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Abstract

Given a square grid of land, which has n rows and n columns. It is required to plant

trees on the land so that there are k trees in every row and column and there is at most 1

tree in any small square part of the land with d rows and d columns. What should be the

values of n, k and d? How to plant the trees?

The objective of this dissertation is to analyze the problem and come up with the

answers to the questions proposed above. The dissertation consists of three main parts. The

first part provides necessary conditions and the second part provides sufficient conditions

regarding the values of n, k and d. The final part of the dissertation delivers the method to

plant the trees on the land under given constraints.
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Chapter 1

Introduction

In this chapter we discuss necessary and sufficient conditions for the existence of

TP(d, k, n) and assume k ≥ 1, n > d ≥ 2 and m > d.

We start by introducing the following definitions.

Definition 1.1. A grid is an m × n array with rows labeled 1, 2, ...,m and columns labeled

1, 2, ..., n. An n−grid is a grid where m = n.

Definition 1.2. A subgrid S(s, t, u, v) of m× n grid, where 1 ≤ s ≤ t ≤ m, 1 ≤ u ≤ v ≤ n,

is the intersection of rows s through t, and columns u through v. Let t − s + 1 = p and

v − u + 1 = r, then we call S(s, t, u, v) as block B[p, r].

Definition 1.3. Let k, d, n ∈ Z+, where 1 ≤ k, 2 ≤ d < n. Then a (d, k, n)−tree planting

(denoted as TP(d, k, n)) is a planting of exactly k trees in each row and column of n−grid

such that there is at most one tree in any square block B[d, d].

1.1 Necessary condition for TP(d, k,n)

Theorem 1.4. If TP(d, k, n) exists, then
⌊ n
d2

⌋
≥ k.

Proof. Let us take a look at subgrid S(1, d, 1, n) of TP(d, k, n) as in Figure 1.1. Since every

row contains k trees, then there are kd trees in S(1, d, 1, n) in total.

d d d d r

d

n

Figure 1.1: Subgrid S(1, d, 1, n) of TP(d, k, n)
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On the other hand, consider the following dn
d
e blocks in S(1, d, 1, n), which we call special

blocks :

(i) x number of square blocks B[d, d], defined as S(1, d, (i− 1)d + 1, id), where 1 ≤ i ≤ x

and x =
⌊
n
d

⌋
.

(ii) A block B[d, n− xd], defined as S(1, d, xd + 1, n), if d - n

Since the number of special blocks in S(1, d, 1, n) is
⌈
n
d

⌉
and there is at most one tree

in any B[d, d], then we get the following inequality:

kd ≤
⌈n
d

⌉
Obviously, then:

k ≤
⌊dn

d
e

d

⌋

Let n = q1d − r1 for some q1, r1 ∈ Z, 0 ≤ r1 < d, then dn
d
e = q1. And let q1 = q2d + r2

for some q2, r2 ∈ Z, 0 ≤ r2 < d, then b q1
d
c = q2.

Since n = (q2d + r2)d− r1, therefore

⌊ n
d2

⌋
= q2 +

⌊
r2d− r1

d2

⌋
=

⌊dn
d
e

d

⌋
+

⌊
r2d− r1

d2

⌋
(1.1)

Meanwhile, following equation is true.

⌊
r2d− r1

d2

⌋
=


0 if r1 ≤ r2d

−1 if r1 6= 0, r2 = 0

(1.2)

2



Combining the equations 1.1 and 1.2 we get the following result:

k ≤
⌊dn

d
e

d

⌋
=



⌊ n
d2

⌋
+ 1 if d - n and d | dn

d
e (i)

⌊ n
d2

⌋
otherwise (ii)

(1.3)

Now we need to show that case (i) does not hold with equality for TP(d, k, n); in other

words k 6=
⌊

n
d2

⌋
+ 1 .

Suppose that k =
⌊

n
d2

⌋
+ 1 =

⌊
dn
d
e/d
⌋
. Since d - n and d | dn

d
e is the case, thus

k = dn
d
e/d. Therefore kd = dn

d
e, which means there is a tree in every one of the dn

d
e special

blocks in S(1, d, 1, n).

Obviously, using this fact about S(1, d, 1, n) and a symmetry of n−grid, we obtain the

result as in Figure 1.2.

n

n

r

d

d

d

d

d d d d r

S(xd + 1, n, 1, n)

S((x− 1)d, xd, 1, n)

S(2d + 1, 3d, 1, n)

S(d + 1, 2d, 1, n)

S(1, d, 1, n)

Figure 1.2: n−grid

Now, let us take a look at S(1, n, n − d + 1, n) in Figure 1.3. To be more precise, let’s

observe S(1, d, n − d + 1, n). Since every special block contains a tree and there is at most

one tree in any B[d, d], then a tree in S(1, d, xd+ 1, n) is the only tree in S(1, d, n− d+ 1, n)

3



and S(1, d, n− d+ 1, xd) contains no tree (recall that x =
⌊n
d

⌋
). This can be generalized for

the rest of S(1, n, n− d + 1, n). That is S(1, n, n− d + 1, xd) contains no tree, i.e., there is

no tree in the columns n− d + 1 trough xd, which contradicts the definition of TP(d, k, n).

Therefore, k 6=
⌊ n
d2

⌋
+ 1 and k ≤

⌊ n
d2

⌋
.

In the propositions and theorems, which are introduced in the later chapters, we consider

k =
⌊ n
d2

⌋
. By the Marriage Theorem[1], if the TP(d, k, n) exists for k =

⌊ n
d2

⌋
, then it exists

for the values of k <
⌊ n
d2

⌋

S(1, d, n− d+ 1, n)

S(1, n, n− d+ 1, n)

S(1, d, n− d+ 1, xd) S(1, d, xd+ 1, n)

Figure 1.3: S(1, n, n− d + 1, n)

1.2 Sufficient conditions for TP(d, k,n)

In this section we find possible values of n in terms of d and k, where TP(d, k, n) exists.

To prove our claims, we will mainly show in which cells of n−grid trees should be planted.

We start with the following lemmas which will be used in the proof of proposition 1.6.

Lemma 1.5. Let z and i be integers, where 1 ≤ i ≤ d, 1 ≤ z ≤ d

and Pz =
{
j |
⌊
jd+i−1

kd

⌋
= z − 1

}
. Then,

(i) If (z − 1)k ≤ j ≤ zk − 1, then 0 ≤
⌊
jd+i−1

kd

⌋
≤ d− 1.

4



(ii) If
⌊
jd+i−1

kd

⌋
= z − 1, then (z − 1)k ≤ j ≤ zk − 1.

(iii) |Pz| = k.

Proof. Under the given conditions on j and i, one can easily show that

(z − 1)kd ≤ jd + i − 1 ≤ zkd − 1. Consequently, z − 1 ≤ jd+i−1
kd

≤ z − 1
kd

, that is,⌊
jd+i−1

kd

⌋
= z − 1. Since z ∈ {1, 2, ..., d}, we obtain 0 ≤

⌊
jd+i−1

kd

⌋
≤ d− 1. This proves (i).

If
⌊
jd+i−1

kd

⌋
= z − 1, then z − 1 ≤ jd+i−1

kd
< z. Thus,

(z − 1)k − 1 + 1
d
≤ j < zk is obtained. Since j is an integer, preceding inequality can be

written as (z − 1)k ≤ j ≤ zk − 1 and it proves (ii).

Finally, the number of j’s satisfying
⌊
jd+i−1

kd

⌋
= z − 1 for a given z, can be determined

by using (ii), that is, zk − 1− (z − 1)k + 1 = k. Therefore, |Pz| = k.

Proposition 1.6. TP(d, k, kd2) can be attained by planting trees in the cells(
jd + i, d(ki + l − k)−

⌊
jd+i−1

kd

⌋)
, where 1 ≤ i ≤ d, 0 ≤ j ≤ dk − 1 and 1 ≤ l ≤ k.

Proof. Let k = 1, then TP(d, 1, d2). Therefore, the formula above for the cells containing

trees reduces to (jd + i, id − j), where 1 ≤ i ≤ d and 0 ≤ j ≤ d − 1. One can easily show

that is true.

(a) TP(2, 1, 4)

(b) TP(3, 1, 9)

Figure 1.4: Two examples of TP(d, 1, d2)

Let k ≥ 2. Then, we need to show the following:

(i) There are k trees in each row. Obviously, to determine the number of trees in a

row, one needs to keep jd + i constant, and look at the number of possible values of

5



d(ki+ l−k)−
⌊
jd+i−1

kd

⌋
. Since i and j must be fixed, and 1 ≤ l ≤ k, there are k columns

containing a tree in a fixed row.

(ii) There are k trees in each column. We use similar idea to prove it. Obviously, d(ki +

l − k) −
⌊
jd+i−1

kd

⌋
needs to be constant, that is, l, i and

⌊
jd+i−1

kd

⌋
must be fixed. As

can be seen,
⌊
jd+i−1

kd

⌋
is constant for the k values of j in the set Pz from Lemma 1.5.

Therefore the number of all possible values of jd+ i, i.e the number of rows containing

a tree in a fixed column is k.

(iii) There is at most one tree in any B[d, d]. Suppose there are trees in cells (r1, c1) and

(r2, c2). Then r1 = j1d + i1, c1 = d(ki1 + l1 − k) −
⌊
j1d+i1−1

kd

⌋
, r2 = j2d + i2 and

c2 = d(ki2 + l2 − k)−
⌊
j2d+i2−1

kd

⌋
.

Let R = |r1 − r2| = |d(j1 − j2) + (i1 − i2)| and

C = |c1 − c2| = |d[k(i1 − i2) + (l1 − l2)]− A|, where

A =
⌊
j1d+i1−1

kd

⌋
−
⌊
j2d+i2−1

kd

⌋
. We need to show either R ≥ d or C ≥ d (unless of course

R = 0 = C, in which case the two cells are equal).

(a) Trivial case: i1 = i2, j1 = j2 and l1 = l2 , then R = C = 0, i.e these two cells are

the same cell.

(b) i1 = i2, j1 = j2 and l1 6= l2. We obtain R = 0 and C = |d(l1 − l2)| > d.

(c) l1 = l2, j1 = j2 and i1 6= i2. Since j1 = j2, it is easy to verify that
⌊
j1d+i1−1

kd

⌋
=⌊

j2d+i2−1
kd

⌋
for 1 ≤ i1, i2 ≤ d by Lemma 1.5. Therefore, A = 0. For this reason, we

obtain R = |i1 − i2| and C = |dk(i1 − i2)| > d.

(d) i1 = i2, l1 = l2, and j1 6= j2. We obtain C = |A| and

R = |d(j1 − j2)| > d.

(e) i1 = i2, l1 6= l2 and j1 6= j2. We obtain C = |d(l1 − l2)− A| and

R = |d(j1 − j2)| > d.

6



(f) j1 = j2, i1 6= i2 and l1 6= l2. As we verified above, A = 0 when j1 = j2. Thus, we

obtain R = |i1 − i2| and C = |d[k(i1 − i2) + (l1 − l2)]| > d.

(g) l1 = l2, i1 6= i2 and j1 6= j2. We obtain C = |dk(i1 − i2)− A| and R = |d(j1 −

j2) + (i1 − i2)|. We may assume i1 > i2.

(i) Let j1 > j2. Then R > d.

(ii) Let j1 < j2. Obviously, 1 ≤ i1 − i2 ≤ d − 1 and 1 − d ≤ A ≤ 0. Hence,

we obtain dk ≤ dk(i1 − i2) − A ≤ dk(d − 1) + d − 1. Therefore, dk ≤ C ≤

dk(d− 1) + d− 1.

(h) i1 6= i2, j1 6= j2 and l1 6= l2. We obtain

C = |d[k(i1− i2) + (l1− l2)]−A| and R = |d(j1− j2) + (i1− i2)|. We may assume

i1 > i2, then:

(i) Let j1 > j2 and l1 6= l2. Then R > d.

(ii) Let j1 < j2. Obviously, 1 ≤ i1 − i2 ≤ d− 1, 1− d ≤ A ≤ 0.

(1) If l1 > l2, then 1 ≤ l1 − l2 ≤ k − 1. Thus, we obtain d(k + 1) ≤

d[k(i1− i2) + (l1− l2)]−A ≤ d2k−1. Therefore, d(k+ 1) ≤ C ≤ d2k−1.

(2) If l1 < l2, then 1− k ≤ l1 − l2 ≤ −1. Thus, we obtain d ≤ d[k(i1 − i2) +

(l1 − l2)]− A ≤ d2k − dk − 1. Therefore, d ≤ C ≤ d2k − dk − 1.

Lemma 1.7. Let x, y and z be integers, where 1 ≤ x ≤ dk−1, 1 ≤ y ≤ m−1, 1−k ≤ z ≤ −1.

Let A ∈ {−1, 0}. Also, let R = mx− y and C = dky + dz + A. Then, if R < d, then x = 1,

m− d < y ≤ m− 1 and C ≥ d. (Hence either R ≥ d or C ≥ d).

Proof. The proof is as following:

1. If instead x ≥ 2, (i.e. 2 ≤ x ≤ dk−1), then we obtain m+1 ≤ R ≤ m(dk−1)−1, due

to the given condition 1−m ≤ −y ≤ −1. As a result, R ≥ m + 1 > d. Thus x = 1.

7



2. Also, if instead y ≤ m − d (i.e. 1 ≤ y ≤ m − d), then d ≤ R ≤ m(dk − 1) − 1, since

1 ≤ x ≤ dk − 1. Thus m− d < y ≤ m− 1.

3. To prove C ≥ d, we apply direct proof using x = 1 and m − d < y ≤ m − 1 when

R < d. Because, dk(m − d) < dky ≤ dk(m − 1), d(1 − k) ≤ dz ≤ −d, we get

d[k(m−d−1)+1]−1 < C ≤ dk(m−1)−d. That is, C > d[k(m−d−1)+1]−1 ≥ d−1,

since m > d. Then, C ≥ d.

Proposition 1.8. TP(d, k,mdk) can be attained by planting trees in the cells(
jm + i, d(ki + l)− dk +

⌊
jm+i−1

mk

⌋
+ 1
)
, where 1 ≤ i ≤ m, 0 ≤ j ≤ dk−1 and 0 ≤ l ≤ k−1.

Proof. Let k = 1. Then, the formula above for the cells containing trees reduces to (jm +

i, id + j − d + 1), where 1 ≤ i ≤ m and 0 ≤ j ≤ d− 1. One can easily show that is true.

Let k ≥ 2. Then, we need to show the following:

(i) There are k trees in each row. Obviously, to determine the number of trees in a

row, one needs to keep jm + i constant, and look at the number of possible values of

d(ki + l) − dk +
⌊
jm+i−1

mk

⌋
+ 1. Since i and j must be fixed, and 0 ≤ l ≤ k − 1, there

are k columns containing a tree in a fixed row.

(ii) There are k trees in each column. We use similar idea to prove it. Obviously, d(ki +

l)−dk+
⌊
jm+i−1

mk

⌋
+1 needs to be constant, that is, l, i and

⌊
jm+i−1

mk

⌋
must be fixed. As

can be seen,
⌊
jm+i−1

mk

⌋
is constant for the k values of j in the set Pz from Lemma 1.5.

Therefore the number of all possible values of jm+ i, i.e the number of rows containing

a tree in a fixed column is k.

(iii) There is at most one tree in any B[d, d]. Suppose there are trees in cells (r1, c1) and

(r2, c2). Then r1 = j1m + i1,

c1 = d(ki1 + l1)− dk +
⌊
j1m+i1−1

mk

⌋
+ 1, r2 = j2m + i2 and

c2 = d(ki2 + l2)− dk +
⌊
j2m+i2−1

mk

⌋
+ 1.
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Let R = |r1 − r2| = |m(j1 − j2) + (i1 − i2)| and

C = |c1 − c2| = |d[k(i1 − i2) + (l1 − l2)] + A|, where

A =
⌊
j1m+i1−1

mk

⌋
−
⌊
j2m+i2−1

mk

⌋
. We need to show either R ≥ d or C ≥ d (unless of course

R = 0 = C, in which case the two cells are equal).

(a) Trivial case: i1 = i2, j1 = j2 and l1 = l2 , then R = C = 0, i.e these two cells are

the same cell.

(b) i1 = i2, j1 = j2 and l1 6= l2. We obtain R = 0 and C = |d(l1 − l2)| > d.

(c) l1 = l2, j1 = j2 and i1 6= i2. Since j1 = j2, it is easy to verify that
⌊
j1m+i1−1

mk

⌋
=⌊

j2m+i2−1
mk

⌋
for 1 ≤ i1, i2 ≤ d by Lemma 1.5. Therefore, A = 0. For this reason,

we obtain R = |i1 − i2| and C = |dk(i1 − i2)| > d.

(d) i1 = i2, l1 = l2, and j1 6= j2. We obtain C = |A| and

R = |m(j1 − j2)| > d.

(e) i1 = i2, l1 6= l2 and j1 6= j2. We obtain C = |d(l1 − l2) + A| and

R = |m(j1 − j2)| > d.

(f) j1 = j2, i1 6= i2 and l1 6= l2. As we verified above, A = 0 when j1 = j2. Thus, we

obtain R = |i1 − i2| and C = |d[k(i1 − i2) + (l1 − l2)]| > d.

(g) l1 = l2, i1 6= i2 and j1 6= j2. We obtain C = |dk(i1 − i2) + A| and R = |m(j1 −

j2) + (i1 − i2)|. We may assume i1 > i2.

(i) Let j1 > j2. Then R > d.

(ii) Let j1 < j2. Obviously, 1 ≤ i1 − i2 ≤ m− 1 and 1− d ≤ A ≤ 0. Hence, we

obtain dk−d+1 ≤ dk(i1−i2)+A ≤ dk(m−1), i.e dk−d+1 ≤ C ≤ dk(m−1).

In other words, C ≥ dk − d + 1 > d.

(h) i1 6= i2, j1 6= j2 and l1 6= l2. We obtain

C = |d[k(i1− i2) + (l1− l2)] +A| and R = |m(j1− j2) + (i1− i2)|. We may assume

i1 > i2, then:
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(i) Let j1 > j2 and l1 6= l2. Then R > d.

(ii) Let j1 < j2. Obviously, 1 ≤ i1 − i2 ≤ m− 1, 1− d ≤ A ≤ 0.

(1) If l1 > l2, then 1 ≤ l1 − l2 ≤ k − 1. Thus, we obtain dk + 1 ≤ d[k(i1 −

i2) + (l1 − l2)] + A ≤ d(km− 1). Therefore, dk + 1 ≤ C ≤ d(km− 1).

(2) If l1 < l2, then R = m(j2 − j1)− (i1 − i2) and

C = dk(i1− i2) + d(l1− l2) +A. Let y = i1− i2, x = j2− j1, z = l1− l2.

Then R = mx − y and C = dky + dz + A. One can easily show that,

A ∈ {−1, 0} when j2−j1 = 1. Therefore, by Lemma 1.7 we obtain either

R ≥ d or C ≥ d.

Proving all the possible eight cases concludes our proof.

Now, let’s see some examples of TP(d, k,mdk) in the Figures 1.5 and 1.6 and observe

the pattern that occurs in each example.

Figure 1.5: TP(2, 3, 24)
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Figure 1.6: TP(3, 2, 24)

But how does one construct any TP(d, k,mdk). We provide two construction methods

here. First one is, simply create mdk ×mdk grid first and then fill in the trees in the cells

defined in Propostion 1.8.

Second approach to construct TP(d, k,mdk) is following the simple construction trick

which is obtained by observing the pattern of the trees which is discussed below in details.

It is important to mention that these two methods give the same construction.

Now, let’s dive into more details of the second method. It is easy to see the that there

is a clear pattern in the previous two examples TP(2, 3, 24) and TP(3, 2, 24).

First, let’s try to explain the pattern in TP(2, 3, 24) (see Figure 1.5).

Instead of the whole grid, let us consider 9 trees located in the subgrid S(1, 12, 1, 6) (see

Figure 1.7).
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Figure 1.7: S(1, 12, 1, 6) of TP(2, 3, 24)

One can easily observe that S(1, 12, 1, 6) consists of 9 copies of the same 4 × 2 block

which contains a tree in the top-left cell as shown in Figure 1.8.

Figure 1.8: The S(1, 12, 1, 6) consists of nine 4× 2 blocks
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In the next step, we take a look at the trees located in the subgrid S(1, 12, 1, 24) described

in the Figure 1.9 below.

S(1, 12, 1, 6) S(1, 12, 7, 12) S(1, 12, 13, 18) S(1, 12, 19, 24)

Figure 1.9: S(1, 12, 1, 24) of TP(2, 3, 24)

Let us consider 9 trees located in S(1, 12, 1, 6). It is easy to see that top 3 trees in

S(1, 12, 7, 12) are just 1 row below than the top 3 trees in S(1, 12, 1, 6). Also, middle 3 trees

in S(1, 12, 7, 12) are 1 row below than the middle 3 trees in S(1, 12, 1, 6) and bottom 3 trees

in S(1, 12, 7, 12) are 1 row below than the bottom 3 trees in S(1, 12, 1, 6).

We can also observe that there is similar pattern between the 9 trees in S(1, 12, 7, 12)

and S(1, 12, 12, 18). This is true for the 9 trees in S(1, 12, 12, 18) and S(1, 12, 19, 24).

Then, we can say that, using 9 trees in S(1, 12, 1, 6), we can complete the rest of the

trees in the remaining three subgrids. So, in order to locate 9 trees in S(1, 12, 7, 12) just need

to shift the 9 trees one row downward. As we shift it one row downward again we will obtain

the locations of the trees in S(1, 12, 13, 18) and shifting 9 trees one more row downward we

obtain the locations for the last subgrid S(1, 12, 19, 24).

We analized the pattern of the trees in the top half subgrid S(1, 12, 1, 24) of TP(2, 3, 24)

so far. Finally, we observe the trees in the other half of TP(2, 3, 24) which is the subgrid

S(13, 24, 1, 24). Then it is very obvious that 36 trees in S(13, 24, 1, 24) can be obtained by

simply shifting all the 36 trees in S(1, 12, 1, 24) one column to right.

13



We can observe the similar pattern also in TP(3, 2, 24) (see figure 1.6) as well. .

Figure 1.10: S(1, 8, 1, 6) of TP(3, 2, 24)

It is also easy to see that the subgrid S(1, 8, 1, 6) consists of 4 copies of the same 4× 3

block containign a tree in the top-left cell as shown in Figure 1.11

Figure 1.11: The S(1, 8, 1, 6) consists of four 4× 3 blocks

Similarly, we see that S(1, 8, 1, 24) consists of 4 subgrids and 4 trees in each subgrid is

obtained by shifting 4 trees (in the previous subgrid) one row downward. In other words,

shifting 4 trees in the subgrid S(1, 8, 1, 6) one row downward gives us the locations of 4 trees

in the S(1, 8, 7, 12). Using similar shifting we can locate 4 trees in each of the remaining

subgrids. As a result, we obtain the locations of 16 trees in S(1, 8, 1, 24) as in Figure 1.12
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S(1, 8, 1, 6) S(1, 8, 7, 12) S(1, 8, 13, 18) S(1, 8, 19, 24)

Figure 1.12: S(1, 8, 1, 24) of TP(3, 2, 24)

Finally, 16 trees in the subgrid S(9, 16, 1, 24) can be obtained by shifting 16 trees in the

subgrid S(1, 8, 1, 24) one column to right. Similarly, 16 trees in the subgrid S(17, 24, 1, 24)

can be obtained by shifting 16 trees in the pevious subgrid S(9, 16, 1, 24) one column to

right. We can see that TP(3, 2, 24) consists of these 3 subgrids as shown in Figure 1.13

S
(1
,8
,1
,2

4)
S

(9
,1

6,
1,

24
)

S
(1

7,
24
,1
,2

4)

Figure 1.13: TP(3, 2, 24) divided into S(1, 8, 1, 24), S(9, 16, 1, 24) and S(17, 24, 1, 24)

15



1.3 Procedure to construct TP(d, k,mdk)

Now, after observing the similar pattern for the two examples, we can generalize the

construction method for any TP(d, k,mdk). Before we introduce the method, let us introduce

several definitions.

Definition 1.9. A base block is a block B[m, d] containing a tree in the cell (i, j). We denote

it by bi,j. Also, we define a Big block that is a block B[mk, dk] consisting of k2 copies of bi,j

and denote it by Bi,j.

Definition 1.10. A Big block is a block B[mk, dk] consisting of k2 copies of bi,j. We denote

it by Bi,j.

i

j

m

d

(a) bi,j

i

m + i

(k − 1)m + i

j d + j (k − 1)d + j

m

m

m

d d d

(b) Bi,j

Figure 1.14

Lemma 1.11. Let 1 ≤ i ≤ m, 1 ≤ j ≤ d, r ≤ m − i and q ≤ d − j. Also let, Bi,j be a big

block. Then,

(i) Shifting all the k2 trees of Bi,j by r rows downward results in the big block Bi+r,j.
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(ii) Shifting all the k2 trees of Bi,j by q columns to the right results in the big block Bi,j+q.

(iii) Shifting all the k2 trees of Bi,j by r rows downward and q columns to the right results

in the big block Bi+r,j+q.

Proof. (i) Shifting all the trees of Bi,j (Figure 1.15(a)) by r rows downward would change

only row locations of the trees. Locations of the trees after shifting would be as in the

Figure 1.15(b). Obviously, the resulting block is big block consisting of k2 copies of

bi+r,j. Hence, according to the definition of a big block, the resulting big block in the

Figure 1.15(b) is Bi+r,j.

(k − 1)m + i

m + i

i

j d + j (k − 1)d + j

(a) Bi,j

(k − 1)m + (i + r)

m + (i + r)

i + r

j d + j (k − 1)d + j

(b) Bi+r,j

Figure 1.15

(ii) Similarly, shifting all the trees of Bi,j (Figure 1.16(a)) by q columns to the right would

change only column locations of the trees. Locations of the trees after shifting would

be as in the Figure 1.16(b). It is easy to see that, the resulting block is big block

consisting of k2 copies of bi,j+q. Hence, according to the definition of a big block, the

resulting big block in the Figure 1.16(b) is Bi,j+q.
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(k − 1)m + i

m + i

i

j d + j (k − 1)d + j

(a) Bi,j

(k − 1)m + i

m + i

i

j + q

d + (j + q)

(k − 1)d + (j + q)

(b) Bi,j+q

Figure 1.16

(iii) It is obvious that shifting all the trees of Bi,j by r rows downward results in the big

block Bi+r,j and shifting all the trees of Bi+r,j by q columns to the right produces

Bi+r,j+q. Therefore, shifting all the trees of Bi,j by r rows downward and q columns to

the right results in the big block Bi+r,j+q.

Let us now, demonstrate the following method, which is step by step procedure to

construct TP(d, k,mdk):

Step 1: Construct the base block b1,1.

m

d

Figure 1.17: Base block b1,1

Step 2: Construct the big block B1,1 which consists of k2 copies of b1,1. This gives us

the subgrid S(1,mk, 1, dk) of TP(d, k,mdk).
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m

m

m

d d d

Figure 1.18: B1,1

Step 3: Construct the subgrid S(1,mk, 1,mdk) of TP(d, k,mdk), which is the block

B[mk,mdk] consisting of m big blocks Bi,1, where 1 ≤ i ≤ m, as shown in the figure below.

It is obvious that B1,1 is the block obtained in Step 2 and according to the Lemma 1.11, the

block Bi+1,1 is obtained by shifting k2 trees of B1,1 by i rows downward, for every i with

1 ≤ i ≤ m− 1. As a result, the block B[mk,mdk] contains k trees in its all rows.

B1,1 B2,1 B3,1 Bm,1 mk

dk dk dk dk

Figure 1.19: The subgrid S(1,mk, 1,mdk) of TP(d, k,mdk)

19



Step 4: For every p, where 1 ≤ p ≤ d− 1, construct the subgrid

S(pmk + 1, (p+ 1)mk, 1,mdk) of TP (d, k,mdk), by shifting all the mk2 trees in the subgrid

S(1,mk, 1,mdk) by p columns to the right. Finally, stack all the subgrids on top of eachother.

The result is TP(d, k,mdk).

B1,1 B2,1 B3,1 Bm,1

B1,2 B2,2 B3,2 Bm,2

B1,3 B2,3 B3,3 Bm,3

B1,d B2,d B3,d Bm,d

mdk

mdk

S((d− 1)mk + 1, dmk, 1,mdk)

S(2mk + 1, 3mk, 1,mdk)

S(mk + 1, 2mk, 1,mdk)

S(1,mk, 1,mdk)

Figure 1.20: TP(d, k,mdk)

In order to see how the construction works, let’s construct TP(3, 3, 45) using the step-

by-step process described above. For TP(3, 3, 45), we obtain the values d = 3, k = 3 and

m = 5.

Step 1: Create the base block b1,1. According to a definiton of base block, b1,1 has 5

rows and 3 columns.

Figure 1.21: Base block b1,1
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Step 2: Create the big block B1,1 which consists of 9 copies of b1,1.

Figure 1.22: B1,1

Step 3: Construct the subgrid S(1, 15, 1, 45) of TP(3, 3, 45), which is a block B[15, 45]

consisting of 5 blocks of Bi,1, where 1 ≤ i ≤ 5. It is easy to see that, the block Bi+1,1 is the

same as the block B1,1 except the 9 trees are shifted i rows downward, for every integer i

with 1 ≤ i ≤ 4.

B1,1 B2,1 B3,1 B4,1 B5,1

Figure 1.23: S(1, 15, 1, 45)

Step 4: Construct the subgrid S(16, 30, 1, 45), by shifting all the 45 trees in the

subgrid S(1, 15, 1, 45) by one column to the right and S(31, 45, 1, 45), by shifting all the 45

trees in the subgrid S(1, 15, 1, 45) by two columns to the right. Finally, stack all the subgrids

on top of eachother. The result is TP(3, 3, 45).
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B1,1 B2,1 B3,1 B4,1 B5,1

B1,2 B2,2 B3,2 B4,2 B5,2

B1,3 B2,3 B3,3 B4,3 B5,3

Figure 1.24: S(1, 15, 1, 45), S(16, 30, 1, 45), S(31, 45, 1, 45)
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Finally, stack all three subgrids in the Figure 1.24 on top of eachother. Finally, the

result is TP(3, 3, 45).

Figure 1.25: TP(3, 3, 45)
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Chapter 2

Existence of TP(d, k,mdk + i) and Its Construction

In this final chapter, we introduce our main result for the sufficient condition of the

existence of TP(d, k, n). In order to make the proof of the theorem easy to follow, we start

by stating lemmas which will be very useful. In this chapter we assume k ≥ 1, n > d ≥ 2

and m > d.

Before stating lemmas, we need to first introduce few definitions.

Definition 2.1. A column block is a block B[mdk, dk], which is the vertical stack of the big

blocks Bi,i of TP (d, k,mdk), where 1 ≤ i ≤ d, and it is denoted by Bc.

B1,1 B2,1 B3,1 Bd,1 Bm,1

B1,2 B2,2 B3,2 Bd,2 Bm,2

B1,3 B2,3 B3,3 Bd,3 Bm,3

B1,d B2,d B3,d Bd,d Bm,d

Bc

B1,1

B2,2

B3,3

Bd,d

dk

mdk

Figure 2.1: Bc obtained from TP(d, k,mdk)
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Lemma 2.2. Let Bc be a column block. Then,

(i) There are k trees in each column of Bc.

(ii) There is at most one tree in any B[d, d] of Bc.

Proof. (i) We know from the previous chapter that every big block contains k2 trees which

are located in k columns of the block. We also know that, column locations of k2 trees

in B1,1 are 1, d+ 1,...,(k− 1)d+ 1 (See Figure 1.14(b)). According to the Lemma 1.11,

for every Bi+1,i+1, where 1 ≤ i ≤ d − 1, column locations of k2 trees are i columns to

the right of the column locations of the trees of B1,1. Hence, k2 trees in each of the d

blocks B1,1, B2,2,...,Bd,d are located in distinct k columns. In other words, there are k

trees in each dk columns of the Bc.

(ii) Since Bi,i is the subgrid of TP(d, k,mdk) and there is at most one tree in any B[d, d] of

TP(d, k,mdk), there is at most one tree in every B[d, d] of Bi,i. Therefore, we only need

to show that the bottom k trees of Bi−1,i−1 is at a row distance of at least d from the top

k trees of Bi,i. Let’s take a look at two consecutive blocks Bi−1,i−1 and Bi,i of Bc and

determine the distance between the row locations of the bottom k trees of Bi−1,i−1 and

top k trees of Bi,i as in Figure 2.2. According to the Figure 1.14(b), row locations of the

bottom k trees of Bi−1,i−1 is (k−1)m+ (i−1) and top k trees of Bi,i is i. The distance

between the row locations would be r1 +r2 = mk− [(k−1)m+(i−1)]+ i = m+1 > d,

since m > d in TP(d, k,mdk).
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Bi−1,i−1

Bi,i

(k − 1)m + (i− 1)

i

r1

r2

mk

Figure 2.2
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Definition 2.3. A row block is a block B[mk, ddk], which is the horizontal stack of the big

blocks Bi,i of TP (d, k,mdk), where 1 ≤ i ≤ d, and it is denoted by Br.

B1,1 B2,1 B3,1 Bd,1 Bm,1

B1,2 B2,2 B3,2 Bd,2 Bm,2

B1,3 B2,3 B3,3 Bd,3 Bm,3

B1,d B2,d B3,d Bd,d Bm,d

BrB1,1 B2,2 B3,3 Bd,d

ddk

mk

Figure 2.3: Br obtained from TP(d, k,mdk)
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Let us look at the row locations of the trees in Br. It is easy to see in the Figure 2.4 that

trees are located between (t−1)m+ 1 and (t−1)m+d, where 1 ≤ t ≤ k. In other words, dk

rows (out of mk rows) contain trees and remaining (m− d)k rows don’t (see shaded region

in Figure 2.5).

1

m + 1

(k − 1)m + 1

2

m + 2

(k − 1)m + 2

d

m + d

(k − 1)m + d

B1,1 B2,2 Bd,d

Figure 2.4: Row locations of the trees of the Br

1

m + 1

(k − 1)m + 1

2

m + 2

(k − 1)m + 2

d

m + d

(k − 1)m + d

B1,1 B2,2 Bd,d

m− d

m− d

m− d

Figure 2.5: Empty (shaded) rows in Br
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Definition 2.4. A reduced row block is a block B[dk, ddk], which is obtained by dropping

(m− d)k empty rows from Br and we denote it by B̂r.

Note that, since Br contains dk2 trees, B̂r also contains dk2 trees.

Definition 2.5. Reduced big block is a block B[dk, dk] obtained by removing (m− d)k rows

of Bi,i located between (t− 1)m + d + 1 and tm, where 1 ≤ t ≤ k, 1 ≤ i ≤ d and we denote

it by B̂i,i.

It is obvious that B̂r is a horizontal stack of the reduced big blocks B̂1,1, B̂2,2,...,B̂d,d as

in the Firgure 2.6.

1

d + 1

(k − 1)d + 1

2

d + 2

(k − 1)d + 2

d

2d

kd

B̂1,1 B̂2,2 B̂d,d

Figure 2.6: B̂r

Lemma 2.6. Let B̂r be a reduced row block B[dk, ddk] obtained by removing empty rows of

row block Br. Then,

(i) There are k trees in every row of B̂r.

(ii) There is at most one tree in any B[d, d] of B̂r.

Proof. We will prove this lemma in a similar way to the proof we used for Lemma 2.2.

(i) As we mentioned earlier, a big block Bi,i contains k2 trees which are located in k rows

of this block. Since B̂i,i is obtained by removing the rows of Bi,i and the removed rows

contain no tree, B̂i,i also contains k2 trees which are located in k rows.
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We also know that, the row locations of k2 trees in B̂1,1 are 1, d+ 1,...,(k− 1)d+ 1 (See

Figure 2.6). According to the Lemma 1.11, for every Bi+1,i+1, where 1 ≤ i ≤ d−1, row

locations of k2 trees are i rows below the row locations of the trees of B1,1. Obviously,

this is also correct for B̂i+1,i+1, where 1 ≤ i ≤ d− 1, as can be seen in the Figure 2.6.

Therefore, k2 trees in each of the d reduced big blocks B̂1,1, B̂2,2,...,B̂d,d are located in

the distinct k rows, i.e., there are k trees in each dk rows of the B̂r.

(ii) We first start to prove that there is at most one tree in any B[d, d] within B̂i,i, where

1 ≤ i ≤ d. We already know that there is at most one tree in a Bi,i, since it is a subgrid

of TP (d, k,mdk). Since the column locations of k2 trees of B̂i,i are the same as the

column locations of Bi,i, we need to only check whether row distance between the trees

in B̂i,i is at least d. According to the Figure 1.14(b) the row distance between any two

trees in Bi,i is at least m. Since B̂i,i is obtained by removing m − d rows of Bi,i, the

row distance between any two trees in the B̂i,i is at least m− (m− d) = d.

Next, let’s take a look at two consecutive blocks B̂i−1,i−1 and B̂i,i of B̂r and determine

the distance between the column locations of the rightmost k trees of B̂i−1,i−1 and

leftmost k trees of B̂i,i as in Figure 2.7. According to the Figure 1.14(b), row locations

of the rightmost k trees of B̂i−1,i−1 is (k−1)d+(i−1) and leftmost k trees of B̂i,i is i. The

distance between the column locations would be r1 + r2 = dk− [(k−1)d+ (i−1)] + i =

d + 1 > d.
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B̂i−1,i−1 B̂i,i

(k − 1)d + (i− 1) i

r1 r2

dk

Figure 2.7

2.1 The Main Result

Bc and B̂r will be used to state two more lemmas, which will play an important role to

prove our main result.

Lemma 2.7. Suppose H is a block B[mdk, 2dk] which is the horizontal stack of the subgrid

S(1,mdk, (m−1)dk+1,mdk) of TP (d, k,mdk) and column block Bc. Then, there is at most

1 tree in any B[d, d] of the H.

Bm,1

Bm,2

Bm,d

B1,1

B2,2

Bd,d

Bc

S(1,mdk, (m− 1)dk + 1,mdk)

Figure 2.8: The block H

Proof. We already know that there is at most 1 tree in any B[d, d] of

S(1,mdk, (m− 1)dk + 1,mdk), since it is true for TP (d, k,mdk). The statement is true also
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for Bc due to the Lemma 2.2. Therefore, it is enough to show that the (row or column)

distances between the particular trees, in the subgrid of H(see Figure 2.9), are at least d.

Note that, as we defined earlier Bp,q is big block with mk rows and dk columns.

1. Column distance between z and x is dk − [(k − 1)d + i] + i = d.

2. Column distance between z and y is dk − [(k − 1)d + i] + i + 1 = d + 1.

3. Column distance between w and y is dk − [(k − 1)d + i + 1] + i + 1 = d.

4. Row distance between w and x is mk− [(k−1)m+ i]+m = 2m− i Since 1 ≤ i ≤ d−1,

it is not hard to find that 2m− i ≥ 2m− d + 1 > m + 1 > d.

x

y

z

w

Bm,i Bi,i

Bm,i+1 Bi+1,i+1

(k − 1)d+ i i

(k − 1)d+ i+ 1 i+ 1

(k − 1)m+ i

i+ 1

mk

m

Figure 2.9: Subgrid of the block H, where 1 ≤ i ≤ d− 1

Next, we state the following lemma which is similar to the one above. Hence its proof

will also be similar.
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Lemma 2.8. Suppose V is a block B[mk+dk, ddk] which is the vertical stack of the subgrid

S((d− 1)mk + 1,mdk, 1, ddk) of TP (d, k,mdk) and reduced row block B̂r. Then, there is at

most 1 tree in any B[d, d] of the V .

B̂1,1 B̂2,2 B̂d,d

B1,d B2,d Bd,dS((d− 1)mk + 1,mdk, 1, ddk)

B̂r

Figure 2.10: The block V

Proof. There is at most 1 tree in any B[d, d] of

S((d− 1)mk + 1,mdk, 1, ddk), since it is true for TP (d, k,mdk). The statement is true also

for B̂r due to the Lemma 2.6. Hence, it is enough to prove that the (row or column) distances

between the particular trees, in the subgrid of V (see Figure 2.11), are at least d. Note that,

Bi,d is big block with mk rows and dk columns and B̂i,i is reduced big block with dk rows

and dk columns.

1. Row distance between z and x is mk − [(k − 1)m + i] + i = m > d.

2. Row distance between z and y is mk − [(k − 1)m + i] + i + 1 = m + 1 > d.

3. Row distance between w and y is mk − [(k − 1)m + i + 1] + i + 1 = m > d.

4. Column distance between w and x is dk− [(k−1)d+ i]+d = 2d− i Since 1 ≤ i ≤ d−1,

it is easy to see that 2d− i ≥ d + 1.
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x y

z
w

Bi,d Bi+1,d

B̂i,i B̂i+1,i+1

dk d

(k − 1)d+ i i+ 1

(k − 1)m+ i+ 1

i+ 1

(k − 1)m+ i

i

Figure 2.11: Subgrid of the block V , where 1 ≤ i ≤ d− 1

Before we jump to our main result, there are two more definitions left.

Consider a big block Bi,i, where 1 ≤ i ≤ d. As we know, there are k trees in k rows and

k columns of Bi,i, in total, there are k2 trees in Bi,i.

Let’s discuss a method to remove trees from Bi,i so that there are t fewer trees (i.e.,

k − t trees) in those particular k rows and k columns, where 1 ≤ t < k. We propose the

following method. Let each tree in Bi,i correspond to a number in the addition table of Zk.

As a result, k2 trees of Bi,i would be numbered from 0 to k − 1, where each number would

appear k times, as in the Figure 2.12.
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+ 0 1 2 . . . k − 1

0 0 1 2 . . . k− 1

1 1 2 3 . . . 0

2 2 3 4 . . . 1

...
...

...
...

...
...

k − 1 k− 1 0 1 . . . k− 2

(a) Addition table of Zk

0 1 2 k − 1

1 2 3 0

2 3 4 1

k − 1 0 1 k − 2

(b) k2 trees of Bi,i

Figure 2.12

Definition 2.9. Let 1 ≤ i ≤ d and 1 ≤ t < k. Given a big block Bi,i of TP(d, k,mdk).

In order to remove trees in Bi,i, to get k − t trees in k columns and k rows, remove the

trees corresponding to the numbers 0, 1, ..., t − 1 in the addition table of Zk. We denote the

resulting block by Bk−t
i,i .

It is important to note that if t = 0, then Bk−t
i,i = Bk

i,i. That is, no tree is removed from

Bi,i. Therefore, for t = 0, the block Bk−t
i,i simply is Bi,i.

For the sake of clarity of the definition above, let’s take an example. Consider the big

block B1,1 of TP(2, 5, 30) and addition table of Z5 as in the figure below. B1,1 contains 5

trees in 5 columns and 5 rows.
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(a) B1,1 of TP(2, 5, 30)

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

(b) Addition table of Z5

Figure 2.13

Suppose, we want to remove 3 trees from each row and column of B1,1. Then, we must

remove all the trees (red colored trees in the Figure 2.14) corresponding to the numbers 0,1

and 2.

(a) B1,1 of TP(2, 5, 30)

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

(b) Addition table of Z5

Figure 2.14

As a result, we would get B2
1,1, as in the figure below. There are 2 trees in 5 columns

and 5 rows.
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Figure 2.15: B2
1,1

Definition 2.10. Let 1 ≤ i < dk. Construct a new square block by the following step-by-step

process:

1. First, construct TP(d, k,mdk), column block Bc and B̂r.

2. Next, suppose t = d i
d
e and p = i−d(t−1). Modify TP(d, k,mdk) in the following way.

For every q, where 1 ≤ q ≤ p, replace big blocks Bq,q of TP(d, k,mdk) by Bk−t
q,q and

for every s, where p + 1 ≤ s ≤ d is true, replace big blocks Bs,s of TP(d, k,mdk) by

Bk−t+1
s,s . Note that, s might not be satisfied if d | i. In that case, the only replacement

occurs for the big blocks Bq,q.

3. Finally, attach i leftmost columns of column block Bc to the right, uppermost i rows of

reduced row block B̂r to the bottom and empty block B[i, (m − d)dk + i] to the bottom

right corner of the modified TP(d, k,mdk) obtained in the previous step. The result is

block B[mdk + i,mdk + i]. We denote it by Z(i, d, k,mdk).

Lemma 2.11. Let 1 ≤ i < dk, t = d i
d
e and p = i− d(t− 1). Then,

(i) the leftmost i columns of Bc contains kt trees (t trees in the k rows) from every big

block Bq,q, where 1 ≤ q ≤ p and k(t− 1) trees (t− 1 trees in the k rows) from every big

block Bs,s, where p + 1 ≤ s ≤ d is true.
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(ii) the uppermost i rows of B̂r contains kt trees (t trees in the k columns) from every

reduced big block B̂q,q, where 1 ≤ q ≤ p and k(t− 1) trees (t− 1 trees in the k columns)

from every reduced big block B̂s,s, where p + 1 ≤ s ≤ d is true.

Proof. (i) Obviously, the leftmost d(t− 1) columns of Bc contain k trees in every column.

Since Bc consists of d big blocks, those d(t − 1) columns contain k(t − 1) trees (t − 1

trees in the k rows) from every big block. Also, the remaining p = i− d(t− 1) columns

contain k trees in every column. Hence, the leftmost i columns of Bc contains kt trees

from every big block Bq,q, where 1 ≤ q ≤ p and k(t−1) trees from every big block Bs,s,

where p + 1 ≤ s ≤ d is true.

(ii) Similarly, the uppermost d(t − 1) rows of B̂r contain k trees in every row. Since B̂r

consists of d reduced big blocks, those d(t− 1) rows contain k(t− 1) trees (t− 1 trees

in the k columns) from every reduced big block. Also, the remaining p rows contain k

trees in every row. Therefore, the uppermost i rows of B̂r contains kt trees from every

reduced big block B̂q,q, where 1 ≤ q ≤ p and k(t − 1) trees from every big block B̂s,s,

where p + 1 ≤ s ≤ d is true.
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Consider the example Z(4, 3, 2, 24). That is, i = 4, d = 3, k = 2 and m = 4.

1. Construct TP(3, 2, 24).

Figure 2.16: TP(3, 2, 24)(left), Bc(right) and B̂r(bottom)
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2. t = d i
d
c = d4

3
c = 2 and p = i − d(t − 1)d = 4 − 3(2 − 1) = 1, k − t = 2 − 2 = 0 and

k − t + 1 = 1. We modify B1,1, B2,2 and B3,3 of TP(3, 2, 24) by B0
1,1, B

1
2,2 and B1

3,3,

respectively.

Figure 2.17: Modified TP(3, 2, 24)

3. Attach 4 leftmost columns of column block Bc to the right, uppermost 4 rows of reduced

row block B̂r to the bottom and empty block B[4, 10] to the bottom right corner of the

modified TP(3, 2, 24) (see Figure 2.18). The result is Z(4, 3, 2, 24) (see Figure 2.19).
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top 4 rows of B̂r

leftmost 4 columns of Bc

empty block B[4, 10]

modified TP(3, 2, 24)

Figure 2.18

Figure 2.19: Z(4, 3, 2, 24)
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Finally, after providing all the preliminary definitions and lemmas, we state our main

result as theorem below.

Theorem 2.12. Let 1 ≤ i < dk. Then block Z(i, d, k,mdk) is TP (d, k,mdk + i). In other

words, there are k trees in every row and column of Z and there is at most one tree in any

B[d, d].

Proof. First, we start by proving there is at most one tree in any B[d, d] of Z(i, d, k,mdk),

i.e., row or column distance between the trees is at least d. We know that (row or column)

distance between any two trees in the TP(d, k,mdk), Bc and B̂r is at least d. It is also true

between the rightmost trees of TP(d, k,mdk) and the leftmost trees of Bc and between the

bottommost trees of TP(d, k,mdk) and the uppermost trees of B̂r due to the lemmas 2.7

and 2.8. Also, since there is at most 1 tree in any B[d, d] of TP(d, k,mdk), it would also be

true for modified TP(d, k,mdk) obtained in second step of the Definition 2.10. Therefore,

row or column distance between any two trees in Z(i, d, k,mdk) is at least d.

Now, we prove there are k trees in every row and column of Z(i, d, k,mdk). First, we

prove there are k trees in every column of Z(i, d, k,mdk). Let us examine the columns of

three disjoint subgrids that composes Z(i, d, k,mdk).

(a) S(1,mdk + i,mdk + 1,mdk + i) of Z(i, d, k,mdk).

Obviously, S(1,mdk + i,mdk + 1,mdk + i) is composed of S(1,mdk,mdk + 1,mdk + i),

which is the leftmost i columns of Bc and S(mdk + 1,mdk + i,mdk + 1,mdk + i), which

is empty block B[i, i]. We already know that, there are k trees in every column of Bc,

i.e., there are k trees in the leftmost i columns of Bc. Hence, there are k trees in every

column of S(1,mdk + i,mdk + 1,mdk + i).

(b) S(1,mdk + i, ddk + 1,mdk) of Z(i, d, k,mdk).

The subgrid S(1,mdk + i, ddk + 1,mdk) is composition of S(1,mdk, ddk + 1,mdk) of

TP(d, k,mdk) and S(mdk+1,mdk+i, ddk+1,mdk), which is empty block B[i, (m−d)dk].
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From the Definition 2.10, one can easily see that S(1,mdk, ddk+1,mdk) of TP(d, k,mdk)

stays untouched, i.e., no tree is removed in this particular subgrid. Therefore, there are

k trees in the subgrid S(1,mdk + i, ddk + 1,mdk).

(c) S(1,mdk + i, 1, ddk) of Z(i, d, k,mdk).

The subgrid S(1,mdk + i, 1, ddk) is composed of the subgrids S(1,mdk + i, (j − 1)dk +

1, jdk), where 1 ≤ j ≤ d. Also, each subgrid S(1,mdk+i, (j−1)dk+1, jdk) consists of the

subgrid S(1,mdk, (j−1)dk+1, jdk), which is the subgrid S(1,mdk, (j−1)dk+1, jdk) of

TP(d, k,mdk) except Bj,j is replaced by Bk−t
j,j and S(mdk+1,mdk+i, (j−1)dk+1, jdk),

which is the uppermost i rows of B̂j,j. Consider following cases:

(i) If 1 ≤ j ≤ p, then S(1,mdk, (j − 1)dk + 1, jdk) contains k trees in every column

except the columns of Bk−t
j,j , which contains k − t trees in its particular columns.

Also, according to the Lemma 2.11, the uppermost i rows of B̂j,j, contains t trees

in its k particular columns, which are the same columns of Bk−t
j,j that contains k− t

trees. Therefore, those particular k columns contain k − t + t = k trees.

(ii) If p + 1 ≤ j ≤ d is true, then S(1,mdk, (j − 1)dk + 1, jdk) contains k trees in

every column except the columns of Bk−t+1
j,j , which contains k − t + 1 trees in its

particular columns. Also, according to the Lemma 2.11, the uppermost i rows of

B̂j,j, contains t−1 trees in its k particular columns, which are the same columns of

Bk−t+1
j,j that contains k− t+ 1 trees. Therefore, those particular k columns contain

k − t + 1 + t− 1 = k trees.

Hence there are k trees in every column of Z(i, d, k,mdk).

Let’s examine the rows of two disjoint subgrids that composes Z(i, d, k,mdk) to prove

there are k trees in every row of Z(i, d, k,mdk).

(a) S(1,mdk, 1,mdk + i) of Z(i, d, k,mdk).
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The subgrid S(1,mdk, 1,mdk + i) is composed of the subgrids

S((j − 1)mk + 1, jmk, 1,mdk + i), where 1 ≤ j ≤ d. Also, each subgrid S((j − 1)mk +

1, jmk, 1,mdk + i) consists of the subgrid S((j − 1)mk + 1, jmk, 1,mdk), which is the

subgrid S((j − 1)mk + 1, jmk, 1,mdk) of TP(d, k,mdk) except Bj,j is replaced by Bk−t
j,j

and S((j − 1)mk + 1, jmk,mdk + 1,mdk + i), which is the leftmost i columns of Bj,j.

Consider following cases:

(i) If 1 ≤ j ≤ p, then S((j − 1)mk + 1, jmk, 1,mdk) contains k trees in every row

except the rows of Bk−t
j,j , which contains k − t trees in its particular rows. Also,

according to the Lemma 2.11, the leftmost i columns of Bj,j, contains t trees in

its k particular rows, which are the same rows of Bk−t
j,j that contains k − t trees.

Therefore, those particular k rows contain k − t + t = k trees.

(ii) If p + 1 ≤ j ≤ d is true, then S((j − 1)mk + 1, jmk, 1,mdk) contains k trees in

every row except the rows of Bk−t+1
j,j , which contains k− t+ 1 trees in its particular

rows. Also, according to the Lemma 2.11, the leftmost i columns of Bj,j, contains

t−1 trees in its k particular rows, which are the same rows of Bk−t+1
j,j that contains

k − t + 1 trees. Therefore, those particular k rows contain k − t + 1 + t − 1 = k

trees.

(b) S(mdk + 1,mdk + i, 1,mdk + i) of Z(i, d, k,mdk).

It is easy to see that, S(mdk + 1,mdk + i, 1,mdk + i) is composed of S(mdk + 1,mdk +

i, 1, ddk), which is the uppermost i rows of B̂r and S(mdk+1,mdk+ i, ddk+1,mdk+ i),

which is the empty block B[i, (m − d)dk + i]. We already know that, there are k trees

in every row of B̂r, i.e., there are k trees in the uppermost i rows of B̂r. Hence, there

are k trees in every row of S(mdk + 1,mdk + i, 1,mdk + i).

Hence there are k trees in every row of Z(i, d, k,mdk).

Since there are k trees in every row and column and there is at most 1 tree in any B[d, d] of

Z(i, d, k,mdk), it is true that Z(i, d, k,mdk) is TP(d, k,mdk + i).

44



Corollary 2.13. TP (d, k,mdk + i) exists for any i, where 1 ≤ i < dk.

Proof. In the Definition 2.10, we see that Z(i, d, k,mdk) can be constructed for any i, where

1 ≤ i < dk. Also, in the Theorem 2.12, it is shown that, Z(i, d, k,mdk) is TP(d, k,mdk + i).

In other words, TP(d, k,mdk + i) exists because Z(i, d, k,mdk) exists.

2.2 Conclusion

Let k, d, n ∈ Z+, where 1 ≤ k, 2 ≤ d < n. Then necessary condition for the existence of

TP(d, k, n) is
⌊ n
d2

⌋
≥ k.

On the other hand, the necessary condition is sufficient when m > d, 0 ≤ i < dk and

n ∈ {kd2,mdk + i}. However, for the values of n, where kd2 < n < kd(d + 1), the problem

is open.
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