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Abstract

The kissing number problem is a packing problem in geometry where one has to find

the maximum number of congruent non-overlapping copies of a given body so that they can

be arranged each touching a common copy.

The most studied version of this problem is about the kissing number of the unit ball.

A similar question was proposed by Wlodzimierz Kuperberg in 1990. Kuperberg asked

for the maximum number of non-overlapping infinitely long unit cylinders touching a unit

ball. He conjectured that at most six disjoint infinitely long unit cylinders can touch a unit

sphere. W. Kuperberg’s so called six cylinder problem [WK90] is a well known, 28 year old

problem in discrete geometry and it is still an open problem.

In 2015, Moritz Firsching showed an arrangement of 6 disjoint cylinders with radii

1.0496594, where each cylinder touched a given unit ball.

In this dissertation several variants of W. Kuperberg’s problem are considered and

solved. For example new bounds will be proved concerning the number of tangent cylinders

with various radii. Some already known bounds will be improved by elaborating on the

method introduced by Brass and Wenk [BW00]. Application of a deep theorem on circle

packing by Musin [OM03] also provides some non-trivial bounds. The major part of the

dissertation is about proving theorems concerning the size and the number of discs which

one can place on a concentric sphere avoiding the cylinders. This way new lower bounds are

proved for the total area between cylinders on a concentric sphere. Such lower bounds can

improve the existing results concerning Kuperberg’s type cylinder problems. Most of the

lemmas will be proved with pure geometric arguments, but in some cases the final answer

uses Maple computations. We give several different lower bounds for the total area of gaps.

Even our best lower bound does not solve Kuperberg’s 6 cylinder problem. The last section
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contains an application of our lower bound (joint work with Andras Bezdek) where it is

proved that seven infinitely long cylinders of radii 1.04965 (Firsching’s radius) cannot touch

a unit sphere. In view of Firsching’s construction this settles the Kuperberg question for

radius 1.04965.
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Chapter 1

Introduction - Kuperberg’s Conjecture

The kissing number problem is a packing problem in geometry asking for the maximum

number of congruent non-overlapping bodies touching a congruent central body. The most

studied version of this problem is finding maximum number of non-overlapping unit balls

tangent to a central unit ball. In two dimensional space the answer is obvious: the maximum

is 6. However in three dimensional space it took a long time to prove that the answer is 12,

because there was a promising arrangement of 13 spheres to contact a unit sphere and it was

impossible to rule out the existence of such arrangement by naked eye. The disagreement

between Isaac Newton and David Gregory [GS03] is an interesting historical detail: At first

Newton gave an incomplete proof for 12 to be the maximum, while Gregory believed that

13 spheres could fit. K. Schütte and B. Waerden [SW53] proved that 13 unit spheres cannot

contact a unit sphere. Later a simpler proof was given by J. Leech [LS71]. In 4D, the

analogous question was answered by O. Musin [OM03] who proved that at most 24 spheres

can touch a unit sphere.

A similar question was proposed by Wlodzimierz Kuperberg in 1990. Kuperberg asked

for the maximum number of non-overlapping infinitely long unit cylinders touching a unit

ball.

Conjecture 1. [W. Kuperberg (1990)] At most six disjoint infinitely long unit cylinders

can touch a unit ball.

Several simple arrangements were given by W. Kuperberg (Figure 1.1), where six cylin-

ders touched a sphere. The question of whether seven infinitely long cylinders could contact

one sphere, remained open and was recognised to be very difficult.
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Figure 1.1: Six disjoint, unit radius cylinders touching a unit sphere

In 1991, Aladár Heppes [HSz91], using the area of the ”shadows” - orthogonal projections

on the surface of the unit sphere, showed that nine is not possible. In the same paper, László

Szabó by using Blichfeldt’s Density Lemma provided the same result. Aladár Heppes also

used the ”shadow” area method to provide specific radii for cylinders where 6, 7, and 8 such

cylinders could not contact a unit ball.

Theorem 1.1. [A. Heppes and L. Szabó (1991), [HSz91]] Nine disjoint infinitely long

unit cylinders cannot touch a unit ball.

Theorem 1.2. [A. Heppes and L. Szabó (1991), [HSz91]] Eight disjoint infinitely

long cylinders of radius r > 0.96 cannot touch a unit ball; similarly seven disjoint infinitely

long cylinders of radius r > 1.075 cannot touch a unit ball; and six disjoint infinitely long

cylinders of radius r > 1.275 cannot touch a unit ball.

Later on Peter Brass and Carola Wenk [BW00] used a very elegant and short spherical

surface area argument to prove that 8 unit cylinders cannot contact a unit ball. The method

is as following; consider a sphere of radius
√

4.7 which is concentric with a unit ball. They

computed the surface area of the concentric sphere which is enclosed in a unit infinitely long

cylinder touching the unit ball . They finished their proof by noticing that the total area of

8 such disjoint congruent patches exceeds the total surface area of the sphere.

2



Theorem 1.3. [P. Brass and C. Wenk (2000), [BW00]] Eight disjoint infinitely long

unit cylinders cannot touch a unit ball.

In 2015, Moritz Firsching showed an arrangement of six disjoint cylinders with radius

1.0496594, where each cylinder touched a given unit ball [MF15]. Firsching using Brass

and Wenk’s method also gave some upper bounds in terms of n for the radii r, for which n

cylinders of radius r cannot touch a unit ball.

Theorem 1.4. [M. Firsching (2015), [MF15]] Eleven disjoint infinitely long cylinders

with radius r > 0.592 cannot touch a unit ball; ten disjoint infinitely long cylinders with radius

r > 0.663 cannot touch a unit ball; nine disjoint infinitely long cylinders with radius r > 0.756

cannot touch a unit ball; eight disjoint infinitely long cylinders with radius r > 0.884 cannot

touch a unit ball; seven disjoint infinitely long cylinders with radius r > 1.069 cannot touch

a unit ball; six disjoint infinitely long cylinders with radius r > 1.362 cannot touch a unit

ball; five disjoint infinitely long cylinders with radius r > 1.893 cannot touch a unit ball; four

disjoint infinitely long cylinders with radius r > 3.119 cannot touch a unit ball; three disjoint

infinitely long cylinders with radius r > 8.123 cannot touch a unit ball.

Theorem 1.5. [O. Ogievetsky and S. Shlosman (2018), [OS18]] [OS18] 6 infinitely

long cylinders with radius r =
1

8
(3 +

√
33) ≈ 1.093070331 can touch a unit ball.

The given radius r in Theorem 1.5 is conjectured to be the largest possible. However

7 disjoint infinitely long cylinders with radius r = 1.093070331 cannot touch a unit ball as

seen from Theorem 3.2 and Theorem 1.4.

In this dissertation, we study several variants of W. Kuperberg’s problem. For example,

we wanted to know how many cylinders with a specific radius can touch simultaneously two

unit balls. For specific numbers of cylinders, we used new methods to find upper bounds

for their radii. Some of the upper bounds improved previous ones, but some of them turned

out to be weaker. Since the weaker bounds were obtained with a simpler new method, we

will present them also. As an example of new method, we will show that seven infinitely

3



long cylinders of radii 1.04965 (Firsching’s radius) cannot touch a unit sphere. In view of

Firsching’s construction, this settles the Kuperberg type question for cylinders of radius

1.04965.
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Chapter 2

Informal Summary of New Results of This Dissertation

W. Kuperberg’s so called six cylinder problem [WK90] is a well known, 28 years old problem

in discrete geometry. For readers who are already familiar with the problem, with the

terminology and with partial results, this section gives a glimpse of what will be proved in

this dissertation. Other readers might want to return to this section after reading the formal

introduction and the first few sections of the thesis.

The following is a list of our new statements, estimates and solutions of various Kuper-

berg type questions. For the sake of brevity, we avoid many details, definitions; our purpose

is to give an intuitive description only.

Remark 1: Heppes was very close to discovering Brass and Wenk’s elegant proof. This

remark will explain why.

Remark 3.3: Musin’s result on the densest packing of 14 discs almost solves the 6 cylinder

problem.

Remark 3: describes our approach to improve Brass and Wenk’s method.

Theorem 4.1: minimizes the sum of distances from a point to three non-overlapping cylin-

ders.

Theorem 3.1: proves that the gaps around spherical patches contain two specific discs.

Remark 5: For small radii, parallel cylinders do not maximize the number of contacting

cylinders.

Theorem 3.2: An area-formula is redone, since Brass and Wenk’s paper omitted its details.
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Theorem 3.3: For n = 3, 4, . . . , 11, we give upper bounds for the radii of n contacting

cylinders.

Theorem 3.7: How many cylinders can simultaneously touch two unit spheres? First proof.

Theorem 3.4: How many cylinders can touch a sphere and avoid a given tangent sphere?

Corollary 3.5: At most six unit cylinders can touch two tangent unit balls.

Theorem 3.6: At most six unit cylinders can be simultaneously tangent to two unit spheres.

Second proof.

Lemmas and theorems of section 4: A sequence of lemmas are proved to provide dif-

ferent lower bounds for the total area of gaps among the contacting cylinders on a

concentric sphere. Computing area on a sphere can be very difficult. The main idea is

to place small discs in the gaps, assign their area to cylinders and estimate how much

area each cylinder gets. In this way we avoid area computations; what we do is more

like combinatorial geometric study.

Theorem 5.1(Joint work with Andras Bezdek): At most sxi disjoint infinitely long

cylinders of radii 1.0496594 . . . can touch a unit ball such cylinders will be called

Firsching cylinders.
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Chapter 3

Congruent Cylinders Touching a Unit Ball

In this section we start listing our results in the form of theorems and remarks. If a theorem

or remark is not followed by a reference of origin, then it is our work. At the beginning, the

theorems and remarks have short proofs so we prove them right after stating them.

The best known method to obtain upper bounds for the number of disjoint infinitely

long cylinders of radii r ≥ 1 touching a unit sphere is due to Brass and Wenk. First they

considered a larger sphere of radius R > 1, concentric with the unit sphere. They noticed

that the tangent cylinders intersect the surface area of the larger sphere in disjoint congruent

spherical patches. Thus, if k cylinders touch the unit sphere then k times the area of a single

patch must not exceed 4R2π, the surface area the larger sphere. It turned out that with a

good choice of R, if r = 1 the inequality k < 8 follows. Kuperberg’s problem is intriguing,

because proving the stronger inequality k < 7 seems to be a very difficult step to make.

Heppes [HSz91] assigned for each cylinder a ’cone’ by connecting the center of the unit

sphere to each point of the cylinder which is not further than a
√

3 unit distance. He used an

elementary argument (depicted on Figure 3.1) to show that the cones assigned to different

cylinders are disjoint (Figure 3.2). Then Heppes computed the angular measure of a cone

at its vertex and verified that 9 times this angular measure is greater than the total surface

area of the sphere. Thus, he proved that 9 cylinders cannot touch the sphere.

3.1 Prior Results of Heppes, Szabo, Brass, Wenk, Musin and Firsching

Remark 1. Heppes failed to notice that one can get the same cones by intersecting the

cylinders with a concentric sphere of radius
√

3 and thus they are automatically disjoint. In
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A

B

A
′

B
′

Figure 3.1: Heppes’s proof

our view, Heppes was very close to discovering Brass and Wenk’s solution by changing the

radius of
√

3 to a more suitable one (
√

4.7).

R =
√
4.7

R = 2

Area = S
7.32

O

R =
√
3

Figure 3.2: Heppes’s proof compared to Brass’ and Wenk’s proof

Remark 2. We noticed a connection between Kuperberg’s problem and the celebrated result

of Oleg Musin, who proved that if 14 congruent discs are packed on a sphere then the radius

of the discs is at most a 27.56◦ central angle. Let us intersect a tangent unit cylinder with a

concentric sphere of a specific radius (say of radius 2) (Figure 3.3). Then inscribe in the trace

of each cylinder two circles in symmetrical position. If the radii of these circles has larger

than 27.56◦ central angle, then Musin’s result disproves the existence of an arrangement of

7 disjoint touching cylinders. Unfortunately, this was not the case, so all we can conclude

with some elementary calculations is that 7 cylinders of radii 1.119 cannot touch a unit ball.
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Figure 3.3: Application of Musin’s theorem

Remark 3. Brass and Wenk’s argument ignores the fact that the patches do not tile the

sphere, while it is obvious that there must be gaps between the patches. Our goal is to give a

lower bound, say G, for the total area of the gaps. Then, in the spirit of Brass and Wenk’s

argument, we hoped for better upper bounds for the number of cylinders: If k cylinders touch

the unit sphere then k times the area of a single patch must not exceed 4R2π−G, the surface

area of the larger sphere minus the guaranteed gap area. Right at the beginning, we had to

make a decision on how to approach computing the area of the gaps.

Our main strategy is based on the following observation: In sections 3 and 4 of this

thesis, we will give lower a bound for the total area of the gaps by presenting various lemmas

concerning the number of disjoint discs of radii ρ which can be placed around the patches.

Definition 1. We will call a cylinder a Firsching Cylinder, if it is tangent to a unit ball

and has radius 1.0496594. We will refer to the common part of a Firsching cylinder and the

surface of a sphere concentric with the given unit sphere, as Firsching patch. Consider a

cylinder a radius greater than 1.0496594 and coaxial with the Firsching cylinder. Similarly to

Firsching patches we can define patches of such cylinders as well. This larger patch contains

the Firsching patch. We define Firsching patch’s complement as the set theoretical

difference of the two patches. A spherical cap on the surface of a concentric sphere whose

9



Euclidean radius is k = 3(1.0496594)
(

2√
3
− 1
)

= 0.1623828741 will be called a Firsching

cap. The area of a Firsching cap will be denoted by P .

3.2 Archimedes’ Hat-Box Theorem

Remark 4. [Archimedes’ work], [HS98] Archimedes knew that the formula of the surface

area of a spherical cap is the same as that of a planar disc, i.e. it is πr2, where r is the

Euclidean radius of the cap.

This formula easily follows from the more general Hat-Box theorem of Archimedes: by

slicing twice perpendicularly to the cylinder’s axis one cuts out a portion of the surface area

from both the sphere and the cylinder; these two pieces have the same surface area (Figure

3.4).

h1 h2

S1 S2

a

b

R

R

Figure 3.4: If h1 = h2 then S1 = S2

We also include a variation of the same result of Archimedes using the Figure 3.5:

Let’s consider the sphere S1 centered at the origin and the sphere S2 centered at the point

(0, 0, R) where R is the radius of S1. By a simple calculation we can find the coordinates of

center of the circle common to both spheres. x2 + y2 + z2 = R2 is the equation of S1 and

x2 + y2 + (z −R)2 = k2 is the equation of S2.

10



x2 + y2 + (z −R)2 = k2

x2 + y2 + z2 = R2

A(0, y, z)

S2

S1

k

Figure 3.5: Areas of spherical caps

Then the intersection of the equations gives us

z =
2R2 − k2

2R

Since the area of the cap is equal to A = 2πR(R− z) we have that

A = 2πR

(
R− 2R2 − k2

2R

)
= πk2
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3.3 Touching a Unit Sphere with Congruent Cylinders of Radii r

Kuperberg’s question, from another view, is the following. He arranged 6 parallel cylinders

around a unit sphere, so that they formed an annulus and each of them touched the unit

sphere. Then, Kuperberg raised the question if the cylinders could be arranged to have space

for one more tangent cylinder. We then ask the following,

Question 1. For a given n ≥ 3, let rn be the radius so that n parallel cylinders, each tangent

to a unit sphere, form an annulus. For which n can the cylinders be rearranged so that with

an additional tangent cylinder, the n+ 1 cylinders can touch the unit sphere?

Remark 5. Certainly the answer for the previous question is negative for n = 3. Brass and

Wenk’s area argument gives negative answer for n=5. The question is open for n = 6, 7.

Figure 3.6 shows that the answer is positive for n = 17.

b) Front view of the unit sphere
and the six cylinders perpendic-
ular to the dirrection of view.

a) The axes-parallel cube helps
to visualize the position of the
3× 6 axes-parallel cylinders.

Figure 3.6: An arrangement of 3× 6 = 18 cylinders of radii > r17

The case of n = 17: The axes parallel cube whose edges are tangent to the unit sphere is used

to describe the arrangement of 18 tangent cylinders. In style, the arrangement is similar to

12



Kuperberg’s 3rd construction of 6 tangent cylinders. Here 6 cylinders are parallel to each of

the three axis. Figure 3.6b is the front view (say view from the direction of the x-axis), thus

6 of the tangent cylinders are depicted with 6 congruent circles. Since three of the circles

span the space between opposite faces, we have that diameters of these three circles add

up to more than the edge length (
√

2) of the cube, thus r >
√
2
6

. If a circle of radius
√
2
6

is

tangent to a unit circle, then from the center it spans an angle α(r) = arcsin

√
2
6

1+
√
2

6

= 10.99◦

. Since, 17× 10.99◦ = 186◦ we have that putting cylinders of radii r17 in parallel position is

not maximizing the number of contacting cylinders of radii r17.

3.4 Bezdek and Kuperberg’s Lemma on a Sphere Touching Three Cylinders

Remark 6. [Bezdek and Kuperberg (1991)] Bezdek and Kuperberg, while studying the

densest packing of cylinders, used a lemma stating that the smallest sphere that can touch

three disjoint infinitely long cylinders of radius r has a radius k = r

(
2
√

3− 3

3

)
. Moreover,

the cylinders that touch a sphere of radius k must be mutually parallel.

Figure 3.7: Three cylinders touching a unit ball

13



Proof of Remark 6: Let us start with three infinitely long cylinders of radii r, touching a

unit ball. Inside each cylinder, there is a sphere of radius r touching the unit ball (Figure

3.7).

Let’s consider the plane P that contains the centers of these three spheres. Then,

consider the projection of these three spheres and the ball to a plane parallel to the plane P .

Figure 3.8a shows the projected circles. Continuously shrink the small circle until it touches

all three of the circles of radii r. (Figure 3.8b).

a) General projection b) Smaller circle

π/6r

k

c) Smallest circle

Figure 3.8: Proof of the lemma of Bezdek and Kuperberg

It is easy to see that the circle in the center is smallest when the circles of radius r

mutually touch each other (Figure 3.8c).

Let k denote the radius of the central circle. It turns out that

cos
(π

6

)
(r + k) = r ⇒ k = r

(
2
√

3− 3

3

)
Finally we need to point out that a small circle of radius k can indeed touch three

cylinders of radius r

14



3.5 Placing Two Discs in the Gaps Around Cylinders on the Surface of a Con-

centric Sphere

Theorem 3.1. Consider a packing of infinitely long cylinders of radius r ≤ 1, touching a

unit ball. Let again k = r

(
2
√

3− 3

3

)
. For each R ≥ 1 + k, there exist two disjoint spheres

of radius of k outside the cylinders, whose centers are on the sphere of radius R concentric

with the given unit ball. Moreover, if we restrict the number of cylinders to 3, then the same

holds without requiring r ≤ 1.

Proof of 3.1: First consider the case when r ≤ 1. Let us consider a packing of cylinders Ci

(i = 1, 2, . . . ) of radii r, which are touching a unit ball and let us consider the cylinders C+
i

(i = 1, 2, . . . ), which are coaxial with cylinders Ci and have radii r + k. Then, because of

Theorem 3.1, no three of the cylinders C+
i have common points, therefore the double covered

regions C+
i ∩ C+

j are mutually disjoint.

For the rest of the proof, assume that i) the orientation is such that the center of the

unit ball is at the origin O and ii) C1 is horizontal, i.e. the axis of C1 lies in the yz coordinate

plane and is parallel to the y coordinate axis (Figure 3.9).

r

S
′

S

r + k

B(R)

R1

C1

C+
1

x

y

z

O

Figure 3.9: Two spheres of radius k touch the unit ball and the cylinder.
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Consider two spheres S and S ′ of radius k and centers in the yz plane so that they touch

both the unit ball and cylinder the C1 (Figure 3.9). The spheres S and S ′ are disjoint and

assume S is to the right of S ′. The center of sphere S is inside the sphere B(R) of radius

R and with center O and it is on the surface of the cylinder C+
1 , in fact it lies on the line

z = 1− k. Start moving the center of S to the right on the line z = 1− k. When the center

hits another cylinder C+
i , then it can be moved around this cylinder so that the center of S

stays on the surface of the cylinder C+
1 and returns to the line z = 1−k. There are two ways

to go around the cylinder C+
i . We choose the one, where the y-coordinate of the center of S

never gets smaller than before the collision. That means the center of S moves continuously

on a path from inside the sphere SR to outside the sphere SR. Thus, at some point the center

must be on the sphere B(R) and must have a y-coordinate greater than that of the center

of S. Now we move S ′ similarly but to the left to obtain a second sphere whose center is

on the sphere B(R) and has a y-coordinate smaller than that of the center of S ′. The two

newly selected spheres are disjoint, which proves what we wanted.

Next consider the case when exactly three congruent cylinders of radius r touch the

unit ball. The above argument takes care of the case when r ≤ 1. In view of Theorem 1,

we know that 1 < r ≤ 6.4641... We also have k < 1. We have three contact points on the

unit sphere, hence there is a hemisphere containing the three contact points. Let the great

circle C be the boundary of this hemisphere. Let H and H
′

be the half-spaces determined

by the plane of C. Specifically let H
′

be the half-space containing the three contact points.

We will explicitly tell where the centers of spheres S and S ′ of radius k are. They are on the

concentric sphere B(R) of radius R > 1 + k. Let S be the sphere of radius k whose center

is the most distant from O in H. Let S ′ be the sphere of radius k touching the three given

cylinders and the unit ball. It is easy to see that S ′ lies in H ′ and is disjoint from S.

When W. Kuperberg stated his 6 cylinder problem, he also noticed that it is very natural to

ask for each integer n, how large r can be so that n congruent cylinders of radii r can touch a

unit ball. In the context of this problem, finding upper bound means, the following for each

16



integer n, we want to give a radius R so that if r > R then n congruent cylinders of radii r

cannot touch a unit ball. The first upper bound is given by Brass and Wenk in their paper

where they proved that 8 unit cylinders cannot touch a unit ball. In short, Brass and Wenk

computed the area of the trace of a single touchinr on a concentric sphere of radius r. They

gave a formula for the area omitting details of the computation. Since we will use the their

formulas, for completeness, we recreate here all the details of this calculus type argument.

3.6 New Upper Bounds for the Radii of n Contacting Cylinders

Theorem 3.2. [P. Brass and C. Wenk (2000)] Assume a cylinder of radius r is tangent

to a unit sphere. The surface area of the trace of this cylinder on a concentric sphere of

radius R is

2
√
R

∫ √R−1
−
√
R−1

arcsin

(√
4(R− x2)(r + 1)2 − (x2 − 2r −R− 1)2

2(r + 1)
√
R− x2

)
dx.

Let’s consider a unit ball centered at the origin and let S√R be a sphere with radius
√
R and centered at the origin and let Cr be a infinitely long cylinder with radius r which is

touching the unit ball and is parallel to y-axis. For a given R (1 ≤ R ≤ (2r + 1)2), we will

compute the surface area of the intersection of the surface of the sphere S√R and that of the

solid cylinder Cr. Such intersections will be called spherical patches, or patches in short.

The sphere S√R and the cylinder Cr have the following set of points:

S√R = {(x, y, z) ∈ R3 | x2 + y2 + z2 = R}

Cr = {(x, y, z) ∈ R3 | y2 + (z − (1 + r))2 ≤ r2}

The boundary of the region of intersection (boundary of a patch) contains the following set

of points:

D(R,r) = {(x, y, z) ∈ R3 | (x, y, z) ∈ S√R ∩ Cr where z =
√
R− x2 − y2}
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Figure 3.10: Firsching patches

Since 1 ≤ R ≤ (2r + 1)2, the spherical patch is connected. Its projection D(R,r) on the

xy-coordinate plane is not necessarily convex (Figure 3.10). Formally D(R,r) contains the

following points:

D(R,r) = {(x, y) ∈ R2 | y2 + (
√
R− x2 − y2 − (1 + r))2 ≤ r2}

=

{
(x, y) ∈ R2 | |x| ≤

√
R− 1 and |y| ≤

√
4(R− x2)(r + 1)2 − (x2 − 2r −R− 1)2

2(r + 1)

}

The enclosed spherical surface area of the patch is calculated by the following integral,

A(S√R ∩ Cr) =

∫
D1

(R,r)

√
R√

R− x2 − y2
dydx (3.1)

=

∫ √R−1
−
√
R−1

∫ √
4(R−x2)(r+1)2−(x2−2r−R−1)2

2(r+1)

−
√

4(R−x2)(r+1)2−(x2−2r−R−1)2

2(r+1)

√
R√

R− x2 − y2
dydx (3.2)

= 2
√
R

∫ √R−1
−
√
R−1

arcsin

(√
4(R− x2)(r + 1)2 − (x2 − 2r −R− 1)2

2(r + 1)
√
R− x2

)
dx (3.3)
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According to Theorem 3.1, for any arrangement of tangent cylinders with radius r ≤ 1,

there exist at least two disjoint spheres with radius k = r

(
2
√

3− 3

3

)
whose centers are on

the surface of a concentric sphere with unit ball and has radius R.

Let’s assume that the number of the contacting cylinders is n. Consider a concentric

sphere of radius
√
R. (One could work with radius R, but we want to follow closely the

computation of Bras and Wenk, and seems they found more convenient to work with radius
√
R). Then, consider the total area of their patches and the corresponding two spherical caps

of radii k. Let us denote this total area by A. For each r there exists a concentric sphere of

radius
√
R such that the area A over the surface area of the sphere

√
R is maximized. Let’s

call that maximum ratio by S(r).

S(r) = max
1≤R≤(2r+1)2

A

4πR

We will derive upper bounds considering the patches on the concentric sphere of radius
√
R,

where the maximum S(r) is attained. The following table gives our new upper bounds. Note

that in the first column n is the number of tangent cylinders. The second column contains

the actual bounds. The third column contains the specific values of R which are telling us

that the upper bound was obtained by computing the patch areas on the concentric sphere

of radius
√
R. For example for n = 9, the maximum radii of 9 contacting cylinders cannot

be larger than 0.75494110976.
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Theorem 3.3.

n upper bound for r (i.e. for any radius
r greater then the numbers bellow, n
cylinders cannot touch the unit ball)

R where the
maximum S(r)
attained

3 7.3319289 24.7713
4∗ 3.04984027 12.4084
5∗∗ 1.874707795 8.0509
6 1.354550711 6.0614771
7 1.06513747 4.9497859
8 0.881589897 4.245643
9 0.75494110976 3.7613642505
10 0.66227158213 3.4088017
11 0.591478922 3.14049555

Table 3.1: New upper bounds in case for various radii
Note: (*) and (**) are conjectured.

Remark 7.

n Heppes Firsching Yardimci
3 NA 8.123015726697261129873583 7.3319289
4∗ NA 3.119690083242860621653928 3.04984027
5∗∗ NA 1.893940144132469649262296 1.874707795
6 1.275 1.362728791829127036542209 1.354550711
7 1.075 1.069484644843172117577150 1.06513747
8 0.960 0.8842320082596736518347155 0.881589897
9 NA 0.7566957511004313621344271 0.75494110976
10 NA 0.6635122014473178737120738 0.66227158213
11 NA 0.5923978489139096427663741 0.591478922

Table 3.2: Comparisons of upper bounds of radii

3.7 On the Number of Cylinders Touching Two Unit Balls

Next in order to test the power of Brass and Wenk’s area argument, we came up with

the following variant. This time, we want to touch with cylinders two disjoint unit spheres

simultaneously (Figure 3.11). The questions are i) at most how many disjoint unit cylinders

can do this, ii) what can we say about the maximum, if we change the radii of the cylinders?

This section contains our results.
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Figure 3.11: Maximizing the radii of n cylinders tangent to two spheres (Illustration for
n = 3)

Theorem 3.4. Consider a ball with radius r > 0.9001799674 which is tangent to a unit ball.

In addition to this ball, at most six disjoint infinitely long unit cylinders can touch the unit

ball.

Proof of Theorem 3.4: Suppose S and S1 are two spheres centered at the origin with radius

r1 = 1 and R =
√

4.698271645, respectively. Consider a unit cylinder C that touches S at

the point (0, 0, 1) and parallel to y-axis. We calculate the patch area of the sphere S1 which

is inside the cylinder C by Theorem 3.2 using Maple.

So the area is

2
√
R

∫ √R−1
−
√
R−1

arcsin

(√
4(R− x2)(r1 + 1)2 − (x2 − 2r1 −R− 1)2

2(r1 + 1)
√
R− x2

)
dx ≈ 8.056070935

Now suppose 7 unit sphere touch a unit ball. Then the total area of the surface of

sphere S1 which is covered by these seven cylinders is 7P . So the uncovered surface area of

the sphere is A = 4πR2 − 7P

This time consider a sphere S2 of radius r (r ≥ (R−1)/2) which is tangent to the sphere

S at the point (0, 0, 1). Consider the spherical cap which is part of sphere S1 and inside the

sphere S2. The area of the cylindrical cap is equal to 2πhR where h is the height of the cap.

The area of the spherical cap could be at most an area A when 7 unit cylinders touching the
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unit ball. Consider that the area of the spherical cap is A so that

2πhR = A ⇒ h =
A

2πR

Let the point (0, k, R − h) be one of the intersection points of the spheres S1 and S2 in the

yz-coordinate plane. By using the cord property we have

2R− h

h

k

k2 = h(2R− h) ⇒ k =
√

h(2R− h)

Figure 3.12: Finding the value of k by the cord property

The equation of the sphere S2 is x2+y2+(z−1−r)2 = r2 so by plugging the coordinates

of the point (0, k, R− h) in this equation, we have

(k)2 + (R− h− 1− r)2 = r2 ⇒ r =
k2 + (R− h− 1)2

2(R− h− 1)
≈ 0.9001799674

So if r > 0.9001799674, then at most six unit infinitely long cylinders can touch the

unit ball in addition to a tangent ball of radius r.

Corollary 3.5. Consider a unit ball B which touching another given unit ball C then at

most six infinitely long unit radius cylinders can touch the unit ball B, and avoid the ball C.

Theorem 3.6. Consider two non-overlapping unit balls. Then at most six disjoint infinitely

long unit cylinders can simultaneously touch both balls.

Proof of 3.6: Consider a cylinder which is tangent to two given unit balls. The two contact

points can be connected by a line segment which is completely inside the cylinder. Notice
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Figure 3.13, that points of the surface of the left hemisphere of the left sphere and points of

the surface of the right hemisphere of the right sphere cannot be a contact point.

Two contact points

Figure 3.13: Two non-overlapping spheres in general position

Consider a unit ball which is tangent to one of the unit balls, does not separate the balls

and has its center on the line which passes through the centers of balls as in Figure 3.14.

Two contact points

Extra ball

Figure 3.14: Two non-overlapping spheres in general position with an imaginary extra ball.
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This extra ball is disjoint from any segment connecting possible contact points. Thus,

this extra ball is disjoint from the cylinders tangent to both given balls. Corollary 3.5 says

that at most six unit cylinders can touch a unit ball which touches another unit ball.

The rest of this section contains second proof for Theorem 3.6 under the condition

O1O2 ≥ 4. We start with recalling

Theorem 3.7. For n = 3, 4, 5, 6 let rn be equal to that radius, which allows a unit circle

to be touched by a ring of n equal circles of radii rn. rn is the largest radius r so that n

disjoint congruent cylinders of radii r can touch simultaneously two given unit balls whose

centers are at a sufficient large distance (in case of n = 6, the distance 4 is sufficeint). In

the optimal arrangement the cylinders must be parallel to the line connecting the centers of

the unit balls.

Proof of Theorem 3.7: Our short proof will be based on a new lemma and will apply a known

theorem on densest circle packings. We start by giving these details,

Lemma 3.8. Let e be a line in three dimensional space so that it is not perpendicular to

the x-axis. Let P (x) be the point of line e, whose first coordinate is x. Let f(x) be the

distance between the points (x, 0, 0) and P (x) (Figure 3.15a). It turns out that f(x) is a

convex function.

e

x-axis
x

P(x)

f(x)

X Y

P

Q

M

N

L

Figure 3.15: Convexity of a distance function
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Proof of Lemma 3.15: The midpoint convexity (a sufficient condition for convexity) follows

immediately from an elementary geometric property of quadrilaterals. Take the 3D quadri-

lateral with vertices X = (x, 0, 0), Y = (y, 0, 0), P = P (x), Q = P (y) (Figure 3.15b). Let

M be the midpoint of XY , N be the midpoint of PY , L be the midpoint of PQ. By sim-

ilar triangles 1
2
XP = MN , 1

2
Y Q = NL. By triangle inequality MN + NL ≤ ML. Since

f(x) = XP and f(y) = Y Q, we have (f(x)+f(y)
2

≥ ML. Since both XP and Y Q are per-

pendicular to the x axis so is ML. Thus the last inequality is the midpoint convexity of the

function f(x).

Next, we give a brief account of the history of circle packings in a circle. The problem of

finding the densest packing of congruent circles in a circle arose in the 1960s. The question

was to find the smallest circle in which we can pack n congruent unit circles. The densest

packing of n congruent circles in a circle are known for n ≤ 13 and n = 19. The densest

packing of n congruent circles in a circle were discussed by Kravitz [K67] for n = 2, . . . , 16. It

turns out that we can use/apply the solutions for n ≤ 6 (the answers for n > 6 will not help

as the optimal arrangements do not have the ring structure what we see for n = 3, 4, 5, 6).

Figure 3.16: Densest packings of n = 1, 2, . . . , 6 circles in a circle
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Theorem 3.9. [Pirl (1969) and Graham (1968)] The densest packings of n = 1, 2, . . . , 6

circles in a circle are exactly those which are given in Figure 3.16.

Proof of Theorem 3.9: Concerning the proof of these intuitively correct optimal arrange-

ments, we refer to Pirl [P69] who proved that these arrangements are optimal for n ≤ 9

and he also found that the optimal configuration for n = 10. For n ≤ 6 proofs were given

independently by Graham [CG68]. A proof for n = 6 and 7 was also given by Crilly and

Suen [CS87].

Now, we are ready to give the second proof of Theorem 3.6. Let O1 and O2 be the centers

of the two given unit balls with O1O2 ≥ 4. We explain our argument for n = 6 and note

the similar argument holds for n = 3, 4 and 5. The line O1O2 will play the role of x-axis

with the origin at the midpoint of O1O2. Let ei, i = 1, . . . , 6 be the axis of the cylinders.

Introduce the functions fi , i = 1, . . . , 6 as above. Let H be the plane passing through the

origin so that it is perpendicular to the x-axis. The plane H cuts each cylinder in an ellipse,

whose center has a distance fi(0) from the origin. Once we establish that fi(0) ≤ rn − 1 we

are done (for example, in case of six circles fi(0) ≤ 2). Indeed, then n disjoint circles are

contained in a circle of radius rn (for example, in case of six circles radius 3), which in view

of the above theorem implies uniqueness of the circles and that implies the parallel positions

of the cylinders.

Drop perpendicular from O1 to ei and then from the foot of this back to O1O2. Let Q1

be the foot. Of course O1Q1 ≤ 2. Do the same with O2 to get Q2. Q1Q2 contains M . Using

the convexity function argument we can finish the proof.

Similar argument proves Theorem 3.7 for n = 3, 4, 5.
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Chapter 4

Estimating the Total Area of Gaps Around Cylinders on the Surface of a Concentric Sphere

In this section we develop an area approach which can be used to solve weaker versions of

Kuperberg’s 6 cylinder problem or in the future could help solving Kuperberg’s conjecture

itself. Kuperberg had several arrangements where 6 unit cylinders touched a unit sphere and

he asked for showing that 7 unit cylinders cannot do the same.

It is quite natural to check if one can prove this with Brass and Wenk’s original idea.

Assume we consider a sphere of radius R > 1 concentric to the unit sphere and compute on its

surface, the area of the trace/patch of a tangent cylinder of radius 1.0496594. Unfortunately,

it turns out that there is no R > 1 for which 7 times the area of this trace is more than

4R2π. This argument ignores the fact that the patches do not tile the sphere, while it is

obvious that there must be gaps between the patches. Our goal is to give a lower bound say

G(R) for the total area of the gaps on the concentric sphere of radius R. All what we want

is that 7 times the area of the trace of a cylinder exceed 4R2π − G(R), the surface area of

the larger sphere minus the area of the guaranteed gap area.

In order to refer more pictorially to certain numbers we will refer to them by names or

by special visually simple terms:

Definition 2. We will call a cylinder Firsching Cylinder, if it is tangent to a given unit

sphere and has radius 1.0496594 . . . . Letter r will refer to 1.0496594 . . . (or in short to

1.049 . . . ), which is the numerical value of the radii in the example of Firsching.

Definition 3. As before, we call/refer to the common part of a Firsching cylinder and the

surface of a sphere concentric to the given unit ball, as Firsching patch, or in short FP .

Both the shape and the area of the Firsching patches depend on the radius R of the concentric

sphere, so sometimes we will use the notation FP (R).
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We will use the following generalization of the lemma of Bezdek and Kuperberg [BK91]:

4.1 The Minimum Sum of Distances From a Point to Three Cylinders

Theorem 4.1. Consider three congruent cylinders of unit radii, then the sum of distances

from a point to the surfaces of the cylinders is at least 3
(

2√
3
− 1
)

. Equality holds if the

cylinders are parallel and mutually touch each other and the point is at equal distances from

the cylinders.

(a) (b) (c) (d)

Figure 4.1: The minimum of the sum of distances from a point to three cylinders.

Proof of Theorem 4.1: Consider three infinitely long cylinders with unit radius in general

position. Let P be a point and consider the shortest distances from each of the cylin-

ders to the point P (Figure 4.2a). Each of the cylinders contains a ball with unit radius

which is closest to the given point (Figure 4.2b). Project these three balls and the point

P to a plane which is parallel to the plane that passes through the centers of the three

balls (Figure 4.2b). In general, the three projected circles mutually may not touch each

other (Figure 4.2c). The mutually touching circles will provide the smallest sum of the

distances (Figure 4.2d). The mutually touching circles case gives us an equilateral trian-

gle whose vertices are centers of the three circles and thus have an edge length 2. By

Fermat Points [WE18], the smallest sum of distances from the vertices of a triangular

to an inside point is provided by the center point of an equilateral triangular. So that
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by basic calculation, we get that the sum of the three distances is at least 3
(

2√
3
− 1
)

.

Let us continue with defining neighbourhoods of Firsching patches:

4.2 Terminology and Some Important Numerical Constants

Definition 4. Consider a cylinder which has radius ρ + 1.049 . . . (ρ ≥ 0) and is coaxial

with the Firsching cylinder. Similarly to Firsching patches, we can define patches of such

cylinders as well. On any concentric sphere this larger patch includes the Firsching patch.

We define ρ-neighbourhood of the Firsching patch, as the set theoretical difference of

the two patches. The area of this neighbourhood will be denoted by ρ-FP (or ρ-FP (R), if

the radius of the concentric sphere is to be emphasised).

Definition 5. It was mentioned in the previous section that, independently from the radius

of a sphere, the spherical cap of Euclidean radius ρ has area ρ2π (Remark 4). Remember that

k is a radius so that a sphere of radius k can touch three mutually tangent parallel cylinders

of radius r. Since r is the radius of a Firsching cylinder, it is natural to refer to a spherical

disc (or cap) of Euclidean radius k as Firsching cap.

Our proof of Theorem 5.1 will be driven by the numerical values of certain distances, radii,

disc area, and gap area. For example when we estimate the area of gaps we will do it by

comparing it to P , and prove lemmas like the gap has area at least 5P or 7P etc. Let us

summarize in a list some of the frequently used constants and their references, which will

play a key role in the lemmas,

• The radius of the Firsching cylinders is r = 1.0496594 . . . (or in short r = 1.049 . . .).

• For any point outside of three disjoint unit cylinders the sum of the distances to three

unit cylinders is at least 3
(

2√
3
− 1
)

= 3× 0.1547 . . . . This also means that 0.1547 . . .
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is the radius of the largest sphere which can have common points with each of three

disjoint unit cylinders.

• By simple scaling, we have that for any point outside of three disjoint Firsching

cylinders the sum of the distances to these cylinders is at least 3r
(

2√
3
− 1
)

= 3 ×

0.1623828741. Letter k will refer to the constant k = 0.1623828741. This also means

that k is the radius of the largest sphere which can have common points with each of

three disjoint Firsching cylinders of radii r.

• The area of a Firsching cap is P = k2π = 0.8283813644 . . ..
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4.3 On a Lower Bound for the Area of Gaps, Which Once Proved, Would Imply

New Results

In this section we show;

Lemma 4.2. For R =
√

4.836, the Firsching patch FP(R), and the area P of the Firsching

disc, we have the following inequality,

4πR2 ≤ 7FP(R) + 9.28P.

Proof of Lemma 4.2: This lemma needs only numerical verification. Appendix B shows that

three numerical values satisfy the stated inequality.

Lemma 4.2 is very important because it says that in order to prove Theorem 5.1 all we

need to do is to place disjoint discs in the gaps with a total area 9.28P .

• Throughout the section patches, neighbourhoods, gaps will be considered on a concen-

tric sphere of radius R =
√

4.836. This radius is different than that in the paper of

Brass and Wenk, and Firsching. We checked other radii, but apparently this choice

was working for us, because by this radius we have the smallest needed gap area to be

filled on the surface of a sphere.

Throughout the thesis, we will give lower bound for the total area of the gaps by

presenting various lemmas concerning the number of disjoint discs of radii ρ which can be

placed around the patches.

In order to get a better understanding of various area elements, we state the following:

4.4 Area of the ρ-neighbourhood of a Firsching Patch

Lemma 4.3. (i) On the surface of the concentric sphere of radius R =
√

4.836 the area of

the k
2
-neighbourhood of a Firsching patch has an area greater than 11.34P (Figure 4.2).

In notation
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area

(
k

2
− FP (R)

)
> 11.34P

.

(ii) On the surface of the concentric sphere of radius R =
√

4.836 the area of the 0.6-

neighbourhood of a Firsching patch has an area greater than 13.65P . In notation

area

(
3k

5
− FP (R)

)
> 13.65P

.

(iii) On the surface of the concentric sphere of radius R =
√

4.836 the area of the 0.724k-

neighbourhood of a Firsching patch has an area greater than 16.54P . In notation

area (0.724k − FP (R)) > 16.54P

.

The area of the shaded region
is as following,
area (0.5k − FP (R)) > 11.34P
area (0.6k − FP (R)) > 13.65P
area (0.724k − FP (R)) > 16.54P

Top view of a Firsching patch

The ρ-neighbourhood of a Firsching patch

Figure 4.2: The shaded spherical region is the ρ-neighbourhood of a Firsching patch.

The proof of Lemma 4.3 is a matter of plugging in the numerical values of R and ρ.

area(ρ− FP (R)) is evaluated by a Maple code (Appendix B).
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4.5 Placing Discs in the Gaps, a Way to Estimate the Area of Gaps

In terms of application Lemma 4.3, if there is a Firsching patch whose ρ-neighbourhood

does not overlap any other Firsching patches, then the gap is already large enough to prove

that 7 Firsching cylinders cannot touch a unit sphere. In this rear situation, we do not need

to place discs in order to estimate the area of gaps.

According to Lemma 4.2 we will place disjoint discs with a total area 9.28P , in the gaps

left by Firsching patches on the surface of a concentric sphere of radius R. We know that

no point in the gap on the R-sphere can be closer than distance k to three of the Firsching

cylinders. Thus, no point of the gap on the R-sphere can be closer than distance k to three

of the Firsching patches. This is an information which suggests that we should place discs

whose Euclidean radius is in the range of k. Specifically we will study three possibilities:

a) the Euclidean radii of the inserted discs are ρ = 0.5k,

b) the Euclidean radii of the inserted discs are ρ = 0.6k,

c) the Euclidean radii of the inserted discs are ρ = 0.724k,

If we decide on placing smaller discs in the gaps, then we have to place many of them,

preferably disjoint ones, to reach the desired total area. If we decide on placing somewhat

larger ones, then although we do not need as many, but it will be more difficult to show that

there is room for larger discs.

It turns out that cases a and b do not provide large enough total gap area to prove

Lemma 4.2 but in case c we will prove sufficiently large gap area and thus complete the

proof of theorem 5.1.
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Let us start describing how we place discs in the gaps in case a).

ai aj

FPi
FPj

First

Last

Figure 4.3: Where and how to place discs in the gap

We will give instructions for choosing the centers of discs to be placed in the gaps.

For ρ ∈ {0.5k, 0.6k, 0.724k}, the boundary curves of the ρ-neighbourhoods of the Firsching

patches will guide us in the selection. Let FPi for i = 1, 2, . . . , 7 be the seven Firsching

patches. The Firsching patches of course are disjoint, but the ρ-neighbourhoods of them

are not necessarily disjoint. Let ai for i = 1, 2, . . . , 7 be the boundary curves of the seven

Firsching ρ-neighbourhoods. For each pair of the Firsching patches FPi and FPj, we consider

the intersection of the boundary curves ai and aj. If the ρ-neighbourhoods do not overlap,

then we do not select any center point. If the ρ-neighbourhoods overlap, then so do the

boundary curves ai and aj. Intuitively speaking,

i) we choose the two furthest pair of intersection points for the centers, or we could also say

that

ii) we choose the first and the last crossings of the curves ai and aj.

Just by looking at Figure 4.4, it seems that the above selection is well defined. However,

since the patches are not convex, the boundary curves could intersect each other several

times, so we quickly would run into problems seeing that the two ways of selection give the

same points or whether they are well defined at all. The problem is similar to a situation
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where you place n chairs around a round table and want to tell someone which chair is the

first, which is the last, and which pair of chairs are at the largest distance. We will take a

closer look at the situation and then restate how to choose the center points.
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4.6 On the Overlap of Two Neighbourhoods of Firsching Patches

Lemma 4.4. Let ai and aj be the boundary curves of the ρ-neighbourhoods of the Firsching

patches FPi and FPj. Assume ai and aj intersect each other.

For ρ ∈ {0.5k, 0.6k, 0.724k}, both ai and aj can be split in two halves of equal lengths

so that one of the halves does not contain any intersection point of ai and aj. Thus, on the

other halves of the boundary arcs, the first and the last points of crossings of the curves ai

and aj become well defined.

Figure 4.4: Separating Firsching patches by a plane

Proof of Lemma 4.4: Two disjoint cylinders are always separable by a plane. Let H be

a plane which separates two Firsching cylinders ci and cj so two Firsching patches FPi

and FPj. Since the cylinders are tangent to the unit sphere, H cuts the unit sphere in a

circle. Under our assumption, at least one of ai and aj intersect this circle. Without loss

of generality assume ai and the center of the unit sphere belongs to the same half space

bounded by H.

First we prove Lemma 4.4 for ai. Both the patches and their neighbourhoods are central

symmetrical on the concentric sphere with center O of radius R. Let Q be the center of the

region bounded by ai. At this point we will use the numerical fact that ρ is smaller than the

Euclidean radius of the largest disc centered at Q and contained inside of ai. In fact, this is

the reason why we can say that both O and Q are on the same side of the plane H. Let us
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move the plane H parallel towards the center O of the concentric sphere, and stop when it

passes through Q or O. In the first case, denote by K the circle into which the shifted plane

cuts the concentric sphere. It is easy to see (Figure 4.5a) that the great circle which contains

Q and which is tangent to K lies on the same side of H where ai lies. Because of the central

symmetry of ai this completes the proof of Lemma 4.4. In the second case (Figure 4.5b), the

great circle whose farthest point from H is Q does the same as the great circle in case a).

Now we turn to the other boundary curve aj. We argue similarly, as above. This time we

move the plane H parallel away from the center O of the concentric sphere, and stop when

it passes through Q. Denote again by K the circle into which the shifted plane cuts the

concentric sphere. It is easy to see (Figure 4.5a) that the great circle which contains Q and

which is tangent to K does the needed partition.

H

Kai

Q

O

a) b)

ai

Q

O

H

Q

Figure 4.5: Half of ai does not contain intersection points
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4.7 Estimating the Number of Special Discs Placed around a Firsching Patch

Lemma 4.5. (i) 6P is a lower bound of the area of k
2
-neighbourhood of a Firsching patch.

(ii) 7.2P is a lower bound of the area of 0.6k-neighbourhood of a Firsching patch.

(iii) 8.6P is a lower bound of the area of 0.724k-neighbourhood of a Firsching patch.

Proof of Lemma 4.5:

(i) Consider spheres of radius k
4

which are touching a Firsching cylinder and whose centers

are on the sphere radius R =
√

4.836. Obviously, the intersection of such spheres and

the concentric sphere of radius R are a spherical caps contained by the k
2
-neighbourhood

of Firsching patch.

Blue cylinder has radius r.
Red cylinder has radius r + k

4 .
Blue sphere has radius R.
Red sphere has radius R− k

4 .
Distance between red planes is
k
2 .

Figure 4.6: Placing spheres of radius k
4

between planes perpendicular to the cylinders.

By considering Figure 4.7, in the upper half of the neighbourhood, from the left line

to the right line we can locate maximum M=48 such spheres by following calculation;

M =

⌊
2
√

3.836

k/2

⌋
= 48
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k
2
- neighborhood of a Firshing patch

Top view of a Firsching patch

0.1623828741

2
√
3.836

L

Left line Right line

Figure 4.7: A lower bound for the area of the k
2
-neighbourhood of a Firsching patch area.

Also by considering Figure 4.7, in the lower half of the neighbourhood, we have ad-

ditionally 48 such touching spheres. Therefore the total surface area of the sphere of

radius R inside such spheres is

96
k2

16
π =

96

16
k2π = 6P

(ii) A method similar to what we used in (i) gives the following result for M ;

M =

⌊
2
√

3.836

0.6k

⌋
= 40

so total number of discs placed in the 0.6k -neighbourhood of a Firsching patch is 80,

then

80
(3k)2

100
π =

80 · 9
100

k2π = 7.2P

(iii) Similar method of (i) gives the following result for M ;

M =

⌊
2
√

3.836

0.724k

⌋
= 33
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so total number of discs placed in the 0.724k -neighbourhood of a Firsching pathcis 66,

then

66(0.362k)2π = 66 · (0.362)2k2π ≈ 8.6P

4.8 Some Lemmas on Disjointness of Special Discs and Firsching Patches

We assigned two discs of radii k
2

to each pair of overlapping Firsching neighbourhoods.

Let us denote them with dij (and d′ij). The notation is so that the double index of dij tells us

that centers are intersection points of ai and aj, i.e. they are assigned to Firsching cylinders

of indices i and j. We make a couple of simple observations; some in the form of remarks (if

they are very simple), some in the form of Lemmas (if we want to refer to them later).

Remark 8. The sphere of radius k
2

whose center is the same as that of the disc dij is tangent

to the Firsching cylinders with indices i and j. We cannot say that the spherical disc dij

is touching the corresponding Firsching patch. With another words dij lies in the gaps on

the concentric sphere of radius R, but is not necessarily tangent to the Firsching patches

with index i and j. Similar statements hold if k
2

is replaced with other constants like 0.6k or

0.724k.

Lemma 4.6. Assume k
2
-neighbourhoods are considered and we already choose the discs dij

of radii k
2
. We will prove that dij and dim are disjoint for distinct i, j,m. This holds also

when k
2

is replaced with 0.6k.

Proof of Lemma 4.6: Lemma 4.6 says that if two discs have their center on aj, but they are

not assigned to the same pair of cylinders, then they must be disjoint. Indirect assume that

two such discs overlap. Let O be the center of dij. Notice that the distances from center O

to the ci and to the cjcylinders are equal to k
2
, while to the cm cylinder is less than 3 × k

2
.

Thus the sum of the distances is < 5 × k
2
, contradicting Lemma 4.1, which says the sum
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should be at least 3k. In fact for any radius ≤ 3
5
k a similar argument holds, where under

indirect assumption, the sum of the three distances turns out to be < 3k.

We will have a separate lemma here addressing the situation of Lemma 4.6 for radius

0.724k.

Lemma 4.7. Assume 0.724k-neighbourhoods are considered and we already choose the discs

dij of radii 0.724k on the surface of the concentric sphere of radius R. We consider the discs

dij and dim which were selected for a given triplet of different indices i, j,m and prove that

the centers of dij and dim are at a distance at least 0.828k. A Maple code will show that the

total area of the two discs is at least 0.8838124575P .

Proof of Lemma 4.7: Lemma 4.7 says that Lemma 4.6 does not hold for radius 0.724k. If

two discs have their center on aj, but they are not assigned to the same pair of cylinders,

then they do not have to be disjoint. With other words making the radius of the discs larger

we loose the property of disjointness. Let x be the distance between the centers of dij and

dim. Just like in the proof of Lemma 4.6, we estimate the sum of the distances of the center

O of dij to the three Firsching cylinders. Notice that the distances from center O to the ci

and to the cj cylinders are equal to 0.724k, while to the cm cylinder is less than 0.724k + x.

Thus we have get the inequality 3× 0.724k + x ≥ 3k, which gives x ≥ 0.828k.

Now let us show how to calculate the area of the union of two overlapping discs. The

top view of the two overlapping discs is as in Figure 4.8. We use trigonometric formulas to

find the central angles a and b.

a = arcsin

(
0.414k√

4.836

)
and b = 2 arcsin

(
0.362k√

4.836

)
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A

B

A

α

β
a

b

c

Top view of two overlapping discs of
radius 0.724k on the surface of the
sphere radius of

√
4.836

Enlarging the spherical triangle ABC.

B

C

α

D

E

S

C

Figure 4.8: Calculation of the area of the union of two overlapping discs of radius 0.724k

Then by spherical trigonometric formulas we find the value of α and β as following;

sin(α)

sin(a)
=

sin(π/2)

sin(b)
⇒ α = arcsin

(
sin(a)

sin(b)

)

and

sin(2α)

sin(2a)
=

sin β

sin b
⇒ β = arcsin

(
sin(2α) sin b

sin(2a)

)
Then the total area of the spherical triangle ABD is (2α + 2β − π)4.836, so the total

area of spherical quadrilateral ABED is 2(2α+ 2β− π)4.386. The area of a spherical sector

S is

S =
2π − 2β

2π
(0.724k)2π

So the area of the union of overlapping discs is

A = 2(2α + 2β − π)4.386 +
2π − 2β

2π
(0.724k)2π

A Maple computation in Appendix C shows that A ≥ 0.8838124574P .

Lemma 4.8. Assume k
2
-neighbourhoods are considered and we already choose the discs dij

of radii k
2
. We will prove that dij and dmn are disjoint for distinct i, j,m, n. This holds also

when k
2

is replaced with 0.6k or with 0.724k.
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Proof of Lemma 4.8: Lemma 4.8 says that if two discs are assigned to two distinct pairs of

cylinders (i.e. to four different cylinders), then they still must be disjoint. Sadi Abu-Saymeh

and Mowaffaq Hajja considered the family of tetrahedra with all edges greater than equal to

1 and proved that the sum of the distances from a given point to the vertices is smallest, if the

tetrahedron is the regular one of edge length 1 and the point is the center of the tetrahedron

[SH97]. For our Lemma we consider the family of larger tetrahedra - tetrahedra with edges

longer than twice of the Firsching radius, where we place Firsching spheres centered at the

vertices to get four disjoint spheres. The problem of minimizing the sum of distances from

a given point to the surfaces of the spheres is equivalent to the problem of Abu-Saymeh and

Hajja.

Case of k
2
-neighbourhoods: Indirect assume that the discs are not disjoint. Let O be the

center of dij. We estimate the sum of the distances of the center O of dij to the four Firsching

cylinders. Notice that the distances from center O to the ci and to the cj cylinders are equal

to k
2
, while the distance to the cm cylinder is less than 3k

2
. Thus, the sum of the distances

to the surfaces of the Firsching cylinders is ≤ 8k
2
.

Case of 0.6k-neighbourhoods: Similar argument gives that the sum of the distances to the

surfaces of the Firsching cylinders is ≤ 8 · 0.6k.

Case of 0.724k-neighbourhoods: Similar argument gives that the sum of the distances to the

surfaces of the Firsching cylinders is ≤ 8 · 0.724k.

We will get a contradiction once we check that numerically all three of these sums are

less than the sum in the alleged extremal case. We need to verify the inequality only for the

largest radius. The computation is simpler, if we scale back to arrangement to tetrahedra

with edge length 2. Thus, all we need to check is that

8 · 0.724 ·
(

2√
3
− 1

)
< 4

(
3

4

√
3− 1

3
− 1

)
.
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A simple Maple calculation shows that this inequality is

0.896025519 < 0.898979486

Lemma 4.9. Assume k
2
-neighbourhoods are considered and we already choose the discs of

radii k
2
. We will prove that dij and is disjoint from any boundary curve ak for k different

from i, j. This holds also when k
2

is replaced with 0.6k or with 0.724k

Proof of Lemma 4.9: Lemma 4.9 says that if a disc dij assigned two boundary curves ai

and aj then the disc and a third boundary curve ak does not have common point. Indirect,

assume that the disc and third boundary curve overlap. Let O be the center of dij. Notice

that the distances from the center O to the curve FPi and FPj is k/2. On the other hand

the distance from O to FPk is at most k so that the sum of distances is at most 2k so that

this contradict Theorem 4.1.

Case of 0.6k-neighbourhoods: Similar argument shows that the distances from the center

O to FPi and FPj are 0.6k. And the distance from the center to FPk is at most 1.2k so

that the sum of the distances is at most 2.4k which contradicts our assumption because of

Theorem 4.1.

Case of 0.724k: Similar argument shows that the distances from the center O to FPi and

FPj are 0.72k. And the distance from the center to FPk is at most 1.448k so that the sum

of the distances is at most 2.896k which contradicts our assumption because of Theorem 4.1.

The following table summarizes our knowledge on disjointness of discs, patches and

lower bounds of neighbourhoods.
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dij

dim

dij

dim

dij

dmn

dij
ak

Lemma 4.8 Lemma 4.9

Lemma 4.10 Lemma 4.11

Figure 4.9: Summary of disjointness of discs placed in the gaps

4.9 Estimating uncovered area of Firsching Neighbourhood

Definition 6. By considering Figure 4.11, we define Firsching core cap as the largest spher-

ical cap inside the Firsching patch centered at the center of the Firsching patch.

Lemma 4.10. Consider three Firsching cylinders which are parallel then at least 50 of k/4

radius discs can fit in the k/2 neighbourhood of Firsching patch of each cylinder. Similarly,

at least 42 of 0.3k radius discs can fit in 0.6k neighbourhood of Firsching patch, and at least

34 of 0.362k radius discs can fit in 0.724k neighbourhood of Firsching patch.

Proof of Lemma 4.10: Consider a unit ball centered at the origin. Consider a Firsching

cylinder which is tangent to the unit ball at the point (0, 0, 1) and whose axis is parallel to
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r Lemmas on disjointness of
discs placed in the gaps

Lemma on dis-
jointness of disc
and ring

Lower bound of the area of r-
neighbourhood of Firsching patch

Radius r
of disc to
be placed
in gaps

Discs are
disjoint from
other discs in
the same ring.
(Lemma 4.6)

Discs are
disjoint from
other discs of
different ring.
(Lemma 4.8)

Discs are disjoint
from a ring to
which they are
not assigned.
(Lemma 4.9)

Number of
discs of radii
r
2 in the r-
neighbourhood
Lemma 4.5

Estimates
by number
of r

2 discs.
Lemma 4.5

Calculation
by map-
ple code
Lemma 4.3

0.5k Yes Yes Yes 96 6P 11.34P
0.6k Yes Yes Yes 80 7.2P 13.65P
0.724k ** Yes Yes 66 8.6P 16.54P

Table 4.1: A summary of disjointness of discs, patches and lower bounds of neighborhoods.

y-axis. Now consider two planes which are parallel to yz-coordinate plane and tangent to

the Firsching core cap. Notice that the annulus between these planes on the surface on the

sphere of radius R is not invaded by a k
2
-neighbourhood of parallel Firsching cylinders.

x

z

r + 1

O

Projection of the Firsching cylinder on xz-coordinate plane

is a circle with the equation x2 + (z − (1 + r)2) = r2

The intersection of these two circles are the points
(±1.043462014, 1.935765230). So the distance between
the two parallel planes is d = 2.086924028

Projection of the
tangent planes.

where r = 1.0496594

Projection of the sphere of radius
√
4.836 on xz-

coordinate plane is a circle with the equation x2 + z2 =
4.836

Figure 4.10: Calculation of the distance between the planes

By considering Figure 4.11, we can place at least N =

⌊
2.086924028

ρ

⌋
discs of ρ/2 radius

at the left end of the ρ-neighbourhood of a Firsching patch which is bounded by the planes.

For ρ = k/2, we can place N =

⌊
2.086924028

k/2

⌋
= 25 discs of k/4 radius in the described

part of the k/2-neighbourhood of Firsching patch. Since there exists also right side of the

described patch, then the total number of k/4 radius of discs makes 50. By similar method

we can place N =

⌊
2.086924028

0.6k

⌋
= 21 discs of 0.3k radius in the left side of the described
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Top view of a Firsching patch

2.086924028

Core cap

Parallel planes

ρ

Left side region of the patch bounded by the planes.

Figure 4.11: Placing discs in a Firsching neighbourhood

part of 0.6k-neighbourhood of Firsching patch and by a similar argument the total number

of 0.3k radius of discs turns out to equal to 42. By the same argument we can place

N =

⌊
2.086924028

0.724k

⌋
= 17 discs of 0.362k radius in the left side of the described part of

0.724k-neighbourhood of Firsching patch and by the similar argument the total number of

0.362k radius of discs is 34.

We will use the following generalization of Lemm 4.10.

Lemma 4.11. Consider three Firsching cylinders in general position then Lemma 4.10 re-

mains true with the constants 25, 21, and 17 instead of 50, 42 and 34.
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4.10 Rules to Assign and Distribute disc Areas to Firsching Patches

Our main goal is to give a lower estimate of the total area of gaps. The following few

paragraphs, printed in the italics, will explain how this estimation is done.

We will distribute certain pieces of the gaps between the Firsching cylinders, and then

find a lower bound for the area each cylinder must get at this distribution. This lower bound

will be expressed in the form of constant times P . The total area of the gaps must be at least

seven times this lower bound. The area assigned to a particular Firsching cylinder will come

from two sources:

i) recall that we already assigned two discs of radii k
2

to each pair of overlapping Firsching

neighbourhoods. We denoted them with dij and d′ij. We will assign half of the area of the

union of the discs dij and d′ij to the i-th Firsching cylinder and the other half to j-th Firsching

cylinder. Lemmas 4.6-4.9 imply that no portion of the union of the pair of discs is assigned

twice.

ii) Once we guarantee that a certain portion (say half, or third) of the ρ-neighbourhood of

a fixed, say i-th Firsching cylinder is disjoint from all of the assigned discs and from the

ρ-neighbourhood of any other Firsching cylinders, then that area gets assigned to the ith

Firsching cylinder.

In order to estimate the total area assigned to a particular Firsching cylinder we will

classify the ways its ρ-neighbourhood is overlapped by others. First of all, according to Figure

4.12, we will say that two overlapping r-neighbourhoods can either long or short. An over

lap is said to be long, if the two assigned discs are disjoint, and it is said to be short, if the

two assigned discs overlap each other. Figures 4.14, 4.17 show the different ways how a fixed

Firsching neighbourhoods can be overlapped by other neighbourhood of Firsching cylinder.

The basic classification is according to the number of overlapping neighbourhoods ( 0, 1, 2,

or at least 3). Within a single type we distinguish sub cases depending on how many of the

overlapping neighbourhoods are a short overlaps.

48



Long overlap Short overlap

Figure 4.12: Discs assigned to a pair of patches can be disjoint or overlapping

Lemma 4.12. Assume the k
2
-neighbourhoods of the Firsching cylinders ci and cj overlap

each other and overlap is a short overlap. Then the two discs assigned to the pair ci, cj

overlap each other and these two discs cannot have common points with more then 5 of those

discs of radii k
4

which we placed in the k
2
-neighbourhood of cylinder ci while proving Lemma

4.5. The same holds if k
2

is replaced with 0.6k or with 0.724k.

Proof of Lemma 4.12: Consider the case of k
2

first. Recall that in the proof of Lemma 4.5

we used equally placed parallel planes. These planes form slabs of with width equal k
2
. By

considering Figure 4.13, it becomes obvious that the two discs of radii k
2

can interfere with

at most 5 slabs, which implies Lemma 4.12. The same argument works if k
2

is replaced with

0.6k or with 0.724k.

r radius discsr/2 radius discs

Figure 4.13: Number of interfered r/2 radius discs by discs of radii r
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ai

FPi
FPi

Type O

Figure 4.14: The boundary curve ai is not overlapped by any other boundary curve

4.11 Estimating the Area Which is Assigned to a Single Firsching Patch

The following is the estimate (lower bound) for the total area assigned to a Firsching cylinder

ci of Type O (Figure 4.14):

The entire area between the Firsching patch and the curve ai is assigned to the cylinder

ci. According to Lemma 4.5 this area is

• at least 6P if 1
2
-neighbourhoods

• at least 7.2P if 0.6-neighbourhoods,

are considered.

We get larger lower bounds if we compute the area of this neighbourhood (also called

ring) with mapple code. Namely, this area is

• at least 11.34P if 1
2
-neighbourhoods

• at least 13.65P if 0.6-neighbourhoods

are considered.
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ai

FPi

ai

FPi

No. of short overlaps = 1
No. of long overlaps = 0

No. of short overlaps = 0
No. of long overlaps = 1

Type 1A Type 1B

Figure 4.15: The boundary curve ai is overlapped by exactly one other boundary curve

The following is the estimation (lower bound) for the total area assigned to a Firsching

cylinder ci of Types 1A and 1B (Figure 4.15):

We present our estimates for the case of k
2
. Lemma 4.4 says that half of the k

2
-

neighbourhood of the Firsching patch can be assigned to cylinder ci. At first it looks like

that in order to improve the lower bound

• in case of short overlap (Type 1A) we could add 1
2
· 1 · 1

4
P ,

• in case of long overlap (Type 1B) we could add 1
2
· 2 · 1

4
P

Notice that we cannot guarantee that the discs which are assigned to the overlapping pair

of cylinders do not overlap the disjoint ”half ring” (shaded region on the figure) so we do

not add these terms. The same half ring estimate works if k
2

is replaced with 0.6k.
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FPi
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2A 2B 2C
No. of short overlaps = 0
No. of long overlaps = 2

No. of short overlaps = 1
No. of long overlaps = 1

No. of short overlaps = 2
No. of long overlaps = 0

Figure 4.16: The boundary curve ai is overlapped by exactly two other boundary curves

The following is the estimation (lower bound) for the total area assigned to a Firsching

cylinder ci of Types 2A, 2B and 2C (Figure 4.16):

We present our estimates for the case of k
2
. Here we address the three subcases separately.

Case of Type 2A: Let cj be the cylinder which gives the long overlap. Recall Lemma 4.6

which says that if two discs have their center on aj, but they are not assigned to the same

pair of cylinders, then they must be disjoint. Thus all four of the assigned discs are disjoint.

Moreover, according to Lemma 4.11 at least 25 − 2 = 23 of k/4 radius discs can fit in the

k/2-neighbourhood of the Firsching cylinder ci, so that they are disjoint of the four discs

assigned to the overlapping pair of cylinders. Please note that we subtracted 2 from the

constant proved in Lemma 4.11, allowing the possibility that two of the assigned discs of

radii 1
2
k has a common point with one of the small discs. Similarly, at least 19 of 0.3k radius

discs can fit in 0.6k Firsching patch neighbourhood. Also for k/2 and 3/5k cases, we have

four disjoint discs with radius k/2, this four discs will be shared with another patch that is

why we add 2 such discs. So that we have the following lower bounds for the total area of

gap assigned to ci;

• 23 · 1
16
P + 1

2
· 4 · 1

4
P = 1.9375P in case of k/2 -neighbourhood

• 19 · 9
100
P + 1

2
· 4 · 0.36P = 2.43P in case of 0.6k -neighbourhood
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Case of Type 2B: Let cj be the cylinder which gives the long overlap. Lemma 4.4 says that

half of the k
2
-neighbourhood of the Firsching patch is disjoint from overlapping neighbour-

hood of Firsching cylinder. Divide this half ring into three equal area parts along ai. The

two discs assigned to the pair with short overlap cannot invade all three of these parts thus

1
6

of the area of the ring can be assigned to ci. Notice that we can improve this lower bound

by adding 2 · 1
2
· 1
4
P , the reason is the half of it is coming form short overlapping cylinder

and the other half of it coming from the one of the two assigned discs.

So that we have the following lower bounds for the total area of gap assigned to ci

• 1/4P + 1/6Full Ring = 2.14P in case of k/2 -neighbourhood

in case of 0.6k, it is handled the same way of 1/2k.

• 0.36P + 1/6Full Ring = 2.635P in case of 0.6k -neighbourhood

Case of Type 2C: Lemma 4.12 says that in case of short overlap, the union of the assigned

discs cannot have common points with more than 5 of those discs of radii k
4

which we placed

in the k
2
-neighbourhood of cylinder ci while proving Lemma 4.5. Lemma 4.5 says that the

area of the ring is at least 6P . Thus we can guarantee that

• at least an area of 2 · 1
2
· 1
4
P + 6P − 10 · P

16
= 5.625P is assigned to the cylinder ci.

Similarly if we change k/2 with 0.6k then we have the following lower bounds;

• at least an area of 2 · 1
2
· 0.36P + 7.2P − 10 · 0.09P = 6.66P is assigned to the cylinder

ci for 0.6k-neighborhood.
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No. of long overlaps ≥ 3
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ai
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No. of short overlaps = 1
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No. of short overlaps = 2
No. of long overlaps ≥ 1

Type 3C
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FPi

No. of short overlaps ≥ 3

Type 3D

Figure 4.17: The boundary curve ai is overlapped by at least three boundary curves

The following area is an estimation (lower bounds) for the total areas assigned to a Firsching

cylinder ci of Types 3A, 3B, 3C and 3D (Figure 4.17): Here we address the four sub cases

separately.

Case of Type 3A: First we present our estimates for the case of k
2
. Here we have at least

three overlapping cylinders with long overlap, thus Lemmas 4.6, 4.8 and 4.9 give a lower

bound 1
2
6
4
P = 3

4
P for the total area of gaps assigned to cylinder ci.

Similarly if we change k/2 with 0.6k then we have the following lower bounds;
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• at least an area of 1
2
· 6 · 0.36P = 1.08P is assigned to the cylinder ci for 0.6k-

neighbourhood

Case of Type 3B: First we present our estimates for the case of k
2
. If there are at least three

overlapping cylinders with long overlap, then Lemmas 4.6, 4.8 and 4.9 give a lower bound

1
2
· 7 · 1

4
P for the total area of gaps assigned to cylinder ci.

So assume that exactly two cylinders make long overlaps. This case is similar to the

case of 2A. The only difference is that to the lower bound we can add 1
2
· 1 · 1

4
P , because

of the contribution of the short overlapping cylinder, but subtract 5 · 1
16
P , because these

two assigned discs can interfere with at most five small discs (see Lemma 4.5). So the lower

bound of this sub case is 23 · 1
16
P + 1

2
· 4 · 1

4
P + 1

2
· 1 · 0.25P − 5 · 1

16
P = 1.75P .

• the minimum of 0.875P and 1.75P is 0.875P so that this is the lower bound for case

of k/2 -neighborhood

If we replace 1/2k-neighbourhood with 0.6k-neighbourhood than, it has similar argument.

So that we have following lower bound 19 · 9
100
P+ 1

2
·4 ·0.36P+ 1

2
·1 ·0.36P−5 ·0.09P = 2.34P .

• the minimum of 1
2
· 7 · 0.36 · P = 1.26P and 2.34P is 1.26P so that this is the lower

bound for case of 0.6k -neighbourhood

Case of Type 3C: First we present our estimates for the case of k
2
. If there are at least two

overlapping cylinders with long overlap, then Lemmas 4.6, 4.8 and 4.9 give a lower bound

1
2
4+2
4
P for the total area of gaps assigned to cylinder ci.

So assume that exactly one cylinder which makes a long overlaps, this distributes 1
2
· 2 ·

0.25P and the two short overlaps distribute 1
2
·2 ·0.25P . Also the amount of the small discs is

25−10 so that the available area from them is 15· 1
16
P . Then the total is 4·0.25P+15/16P =

1.9375P .

• the minimum of 0.75P and 1.9375P is 0.75P so that this is the lower bound for case

of k/2 -neighborhood
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If we replace 1/2k-neighbourhood with 0.6k-neighbourhood than, it has similar argument.

So that we have following lower bound 4 · 0.36P + 15 · 0.09P = 2.79P .

• the minimum of 1
2
(4 + 2)0.36P = 1.08P and 2.79P is 1.08P so that this is the lower

bound for case of 0.6k -neighbourhood

Case of Type 3D: First we present our estimates for the case of k
2
. If there is at most one

overlapping cylinder with long overlap, then half of the ring is invaded by the other short

overlap cylinders. So that the lower bound is 2 · 1
2
· 1
4
P + 3P − 5 · 5 · 1

16
P ≈ 1.68P the total

area of gaps assigned to cylinder ci. So assume that there is no cylinder which makes a long

overlap. This case is very similar to the Case 2C. Lemma 4.12 says that in case of short

overlap, the union of the assigned discs cannot have common points with more then 5 of

those discs of radii k
4

which we placed in the k
2
-neighbourhood of cylinder ci while proving

Lemma 4.5. Lemma 4.5 says that the area of the ring is at least 6P . Thus we can guarantee

that at least an area of 6P − 6 · 1
16
P = 4.125P is assigned to the cylinder ci.

• the minimum of 1.68P and 4.125P is 1.68P so that this is the lower bound for case of

k/2 -neighborhood

If we replace 1/2k-neighbourhood with 0.6k-neighbourhood than, it has similar argument.

So that we have following lower bounds 2 · 1
2
· 0.36P + 3.6P − 5 · 5 · 0.09P = 1.71P and

7.2P − 6 · 5 · 0.09P = 4.5P .

• the minimum of 1.71P and 4.5P is 1.71P so that this is the lower bound for case of

0.3k -neighborhood
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Case 0.5k 0.6k
Type O 11.34P 13.65P
Type 1A 5.67P 6.825P
Type 1B 5.67P 6.825P
Type 2A 1.9375P 2.43P
Type 2B 2.14P 2.635P
Type 2C 5.625P 6.66P
Type 3A 0.75P 1.08P
Type 3B 0.875P 1.26P
Type 3C 0.75P 1.08P
Type 3D 1.68P 1.71P

Table 4.2: Lower bounds for 0.5k and 0.6k-neighborhoods of the Firsching patch

Table 4.2 immediately implies the following theorem;

Theorem 4.13. If seven Firsching cylinders touch a unit ball, a lower bound of the gap area

on the surface of the sphere radius
√

4.836 is 7.56P .

Although theorem 4.13 gives fairly large lower bound but it is not enough to prove

theorem 5.1. Remember we need 9.28P instead of 7.56P .
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Chapter 5

On Six Cylinders of Radii 1.049, Which are Tangnet to a Unit Ball

In this section we will prove a result which is weaker than Kuperberg’s conjecture. He had

several arrangements where 6 unit cylinders touched a unit sphere and he asked for showing

that 7 unit cylinders cannot do the same. Recently, Firsching showed an arrangement of 6

larger tangent cylinders (each of radii 1.0496594 . . . ), and we set out showing that 7 such

disjoint cylinders cannot touch a unit sphere. In a sense we wanted to settle Kuperberg’s

problem for cylinders used by Firsching.

Our main theorem will say,

Theorem 5.1. At most 6 disjoint infinitely long cylinders of radii 1.0496594 can touch a

unit ball .

5.1 Step 1 of Proof of Theorem 5.1

This step is about choosing the right radius for the discs which we place in the gap

around the Firsching patches.

In section 4, first we placed discs of radii .5k and proved a relatively week lower bound

for the total area of gaps. Then we raised the radius to .6k and got a better bound. Raising

the radius of the discs we put in the gaps, have a drawback. We had four lemmas addressing

disjointness of Firsching discs. As the radii of the Firsching discs increase one, then two or

more proofs of these lemmas will fail. The Lemmas still might be true, but their proof has

to be changed. We did not see simple ways for improvement. Thus we had to compromise.

We choose 0.724k for the radii, since that is the largest value when we can guarantee that

the Firsching discs assigned to the pairs cylinders {ci, cj} and {cm, cn}, where I, j,m, and n
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are distinct integers, do not overlap each other, and use Lemma 4.7 instead of Lemma 4.6.

Fortunately the other two lemmas adressing disjointness (Lemma 4.8 and 4.9 remained true.

5.2 Step 2 of Proof of Theorem 5.1

This step is about modifying the rules for how the area, of the Firsching disc will be

assigned the Firsching patches.

We do not change the definition of the long and short overlaps. The new assignment

will be dictated by Lemma 4.7 which says that the centers of two Firsching discs which are

assigned to, say cylinder ci but belong to two different pairs of cylinders might overlap each

other. Fortunately we have a minimum for the area of their union. This allows us to say

that each disc can give 1/4th of the area of the union (call it T, where T = 0.8838124575P
4

P )

to each of the cylinders they are assigned to. After experimenting with the numerical values

we saw that the number T will lead to the desired lower bound. Although we will have to

deal with a couple of complications (for example there will be a need to find lower bounds

for the union of three Firsching discs), it turns out that the following relatively simple rules

for assigning areas of Firsching discs will do the job.

• If a Firsching disc is part of a short overlap, then it will not contribute to any of the

cylinders.

• If a Firsching disc is part of a long overlap, then it will give an area equal to T to each

of the cylinders.

• After careful disjointness analysis we will also assign portions of the Firsching rings to

their Firsching patches.

As we progress and make the final analysis for establishing a lower bound for the total

gap area, the case analysis still includes discs assigned to short overlaps. Although according

to a) such discs will not contribute towards the total gap area. The knowledge of the their
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existence will tell us what portion of the ring area should be disregarded to avoid double

assignments.

5.3 Step 3 of Proof of Theorem 5.1

According to Step 2, some of the discs we place in the gaps might overlap each other.

We say that finitely many Firsching discs form a cluster, if each of the discs was assigned

to a long overlapping pair of cylinders, and their union form a maximal connected set. We

need to know that the union of discs of a cluster have area large enough to allow the area

distribution defined in Step 2. It turns out that the exact same proof, which was used

in Lemma 4.8 shows that there is no cluster of more than 3 discs which are assigned to

Firsching patches with long overlap. Again numerical values dictate a need of a lemma that

the area of the union of three discs forming a cluster is at least 6 times 2T . This way there

is enough area for each participating disc to give an area T to the cylinders to which they

were assigned. Step 4 and 5 contains this lemma.

5.4 Step 4 of Proof of Theorem 5.1

This Step is about the geometry of clusters of three discs. We will prove that

Lemma 5.2. Consider three discs of radii 0.724k on the surface of the sphere of radius
√

4.836 such that the centers of these discs are at the intersections of the boundary curves of

the 0.724k-neighbourhoods of Firsching patches. Also assume that these discs were assigned

to Firsching patches with long overlaps. We distinguish two cases according to Figure 5.1.

In both cases, the area of the union of the three discs is at least 2.5296 · (0.724k)2π ≈ 6T .

Proof Lemma 5.2 in Case 1. If AB > 1.882k, then by the triangular inequality we have

AC + AB > 1.882k. When the centers of the three discs are collinear, then the minimum

area of the union of discs occurs when the center of the middle disc has the same distance

to the other two centers. This is true, because of the following observation: based on Figure
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Case 1: AB > 1.882k Case 2: AB < 1.882k

ai

aj

ak ak

ai

aj

Figure 5.1: Overlap cases

5.2, indirect assume that the middle disc is not in symmetric position and its center is closer

to the center of the disc to the right. When we move the middle disc from the right to the

left, the area of the union is losses more, than what it gains.

Lost area

Gained
area

Figure 5.2: Minimum area of the union of three collinear discs

On the other hand, when distance between the left and right discs is 1.882k the area of

the union of discs is 2.5296(0.724k)2π.

Proof Lemma 5.2 in Case 2. By minimizing the area of the union of three mutually overlap-

ping spherical discs of radii 0.724k under the condition that the sides have length at least

1.882k
2

= 0.941k is not going to give large enough area. We need to use more geometry of the

cylinders to extract certain constraints for the cluster, and minimize the area of the union

of the discs under these additional constraints. It turns out that the fact that the boundary

curves of the Firsching patches belong to disjoint cylinders (each tangent to the unit ball)

will imply that the all three heights of the spherical triangle formed by the centers of the
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discs are all greater than a certain constant. So Lemmas 5.3 and 5.4 give the proof of case

2. To be precise the following is true:

C

A

B

a

a

c

cj Firsching cylinder’s axis

b

ha

Figure 5.3: Centers of three discs of radius 0.724k on the sphere of radius
√

4.836

Lemma 5.3. Let A,B,C be the centers of the discs dij, djm and dmi on the surface of a

the concentric sphere of radius R. Also assume that each two of the 0.72k-neighbourhoods of

the Firsching patches form a long overlap. Let AA′, BB′, CC ′ be the heights of the spherical

triangle ABC. Let Let a = r + 0.724k be the distance of the centers A, B from the axis of

the Firsching cylinder cj. Let b be the distance of the center C from the same axis. Then

1. b ≥ (0.724 + 0.828)k + r

2. If every point of the side BC is at most at a distance a from the axis of the cylinder

cj, then the Euclidean distance ha = AA′ > b− a

3. No point of the side BC is further than a + ε from the axis of the cylinder cj, where

ε = 0.0212347208 (Appendix F).

4. In general we have that the Euclidean distance hc = CC ′ > b − a − ε = 0.1132182995

(Appendix F)

5. If the Euclidean lengthes of the heights of the triangle ABC are listed in increasing

order, i.e. ha < hb < hc, then ha > 0.1132182995, hb > 0.828k and hc > 0.828k.
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Proof of Lemma 5.3:

Item 1 is best explained Figure 5.3, it was proved in Lemma 4.1 that the sum of distances

from the point A to the axes of three Firsching cylinders ci, cj, and ck is at least 3k+3r;

(0.724k + r) + (0.724k + r) + b ≥ 3k + 3r ⇒ b ≥ 1.552k + r = (0.828k + 0.724)k + r

Item 2 is best explained using Figure 5.3. Figure 5.4 will help at deciding if indeed every

point of the spherical segment BC has a distance to the axis of cj at most a then c ≤ a.

On Figure 5.4, the angle of view is changed. We are looking at vertices B,C from the

direction of the axis of cj. The fact that if on this front view a point is inside of the

circle (which is the cross-section of cj) then its distance to the axis is less than a. First

note that if both B,C are on the front hemisphere then the connecting great circular

arc is inside of the projection of the cylinder. If B belongs to the front hemisphere

and C to the back hemisphere then the connecting arc is not necessarily inside of the

projection. Item 3 is about this situation. By the triangular in equality, we have

ha + c ≥ b so ha ≥ b− c ≥ b− a ⇒ ha ≥ b− a

.

item 3 is best explained Figure 5.7, the locations of points B and C are could be that one

is on the front hemisphere and the other one is on the back hemisphere. So that the

distance from the point of the side BC could be at most a + ε. Where ε is calculated

in Figure 5.5.

Item 4 is best explained Figure 5.6 and Figure 5.7. From item 3 we have that no point of

BC is further than a + ε from the axis of the cylinder cj so that the height hc should

be greater than b− a− ε = 0.828k − ε, that is 0.1132182995.
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Figure 5.4: Both A and B belong to the front hemisphere on the right view

vB C

R

ε

ε
v = v/2

R ⇒ ε = v2

2R

Figure 5.5: Calculation of ε

Item 5 Since only one height could be 0.1132182995 and other two heights must be greater

or equal to 0.828k.
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C
B

C B

Figure 5.6: Right view shows the actual distances to the axis cj.

C B
C B

C

B

ε

Figure 5.7: A belongs to the front, B belongs to the back hemisphere on the right view

The following is the estimate (lower bound) for the total area assigned to a Firsching cylinder

ci of Type O (Figure 5.11):

Lemma 5.4. Consider three discs of radius 0.724k whose centers A,B and C are on the

surface of the sphere of radius
√

4.836. Let AA
′
, BB

′
and CC

′
be the heights of spherical

triangle ABC. Assume the Euclidean distances ha = AA
′ ≥ 0.828k, hb = BB

′ ≥ 0.828k and

hc = CC
′ ≥ 0.1132182995. Then the area of union of the discs centered A,B and C is the

smallest when hA = 0.828k, hB = 0.828k and hC = 0.1132182995.
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Proof Lemma 5.4 Consider three discs of radius 0.724k on the sphere of radius R =
√

4.836

in general case such that a formed Euclidean triangle ABC with the centers of the discs has

all the heights more than given heights

B. Bollobas proved that if the distances of the centers of a set of discs continuously are

decreased then the area of the union of discs decreases. [BB68].

Consider that the distances of the centers are continuously decreased, so some of the

heights also will decrease. Consider that as the result of the continuously decreasing of the

distances we have two cases as following;

Case 1: hA = 0.828k, hB = 0.828k and hC > 0.1132182995 or

Case 2: hA = 0.828k, hB = 0.1132182995 and hC > 0.828k

So for both of the cases we will show that the minimum area of the union of discs occurs

when the highs are 0.828k, 0.828k and 0.1132182995.

For Case 1 follow the calculation: Here we use spherical trigonometry so the following

values will be based on central angle and we convert the given heights in terms of central

angle as follow

h1 = 2 arcsin

(
0.0828k

2R

)
and r = 2 arcsin

(
0.724k

2R

)

From the triangle ABD we have

sin(c)

sin(π/2)
=

sin(h1)

sin(x)
⇒ sin(c) =

sin(h1)

sin(x)
so that c = arcsin

(
sin(h1)

sin(x)

)
(1)

From the triangle ABE we have

sin(a/2)

sin(x/2)
=

sin(c)

sin(π/2)
= sin(c) we know from equation (1) that sin(c) =

sin(h1)

sin(x)
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Figure 5.8: The area of the union of three discs - Case 1

so that we have

sin(a/2)

sin(x/2)
=

sin(h1)

sin(x)
=

sin(h1)

2 sin(x/2) cos(x/2)
⇒ a = 2 arcsin

(
sin(h)

2 cos(x/2)

)
(2)

By using the spherical law of cosine to triangle ABE we have

cos(c) = cos(a/2) cos(h) + sin(a/2) sin(h) cos(π/2) ⇒ h = arccos

(
cos(c)

cos(a/2)

)
(3)
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When we substitute value of c and a from equation (1) and (2) we have

h = arccos

 cos
(

arcsin
(

sin(h1)
sin(x)

))
cos
(

arcsin
(

sin(h1)
2 cos(x/2)

))
 (4)

By using the spherical law of cosine to triangle AHB we can find angle z and m as

following;

cos(r) = cos(r) cos(c) + sin(r) sin(c) cos(z) ⇒ z = arccos

(
cos(r)− cos(r) cos(c)

sin(r) sin(c)

)
(5)

cos(c) = cos2(r) + sin2(r) cos(m) ⇒ m = arccos

(
cos(c)− cos2(r)

sin2(r)

)
(6)

Similarly, by using the spherical law of cosine to triangle BKC we can find angle n and t as

following;

cos(r) = cos(r) cos(a) + sin(r) sin(a) cos(n) ⇒ n = arccos

(
cos(r)− cos(r) cos(a)

sin(r) sin(a)

)
(7)

cos(a) = cos2(r) + sin2(r) cos(t) ⇒ t = arccos

(
cos(a)− cos2(r)

sin2(r)

)
(8)

By using the spherical law of cosine to triangle ABC we can find the angle p as following;

cos(c) = cos(a) cos(c) + sin(a) sin(c) cos(p) ⇒ p = arccos

(
cos(c)− cos(a) cos(c)

sin(a) sin(c)

)
(9)

Then the area of the union of the discs is

S =((m+ 2z − π) + (m+ 2z − π) + (t+ 2n− π) + (x+ 2p− π))R2

+

(
2π − (2z + x)

2π
+

2π − (z + p+ n)

2π
+

2π − (z + p+ n)

2π

)
(r2)π (10)

For Case 2, lets follow the calculation:
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Figure 5.9: The area of the union of three discs - Case 2

h1 = 2 arcsin

(
0.0828k

2R

)
, h2 = 2 arcsin

(
0.1132182995

2R

)
and r = 2 arcsin

(
0.724k

2R

)

From the triangle ABD we have

sin(c)

sin(π/2)
=

sin(h1)

sin(x)
⇒ sin(c) =

sin(h1)

sin(x)
so that c = arcsin

(
sin(h1)

sin(x)

)
(1)

From the triangle ACF we have

sin(b)

sin(π/2)
=

sin(h2)

sin(x)
⇒ sin(b) =

sin(h2)

sin(x)
so that b = arcsin

(
sin(h2)

sin(x)

)
(2)
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From the triangle ABC we have

cos(a) = cos(b) cos(c)+sin(b) sin(c) cos(x) so that a = arccos(cos(b) cos(c)+sin(b) sin(c) cos(x)) (3)

By using the spherical law of cosine to triangle ABC we have

cos(b) = cos(a) cos(c) + sin(a) sin(c) cos(q) ⇒ q = arccos

(
cos(b)− cos(a) cos(c)

sin(a) sin(c)

)
(4)

By applying the spherical law of sine to triangle ABE we have

sin(h)

sin(q)
=

sin(c)

sin(π/2)
⇒ h = arcsin(sin(q) sin(c)) (5)

By using the spherical law of cosine to triangle AHB we can find the angles z and m

as following;

cos(r) = cos(r) cos(c) + sin(r) sin(c) cos(z) ⇒ z = arccos

(
cos(r)− cos(r) cos(c)

sin(r) sin(c)

)
(6)

cos(c) = cos2(r) + sin2(r) cos(m) ⇒ m = arccos

(
cos(c)− cos2(r)

sin2(r)

)
(7)

Similarly, by using the spherical law of cosine to triangle BKC we can find the angles n and

t as following;

cos(r) = cos(r) cos(a) + sin(r) sin(a) cos(n) ⇒ n = arccos

(
cos(r)− cos(r) cos(a)

sin(r) sin(a)

)
(8)

cos(a) = cos2(r) + sin2(r) cos(t) ⇒ t = arccos

(
cos(a)− cos2(r)

sin2(r)

)
(9)
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Similarly, by using the spherical law of cosine to triangle AGC we can find the angles g

and s as following;

cos(r) = cos(r) cos(b) + sin(r) sin(b) cos(g) ⇒ g = arccos

(
cos(r)− cos(r) cos(b)

sin(r) sin(b)

)
(10)

cos(b) = cos2(r) + sin2(r) cos(s) ⇒ t = arccos

(
cos(b)− cos2(r)

sin2(r)

)
(11)

By using the spherical law of cosine to triangle ABC we can find the angle p as following;

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(p) ⇒ p = arccos

(
cos(c)− cos(a) cos(b)

sin(a) sin(b)

)
(12)

Then, the area of the union of the discs is

S =((m+ 2z − π) + (s+ 2g − π) + (t+ 2n− π) + (x+ p+ q − π))R2

+

(
2π − (z + x+ g)

2π
+

2π − (g + p+ n)

2π
+

2π − (z + q + n)

2π

)
(r2)π (13)

In cases 1 and 2, we have the height h and the area of the union of discs S in terms of the

angle x. We want to show that when the height decreases then the area decreases as well.

We show that fact by following observation:

Let’s show the height h and the area S as functions of x, so h = f(x) and S = g(x).

Then S(h) = g(f−1(h)) so

dS(h)

dh
=
dg

dx

∣∣∣
x=f−1(h)

df−1(h)

dh

We know that
df−1(h)

dh
=

1

f ′(f−1(h))
and since f−1(h) = x then

dS

dh
= g

′
(x)

1

f ′(x)
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From appendices D and E we see that h and S decreasing with respect to x on the same

domain. That means for each x dS/dh is a ratio of two negative numbers, therefore S(h) is

an increasing function.

Lemma 5.5. The area of the union of discs which is described in Lemma 5.4 is more than

2.67(0.724k)2π.

Proof of Lemma 5.5, suppose that we have a triangle ABC whose all heights are equal to

0.1132182995. Consider Figure 5.10, and apply spherical law of cosines to triangle ABD; we

A

B C

m

2m p

2x

x D

Figure 5.10: The boundary curve ai is not overlapped by any other boundary curve

have

cos 2x = cosx cosh ⇒ 2 cos2 x− cosx cosh− 1 = 0

From here we have the values of cos x as 0.99955582956 and −0.50022044498, but the value

of cos x must be positive because x is between 0 and π/2. Then by applying spherical law

of sinus to triangle ABD we have

sinm

sinx
=

sin π/2

sin 2x
⇒ sinm =

1

2 cosx
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So that the area of the union of discs is

A = R2(6m− π) + 3

(
2π − 2m

2π

)
(0.724k)2π ≈ 2.67(0.724k)2π

Calculation of the area is given in Appendix F.

So by Lemma 5.5, proof of Lemma 5.2 is completed.

5.5 A Lower bound for the area of the 0.724k neighbourhooods of Firsching

Patches

The following estimations give us lower bounds for 0.724k-neighbourhood of a Firsching

Patch.

ai

FPi
FPi

Type O

Figure 5.11: The boundary curve ai is not overlapped by any other boundary curve

The entire area between the Firsching patch and the curve ai is assigned to the cylinder

ci According to Lemma 4.5 this area is at least 8.6P .

We get larger lower bounds if we compute the area of this neighbourhood (also called

ring) with Maple code then this area turns out to be at least 16.54P .
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ai

FPi

ai

FPi

No. of short overlaps = 1
No. of long overlaps = 0

No. of short overlaps = 0
No. of long overlaps = 1

Type 1A Type 1B

Figure 5.12: The boundary curve ai is overlapped by exactly one other boundary curve

The lower bound for the total area assigned to a Firsching cylinder ci of Types 1A and 1B

(Figure 5.12):

Lemma 4.4 says that half of the 0.724k-neighbourhood of the Firsching patch can be

assigned to cylinder ci. At first it looks like that in order to improve the lower bound in case

of the short overlap (Type 1A) the discs do not contribute any area to the patches, in case

of long overlap (Type 1B) we could add 2 · 0.8838124575P
4

according to our assignment rules.

However notice that we cannot guarantee that the discs which are assigned to the

overlapping pair of cylinders do not overlap the disjoint ”half ring” (shaded region on the

figure) so we do not add this area. Thus at least an area 8.27P is assigned to cylinder ci.
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ai ai
ai

FPi

FPi FPi

2A 2B 2C
No. of short overlaps = 0
No. of long overlaps = 2

No. of short overlaps = 1
No. of long overlaps = 1

No. of short overlaps = 2
No. of long overlaps = 0

Figure 5.13: The boundary curve ai is overlapped by exactly two other boundary curves

The following is the estimate (lower bound) for the total area assigned to a Firsching cylinder

ci of Types 2A, 2B and 2C (Figure 5.13):

Case of Type 2A: Let cj be the cylinder which gives the long overlap. According to Lemma

4.11 at least 15 of 0.362k radius discs can fit in the 0.724k neighbourhood. Each discs

contributes an area 0.8838124575P
4

. So the lower bound for the total area of gap assigned to ci

15 · (0.362)2P + 4 · 0.88381245765P

4
= 3.64566P.

Case of Type 2B: Let cj be the cylinder which gives the long overlap. Lemma 4.4 says

that half of the 0.724k-neighbourhood of the Firsching patch is disjoint from overlapping

Firsching neighbourhood. Divide this half ring into three equal area parts along ai. The two

discs assigned to the pair with short overlap cannot invade all three of these parts thus 1
6

of

the area of the ring can be assigned to ci. Notice that we can improve this lower bound by

adding 0.8838124575P
4

, this is coming from the one of the two assigned long overlap discs.

So that we have the following lower bound for the total area of gap assigned to ci

(Appendix C) so
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0.8838124575P

4
+ 1/6Full Ring ≈ 1.65P.

Case of Type 2C: Lemma 4.12 says that in case of short overlap, the union of the assigned

discs cannot have common points with more than 5 of those discs of radii 0.362k which we

placed in the 0.724k-neighbourhood of cylinder ci while proving Lemma 4.5. Lemma 4.5 says

that the area of the ring is at least 8.6P . Thus we can guarantee that

8.6P − 10 · (0.362)2P ≈ 7.28P

is assigned to the cylinder ci.
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ai

FPi

No. of short overlaps = 0
No. of long overlaps ≥ 3

Type 3A

ai

FPi

No. of short overlaps = 1
No. of long overlaps ≥ 2

Type 3B

ai

FPi

No. of short overlaps = 2
No. of long overlaps ≥ 1

Type 3C

ai

FPi

No. of short overlaps ≥ 3

Type 3D

Figure 5.14: The boundary curve ai is overlapped by at least three boundary curves

The following are the estimates (lower bounds) for the total areas assigned to a Firsching

cylinder ci of Types 3A, 3B, 3C and 3D (Figure 5.14): Here we address the four sub cases

separately.

Case of Type 3A: Each of the discs contributes 0.8838124575P
4

area to the patch so that at least

an area of

6 · 0.8838124575P

4
= 1.3257186863P

is assigned to the cylinder ci .
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Case of Type 3B: Here each long overlap discs contribute 0.8838124575P
4

and the short overlap

we do not add anything but subtract 5 · 1
16
P , these two assigned discs can interfere with

at most five small discs (see Lemma 4.5). So that we have 17 − 5 small discs, that makes

12 · (0.362)2P . So that at least an area of

4 · 0.8838124575P

4
+ 12 · (0.362)2P = 2.4563P

is assigned to the cylinder ci.

Case of Type 3C: Here we consider these case under two sub cases: Case 1: We have two long

overlaps and two short overlaps. Each of two overlaps discs contributes an area 0.8838124575P
4

and for each short overlaps, we substract an area 5 · (0.362)2P . So that the assigned area is

at least

4 · 0.8838124575P

4
+ (17− 10)(0.362)2P = 1.8011P

Case 2: We have one long overlap and two short over laps, by similar argument of Case 1,

the assigned area is at least

2 · 0.8838124575P

4
+ (17− 10)(0.362)2P = 1.3592P

Case of Type 3D: In this case we assume that there is no cylinder which makes a long

overlap. Lemma 4.12 says that in case of short overlap, the union of the assigned discs

cannot have common points with more then 5 of those discs of radii 0.362k which we placed

in the 0.724k-neighbourhood of cylinder ci while proving Lemma 4.5. Lemma 4.5 says that

the area of the ring is at least 8.6P . If we consider the worst case that there are six short

overlaps than we guarantee that at least an area of 8.6P − 30 · (0.362)2P = 4.66868P is

assigned to the cylinder ci.
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Case 0.724k
Type O 16.54P
Type 1A 8.27P
Type 1B 8.27
Type 2A 3.64P
Type 2B 1.65P
Type 2C 7.28P
Type 3A 1.3257186863P
Type 3B 2.45P
Type 3C 1.80P
Type 3D 4.66P

Table 5.1: A lower bound for the sum of the gaps in 0.724k-neighbourhood of the Firsching
patch

Proof of Theorem 5.1 : According to Lemma 4.2, it is enough to show that 9.28P is a lower

bound of gap between Firsching patches on surface of the concentric sphere radius
√

4.836.

The last column of the table constitute for a proof. Indeed seven times of the smallest value

of that column is over all lower bound of that gap area.

7 · 1.3257186863P = 9.2800308041P

Since this number is greater than the needed gap 9.28P , the proof is complete.
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Appendices
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Appendix A

Calculation of the Last Row of Theorem 3.3
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Appendix B

Proofs of Lemma 4.2 and Lemma 4.3
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Appendix C

Proof of Lemma 4.7
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Appendix D

Calculation of the Area of the Union of Three Discs- Case1
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Appendix E

Calculation of the Area of the Union of Three Discs- Case2
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Appendix F

Proofs of Lemmas 5.2 and 5.5
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