, qin is the normalized input charge and qex is the

normalized excitation charge and Es is the phase-slip energy. Therefore, the parameters

that determine the adiabatic mode of circuit operation are the load capacitance Cq and the

excitation and input charge magnitude. The potential energy normalized to the phase-slip

energy can be plotted as a function of βL and qex. In Figure 6.2, the potential energy as a

function of normalized output charge is shown. It is shown that, a double potential well is

formed corresponding to the two current directions, i.e. the two logic states of the circuit.

The barrier between the potential wells determines the cost of switching from one logic state

to another. The circuit is in either of the two lowest energy stable states while no switching

is performed.

With the appropriate choice of Cq to make the parameter βL = 1, the energy barrier

can be brought down to zero enabling adiabatic switching. This is illustrated in Figure 6.3,

where potential energy as a function of excitation and parameter βL is shown.

Switching between logic states depends on the polarity of input voltage. The potential

energy with input voltage is shown in Figure 6.4. A very small input voltage (of the order of

0.1VC , where VC is the critical voltage of either of QPSJs) is necessary to perform switching

operation. The input voltage creates an energy difference in both the logic states such that

the lower energy state becomes more stable.

The energy dissipation and speed of operation of the circuit for both JJ and QPSJ based

parametrons are compared. It can be shown that, for adiabatic operation, QPSJ parametron

can be operated at higher operating speeds. Furthermore, QPSJ parametron consumes lower
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Figure 6.2: Potential energy of QPSJ charge parametron plot as a function of normalized
output charge.

Figure 6.3: Potential energy of QPSJ charge parametron as a function of parameter βL and
normalized excitation charge illustrating adiabatic switching.
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Figure 6.4: Potential energy of QPSJ charge parametron illustrating the effects of input
voltage.

energy compared to JJ parametron. The comparison shown in Figure 6.5 is for the smallest

junction sizes reported.

When the capacitors C1 and C2 are included in the potential energy equation, as pa-

rameters that can be chosen to obtain adiabatic operation, the potential energy equation is

given by Equation 6.3.
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Figure 6.5: Energy consumption versus operating speed comparison of JJ and QPSJ based
parametrons. Thermal energy at 4.2 K is shown. The operation below thermal energy is for
adiabatic switching.

UQCP = ES[
(qex − q−)2

βL
+

(qin − q+)2

βL + 2βq
− 2cos(q−)cos(q+)] (6.3)

where,

βL = 2C1VC(
2π

2e
) (6.4)

and,

βq = 2CqVC(
2π

2e
) (6.5)
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q+ =
q1 + q2

2
(6.6)

q− =
q1 − q2

2
(6.7)

6.4 Circuit Designs and Simulations

The circuit shown in Figure 6.1(b) is simulated with the following parameters. QPS1, QPS2:

VC : 400 µV, Rn: 1 kΩ, L: 10 nH. C1, C2: 0.228 fF, Cq: 0.5 fF, Vin: 200 µV, Vex: 200 µV

magnitude, 250 ps period. The simulation results of the circuit is shown in Figure 6.6. In-

put (+1) implies Vin: +200 µV and input (-1) implies Vin: -200 µV. Input is DC in this

simulation. When input is (+1), the corresponding output current is positive. The current

pulses are only seen during positive cycle of excitation, with zero current when excitation is

negative. When the input is (-1), the output current is negative. This cell can be configured

to form an inverse majority logic gate. Majority logic gate is a reversible gate, therefore

satisfying conditions suitable for reversible computing. These conditions include logical and

physical reciprocity, i.e. the input logic state can be achieved when the output is injected

into the input/output of an identical inverse majority gate.

Dissertation_main_files/adia_fig6.png

Figure 6.6: Simulation results of a QPSJ charge parametron cell shown in Figure 6.1.

The majority gate schematic is shown in Figure 6.7. It is identical to the basic QPSJ

charge parametron but has three voltage input signals in series.

NAND and NOR operation of inverse majority gate simulations are shown in Figure 6.8

below. Tables 6.1 and 6.2 show the truth tables for the operation.
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Figure 6.7: 3-input inverse majority gate using QPSJ charge parametron circuit.

In1 In2 In3 Out

1 1 1 -1

1 -1 1 -1

-1 1 1 -1

-1 -1 1 1

In1 In2 In3 Out

1 1 -1 -1

1 -1 -1 1

-1 1 -1 1

-1 -1 -1 1
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Figure 6.8: NOR operation using inverse majority gate according to tables 1 and 2.

6.5 Switching Energy of the Parametron Circuit

The future work mainly includes optimizing the circuit operation by tuning the circuit

parameters to achieve adiabatic mode of operation. This involves tuning the parameters

betaL and βq of equations 6.4 and 6.5 respectively. For adiabatic operation of the charge

parametron circuit, the switching energy must be below the thermal energy kBT , i.e. 4x10−23

J. The bit energy of the current circuit can be estimated from simulations as shown in Figure

6.10 below. A single cycle of the excitation voltage and current are integrated, and the energy

is calculated below:
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Figure 6.9: NOR operation using inverse majority gate according to tables 1 and 2.

EQCP =
1.99x10−14)(3.67x10−17)

100x10−12
= 7.34x10−21per bit (6.8)

The calculated energy per bit is for the clock at a frequency of 10 GHz, without any

optimization to achieve adiabatic operation. The switching energy will be further reduced

by tuning junction parameters, the Beta parameters and clock speed. Furthermore, this

report outlines the operation of a single cell of charge parametron circuit family and its

corresponding logic circuits. Therefore, it is necessary to demonstrate circuit operation of

several single cells together, to show that this technology is scalable. Future work involves

identifying suitable circuit schematics to couple several charge parametron circuits and logic

gates to show that the output from a single cell can be used to drive the adjacent cell.
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Figure 6.10: Area under the curve for voltage and current wave-forms corresponding to single
switching cycle used to calculate energy per bit.
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Chapter 7

Design and material composition of QPSJs

7.1 Introduction

In this chapter, the design and material composition of QPSJs that are suitable to

fabricate the logic circuits discussed in this dissertation are estimated based on the phase-

slip energy physical model presented by Mooij et. al [5]. The critical voltage of the Coulomb

blockade across the QPSJ is dependent on the maximum phase-slip energy of the nano-

wire. The device parameters such as critical voltage, normal resistance and the geometrical

inductance can be extracted from the conditions laid out by [5] that maximize the probability

of quantum phase-slips across the nano-wire. In the following sections, these conditions

are used to estimate suitable materials for QPSJs as well as their design parameters such

as the nano-wire length, width and thickness, along with the measurement temperature.

Furthermore, the switching energy and the switching delay for the chosen design and material

parameters are estimated. The programs used to calculate these estimations are provided in

the appendix.

7.2 Design and Material Composition Estimations for QPSJs

The quantum phase-slip energy of a QPSJ based on the compact circuit model presented

in chapter 2 is given by Equation 7.1 below. The energy of the phase-slip depends on the

phase, where maximum phase-slip energy is given by Es. This is the energy barrier for

the flux to tunnel across the nano-wire generating a phase-slip center, and suppresses the

superconductivity.

93



E = Es(1− cos(q)) (7.1)

where normalized charge q is given by,

q =
2π

2e
, 0 < q < 2π, n ∈ Z (7.2)

The maximum phase-slip energy Es is given by Equation 7.3 according to [5]. It is

a function of material parameters such as critical temperature Tc, coherence length ξ and

normal resistance per coherence length Rξ.

Es = a
A

ξ
kBTc

Rq

Rξ

exp(−bRq

Rξ

) (7.3)

In this model, the constants a and b are unknown and are assumed to be material

dependent. kB is the Boltzmann constant, Rq is the quantum resistance h
4e2

= 6.45kΩ, A is

the length of the wire and

Rξ =
ξRn

A
(7.4)

Rn is the normal resistance. Another energy scale of interest with respect to the quantum

phase-slips is the inductive energy of the nano-wire. The inductive energy of the nano-wire

can be calculated as shown below according to [5].

EL =
Φ0

2

2L
= 17.4

Rq

Rn

kBTc (7.5)

For the probability of the quantum phase-slips to be highest in a nano-wire, the condi-

tions in Equation 7.6 [5] and Equation 7.8 must be satisfied.

0.1 ≤ αc ≤ 1 (7.6)
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where

αc =
Es
EL

(7.7)

Es � kBT (7.8)

In these various conditions, the constraints can be related to physical dimensions of the

nano-wire such as length l, area of cross-section (related to width w and thickness t) and the

material parameters such as critical temperature Tc, coherence length ξ and resistivity ρ.

Examples of designs of InOx and NbN are shown in Figures 7.1 and 7.3 and the cor-

responding switching energy and switching delay for InOx are shown in Figures 7.4 and

7.5. Figure 7.6 shows a comparison between the phase-slip energy for a junction of nominal

physical dimensions and the thermal energy as a function of temperature. Since phase-slip

energy is not directly dependent on temperature, a single value for each material is shown.

Another energy scale is added to this plot that represents 100 ∗ kBT . This is a suggested

energy scale chosen such that the noise level when measuring phase-slip properties are min-

imal and therefore may not significantly distort the tunneling phenomenon. Similar energy

differences between Josephson energies and thermal energies are used for JJs. Furthermore,

temperature also affects the ICRN product in JJs. The switching speed of a junction is

directly proportional to its ICRN product. Similarly, in case of QPSJs, the switching speed

is proportional to critical voltage VC . This separation factor between thermal energy and

phase-slip energy ensures a high switching speed for QPSJs. However, this is only an estimate

and not a necessary condition to observe phase-slips.
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Figure 7.1: Design parameter evaluation for InOx. Shaded region shows design parameter
combinations satisfying condition for forming a QPSJ.
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Figure 7.2: Design parameter evaluation for NbN . Shaded region shows design parameter
combinations satisfying condition for forming a QPSJ.
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Figure 7.3: Design parameter evaluation for NbTiN . Shaded region shows design parameter
combinations satisfying condition for forming a QPSJ.
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Figure 7.4: Power dissipated per switching event in an InOx QPSJ calculated based on a
model by Mooij et al. [5] for a nano-wire of length 1 µm.
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Figure 7.5: Switching speed in an InOx QPSJ calculated based on the model by Mooij et al.
[5] for a nano-wire of length 1 µm.
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Figure 7.6: Phase-slip energy in various materials compared to thermal energy (kBT ) as a
function of temperature. This plot can be used to estimate measurement temperatures for
QPSJs in different materials. The dotted red line is the recommended phase-slip energy (two
orders above thermal energy) line as a function of measurement temperature.
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Chapter 8

Conclusion

8.1 Potential Advantages of QPSJ-based Logic Circuits

Superconducting computing presents advantages compared to CMOS based computing

in terms of speed and power dissipation [27]. Currently, superconducting computing is

exclusively based on JJs. Our estimations show that the reduction in power dissipation,

and associated reduced energy per operation, can be even more significant for QPSJ-based

circuits, for the cases of peta and exa-scale computing, while maintaining or improving

speed over JJ-based circuits. According to the equations in [6], the power dissipation versus

delay per switching event for varying junction geometries can be calculated and is shown

in Figure 8.1. Similarly, the switching energy versus delay per switching event of JJs and

QPSJs are compared in Figure 8.2. The energy per switching event for a typical QPSJ with

parameters from [73] can be calculated as Eswqpsj = (2e)(VC) = 2(1.6∗10−19C)(0.7∗10−3V ) =

2.24zJ , while the energy per switching event for a typical JJ with a critical current of 100

µA is Eswjj = (Φ0)(IC) = (2.067 ∗ 10−15Wb)(100 ∗ 10−6A) = 0.21aJ . A comparison of

phase-slip energy (i.e. the energy barrier at the nano-wire during flux tunneling calculated

using the model by Mooij et. al [5]) for various materials of interest and thermal energy

versus temperature is shown in Figure 7.6. At a given measurement temperature, phase-slip

energy must be at least two orders of magnitude higher than thermal energy for quantum

tunneling of flux instead of thermal activation. Therefore, InOx, NbN and, perhaps NbTiN

are materials of interest for QPSJs. Although Nb appears to have high phase-slip energy, the

kinetic inductance of the material is low, making it difficult to observe quantum phase-slips.
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It is important to note that these are estimates based on simulation and a primary goal of

future efforts should be to explore and refine these estimates by building and testing relevant

devices and circuits.

Figure 8.1: Delay versus power comparison of JJs in SFQ circuits and QPSJs in charge-based
logic circuits, calculated according to [6] (Chapter 6). The different curves for QPSJ are for
different nano-wire widths and lengths. The different curves for JJ are for different junction
areas and critical current densities.

Promising potential advantages of QPSJ-based superconducting electronics:

• QPSJ based circuits are voltage-biased compared to current-biasing in JJ based cir-

cuits. This shows promise to reduce circuit complexity in large-scale integration.
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Figure 8.2: Switching energy versus delay comparison of JJs in SFQ circuits and QPSJs in
charge-based logic circuits, calculated according to [6] (Chapter 6). The different curves for
QPSJ are for different nano-wire widths and lengths. The different curves for JJ are for
different junction areas and critical current densities.

• It is challenging to scale existing JJs to junction sizes of a few nanometers, because

as critical current of JJs get smaller, larger inductances, and therefore larger logic

cells, are needed for SFQ loops. Furthermore, superconducting loops that can store

flux quantum occupy a substantial area. QPSJs use nano-wires with cross-sectional

dimensions of 10s of nanometers and with charge storage possible in an area of a few

10s of square nanometers. A single logic cell (i.e. a charge island) of charge-based logic

will be less than 500 nm long and less than 50 nm wide (for two QPSJs in series with
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a capacitor at their node), whereas a single SFQ logic cell is a loop made of two JJs

and an inductor with an area of a few square micrometers.

• Estimations show an advantage in power dissipation in QPSJs of approximately 2

orders of magnitude, or even higher for the QPSJs in adiabatic circuits, compared to

JJs in each switching event, along with low or negligible static power dissipation while

maintaining operation speed.

Nevertheless, implementation of circuits based on QPSJs also presents potential challenges

and risks, the extent of which are yet to be explored in detail and will be explored in future

efforts. These include:

• Observing quantum phase-slips in nano-wires, and controlling them, is challenging;

particularly because of lack of sufficient experimental research.

• QPSJs may need to be operated at temperatures below that required for JJs, possibly

because of thermal noise; thereby introducing the need for additional cooling. If this is

true, and how much lower, are questions that must be answered before implementing

QPSJ-based circuits at a higher level.

• Due to the nature of charge-based logic being implemented using a small number of

electrons per logic bit (2e), charge noise may have significant effects. The extent of

this issue is yet unknown and needs more exploration to determine the impact and

development of possible solutions.

Some of the aspects of QPSJs are similar to previous or existing technologies, such as

single-electron transistors (SETs) [108], superconducting nano-wire single photon detectors

(SNSPDs) [109], microwave kinetic inductance detectors (MKIDs) [110] and nTrons [111],

with respect to physical attributes such as tunnel barriers (in the case of SETs) and nano-

wire device geometry, as in SNSPDs, MKIDs and nTrons. There are some similarities, but
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also some significant differences between QPSJ-based circuits and each of these other de-

vices or technologies. The important difference arises from the tunnel barrier that forms

in QPSJ-based structures, which is inherent to the physics of the quantum phase-slip phe-

nomenon, as opposed to materially-, optically- or thermally- defined (or induced) barriers

in SETs, SNSPDs and nTrons. For the case of SETs, the similarity exists in quantized

charge (electron) tunneling through a barrier, which is the phenomenon that was proposed

for use in digital logic applications [108]. The basis of operation of QPSJs in logic circuits

relies on a Cooper pair (or multiple pairs) tunneling through a quantum phase-slip-defined

barrier, which is not materially defined (i.e., not defined as a barrier material), along a

superconductor nano-wire. This can be contrasted with the operation of SETs where the

tunneling barrier is physically defined (as a barrier material between semiconducting, or

in some case superconducting, regions) for a single-electron to tunnel during a switching

event. Furthermore, SETs are three terminal devices that require regenerating charge on

the islands through a gate voltage, in contrast to the two-terminal logic cell defined for

QPSJ-based logic circuits. Since the information-carrying particle in QPSJ-based circuits is

a non-scattering Cooper pair, this is expected to allow regenerative action similar to JJ-based

circuits relying on flux generation and propagation (for example in a Josephson transmission

line, JTL). QPSJ-based logic circuits are estimated to be up to two orders of magnitude

faster while allowing a decrease in power dissipation by two orders of magnitude, compared

to SETs [108]. SNSPDs are devices with a barrier induced in the nano-wire by an external

optical excitation, and therefore are suitable for applications in imaging and optical sensing.

Achieving digital logic operations using SNSPDs may require significant additional hardware

(although there is interest in their use in optical transducers for quantum computing appli-

cations [109]). nTrons are another set of three-terminal superconducting devices proposed

as alternative to JJ-based structures for several applications including classical computing

[110]. While they are achieved using thermally activated barriers, the switching operation

is based on limiting or re-routing current due to the activated barriers and are therefore
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not analogous to JJ-based operation. The currents through the devices are not limited to

quantized charge tunneling, and lead to several orders of magnitude higher switching energy

[111] as compared to the estimates provided for QPSJ switching. In summary, QPSJs in

our proposed circuit applications are primarily viewed as dual devices to JJs, where flux

tunnels across the nano-wire (superconducting barrier), similar to charge tunneling across a

non-superconducting barrier in JJs. QPSJ-based logic circuits can be thought of as being

quite similar or complementary to JJ-based logic circuits, while providing several advantages

over or enhancing circuit performance when used in conjunction with them.

8.2 Future Work

One of the main areas of need, to advance QPSJ technology to a useful point, is to

develop suitable and reproducible processes to fabricate nano-wires that have controlled

quantum phase-slips at temperatures of 4 K or higher. Superconducting compounds such

as NbN, NbTiN and InOx must be explored for nano-wires for the reasons described in

the previous sections. Nano-wires of different sizes and configurations must be fabricated

and tested. Phase slips have been observed at temperatures above the sub-K regime [112],

though the initial logic circuits most likely require testing down into the several 100s of

mK to provide a suitable temperature range over which to observe and control the phase

slips while also connecting the device performance and behavior to controllable fabrication

processes, materials and device geometry. Once reproducible QPSJs are realized, next steps

must involve fabricating simple circuits. Circuits, such as a single charge island, formed by

two QPSJs and a parasitic capacitor, with an island at the node formed by these devices,

will be fabricated and characterized. Initial testing of these circuits will be similar to DC

characterization of single QPSJs, to determine the presence of quantized charge on islands.

The technology will then be suitable to demonstrate operations of complex circuits using

QPSJs. These will include driver/receiver circuits and charge transmission lines with differ-

ent lengths (i.e., numbers of gates), formed by a series of charge island circuits, which can

107



be tested with clocks of different frequencies to verify quantized charge pulse propagation

and explore energy/power dissipation. Future directions involve design, fabrication, demon-

stration and detailed exploration of the operation and performance of the different types

of digital and neuromorphic circuits [113, 114]. These must also include addressing certain

engineering challenges such as charge noise, need for amplification, etc., through designing,

fabricating and testing additional suitable circuits and test structures.

8.3 Conclusion

Quantum phase-slip junctions and the related circuit families discussed here offer a

promising new form of superconducting electronics, which has been predominantly based

on Josephson junctions. Our work thus far has shown some of the appealing aspects of

QPSJ-based systems, such as energy efficiency and operating speed, with several possible

additional advantages over those based on JJs. This project has been internally funded up

to this point, which is why our work has mainly been in simulation with limited dabbling

in the experimental work (preliminary materials deposition and simple test device designs).

External funding is expected to significantly impact progress, particularly in practical imple-

mentation of QPSJs and related circuits, because it will allow our team (including graduate

students) to focus on exploring and tackling the experimental challenges. Although this

chapter describes several circuit families, the initial steps will be to work towards practical

realization of QPSJ devices, along with suitable test structures and, perhaps, simple logic

cells to provide insight into the accuracy of our initial simulation-based work. The progress

in designing digital and neuromorphic circuits was described to motivate the exploration of

QPSJs suitable for superconducting electronics aimed at advanced information processing

and computing technologies. Success in these initial steps will provide a path to justify the

exploration of larger circuits leading to superconducting computing using the various circuit

families introduced.
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Appendix A

The device parameters used for QPSJs in circuit simulations are based on calculations
using a phase-slip energy model presented by Mooij et. al. [5] as detailed in Chapter 7 of
this dissertation. In this section, the python programs developed to calculate the physical
parameters that can be used for evaluation of circuit parameters are presented. The program
for estimation of QPSJ physical parameters for a given material are shown below: ————
——————————————————————- //

Name: QPSJ parameters //
Purpose: Estimation of range of QPSJ physical parameters for experimental phase-slip

observation //
Author: Uday Goteti //
Created: 04/03/2016 //
Last edited: 01/23/2018 //
——————————————————————————- //
from numpy import * //
from math import *//
import matplotlib.pyplot as plt //
from matplotlib.widgets import * //
def kbt(t)://
kb = 1.38064852e-23 Boltzmann’s constant//
kbt = kb*t//
return kbt//
def Rcl(cl, l, Rn): //
Rcl = cl*Rn/l //
return Rcl //
def Es(cl, l, t, Rn): //
a,b for NbN //
a = 0.52 //
b = 0.1 //
a = 0.21 //
b = 0.115 //
a,b for InOx //
a = 1.5 //
b = 1.2 //
new a and b for qps transistor //
a = 0.18 //
b = 0.16 //
Rq = 6.45e3 //
Rc = Rcl(cl, l, Rn) //
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kb = kbt(t) //
Es = a*(l/cl)*kb*(Rq/Rc)*exp(-b*(Rq/Rc)) //
return Es //
def El(Rn, t): //
kb = kbt(t) //
Rq = 6.45e3 //
El = 17.4*(Rq/Rn)*kb //
return El //
def Alpha(cl, l, t, Rn): //
Ea = Es(cl, l, t, Rn) //
Eb = El(Rn, t) //
Alpha = Ea/Eb //
return Alpha //
def NbN(): //
NbN = dict(t = 16.00, Tc of NbN in K //
cl = 5e-9, Coherence length of NbN in m //
Rho = 62e-8) NbN resistivity in Ohm-m at 20K //
return NbN //
def NbTiN(): //
NbTiN = dict(t = 18.00, Tc of NbN in K //
cl = 4.26e-9, Coherence length of NbN in m //
Rho = 100e-8) NbN resistivity in Ohm-m at 20K //
return NbTiN //
def NbSi(): //
NbSi = dict(t = 3.10, Tc of NbSi in K //
cl = 15e-9, Coherence length of NbSi in m //
Rho = 150e-8) NbSi resistivity in Ohm-m at 20K //
return NbSi //
def InOx(): //
InOx = dict(t = 2.7, Tc of InOx in K //
cl = 10e-9, Coherence length of InOx in m //
Rho = 14e-5) InOx resistivity in Ohm-m at 20K?? (not
sure if it is 20K) //
return InOx //
def Nb(): //
Nb = dict(t = 9.25, Tc of Nb in K //
cl = 38e-9, Coherence length of Nb in m //
Rho = 50e-9) Nb resistivity in Ohm-m at 20K?? (not sure about this value) //
return Nb //
def Ti(): //
Ti = dict(t = 0.3, Tc of Ti in K //
cl = 2.7e-6, Coherence length of Ti in m //
Rho = 1e-6) Ti resistivity in Ohm-m at 20K //
return Ti //
def TaN(): //
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TaN = dict(t = 3.9, Tc of TaN in K //
cl = 6e-9, Coherence length of TaN in m //
Rho = 38e-5) TaN resistivity in Ohm-m at 20K?? (not
sure if it is 20K) //
return TaN //
def plot(ls, i): //
d = NbSi() //
d = NbN() //
d = InOx() //
d = Nb() //
d = Ti() //
d = TaN() //
t = d[’t’] //
cl = d[’cl’] //
Rho = d[’Rho’] //
l = ls //
ws = linspace(1e-10, 200e-10, 2000) nano-wire width in m //
d = [5e-9, 10e-9, 20e-9, 30e-9, 40e-9, 50e-9, 100e-9] nano-wire thickness in m //
Rns = ws.copy() //
ala = ws.copy() //
alb = ws.copy() //
alc = ws.copy() //
ald = ws.copy() //
ale = ws.copy() //
alf = ws.copy() //
alg = ws.copy() //
for idx, w in enumerate(ws): //
Rns[idx] = Rho*(l/(w*d[0])) //
a = Rns[idx] //
print ”
ala[idx] = Alpha(cl, l, t, Rns[idx]) //
for idx, w in enumerate(ws): //
Rns[idx] = Rho*(l/(w*d[1])) //
alb[idx] = Alpha(cl, l, t, Rns[idx]) //
for idx, w in enumerate(ws): //
Rns[idx] = Rho*(l/(w*d[2])) //
alc[idx] = Alpha(cl, l, t, Rns[idx]) //
for idx, w in enumerate(ws): //
Rns[idx] = Rho*(l/(w*d[3])) //
ald[idx] = Alpha(cl, l, t, Rns[idx]) //
for idx, w in enumerate(ws): //
Rns[idx] = Rho*(1/(w*d[4])) //
ale[idx] = Alpha(cl, l, t, Rns[idx]) //
for idx, w in enumerate(ws): //
Rns[idx] = Rho*(1/(w*d[5])) //
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alf[idx] = Alpha(cl, l, t, Rns[idx]) //
for idx, w in enumerate(ws): //
Rns[idx] = Rho*(1/(w*d[6])) //
alg[idx] = Alpha(cl, l, t, Rns[idx]) //
font = ’family’ : ’serif’, //
’weight’ : ’normal’, //
’size’ : 40 Fixed font parameters for the plot
- latex - change if necessary //
plt.figure(i,figsize=(18,15),facecolor=’w’, edgecolor=’k’) //
plt.plot((1e9)*ws, ala, ’-o’, label = ’Thickness = 5nm’, ms=10) //
plt.plot((1e9)*ws, alb, ’-*’, label = ’Thickness = 10nm’, ms=10) //
plt.plot((1e9)*ws, alc, ’-x’, label = ’Thickness = 20nm’, ms=10) //
plt.plot((1e9)*ws, ald, ’-

′,label=′Thickness=30nm′,ms=10)//

plt.plot((1e9)*ws, ale, ’-.’, label = ’Thickness = 40nm’) //
plt.plot((1e9)*ws, alf, ’–’, label = ’Thickness = 50nm’) //
plt.plot((1e9)*ws, alg, ’-,’, label = ’Thickness = 100nm’) //
plt.ylabel(r’α’) //
plt.xlabel(’Width (nm)’) //
plt.title(’Length =
plt.axhspan(0.1, 1, color = ’blue’, alpha = 0.1) //
plt.text(10, 0.5, r’0.1≤ α ≤1’, color=’white’) //
plt.xlim([0,12]) //
plt.ylim([0,2]) //
plt.rc(’font’, **font) //
plt.legend(frameon = False, loc = (0.5,0.5), prop=’size’:35) //
plt.tightlayout()//
def Energiesplots() : //
dNbsi = NbSi()//
dNbn = NbN()//
dInox = InOx()//
dNb = Nb()//
dT i = Ti()//
dTaN = TaN()//
dNbT iN = NbTiN()//
tNbsi = dNbsi[

′t′]//
clNbsi = dNbsi[

′cl′]//
RhoNbsi = dNbsi[

′Rho′]//
RnNbsi = RhoNbsi ∗ (1e16)//
tNbn = dNbn[′t′]//
clNbn = dNbn[′cl′]//
RhoNbn = dNbn[′Rho′]//
RnNbn = RhoNbn ∗ (3e− 6)/((5e− 9) ∗ (10e− 9))//
tNbT iN = dNbT iN [′t′]//
clNbT iN = dNbT iN [′cl′]//
RhoNbT iN = dNbT iN [′Rho′]//
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RnNbT iN = RhoNbT iN ∗ (3e− 6)/((5e− 9) ∗ (10e− 9))//
tInox = dInox[′t′]//
clInox = dInox[′cl′]//
RhoInox = dInox[′Rho′]//
RnInox = RhoInox ∗ (3e− 6)/((70e− 9) ∗ (20e− 9))//
tNb = dNb[

′t′]//
clNb = dNb[

′cl′]//
RhoNb = dNb[

′Rho′]//
RnNb = RhoNb ∗ (4e− 6)/((2e− 9) ∗ (10e− 9))//
tT i = dT i[

′t′]//
clT i = dT i[

′cl′]//
RhoT i = dT i[

′Rho′]//
Rnti = RhoT i ∗ (1e− 6)/((1e− 9) ∗ (1e− 9))//
tTaN = dTaN [′t′]//
clTaN = dTaN [′cl′]//
RhoTaN = dTaN [′Rho′]//
RnTaN = RhoTaN ∗ (3e− 6)/((20e− 9) ∗ (5e− 9))//
EsNbsi = Es(clNbsi, 3e− 6, tNbsi, RnNbsi)//
EsNbN = Es(clNbn, 3e− 6, tNbn,RnNbn)//
EsInox = Es(clInox, 2e− 6, tInox,RnInox)//
EsNb = Es(clNb, 4e− 6, tNb, RnNb)//
EsT i = Es(clT i, 1e− 6, tT i, Rnti)//
EsTaN = Es(clTaN, 2e− 6, tTaN,RnTaN)//
EsNbT iN = Es(clNbT iN, 2e− 6, tNbT iN,RnNbT iN)//
t = linspace(0, 100, 10000) //
Eb = kbt(t) //
plt.figure(11, figsize=(2.9, 2.6), // dpi=300,facecolor=’w’,
edgecolor=’k’) //
plt.plot(t, Eb) //
plt.plot(t, Eb*100, linestyle=’dashed’) //
plt.yscale(’log’) //
plt.xscale(’log’) //
plt.plot(2.5, EsNbsi,

′ bo′,markersize = 1)//
plt.text(2.5, EsNbsi, r

′NbSi′, fontsize = 7)//
plt.hlines(EsNbsi, 0.1, 100, colors =′ k′, linestyles =′ dotted′, lw = 0.5)//
plt.plot(2.5, EsNbN,

′ bo′,markersize = 1)//
plt.text(2.5, EsNbN, r

′NbN ′, fontsize = 7)//
plt.hlines(EsNbN, 0.1, 100, colors =′ k′, linestyles =′ dotted′, lw = 0.5)//
plt.plot(2.5, EsInox,

′ bo′,markersize = 1)//
plt.text(2.5, EsInox, r

′InOx′, fontsize = 7)//
plt.hlines(EsInox, 0.1, 100, colors =′ k′, linestyles =′ dotted′, lw = 0.5)//
plt.plot(2.5, EsNb,

′ bo′,markersize = 1)//
plt.text(2.5, EsNb, r

′Nb′, fontsize = 7)//
plt.hlines(EsNb, 0.1, 100, colors =′ k′, linestyles =′ dotted′, lw = 0.5)//
plt.plot(2.5, EsT i,

′ bo′,markersize = 1)//
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plt.text(2.5, EsT i, r
′Ti′, fontsize = 7)//

plt.hlines(EsT i, 0.1, 100, colors =′ k′, linestyles =′ dotted′, lw = 0.5)//
plt.plot(1, EsTaN,

′ bo′)//
plt.text(0.4, EsTaN, r

′TaN ′, fontsize = 25)//
plt.plot(2.5, EsNbT iN,

′ bo′,markersize = 1)//
plt.text(1, EsNbT iN, r

′NbTiN ′, fontsize = 7)//
plt.hlines(EsNbT iN, 0.1, 100, colors =′ k′, linestyles =′ dotted′, lw = 0.5)//
plt.ylabel(’kB ∗ T ’, fontsize = 7) //
plt.xlabel(’Temperature (K)’, fontsize = 7) //
plt.tickparams(labelsize = 6.5, direction =′ in′, which =′ both′)//
plt.fillbetween(t, Eb, 7e− 20, color =′ blue′, alpha = 0.1)//
plt.text(0.2, 1e-22, r’Phase-slip energy ¿ ’, color=’red’, fontsize=4) //
plt.text(0.2, 0.6e-22, r’Thermal energy’, color=’red’, fontsize=4) //
plt.ylim([1e-27,7e-20]) //
plt.xlim([0.1,100]) //
plt.tightlayout()//
def main(): //
ls = [0.5e-6, 1e-6, 2e-6, 3e-6, 4e-6, 5e-6] nano-wire length in m //
for idx, l in enumerate(ls): //
plot(l, idx) //
Energiesplots()//
if name==”main

”://

main() //
plt.show() //

124



Appendix B

The program below can be used to calculate the power and energy versus delay for
QPSJ and JJ based circuits, examples of which are shown in Chapter 8 of this dissertation:
————————————————————————- ——

Name: QPSJ switching times and power-delay
Purpose: Calculation of switching times and power of QPSJ as a function of junction

dimensions
Author: Uday Goteti
Created: 06/06/2016
Last edited: 01/23/2017
——————————————————————————-
from numpy import *
from math import *
import matplotlib.pyplot as plt
from matplotlib.widgets import *
from QPSJparametersimport∗
import xlwt
font = ’family’ : ’Arial’,
’weight’ : ’normal’,
’size’ : 22
book1 = xlwt.Workbook(encoding=”utf-8”)
sheet1 = book1.addsheet(”Sheet1”)
book2 = xlwt.Workbook(encoding=”utf-8”)
sheet2 = book2.addsheet(”Sheet1”)
def rql(a,b):
phi0 = 2.067833758e-15
Ic = b*1e-6
C = 26.939e-15
R = a
Lk = phi0/(2*pi*Ic*R)
t1 = R*C
t2 = Lk/R
t = max(t1, t2)
P = 2*(Ic*Ic)*R
P = (0.7*Ic)*phi0*(1/(t1+t2))
return t, P
def sfq(a,b):
phi0 = 2.067833758e-15
Ic = b*1e-6
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C = 26.939e-15
R = a
Lk = phi0/(2*pi*Ic*R) (added R as a normalizing factor)
Lk = phi0/(2*pi*Ic) Without normalizing factor R - more accurate?
t1 = R*C
t2 = Lk/R
t = max(t1, t2)
P = 2*(Ic*Ic)*R + (Ic*Ic)*(10)
P = (0.7*Ic)*phi0*(1/(t1+t2)) + (0.7*Ic*0.7*Ic)*(10)
return t, P
def qps(a,b):
Vc = b*1e-5
q0 = 3.20435324e-19
R = a*1e3
L = 1e-9
Ck = q0/(2*pi*Vc)
t1 = L/R
t2 = R*Ck
t = max(t1, t2)
P = 2*(Vc*Vc)/R
P = (0.7*Vc)*q0*(1/(t1+t2))
return t, P
def Vc(cl, l, t, Rn):
q0 = 3.20435324e-19
Vc = (2*pi/q0)*Es(cl, l, t, Rn)
return Vc
def Power(l, w, dp):
d = NbSi()
d = NbN()
d = InOx()
d = Nb()
d = Ti()
t = d[’t’]
cl = d[’cl’]
Rho = d[’Rho’]
Rn = Rho*(l/(w*dp))
P = 2*(Vc(cl, l, t, Rn)*Vc(cl, l, t, Rn))/Rn
return P
def Speed(l, w, dp):
q0 = 3.20435324e-19
d = NbSi()
d = NbN()
d = InOx()
d = Nb()
d = Ti()

126



L = 1e-9
t = d[’t’]
cl = d[’cl’]
Rho = d[’Rho’]
Rn = Rho*(l/(w*dp))
Ck = q0/(2*pi*Vc(cl, l, t, Rn))
t1 = L/Rn
t2 = Rn*Ck
s = max(t1, t2)
return s
def Psweep(ls, i):
font = ’family’ : ’Arial’,
’weight’ : ’normal’,
’size’ : 3.25
ls = [5e-7, 1e-6, 2e-6, 3e-6, 4e-6, 5e-6, 6e-6] nano-wire length in m
l = ls
ws = linspace(1e-9, 200e-9, 2000) nano-wire width in m
d = [5e-9, 10e-9, 20e-9, 30e-9, 40e-9, 50e-9, 100e-9] nano-wire thickness in m
Psa = ws.copy()
Psb = ws.copy()
Psc = ws.copy()
Psd = ws.copy()
Pse = ws.copy()
Psf = ws.copy()
Psg = ws.copy()
for idx, w in enumerate(ws):
Psa[idx] = Power(l, w, d[0])
for idx, w in enumerate(ws):
Psb[idx] = Power(l, w, d[1])
for idx, w in enumerate(ws):
Psc[idx] = Power(l, w, d[2])
for idx, w in enumerate(ws):
Psd[idx] = Power(l, w, d[3])
for idx, w in enumerate(ws):
Pse[idx] = Power(l, w, d[4])
for idx, w in enumerate(ws):
Psf[idx] = Power(l, w, d[5])
for idx, w in enumerate(ws):
Psg[idx] = Power(l, w, d[6])
plt.figure(num=i, figsize=(1.4, 1.3), dpi=600, facecolor=’w’, edgecolor=’k’)
plt.plot((1e9)*ws, (1e9)*Psa, ’ok’, label = ’Thickness = 5nm’, markersize = 0.05, fillstyle

= ’full’)
plt.plot((1e9)*ws, (1e9)*Psb, ’¡r’, label = ’Thickness = 10nm’, markersize = 0.05, fill-

style = ’full’)
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plt.plot((1e9)*ws, (1e9)*Psc, ’¿b’, label = ’Thickness = 20nm’, markersize = 0.05, fill-
style = ’full’)

plt.plot((1e9)*ws, (1e9)*Psd, ’g ′, label =′ Thickness = 30nm′,markersize = 0.05, fillstyle =′

full′)
plt.plot((1e9)*ws, (1e6)*Pse, ’ok’, label = ’Thickness = 40nm’, ms = 5)
plt.plot((1e9)*ws, (1e6)*Psf, ’–’, label = ’Thickness = 50nm’, ms = 0.5)
plt.plot((1e9)*ws, (1e6)*Psg, ’-,’, label = ’Thickness = 100nm’, ms = 0.5)
plt.ylabel(’Power (nW)’)
plt.xlabel(’Width (nm)’)
plt.title(’Length =
plt.rc(’font’, **font)
plt.legend(frameon=False, loc = (0.475,0.075), fontsize=3.25)
plt.tickparams(labelsize = 3.25, direction =′ in′, which =′ both′)
plt.axhspan(0.1, 1, color = ’blue’, alpha = 0.1)
plt.text(15, 0.5, r’0.1≤ α ≤1’, fontsize = 25)
plt.xlim([0,20])
plt.ylim([0,1])
plt.tightlayout()
plt.legend()
i=0
while(i ¡ 2000):
sheet1.write(i, 0, (1e9)*ws[i])
sheet1.write(i, 1, (1e9)*Psa[i])
sheet1.write(i, 2, (1e9)*Psb[i])
sheet1.write(i, 3, (1e9)*Psc[i])
sheet1.write(i, 4, (1e9)*Psd[i])
i+=1
book1.save(”Powers.xls”)
def Ssweep(ls, i):
font = ’family’ : ’Arial’,
’weight’ : ’normal’,
’size’ : 3.25
ls = [5e-7, 1e-6, 2e-6, 3e-6, 4e-6, 5e-6, 6e-6] nano-wire length in m
l = ls
ws = linspace(1e-9, 200e-9, 2000) nano-wire width in m
d = [5e-9, 10e-9, 20e-9, 30e-9, 40e-9, 50e-9, 100e-9] nano-wire thickness in m
Ssa = ws.copy()
Ssb = ws.copy()
Ssc = ws.copy()
Ssd = ws.copy()
Sse = ws.copy()
Ssf = ws.copy()
Ssg = ws.copy()
ls = 1e-6
for idx, w in enumerate(ws):
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Ssa[idx] = Speed(l, w, d[0])
for idx, w in enumerate(ws):
Ssb[idx] = Speed(l, w, d[1])
for idx, w in enumerate(ws):
Ssc[idx] = Speed(l, w, d[2])
for idx, w in enumerate(ws):
Ssd[idx] = Speed(l, w, d[3])
for idx, w in enumerate(ws):
Sse[idx] = Speed(l, w, d[4])
for idx, w in enumerate(ws):
Ssf[idx] = Speed(l, w, d[5])
for idx, w in enumerate(ws):
Ssg[idx] = Speed(l, w, d[6])
fig, ax = plt.subplots(num=i, figsize=(1.4, 1.3), dpi=600, facecolor=’w’, edgecolor=’k’)
ax.plot((1e9)*ws, (1e12)*Ssa, ’ok’, label = ’Thickness = 5nm’, markersize = 0.05, fill-

style = ’full’)
ax.plot((1e9)*ws, (1e12)*Ssb, ’¡r’, label = ’Thickness = 10nm’, markersize = 0.05, fill-

style = ’full’)
ax.plot((1e9)*ws, (1e12)*Ssc, ’¿b’, label = ’Thickness = 20nm’, markersize = 0.05,

fillstyle = ’full’)
ax.plot((1e9)*ws, (1e12)*Ssd, ’g ′, label =′ Thickness = 30nm′,markersize = 0.05, fillstyle =′

full′)
plt.plot((1e9)*ws, (1e6)*Pse, ’-.’, label = ’Thickness = 40nm’, ms = 0.5)
plt.plot((1e9)*ws, (1e6)*Psf, ’–’, label = ’Thickness = 50nm’, ms = 0.5)
plt.plot((1e9)*ws, (1e6)*Psg, ’-,’, label = ’Thickness = 100nm’, ms = 0.5)
plt.ylabel(’Switching speed (ps)’)
plt.xlabel(’Width (nm)’)
plt.title(’Length =
plt.rc(’font’, **font)
plt.legend(frameon=False, loc = (0.475,0.675), fontsize=3.25)
plt.tickparams(labelsize = 3.25, direction =′ in′, which =′ both′)
plt.axhspan(0.1, 1, color = ’blue’, alpha = 0.1)
plt.text(15, 0.5, r’0.1≤ α ≤1’, fontsize = 25)
plt.xlim([0,25])
plt.ylim([0,12])
plt.tightlayout()
plt.legend()
return Ssa, Ssb, Ssc, Ssd, Sse, Ssf, Ssg
i=0
while(i ¡ 2000):
sheet2.write(i, 0, (1e9)*ws[i])
sheet2.write(i, 1, (1e9)*Ssa[i])
sheet2.write(i, 2, (1e9)*Ssb[i])
sheet2.write(i, 3, (1e9)*Ssc[i])
sheet2.write(i, 4, (1e9)*Ssd[i])
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i+=1
book2.save(”Speeds.xls”)
def main():
al = linspace(0.1, 50, 100)
bl = linspace(35, 150, 10)
t1rql = al.copy()
P1rql = al.copy()
t1sfq = al.copy()
P1sfq = al.copy()
t1qps = al.copy()
P1qps = al.copy()
t2rql = al.copy()
P2rql = al.copy()
t2sfq = al.copy()
P2sfq = al.copy()
t2qps = al.copy()
P2qps = al.copy()
t3rql = al.copy()
P3rql = al.copy()
t3sfq = al.copy()
P3sfq = al.copy()
t3qps = al.copy()
P3qps = al.copy()
t4rql = al.copy()
P4rql = al.copy()
t4sfq = al.copy()
P4sfq = al.copy()
t4qps = al.copy()
P4qps = al.copy()
font = ’family’ : ’Arial’,
’weight’ : ’normal’,
’size’ : 12
for idx, a in enumerate(al):
t1rql[idx], P1rql[idx] = rql(a, 380)
t1sfq[idx], P1sfq[idx] = sfq(a, 380)
t1qps[idx], P1qps[idx] = qps(a, 380)
t2rql[idx], P2rql[idx] = rql(a, 550)
t2sfq[idx], P2sfq[idx] = sfq(a, 550)
t2qps[idx], P2qps[idx] = qps(a, 550)
t3rql[idx], P3rql[idx] = rql(a, 720)
t3sfq[idx], P3sfq[idx] = sfq(a, 720)
t3qps[idx], P3qps[idx] = qps(a, 720)
t4rql[idx], P4rql[idx] = rql(a, 1000)
t4sfq[idx], P4sfq[idx] = sfq(a, 1000)
t4qps[idx], P4qps[idx] = qps(a, 1000)
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fig, ax = plt.subplots(num=10, figsize=(2.8, 2.6), dpi=300, facecolor=’w’, edgecolor=’k’)
ax.plot((1e9)*P1sfq, (1e12)∗t1sfq,′ bD′, label =′ PowerperswitcheventinJJ ′,ms = 1, lw =

1)
ax.plot((1e9)*P1rql, (1e12) ∗ t1rql,′−ro′, label =′ RQL′,ms = 5)
ax.plot((1e9)*P1qps, (1e12) ∗ t1qps,′ k

′,label=′PowerperswitcheventinQPSJ ′,ms=1,lw=1)

ax.plot((1e9)*P2rql, (1e12) ∗ t2rql,′−ro′,ms = 5)
ax.plot((1e9)*P2qps, (1e12) ∗ t2qps,′ k

′,ms=1,lw=1)

ax.plot((1e9)*P2sfq, (1e12) ∗ t2sfq,′ bD′,ms = 1, lw = 1)
ax.plot((1e9)*P3rql, (1e12) ∗ t3rql,′−ro′,ms = 5)
ax.plot((1e9)*P3qps, (1e12) ∗ t3qps,′ k

′,ms=1,lw=1)

ax.plot((1e9)*P3sfq, (1e12) ∗ t3sfq,′ bD′,ms = 1, lw = 1)
ax.plot((1e9)*P4rql, (1e12) ∗ t4rql,′−ro′,ms = 5)
ax.plot((1e9)*P4qps, (1e12) ∗ t4qps,′ k

′,ms=1,lw=1)

ax.plot((1e9)*P4sfq, (1e12) ∗ t4sfq,′ bD′,ms = 1, lw = 1)
plt.tickparams(labelsize = 6.5, direction =′ in′, which =′ both′)
plt.xlabel(’Power (nW)’, fontsize=7)
plt.ylabel(’Delay (ps)’, fontsize=7) plt.rc(’font’, **font)
plt.yscale(’log’)
plt.xscale(’log’)
plt.xlim([0.02,20])
plt.ylim([0.02,1200])
plt.legend(frameon=False, loc = (0.01,0.75), fontsize=7)
plt.tightlayout()
ax.tickparams(direction =′ in′, length = 6, width = 2, colors =′ black′)
ls = [2e-6]
[5e-7, 1e-6, 2e-6, 3e-6]
, 4e-6, 5e-6, 6e-6] nano-wire length in m
for idx, l in enumerate(ls):
Psweep(l, idx)
for idx, l in enumerate(ls):
Ssweep(l, idx+2)
ifname==”main

”:

main()
plt.show()
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Appendix C

The programs below are used to estimate the energy dissipation in adiabatic quantum
charge parametron circuits detailed in Chapter 6 of this dissertation. The various plots that
describe the adiabatic switching are calculated using the python programs below:

————————————————————————- ——
Name: Adiabatic quantum charge parametron
Purpose: Calculate switching energy of AQCP to aid developing adiabatic operation by

adding parameters
Author: Uday Goteti
Created: 05/01/2017
Last edited: 05/01/2017
————————————————————————- ——
from numpy import *
from math import *
import matplotlib.pyplot as plt
from matplotlib.widgets import *
def Uaqcp(qout, qex) :
Es = 1 Normalized (set to 1) - can be made a variable later
BL = 1Effectofthisparameterisyettobeinvestigatedforadiabaticoperation
qin = 0inputiszero
U = Es*(((qout− qin) ∗ (qout− qin))/BL − 2 ∗ cos(qout) ∗ cos(qex))
return U
def main():
font = ’family’ : ’serif’,
’weight’ : ’normal’,
’size’ : 7
qouts = linspace(−pi, pi, 1000)
qex = [0, pi/4, pi/2, 3 ∗ pi/4, pi]
Ua = qouts.copy()
Ub = qouts.copy()
Uc = qouts.copy()
Ud = qouts.copy()
Ue = qouts.copy()
for idx, qoutinenumerate(qouts) :
Ua[idx] = Uaqcp(qout, qex[0])
for idx, qoutinenumerate(qouts) :
Ub[idx] = Uaqcp(qout, qex[1])
for idx, qoutinenumerate(qouts) :
Uc[idx] = Uaqcp(qout, qex[2])
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for idx, qoutinenumerate(qouts) :
Ud[idx] = Uaqcp(qout, qex[3])
for idx, qoutinenumerate(qouts) :
Ue[idx] = Uaqcp(qout, qex[4])
plt.figure(num=1, figsize=(3.3, 3.1), dpi=300, facecolor=’w’, edgecolor=’k’)
plt.plot(qouts ∗ (180/pi), Ua,′ red′, label =′ qex = 0′,ms = 1)
plt.plot(qouts ∗ (180/pi), Ub,′ blue′, label =′ qex =π/4’, ms = 1)
plt.plot(qouts ∗ (180/pi), Uc,′ green′, label =′ qex =π/2’, ms = 1)
plt.plot(qouts ∗ (180/pi), Ud,′ black′, label =′ qex = 3π/4’, ms = 1)
plt.plot(qouts ∗ (180/pi), Ue,′ black′, label =′ qex =π’, ms = 1)
plt.ylabel(’Normalized UAQCP ’)
plt.xlabel(’Output charge angle qout (degrees)’)
plt.rc(’font’, **font)
plt.legend(frameon=False)
plt.tightlayout()
if name==”main

”:

main()
plt.show()
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Appendix D

Calculate switching energy of AQCP to aid developing adiabatic operation by adding
parameters - with 2 control parameters //

————————————————————————- ——
Name: Adiabatic quantum charge parametron - modified circuit
Purpose: Calculate switching energy of AQCP to aid developing adiabatic operation by

adding parameters - with 2 control parameters
Author: Uday Goteti
Created: 11/06/2017
Last edited: 11/06/2017
——————————————————————————-
from numpy import * //
from math import * //
import matplotlib.pyplot as plt //
from matplotlib.widgets import * //
def Uaqcp(qp,q,qex,BL, Bq) : //
Es = 1 Normalized (set to 1) - can be made a variable later //
BL = 3Effectofthisparameterisyettobeinvestigatedforadiabaticoperation
qin = 3inputiszero
Bq = 1
qp = (q1 + q2)/2 (q1 + q2)/2 - may need to modify later
q=(q1− q2)/2(q1− q2)/2−mayneedtomodifylater
U = Es*(((qex−q)∗(qex−q))/BL+((qin−qp)∗(qin−qp))/(BL+2∗Bq)−2∗cos(q)∗cos(qp))
return U
def betaparam(qex) : font = ′family′ :′ serif ′,
’weight’ : ’normal’,
’size’ : 7
BLs = linspace(0.001, 10, 10)
Bqs = linspace(0.001, 20, 10)
qp = 1
q=1
U = [[0 for x in range(1000)] for y in range(1000)]
for idx, BLinenumerate(BLs) :
for idy, Bqinenumerate(Bqs) :
U[idx][idy] = Uaqcp(qp,q,qex,BL, Bq)
return U, BLs, Bqs
def main():
font = ’family’ : ’serif’,

134



’weight’ : ’normal’,
’size’ : 7
BLs = linspace(0.001, 10, 10)
Bqs = linspace(0.001, 20, 10)
BL = 20
Bq = 10
qp = 1
q=1
qps = linspace(-4, 4,1000)
qs = linspace(−4, 4, 1000)
qex = [0, pi/4, pi/2, 3 ∗ pi/4, pi, 5 ∗ pi/4, 3 ∗ pi/2, 7 ∗ pi/4, 2 ∗ pi]
qex = [0]
Ua = [[0 for x in range(1000)] for y in range(1000)]
Ub = [[0 for x in range(1000)] for y in range(1000)]
Uc = [[0 for x in range(1000)] for y in range(1000)]
Ud = [[0 for x in range(1000)] for y in range(1000)]
Ue = [[0 for x in range(1000)] for y in range(1000)]
Uf = [[0 for x in range(1000)] for y in range(1000)]
Ug = [[0 for x in range(1000)] for y in range(1000)]
Uh = [[0 for x in range(1000)] for y in range(1000)]
Ub = a.copy()
Uc = a.copy()
Ud = q.copy()
Ue = q.copy()
for idx, qp in enumerate(qps):
for idy, qinenumerate(qs) :
Ua[idx][idy] = Uaqcp(qp,q,qex[0], BL, Bq)
Ub[idx][idy] = Uaqcp(qp,q,qex[1], BL, Bq)
Uc[idx][idy] = Uaqcp(qp,q,qex[2], BL, Bq)
Ud[idx][idy] = Uaqcp(qp,q,qex[3], BL, Bq)
Ue[idx][idy] = Uaqcp(qp,q,qex[4], BL, Bq)
Uf[idx][idy] = Uaqcp(qp,q,qex[5], BL, Bq)
Ug[idx][idy] = Uaqcp(qp,q,qex[6], BL, Bq)
Uh[idx][idy] = Uaqcp(qp,q,qex[7], BL, Bq)
for idx, qoutinenumerate(qouts) :
Uc[idx] = Uaqcp(qout, qex[2])
for idx, qoutinenumerate(qouts) :
Ud[idx] = Uaqcp(qout, qex[3])
for idx, qoutinenumerate(qouts) :
Ue[idx] = Uaqcp(qout, qex[4])
plt.figure(num=1, figsize=(3.3, 3.1), dpi=300, facecolor=’w’, edgecolor=’k’)
meshgrid(BL, Bq)
CS = plt.contourf(qps, qs, Ua, 10, origin =′ lower′)′red′, label =′ qex = 0′,ms = 1)
plt.colorbar(CS)
plt.figure(num=2, figsize=(3.3, 3.1), dpi=300, facecolor=’w’, edgecolor=’k’)
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CS2 = plt.contourf(qps, qs, Ub, 10, origin =′ lower′)
plt.colorbar(CS2)
plt.figure(num=3, figsize=(3.3, 3.1), dpi=300, facecolor=’w’, edgecolor=’k’)
CS3 = plt.contourf(qps, qs, Uc, 1000, origin =′ lower′)
plt.colorbar(CS3)
plt.figure(num=4, figsize=(3.3, 3.1), dpi=300, facecolor=’w’, edgecolor=’k’)
CS4 = plt.contourf(qps, qs, Ud, 1000, origin =′ lower′)
plt.colorbar(CS4)
plt.figure(num=5, figsize=(3.3, 3.1), dpi=300, facecolor=’w’, edgecolor=’k’)
CS5 = plt.contourf(qps, qs, Ue, 10, origin =′ lower′)
plt.colorbar(CS5)
plt.figure(num=6, figsize=(3.3, 3.1), dpi=300, facecolor=’w’, edgecolor=’k’)
CS6 = plt.contourf(qps, qs, Uf, 10, origin =′ lower′)
plt.colorbar(CS6)
plt.figure(num=7, figsize=(3.3, 3.1), dpi=300, facecolor=’w’, edgecolor=’k’)
CS7 = plt.contourf(qps, qs, Ug, 10, origin =′ lower′)
plt.colorbar(CS7)
plt.figure(num=8, figsize=(3.3, 3.1), dpi=300, facecolor=’w’, edgecolor=’k’)
CS8 = plt.contourf(qps, qs, Uh, 10, origin =′ lower′)
plt.plot(qouts ∗ (180/pi), Ub,′ blue′, label =′ qex =π/4’, ms = 1)
plt.plot(qouts ∗ (180/pi), Uc,′ green′, label =′ qex =π/2’, ms
= 1)
plt.plot(qouts ∗ (180/pi), Ud,′ black′, label =′ qex = 3π/4’, ms = 1)
plt.plot(qouts ∗ (180/pi), Ue,′ black′, label =′ qex =π’, ms = 1)
plt.colorbar(CS8)
plt.ylabel(’q+ = (q1+q2)/2’)
plt.xlabel(’q- = (q1-q2)/2’)
plt.clabel(CS, ’Normalized potential energy (E/Es)’)
plt.rc(’font’, **font)
plt.legend(frameon=False)
plt.tightlayout()
def main():
qexs = [0, pi/4, pi/2, 3 ∗ pi/4, pi, 5 ∗ pi/4, 3 ∗ pi/2, 7 ∗ pi/4, 2 ∗ pi]
for idx, qexinenumerate(qexs) :
U, BLs, Bqs = betaparam(qex)
plt.figure(num=idx, figsize=(3.3, 3.1), dpi=300, facecolor=’w’, edgecolor=’k’)
CS = plt.contourf(BLs, Bqs, U, origin =′ lower′)
if name==”main

”:

main()
plt.show()
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Appendix E

The program below is an extension of the previous program to allow calculation of
energy dissipation per adiabatic switching related to physical dimensions and material of the
QPSJ.

————————————————————————- ——
Name: QPSJ switching times and power-delay
Purpose: Calculation of switching times and power of QPSJ as a function of junction

dimensions
Author: Uday Goteti
Created: 06/26/2017
Last edited: 06/26/2017
——————————————————————————-
from numpy import *
from math import *
import matplotlib.pyplot as plt
from matplotlib.widgets import *
from QPSJparametersimport∗
def Taqfp():
phi0 = 2.067833758e-15
IcRn = 1.6e-3
Taqfp = phi0/(IcRn)
return Taqfp
def Eaqfp(a,b,Taqfp):
phi0 = 2.067833758e-15
Ic = a*1e-6
Trf = b*1e-9
Tsw = Taqfp
Eaqfp = 2*Ic*phi0*(Tsw/Trf)
return Eaqfp
def Taqcp(c,d):
q0 = 3.20435324e-19
Vc = c*1e-3
Rn = d*1e3
Taqcp = q0*Rn/Vc
return Taqcp
def Eaqcp(b,c,Taqcp):
q0 = 3.20435324e-19
Vc = c*1e-3
Tsw = Taqcp
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Trf = b*1e-9
Eaqcp = 2*q0*Vc*(Tsw/Trf)
return Eaqcp
def main():
font = ’family’ : ’serif’,
’weight’ : ’normal’,
’size’ : 7
Trf = linspace(0.001,10,1000)
Ics = [100,200,300,400,5000]
Vcs = [0.2,0.4,0.6,0.8,1]
Rns = [0.5,1,2,5,10]
Tj = Taqfp()
Tq = Taqcp(Vcs[1],Rns[4])
Ej = Trf.copy()
Eq1 = Trf.copy()
Eq2 = Trf.copy()
Eq3 = Trf.copy()
Eq4 = Trf.copy()
Eq5 = Trf.copy()
Eb1 = Trf.copy()
Eb2 = Trf.copy()
for idx, T in enumerate(Trf):
Ej[idx] = Eaqfp(Ics[0],T,Tj)
Eq1[idx] = Eaqcp(T,Vcs[0],Tq)
Eq2[idx] = Eaqcp(T,Vcs[1],Tq)
Eq3[idx] = Eaqcp(T,Vcs[2],Tq)
Eq4[idx] = Eaqcp(T,Vcs[3],Tq)
Eq5[idx] = Eaqcp(T,Vcs[4],Tq)
Eb1[idx] = kbt(4.2)
Eb2[idx] = kbt(0.1)
plt.figure(num=1, figsize=(3.3, 3.1), dpi=300, facecolor=’w’, edgecolor=’k’)
plt.plot(Trf, Ej, ’-o’, label = ’AQFP’, ms = 3)
plt.plot(Trf, Eq1, ’-o’, label = ’Vc=0.2mV’, ms = 3)
plt.plot(Trf, Eq2, ’-*’, label = ’Vc=0.4mV’, ms = 3)
plt.plot(Trf, Eq3, ’-d’, label = ’Vc=0.6mV’, ms = 3)
plt.plot(Trf, Eq4, ’-D’, label = ’Vc=0.8mV’, ms = 3)
plt.plot(Trf, Eq5, ’-x’, label = ’Vc=1mV’, ms = 3)
plt.plot(Trf,Eb1, ’r-’, label = ’Kb*T at 4.2K’)
plt.plot(Trf,Eb2, ’b-’, label = ’Kb*T at 2K’)
plt.ylabel(’Energy(J)’)
plt.xlabel(’Excitation time(ns)’)
plt.title(’Length =
plt.yscale(’log’)
plt.xscale(’log’)
plt.rc(’font’, **font)
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plt.legend(frameon=False)
plt.title(’Rn = 10kΩ’)
plt.tightlayout()
if name==”main

”:

main()
plt.show()
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