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Abstract

Compared with other medical imaging modalities, MR imaging is time consuming due to

the relatively slow sequential data acquisition pattern. Hence, motion is often an unavoidable

issue for MRI. Object motion during the signal acquisition can reduce image quality due to

the induced artifacts, which further hinders diagnosis and scienti�c research. These degraded

images may require repeated scans, which leads to treatment delay and cost increases. If

images with motion artifacts are not properly interpreted, erroneous diagnoses and false

scienti�c �ndings may occur.

To reduce motion artifacts, three groups of methods are used by practitioners: motion

prevention, artifact mitigation, and motion correction. Motion prevention methods are the

most straightforward way to reduce motion artifacts. However, these may not always be

suitable or e�ective. Artifact mitigation methods mainly include faster imaging and periodic

triggering and gating. Imaging speed has limits, and triggering and gating require extra

time, e�ort, and complexity. Therefore, motion correction methods have received signi�cant

attention.

MRI motion correction techniques can be classi�ed into three groups: motion correc-

tion based on k-space trajectories, prospective motion correction (PMC) and retrospective

motion correction (RMC). Motion correction based on k-space trajectories relies on specially

designed and implemented trajectories, which limits the �exibility of the techniques and

requires more acquisition time. PMC is achieved by obtaining tracking data of the pose

(position and orientation) of the object, passing these data to the scanner with minimal

delay, and adjusting the MR pulse sequences so that the imaging volume moves to follow

the object. PMC requires extra hardware and calibration and sometimes extra acquisition
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time. RMC postprocesses the data and reconstructs MR images after the data is fully ac-

quired. In RMC the process of acquisition is independent of motion. RMC includes three

main groups: self-navigation motion tracking methods to calculate motion information, aut-

ofocusing methods based on evaluation of image quality, and motion correction by training

neural networks. Self-navigation motion correction methods rely on Fourier properties by

taking advantage of overlapping k-space data to track motion. This approach requires ad-

ditional k-trajectories, which increases both time and complexity of the scan. Autofocusing

methods do not rely on a speci�c data sample pattern, equipment or sequence design. These

approaches assume a rigid body or deformable object motion model and estimate motion

model parameters by iterative optimization of an image quality metric when the raw k-space

data are modi�ed according to the motion model. Arti�cial neural network methods es-

tablish the mapping relationship between the motion-corrupted images and the no-motion

images by training a large number of related images, and estimate motion-corrected images

from motion-corrupted images. The focus of this thesis is the development of autofocusing

and neural-network approaches to RMC.

In this dissertation, we develop three methods to correct MRI motion retrospectively.

The �rst contribution is an autofocusing motion correction method to address the two chal-

lenges of previous methods: high calculation load and local minima. We propose to use

multiple linear-motion initializations and joint re�nement of a global model to decrease and

constrain the search space. In the �rst step, k-space is divided into several segments based

on acquisition order. Linear motion is assumed and searched in each segment to get initial

motion parameters. In the second step, several control points are chosen on the piecewise

linear initial approximation, and then a piecewise cubic Hermite interpolation polynomial is

�tted from the control points to obtain smooth motion curves. The motion curves are re-

�ned by optimizing a focus criterion. These strategies make the proposed algorithm e�cient

and robust. Di�erent focus criteria are compared under the proposed method. To further

improve computational e�ciency, golden-section search is used to estimate rotation, and
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two map data structures are applied to store calculated data. Simulations and experimental

results demonstrate that the proposed method can e�ectively and e�ciently correct rigid

motion in MR images.

The second contribution of this work is an e�cient motion correction method based on

fast robust correlation. Translational search can be computationally demanding. A correla-

tion operation can be used to calculate an image match when the matching criterion is the

sum of squared errors. However, this approach cannot be used for nonquadratic matching

criteria. Fast robust correlation is a computationally e�cient search algorithm for trans-

lational image matching in the frequency domain. This method can calculate matching

surfaces from nonquadratic criteria using a series of high-speed correlations by de�ning a

kernel with sinusoidal terms. The proposed method corrects motion-distorted images by

aligning translational motion between images formed by neighboring frequency segments.

Since the squared di�erence kernel is invariant to motion between partial-Fourier images,

we adopt the absolute value kernel, which can be easily approximated by sinusoidal terms.

Total variation of the sum of partial-Fourier images is chosen as the new matching criterion.

FFTs are used to calculate correlations for computational speed. Di�erent search strategies

to combine and correct motion over the whole k-space are discussed and compared. The pro-

posed method can perform real-time processing to reduce image motion artifacts signi�cantly

in the simulations and MRI cardiac experiments.

The third contribution of this dissertation is a novel data-driven motion correction

method for magnitude MR images using generative adversarial networks (GANs). Although

the previous proposed methods can correct motion e�ectively and e�ciently, they both

require complex-valued raw data. However, raw data is not usually preserved in a clini-

cal environment. In this case the previous two methods cannot be used. GANs (pix2pix

model) are implemented to reduce motion artifacts and reconstruct motion-corrupted im-

ages through adversarial training between generator and discriminator networks to estimate

a motion-corrected image that is close to the reference image. The training set is made of
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image pairs consisting of motionless reference images and corresponding motion-simulated

images. The proposed method is validated by a simulated motion test set and a real motion

(experimental) test set.
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Chapter 1

Introduction

This chapter provides the background of MRI motion, and is organized as follows: 1.1

MRI basics, 1.2 MRI motion, and 1.3 overview of the dissertation.

1.1 MRI basics

Magnetic Resonance Imaging (MRI) is a widely used medical imaging technique which

exploits the phenomenon that in a magnetic �eld, some nuclei can absorb and then re-

emit energy, which can be detected under certain conditions. MRI is non-invasive, uses

non-ionizing radiation, and provides contrast in soft-tissue structures. This capability is an

indispensable imaging tool both in research and in clinical applications. An MRI scanner is

a complicated system. Here we only discuss the basic MRI physics and MR image formation.

1.1.1 MRI physics

The physical phenomenon of MRI is called Nuclear Magnetic Resonance. Certain nuclei

have a property called nuclear spin, which is randomly oriented without an external magnetic

�eld. When these nuclei are placed in an external strong magnetic �eld B0, these spins are

quantized to produce a net magnetization vector M , which is in the same direction with B0.

Nuclei can absorb radio-frequency (RF) energy, which can push M out of alignment with

B0 by sending an RF pulse with a certain frequency. M becomes orthogonal to B0, and the

nuclei precess around B0. This process is called nuclear magnetic resonance or excitation,

which is shown in Figure 1.1. The RF pulse is designed to match the resonant frequency of

the system to resonate these nuclei. This behavior is characterized by the Larmor equation,
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which is given by

ω0 = γB0, (1.1)

where ω0 is the precession frequency of M under B0, and γ is the gyromagnetic ratio.

Equation (1.1) is fundamental to MRI.

Figure 1.1: Excitation process. Left: The net magnetization is parallel to the external
strong magnetic �eld B0 before an RF pulse. Center and right: An RF pulse with the
resonant frequency allows the RF energy to be absorbed by the protons, and makes the net
magnetization to rotate away from B0. (This image is from [80])

After the RF pulse is withdrawn, M begins to return to the original equilibrium state,

which is the same direction as B0. During the return process, M continues to precess at the

frequency ω0, and energy is emitted. A receiving coil is used to produce a signal by detecting

M . The generated signal has the same frequency ω0.

1.1.2 MR image formation

Spatial encoding is used to match the generated signal to the position of its source.

Three gradient coils shown in Figure 1.2, which generate three �eld gradients Gx, Gy and

Gz in the x, y and z directions, are used to achieve spatial encoding. The total magnetic

�eld in the z direction is given by:

Bz(z) = B0 +Gzz, (1.2)
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where B0 is in the z direction.

Figure 1.2: Three gradient coils are inside the bore of an MR scanner. (This image is from
the link https://slideplayer.com/slide/9887251/)

Slice selection is the �rst step for spatial encoding, which is used to choose a 2D plane

from the 3D object to be excited. According to the Larmor equation, Eq (1.2) can be used

to implement slice selection.

After slice selection, the spatial encoding becomes a 2D problem within a plane. Ac-

cording to Fourier Series Theory, any image can be represented as the sum of a series of

2D sinusoids. In the spatial encoding of MRI, every sample of the measured signal is the

sum of all the spins in the excited slice at one time point. At each time point, the spins are

excited in a wave pattern, which corresponds to a particular 2D sinusoid type, across the

selected slice. In general, the x direction is called the frequency encoding direction and the

y direction is called the phase encoding direction. The sampled domain is called k-space,

which is usually sampled in the pattern of an array with the same size as the reconstructed

image. The k-space sample values are complex.

According to [71], the relation between samples in k-space S(kx, ky) and spin density

ρ(x, y) is given by

S(kx, ky) =

∫ ∫
ρ(x, y) exp

{
−i2π

(
kx(t)x+ ky(t)y

)}
dxdy, (1.3)
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where kx(t) and ky(t) are given by

kx(t) =
γ

2π

∫ t

0

Gx(υ)dυ, (1.4)

ky(t) =
γ

2π

∫ t

0

Gy(υ)dυ. (1.5)

Equation (1.3) is the Fourier transform of ρ(x, y). The inverse Fourier transform of

samples in k-space is the reconstructed image, which is given by

f(x, y) =

∫ ∫
S(kx, ky) exp

{
i2π
(
kx(t)x+ ky(t)y

)}
dkxdky. (1.6)

1.2 MRI motion

Compared with other medical imaging modalities, MR imaging is time consuming due to

the relatively slow sequential data acquisition pattern. Hence, motion is often an unavoidable

issue for MRI. The common reasons for human motion include:

muscle property. Subjects cannot keep still during the long scan time, because muscles

cannot stand long time extension, especially for some gestures.

periodic involuntary motion. These involuntary motions include breathing, cardiac beat,

vessel pulsation and blood �ow.

disease. Some muscles cannot be controlled due to diseases, such as Parkinson's disease

and stroke patients [86].

uncontrollable subjects. Some subjects like children [16, 79] and those with mental

disorders may not stay in the scanner compliantly.

Object motion during the signal acquisition can reduce image quality due to the induced

artifacts, which further hinders diagnosis and scienti�c research. These degraded images may

require repeated scans, which leads to treatment delay and cost increases. If the artifact

images are not reasonably understood, the erroneous diagnoses and false scienti�c �ndings

may occur [4, 41].
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In general, motion artifacts are the results of a combination of e�ects [108]: image sharp

edge blur, ghosting, signal loss, and undesired signal appearance.

MRI motion can have di�erent classi�cation criteria [34]. Based on deformation, motion

can be grouped into rigid or nonrigid motion. Based on time di�erence, motion can be

separated into inter-scan and intra-scan motion. The inter-scan motion is motion that occurs

between excitation pulses, while intra-scan motion is motion that occurs within an excitation

pulse. Based on motion range, for 2D motion, motion within a 2D plane is called in-plane

motion, while the motion out of a 2D plane is termed through-plane motion. Motion can

also be divided into periodic and random motion.

In order to reduce motion artifacts, three groups of methods are implemented [108]:

motion prevention, artifact mitigation, and motion correction.

Motion prevention methods are the most straightforward ways to reduce motion arti-

facts. Training subjects in MRI environment, scanning during the sleep of infants and babies,

using anesthesia for young children [67, 47], constraining bodies by foam restraints or head

holders [26], and breath-holding during cardiac or abdomen imaging are the most common

strategies to prevent motion. However, these methods are not always e�ective [102, 67], and

some of them are very uncomfortable.

Artifact mitigation methods mainly include faster imaging and periodic triggering and

gating.

Faster imaging is used to reduce motion artifacts by improving imaging e�ciency. Sub-

jects are likely to keep still and feel less uncomfortable in shorter scan time. Some sequences,

such as FLASH [40], bSSFP [85] and EPI, can implement faster imaging. But these meth-

ods have tradeo�s between speed and image resolution and SNR. In addition, the acquisition

speed cannot be accelerated without bound, considering the practical equipment limitations

and human sensation [45]. Even if the acquisition time is made shorter, some kinds of mo-

tion still cannot be avoided. Parallel imaging [88, 81, 36] and compressed sensing [63] are

other tools to accelerate imaging. Coil sensitivity calibration is a key to parallel imaging.

5



New artifacts may be introduced if the reference data is not processed properly [38, 76].

Compressed sensing may introduce patchiness artifacts in some cases [110].

Triggering and gating are widely used in cardiac and abdominal imaging, because breath

and heartbeat are quasi-periodic. Triggering method collects data at the same cardiac or

breath phase of di�erent cycles. Gating acquires data continuously and then reorders the

data. Triggering and gating need extra signals and sensors, such as ECG. In addition, both

methods rely on a periodicity assumption, which is not easily satis�ed for arrhythmia patients

and pediatrics, or other kinds of motion.

Neither motion prevention nor artifact mitigation strategies are always practical. There-

fore, motion correction methods are often indispensable. We will discuss motion correction

methods in Chapter 3 in detail.

1.3 Overview of the dissertation

This dissertation is structured as follows. In Chapter 2, we discuss MRI motion correc-

tion techniques, and classify them into three groups: motion correction based on k-space tra-

jectories, prospective motion correction and retrospective motion correction. In Chapter 3,

we summarize the image registration problem and discuss three aspects of it�transformation

models, matching criteria, and optimization methods. In Chapter 4, we propose an e�cient

and robust autofocusing MR image motion correction method using global motion estimation

to address the two challenges of previous methods: high calculation load and local minima.

We propose to use multiple linear-motion initializations and joint re�nement of a global

model to decrease and constrain the search space. Di�erent focus criteria are compared

under the proposed method. To further improve computational e�ciency, golden-section

search is used to estimate rotation, and two map data structures are applied to store cal-

culated data. In Chapter 5, we propose an e�cient motion correction method based on

fast robust correlation. The proposed method corrects motion-distorted images by aligning

translational motion between images formed by neighboring frequency segments. We adopt
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the absolute value kernel, which can be easily approximated by sinusoidal terms. Total vari-

ation of the sum of partial-Fourier images is chosen as the new matching criterion. FFTs

are used to calculate correlations for computational speed. Di�erent search strategies to

combine and correct motion over the whole k-space are discussed and compared. In Chapter

6, we present a novel data-driven motion correction method for magnitude MR images using

generative adversarial networks (GANs). GANs (pix2pix model) are implemented to reduce

motion artifacts and reconstruct motion-corrupted images through adversarial training be-

tween generator and discriminator networks to estimate a motion-corrected image that is

close to the reference image. The training set is made of image pairs consisting of motionless

reference images and corresponding motion-simulated images. In Chapter 7, we make some

observations about the research and suggest future work.
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Chapter 2

MRI Motion Correction

MRI motion correction techniques can be classi�ed into three groups: motion correction

based on k-space trajectories, prospective motion correction (PMC) and retrospective motion

correction (RMC). k-space trajectories are the sample patterns to �ll k-space. Some k-

space trajectories can enable estimating motion directly from the sample data. Prospective

motion correction techniques perform a real-time update of the data acquisition strategy,

which is performed by tracking object positions adaptively. Retrospective motion correction

postprocesses the data and reconstructs MR images after the data is fully acquired.

This chapter is organized as follows: 2.1 motion correction based on k-space trajectories,

2.2-2.3 prospective motion correction techniques and several methods, 2.4 retrospective mo-

tion correction techniques, 2.5 autofocusing methods, 2.6 arti�cial neural network methods,

and 2.7 advantages and limitations of PMC and RMC.

2.1 Motion correction based on k-space trajectories

Motion correction based on k-space trajectories is a type of self-navigation motion cor-

rection. PROPELLER [77] is one of the most popular k-space trajectories. PROPELLER

stands for �Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction�,

which collects data in centered rectangular strips rotated around the k-space origin until �ll-

ing the disc of k-space. In each strip, the same number of phase encoded lines are acquired.

This sample pattern is shown in Figure 2.1.
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Figure 2.1: Trajectories of a PROPELLER composed of 9 strips. (Figure 2.1 is from[77].)

This sample pattern can reduce motion artifacts by oversampling the k-space center. A

circle in the central k-space is generated by the overlap between strips. In-plane rotations

and translations of each strip are corrected by correlation between the central circle and

each strip based on Fourier transform properties. Through-plane motion can be detected by

cross-correlation. To reduce the e�ect of through-plane motion to the �nal reconstruction,

the strips with through-plane motion are given a smaller weight factor.

The PROPELLER trajectories can be used in undersampling methods [6]. PRO-

PELLER is very useful in clinical applications and is implemented on all the major imaging

platforms. Compared to the Cartesian sampling pattern, the acquisition time of PRO-

PELLER is increased due to the strong oversampling in central k-space. Even if PRO-

PELLER can detect through-plane motion, it is mainly used for 2D image motion correction.

2.2 Prospective motion correction

Prospective motion correction was �rst proposed by Haacke and Patrick [39]. In the

past thirty years, PMC has become a popular method and is widely used in MRI motion

correction. The motion correction model and several kinds of motion tracking methods are

shown below.
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2.2.1 motion correction strategy

If an object is in motion, the object and imaging volume should maintain a constant

relationship. The strategy is achieved by obtaining tracking data of the pose (position

and orientation) of the object, passing these data to the scanner with minimal delay, and

adjusting the MR pulse sequences so that the imaging volume moves to follow the object

[64]. Figure 2.2 shows the strategy of PMC.

scanner 
controller

tracking 
equipment

Motion information

gradient and 
RF update object motion

Figure 2.2: The strategy of PMC.

Rigid motion model can be described by:

x(t) = R(t)xo + T (t), (2.1)

where xo is the original two-element position vector before motion, x(t) is the position vector

after motion occurs at the time point t, R(t) is the rotation matrix of the imaged object

as a function of time point t and T (t) is the translation vector as a function of time point

t. T (t) can be corrected by changing receive phase and RF transmit frequency. In order to

compensate for R(t), the original gradient go should be changed to g(t) as follows:

g(t) = R(t)go. (2.2)
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The frequency, phase and slice-encoding gradients for the rotated object are combined with

no motion gradients. In other words, the logical gradients, which are for the actual pose

of object, are represented by combinations of the physical gradients. Figure 2.3 shows the

compensation.

Figure 2.3: Gradients change with rotation of the head. (Figure 2.3 is from [64].)

2.2.2 motion tracking

In order to track the pose information of the object, three groups of tracking methods�

�eld detection, optical methods and MR navigators�are used.

�eld detection methods

These methods were �rst introduced by Ackerman et al. [1]. The main idea of �eld

detection methods is that di�erent positions of the scanner have di�erent magnetic �eld
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environments, which are measured to localize the positions of the object. Active markers

[74, 73] or probes [10, 11], which are attached to the subject, are required to implement the

measurements. These methods have some disadvantages. The equipment is always connected

by wires to the scanner, which makes the patient less comfortable and makes the scan more

complicated.

optical methods

The use of a camera system is one of the most popular optical methods. A camera or

cameras are used to track motion of markers, which are a�xed to the subject, to get the

position of the subject. Camera systems include out-of-bore camera system [107, 90, 5] and

in-bore camera systems [83, 3, 104]. The camera is out of the scanner systems in an out-

of-bore system, which reduces the compatibility requirement with the scanner but increases

the challenge of accuracy. In-bore camera systems require higher MR compatibility but can

generally track motion more accurately. There are two other kinds of optical methods�laser

systems [28, 29] and bend-sensitive �ber�optic tape [43]. At least one marker is required in

the optical system. Cross-calibration is necessary to transform the subject position informa-

tion in the coordinate system of the optical tracking system to the MRI scanner coordinate

system.

MR navigators

MR navigators include two kinds of navigators: image-based navigators and k-space

navigators. Image-based navigators, such as PACE [91] and PROMO [100], make use of

image registration information to update the position of the subject. These allow the user

to de�ne the interesting image region for motion correction and avoid nonrigid parts of the

image region like the neck. However, the acquisition time is always longer than k-space

navigators, and this long acquisition time for navigators may exceed otherwise unused time

in the sequence, which may produce incompatibility problems with some MRI sequences.

K-space navigators, such as orbital navigators [97], spherical navigators [98] and cloverleaf

navigators [93], sample the same part of k-space data repeatedly to determine rotations and
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translations by k-space comparison. Compared with �eld detection and optical methods, no

marker and no additional equipment are needed for MR navigator methods. However, they

require modi�ed or additional k-space trajectories and may require extra time to scan the

additional k-space trajectories. The information from MR navigators can also be used to

correct motion retrospectively.

2.3 PMC methods

2.3.1 PACE and PROMO

Both PACE and PROMO are image-based prospective motion correction methods.

Prospective Acquisition Correction (PACE) was �rst proposed by Thesen. This method

is a combination of both prospective and retrospective motion correction. An image-based

motion detection is used to estimate the 3D rigid motion, which can be used to adjust the

position of the volume before the next volume acquisition. At the same time, retrospective

correction is performed to decrease the residual volume-to-volume motion. Figure 2.4 shows

the process of PACE.

Nth Mesurement (N+1)th Measurement

Position 
Update

Detect
motion

Residual motion postprocessing

0 s 1.8 s 4 s

Transfer 
data

Figure 2.4: Process of PACE.
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PROMO represents �PROspective MOtion correction�, is another popular motion cor-

rection method based on images. Three orthogonal 2D spiral navigators (SP-Navs) are

acquired to reconstruct images. The extended Kalman �lter (EKF) is used to predict and

correct motion based on the reconstructed images from the spiral navigators. In order to

keep the scan e�cient, multiple SP-Navs and EKFs are used in the recovery time of scan

sequences. Figure 2.5 shows 3D IR-SPGR sequence with SP-Navs and EKFs [100].

Figure 2.5: 3D IR-SPGR sequence with SP-Navs and EKF. (Figure 2.5 is from [100].)

2.3.2 SNAV

A spherical shell in k-space is sampled as a 3D spherical navigator (SNAV) echo, which

is used to measure rigid motion in 3D space [98]. 3D rotation and translation of an imaged

object can be detected by registration in k-space. The relationship between a reference

position k-space signal at the location (kρ, θ, φ) and a new object position at the rotated

coordinate frame (kρ, θ
′, φ′) in spherical coordinates is given by:

S ′(kρ, θ
′, φ′) = S(kρ, θ, φ) exp

{
i2πkρ(∆x cos θ sinφ+ ∆y sin θ sinφ+ ∆z cosφ)

}
, (2.3)
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where (∆x,∆y,∆z) are the translations in the three axis directions. kρ is unchanged in the

rotated coordinate, so both signals are on the same shell.

The relation between a reference position (kx, ky, kz) and a new translation-only object

position (k′x, k
′
y, k
′
z) is given by:

S ′(k′x, k
′
y, k
′
z) = S(kx, ky, kz) exp

{
i2π (∆xkx + ∆yky + ∆zkz)

}
. (2.4)

Since k-space registration is implemented, the three rotation parameters can be found

separately from the three translation parameters. The registration can be made by rotating

the magnitude values of the shell to detect the rotation information, and then translation pa-

rameters can be obtained by comparing with the phase di�erences after rotation is corrected.

Figure 2.6 shows the spherical shell and rotation k-space registration.

Figure 2.6: (a) Signal amplitude of spherical shell (b) before and (c) after a 12◦ relative
rotation. (Figure 2.6 is from [98].)

2.4 Retrospective motion correction

Retrospective motion correction refers to modifying k-space or image data during image

reconstruction, after all data is acquired [34]. The process of acquisition is independent of

motion. RMC includes three main groups: self-navigation motion tracking methods to cal-

culate motion information, autofocusing methods based on evaluation of image quality, and

motion correction by training neural networks. Self-navigation motion correction methods
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rely on Fourier properties by taking advantage of overlapping k-space data to track motion

[15, 69, 9]. Autofocusing methods do not rely on a speci�c data sample pattern, equipment

or sequence design. These approaches assume a rigid body or deformable object motion

model and estimate motion model parameters by iterative optimization of an image quality

metric when the raw k-space data are modi�ed according to the motion model [8]. Arti�cial

neural network methods establish the mapping relationship between the motion-corrupted

images and the no-motion images by training a large number of related images, and estimate

motion-corrected images from motion-corrupted images.

In the next sections, we will discuss several autofocusing methods and arti�cial neural

network methods in detail.

2.5 Autofocusing methods

2.5.1 automatic correction of motion artifacts in Magnetic Resonance images

using an entropy focus criterion

To our knowledge, the �rst autofocusing MRI motion correction method was proposed

by Atkinson et al. [8]. An image entropy focus criterion was used to correct motion-corrupted

MR images. Patient motion can be described by a motion trajectory, which is assumed to be

rigid motion as a function of time. Continuous movement is discretized as a series of motion

nodes, and in each node the motion is constant. Each node corresponds to the acquisition

of one k-space line or one group of k-space lines. The starting point for this trajectory is

zero motion corresponding to one group of k-space lines, while the motions in other groups

of k-space lines are corrected by assessing the image quality, named entropy focus criterion.

The motion estimation is modi�ed with trial-and-error iteratively to obtain the best quality

image.
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The entropy of an image E is de�ned as:

E = −
N∑
i=1

|pi|
ptotal

ln

(
|pi|
ptotal

)
, (2.5)

where pi is the pixel value of the image, and N is the total number of pixels of the image.

ptotal is given by:

ptotal =

√√√√ N∑
i=1

p2
i . (2.6)

Entropy minimization prefers high contrast and increasing the number of dark pixels,

while motion tends to do the opposite by creating ghosts and blurring images in the dark

regions. For an image, when all the image energy is in one pixel and the other pixel values

are 0, E equals 0, which is the minimum of (2.5). But when all the pixel values in a 256×256

images are equal, the image entropy E is around 1420, which is the maximum of (2.5) for

that image size.

The optimization strategy is similar to a multi-resolution search scheme. The readouts

within the acquisition are grouped into several segments, and each segment includes the same

number of non-overlapping MRI k-space lines. In order to illustrate this clearly, we take 256

readouts as an example. The k-space is separated into 16 segments, each having a length of

16 k-space lines. The 16 segments are grouped into two parts�lower part and upper part.

Each part consists of 8 segments. The lower part is from the scan center to the end of the

scan, and the upper part is from the scan center to the start of the scan. The �rst segment

of the lower part consists of 16 k-space lines from the scan center (low frequency) towards

the end of the scan (high frequency). This segment has trial translations in both the phase

encoding and frequency encoding directions {−N,− (N − 1) ,−1, 0, 1, (N − 1) , N} (N is the

searching range), with a total of (2N + 1) ∗ (2N + 1) combinations for this segment. For

each combination, preserving other segments unchanged, the image entropy is calculated

by (2.5). The lowest entropy of the combination is accepted, and the motion of the �rst

segment of the lower part is corrected corresponding to the combination. The subsequent
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segments of the lower part are considered similarly in turn. The segments of the upper part

are calculated in the same way. This process is repeated, and the segment length decreases

by two k-space lines in each iteration. In this way the gross motions are determined �rst

and gradually re�ned.

This method has high computational load due to using a trial-and-error approach. In

addition, the optimization strategy makes the search more likely to be trapped in local

minimum.

2.5.2 blind retrospective motion correction of MR images

To reduce computational load for 3D rigid motion, an analytical gradient-based motion

correction (GradMC) algorithm was proposed by Loktyushin et al. [59]. A parameterized

3D motion-corrupted k-space model was proposed. Entropy of the gradient of the image is

used as the focus criterion in this method. The motion assumption is similar to [8] but in 3D

space. Quasi-Newton and Broyden-Fletcher-Goldfarb-Shanno is used to optimize the cost

function iteratively.

Entropy of gradient of an image is de�ned as:

φ(I) = H(DxI) +H(DyI), (2.7)

where Dx and Dy are the di�erence matrices in horizontal and vertical directions and H()

is de�ned as:

H(p) = −vT ln v, v =

√
p� p∗
pHp

, (2.8)

where � is the point-wise product of two vectors, p is the pixel vector of the image I, ∗

represents the complex conjugate, and H represents complex conjugate transpose.

Coarse to �ne optimization strategy is used. The coarse image formed by only lower

frequency k-space data is corrected �rst, and then a �ner image is formed by adding a higher-

frequency segment. All the k-space lines that formed the �ner image are corrected based
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on the focus criterion. The process iteratively covers all the k-space lines and corrects the

whole k-space data, which is shown in Figure 2.7.

Figure 2.7: Optimization strategy of Blind Retrospective Motion Correction of MR Images.
The k-space data is processed from center (low frequency part) to the whole k-space to
optimize motion parameters using coarse to �ne optimization. (Figure 2.7 is from [59].)

Since the algorithm performs line-by-line 6-parameter correction, the calculation load

is very high. Hence, a highly parallel implemented GPU version gradient-based motion

correction optimization strategy is used. A similar idea was used to correct nonrigid motion

by correcting each rigid motion patch [60].

2.5.3 nonrigid motion correction in 3D using autofocusing with localized linear

translations

An autofocusing motion correction method based on �Butter�y� navigators to reduce

calculation load and correct nonrigid motion was introduced by Cheng et al. [19]. The

di�erent motion on each small patch of image is approximated by a translation. �Butter�y�

navigators provide possible translational motion information to reduce the search range.

Localized entropy of the gradient of the image is used as the focus criterion. Based on this

localized autofocusing framework, a new motion correction method combined with other

sample patterns and compressed sensing was proposed [20].
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2.6 Arti�cial neural network methods

Arti�cial neural networks (ANNs) are widely used in machine learning. In general,

an ANN is made of a collection of connected computational units, called arti�cial neurons,

which simulates the biological neurons. Arti�cial neurons are arranged in layers. Di�erent

network structures are formed by di�erent number, arrangements and connections of layers,

or di�erent orders of functional layers. A loss function is a measure function to compare

the real output (the labeled output from the training set) with network output. An ANN is

trained to minimize a loss function using a labeled training set. The details of ANNs will be

discussed in the Chapter 6.

Neural networks are widely used in the MRI �eld: image reconstruction [105, 95, 82],

image denoising [87, 13, 12], image super-resolution [109, 57, 17], and image segmentation

[18, 42, 21]. The history of using neural networks to correct MRI motion is relative short.

In general, these methods require pairs of images as the training set: motionless images

and corresponding motion-corrupted images but using di�erent network structures and loss

functions. Loktyushin et al. [61] proposed a motion correction method using convolutional

neural networks. Du�y et al. [24] used a modi�ed HighRes3dNet (HR3DNet) [56] to correct

MRI head motion. Pawar et al. [75] implemented an encoder-decoder convolutional neural

network to restore motion-blurred images. Armanious et al. [7] proposed a novel framework

called MedGAN based on GANs for medical image translation.

2.7 Advantages and limitations of PMC and RMC

In this section, we discuss the advantages and limitations of PMC and RMC separately

and at the end discuss one hybrid motion correction method.

2.7.1 advantages of PMC

data consistency and uniform sampling
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In PMC, the FOV (�eld of view) follows the object tightly, so the object cannot move

out of the imaging volume in normal situations. Uniform sampling can be kept in PMC;

on the other hand, RMC cannot perform uniform sampling, especially in the case of large

rotation.

through-plane motion

Spin-history e�ects occur when the object moves in and out of the imaging slice [33].

Through-plane motion can disrupt the steady state in one imaging slice, leading to signal

�uctuations in conventional imaging. PMC can correct the through-plane motion to reduce

the spin-history e�ects.

real-time imaging

Imaging time is an important factor in research and clinical applications. Some modern

PMC can provide real-time imaging.

calculation load

Calculation load is relatively low for PMC, and there is no additional calculation per-

formed for the image reconstruction.

2.7.2 limitations of PMC

tracking motion error e�ect

The performance of PMC is determined by the acquisition of reliable and accurate

tracking data. Inaccurate pose data or noisy data can corrupt the image information. Cross-

calibration errors may be fatal for optical PMC.

additional hardware

For optical and �eld detection methods, additional hardware is needed to track the

motion, which makes the whole system complicated and expensive.

sequence adjustments
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For the MR-navigator methods, some MRI sequences have to be changed to add the

navigators, which may increase the scan time and lead to complicated sequence modi�cation.

In some cases, navigators are not compatible with sequences.

marker attachment

Markers have to be attached to the object securely to track the motion, which results

in inconvenience and discomfort for the subject. If markers move, erroneous updates will be

applied, which may destroy image quality.

2.7.3 advantages of RMC

simple system

For autofocusing methods, no additional hardware, no gradient update, no modi�cation

of MRI sequences and no markers are needed. For neural network methods, there are no

speci�c requirements for the software and hardware of scanners. A basic MR system is

enough for RMC. Accounting for the equipment cost and operation complexity, RMC is

suitable for clinical use.

real-time motion correction

Compared with other RMC methods, we propose a new motion correction method based

on fast robust correlation that can provide real-time motion correction. For arti�cial neural

network methods, if the training time is ignored, the motion correction can be accomplished

in real time.

no preparation required

Because no special sequences or hardware is required, no special preparation is required

prior to or during acquisition. A decision about performing motion correction can be made

after the data is acquired.

2.7.4 limitations of RMC

through-plane motion
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2D RMC cannot correct through-plane motion, which may lead to motion correction

errors and induce image artifacts.

non-realistic images

Non-realistic motion-corrected images may be generated by arti�cial neural networks

methods. It is hard to eliminate this phenomenon, which is determined by the nature of the

arti�cial neural network.

nonuniform samples

According to the property of Fourier transforms, correction of large angle rotations may

result in nonuniform sampling and local Nyquist violations, which is shown in Figure 2.8.

(a) (b)

Figure 2.8: (a) Sample locations after RMC correction for rotation object. (b) Sample
locations after PMC for rotation object.

calculation load

The calculation load is relatively high for previous RMC methods. The most common

way to reconstruct images is to iteratively update motion parameters.

local minima

RMC are easily trapped in local minima, due to the vast motion search space and

imperfect optimization strategies.
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A combination of PMC and RMC is possible and some of the limitations can be ad-

dressed partially [14, 65]. Aksoy proposed a motion correction method to combine prospec-

tive optical-based motion correction with removal of residual motion artifacts by entropy-

based retrospective autofocusing [2]. In general, scanner-camera cross-calibration is the

key factor with optical prospective motion correction, because a small error in the cross-

calibration can result in wrong position adjustment for the scanner and induce image ar-

tifacts. However, for this hybrid method, the requirement of cross-calibration accuracy is

decreased, and high-quality images may still be obtained, because the autofocusing motion

correction method is applied after data is acquired. The details of this method will not be

discussed here.
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Chapter 3

Image Registration

Image registration is closely related to some motion correction methods and our proposed

methods. In this chapter, some basic image registration concepts are �rst discussed. Image

registration is de�ned as a process by which di�erent sets of data are transformed into the

same coordinate system. This process sets one image as the target (also called the �xed

image, or the reference image), and implements a transformation model to the other image

(also called the moving image, the �oating image, or the source image) to match the target

image.

Image registration is a basic technology in image processing. The applications can be

generally classi�ed into three �elds [112].

di�erent times. Images of the same object are acquired at di�erent times, and the

purpose of registration is to �nd the changes of the object, such as motion tracking, landscape

changes and tumor evolution.

di�erent views. Images are obtained from di�erent viewpoints at the same time, and

the purpose of registration is to get a bigger view of images, such as remote sensing and 3D

image reconstruction.

di�erent sensors. Images are acquired from di�erent sensors for the same object, and

the purpose of registration is to catch and fuse more details of the same object, such as

remote sensing, multiple sensor fusion, MR-CT, and MR-SPECT fusion.

Figure 3.1, Figure 3.2 and Figure 3.3 give examples of di�erent times, di�erent views,

and di�erent sensors image registration.
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Figure 3.1: Di�erent times brain images registration to detect a le-
sion. (This image is from the link https://thebestphotos.eu/

detection-of-focal-longitudinal-changes-in-the-brain-by.html)

Figure 3.2: Di�erent views aerial images registration to extend the view. (This image is from
MathWorks website Image Registration section, and the link is https://www.mathworks.
com/discovery/image-registration.html)

Figure 3.3: Di�erent sensors brain images registration to fuse images. (This image is from
UCF Medical Image Computing (CAP 5937) slices (Spring 2016), and the link is http:

//www.cs.ucf.edu/~bagci/teaching/mic16/lec15.pdf)
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The image registration methods can be classi�ed into two groups: area-based registra-

tion and feature-based registration. The process of both registration methodologies show in

Figure 3.4 and Figure 3.5.

Target image Source image

Matching criteria

Optimizer

Interpolation

Transformation

Figure 3.4: The steps of area-based registration methods

Target image Source image

Features 

detection

Features 

detection

Cost function of Transformation model

Optimization of the cost function

Figure 3.5: The steps of feature-based registration methods

In general, a registration algorithm, whether area-based or feature-based, can be de-

composed into three parts:

transformation models. The way that a source image can be changed to match the

target image.

matching criteria. The similarity measures of two images to be matched.

optimization methods. Algorithms to maximize or minimize the matching criteria.
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For the feature-based image registration, one more step�feature detection�is needed.

Considering the relation to the proposed methods, we only discuss area-based image regis-

tration here. This chapter is organized as follows: 3.1 transformation models, 3.2 matching

criteria, and 3.3 optimization methods.

3.1 Transformation models

A transformation model de�nes how one image can be deformed to align with the other

image, which is an important step for registration. The choice of transformation model

depends on the image registration application and the nature of the image data, which

in�uences the rest of the registration steps. The transformation model has two functions.

First, it improves the similarity of the images by de�ning the source image move relative to

the target image. Second, it de�nes the source image interpolation if necessary. In general,

transformation models can be classi�ed into three primary groups: rigid, a�ne and non-rigid

models.

The rigid transformation model is a basic and widely used model in image registration.

Rigid transformation preserves the Euclidean distance for each point pair in a Euclidean

space, which is also called a Euclidean transformation. In two-dimensional space, the model is

always de�ned by three parameters: two translation parameters and one rotation parameter,

which is described as three degrees of freedom. These parameters are applied to a vector

locating a point in the source image to �nd its location in the target image. Di�erent orders of

rotation and translation operations may have di�erent transformation model representations

[31, 37]. For rotation before translation, the transformation model is given by:


x′

y′

1

 =


cos θ sin θ tx

− sin θ cos θ ty

0 0 1



x

y

1

 , (3.1)
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where tx and ty specify the translations along the x and y axes, and θ is the angle of rotation

at the center of the image.

The corresponding model for translations before rotation is given by:


x′

y′

1

 =


cos θ sin θ tx cos θ + ty sin θ

− sin θ cos θ −tx sin θ + ty cos θ

0 0 1



x

y

1

 . (3.2)

In three-dimensional space, the model includes six parameters: three translation pa-

rameters and three rotation parameters. Here we just show the representation for rotations

before translations:



x′

y′

z′

1


=



cosω cosφ cos θ sinφ+ cosφ sinω sin θ sinφ sin θ − cosφ sinω cos θ tx

− cosω sinφ − sin θ sinω sinφ+ cos θ cosφ sin θ cosφ+ sinφ sinω cos θ ty

sinω − sin θ cosω cos θ cosω tz

0 0 0 1





x

y

z

1


,

(3.3)

where tx, ty and tz specify the translations along the x, y and z axes, and θ, ω and φ are the

angles rotation around the x, y and z axes.

A rigid transformation model is mainly used in two ways. One is to model rigid structure

motion, such as head MRI. The other is for pre-registration of non-rigid structures, that is

then followed by more complicated non-rigid registration based on the pre-registration.

An a�ne transformation model can permit translation, rotation, scaling and shearing

deformations [49]. This model can align images with perspective distortions. Figure 3.6

shows this model. The transformed coordinates are given by:
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x′

y′

z′

1


=



a11 a12 a13 tx

a21 a22 a23 ty

a31 a32 a33 tz

0 0 0 1





x

y

z

1


, (3.4)

where a11, a12, a13, a21, a22, a23, a31, a32 and a33 specify rotation, scaling and shearing

deformations, and tx, ty and tz specify the translations.

Figure 3.6: A�ne transformation model, the parallel lines keep parallel after an a�ne trans-
formation.

Non-rigid registration is a popular topic in recent research. One commonly used and

important non-rigid registration method is a group of splines technique [89, 53, 54]. In

splines registration methods, corresponding control points are de�ned in both target and

source images to calculate distance between these control points by spline function. Thin-

plate splines [25] and B-splines [103] are the most widely used among the spline methods.

Thin-plate splines registration is a global method, which means each control point in the

thin plate has a global in�uence on the transformation model. If the position of one control

point changes, the transformation model will change, and the whole transformed image will

change. By contrast, B-splines is a local registration method, which is de�ned in the vicinity

of each control point. So one control-point position change will only a�ect transformation in

the neighborhood of the point, not the whole transformed image. Hence, it is more robust.

Figures 3.7 and 3.8 show the thin-plate splines and B-splines registration.
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Figure 3.7: A thin-plate spline that passes through a set of control points. (Figure 3.7 is
from the link http://elonen.iki.fi/code/tpsdemo/.)

Figure 3.8: Left: source image. Middle: target image. Right: deformed source image through
B-splines registration. (Figure 3.8 is from [103].)

3.2 Matching criteria

Area-based matching criteria align images by evaluating the whole image domain pixel

values. This strategy is widely used when image features are not salient or the features are

hard to detect, such as some kinds of medical image registration. Since the whole data is

used, the registration is more robust, and error pixels do not have much e�ect on the �nal

transformation model. However, computational expense is increased when the size of the

image is large.

The area-based matching criteria include two similarity measures: intensity-based and

frequency-based.
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Intensity-based similarity measures can be divided into three groups: based on inten-

sity di�erences, based on intensity cross-correlation and based on information theoretic ap-

proaches [22, 44].

Intensity di�erence methods usually use the sum of squared or absolute di�erences (SSD

or SAD) as a matching criterion. In order to use the intensity di�erences similarity measure,

the same structures of the target and source images should have similar intensity values.

Thus, the minimum of SSD or SAD means two images matched. SSD and SAD are given

by:

SSD =
1

N

∑
x∈ΩT,S

[
T (x)− S

(
t(x)

)]2

, (3.5)

SAD =
1

N

∑
x∈ΩT,S

∣∣∣T (x)− S
(
t(x)

)∣∣∣, (3.6)

where T (x) is the intensity of voxel x in the target image and S
(
t(x)

)
is the intensity of

the corresponding voxel in the source image through the estimation of the transformation

function t(x), ΩT,S is the overlap region of the target and the source images and N is the

number of voxels in this region.

The cross-correlation (CC) method has also been used as an image similarity measure.

The assumption behind CC is that there is a linear intensity relation between the two images.

Compared with SSD, the maximum of CC means two images are correctly aligned. CC is

given by:

CC =

∑
x∈ΩT,S

(
T (x)− T̄

)(
S
(
t(x)

)
− S̄

)
√∑

x∈ΩT,S

(
T (x)− T̄

)∑
x∈ΩT,S

(
S
(
t(x)

)
− S̄

) , (3.7)

where T̄ is the mean voxel intensity of the target image and S̄ is the mean voxel intensity of

the source image.

SSD and CC are used for mono-modal registration, but for multi-modal, registration

information theoretic approaches are the most popular.
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Joint distribution of the Shannon entropy provides one way to measure the alignment

[78], which is given by:

H(T, S) = −
∑
t,s

pT,S(t, s) log pT,S(t, s), (3.8)

where pT,S(t, s) is a joint probability density function of target and source images in the

overlap region. The entropy is low when the distribution has concentric peaks, and it is high

when the distribution is more uniform. So the strategy is to minimize the joint entropy to

match the images. The joint probability density function is generated from a joint histogram

of the target and source images.

When joint distribution of the Shannon entropy is used alone, misregistration can oc-

cur. For example, when two images only have one piece of background overlaps, the joint

histogram has only one sharp peak, and the joint entropy has a low value that leads to an

uncorrected registration. Mutual information (MI) [66, 99] is an e�ort to solve this problem.

MI measures the amount of information in the overlapping volume by the marginal entropy

of the individual image being registered together with the joint entropy, which is given by:

MI(T, S) = H(T ) +H(S)−H(T, S), (3.9)

where H(T ) and H(S) are the marginal entropies of each image. Eq 3.10 and Eq 3.11 give

the overlap region marginal entropy of each image.

H(T ) = −
∑
t

pT (t) log pT (t) ∀T (x) = t|x ∈ ΩT,S, (3.10)

H(S) = −
∑
s

pS(s) log pS(s) ∀S(x) = s|x ∈ ΩT,S. (3.11)

MI can be further expressed as:
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MI(T, S) = H(T ) +H(S)−H(T, S) =
∑
t,s

pT,S(t, s) log
pT,S(t, s)

pT (s)pS(t)
. (3.12)

For the previous example, the marginal entropies will have low values when the overlap-

ping region only includes background, and they will have high values when the overlapping

region includes sharp structures. The marginal entropy terms provide a tradeo� with the

joint entropy.

All three previously discussed similarity measures are in the spatial domain, but there

is also a group of methods whose similarity measures are de�ned in the Fourier domain

[46, 32]. If data is processed more easily in the frequency domain or an acceleration of the

computation speed is needed, Fourier-domain methods can be a more powerful tool. This

group of methods is a natural �t with MRI, because the image data is acquired by sampling

in the Fourier domain (k-space). The phase correlation method (PCM) is the most common

method in this group. According to the Fourier shift property, a linear phase di�erence in

the Fourier transform of two images comes from a translation of the images, which is given

by

FS(k, l) = FT (k, l) exp
{
−j(ktx + lty)

}
, (3.13)

where FS and FT are the Fourier transform of source and target images. (k, l) are the Fourier

domain coordinates.

The normalized cross-power spectrum is used to calculate phase correlation matrix,

which is given by:

Q(k, l) =
FT (k, l)F ∗S(k, l)∣∣FS(k, l)F ∗S(k, l)

∣∣ = exp
{
−j(ktx + lty)

}
. (3.14)

PCM is robust against frequency-dependent noise and time-varying illumination distur-

bances. However, PCM is used only for registration of translations of images.
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3.3 Optimization methods

Optimization is required to �nd the transformation to best align two images, which

means �nding the minimization or maximization of similarity measures. A good optimizer

should be reliable and quick to �nd possible solutions. Di�erent registration problems require

di�erent optimizers.

The similarity measure of registration can be accounted as an n-dimensional function,

where n is the number of parameters of the transformation model. In order to �nd the n

parameters to minimize or maximize this function, iterative optimization algorithms are the

most common strategy.

In general, optimizing n parameters follows an update below:

si+1 = si + λigi(si), (3.15)

where s is the vector of n parameters of a similarity measure function, λ is the step length,

g is the search direction, and i de�nes the number of the iteration.

Typical methods to update n parameters include: gradient descent (GD), conjugate

gradient (CG), Quasi-Newton (QN), Levenberg - Marquardt (LM) and Gauss-Newton (GN)

methods [89]. The main di�erence among these algorithms is how to �nd the next step

search direction, namely g. The equations of the above algorithms are shown in Table 3.1.

Table 3.1: Search directions of di�erent algorithms

Algorithms Search directions

GD g = −∇s(s)
CG g = −∇s(si) + βigi−1

QN g = −Ĥ−1(s)∇s(s)

LM g = −
(
Ĥ−1(s) + αI

)
∇s(s)

GN g = −
(
JT (s)J(s)

)−1∇s(s)
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A multi-resolution strategy is generally used in these iterative algorithms, which is also

known as a coarse-to-�ne strategy [72]. First, both the target and the source images are down-

sampled. Then these two down-sampled images are aligned. Second, the transformation

parameters from the last step are used as the initial guess for higher-resolution images,

which come from the original images with a smaller downsampling rate. So the registration

is from lower- to higher-resolution images until the original resolution is reached. In each

step, the parameters found in the previous step are used to obtain the initial guess of the

current step. This strategy can avoid the local minimum problem and increase computational

speed.
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Chapter 4

An E�cient and Robust Autofocusing MR Image Motion Correction Method using Global

Motion Estimation

Autofocusing motion correction methods are one kind of retrospective MRI motion cor-

rection method. These methods assume a parameterized motion model and estimate the

model parameters by iterative optimization of an image quality metric, called a focus crite-

rion. Motion is corrected after the raw k-space data are modi�ed according to the optimized

model parameters. Implementing these methods does not require additional hardware, gra-

dient update, modi�cation of MRI sequence or markers attached on subjects. However, due

to the vast size of the search space, autofocusing methods always have two challenges: high

calculation load and local minima.

In order to address the two challenges, a new autofocusing motion correction algorithm

is proposed in the chapter. We propose to use multiple linear-motion initializations and

joint re�nement of a global model to decrease and constrain the search space. In the �rst

step, k-space is divided into several segments based on acquisition order. Linear motion is

assumed and searched in each segment to get initial motion parameters. In the second step,

several control points are chosen on the piecewise linear initial approximation, and then a

piecewise cubic Hermite interpolation polynomial is �tted from the control points to obtain

smooth motion curves. The motion curves are re�ned by optimizing a focus criterion. These

strategies make the proposed algorithm e�cient and robust. Di�erent focus criteria are

compared under the proposed method. To further improve computational e�ciency, golden-

section search is used to estimate rotation, and two map data structures are applied to

store calculated data. Simulations and experimental results demonstrate that the proposed

algorithm can e�ectively and e�ciently correct motion in MR images.
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This chapter is organized as follows: 4.1 motion model and acquisition assumption,

4.2 the problem of previous search strategies, 4.3 focus criteria, 4.4 two steps of the pro-

posed method, 4.5 golden-section rotation search, 4.6 map data structure, 4.7 rotation and

translations interpolation methods, 4.8 simulations, 4.9 experiments, and 4.10 discussion.

4.1 Motion model and acquisition assumption

In this chapter, the motion is assumed to be two-directional translations and one rotation

in a 2D plane. It is assumed that the x axis corresponds to the frequency encoding direction

and the y axis corresponds to the phase encoding direction. The acquisition time gap of

di�erent kphase lines is much longer than the duration of the frequency encoding (acquisition

of one kphase line). So the motion during the frequency encoding (one single kphase line) is

much smaller than the inter-line (di�erent kphase lines) motion, which means intra-line motion

can be assumed negligible. The basic unit for motion correction in this chapter is chosen to

be a single kphase line, which means we only consider motion between di�erent kphase lines.

Within each kphase line, the object is modeled as stationary.

The motion parameters ∆x, ∆y and ∆r corresponding to x and y translations and

rotation angle are a function of kphase. Therefore, the motion correction is essential to

estimate a total of Nphase 3D vectors M , where Nphase is the number of kphase lines. The

motion parameters can be given by:

M(kphase) =
(
∆x(kphase),∆y(kphase),∆r(kphase)

)
, (4.1)

This motion model is shown in Figure 4.1.
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Figure 4.1: The motion model of the proposed method. in k-space, each dash line is one
kphase line. Di�erent kphase lines have their own motion parameters (∆x,∆y,∆r). Red, green
and blue are three kphase lines with three di�erent sets of motion parameters.

4.2 Previous search strategies

In general, the previous search strategies can be classi�ed into two groups. One is to

search one segment of k-space data, which includes several neighboring k-space lines, while

keeping the remaining k-space lines unchanged. Then a di�erent segment is searched until

all segments covering the whole k-space are corrected. After each iteration, the size of the

segments is reduced to re�ne motion. The other strategy is to preserve the central k-space

part as the reference and then detect and correct the motion of neighboring peripheral k-

space segments. The motion-corrected peripheral k-space segments are combined with the

central k-space part to form a new reference, and further peripheral k-space segments are

corrected until the whole k-space is covered.

We found that neighboring lines in k-space have a strong relationship, and the motion

detection of one segment may not correspond to the average motion of all the lines in the

segment when the segment size is smaller than a certain number. Sometimes the motion

estimate of a segment matches the motion of the nearest line to the reference segment
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rather than matching the average motion of the k-space segment to the reference. Due to

the strong impact of the neighboring line, the motion of the whole segment may not be

corrected properly, which may result in the cost function being trapped in local minima,

which is shown in Figure 4.2. In order to overcome this problem and take advantage of the

strong relationship between the neighboring lines, a new search strategy based on global

motion estimation is proposed in the next section.

Figure 4.2: The strong relationship between neighboring lines results in motion estimation
error. Segment 1 and segment 2 are two neighboring segments in k-space and the green solid
line gives the real motion for each k-space line of the segment 1 and the segment 2. Due
to the strong bond between the red and blue thick solid lines, the estimated motion of the
segment 1 is dominated by the red thick solid line, which results in the errors for other lines
in the segment 1.

4.3 Focus criteria

The focus criterion is important for image evaluation in autofocusing methods. Con-

sidering accuracy and e�ciency, an ideal criterion should satisfy three conditions: �rst, the

criterion value can measure the image quality correctly; secondly, the extremum corresponds

to the best image quality. Thirdly, the criterion should be easy calculated. Many focus
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criteria have been proposed [68] that general meet the above conditions. We cannot pro-

vide theoretical proof of which is the optimal criterion under the proposed method, but we

can draw a well-grounded conclusion based on empirical performance. Image entropy and

di�erent kinds of entropy of the gradient of image are the most popular criteria for aut-

ofocusing methods [68, 8, 59, 19]. Based on [68], the entropy of one-directional gradient

along the phase-encoding direction is the best criterion. But this conclusion relies on certain

evaluation rules, which may not be suitable for the proposed motion correction method.

To our knowledge, the same focus criterion may perform di�erently under various motion

correction methods. So in this chapter, the image entropy (Eq 4.2), the entropy of the one-

directional gradient of image along the phase-encoding direction (Eq 4.4), the entropy of the

two-directional gradients of image (Eq 4.5), the total variation of an image (Eq 4.7) and the

sum of the absolute values (Eq 4.9) will be compared under the proposed motion correction

method.

The entropy of an image is de�ned as:

c1 = −
N∑
i=1

|pi|
ptotal

ln

(
|pi|
ptotal

)
, (4.2)

where pi is the pixel value of the image, and N is the total number of pixels of the image.

ptotal is given by:

ptotal =

√√√√ N∑
i=1

p2
i . (4.3)

The entropy of the one-directional gradient of an image is de�ned as:

c2 = H(DyI). (4.4)

The entropy of the two-directional gradients of an image is de�ned as:

c3 = H(DxI) +H(DyI), (4.5)
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where Dx and Dy are the di�erence matrices in the horizontal and vertical directions, I is

the input image, and H() is de�ned as:

H(p) = −vT ln v, v =

√
p� p∗
pHp

, (4.6)

where � is the point-wise product of two vectors, p is the pixel vector of the image I, ∗

represents the complex conjugate, and H represents complex conjugate transpose.

The total variation of an image is de�ned as:

c4 = S(DxI) + S(DyI), (4.7)

where S() is de�ned as:

S(p) =
N∑
i=1

|pi| , (4.8)

where pi is the pixel value of the image.

The sum of the absolute values of an image is de�ned as:

c5 =
N∑
i=1

|pi| . (4.9)

4.4 Proposed method

In order to decrease computational complexity and avoid being trapped in local minima,

the proposed method involves two steps: piecewise linear initial approximation and joint

re�nement of a global model to perform global estimation.

piecewise linear initial approximation

K-space is divided into several segments based on acquisition order. Linear (uniform

speed) motion (two translations and one rotation) is assumed in each segment to get initial

motion parameters, which are the slopes (the speed) of the linear motions. In order to obtain

the slopes of these linear motions, searching is done within possible slopes to optimize the
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criterion. A linear motion approximation is reasonable, since the acquisition time in each

segment is relatively short. Subject motion velocity is expected to be in a small range within

a small time frame, which makes the search space small and improves search e�ciency. The

process is shown in Figure 4.3. Due to the three parameters of the motion model, the

search space consists of three levels of loops. In order to further improve search e�ciency,

golden-section search is introduced to reduce search times, which will be discussed in the

later section.
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Figure 4.3: The process of piecewise linear initial approximation. There are three motion
curves with the x axis representing kphase lines and the y axis representing pixels for x,
y translations and rotation degree for rotation. The whole k-space is divided into three
segments with a certain number of kphase lines in each segment. In Segment 1, the linear
estimations of the three motions are chosen from 729 (9 × 9 × 9, in each motion curve,
9 slopes (blue dashed line) are given) di�erent motion combinations, which can minimize
the criterion of the image formed by Segment 1, marked as red lines. In Segment 2, the
linear estimations of the three motions are chosen from 729 di�erent motion combinations
all starting from the linear estimation of Segment 1, which can minimize the criterion of the
image formed by Segment 1 and Segment 2, marked as green lines. The process is repeated
for Segment 3.

joint re�nement of global model

To approximate exact motion, joint re�nement of global re�nement is implemented on

the piecewise linear initial approximation. Several equally spaced control points are chosen

44



on the piecewise linear initial approximation. Based on the assumption that subject motion is

smooth, a piecewise cubic Hermite interpolating polynomial using MATLAB function pchip

is �tted from the control points to obtain smooth motion curves. To further re�ne motion

curves, the MATLAB function fminsearch is used to globally optimize the criterion by

re�ning the cubic Hermite interpolation curves iteratively. In each iteration, one more control

point is added from the previous re�ned motion curve to provide more degrees of freedom

for the motion curve until the desired model precision is accomplished. In each iteration,

three motion curves (two translational curves and one rotation curve) are considered as a

system to optimize the criterion. The Figure 4.4 shows the above process.
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Figure 4.4: The process of joint re�nement of global model. In the �rst row, four equally
spaced control points (black cross) are chosen on the piecewise linear approximation (red
linear lines) for each motion parameter, and the globally criterion optimization is accom-
plished by re�ning three piecewise cubic Hermite interpolating polynomials (three green
dashed curves) �tted from the four control points. One more control point is added from the
previous re�ned motion curves (red curves in the second row) to get a re�ned curves (green
dashed curves in the second row). The process is repeated until the desired model precision
is accomplished (three red curves in the third row).

To handle the nonuniform sampling in k-space after correction of large angle rotations

(Figure 2.8), image rotation correction is performed in the spatial domain. After the image

formed by one k-space segment is corrected in the spatial domain, the image is transformed
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back to the frequency domain, and then the same segment is acquired by resampling the

frequency domain. The whole process is shown in Figure 4.5.

Figure 4.5: The process of rotation correction. The frequency domain images are logarith-
mically scaled.

4.5 Golden-section search

To make rotation search more e�cient, golden-section search is implemented. Here the

golden-section search method is discussed in detail �rst.

Golden-section search is used to �nd the extremum of a strictly unimodal function

by reducing the value range successively [101]. The function values at three points are

always maintained, and their distances form a golden ratio. This algorithm, which was �rst

introduced by Kiefer [52], can narrow the range where an extremum exists e�ciently. The

function values at three points are compared to further narrow the search range.

Figure 4.6 illustrates one step of a golden-section algorithm to �nd a minimum. f1, f2

and f3 are known values, and f2 is smaller than f1 and f3. The minimum exists in [x1, x3].
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x4 is used to further narrow the search range. If f4a is the function value of x4, the minimum

exists in [x1, x4], and x1, x2 and x4 are new triplet points needed to be maintained. If f4b

is the function value of x4, the minimum exists in the [x2, x3], and x2, x4 and x3 are new

triplet points need to be maintained. Search range is narrowed at each step.

The selection of the position of x4 is important. The new search range is either [x1, x4]

or [x2, x3]. In order to reduce iterative times, the length of [x1, x4] and the length of [x2, x3]

should be the same: b = a + c. So x4 = x1 + (x3 − x2). Since x2 should have the same

proportion of space as the new triples points x1, x2, x4 and x2, x4, x3, two equations are

derived below:

If x1, x2, x4 are the new triplet points:

c

a
=
a

b
. (4.10)

If x2, x4, x3 are the new triplet points:

c

b− c
=
a

b
. (4.11)

From Eq 4.10 and Eq 4.11, we can show that b/a is equal to the golden ratio.

Figure 4.6: One step of golden-section search to �nd the minimum. (Figure 4.6 is from
[101].)
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We cannot prove that the criterion values in the rotation search range satisfy a strictly

unimodal function condition, but all numerical simulations show they can be treated as a

strictly unimodal function.

Golden-section search is used to reduce rotation search times in the step of piecewise

linear initial approximation. For each trial of translations, the rotation is chosen by golden-

section search to minimize a criterion.

4.6 Map data structure

To eliminate repeated computation, two map data structures are used to improve e�-

ciency. A map is a data structure which is used for fast lookup or data searching. A map

uses key-value pairs to store and quickly search data. Every key is unique and maps to

a value. In our method, one map is used to store the rotated k-space data with rotation

angle as the key, since the image rotation is time consuming and many repeated calculations

are potentially needed. The key-value pairs of the map are illustrated in Figure 4.7. The

other map is used to keep the criterion for previously evaluated correction parameters in the

golden-section search of rotation. Golden-section search decreases rotation search times, and

the map data structure saves the calculated results for further use. The processing time is

cut in half by using golden-section rotation search and the map data structure.
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Figure 4.7: The map is used to store the rotated k-space data with rotation angle as the
key. When the rotation angle −3.38◦ is searched, the corresponding rotated k-space matrix
F6M×N is returned.

4.7 Interpolation methods

Two interpolation methods�rotation interpolation and translation interpolation�are

used in the proposed method. In order to preserve the image quality of rotated images,

zeropadding in the frequency domain to interpolate the image is used before image rotation,

which is shown in Figure 4.8. This strategy e�ectively reduces the decay of high frequencies

of rotated images arising from nonideal interpolation. But interpolation in the bigger image

increases calculation time greatly. A trade-o� is made between image quality and processing

time. Figure 4.9 shows the error of the image with zeropadding rotation interpolation is

much smaller than the image with no zeropadding rotation interpolation. In order to obtain

subpixel translation accuracy, translation interpolation is achieved in the frequency domain,

according to the properties of the Fourier transform:


f(x, y)⇔ F (u, v),

f(x− a, y − b)⇔ e−j2π(au+bv)F (u, v).

(4.12)
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Figure 4.8: Rotation interpolation. The frequency domain images are logarithmically scaled.
The length and width of the zeropadded images are twice the original image.
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Figure 4.9: The di�erence images comparison. The same image is used as the reference
images but di�erent �oating image. For (a), the �oating image is generated by Figure 4.8.
For (b), the �oating image is generated by rotating the reference image directly. In order to
acquire the same orientation with the reference image, both �oating images rotate an angle
clockwise and then rotate the same angle counterclockwise. (In order to rotate clockwise and
counterclockwise, for (a), the padding zero image is used to rotate and then downsampled.)
Both di�erence images are shown at the same scaling. The dominant error occurs around
the edge in (a), while the image content error is the main error in (b) with a bigger margin.
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4.8 Simulations

In order to validate the proposed method and compare the �ve criteria discussed above

using the proposed method, simulations were conducted in this section. Three kinds of

motion�piecewise linear, parabolic, and sinusoidal�were implemented to simulate two-

translational and rotational motion in the 2D plane on a reference image. In order to better

model real motion, the parameters of motion were chosen randomly within certain ranges.

Fig 4.10 shows one example of each of the three motions.
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Figure 4.10: Three di�erent motions. The number of function values (160) corresponds to
the number of kphase lines. Horizontal axis coordinates from 1 to 160 correspond to centric-
out phase-encode lines acquisition order from the central (low frequency kphase = 0) to the
peripheral region of k-space (high frequency); vertical axis coordinates correspond to the
motions of each kphase line in one of the three motion directions (two translations with unit
pixel and rotation with unit degree). (a) piecewise linear. (b) parabolic. (c) sinusoidal.

The reference image was chosen to be a motion-free complex real-experimental head

MR image in the sagittal plane formed by raw k-space data in one coil. The reference

image was acquired on a Siemens Verio 3T Scanner by a single-slice 2D GRE sequence with

centric-out phase-encode line order at Auburn University MRI Research Center. Since this

acquisition order of kphase lines was used for real data in the proposed method, the same

acquisition order with the reference sequence was used to simulate motion in this section.

This made the simulations closer to the real experiments. In each simulation, the input

was a motion-corrupted image generated by modeling motion using one of the above motion

trajectories; the output was �ve motion-corrected images with �ve motion estimation plots
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using the �ve criteria. In most cases, the proposed method can e�ectively reduce motion

artifacts no matter which criterion was used. In some cases, the di�erence between the

motion-corrected images and the reference image by visual inspection is minimal. Fig 4.11

shows one example of comparison between the reference image, motion-corrupted image, and

�ve motion-corrected images.
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Figure 4.11: Comparison of the reference image, motion-corrupted image, and �ve corrected
images. (a)The reference image. (b)The motion-corrupted image. (c)The motion-corrected
image based on image entropy. (d)The motion-corrected image based on the entropy of one-
directional gradient of image along the phase-encoding direction. (e)The motion-corrected
image based on entropy of two directional gradients of image. (f)The motion-corrected image
based on total variation. (g)The motion-corrected image based on the sum of absolute value.

In some cases, some criteria performed worse than other criteria. In Fig 4.12, the

motion-corrected image based on the sum of absolute value looks worse than other corrected

images, and some artifacts cannot be properly erased in that image.
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Figure 4.12: Comparison of the reference image, motion-corrupted image, and �ve motion-
corrected images and corresponding motion estimation plots. (a)The reference image.
(b)The simulated motion-corrupted image. (c)The motion-corrected image based on the
image entropy. (e)The motion-corrected image based on the entropy of the one-directional
gradient of image along the phase-encoding direction. (g)The motion-corrected image based
on the entropy of the two directional gradients of image. (i)The motion-corrected image
based on the total variation. (k)The motion-corrected image based on the sum of the ab-
solute values. (d)(f)(h)(j)(l) are the comparisons of the estimated motion trajectories and
real motion trajectories based on the �ve criteria. The solid curves represent real motion
trajectories (green for horizontal motion, red for vertical motion and black for rotation), and
the dashed curves represent estimated motion trajectories (green for horizontal translation
and red for vertical translation with unit pixel of the y axis; black for rotation with unit
degree of the y axis).
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Comparing Fig 4.12 (d)(f)(h)(j)(l), Fig 4.12 (l) had the biggest error between real and

estimated motion trajectories. That's the reason why Fig 4.12 (k) still had artifacts.

When the simulated displacement is large, such as a sinusoidal motion trajectory, the

motion-corrected images based on the image entropy and the sum of the absolute values were

worse than the motion-corrected images based on the entropy of the one-directional gradient

of image along the phase-encoding direction, the entropy of the two directional gradients of

image and the total variation. Fig 4.13 shows the results.
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Figure 4.13: Comparison of the reference image, motion-corrupted image, and �ve motion-
corrected images and corresponding motion estimation plots. (a)The reference image.
(b)The simulated motion-corrupted image. (c)The motion-corrected image based on the
image entropy. (e)The motion-corrected image based on the entropy of the one-directional
gradient of image along the phase-encoding direction. (g)The motion-corrected image based
on the entropy of the two directional gradients of image. (i)The motion-corrected image
based on the total variation. (k)The motion-corrected image based on the sum of the ab-
solute values. (d)(f)(h)(j)(l) are the comparisons of the estimated motion trajectories and
real motion trajectories based on the �ve criteria. The solid curves represent real motion
trajectories (green for horizontal motion, red for vertical motion and black for rotation), and
the dashed curves represent estimated motion trajectories (green for horizontal translation
and red for vertical translation with unit pixel of the y axis; black for rotation with unit
degree of the y axis).

In Fig 4.13 (f)(h)(j), although the estimated motion cannot totally correct the real

motion at the high frequency part (the last one quarter of the sinusoidal curves), there is not

too much impact on the motion-corrected images. Although the motion-corrected images

based on the image entropy and the sum of the absolute values still had some artifacts,

the motion-corrected images were improved signi�cantly compared to the simulated motion-

corrupted image.
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4.9 Experiments

The performance of the three criteria�the entropy of the one or two directional gradients

of image and the total variation�under the proposed method were good and similar in the

simulations. Therefore, we selected one of the three�the total variation�to be the focus

criterion to correct real motion in the experiments. Head images in the sagittal and axial

plane were acquired on a Siemens Verio 3T Scanner using the same sequence as in the

Simulations section (Auburn University MRI Research Center). The acquisition order of

kphase lines is used to correct the motion. The subject was instructed to perform head nods

to acquire motion-corrupted images in the sagittal plane and side-to-side motion to acquire

motion-corrupted images in the axial plane. Two no-motion images were acquired separately

by the same scan sequence as reference images for comparison. Fig 4.14 and Fig 4.15 show the

results of applying the proposed motion correction method on the motion-corrupted images.

The motion-corrected images indicate that our method was able to eliminate motion artifacts

and preserve sharp boundaries. This method is also e�cient. The whole processing time for

160× 160 images is under a minute on an 8GB RAM Intel Core i7-3630QM 2.40 GHz CPU

processor machines using MATLAB.
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Figure 4.14: Comparison of the reference image, real motion-corrupted image and motion-
corrected image in the sagittal plane. Due to the motion di�erence between the neck part
and the head part, the image above the green dashed line part was used to calculate the
focus criterion. (a) No-motion (reference) image. (b) Real motion-corrupted image. (c)
Motion-corrected image.
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Figure 4.15: Comparison of the no-motion image, real motion-corrupted image and motion-
corrected image in the axial plane. (a) No-motion (reference) image. (b) Real motion-
corrupted image. (c) Motion-corrected image.

For the sagittal plane images, due to the di�erent motion between neck part (below the

green dashed line) and head part (above the green dashed line), a selected window (above

the green dashed line) designated a FOV over which to calculate the focus criterion, which

explains why the neck part of the motion-corrected image is still blurred.
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4.10 Discussion

The proposed method on a windowed image may potentially correct some complicated

nonrigid motions. In some cases, we can assume that the whole image can be divided into

several small subimages, within which the motion can be modeled as rigid. The subimages

are combined after motion of each subimage is corrected by the windowed method.

The proposed method can be extended to 3D. For 3D rigid motion, six motion trajec-

tories need to be estimated. Due to the increased search space in 3D, the piecewise linear

initial approximation needs to be more accurate and e�cient.
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Chapter 5

An E�cient Motion Correction Method Based on Fast Robust Correlation

Translational search can be computationally demanding. A correlation operation can

be used to calculate an image match when the matching criterion is the sum of squared er-

rors. However, this approach cannot be used for nonquadratic matching criteria. Fast robust

correlation is a computationally e�cient search algorithm for translational image matching

in the frequency domain. This method can calculate matching surfaces from nonquadratic

criteria using a series of high-speed correlations by de�ning a kernel with sinusoidal terms.

In this chapter, an e�cient motion correction method based on fast robust correlation is

proposed. The proposed method corrects motion-distorted images by aligning translational

motion between images formed by neighboring frequency segments. Since the squared dif-

ference kernel is invariant to motion between partial-Fourier images, we adopt the absolute

value kernel, which can be easily approximated by sinusoidal terms. Total variation of the

sum of partial-Fourier images is chosen as the new matching criterion. FFTs are used to

calculate correlations for computational speed. Di�erent search strategies to combine and

correct motion over the whole k-space are discussed and compared. The proposed method

can perform real-time processing to reduce image motion artifacts signi�cantly in the simu-

lations and MRI cardiac experiments.

This chapter is organized as follows: 5.1 review of fast robust correlation, 5.2 motion

model and acquisition assumption, 5.3 the failure of squared kernel, 5.4 proposed match

criterion, 5.5 proposed method to estimate the relative motion between the neighboring

segments, 5.6 search strategy, 5.7 simulations, 5.8 experiments, and 5.9 discussion.
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5.1 Fast robust correlation review

Fast robust correlation (FRC) was �rst proposed by Fitch et al. [30]. This method im-

plements a series of correlations to calculate the matching surface to increase computational

speed. Robust behavior is achieved by de�ning a new kernel, which is composed of several

sinusoidal terms. FRC is used in image registration, such as template matching [51] and

image fusion [106]. Based on the sinusoidal terms kernel [30, 48], some principal component

analysis methods [92, 58] have been proposed.

This new motion correction method is inspired by FRC. The main idea of FRC is

described �rst.

A matching surface is used to calculate the match quality of two images over a range of

2-D shifts. The general matching surface is expressed as:

S(mx,my) =
∑
x,y

h
(
f(x, y)− g(x−mx, y −my)

)
αf (x, y)αg(x−mx, y −my), (5.1)

where f and g are two images, mx and my are two-directional translations, (x, y) is the pixel

index, αf (x, y) and αg(x, y) are image masks, and h(r) is the di�erence kernel, where r is

the pixel di�erence.

Correlation functions can be calculated e�ciently with FFTs, and sinusoidal terms can

be rewritten as correlations to make FFT implementation possible. A nonquadratic kernel

is chosen for its sensitivity to outliers and e�ciency.

h(r) =
P∑
p=1

bp
(
1− cos(apπr)

)
, (5.2)
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where the parameter sets ap and bp determine the curve of the kernel. The robust matching

surface with this kernel becomes:

S(mx,my) =
∑
x,y

αf (x, y)αg(x−mx, y−my)
P∑
p=1

bp

[
1−cos

(
a1π
(
f(x, y)−g(x−mx, y−my)

))]
.

(5.3)

Eq (5.3) can be expressed as:

S(mx,my) = <
{

(αf ⊗ αg)
P∑
p=1

bp −
P∑
p=1

bp

[(
αf exp(japπf)

)
⊗
(
αg exp(japπg)

)]}
, (5.4)

where ⊗ represents correlation. Correlations can be e�ciently calculated in the Fourier

domain by FFTs.

5.2 Motion model and assumption

In this chapter, motion is assumed to be two-directional translations in a 2D plane.

However, compared with the previous chapter, the basic unit for motion correction is a

certain number of ky lines, which we refer to as a segment of k-space data. The whole k-space

acquisition is assumed to have occurred over time in several non-overlapping neighboring

segments, and we only consider the motion between di�erent segments. Within each segment,

the object is modeled as stationary. The motion assumption is shown in Figure 5.1. This

assumption may not be accurate enough in some cases, but for many problems it is a good

approximation.

The motion parameters ∆x and ∆y are functions of ks, which is segment s of ky lines.

Therefore, the motion correction is essential to estimate a total of Ns 2D vectors M , where

Ns is the number of segments. The motion parameters are given by:

M(ks) =
(
∆x(ks),∆y(ks)

)
, (5.5)

where ∆x, ∆y are two-directional translation estimations.
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Figure 5.1: The motion assumption for the proposed motion correction method. We only
consider the motion between di�erent segments. Within each segment, the object is assumed
motionless.

5.3 Squared kernel

The squared di�erence kernel h(r) = r2, where r is the pixel di�erence, is not suitable for

motion image reconstruction in the context of non-overlapping frequency-domain segments.

To see this, consider the matching surface based on the squared di�erence kernel de�ned in

[30] as follows:

S(mx,my) =
∑
x,y

(
f(x, y)− g(x−mx, y −my)

)2
αf (x, y)αg(x−mx, y −my). (5.6)

Eq (5.6) can be expressed as:

S =
(
f 2αf

)
⊗ αg − 2 (fαf )⊗ (gαg) + αf ⊗

(
g2αg

)
, (5.7)

where ⊗ represents correlation. The �rst term and the third term of Eq (5.7) are constant

and can be neglected, and the second term can be computed in the Fourier domain:

f ⊗ g = i�t
(
�t(f)�t∗(g)

)
, (5.8)

where ∗ represents complex conjugate.
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Since frequency segments do not overlap, this term is zero for any shifts, and the match-

ing surface Eq (5.6) is constant.

5.4 Proposed match criterion

A new criterion is de�ned in the proposed method. The criterion is the total variation

of the sum of images formed by the neighboring k-space segments. Signals with sharp edges

have larger total variation in the presence of phase distortion, which is the kind of error that

occurs when di�erent frequency segments are acquired at di�erent object positions.

A one-dimensional example illustrates this criterion. The translational motion in the

spatial domain is equal to a linear-phase shift in the frequency domain, according to the

Fourier shift property. The process of phase shift can be considered as the signal go through

the unity gain nonlinear-phase �lter. This nonlinear phase can introduce ringing. Figure

5.2 shows a square wave �ltered by a unity gain nonlinear-phase �lter. The green un�ltered

signal represents an image without translational motion and the red �ltered signal represents

image with translational motion. The green signal has some wave-shape signal disturbance

at the sharp edge after �ltering. Total variation e�ectively measures the level of ringing,

which can re�ect the level of the translation motion. This example illustrates how total

variation can be used to detect translation motion even when the frequency segment do not

overlap.

As part of the proposed criterion, the absolute value kernel is used:

h(r) = |r| (5.9)

Correlation functions can be calculated e�ciently with FFTs, but correlation assumes a

squared kernel.

According to the FRC method, sinusoidal terms are used to approximate the proposed

kernel. These terms can then be rewritten as correlations to make FFT implementation
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Figure 5.2: The comparison between the �ltered and un�ltered square wave. (a) The mag-
nitude and phase of the �lter. (b) The �ltered and un�ltered square wave.

possible. A Fourier series is used as a new method to calculate the sinusoidal approxima-

tion. Since most kernels satisfy the Dirichlet conditions, the Fourier series is guaranteed to

converge. For some kernels, these calculations can be relatively easy compared to [30]. Here

a Fourier series is used to estimate the absolute value kernel. According to [30], pixel values

should be normalized to the range of [−1, 1], so we consider the Fourier series of h(r) on the

range of [−1, 1]:

h(r) = |r| = a0 +
∞∑
p=1

(
ap cos(pr) + bp sin(pr)

)
, (5.10)

where: 
a0 = 1

2

∫ 1

−1
h(r)dr,

ap =
∫ 1

−1
h(r) cos(pr)dr, p > 1,

bp =
∫ 1

−1
h(r) sin(pr)dr, p > 1.

(5.11)

Eq (5.9) is even, so bp = 0. The approximation becomes:

h(r) ≈ 1

2
− 4

π2

P∑
p=1

1

(2p− 1)2
cos
(
(2p− 1)πr

)
=

1

2
−

P∑
p=1

Bp cos(Apπr). (5.12)

This result is similar to [27]. Figure 5.3 compares �nite sum approximation with the absolute

value kernel. The sinusoidal kernels approach the absolute value kernel as P increases. Based
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on the empirical performance, we choose P = 3 to approximate the absolute value kernel,

which is enough to perform well in most cases.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Absolute value
P = 1

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Absolute value
P = 2

(b)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Absolute value
P = 3

(c)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute value

P = 4

(d)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute value

P = 5

(e)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute value

P = 6

(f)

Figure 5.3: Comparison of di�erent values of P and the absolute value kernel. (a) P = 1.
(b) P = 2. (c) P = 3. (d) P = 4. (e) P = 5. (d) P = 6.

70



5.5 Proposed method

f and g represent two images formed by two neighboring k-space segments. f1 and f2

are the �rst di�erence of f in the horizontal and vertical directions. The same de�nition is

used for g1 and g2. Since f1, f2, g1, g2 are all complex images, the real and imaginary parts

of all these images can be represented as f1r, f1i, f2r, f2i, g1r, g1i, g2r, g2i. The matching

surface is the sum of four matching surfaces, which are formed by f1r and g1r, f1i and g1i, f2r

and g2r, and f2i and g2i. Consider f1r and g1r as an example to show the whole calculation

process. Using Eq (5.12) to get the matching surface:

S1r(mx,my) =
∑
x,y

αf1r(x, y)αg1r(x−mx, y−my)×
[

1

2
−

P∑
p=1

Bp cos
(
Apπ

(
f1r(x, y)+g1r(x−mx, y−my)

))]
.

(5.13)

Eq (5.13) is equal to:

S1r(mx,my) = <
{1

2
(αf1r ⊗ αg1r)−

P∑
p=1

Bp

(
αf1re

jApπf1r ⊗ αg1re−jApπg1r
)}
. (5.14)

Using FFTs to Eq (5.14):

S1r(mx,my) = <
{
i�t
(1

2
�t(αf1r)�t

∗(αg1r)−
P∑
p=1

Bp

(
�t(αf1re

jApπf1r)�t∗(αg1re
−jApπg1r)

))}
.

(5.15)

After the four matching surfaces are computed, the translations can be calculated as

follows:

(m̂x, m̂y) = arg min
(mx,my)

(
S1r(mx,my) + S1i(mx,my) + S2r(mx,my) + S2i(mx,my)

)
. (5.16)

To obtain subpixel accuracy, interpolation is implemented by padding zeros in the fre-

quency domain of the partial matching surface.
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5.6 Search strategy

The sections above illustrated how to calculate the relative motion between two neigh-

boring non-overlapping segments, but we still need search strategies to combine and correct

motion over the whole k-space. For each search strategy, there are two kinds of segments �

the reference segment and the �oating segment. The relative motion between the reference

and the �oating segment is detected and corrected for each �oating segment using the above

method until all the segments are corrected for the whole k-space. Based on the empiri-

cal performance, we have concluded that no gap in k-space should be allowed between the

reference and �oating segments to obtain reliable motion estimates. Some search strategies

are proposed in this section and the results are compared in the Simulations section. It is

assumed that k-space consists of n segments.

Strategy 1

From the top to the bottom of k-space, each segment is chosen to be the reference

segment, and the neighboring segment below it is the �oating segment. After calculation of

the relative motion of n− 1 pairs of reference and �oating segments, the motion relative to

a certain segment of all the other segments is now known and is then corrected. The whole

process is shown in Figure 5.4.

Strategy 2

To take advantage of the previous calculated motion information, the reference segment

is enlarged after combining the previous corrected �oating segments. The whole process is

shown in Figure 5.5.

Strategy 3

The segment with zero frequency is chosen as reference, which is enlarged after combin-

ing the previous corrected �oating segments similar to Strategy 2. Considering the impact of

the symmetric segments in k-space, the neighboring symmetric segments are in turn chosen

as the �oating segments. The whole process is shown in Figure 5.6.

Strategy 4

72



Compared with the Strategy 3, the odd segment is corrected twice. When the odd

segment is corrected the �rst time, the symmetric segments are not included in the reference

segment. This omission may result in error. So in Strategy 4, when the odd segments are

corrected the second time, the corrected symmetric segments are combined into the reference

segment. The whole process is shown in Figure 5.7.

Strategy 5

Compared with Strategy 4, the odd and even segments both are corrected twice, which

is shown in Figure 5.8 in detail.

Figure 5.4: Search Strategy 1 of the proposed method. Di�erent numbers represent di�erent
segments. The yellow segment is the reference segment, the light blue one is the correspond-
ing �oating segment, and the blue one is the motion-corrected segment. From top to bottom,
the relative motion between the reference and �oating segments is determined.
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Figure 5.5: Search Strategy 2 of the proposed method. Di�erent numbers represent di�erent
segments. The blue segment is the reference segment, and the light blue one is the corre-
sponding �oating segment. The reference segment is enlarged after combining the previous
corrected �oating segment until all the segments are corrected.
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Figure 5.6: Search Strategy 3 of the proposed method. The blue segment is the reference
segment, and the light blue one is the corresponding �oating segment. The reference segment
is enlarged after combining the previous corrected �oating segment until all the segments are
corrected. The neighboring symmetric segments are in turn chosen as the �oating segments.
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Figure 5.7: Search Strategy 4 of the proposed method. The blue segment is the reference
segment, the light blue one is the corresponding �oating segment and the yellow one is the
segment corrected twice. Take segment 3 for example. Segment 3 and 4 are symmetric
segments. After segment 3 and segment 4 are corrected in turn, the segment 3 is corrected
again with the corrected segment 4 as part of the reference.
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Figure 5.8: Search Strategy 5 of the proposed method. The blue segment is the reference
segment, the light blue one is the corresponding �oating segment and the yellow one is the
segment corrected twice. The symmetric segments are corrected twice.

77



5.7 Simulations

To validate the proposed algorithm and compare the search strategies, simulations were

conducted in this section. One motion-free real-experimental MRI gating cardiac image

(complex pixels) was chosen as the reference image, whose size is 128 by 120. The reference

image was acquired on a clinical 3T Siemens Verio scanner with balanced Steady State

Free Precession (bSSFP) sequence 32-channel cardiac array coil at Auburn University MRI

Research Center. The frequency domain of the reference image was separately divided evenly

into 15, 12, 10 and 8 parts, corresponding to 8, 10, 12 and 15 lines in each segment, to simulate

segments in k-space. Di�erent search strategies of the proposed motion correction method

were implemented to detect and correct the simulated translations. Two random values in

the range from -10 to 10 pixels, which are big enough to model real motion, were generated

to simulate two translations in each segment except the reference segment.

In this section, di�erent search strategies are compared and some motion correction

examples are shown.

5.7.1 comparison of search strategies

For each segment size (total of 4 di�erent sizes), 10,000 random translational motion

images were generated by the above processing. The 10,000 simulated images were separately

processed by the above �ve search strategies, and the results were compared by the average

estimation error for each segment and the average values of four image quality criteria. The

motion correction accuracy was 1
5
pixel here.

The average estimation error for segment j is given by:

∆xj =
1

10000

10000∑
i=1

|xi,j − x̂i,j| ,∆yj =
1

10000

10000∑
i=1

|yi,j − ŷi,j| , (5.17)
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where ∆xj and ∆yj are the average estimation error of segment j in two-translational di-

rections, xi,j and yi,j are the actual translations of the segment j from image i in two-

translational directions, and x̂i,j and ŷi,j are the estimated translations of the segment j

from image i in two-translational directions using the proposed method.

The average values of four image quality criteria were calculated� SSD (Sum of Squared

Di�erence), IE (image entropy), EG (entropy of gradients of an image) and TV (total vari-

ation of an image). SSD (Eq (5.18)) compares one image with the reference image. The

de�nition of image entropy is given by Eq (4.2) and Eq (4.3). The de�nition of the entropy

of gradients of an image is given by Eq (4.5) and Eq (4.6). The de�nition of the total

variation of an image is given by Eq (4.7) and Eq (4.8).

SSD is given by:

SSD =
N∑

x=1

|I(x)− Iori(x)|2 , (5.18)

where x is the pixel index and N is the total number of pixels of the image.

For each segment size, the average estimation error for each segment and the average

values of four image quality criteria, are given to compare the results. Table 5.1 to Table 5.8

show the results of di�erent segment sizes.

Note: Iref represents the reference image, Imot represents the motion-corrupted image,

Irec1 represents the reconstructed image using Strategy 1, Irec2 represents the reconstructed

image using Strategy 2, Irec3 represents the reconstructed image using Strategy 3, Irec4

represents the reconstructed image using Strategy 4 and Irec5 represents the reconstructed

image using Strategy 5. In the tables of average estimation error, the best entry of each row

is marked as boldface. In the tables of average values of four criterion, the best entry of

each column is marked as boldface. The motion-corrupted image comes from placing original

random translational segments together, which is given by:

Imot = i�t
( N∑
i=1

Fi(k, l)
)

(5.19)
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where Fi(k, l) is the ith segment and N is the total number of segments.

Table 5.1: Average translational motion estimation errors (two directions ∆x,∆y) of each
k-space segment (8 lines) for each search strategy (pixel/unit)

Segment Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

1 0.0998,1.8990 0.0998,1.8990 0.0650,1.1691 0.0615,0.6923 0.0644,0.5356
2 4.9890,5.0110 0.1774,1.8724 0.0603,0.4606 0.0602,0.4606 0.0558,0.3620
3 5.0391,5.0143 0.1291,2.0006 0.0736,1.2740 0.1468,0.4411 0.1537,0.3837
4 5.0318,5.0687 0.1597,2.1334 0.0692,0.4621 0.0637,0.3783 0.0649,0.2570
5 5.0217,4.9801 0.1831,2.5413 0.0789,0.9800 0.1153,0.2986 0.1202,0.3256
6 5.0286,4,9957 0.1785,3.1942 0.0814,0.4605 0.0980,0.2475 0.0998,0.1887
7 4.9305,5.0669 0.1680,3.8557 0.0961,0.7970 0.0713,0.2394 0.0766,0.3029
8 5.0587,5.0004 0.1600,3.4528 0.1398,0.4593 0.1731,0.2128 0.1647,0.1852
9 4.9750,5.0455 0.1703,3.0327 0.0985,0.7714 0.1754,0.2096 0.1844,0.3078
10 4.9994,5.0006 0.1929,2.7654 0.1880,0.4545 0.2362,0.1895 0.2154,0.2011
11 4.9730,4.9784 0.2079,2.5063 0.0894,0.9387 0.1939,1.2875 0.2008,1.0000
12 5.0472,4.9806 0.2630,1.5380 0.2202,0.5570 0.2076,0.7596 0.2196,0.5980
13 5.0237,4.9882 0.2729,1.6419 0.2018,0.9620 0.1934,0.8191 0.2392,1.1085
14 4.9548,5.0724 0.2869,1.4097 0.2664,0.6443 0.2977,1.8543 0.3055,1.4656

Table 5.2: Average values of four criteria of the reference image, the motion blurred images
and the �ve reconstructed images from the �ve search strategies (8 lines segment)

Images SSD IE EG TV

Iref 0 410.1539 879.8204 1.1352e-3
Imot 1.8313e-10 448.4703 979.2290 1.2628e-3
Irec1 1.3378e-10 415.4935 899.3643 1.1604e-3
Irec2 1.1768e-10 413.3635 891.7397 1.1487e-3
Irec3 1.3218e-11 411.9923 882.5268 1.1375e-03
Irec4 5.2190e-12 410.7653 881.7578 1.1367e-03
Irec5 4.6205e-12 410.501 881.8877 1.1367e-3

From Table 5.1 to Table 5.8, we can draw the following observations:

1. Comparing Strategy 1 with Strategy 2, the results of Strategy 2 have smaller average

translational motion estimation errors and the average values of criteria. Average transla-

tional motion estimation errors for Strategy 1 are extraordinarily large, because the size of

the reference segments does not include enough data to get accurate estimation and the

reference segments are not extended.
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Table 5.3: Average translational motion estimation errors (two directions ∆x,∆y) of each
k-space segment (10 lines) for each search strategy (pixel/unit)

Segment Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

1 0.2134,0.2966 0.2134,0.2966 0.0674,0.3207 0.0674,0.3207 0.0674,0.3207
2 4.9520,4.9737 0.2863,0.3403 0.0609,0.3720 0.0602,0.1781 0.0602,0.1781
3 5.0099,5.0004 0.2869,0.3924 0.0748,0.1590 0.0748,0.1590 0.0694,0.1619
4 4.9899,5.0173 0.2787,0.5175 0.0709,0.4382 0.0735,0.2651 0.0760,0.2639
5 4.9925,4.9691 0.2745,0.6683 0.0963,0.1843 0.0943,0.1652 0.0808,0.1736
6 4.9876,5.0228 0.2535,1.3170 0.1051,0.4581 0.1111,0.3079 0.1185,0.3084
7 5.0102,5.0101 0.2353,0.9771 0.1338,0.3003 0.1255,0.2373 0.1089,0.2459
8 5.0057,5.0135 0.2172,0.7450 0.1279,0.4857 0.1191,0.3547 0.1261,0.3562
9 4.9760,5.0224 0.2170,0.6700 0.0897,0.3600 0.0901,0.3016 0.0903,0.3049
10 5.0127,5.0346 0.2144,0.6059 0.2131,0.4807 0.1989,0.4595 0.2106,0.4675
11 5.0420,5.0565 0.1734,0.6280 0.1343,0.4503 0.1249,0.6279 0.1243,0.6196

Table 5.4: Average values of four criteria of the reference image, the motion blurred images
and the �ve reconstructed images from the �ve search strategies (10 lines segment)

Images SSD IE EG TV

Iref 0 410.1539 879.8204 1.1352e-3
Imot 5.4738e-11 434.0825 972.0623 1.2550e-3
Irec1 2.1977e-11 413.5135 892.3260 1.1504e-3
Irec2 5.8409e-12 409.5080 882.7683 1.1365e-3
Irec3 4.7798e-12 410.7949 880.7689 1.1350e-3
Irec4 2.7349e-12 410.2985 880.5240 1.1348e-3
Irec5 2.7509e-12 410.3011 880.6121 1.1349e-3

Table 5.5: Average translational motion estimation errors (two directions ∆x,∆y) of each
k-space segment (12 lines) for each search strategy (pixel/unit)

Segment Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

1 0.1197,0.1178 0.1197,0.1178 0.0758,0.4003 0.0758,0.4003 0.0758,0.4003
2 5.0288,5.0470 0.1910,0.1925 0.0543,0.3103 0.0545,0.1863 0.0545,0.1863
3 4.9700,5.0472 0.2726,0.2728 0.0798,0.8030 0.0798,0.8030 0.0840,0.7474
4 4.9429,4.9447 0.2548,0.3451 0.0812,0.4885 0.0809,0.3721 0.0843,0.3635
5 5.0067,4.9646 0.2083,1.5289 0.0800,0.8216 0.0790,0.7933 0.0752,0.7521
6 5.0066,5.0320 0.2108,1.2325 0.1253,0.6003 0.1174,0.4844 0.1215,0.4728
7 5.0257,5.0153 0.2073,0.9326 0.1058,0.7955 0.1098,0.7434 0.1104,0.6950
8 4.9647,4.9940 0.2034,0.7582 0.1606,0.5752 0.1546,0.4651 0.1638,0.4525
9 5.0350,5.0293 0.1342,0.6749 0.1423,0.9133 0.1308,0.8065 0.1295,0.7570
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Table 5.6: Average values of four criteria of the reference image, the motion blurred images
and the �ve reconstructed images from the �ve search strategies (12 lines segment)

Images SSD IE EG TV

Iref 0 410.1539 879.8204 1.1352e-3
Imot 4.6843e-11 430.2335 967.2813 1.2486e-3
Irec1 2.1536e-11 411.6085 889.5606 1.1473e-3
Irec2 7.3393e-12 409.7032 882.7113 1.1357e-3
Irec3 9.0457e-12 409.7552 881.0210 1.1347e-3
Irec4 7.4486e-12 409.8498 880.8988 1.1343e-3
Irec5 6.9332e-12 409.8401 880.6265 1.1341e-3

Table 5.7: Average translational motion estimation errors (two directions ∆x,∆y) of each
k-space segment (15 lines) for each search strategy (pixel/unit)

Segment Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

1 0.0627,0.0546 0.0627,0.0546 0.0729,1.3594 0.0729,1.3594 0.0729,1.3594
2 5.0165,5.0098 0.0827,0.1088 0.0552,0.1457 0.0544,0.1419 0.0544,0.1419
3 4.9549,5.0018 0.1078,0.1671 0.0685,1.0903 0.0685,1.0903 0.0679,1.0800
4 5.0214,5.1141 0.1545,1.0540 0.0891,0.3546 0.0654,0.3474 0.0654,0.3453
5 5.0166,4.9946 0.1453,0.8106 0.0843,0.9565 0.0845,0.9556 0.0922,0.9276
6 4.9673,4.9747 0.1174,0.5954 0.1035,0.3821 0.0859,0.3841 0.0844,0.3785
7 4.9842,4.9900 0.1451,0.5392 0.1112,0.8694 0.1185,0.8673 0.1284,0.8472

Table 5.8: Average values of four criteria of the reference image, the motion blurred images
and the �ve reconstructed images from the �ve search strategies (15 lines segment)

Images SSD IE EG TV

Iref 0 410.1539 879.8204 1.1352e-3
Imot 3.9798e-11 428.3945 960.9661 1.2405e-3
Irec1 2.3701e-11 413.3896 895.6266 1.15472e-3
Irec2 1.0784e-11 410.1553 883.0794 1.1370e-3
Irec3 1.0343e-11 410.8307 882.4583 1.1356e-3
Irec4 1.0309e-11 410.8349 882.2986 1.1353e-3
Irec5 1.0138e-11 410.8410 882.1629 1.1351e-3
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2. The performance of Strategy 3 is better than Strategy 2, especially when the segment

size is smaller. Even if average translational motion estimation errors of Strategy 2 are

smaller when the segment size is larger, the di�erence of the average values of criteria between

Strategy 2 and Strategy 3 is trivial. The reference starting from the low frequency contains

more energy than the reference starting from the high frequency, which may explain the

di�erent performance between Strategy 2 and Strategy 3.

3. Strategy 4 and Strategy 5 always give the best results but with longer processing

time, due to the second-time correction of some segments.

4. Strategy 3 gives similar but a little worse performance compared to Strategy 4 and

Strategy 5. But Strategy 3 is more e�cient. Strategy 3 is used for the next subsection and

the Experiments section.

5. Some TV (total variation) values of the corrected images are smaller than the values

of the reference image, which illustrates that the total variation criterion is not perfect. To

our knowledge, there are no perfect criteria. If the criterion is replaced by other criteria, the

results are similar but with higher computational load using more sinusoidal terms.

6. The average translational motion estimation errors may include three parts. The

�rst part error comes from the non-ideal criterion, and the motion may be over-corrected by

the criterion. The second part error arises from by the 1
5
pixel motion correction accuracy

of the proposed method. The last part error comes from non-perfect search strategy.

5.7.2 examples of the proposed method

In this subsection, four simulated motion-corrupted images generated by di�erent seg-

ment sizes were corrected and reconstructed by the proposed method using search strategy

3. For each example, �ve sub-�gures are included: (a)(b) the real and estimated motions

combined with errors in horizontal and vertical directions, (c) the reference image, (d) the

motion-corrupted image, (e) the reconstructed image. Figure 5.9 to Figure 5.12 show the

four examples.
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Figure 5.9: Example 1 of the proposed method with segment size 8.
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Figure 5.10: Example 2 of the proposed method with segment size 10.
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Figure 5.11: Example 3 of the proposed method with segment size 12.
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Figure 5.12: Example 4 of the proposed method with segment size 15.
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Sub�gures (a)(b) from the �gures above illustrate that both estimated translations follow

the actual translations, and the error is relative small. The horizontal translations are always

better estimated than the vertical motion because the segment contains all the frequency

components in the horizontal direction but only partial components in the vertical direction.

The errors in the vertical direction mainly just shift the whole image a little.

Sub�gures (e) from the �gures above show the reconstructed image quality is noticeably

improved by the proposed motion correction algorithm and the reconstructed images are

almost the same with the reference image. All of these results show successful motion

correction for any segment size.

5.8 Experiments

For validation of the proposed algorithm, MRI cardiac imaging experiments were con-

ducted. Cardiac imaging consists of imaging of di�erent cardiac phases. An external elec-

trocardiogram (ECG) signal is a conventional tool to track the phase of the cardiac cycle

during imaging. To reduce the e�ect of heart motion, the acquisition window for each cardiac

phase must be short to decrease heart motion during the acquisition, which means that full

k-space data cannot be collected in one cardiac cycle. Therefore, multiple cycles are needed

to collect the data in the segment pattern, which consists of a certain number of phase

lines. For each cardiac phase, the whole k-space data is collected from several cardiac cycles

at the same cardiac phase. So only considering heart motion, we can treat cardiac phase

imaging motionless due to the short acquisition window and quasi-periodicity of heartbeat.

Breathing, which amounts to imposing a motion on top of heart motion, is a big challenge

for cardiac imaging. This imposed motion can distort the image. Here we assume that

the breathing can be approximated as two translations. Therefore, free-breathing cardiac

imaging can be treated as the translational motion correction of each k-space segment, and

breath-hold image without other motion can be treated as a no-motion reference image.
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In this section, the scan sequence was the same as in the simulation section. The pro-

posed method was used to reconstruct free-breathing real-experimental MRI gating cardiac

data (Auburn University MRI Research Center) in each cardiac phase. The original images

were distorted due to free-breathing motion. According to the record of the ECG device, the

segment size of the frequency domain was chosen as 8 frequency (k-space) lines. Figure 5.13

shows the comparisons of breath-hold no-motion images, original free-breathing images, and

reconstructed images from the original free-breathing images for two cardiac phases. The

breath-hold no-motion images were acquired separately as reference images for comparison.
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Figure 5.13: Comparison of breath-hold no-motion images, original free-breathing images
and reconstructed images from the original free-breathing images for two cardiac phases.
The �rst row is one cardiac phase, and the second row is the other cardiac phase. (a)(d)
breath-hold no-motion images. (b)(e) original free-breathing images. (c)(f) reconstructed
images from the original free-breathing images.
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5.9 Discussion

Fig 5.13 shows that the reconstructed images reduce the blurs of the original images

e�ectively, and more details are recovered in the heart region. However, some artifacts

remain, especially in the region around the heart. We think the real-world breathing motion

gives rise to the remaining artifacts. Real breathing motion is not exactly a two-directional

translation in a 2D plane. It includes some through-plane and non-rigid motion, which is

beyond the scope of the proposed method.

The proposed method is e�cient. The whole process time was around 0.8 s implemented

in MATLAB on an 8 GB RAM Intel Core i7-3630QM 2.40 GHz CPU processor machine.

Thus, it can be used in real-time processing.
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Chapter 6

Motion Correction of Magnitude MR Images using Generative Adversarial Networks

Although the previous proposed methods can correct motion e�ectively and e�ciently,

they both require complex-valued raw data. However, raw data is not usually preserved

in a clinical environment. In this case the previous two methods cannot be used. In this

chapter, we present a novel data-driven motion correction method for magnitude MR images

using generative adversarial networks (GANs). GANs (pix2pix model) are implemented

to reduce motion artifacts and reconstruct motion-corrupted images through adversarial

training between generator and discriminator networks to estimate a motion-corrected image

that is close to the reference image. The training set is made of image pairs consisting

of motionless reference images and corresponding motion-simulated images. The proposed

method is validated by a simulated motion test set and a real motion (experimental) test

set.

This chapter is organized as follows: 6.1 introduction to arti�cial neural networks, 6.2

introduction to convolutional neural networks, 6.3 generative adversarial networks (pix2pix

model) basics, 6.4 dataset and training, and 6.5 results.

6.1 Arti�cial neural networks

Arti�cial neural networks (ANNs) are widely used in machine learning. In general,

an ANN is made of a collection of connected computational units, called arti�cial neurons,

which simulates biological neurons. Arti�cial neurons are arranged in layers. Data enters a

neural network at the input layer, and predictions of the network are generated at the output

layer. One or more hidden layers exist between the input and output layer. In general, the

basic implementation of a neural network is to provide reasonable predictions by training a
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set of labeled data, called training data. During a training process, parameters of a neural

network (weights) are tuned by comparing predictions of training data feeding through the

network and actual labeled training data, until the network can provide good predictions of

the training data. The training process can also be considered as learning a data pattern.

After the data pattern is learned, the network is ready to give predictions for unseen data

(non-labeled data). Figure 6.1 shows a multilayer perceptron neural network.

Figure 6.1: One multilayer perceptron neural network. The blue neurons represent the
neurons from input layer, the green neurons represent the neurons from hidden layers, and
the purple neuron represent the neurons from output layer

For ANNs, at least two types of data sets are needed�training set and test set. A

training set is the set of examples used for learning. In this dataset, input data are associated

with expected output. A test set is the set of examples used to evaluate the performance of

a trained neural network. Sometimes a neural network may require a validation set, but we

will only use training set and test set in this chapter.

A basic training process of the multilayer perceptron neural network is discussed here.

The process consists of two parts�forward propagation and backward propagation.
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For forward propagation, the output vector ŷ is calculated layer by layer from the input

vector X:

ŷ = (fn, fn−1, ..., f1)(X;W ), (6.1)

where fn, fn−1, ..., f1 are activation functions and W is the weight matrix. For each layer,

two kinds of calculation are conducted�a linear transformation of the output of the layer

and a followed nonlinear function called the activation function. Consider the kth layer as

an example.

z(k) = o(k−1)W (k−1), (6.2)

where z(k) is the linear transformation of the output of the previous layer, o(k−1) is the output

of the (k − 1)th layer, and W (k−1) is the weight vector from the (k − 1)th layer to the kth

layer. The output of the activation function is given by:

o(k) = fk(z
(k)), (6.3)

where o(k) is the output of the kth layer. Sigmoid, Tanh, ReLU, and Leaky ReLU are the

commonly used activation functions.

After ŷ is calculated from forward propagation, the loss function is needed to measure

the di�erence between ŷ and the labeled output. The task of the training process is to update

weights to optimize the prediction of the neural network, which is equal to minimizing the

loss function. A backward propagation gradient descent method from the output layer to

the input layer is needed. By using the chain rule of derivatives, the gradients of the loss

function with respect to all the weights are calculated, and all the weights are updated using

gradient descent to minimize the loss function. This is the basic training process for ANNs.

Due to the high computational load, the development of ANNs was slow. But recently,

thanks to parallel computation processors (GPUs), ANNs have developed more rapidly.
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6.2 Convolutional neural networks

In general, for image neural networks, each pixel of the image is used as the input of

the network. If the neurons are fully connected, the computational load is very high, which

is not acceptable for typical image sizes. In addition, the huge number of weights will result

in over�tting easily. In order to prune the extra connections, convolutional neural networks

(CNNs) have been proposed to preserve the spatial relationships of the input images. CNNs

are built with a layer structure, and input is fed through layer by layer with neurons in each

layer only calculating a small part of the previous layer [62]. CNNs consist of four types of

layers: convolutional layer, activation layer, pooling layer, and fully-connected layer. Each

type of layer has certain basic functions. A simple CNN structure is shown in Figure 6.2.

Figure 6.2: Example of a convolutional neural network. (Figure 6.2 is from [62].)

convolutional layer

The convolutional layer is used to compute the convolution between a small size �lter

and a local region of the input layer or the output activation from the previous layer. The
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small size �lter (3× 3 or 5× 5) slides all over the input layer or the output activation from

the previous layer to detect the same feature from the whole image. One convolutional layer

may consist of multiple �lters with di�erent weights (parameters) in each �lter, and each

�lter performs the above calculation. Each �lter presents a feature of the input image, like

a horizontal line or corner. Due to the structure where the same �lter slides over the whole

image, the number of weights needed to be trained is drastically reduced.

activation layer

The output from the convolutional layer is fed through the activation layer by calculating

element by element. The most popular activation function is ReLU, de�ned as max(0, x).

pooling layer

The pooling layer is used to perform a downsampling operation, which is always inserted

between the successive convolutional layers. The max pooling, which is the most common

pooling operation, preserves a max value from each neighboring 2×2 region, and discards 75%

of the activations. The pooling operation preserves the important features while reducing

the size of the feature map.

fully connected layer

All the activations from the previous layer are fully connected by the fully connected

layer. The fully connected layer is the same as the ANNs discussed in the previous section.

It generates the �nal output.

6.3 Generative adversarial networks (pix2pix model)

Generative adversarial networks (GANs) have been very successful since they were intro-

duced by Goodfellow et al. [35] in 2014. GANs are widely used in generating photorealistic

images [111], implementing super-resolution [55], and modeling patterns of motion in video

[94] [84]. GANs include two models: a generator model G and a discriminator model D.

The generator model G tries to generate model distribution G(z) from random noise z to

match the actual data distribution pdata. The discriminator D tries to learn to distinguish
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the input from the model distribution G(z) or the actual data distribution. The objective of

G is to fool D, and to make D make a mistake. The training process of GANs is like a �ght

between the generator and the discriminator. An example of a GAN is shown in Figure 6.3.

Figure 6.3: An example of a GAN. (Figure 6.2 is from https://skymind.ai/wiki/

generative-adversarial-network-gan.)

Our task is to make the generator's distribution pg equal to the actual data distributionpdata.

Input random noise is represented as z with density pz(z), and the data space generated by

the generator is represented as G(z). D(x) is a scalar, which represents the probability that

a sample is from the actual data x with density pdata rather than G(z). D is trained to

provide the maximum probability to label correctly the actual data x versus the generated

data G(z), and G is trained to minimize log(1 − D(G(z))), so the value function V (G,D)

can be represented mathematically as [35]:

min
G

max
D
V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] . (6.4)

The objective function is given by:

LGAN(G,D) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] . (6.5)
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The global optimum for Eq 6.4 is pg = pdata, which accomplish our objective. For a

detailed discussion of the training process and proof, see [35].

For an unconditional GAN, there are no restrictions or control over the generated data,

which may introduce large errors in some cases. Conditional generative adversarial nets

(cGANs) were proposed to handle this problem [70] by providing some extra information y

to both generator and discriminator. This additional y constrains the generator to generate

a restricted class of data. An example of a cGAN is given in Figure 6.4.

Figure 6.4: An example of a cGAN. The discriminator D is trained to distinguish the tuple
between motion-corrected image G(y) and motion-corrupted image y from the tuple between
motionless image x and motion-corrupted image y. The generator G is trained to fool the
discriminator D. Both the generator G and discriminator D can access the motion corrupted
image y in the cGAN.

The objective function of cGANs is given by [50]:

LcGAN(G,D) = Ey,x [logD(y, x)] + Ey,z [log(1−D(y,G(y, z)))] , (6.6)

where D tries to maximize the objective function and G tries to minimize it, so the

desired G∗ is given by [50]:

G∗ = arg min
G

max
D
LcGAN(G,D). (6.7)
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The pix2pix model add another term to the objective function Eq (6.7):

LL1(G) = Ex,y,z [||x−G(y, z)||1] , (6.8)

so the �nal objective function is given by [50]:

G∗ = arg min
G

max
D
LcGAN(G,D) + λLL1(G). (6.9)

The L1 term does not change discriminator's function, but it forces the generated data

from the generator to be close to x (ground truth) in an L1 way.

6.4 Dataset and training

A pix2pix model requires pairs of images as the training set: motionless images and

corresponding motion-corrupted images. 8000 2D images were acquired from 3D datasets

of 276 subjects in the Autism Brain Imaging Data Exchange (ABIDE) dataset [23] to be

motionless images in the training set. The corresponding motion-corrupted images were

generated from these motionless images. Motion was simulated in k-space, according to the

properties of the Fourier Transform. Each k-space line (along phase encode direction), was

modeled with two random translations within ±12 pixels and one random rotation angle

within ±12◦ . The center k-space phase lines (randomly chosen from 20 to 60 lines) were

preserved without motion corruption to keep the basic image structure.

Two test sets were used to validate the proposed method. One test set�the simulation

test set�includes 1780 simulated motion-corrupted images, which were generated by model-

ing motion of no-motion images in another subset of the ABIDE dataset (53 subjects). The

other test set�the experimental test set�includes 200 real motion-corrupted images from

two subjects. Six datasets were acquired by a standard vendor-supplied MP-RAGE sequence

with resolution 1 mm isotropic and �ip angle = 9◦ on Siemens Verio 3T Scanner at Auburn

University MRI Research Center. The subjects were instructed to perform no motion and
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head motion to separately acquire motionless images (reference) and real motion-corrupted

images.

For the pix2pix model training, minbatch Adam solver was used with learning rate

= 0.0002, and momentum parameters were β1 = 0.5, β2 = 0.999. The network was trained

over 200 epochs (40 hours) on an NVIDIA Tesla P100 GPU.

6.5 Results

In this section, we use the simulated test set to evaluate quantitatively the accuracy

of the motion-corrected images using the proposed method. We show several examples of

applying the proposed motion correction method on the simulated motion-corrupted images

and real motion-corrupted images.

Three metrics�structural similarity index (SSIM), sum of absolute di�erences (SAD),

and sum of squared di�erence (SSD)�were evaluated to compare the motion-corrupted

images and the motion-corrected images.

SSIM is given by [96]:

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (6.10)

where µx and µy are the mean of the images, σx and σy are the variance of the image,

x and y present two images to be compared, and c1 and c2 are small constants to provide

calculation of stability. For SSIM, high values mean two input images are similar, but for

SAD and SSD, the low values mean two input images are similar. Table 6.1 compares the

average metrics between the motion-corrupted images and the motion-corrected images with

the same reference images. Each entry in the table is the average value of all the 1780 cases

in the simulation test set.

Results of motion correction on �ve simulation datasets from the simulation test set are

shown in Figure 6.5. For comparing the error images (the absolute value of the di�erence
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Table 6.1: Average values of three metrics of the motion-corrupted images and the motion-
corrected images

Images SSIM SAD SSD

Imot 0.6538 5.9593 192.2482
Irec 0.6997 5.1133 134.4986

between the reference and input image), we use two rows for each dataset. The �rst row

consists of three images from left to right: motionless image (reference), motion-corrected

image, and error image. The second row consists of three images from left to right: motionless

image (reference), motion-corrupted image, and error image. Figure 6.6 shows the results

of motion correction on two experimental datasets from the experimental test set. The �rst

column shows motion-corrupted images generated by subject motion in the experiment; the

second column shows no-motion images generated by motionless subject in the experiment;

the third column shows the motion-corrected images through the pix2pix model.

Figure 6.5 and Figure 6.6 show several examples of applying the proposed motion correc-

tion method on the simulated motion-corrupted images and real motion-corrupted images.

The motion-corrected images indicate that our method was able to eliminate motion artifacts

and to preserve the sharp boundaries. In Figure 6.5, the corrected images recovered almost

all the details of the reference images. In Figure 6.6, the blurred edges became sharp and

the corrected images recovered most of the details of the reference images, but there were

some di�erences between the reference images and the corrected images.

One important note is that the error of the �fth dataset in Figure 6.5 is larger than

other datasets, due to large rotation angles of the motion-corrupted image during the mo-

tion simulation. These large angles lead to the corrected image having a relative angle to

the reference image. If a registration is implemented between the reference image and the

corrected image, the error will be smaller. We think the relative distance between reference

images and motion-corrected images has an impact on the metrics calculated in Table 6.1.

The metrics can be improved by performing registration for each pair of images.
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Another important note concerns the reasons for the errors in the corrected images in

Figure 6.6. Two explanations may be given for this. First, the subjects' position changed

during the experiment. A small position change between two scans can lead to mismatch

between motion-corrupted images and reference images. Second, information is lost due

to through-plane motion. Some through-plane motion is almost inevitable when subjects

performed motion, which leads to some information being lost in the reference plane and

some information being obtained from other planes.
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Figure 6.5: Results of motion correction on �ve simulation datasets from the simulation test
set. For each dataset, we use two rows to compare the results. The �rst row consists of three
images from left to right: motionless image (reference), motion-corrupted image, the absolute
value of the di�erence between the reference and motion-corrupted image. The second row
consists of three images from left to right: motionless image (reference), motion-corrected
image, the absolute value of the di�erence between the reference and motion-corrected image.
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Figure 6.6: Results of motion correction on two experimental datasets from the experimental
test set. The �rst column shows no-motion images generated by subject motion in the
experiment; the second column shows motion-corrupted images generated by motionless
subject in the experiment; the third column shows the motion-corrected images through
pix2pix model.
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Chapter 7

Conclusions

We have developed three methods to correct MRI motion retrospectively. These three

methods have their own characteristics and scope of application. The autofocusing method

using global motion estimation can correct rigid motion for each k-space phase line. This

method required raw k-space data with the acquisition order, and the processing is relatively

slow compared to the other two methods. The method based on fast robust correlation can

also handle rigid motion but for each k-space segment. The main advantage of this method

is that it can process the data e�ciently. However, this method cannot make line-by-line

correction, which may not be precise enough in some applications. Unlike the �rst two

methods, the method using GANs does not require the raw k-space data. This method

can also perform rigid motion correction e�ciently, if the network has already been trained.

This technique may occasionally generate images with phantom features that have no corre-

spondence in the actual object. This is one of the biggest problems for this method, which

may hinder diagnosis and scienti�c research. We summarize below the contributions and

discoveries related to the three methods.

We developed an autofocusing motion correction method using global motion estimation

to address the two challenges of previous methods: high calculation load and local minima.

We tried to implement some previous methods, but the motion correction results were not

perfect. After a lengthy study of these methods, we found that neighboring lines in k-space

have a strong relationship, and the motion detection of one segment may not correspond to

the average motion of all the lines in the segment when the segment size is smaller than a

certain number. Due to the strong impact of the neighboring line, the motion of the whole

segment may not be corrected properly, which may result in the cost function being trapped
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in local minima. This �nding explained why previous methods cannot correct motion in some

cases. Thus, we proposed a new search strategy. The proposed method involves two steps:

piecewise linear initial approximation and joint re�nement of a global model to perform

global estimation. To further improve computational e�ciency, golden-section search was

used to estimate rotation, and two map data structures were applied to store calculated

data. Di�erent focus criteria were compared under the proposed method. Simulations and

experimental results demonstrate that the proposed method can e�ectively and e�ciently

correct rigid motion (head motion) in MR images.

We also devised an e�cient motion correction method based on fast robust correlation.

The proposed method corrected motion-distorted images by aligning translational motion

between images formed by neighboring frequency segments. To reduce the impact of the

strong relationship between neighboring lines, the size of segments cannot be too small.

Since the squared di�erence kernel was invariant to motion between partial-Fourier images,

we adopted the absolute value kernel, which can be easily approximated by sinusoidal terms.

Total variation of the sum of partial-Fourier images was chosen as the new matching cri-

terion. FFTs are used to calculate correlations for computational speed. Di�erent search

strategies to combine and correct motion over the whole k-space were compared. The pro-

posed method can perform real-time processing to reduce image motion artifacts signi�cantly

in the simulations and MRI cardiac experiments.

Finally, we designed a novel data-driven motion correction method for magnitude MR

images using generative adversarial networks (GANs). GANs (pix2pix model) were imple-

mented to reduce motion artifacts and reconstruct motion-corrupted images through adver-

sarial training between generator and discriminator networks to estimate a motion-corrected

image that should be close to the reference image. The training set was made of image pairs

consisting of motionless reference images and corresponding motion-simulated images. The

proposed method was validated by a simulated motion test set and a real motion (experi-

mental) test set.
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The following future work is suggested by our previous studies on this problem:

For the autofocusing method, we expect it to correct 3D rigid motion. For 3D rigid

motion, six motion trajectories need to be estimated. Due to the increased search space in

3D, an accurate and e�cient piecewise linear initial approximation algorithm is needed. To

avoid local minima, one or more restriction conditions should be considered in the process of

joint re�nement of global model. The proposed method on a windowed image may potentially

correct some complicated nonrigid motions. In some cases, we can assume that the whole

image can be divided into several small subimages, within which the motion can be modeled

as rigid. The subimages are combined after motion of each subimage is corrected by the

windowed method.

For the method based on fast robust correlation, we expect it to correct translations

with rotation. We may use golden-section search strategy for rotation correction. It should

not be hard to extend the proposed method to correct 3D translations, which will make the

method more powerful. The proposed method applied to a windowed image will be another

attractive extension.

For the method using GANs, we expect it to correct some simple non-rigid motions, such

as some motions of joints. Instead of using the same networks for all the motions, a speci�c

network structure and objective function is needed to better �t the motion properties of a

certain part of the body. In order to compare di�erent network methods, an authoritative

MRI dataset and some metrics should be established.
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