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Abstract

As we forge ahead to achieve the targeted connectivity among devices in this Internet

of Things (IoT) era, reliability and security of individual device have become a matter of

paramount importance. Cloned electronic devices are threats because they can lead to a

major security breach in a system. Besides, these counterfeit devices can be unreliable as

they might have been manufactured with subpar materials and may have defects due to

lack of full-fledged testing. Protecting a device from being cloned is therefore undeniably

important. In this thesis, we present a novel firmware obfuscation method that, in association

with hardware assistance, can effectively prevent an electronic system from being cloned.

The firmware is obfuscated by swapping a subset of instructions, and the instructions to

be swapped are specifically chosen so that an attacker cannot discover their locations. The

obfuscated firmware is dynamically reconstructed during execution by a small cache and

PUF-generated ID. The cache contains swapped instructions and their relative addresses.

An adversary cannot make a program work completely without knowing which instructions

have been swapped, as the program will execute in a wrong sequence and produce incorrect

results. That is, firmware cannot be reconstructed without the proper ID of the system

because the correct execution flow is obfuscated. The scheme does not increase the size of

the code and requires only a small cache in the processor which makes it an effective and

practical solution for resource-constrained devices.
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Chapter 1

Introduction

Preventing electronic components from being counterfeited is one of the major and long-

standing challenges in this century. Every abstraction level of a design starting from IP to a

comprehensive system is threatened by the counterfeiters. The difficulty of stopping coun-

terfeit is increasing in both magnitude and dimension due to the ever-increasing intricacies

in the semiconductor supply chain [1,2]. IP, IC, and system all are susceptible to counterfeit.

An IP can be overused, pirated or illegally modified whereas an IC can be overproduced in

a foundry, cloned, remarked, or recycled as new. Apart from revenue loss by the designers,

the counterfeit electronics also brings about security and reliability issues [3]. This is true

because a counterfeit component such as a cloned microprocessor may not be produced using

standard material, or it may not be thoroughly tested. It is also possible that a component or

a whole system may have illegal modifications that could lead to potential security breaches.

It stands to reason that the presence of illegitimate devices in a mission-critical application

could lead to catastrophic consequences [4].

As the global semiconductor supply chain becomes more and more distributed, counter-

feit detection and avoidance are becoming increasingly complicated [5]. Modern horizontal

chip manufacturing makes it very convenient for the fabless design house to outsource the

chip manufacturing process to globally distributed foundries. This puts foundries in the

untrusted zone from the designers’ point of view. It would not be uncommon for foundries

to overproduce chip than they have been contracted for [6–8] or to sell GDSII files illegally

to another design house. The primary motivation for the foundry to overproduce chips is

that it does not incur any R&D cost for the chip but still gets to profit directly of the

chip. By simply reporting a lower yield to the SoC designers, the foundry can overbuild the
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chips with little additional cost. Researchers have expended significant effort to address this

IC overproduction issue. Koushnafar proposed a PUF-based active metering technique [9].

Methods such as Secure Split Test (SST) [10] and Connecticut Secure Split Test (CSST)

impose security features in the post-manufacturing test data. Authors in [11] proposed a

method called EPIC that employs an on-chip TRNG to generate RSA key pairs. Guin et

al. applied pretty good privacy (PGP) to prevent IC from overproduction [12]. The major

disadvantage of these methods is back-and-forth communication between the foundry and

SoC design house and large design overhead. Recycled ICs sold as new is another problem

that the semiconductor industry is struggling to solve. In general, we can detect an IC

whether it is recycled or not by two methods. First, a test method can be developed to

detect if an IC is recycled or not [13,14]. For instance, creating a statistical model that can

serve as DNA marking is one way to do that [15–18]. The complications of developing a

test scheme come from many different angles including test time, cost, and low detection

accuracy [19]. Second, we can design an anti-counterfeit scheme that can detect the age

of an IC [3, 20, 21]. However, this approach of recycled IC detection cannot be used for

already manufactured ICs. Similar to overproduction and recycling, other counterfeit types

such as remarking, cloning, and tempering are also difficult to detect. As mentioned above,

distributed semiconductor system design and manufacturing opened a door for Intellectual

Property (IP) cloning, tampering, and overuse. It is possible that untrusted SoC designers

might clone an IP purchased from a third party IP vendor. Also, they can modify or add

features without the authorization of the original IP vendor [12]. In both cases, the IP

vendor will lose revenue.
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1.1 Security in resource-constrained devices

Ensuring the security of resource-constrained devices is essential because of their ubiq-

uitous presence in the internet of things (IoT), smart grid, autonomous vehicles, industrial

automation. Gartner predicted that there will be approximately 20 billion connected devices

by 2020 [22]. The concern regarding security and privacy is heavily emphasized because these

devices might be potential targets for cyber attacks due to the lack of standard security fea-

tures. Even if the security features are present, sometimes it becomes inefficient to run these

power intensive cryptographic operations due to limited available energy.

A typical application of resource-constrained devices is IoT system. Internet of things

provides a great benefit in terms of service but, like all other great technological break-

throughs, it brings about many negative aspects too. The security breach is one of those

problematic issues that an IoT system is prone to. Failure to implement standard cryp-

tographic operations in such resource-constrained devices will lead to a large number of

unsecured and counterfeit equipments connected to the Internet. In 2016, Dyn, a DNS ser-

vice provider, faced an unprecedented distributed denial of service attack through a bot-net

consisting of IoT devices such as a printer, IP camera, and residential gateway [27]. There-

fore, immediate intervention is essential for ensuring the security of these wide varieties of

devices.

It is difficult to implement security features in an IoT device due to its lack of resources.

A typical example of a resource-constrained device is a microcontroller that is equipped

with 256KB flash memory and 1KB RAM. Table 1.1 lists specification of some resource-

constrained devices. These devices are designed to operate with a very limited energy supply.

Table 1.1: Example resource-constrained edge device specifications

Device CPU Clock Frequency RAM ROM Bandwidth Protocol
Arduino Uno [23] 8 bit 16MHz 2KB 32KB 250kbs IEEE 802.15.4
Z1-Mote [24] 32 bit 32MHz 32KB 512KB 250kbs IEEE 802.15.4
T-Mote Sky [25] 16bit 8MHz 10KB 48KB 250kbs IEEE 802.15.4
Openmote [26] 32bit 32MHz 32KB 512KB 250kbs IEEE 802.15.4
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A majority of these devices do not use standard cryptographic protocols to ensure secure

operations because of these severe resource constraints [28–31]. Therefore, these devices are

exposed to firmware and software piracy, and data storage threat.

As mentioned previously, providing security to resource-constrained devices is an intri-

cate problem to solve because of the following reasons:

1. The battery-driven devices are not equipped with high-speed CPU that is an essential

requirement for mathematically intensive cryptographic operations. Specifically, pro-

viding in-filed security is rather difficult for the devices that are designed to run in low

energy supply such as energy harvested devices∗ [32].

2. Compared to phones and laptops IoT devices do not have large volatile or non-volatile

memory. Large memory is important because conventional security schemes are not

designed for low memory operation [33].

3. In-field installation of security patches is difficult for the IoT device because it may

not be equipped with secure reception and integration capability.

4. The IoT network is composed of many different types of devices. It is difficult to find

a comprehensive solution that could address a specific security problem for a massive

heterogeneous network.

The attack surface for the resource-constrained devices is quite large because security

threat exists in every abstraction level of a design. It is possible that security could be

breached from a transistor level design (e.g., Trojan, IP piracy) to system level (e.g., cloning,

tampering, etc). This thesis focuses on secure hardware development that provides strong

resistance against cloning. Both from the perspective of users and manufacturers, cloning

is an important concern. For a user, the presence of cloned devices in a system is a threat

because it can act as a backdoor to the home network and ultimately lead to malicious

∗Energy harvested devices rely on natural energy sources,e.g., solar power. These devices are inherently
designed to operate in a limited power budget.
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private information access by an adversary. For a manufacturer, cloning could lead to a

huge profit loss.

1.2 Cloning

The hardware and the firmware running on a resource-constrained system are exposed

to piracy. An untrusted entity in the supply chain can clone both the hardware and firmware,

source them to an untrusted system integrator, and create clones. Any cloned system may

have backdoors, which can be exploited for malicious purposes [34, 35]. A recent report

from Bloomberg Businessweek revealed that China used a tiny chip, which is not larger

than a grain of rice to infiltrate 30 U.S. companies, including Apple and Amazon [36]. The

compromised servers were assembled for Elemental Technologies by Super Micro Computer

Inc., which is a San Jose-based company and the biggest suppliers of server motherboards for

data centers. The report mentioned that the microchips were inserted at Chinese factories,

and then supplied to Supermicro. According to Bloomberg, Elemental’s servers could be

found in the Department of Defense (DoD) data centers, the CIA’s drone operations, and

the onboard networks of Navy warships. The report also mentioned that an adversary can

gain control of the compromised system when the server is switched on and the microchip

inserts malicious codes to alter the operating system’s core.

An adversary can perform cloning by retrieving a copy of the firmware from an em-

bedded device [37]. It is practically infeasible to develop a cloned product from the original

specification as it requires significant investment in the research and development (R&D),

what an adversary is unwilling to invest. An easier way of making clones is to illegally obtain

a pirated copy of the design. An adversary can also perform reverse engineering, which is a

process of extracting the design specification of the inner details of a product [38]. Cloning

an electronic system requires the complete reconstruction of the hardware and the firmware.

Recently, the hardware becomes increasingly vulnerable to RE due to the availability of

very advanced imaging instruments and powerful characterization tools [38]. Similarly, the

5



firmware can also be easily extracted from an authentic device. The primary challenges for

developing a system, which is resistant to cloning, is twofold. First, one needs to design

either secure hardware or firmware, so that an adversary cannot perform RE. Second, the

solution needs to be low cost, and low resource overhead (area, and power) to be widely

accepted to the various IoT and CPS applications.

We address cloning of resource-constrained devices by binding firmware with hardware.

The control follow of a firmware is obfuscated in such a way that it can only be reconstructed

by unique hardware. In addition, we present a novel low-cost firmware obfuscation method

to effectively detect cloned systems. The firmware is obfuscated using reordering of the few

selected instructions. The original flow of the instructions is scrambled using an efficient

algorithm to obfuscate the correct execution flow of the firmware. The proposed algorithm

selects one instruction and looks for a set of instructions that can be swappable so that

no errors are observed, and the program produces an incorrect result. The selection of

instructions is performed based on a set of rules. The relative addresses of these two swapped

instructions are concealed using an identifier (ID) generated from a physically unclonable

function (PUF) and a unique key programmed into a tamper-proof nonvolatile memory

(NVM). The dynamic reconstruction of the firmware is assisted by a reorder cache. During

power-up, the bootloader of a device reads all the instructions from the memory and loads the

swapped instructions in the reorder cache. During the execution of a program, the swapped

instructions are recovered from the cache. Note that our proposed solution does not prevent

an adversary from copying the firmware, rather than making it operational completely, and

provide adequate protection against cloning. We show that it is infeasible to reconstruct the

original firmware by an adversary considering the current computing resources, which makes

our scheme well-fitted in secure IoT and CPS applications.
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1.3 Motivation

Firmware can be extracted from a low-cost embedded device using a regular computer

and a low-cost microcontroller. To demonstrate the need for an efficient and robust scheme

to counter firmware extraction, we perform an attack proposed by Obermaier et al. [39] on

an Arm-based system. We focus our attack on The Arm R○ Cortex R○-M4-based STM32F4

high-performance microcontroller [40]. We present different ways, which help an attacker to

easily access the firmware stored on the device.

The microcontroller STM32F4 has two levels of on-chip memory protection to defend

against firmware extraction. When these protections are deactivated, anyone with access

to the debugging interface can access the flash memory. When the first level is activated,

it allows the debugger to be connected, but it locks the debug interface if there is a flash

memory access. This first level (Level-I) of protection can be deactivated, but the flash

memory gets erased once it is deactivated, supposedly preventing an attacker from extracting

the firmware. The second level (Level-II) is an irreversible lock, which disables the debug

interface entirely, only allowing the processor core to access flash memory. Obermaier et al.

demonstrated different attacks on STM32F0, a predecessor to STM32F4, to bypass these

protections. We use these attacks to show how an attacker can access the firmware of the

STM32F4 at any level of protection. Note that if the memory protection on the system is

deactivated, then an attacker can very easily extract the firmware. Without the protections,

flash memory accesses can occur through the debugging interface, making it very easy to

read the firmware. Any connection to the device’s JTAG interface is able to retrieve the full

contents of memory.

If Level-I protection is active, the proposed attack is to focus instead on reading the

data in SRAM. While the memory protection locks the debugging interface during a flash

read, it was reported in [39] that it does not prevent someone from reading the SRAM. This

leads to an attack on any device that loads instructions into SRAM, such as when a device

is performing a cyclic redundancy check (CRC) to check firmware integrity. As the program
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runs, it loads instructions into SRAM, allowing an attacker to read the instructions as they

are checked. We have successfully recreated this attack on the STM32F4.

Firmware

Figure 1.1: Experimental setup to extract the firmware from STM32F4

Figure 1.1 shows the experimental setup to launch this attack. A microcontroller acts

as an interface device, which is programmed with the UART module and a driver for the

Serial Wire Debug (SWD) interface. The Interface device connects to the target device using

the SWD, and controls both the target device’s power and reset connections. The interface

device reads the SRAM while the target device is performing the CRC, controlling the power

to the target device and resetting when necessary. A python script running on the laptop

communicates over UART with the interface device, and the SRAM snapshots can be sent

to the laptop to extract the firmware. Even with the Level-I firmware protection, we can

extract the firmware using this simple measurement.

The attack on Level-II protection is an invasive attack on the microcontroller. After

decapsulation, precise UV light is applied to reprogram memory protection bits [39]. Once

the memory protection bits are reprogrammed down to Level-I, the above attack can extract
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the firmware from the device. No matter what level of protection is used, an adversary

can directly access the device firmware. The current memory protections in place for these

smaller systems are not enough to prevent an attacker from cloning the firmware. Note that

disabling the debug port severely limits the troubleshooting capability of an authentic user,

and highly discouraged. Based on the above discussion, it can be concluded that cloning

a resource constraint device is rather uncomplicated. Therefore, a new method to provide

clone-resistance is essential.

1.4 Contributions

We propose a novel and low-cost method of firmware obfuscation that does not require

standard cryptographic methods to protect the firmware against piracy. We identify a few

selected instructions from the firmware and reorder them in such a way that it functions

incorrectly without letting the attacker know which instructions have been moved. If an

adversary downloads the firmware directly from the non-volatile memory (NVM) and runs

it on a different device, those selected instructions will execute out of order, causing the

program to produce incorrect results.

Only the devices that are authenticated by the manufacturer can reconstruct the firmware

at boot time. The devices use a unique device identifier (ID) that can be generated from

a PUF such as an on-chip SRAM-PUF [41]. During boot-up, the device uses its ID and a

stored program key to generate an obfuscation key, which consists of the relative addresses

of the swapped instructions. A bootloader reconstructs the original firmware by storing the

swapped instructions in a small cache (we call this a reorder cache). After boot-up, the

processor begins fetching instructions from memory like normal, except when there is a hit

in the cache. The cache hit would steer the instruction fetching away from the memory

to the cache. Therefore, the processor will execute the instruction fetched from the cache

instead of the memory. However, the processor still accesses the memory even if it executes

the instructions inside the cache. When the device needs an update, the manufacturer can
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send the obfuscated firmware update with a new obfuscation key. The device uses the new

obfuscation key to reconstruct the updated firmware, allowing it to transition to the updated

firmware with a simple reboot.

This solution serves as a low-cost alternative to the existing system-level cloning pre-

vention techniques. Our proposed solution does not require expensive run-time overhead

like encryption/decryption. Once the on-chip reorder cache is populated at boot time, there

is no extra processing required to execute the firmware. This makes it very practical for

IoT/CPS and other small devices with strict resource constraints. While the instructions

are still unencrypted and visible to the attacker, it is still very difficult to locate the moved

instructions and reorder them to the correct arrangement. The complexity of estimating the

correct sequence is O(NL), where N is the number of instructions from which L pairs of

instructions are reordered. Note that for a reasonable size firmware (≈ 1, 000 instructions),

with a small number of swaps (≈ 16), an adversary needs to try approximately 2200 trials to

make the program completely working, which is infeasible with current computing resources.

1.5 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 describes related prior works,

and Chapter 3 describes our proposed obfuscation and reconstruction methodology. The

security evaluation of the proposed approach are presented in Chapter 4. We discussed a

hardware implementation scheme of the dynamic firmware reconstruction method in Chapter

5. We discuss potential research scope in Chapter 6 and conclude this thesis.
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Chapter 2

Background and Related Work

In this chapter, we discuss a few fundamentals that are essential for understanding

the core concept of this thesis. Then, we provide a comprehensive survey of the relevant

literature.

2.1 Background

In this section, we discuss the PUF and its application as a hardware root of trust and

introduce the basic of firmware obfuscation and reconstruction. Then, we introduce system-

level mutual authentication that can be used to make an electronic system unclonable.

2.1.1 Physically Unclonable Function (PUF)

PUF is a popular hardware security primitive that can be used as a root of trust in a

system. PUF is designed exploiting variation of the physical properties, for example, delay of

paths in a circuit, power-up states of memory cells, frequency of ring oscillators, the spectral

variation of optical devices. etc. Instead of using NVM for storing keys, we can use PUF

for unique key generation and authentication [42]. For instance, when SRAM power-up,

the memory cells contain random values. Ideally, the uninitialized value of a particular cell

should be 1 or 0 with 50% probability due to the symmetric structure of an SRAM. However,

the variation (e.g., length/width, oxide thickness of a transistor) during manufacturing will

force some cells to be biased towards 1s and some other towards 0s. Therefore, it is impossible

to know the power-up state of an SRAM from circuit design. That is, even though the design

is exact same, different SRAM device will have different power-up states. This variation can

11



be used to identify each device uniquely. Since the physical variation is completely random,

the device cannot be cloned using a feasible method.

2.1.2 Firmware obfuscation

In simple term, hiding the functionality and correct execution flow of firmware is obfus-

cation. We can obfuscate a firmware by hiding its control flow. Note that, control flow is the

order of execution of statements or instructions in a program. If the normal flow of firmware

is changed in such a way that an attacker cannot devise the correct execution order of the

firmware, it is an obfuscated firmware.

2.1.3 Firmware reconstruction

An obfuscated firmware needs to be reconstructed before it can be executed by a pro-

cessor. Reconstruction method typically consists of a secret (e.g., keys) which is used to

obfuscate a firmware. The reconstruction can be entirely software-based or hardware-based.

Also, a software-based method can be augmented with hardware assistance. The reconstruc-

tion method presented in this work is based on both software and hardware. The software

runs the initial phase of reconstruction till a checkpoint during power-up and then leaves the

rest of the operation to the hardware during execution of the firmware.

2.1.4 System-level Mutual Authentication (SMA)

SMA was proposed in [37] as an effective method to counter cloning. The core concept

of this method is that a system will be authenticated if its firmware gets authenticated by

the hardware and vice versa. A firmware is only executable by a specific hardware and so

a non-authentic hardware will not be able to run this particular firmware. One the other

hand, a hardware is only functional by the firmware that was specifically designed for this

hardware. In other words, a non-authentic firmware will not be able to use the hardware.
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Ultimately, a system becomes unclonable because the correct execution of its firmware is

only possible if it runs on this particular system’s (hence legitimate) hardware.

One can develop this method by binding (i.e., obfuscating or encrypting) a firmware with

the signature of a hardware. Correct execution of the obfuscated firmware would mean that

the device signature is valid. On the other hand, a valid device signature would automatically

lead to correct execution of legitimate firmware. Therefore, hardware and firmware mutually

authenticate each other to provide a seamless operation of a system. A cloned firmware has

no use in an illegitimate device, and a cloned hardware would not have legitimate device

signature to ascertain the control flow of a firmware.

2.2 Related work

Researchers have presented numerous solutions to protect both hardware and firmware.

The protection of hardware can be ensured cost-effectively by the verification of an unclon-

able identification number (ID) created from the hardware fingerprint [43–46]. However,

a cost-effective solution needs to be developed to protect firmware from piracy, especially

from copying or cloning. A variety of solutions have been proposed over the years to protect

firmware from various attacks. Li et al. proposed the integrity verification of peripherals’

firmware of a computer system by using remote software-based attestation [47]. LeMay et al.

developed Cumulative Attestation Kernel (CAK) to verify the integrity of the firmware over

an interval of time [48]. The solution provides the cumulative attestation for memory con-

straint devices by adding a Cumulative Attestation Coprocessor (CAC) that handles the com-

putation and storage. To safeguard the firmware against non-invasive attacks, Schellekens et

al. proposed a solution to protect the persistent state of a trusted module by maintaining an

authenticated channel between the trusted module and the memory [49]. Maskiewicz et al.

proposed a signature verification scheme to prevent the installation of malicious firmware on

a mouse [50]. Morais et al. developed a solution that uses integrity verification at different

levels of the boot-up process to ensure the loading of proper firmware into the memory [51].
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Chakraborty et al. proposed a key-based control flow obfuscation based on a sequential

unlocking mechanism to protect piracy and malicious modification to the embedded soft-

ware [52]. This solution requires a code overhead up to 10%, and the instructions used for

validation need to be hidden from an adversary. Zhuang et al. developed a hardware-assisted

control flow obfuscation, which relies on additional hardware such as shuffle buffer and block

address table cache [53]. There are several implementations of Oblivious RAMs proposed

by Goldreich et al. (ORAM) [54], which obfuscate control flow and patterns of memory

accesses [55, 56]. There are also a few designs that have been proposed for FPGAs which

encrypt the firmware with PUF-generated keys [57, 58]. One other potential solution was

proposed by Guin et al., where mutual authentication is performed to prevent system-level

cloning [37]. In this approach, the hardware verifies the firmware and the firmware ensures

the authenticity of the hardware. The firmware is obfuscated by removing a select number of

instructions such that the firmware is inoperable. This method requires the entire firmware

reconstruction during the powerup stage, where the reconstructed firmware must be kept in

the volatile memory (e.g., SRAM or DRAM) during execution. It is often challenging to

store the entire firmware in the memory for resource-constrained devices, as many of these

embedded devices may not possess an on-chip SRAM or an off-chip DRAM.

Lee et al. proposed a hardware and software codependent anti-cloning scheme [59].

Here, the authors proposed to obfuscate each instruction Ii with a response from a PUF

or a block cipher function F . The memory stores the obfuscated version of instructions as

I
′
i = Ii ⊕ F (Ci). The function F has to be evaluated for a particular challenge Ci for each

of the instructions during run-time. Similarly, Zheng et al. [60] proposed to incorporate a

device signature during firmware binary generation. Inter-device signature variation makes

the firmware uniquely obfuscated for each of the devices. Digitally re-configurable PUF

has been employed to counter cloning in [61]. In this method, each of the devices would

have a different copy of the obfuscated firmware, and it is bound to specific hardware. The

primary limitation of the above methods is excessive timing overhead as each instruction has
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to go through a complex and power consuming de-obfuscation/decryption process during

execution.

While all of the above solutions can help protect devices from firmware modification and

tampering, their applicability in the low-cost, low-power and resource constraint IoT/CPS

devices is questionable as the majority of these devices do not use standard cryptographic

protocols [28–30]. Integrity and signature verification are often expensive which requires

either software support or cryptoprocessor. As these edge devices have limited memory,

implementing verification can be infeasible. Moreover, severe energy constraint prohibits

IoT edge devices to use standard cryptographic schemes [28]. Signature verification requires

additional energy budget, which may pose additional challenges. In addition, adding a

coprocessor will significantly increase the cost. Moreover, integrity and signature verification

cannot prevent an adversary from copying a firmware. It can be easy for an adversary to

tap into the data bus between external memory and the processor and read the firmware.

Even devices with on-chip memory and memory protection may not be completely secure

from firmware cloning. Recently, Obermaier et al. showed that memory protection can

be bypassed by attacks on debug interfaces or even by modifying security bits with UV-C

light [39].

In this chapter, we introduced a number of fundamental concepts and surveyed relevant

literature that are essential for understanding the work presented in this thesis. We conclude

that the existing methods to counter cloning needs improvement even though they provide

strong security mainly because of their inefficiencies when it comes to application in the

resource-constrained devices.
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Chapter 3

Obfuscation and Reconstruction Methodology

The fundamental idea of preventing an adversary from cloning a system is to obfuscate

a firmware that runs only on authentic hardware, and an adversary cannot reconstruct the

original firmware from control flow analysis. As the existing cloning prevention techniques

(e.g., encryption or integrity verification of the firmware) are prohibitively expensive both

from the perspectives of development cost and resource consumption during execution in

the resource-constrained devices, the industry is in urgent need for a low-cost solution. In

this Chapter, we propose a low-cost solution to prevent system-level cloning and discuss the

reconstruction method using hardware assistance.

3.1 Firmware obfuscation process

An efficient way of preventing system-level cloning is to add a unique hardware signature

to the firmware such that it runs correctly on authentic hardware. We propose to obfuscate

the original firmware such that an adversary cannot reconstruct it and works only when

the firmware receives an authentic hardware fingerprint. We call this fingerprint as device

identification or device ID (ID). The obfuscation is performed by swapping a few selected

instructions so that the execution would produce incorrect results. Note that the firmware

is not encrypted by using any techniques widely used for data encryption. Our solution is

simple and low-cost, which makes it suitable for low-cost IoT and CPS applications.

Figure 3.1 shows the proposed solution to prevent system-level cloning. The trusted

system integrator (SI) obfuscates the firmware and loads it into non-volatile memory (e.g.,

flash memory) of the device. The detailed obfuscation process is described in Algorithm 1.

When the firmware is obfuscated, the relative addresses of the swapped instruction pairs are
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Obfuscation Key (Ko)

Figure 3.1: Proposed flow for creating a clone-resistant electronic device.

combined into a single key called the obfuscation key (KO). If the obfuscation has L swaps,

then the obfuscation key would be:

(Inst1 ⇐⇒ Inst2), . . . , (Inst2L−1 ⇐⇒ Inst2L)

KO = [Addr1, Addr2, . . . , Addr2L−1, Addr2L] (3.1)

The size of the obfuscation key depends on the address space and the number of in-

structions used in the swapping process. Since every swap includes two instructions, two

addresses need to be stored for each swap. Therefore, the length of the obfuscation key is

|KO| = |Addri| × L× 2 (3.2)

As an example, if there are 32-bit addresses and L = 16 swaps, the key length of KO would

be 32× 16× 2 = 1024 bits.

To prevent an adversary reconstructing the original firmware by comparing multiple

copies of obfuscated firmware, it is necessary to load the same obfuscated copy to all the

devices. If an adversary finds multiple copies of the original firmware, he/she can easily

launch an attack to find the dissimilar instructions and can reconstruct the original firmware

by majority voting. To prevent this attack, we propose to use a single copy of the obfuscated
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firmware, which needs to be loaded in all devices. This results in a single obfuscation key

(KO) for every device the trusted SI produces. Programming of this KO into every device

will make an easy target for cloning this key. To prevent this, we propose to derive a unique

key (K) from KO for every device, and then program this derived key K into an electronic

device. A physically unclonable function (PUF) [43–45] can be used to derive this K, as a

PUF produces an unclonable ID (ID). Since the majority of electronic devices have SRAM-

based memory and embedded processors, a stable SRAM PUF [62] can offer a better choice

as it does not require any additional cost. To create the key, the trusted SI reads the response

(ID) of the SRAM PUF for each device, once it is being tested and becomes defect free. SI

then creates K by using the following equation:

K = ID ⊕KO (3.3)

Note that once K is programmed into a device, the outside access of PUF responses

is disabled. Because of this, each device will have a separate public ID so that the SI can

identify each device for the future firmware updates (see Section 3.2). The SI needs to keep

a database linking the public ID to the private ID (ID) generated by a PUF.

3.1.1 Algorithm for firmware obfuscation

The proposed obfuscation scheme is a novel way to provide protection to the firmware.

Most firmware protection schemes involve encrypting the firmware in some way, but encryp-

tion is expensive for embedded applications. It requires special hardware and extra time to

decrypt every single instruction from memory. By swapping instructions instead of encrypt-

ing them, the firmware is still protected without needing the special decryption hardware,

which reduces the cost to implement. The obfuscation, while keeping the majority of the

program unchanged, still keeps the firmware secure from cloning because the swapping is

done in a way that prevents an attacker from knowing which instructions were swapped.
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It is necessary that obfuscated program does not produce any errors during the program

compilation so that an adversary finds the swapped instruction simply by debugging. Note

that the firmware obfuscation is performed by the trusted system integrator, and only known

to it.

Algorithm 1: Firmware obfuscation algorithm

Input : Program (PE), number of swaps (LT )
Output : Obfuscated Program and obfuscation key

1 Read the entire program (PE);
2 Find all valid swappable instructions, PNT

← candidateSwap(PE) ;
3 Initialize index to 1, i = 1 ;
4 while i ≤ LT && PNT

6= NULL do
5 Randomly choose a instruction, Instx from PNT

;
6 Find all possible instructs to swap, PInstx ← findPossibleSwaps(PNT

, Instx);
7 if PInstx 6= NULL then
8 Randomly select one instruction, Insty ∈ PInstx ;

9 Create ith obfuscation key, kOi, where kOi = [RAddInstx RAddInsty ] ;

10 Update program to include ith swap. PE ← updateProgram(PE , RAddInstx ,
RAddInsty) ;

11 Drop these two instructions (Instx, Insty) from PNT
;

12 i = i+ 1;

13 end
14 else
15 Drop instruction Instx from PNT

;
16 i = i ;

17 end

18 end
19 Construct obfuscation key, KO, where KO = [kO1 kO2 . . . kOL

];
20 Report obfuscated program, PE , and obfuscation key, KO

Algorithm 1 shows the pseudo-code for obfuscating a firmware by swapping a small set

of instructions. The algorithm starts with reading all the instructions (E) of a program P

(Line 1). It is also necessary to provide the number of swaps (LT ), which is determined

based on the size of the device ID and the address bus width as mentioned before. Note

that all the instructions of a program cannot be swappable (see details in Section 3.1.2).

candidateSwap() function stores all swappable instructions to a temporary program variable,

PNT
(Line 2). Here, NT represents the number of instructions that can be swapped. The

index (i) for selecting a swap is initialized at Line 2, and the algorithm performs LT swaps

19



iteratively (Line 4 - Line 18). In each iteration, an instruction (Instx) is randomly selected.

Note that this instruction cannot be swapped with all NT − 1 instructions (see details in

Section 3.1.2). findPossibleSwaps() function returns all possible swaps with Instx (Line 6).

It is necessary to check whether there is a swappable instruction exists for Instx. If swappable

instructions exist, the algorithm selects one (Insty) randomly (Line 8). An obfuscation key

(kOi
) that represents the relative addresses of these two instructions (Intrx and Insty), is

created for this swap, where kOi
= [RAddInstx RAddInsty ] (Line 9). Intrx and Insty are

now swapped in the original program, PE using updateProgram() function (Line 10). The

algorithm now drops these two instructions from the temporary program variable, PNT
(Line

11) and increases the index (Line 12). If findPossibleSwaps() function does not find any

instruction to swap with Instx (Line 6), the algorithm drops Instx (Line 15) and keep the

index constant. Once the entire program is obfuscated by performing LT swaps, the complete

obfuscation key (KO) is constructed (Line 19). Finally, the algorithm reports the obfuscated

program, PE, and obfuscation key, KO (Line 20).

3.1.2 Swapping Rule Check (SRC) for instructions

To ensure the security of our proposed obfuscation method, it is necessary to prevent

an attacker from finding out the swapped instructions. The ability to hide a pair of swapped

instructions in the obfuscated firmware is dependent on the instruction types and registers

used in each instruction. In this section, we propose Swapping Rule Check (SRC) to ensure

that two instructions (e.g., Instx and Insty) are swappable. The SRC ensures that the

swapped instructions in the obfuscated firmware are not obvious to an attacker. Here, we

follow ARM assembly language to describe these rules with examples. Note that, instructions

are individually checked by the algorithm to examine whether it is swappable with any other

instructions or not. Therefore, instruction length variability will not affect the obfuscation

technique. Therefore, these rules can be extended to other assembly languages (e.g., x64 [63],
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AVR [64], or PIC [65]). However, the cache design will be different for fixed and variable

length instruction sets.

The SRC is divided into two sets of rules. The first set determines which instructions are

candidates for the swapping algorithm. These rules filter out any instructions that could not

be swapped with any other instruction. The second set of rules determines which pairs out

of the instruction candidates are indeed swappable. Even among the candidate instructions,

only certain pairs can be swapped without tipping off an adversary. These two sets of rules

are described in detail below:

• Set-I: Rules for finding candidates swaps

These rules define which instructions are candidates for swapping and are implemented

in candidateSwap() function (see Line 2 of Algorithm 1).

1. Branches : Any branch instructions are not allowed for swapping. Branches (e.g., b,

beq, blt, bhi, etc.) cannot be swapped as it will provide information to an attacker that

is dynamically monitoring the memory bus. If the processor branches to an unexpected

location because it executed a swapped branch instead of the instruction in memory,

it will let the attacker know that the instruction has been swapped.

2. Function Headers and Footers : There are instructions that serve as function headers

and footers that designate a function block. If these instructions are moved, an at-

tacker will know immediately that a change has occurred. For example, if halt/return

instructions are misplaced, it will reduce the search space for an attacker. Therefore,

the obfuscation algorithm leaves the header and footer of functions in the program.

• Set-II: Rules for finding pairs

These rules define which pair of instructions are swappable, and are implemented in

findPossibleSwaps() function (see Line 5 of Algorithm 1).
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1. Equivalent Instruction: Equivalent instructions cannot be swapped as this will not

obfuscate the firmware. Two instructions are equivalent if they perform the same

function and have the same operands.

2. Register Initialization: Instructions cannot be swapped into a location where one of

the source registers becomes uninitialized. For example, in Figure 3.2(a) instruction

3 uses register r5. Instruction 2 (i.e., ldr r5, = periodLoc) initializes register r5.

Now, swapping instruction 2 with instruction 6 will give an attacker an indication that

instruction 2 has been swapped as r3 has no initial value (see Fig. 3.2).

 1. push {r0-r3, lr}

 2. ldr r5, =periodLoc

 3. ldrb r1, r5     

 4. ldr r5, =DACvalue

 5. and r3,r2,r5 

 6. ldrb r0, [r3]

   

 

1. push {r0-r3, lr}

2. ldrb r0, [r3]

3. ldrb r1, r5     

4. ldr r5, =DACvalue

5. and r3,r2,r5   

6. ldr r5, =periodLoc

   
Obfuscated flowOriginal flow

(a) (b)

Figure 3.2: ARM assembly code snippet as an example for register initialization. Instructions
2 and 6 cannot be swapped.

3. Register Utilization: Instructions cannot be swapped into a location where its destina-

tion register is never used. For instance, let us assume that register r5 is last used in

Line 6 in Figure 3.2(b). If ldr instruction in Line 2 in Figure 3.2(a) is swapped with

ldrb in Line 6, the assignment ldr r5, = periodLoc becomes redundant and will tip off

the attacker because the destination register r5 has not been utilized in the obfuscated

firmware.

4. Operation Efficacy : Instructions cannot be swapped into a location where the operation

performed is redundant and only extends the operation of the last instruction. For

example, assume instructions sub r3 , r2, #5 and add r3 , r3, #2 have been placed in
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consecutive locations after obfuscation. Since, sub r3 , r2, #3 can replace the previous

two instructions. Therefore, one of them is clearly swapped instructions and it narrow

downs the search area for an attacker.

5. Index Distinction: If the instructions are to be mapped into a cache as described

in Section 3.2, part of the instruction address should be reserved as an index into

the cache. For example, if a 32-entry direct-mapped cache is used for reconstruction,

then 5-bits in the instruction address must be reserved as the index. No two chosen

instructions can have the same index, or else there will be a collision in the cache.

1. mov r3, #3 

2. lsl r3, r3, #1 

3. sub r3, r3, #2 

4. mov r2, r3 

5. lsl r3, r3, #2 

6. add r3, r3, r2 

7. mul r3, r3, #5

8. mov r0, r3 

1. mov r3, #3 

2. mul r3, r3, #5

3. sub r3, r3, #2 

4. mov r2, r3 

5. lsl r3, r3, #2 

6. add r3, r3, r2 

7. lsl r3, r3, #1 

8. mov r0, r3 

;r3 = 3

;r3 = 3*2 = 6

;r3 = 6 - 2 = 4

;r2 = 4

;r3 = 4*4 = 16

;r3 = 16+4 = 20

;r3 = 20*5 =100

;return 100

;r3 = 3

;r3 = 3*5 = 15

;r3 = 15-2=13

;r2 = 13

;r3 = 13*4 = 52

;r3 = 52+13 =65

;r3 = 65*2 = 130

;return 130

1. mov r3, #3

2. lsl r3, r3, #1

3. sub r3, r3, #2

4. mov r2, r3 

5. lsl r3, r3, #2

6. add r3, r3, r2

7. mul r3, r3, #5

8. mov r0, r3

Original Firmware

Obfuscated  Firmware

(a) (b)

Figure 3.3: A simple obfuscated firmware illustration. A single instruction can swap with
many other instructions (a). When a swap is made, it changes the output of the function
(b).

A simple and comprehensive example of the obfuscation scheme is illustrated in Fig-

ure 3.3. The instructions that usually are not swappable (e.g., branches, push and pops,

etc.) have been omitted for simplicity. The eight instructions in the figure can be swapped
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Figure 3.4: Proposed scheme for firmware reconstruction during program execution.

in eleven different ways according to the SRC. If we randomly choose the swappable instruc-

tion ls1 r3, r3, r2 (blue), then we can make four possible swaps that adhere to the SRC

(Figure 3.3(a)). We then randomly choose sub r3, r3, #1 (green) as the other instruction

to swap with. Figure 3.3(b) shows how the program generates a completely wrong result

when these two instructions are swapped. In actual application, a firmware can follow many

execution paths. It is difficult to quantify the probability of “incorrect execution” based on a

static copy of an obfuscated firmware. However, Rule 5 in Set-I guarantees multiple instruc-

tions swapping is spread throughout the firmware. This will maximize the probability of

wrong execution of an obfuscated firmware. After swapping the instruction, the obfuscated

firmware is simulated in ARMkeil R○ compiler to verify the rules’ efficacy. This is considered

a sufficient condition to prove that the rules are in fact capable of obfuscating the proper

execution flow of the firmware.
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3.2 Reconstruction methodology

Since the obfuscated firmware is stored in the non-volatile memory, additional hardware

support is needed on the processor to reconstruct the original firmware. In this section,

we present a structure that consists of a small direct mapped cache, which translates the

addresses of the swapped instructions. Note that one can use different implementations

based on the processor and memory organization for address translation.

Figure 3.4 shows our proposed implementation which requires the bootloader to recover

the swapped instructions to reconstruct the firmware back to its proper arrangement. Today,

almost all the devices use a bootloader to perform memory partitioning, hardware checks,

clearing interrupt flags etc. by obtaining the entire firmware from the non-volatile memory

[66]. We propose to generate the swapped instructions during this power-up time. In this

initial phase, the bootloader retrieves the system ID from the PUF and program key K

from the NVM to reconstruct the obfuscation key KO. Since KO is the relative addresses of

the swapped instructions, the bootloader maps the relative addresses to physical addresses

of the flash memory. Whenever an address matches with an entry in the KO, the instruction

is loaded into the cache location corresponding to the address with which the instruction is

swapped. Once this is complete, the reorder cache contains all the instructions that have

been swapped in the original firmware. The red dotted portion in the Figure 3.4 highlighted

this power-up sequence, and it is executed only once at the system boots up.

Since the swapped instructions and their relative addresses are in the cache, further

execution would not require any authentication. During the execution of a program, the in-

struction memory is accessed by the processor sequentially, unless there is a hit in the reorder

cache. Assume that the program counter points to an address AIo1, which is the address

for instruction Io1 for an obfuscated program. The memory should fetch the instruction Io1;

however, the address AIo1 leads to a cache hit as it is present in the cache. Consequently,

Io2 is fetched to the processor from the cache and Io1 is discarded by the multiplexer. While
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it thwarts information leakage regarding swapped instructions even if the address bus is dy-

namically monitored, this simple reconstruction method ensures that the firmware can be

executed seamlessly by the system.

A direct mapped cache has been employed in the design because its lower hardware

overhead compared to fully set associative cache [67]. The cache contains all the swapped-

instruction pairs and the tags of their corresponding relative addresses. In this manuscript,

we considered the device ID of 1024 bits and the address for instructions of 32 bits. Therefore,

we can have 32 cache lines and requires 5 address bits to represent index. We also consider

instructions are of 4 bytes wide. As a result, we reserve two address bits for byte offset.

Therefore, the size of the Tag will be 32− 5− 2 = 25 bits and takes Address[31 : 7] for tag

comparison.

Firmware updates are an essential part of secure IoT system development. Usually,

recent embedded devices are capable of handling the update process through a built-in device

firmware update (DFU) features [68, 69]. In general, the system integrator can achieve the

firmware update functionality using a bootloader if no DFU is available. The bootloader

is forced into a secure update state during power-up by a hardware interrupt. Before the

firmware update, the original manufacturer or system integrator (SI) obtains the public

device ID from the device. The SI can then use the public ID to access a database and

retrieve the private ID (PUF responses during registration). Using the private ID, the SI

generate a new key K for that device. An obfuscated firmware also created using Algorithm

1. Then, the SI can send the obfuscated firmware and the updated key K to the system. Note

that the program key K may not have to be updated if the instructions in the obfuscated

update still adhere to the SRC guidelines. After the updated obfuscated firmware and

program key are stored into flash, the device can reboot or reload its cache with the new

instructions. With the cache updated for the updated firmware, the program can begin

executing the reconstructed update.

26



With the additional hardware support and extra code to the bootloader, the firmware

can be reconstructed on power-up without extra overhead on computational performance

during normal execution. It also allows for simple and secure firmware updates, making it

suitable for devices with strict resource constraints.

In this chapter, we proposed a firmware obfuscation method to prevent cloning of an

edge device. Instruction swapping is the method of obfuscating a firmware. Essential rules

for preventing an attacker from reconstructing firmware using static analysis is also pro-

posed. Then, we discussed the reconstruction method and concluded that a simple hardware

modification can allow seamless execution of the obfuscated firmware.
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Chapter 4

Security Analysis

In this chapter, we mathematically analyze the security of the proposed obfuscation

method. We show that the reconstruction of an obfuscated firmware presented in Chapter 3

without proper key and hardware assistance is infeasible.

4.1 Security analysis

The total number of trials or arrangements of instructions (denoted as attacker’s ef-

fort, AE) the attacker must perform to ensure the complete reconstruction of the original

firmware, is calculated using this model. We calculate AE using few example cases of

firmware to show that the obfuscation is practical and secure for real programs.

To find the attacker’s effort, the firmware is modeled as a directed acyclic graph (DAG)

[37, 52]. This is done by removing loops in the firmware and showing the possible ways the

program can execute. Let the vertices I be the instructions in the firmware, and paths P

are the different ways the program can execute. Let us assume that there are m paths in

the graph that represents all different execution flows, total E number of instructions, and

NT number of instructions that are swappable according to the swapping rule check, SRC.

Let LT be the total number of swaps performed by the algorithm. Let h be the set of path

lengths in the DAG. Figure 4.1 shows the DAG model.

The total AE depends on how many paths an attacker can identify as a failing path.

These are paths that do not complete or produce an obviously incorrect output. The total

AE is the sum of the effort required to reconstruct the failing paths that were identified,

and the effort required to reconstruct the rest of the firmware.
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Figure 4.1: Directed Acyclic Graph of a Firmware. The path, P1 highlighted in red, repre-
sents a failing execution. Instruction I8 is swapped with I11.

AET = AEF + AEU (4.1)

When the attacker knows exactly which paths are failing, the effort to find the swapped

instructions should be smaller than the effort when he/she does not observe a failing program

execution. We will first examine the effort to make a program completely working when an

attacker knows the failing execution paths. For example, let us assume that the red path

in Figure 4.1 has been identified by an attacker as a failing path. Here, I11 and I8 have

been swapped, which causes a failure in P1. Since the attacker knows that at least one

instruction in that path is swapped, it reduces the number of instructions that must be

checked. Equation 4.2 shows how many trials an attacker must run to check a single swap

in M failing paths.
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AEF = h1(NT − 1) + h2(NT − 3) + . . . +

hM(NT − 2M + 1) (4.2)

where, h1, h2, . . ., hM are the length of path P1, P2, . . ., PM respectively. While there

may be more swapped instructions in the same failing path that would add complexity, the

best-case for the adversary is that every modified path only has one swapped instruction.

Even if the attacker has found a failing path and reduced the number of instructions

to check, there may be multiple instructions that cause the path to succeed. For example,

if there are multiple occurrences of the same instruction in the firmware, an attacker may

make a swap that causes the known path to succeed, but another unknown path to fail.

Since each swap is unique, the only way an attacker can be sure that the firmware is correct

is to check every possible swap, not just the swaps that fix the one known failing path.

We will now examine the case where an adversary does not know the failing paths. We

believe that it is possible to swap instructions from paths that are difficult to execute by

an adversary. In addition, there is usually a large number of execution sequences or paths

(� E) for a program. It would be difficult for an attacker to find all the failing paths in

the firmware, as he does not know which inputs cause the execution to go down each path.

If the attacker cannot find all the failing paths, an attacker must try every arrangement of

the remaining swappable instructions to reconstruct the original firmware. Let’s say that

an attacker has performed M swaps to fix the failing paths that have been discovered. This

means those swaps and instructions can be removed from the analysis.

L = LT −M (4.3)

N = NT − 2M (4.4)
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It is useful to represent the remaining swappable instructions (N) as an undirected

graph as we do not require to preserve the directivity to calculate attacker’s effort. Let G

be an undirected graph of N instructions in the firmware that can be swapped based on the

swapping rule check, SRC described in Section 3.1. Let every edge between two vertices in

the undirected graph indicate that the two instructions can be swapped with each other.

A swap occurs when an edge is chosen in the graph. After the first edge is chosen, the

two swapped instructions (e.g., I1 and I2) cannot swap with any other instruction. The

edges must be chosen so that no two edges are adjacent. This is shown Figure 4.2, where

Figure 4.2. (a) shows all the potential swaps in a firmware with five swappable instructions.

After I1 and I2 are swapped in Figure 4.2. (b), all edges adjacent to those instructions are

no longer valid swaps and cannot be counted for further arrangements. But the attacker still

has to try every other non-adjacent (disjoint) edge to find the second swap.

Figure 4.2: Graph model of two instructions being swapped in firmware. Possible swaps are
shown with dotted lines (a). The edges adjacent to the swapped instructions are no longer
valid when a swap is chosen (b).

The attacker’s effort (AEU) to find L swaps in the firmware can thus be described as

the number of ways one can choose L disjoint edges. This is also known as a “matching”

of the graph G, or more specifically the “k-edge matching” where k = L. This is a difficult

problem and has not been solved in closed form for a general graph. Still, using the k-edge

matching for special graphs, the upper bound and lower bounds for the attacker’s effort can

be calculated. Figure 4.3 shows the graphs in which these bounds would occur for N = 6.

In the worst-case scenario for an attacker, the graph G is a complete graph, and any

instruction can be swapped with any other instruction. In this case, the number of “k-edge

matches” is closely related to mathematical “telephone numbers” or “involution numbers”
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Figure 4.3: Worst-case (a) and best-case (b) graphs for the adversary when N = 6

Table 4.1: Attacker’s Effort (AE) to reconstruct a complete program.

Program # Total Instructions (E) # Swappable Instructions (N)
Attacker’s Effort (AE)

L = 4 : M = 12 L = 8 : M = 8 L = 12 : M = 4 L = 16 : M = 0
qsort large.s 181 77 1.56× 27 1.32× 224 1.24× 247 1.96× 276

dijkstra.s 342 237 1.49× 213 1.22× 240 1.48× 277 1.58× 2107

fft.s 368 191 1.62× 215 1.10× 242 1.01× 271 1.27× 2110

basicmath.s 480 209 1.47× 219 1.82× 253 1.43× 287 1.18× 2124

sha.s 577 471 1.09× 228 1.88× 272 1.68× 2118 1.51× 2172

rsa.s 1658 1297 1.48× 237 1.54× 290 1.37× 2150 1.43× 2211

aes.s 1757 1134 1.38× 235 1.81× 284 1.73× 2140 1.11× 2203

[70]. The number of arrangements can be described as the number of ways you can choose

2 instructions out of N instructions, multiplied by the number of ways you can choose 2

instructions out of the remaining N − 2 instructions, and so on until you have L swaps.

Since the order in which the instructions are swapped does not matter, this term is then

divided by L!. The number of arrangements in the worst-case is then shown to be:

AEU−W =

(
1

L!

)(
N

2

)(
N − 2

2

)
. . .

(
N − 2L + 2

2

)
=

N !

2L(L)!(N − 2L)!

=
N(N − 1) . . . (N − 2L + 1)

2L(L)!
(4.5)

Equation 4.5 gives the worst-case effort for an adversary to reconstruct an obfuscated

firmware and has a complexity of O(N2L) as N >> L.
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In the best-case situation for an adversary, every swappable instruction in the graph

can only swap with one other instruction. In this case, the attacker would be choosing L

edges from N/2 possible swaps, so the effort to find the remaining swaps would be:

AEU−B = N/2CL =

(
N/2

L

)
=

N(N − 2) . . . (N − 2L + 2)

2L(L)!
(4.6)

Equation 4.6 gives the best-case effort for an adversary to reconstruct an obfuscated

firmware and of O(NL) as N >> L.

In both of these cases, AEU � AEF for even small values of L, we can ignore the AEF

term and estimate AET to be approximately equal to AEU .

AET ≈ AEU (4.7)

For further analysis, we consider the specific implementation of the obfuscation where

LT = 16. In this case, 16*2=32 instructions need to be swapped. If we use a 32-entry

direct-mapped cache, described in Section 3.2, the Index Distinction rule will apply (see

Section 3.1.2). This means that for every swap, roughly 2/32 = 1/16 of the remaining

swappable instructions will no longer be swappable. This reduces the number of possible

arrangements in both the best-case and the worst-case. The adjusted attacker’s effort will

then be:

AET−W ≈
(32− 2M)!

322L
AEU−W (4.8)

AET−B ≈
∏L

i=1(2i− 1)

32L
AEU−B (4.9)

where M represents the number of swaps an attacker has found from failing paths, and

L represents the remaining unknown swaps.
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While the model provides best-case and worst-case scenarios on attacker’s effort, it is

necessary to calculate the definite number of trials for an adversary, which needs to be

performed to reconstruct different benchmark programs. In this analysis, we write a Python

script to analyze the firmware and count a potential number of swaps in a given program

using the SRC described in Section 3.1. The script parses through the ARM assembly file

that is generated by the GNU Arm Embedded Compiler [71] and locates the instructions

that are swappable. Then, it counts up the number of possible swaps between all the

swappable instructions, before using Algorithm 1 to generate the obfuscated firmware. It

finally estimates AEU by taking the product of the number of possible swaps after each swap

in the algorithm.

Table 4.1 shows the actual attacker’s effort, which is calculated using the Python script

describe above. The example programs listed were benchmark tests from MiBench2 [72].

Here, columns 4, 5, 6, and 7 represent AE for unknown paths L= 16, 12, 8, and 4. Note

that, L= 4, 8, 12, and 16 correspond to M= 12, 8, 4, and 0 respectively (See Eqn. 4.3). The

length of the ID depends on the number of instructions to be swapped, therefore, must be

defined depending on the expected security level during design phase of the system. Here,

all calculations assume the ID to be 1024 bits, instruction width 32 bits, LT = 16, and the

addresses must fit in a 32-entry direct-mapped cache. For example, lets consider a sha.s

ARM assembly code that composed of 577 instructions, and algorithm 1 finds total 471

swappable instructions. If the attacker can find four of the failing paths (L = 12), then it

would require 1.68× 2118 simulations to ensure reconstruction of the original firmware.

Figure 4.4 shows the comparison between the theoretical and actual attacker’s effort.

The theoretical worst-case and best-case values for each benchmark are calculated using

Equations 4.8, and 4.9, respectively. The actual value is the effort calculated by the Python

script. The vertical axes of all the graphs are on the logarithmic scale. Figure 4.4(a) shows

the AET when an attacker cannot find any failing paths (L = 16) for the firmware. We
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Figure 4.4: Comparison of actual and estimated attacker’s effort (AET ). Worst-case and
best-case AEs are estimated from Equations 4.8 and 4.9, respectively. Graphs (a)-(d) show
how the attacker’s effort changes if an attacker discovers the correct swaps for M failing
paths, with L swaps still unknown

expect the actual value should be lower and upper bounded by the best-case and worst-

case estimate of the attacker’s effort, respectively. Figures 4.4(b)-(d) show the AET when

an attacker can find 4, 8, and 12 swaps from observing different failing paths. Note that

an attacker needs to perform a smaller number of trials once he/she observes an increased

number of failing swaps. However, it will be difficult for an adversary to find all failing paths.

Based on the discussion above, we conclude that the number of trials to make a program

completely work is 1.54× 290 for a small program like rsa.s, showing the obfuscation to be

secure considering current computing resources.
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4.2 Tamper resistivity

This proposed firmware obfuscation and reconstruction method can inherently thwart

any tampering with the firmware or hardware. This scheme can help us to detect cloned sys-

tems without performing expensive and less reliable test methods (visual inspection, X-Ray,

etc.). The cloning incidents reported by Bloomberg [36] can easily be detected. These cloned

motherboards have a small chip that creates a stealthy doorway for malicious purposes by

injecting malicious codes. When an infected code runs in the motherboard, the original

address space for the program is modified. This modified program will produce incorrect re-

sults as the swapped addresses in the obfuscated program will not be reconstructed properly.

By observing a flag, any modifications on the obfuscated program will easily be detected.

For example, we illustrated the firmware obfuscation concept in Figure 3.3 and it will be

further used to show that how malicious modifications can be detected. If an adversary

injects new instructions, the relative addresses of swapped instructions will be changed in

the obfuscated program. For instance in the obfuscated program (Figure 3.3.b), insertion of

one instruction before instruction 7 (lsl r3, r3, #1) will change the address of instruction

7. When this happens, the reorder cache will swap a wrong instruction, and the obfuscated

program will not run. If an adversary inserts a malicious instruction at the first address,

instruction 6 (add r3, r3, r2) will be swapped with instruction 2 (lsl r3, r3, #1) as the

address of instruction 6 in the tampered program is 7, which is present in the reorder cache.

As a result, the obfuscated firmware will not be compensated properly, and will produce

incorrect results.

In this chapter, the firmware obfuscation scheme is analyzed for its security properties.

In addition, we discussed how this scheme can be applied to mitigate the tampering of

hardware or firmware.
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Chapter 5

Implementation

In this chapter, we demonstrate an implementation scheme for the obfuscation and

reconstruction method presented in Chapter 3. A subset of the MIPS-32 processor core,

MIPS-16, has been used to demonstrate the hardware operation of reconstruction scheme.

Note that, the same technique can be applied to any other processor architecture even though

implementation details may slightly vary. First, we show execution of a small firmware in

MIPS processor and then customize the core with a few blocks of logic circuits, such as

reorder cache, debug core, etc. Second, we illustrate the working principle of the proposed

scheme with examples and discuss a few design considerations. Finally, the implementation

overhead is explained at the end of the chapter.

5.1 Hardware development

Verilog HDL has been used to develop hardware. The RTL is simulated, synthesized, and

implemented in Vivado development environment targeting a Xilinx Artix-7 series FPGA.

The design is divided into two major components: a) custom processor b) debug core which

is illustrated in Figure 5.1 and described in the subsequent sections.

5.1.1 Processor

This is a single cycle 16-bit MIPS processor core. Since this is a RISC instruction

set architecture, the instruction length is fixed. To implement the firmware reconstruction

method, understanding the internal structure of a processor is not essential, and it would

derail us from the primary purpose of this chapter. Therefore, instruction set and list of

the registers are added in the appendix. Note that, the processor core has a debug port
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Figure 5.1: Top level implementation block diagram.

(RegAcess) that can be used to check the internal register value during the simulation

phase but it has been disabled during implementation.

5.1.2 Reorder cache

As discussed in Section 3.2, the reorder cache is placed between instruction memory

and CPU. The cache and its hit/miss decision circuitry are integrated into the same HDL

module. Note that, the cached content does not change over execution of the firmware so

the reorder cache is modeled as a combinational circuit.

5.1.3 Debug core

A debug core is designed and interfaced with the processor to demonstrate the results of

a firmware execution through a serial port. The FPGA is connected to a host PC through a

USB cable. The debug core is designed to take keyboard interrupt through that cable. Once

interrupted, the debug core reads the entire data memory and dump that to a UART module.

The debug core consists of a UART, controlling state machines, circuitry for accessing data

from the memory. The UART baud rate is setup up to be 9600, and with 1 stop bit, no parity

bit, and 8 data bits. The data access circuit reads the data memory sequentially. Since the
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data memory of the processor is a single port distributed RAM mapped into FPGA LUTs, it

cannot be used by two modules, CPU and debug core, simultaneously. Therefore, instead of

queuing reading request we freeze the execution of the CPU until the debug core completes

the debug request from the host PC. The debug core operation is as follows:

• Receive a keyboard interrupt from a host PC through URAT port.

• Halt CPU execution and dump the content of data memory to the UART port and

eventually to the host PC.

5.2 Firmware development and obfuscation

We write an example firmware to illustrate the working principle of the implementa-

tion scheme. The following assembly code generates the first eight unique integers in the

Fibonacci sequence starting from 0 to 21. Equation 5.1 is the general expression for a Fi-

bonacci sequence generation. Here, Fn stands for nth Fibonacci number in the sequence.

The processor computes a Fibonacci number in every iteration and stores the number in the

data memory sequentially.

Fn = Fn−1 + Fn−2 (5.1)

;Original firmware
000: ADDI $t0,$0,0x1
001: ADDI $t1,$0,0x1
002: ADDI $a1,$0,0x1
003: STORE $t0,(0x0)$a1
004: STORE $t1,(0x1)$a1
005: ADDI $a1,$0,0x1
006: ADD $t0,$t1,$t0
007: STORE $t0,(0x1)$a1
008: JE $a1,0x5, 0x00B
009: LOAD $t1,(0)$a1
00A: JUMP 0x005;
00B: RET

;Obfuscated-firmware
000: ADDI $t0,$0,0x1
001: ADDI $a1,$0,0x1; swapped with 005
002: ADDI $a1,$0,0x1
003: STORE $t0,(0x1)$a1; swapped with 007
004: STORE $t1,(0x1)$a1
005: ADDI $t1,$0,0x1; swapped with 001
006: ADD $t0,$t1,$t0;
007: STORE $t0,(0x0)$a1; swapped with 003
008: JE $a1,0x5, 0x00B
009: LOAD $t1,(0)$a1
00A: JUMP 0x005;
00B: RET

The machine code for both original and obfuscated version of the firmware is listed in

Table 5.1. The green and red machine code indicate swapped instructions pairs. Once loaded
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Table 5.1: Machine code for the firmware

Original Obfuscated

1010000001000001

1010000010000001

1010000011000110

1100110001000000

1100110010000001

1010110110000001

0011001010001000

1100110001000001

1101110011000010

1011110010000000

0001000000000101

0000000000000000

1010000001000001

1010110110000001

1010000011000110

1100110001000001

1100110010000001

1010000010000001

0011001010001000

1100110001000000

1101110011000010

1011110010000000

0001000000000101

0000000000000000

with original firmware, the CPU calculates each Fibonacci number which is temporarily

stored in register $t1. The sequence of the integers is calculated by the instruction at

address 0x006 of the original firmware.

The original firmware is obfuscated by swapping the instruction at address 0x001 with

the instruction at address 0x005, and the instruction at address 0x003 with the instruction

at address 0x007. Note that, the obfuscation follows the rules that are presented in Section

3.1. When the instruction memory is loaded with obfuscated firmware and directly executed

in an unmodified MIPS processor, it calculates integers sequentially instead of Fibonacci

sequence- clearly produces wrong results. This proves an important concept that the direct

execution of an obfuscated firmware would produce a wrong result.

Now, we discuss a modification in the processor (and design a custom processor) which

leads to seamless execution of the obfuscated firmware by a legitimate hardware. As discussed

in the Chapter 3, the cache contains swapped instructions and their relative addresses. For
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Table 5.2: Reorder cache contents

Address Instruction
0000001 1010000010000001
0000011 1100110001000000
0000101 1010110110000001
0000111 1100110001000001

example, an instruction at address 0x001 is swapped with an instruction at address 0x005. If

the processor request the instruction from the memory address 0x001, the cache should fetch

instruction from address 0x005 that is ADDI $t1, $0, 0x1 instead of ADDI $a1, $0, 0x1. The

swapped cache addresses and instructions are listed in Table 5.2. If the firmware is copied

and loaded into another device even with the customized architecture like the one proposed

in Section 3.2, invalid ID would still prevent the correct execution of the firmware. For

example, assume that for an illegitimate device, the cached content in row 4 and column 1

in the table 5.2 is changed from 0x007 to 0x006. If the firmware starts to be executed in this

state, the memory will be loaded with all “1”s and execution will end up being an infinite

loop. This phenomenon is reflected in Figure 5.2(a) [Line-2].

5.3 FPGA implementation

The RTL is synthesized and implemented for an ARTIX-7 (XC7A15T-1CPG236C)

FPGA. We applied partial configuration feature facilitated by Vivado IDE to demonstrate

the correct and wrong execution to avoid multiple syntheses and loading of the bitstream

in the FPGA. Partial configuration is a powerful design technique that we can leverage to

reconfigure a part of the design without interrupting the rest of the design [73].

Figure 5.2(a) shows UART access terminal. Line-1 is the correct execution of the

firmware as described in Section 5.2, and Line-2 is the wrong execution when the cache

is reconstructed incorrectly as described at the end of previous section. Figure 5.2(b) il-

lustrates the floor plan for partially configured reorder cache. Figure 5.2(c) shows a host

computer which is working as a debug interface. Figure 5.2(d) shows a CMOD a7-15T board
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(a) UART data access 

Figure 5.2: Implementation setup for the design.

which is running the design. Note that, the CPU core is clocked with a 12MHz external os-

cillator present in the evaluation board CMOD a7-15T.

The design process is discussed as follows:

1. The full design has been synthesized, placed, and routed into a Vivado design check-

point that contains all the modules and correct reconstruction information (e.g., rela-

tive addresses and swapped instructions) in the reorder cache.

2. The reorder cache is converted into a reconfigurable module. The highlighted white

part of the Figure 5.2(b) illustrates the reconfigurable part of the design.

3. A black box is created in the reconfigurable partition locking the static part of the

design in the routing level. Note that, the static part of the design contains a debug

core, processor core, and both instruction and data memories. Figure 5.3 illustrates

the top level implementation scheme. The reconfigurable modules will be loaded in the

reconfigurable partition sequentially to demonstrate the effect of correct and incorrect
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firmware deobfuscation. Black box contains no logic elements other than input/out-

put in the partial configuration boundary. Reconfigurable module correct information

contains the correct deobfuscation information whereas the reconfigurable module in-

correct information contains wrong relative address.

4. The design is updated, synthesized, and implemented with all three reconfigurable

modules sequentially.

5. Bitstream generation step produces bitstream of two reorder cache - correct and incor-

rect - and top module with a black box in the reconfigurable partition.

Demonstration steps are discussed as follows:

1. The FPGA is loaded with top module (that includes both static and configurable par-

tition) through a JTAG interface. The reconfigurable partition has a black box in it.

Then, reorder cache with correct reconstruction information is slid into the reconfig-

urable partition. A UART data reading software is running in the host computer to

display the debug information. We used RealTerm to capture debug data in the host

PC.

2. We send an interrupt from the keyboard of the host PC to the design running in the

FPGA. This interrupt freezes the execution of firmware, and the debug core takes

control and starts fetching the memory content from the data memory to the host

PC. The processor computes the correct Fibonacci sequence because the cache has

legitimate reconstruction information. This produces the Line-1 in the Figure 5.2(a)

which is correct Fibonacci sequence.

3. To demonstrate the effect of wrong data in the reorder cache, we send the reorder cache

with incorrect information and repeat step 1. The result is shown in the second line of

Figure 5.2(a), and it demonstrates the incorrect execution of an obfuscated firmware

that is incorrectly reconstructed.
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Figure 5.3: Demonstration scheme for the implementation.

5.4 System design consideration

A content addressable memory (CAM) might be used to reduce circuit complexity since

the contents of reorder cache should be the same for entire execution. The problem with

CAM is that it would stall the execution of the CPU before cache hit/miss gets resolved.

Fortunately, our hardware modification does not require individual item search in the cache

(hence its a direct mapped cache). The cache in this example demonstration is designed as

an asynchronous multiplexer to reduce the access latency.

Based on the processor architecture, it is possible that some instruction cannot be

swapped even if the rules mentioned in Chapter 3 are satisfied. For example, successive

ADD $t0, $t1, $t1 and SUB $t2, $t0, $t0 instructions will need one NOP instruction in

between to avoid data hazard in a five-stage pipeline architecture. If swapping produces

these two instructions in a successive location, it would be a hazard and easily detectable.

In general, even if the rules allow, swapping instructions that conflict with the dependencies

will tip off an attacker. Therefore, pipeline architecture would require dependencies to be

considered in association with the rules described in Chapter 3.
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5.5 Overhead analysis

The proposed method does not add any overhead in the firmware size since the overall

code size is the same for the original and obfuscated version. However, the boot-loader

needs to be modified so that it can handle power-up cache loading and firmware update

mechanism. Hardware overhead comes from the reorder cache and obfuscation key memory

requirements. Specifics of cache circuit design is out of the scope of this thesis. Nevertheless,

we can provide a close approximation of gate counts essential to the design. Maintaining

consistency with the discussion in Chapter 3 let us assume 1024-bit ID, 32 cache lines with a

16-bit width, and 25 tag bits for each line. The cache needs 32×16 bit and 32×25 bit cache

memory elements for instructions and tags respectively. One 5-to-32 address decoder, 2-to-1

multiplexers, and 25-bit comparator are required for cache hit/miss decision and instruction

fetch from cache or memory. It would take approximately 200 gates to implement these

components along with 1024 XOR gates for key (K0) generation. The key storage would

take 1K bit nonvolatile memory. Note that, we do not require any hardware overhead

to generate the ID as a system’s SRAM can be used as a PUF. For the implementation

presented in this chapter, the overhead is less 0.1% with insignificant power consummation.

The logic overhead is insignificant considering the size of modern embedded processors that

are common in IoT devices.

In this chapter, we discussed an example implementation of the scheme that could

effectively counter cloning. Also, we provided overhead analysis along with a few design

considerations.
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Chapter 6

Conclusion and Future Research

Preventing electronic systems from being cloned is of paramount importance. Cloning

can occur in individually firmware and hardware or in a system as a whole. We presented

a novel low-cost method of firmware obfuscation that protects a system from cloning. The

proposed technique obfuscates the firmware by swapping a few instructions rather encrypting

the entire firmware. We showed how swaps can be selected according to the Swapping Rule

Check (SRC) to ensure that the obfuscated instructions are not obvious to an attacker.

The relative addresses of these swapped instructions are combined with an unclonable ID to

generate a unique obfuscation key that gets stored on each device. Using this obfuscation key

and the device ID, a device can reconstruct the relative addresses of the swapped instructions

and store them in a small cache. As the program executes, we explained how this cache is used

by the processor to execute the program in the correct order. Our proposed solution does not

increase the number of instructions. Only a small reorder cache (e.g., direct mapped cache)

and a PUF is required to reconstruct the original firmware. Although deobfuscation requires

hardware modification, we still can reuse already existing hardware. For example, SRAM is

present in almost every embedded device which can be used to generate an unclonable device

signature. Swapping a small set of instructions provides exponential complexity and thus

infeasible for an adversary to reconstruct the original firmware considering current computing

resources. Note that an attacker needs to perform a smaller number of trials, once he/she

observes an increased number of failing paths for a program.

Future work will certainly include increasing security and reducing hardware overhead.

The selection of instruction for a possible swap needs to be addressed such that an adversary

cannot find a failing program execution.
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Even if the cache is incorrectly reconstructed it is still possible to bypass the security

feature if an adversary has access to any internal CPU registers. As an example, the final

result is coming from the memory but the CPU is using resisters to produce that results (see

Chapter 5). Any register access will weaken or downright break the security of obfuscation.

To prevent this, the debug interface must be locked in this case which could be an issue for

future troubleshooting or diagnosing a system malfunction. Therefore, a method needs to

be developed to overcome this issue.

The firmware update is an important feature for the post-deployment phase of a device.

Since the obfuscation process changes the relative address of swapped instruction, a secure

firmware/hardware needs to handle this firmware update process. Therefore, a scheme must

be developed that can handle the secure update process without leaking key information.

Tracing the activity of an execution unit through a power bus can be a threat to the

obfuscation method. The reorder cache itself has no vulnerability in terms of side channel

analysis. However, since the power consumption will be different for fetched and executed

instruction in case of a swapped instruction, it is not impossible to identify the swapped

instruction by comparing the power profiles of a legitimate and a cloned system. Therefore,

an effective method needs to be developed to mitigate side channel information leakage.

The reconstruction scheme is designed focusing on architectures that have a fixed in-

struction set. For variable length instruction, the method needs modification, and the secu-

rity features need to be re-evaluated.
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Appendices

• The CPU assembly code and machine code follows the usual definition of MIPS archi-

tecture∗.

• CPU core has been tested at 100MHz clock speed.

MIPS-16 Instruction set and register listings.

Table 1: Instruction set

Mnemonics subroutine Operation Format
RET 0000 Halts execution J-type
JUMP 0001 Unconditional jump J-type
CALL 0010 Calls a subroutine J-type
ADD 0011 Adds two registers R-type
SUB 0100 Twos complement subtractions between two registers R-type
AND 0101 Bitwise and between two registers R-Type
OR 0110 Bitwise or between two registers R-type
SLT 0111 Test magnitude between two registers R-Type
SLL 1000 Shifts bits left I-type
SRL 1001 Shifts bits right I-type
ADDI 1010 Adds a register to an immediate constant I-type
LOAD 1011 Moves data from the memory I-type
STORE 1100 Stores data in memory I-type
JE 1101 Jump if equal I-type
JNE 1110 Jump if not equal I-type
JR 1111 Jump to an address at a register I-type

∗https://www.mips.com/products/classic/
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Table 2: Register definition

Machine code Mnemonics Default operation
000 $0 Hard-wired zero register.
001 $t0 Temporary registers.
010 $t1 Temporary registers.
011 $s0 Saved registers
100 $v0 Procedure returned value
101 $a0 Loads Procedure Arguments
110 $a1 Loads Procedure Arguments
111 $ra Return address holder

Table 3: R-Type instruction

Opcode rs rt rd Function/control
4 bits 3 bits 3 bits 3 bits 3 bits

Table 4: I-Type instruction

Opcode rs rt Immediate
4 bits 3 bits 3 bits 6 bits

Table 5: J-Type instruction

Opcode Jump address
4 bits 12 bits
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