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Abstract

This paper examines a field of psychological and educational measurement testing theory

called Item Response Theory. The paper delves into the basics of the theory, its theoretical

and statistical background, and discusses the usefulness. The primary method of parameter

estimation, Birnbaum’s Paradigm using Newton-Raphson method and maximum likelihood es-

timation, is discussed with a brief overview of the mathematics involved. The bulk of the paper

focuses on a data set of Medical School Admission Test in Biology (MSATB) data adminis-

tered to hopeful medical students in the Czech Republic. This data of 1,407 individuals and a

subset of 20 questions selected from the overall test make up the set analyzed here. The main

tools of Item Response Theory are used upon the data to test different model fits and produce

graphics and charts to visualize the results. After the best-fitting model is selected for the data

set, it is treated as a item bank to create a five-question subtest designed for pass/fail results; the

analysis on this subtest shows it working fairly well in discriminating between ability levels.

Finally, statistical machine learning methods are utilized to classify students based on ability

level and to identify possible clusterings of students present in the data. Success was found

both in classifying students based on performance and in identifying clusters in the data.
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Chapter 1

Introduction

In the fields of educational and psychological testing and measurement, we often encounter

situations where there is an underlying variable of interest; in educational settings, this is typ-

ically thought of as “achievement” or “mastery level” or “intelligence”, and this notion has

become central to these areas. We sometimes refer to a person as intelligent or having a high

aptitude, and when we do so, others instinctively can understand what is meant by such. Mea-

suring this idea of scholastic achievement, or more generally, intelligence, has proven to be an

ongoing desire in academic areas. Yet, academic settings often find themselves plagued with

measuring this academic ability objectively and in a way that is statistically sound. The field of

item response theory (IRT) has arisen to fill this void by developing a framework that can place

modern academic testing in a proper statistics setting to arrive at the most accurate estimate of

this ability trait as possible.

Now, if one is going to measure how much of this trait “ability” a person has, we have

to create a metric to place the measurement upon. Since this ability trait is, by definition,

an abstract construct, assigning it an objective metric with a true origin and giving meaning

to the numbers on the scale is a difficult task. In Chapter 4, we will address this problem

more rigorously with the idea of test calibration. For now, though, we must arbitrarily define

an ability scale measuring some trait θ. This scale will have a midpoint of 0 and a unit of

measurement of 1. Notice this is not a ratio scale of measurement, since our 0 is arbitrarily

defined - a “2” on this ability scale will not necessarily mean twice as much ability as a “1” on

the scale. It is said to be on an interval scale, then, ranging from−∞ to∞, but generally ability

scores will range from -4 to 4. The reason for this is that the curve (defined later) that places

ability on this scale will be a cumulative distribution function (cdf) that is typically clustered

near 0, as stated by Baker & Kim [1].
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The idea to measure this ability and place it on the scale we have created is to administer a

test made of items. Each item on this test measures (in theory) this ability that we are interested

in and provides information that we can statistically quantify to make an assertion about the

true ability level of the person. In practice, these tests are almost all multiple choice due

to constraints on scoring (free response items are very difficult to objectively, reliably, and

efficiently score), and each of these items is marked either correct or incorrect. This means that

each item is dichotomously scored. (There is IRT theory developed for polytomously scored

items, but that will not be explored here.)

Item Response Theory differs from traditional “Classical Test Theory” (CTT) in that CTT

focuses almost solely on test-wide results and statistics, whereas IRT focuses mostly on the

item-level [1]. There are advantages to IRT that CTT is not afforded, mainly that the test,

items, and results of CTT are all dependent on each other, meaning that test results cannot

be interpreted outside of the individual test administration and the specific students that took

it. Under IRT, test items and test-taker ability levels are independent of the individual test

administration and of each other [1]. This has given IRT a huge advantage in the last few

decades, and it is now the most widely used test analysis method for large-scale testing.

In the modern age, many of the standardized tests now utilize IRT methodology in assess-

ing and scoring their products, such as the GRE and the GMAT. This paper will dive into the

inner workings of IRT and explore the statistical underpinnings of the theory. In addition, this

paper will use statistical learning theory to compare results to traditional IRT output as possible

route of improving upon existing schemes. First, this paper will discuss the ideas that form

the foundation of the theory; then, the process of item parameter estimation, ability parame-

ter estimation, and Joint Maximum Likelihood Estimation will be visited. We will see how

information theory plays a role in IRT and can be used to develop the best tests, and we will

also analyze a data set of test scores using Item Response Theory procedures and compare the

results with statistical learning theory techniques. The central question that will be posed here

is if modern statistical (and machine) learning techniques can produce equally good or perhaps

even better statistical results than traditional Item Response Theory.
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Chapter 2

Models of Item Response Theory

As noted in Chapter 1, we will note the ability level or score of an examinee by θ. It stands

to reason, then, that at each ability level θ, there is a probability associated with it that can be

interpreted as the probability of responding correctly to the particular item that is being tested.

We will denote this by P (θ). If this function is plotted over the entire range of values (−∞ to

∞) that θ can take, the result is a roughly S-shaped curve. [1] See Figure 2.1.

Near an ability level of negative infinity, the probability of a correct response approaches 0.

Alternatively, as ability level approaches positive infinity, the probability of a correct response

approaches 1. This curve establishes the relationship between the probability of a correct re-

sponse and the ability scale being used. This curve is called the item characteristic curve (ICC),

and every item on the test has its own curve. It is this ICC that much of Item Response The-

ory builds upon, and the theory of the ICC relates to all other areas of IRT. There are two (or

sometimes three) parameters that we are interested in when specifying the ICC. Together, these

parameters will totally specify the curve. The first is a location parameter, β, that describes

where along the ability scale the median of the curve is located; an examinee has a 0.5 prob-

ability of answering correctly (and a 0.5 probability of answering incorrectly) if their ability

level coincides with β on that particular item. Since β determines the median of the ICC, it is

often referred to as the “item difficulty” parameter [1], as a measure of the item’s hardness.

The second parameter of import when discussing the ICC is the scale parameter, alpha.

It describes the slope of the ICC at β. It is a measure of how quickly the curve changes in

steepness as it moves from left to right. The parameter α is often called the “item discrimina-

tion” parameter because of its role in differentiating or discriminating between different ability

levels. A higher α means a small change in θ near β results in a great change in probability;

3



Figure 2.1: A basic Item Characteristic Curve with α = 1 and β = 0

likewise, a lower alpha level means the curve is “flatter” near β and differentiates less between

different θ levels. A high α level is, then, useful in situations where a cutoff score is important,

as it will highly differentiate examinees on one side or the other. While both α and β theoret-

ically range from −∞ to∞, they usually occur over only a small range. Typical values of β

range from -1 to 1, while typical values of α range from 0.5 to 2 [1].

In Item Response Theory, the ICC is defined formally as Pi(θ) = P (βi, αi, θ) for item i on

a test. A wide variety of functions (infinite, in fact) could be used to model the ICC. However,

the S shape and upper asymptote of 1 and lower asymptote of 0 lends to the idea of using a

cumulative distribution function. In practice, two are used - the normal CDF and the logistic

CDF. The normal CDF is used because of its popularity in statistical theory, but the prevailing

model used in IRT literature is the logistic CDF. Here, the focus will be on the logistic CDF for

the reason that the two can be made virtually equivalent with a simple transformation -It can

be shown using gradient descent on the maximum deviations between the distributions that if a

scaling constant of 1.702 is multiplied by α for the logistic CDF, the normal and logistic CDF

differ by less than 0.01 over −∞ to∞.
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The major models used in Item Response Theory for dichotomous items will be discussed

here. The most common model used is the two-parameter logistic (2PL) function [2]:

eLi

1 + eLi
=

1

1 + e−Li
, (2.0.1)

where Li = αi(θ−βi) is the logit. Alternatively, if equating to the normal CDF, Li = αiD(θ−

βi), where D = 1.702. Both forms are used in various settings. Notice the 2PL involves a

different item discrimination and difficulty for each item i. This allows great flexibility when

finding item parameters and allows most items to fit the model well.

The other commonly-used model is the Rasch model [2], using equation 2.0.1, where Li =

θ − βi. Notice, the item discrimination parameter α is set to 1. This model is used frequently

due to its ease of computation. It assumes that all items have a fixed item discrimination of 1,

however, which may or may not be a realistic assumption.

Another model used sometimes in place of the Rasch model is the one-parameter logistic

(1PL) [2], using equation 2.0.1, where Li = α(θ−βi). Here, the α is fixed as well, but at a value

other than 1. This is a useful model when all items are roughly the same level of discrimination.

Finally, we have the three-parameter logistic function (3PL) that introduces a third param-

eter [2]:

ci + (1− ci)
1

1 + e−Li
, (2.0.2)

where Li = αi(θ − βi). This new parameter c is often called the pseudo-guessing parameter:

It is the probability that an examinee get an item correct merely by guessing, and it represents

a lower asymptote other than 0 of the ICC. This model is sometimes used, but it has several

problems with use, the most grievous of which is that it is not technically a logistic CDF

anymore, so it loses many of the mathematical properties. This also presents problems with

accurate item parameter estimation, which will be discussed in Chapter 3.
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Chapter 3

Classical Parameter Estimation Techniques

The methods in this chapter are taken from Baker and Kim (2004) [2] and were first established

by Birnbaum in the 1960s [4]. The primary goal of placing examinees on an ability scale

lends itself to one primary objective: estimating the item and ability parameters for the item

characteristic curves of all items on the test and all ability parameters of all examinees who

took the test. For the present, it is convenient just to focus on one item’s ICC and a group of

examinees of one particular, known, ability level.

Let the cumulative logistic distribution function be given by

Pi,j = P (α, β, θj) =
1

1 + e−α+βθj
(3.0.1)

for an item i and a group of examinees j with ability level θj , where Zj = α + βθj is the

logit. (We will omit the index i on the following derivations simply because the calculations

are for a fixed item i.) We will be proceeding by maximum likelihood estimation, so some

derivatives we will need are:

∂Pj
∂α

= PjQj, (3.0.2)

where Qj = 1− Pj , and

∂Pj
∂β

= PjQjθj (3.0.3)

Also,
∂Qj

∂α
= −PjQj (3.0.4)
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and
∂Qj

∂β
= −PjQjθj (3.0.5)

. Suppose the k groups of fj subjects with known ability scores θj are drawn at random

from a population of persons and j = 1, . . . , k. The subscript i will be left out here just for

clarity, but it is understood that each subject has responded to a single item i. From the fj

people having ability score θj , rj gave the correct response and therefore fj − rj gave the

wrong response. the observed proportion of correct responses is rj
fj

and fj−rj
fj

is the proportion

of incorrect responses. Now, let R = (r1, r2, ...rk) be the vector of observed number of correct

responses, where k is the number of groups of examinees grouped by ability. It is assumed

under IRT that the observed rj at each ability level θj are distributed binomally with parameters

fj and Pj (shown above), which is the true probability of a correct response .We also assume,

as a chief assumption of IRT that items and groups are independent of one another. Then, for

the vector of observed correct responses, R, we have the joint probability ofR as the likelihood

function

P (R) = Πk
j=1

fj!

rj!(fj − rj)!
P
rj
j Q

fj−rj
j

Then, the log-likelihood is given by:

logP (R) = constant+
k∑
j=1

rj logPj +
k∑
j=1

(fj − rj) logQj

The first derivatives of L = logP (R) are:

∂L

∂α
= L1 =

k∑
j=1

rj
Pj
PjQj +

k∑
j=1

fj − rj
Qj

(−PjQj)

=
k∑
j=1

[rjQj − (fj − rj)Pj] =
k∑
j=1

[rjQj − fjPj + rjPj]

=
k∑
j=1

(rj − fjPj) =
k∑
j=1

fj(pj − Pj),

where pj =
rj
fj

. And
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∂L

∂β
= L2 =

k∑
j=1

rj
Pj
PjQjθj +

k∑
j=1

fj − rj
Qj

(−PjQjθj)

=
k∑
j=1

(rj − fjPj)θj

=
k∑
j=1

fj(pj − Pj)θj

When we set both derivatives equal to 0, the resulting simultaneous equations can, in

theory, be solved for the maximum likelihood estimates for α and β:

L1 =
k∑
j=1

fj(pj − Pj) = 0

and

L2 =
k∑
j=1

fj(pj − Pj)θj = 0

Solving the equations is particularly difficult, and so a numerical procedure is classically

done to solve them, an iterative procedure based on a Taylor series called the Newton-Raphson

method. For this method, an initial estimate of α and β are needed, let’s say α̂1 and β̂1. Then,

the Newton-Raphson equation is:

 ˆαt+1

ˆβt+1

 =

α̂t
β̂t

−
L11 L12

L21 L22


−1

t

L1

L2


t

,

where the inverted matrix is the Hessian, the matrix of second partial derivatives. The equation

above is iterated until successive iterations result in a change of parameter estimates less than

a specified threshold. When that occurs, the current estimates are considered the parameter

estimates for α and β.

The above item estimation procedure assumes that ability is known. To estimate ability,

we assume that item parameters are known. In a similar process to the above, we proceed.

A given examinee responds to n items on a test and the responses are dichotomously scored

uij , where i designates the ith item and j designates examinee j, yielding a vector of item

8



responses of length n denoted by Uij = (u1j, u2j, ..., unj|θj). In IRT, it is assumed that the uij

are statistically independent, so the joint probability of the item responses for examinee j is

given by the likelihood function:

P (Uj|θj) = Πn
i=1P

uij
i (θj)Q

1−uij
i (θj)

We will somewhat ignore the θj notation and assume that P and Q are functions are θj . Taking

the natural log of the likelihood function, we get:

L = logP (Uj|θj) =
n∑
i=1

[uij logPij + (1− uij) logQij]

This time, we only need to take one partial derivative, with respect to θj:

∂L

∂θj
=

n∑
i=1

uij
1

Pij

∂Pij
∂θj

+
n∑
i=1

(1− uij)
1

Qij

∂Qij

∂θj

Again, note that Pij and Qij are the above-defined logistic cumulative distribution function

probabilities. The Newton-Raphson equation here is:

[
θ̂j

]
t+1

=

[
θ̂j

]
t

−
[
∂2L
∂θ2j

]−1

t

[
∂L
∂θj

]
t

As with the item estimation procedure, the equation is iterated until successive iterations result

in a change of parameter estimates less than a specified threshold, and the resulting ability

estimate is finalized.

It may appear obvious the problem - all three parameters are not something we can ever

fully know, and assuming that any of them are known is a flaw. Therefore, a modification of

the above procedure must be obtained. This is addressed with Birnbaum’s Joint Maximum

Likelihood Estimation (JMLE) paradigm. In this technique, all n items on a test and all N

examinee ability levels are estimated jointly (not simultaneously). For each examinee, their

responses can be encoded as a vector uj . Since each examinee gets a vector, we can assemble

all examinees together into a n×N matrix of item responses whose probability is given by the

9



likelihood function

P (U |θ) = ΠN
j=1Π

n
i=1P

uij
i Q1−uij ,

where P and Q are functions of the item characteristic curve dependent on θ. Then, the log

likelihood is

L = logP (U |θ) =
N∑
j=1

n∑
i=1

[uij logPij + (1− uij logQij)]

Now, we must take derivatives with respect to each α and β and θ, resulting in 2n + N

equations to get the maximum likelihood estimates. (2n for both of the item estimates for the

n items and N for N examinee ability levels.) The Newton-Raphson method of solving these

equations is presented as the following matrix equation:

At+1 = At −B−1
t Ft

whereA is the column vector of item and ability parameter estimates (a 2n+N vector),B is the

matrix of second partial derivatives (a 2n+N×2n+N matrix) and F is the column vector of the

derivatives of the likelihood function (a 2n+N vector). To begin the iteration, initial estimates

of the item parameters are made, assuming the examinee’s abilities are known. Often, the raw

scores of each examinee are used. In the second stage, the obtained estimates for item param-

eters are used to estimate the examinee’s ability scores. In each stage, the Newton-Raphson

method is iterated until a convergence criterion is reached. This back-and-forth estimation pro-

cedure continues until subsequent iterations of each estimate produces results that fall within

a convergence criterion. These item parameter estimates and ability parameter estimates are

taken as the official parameter estimates.
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Chapter 4

Test Creation and Item Selection

One of the most important topics that IRT is used for in applications is its role in test creation

and item selection. To begin the discussion, we must introduce the idea of information, also

called Fisher’s Information. For dichotomously scored items under IRT, the Fisher’s Informa-

tion function I for data assumed to be binomially distributed can be written as [1]

I =
n2

σ2
, (4.0.1)

where n is the number of examinees (trials in a binomial), and σ2 is the variance. Therefore, as

noted by Desjardins [6] , the information function is inversely related to the variance. A high

variance at a particular level of θ will mean a low amount of information, and a low variance

will mean a high amount of information. Then, Information is a measure (that ranges from 0

to∞ ) of with what accuracy one can estimate the parameter at that point. Information in this

context becomes very useful because it allows one to gather information about an item and even

an entire test in advance. This means a test can be made to have certain properties in advance.

When information is plotted against θ, the result is the Item Information Curve (IIC),

which is typically a peaked curve resembling a symmetric distribution function. The maximum

of the IIC gives the location of θ where that particular item gives the most information about

ˆtheta, and thus, gives the location where that item functions best along the ability scale. As we

move away from the maximum, the amount of information decreases and approaches 0 as the

graph nears the left and right extremes of the ability scale.
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From Desjardins [6], if we sum the information of each item on a test, we can achieve an

overall measure of information that the entire test provides:

I(θ) =
J∑
j=1

Ij(θ),

where I(θ) is the amount of total test information at an ability level θ, Ij(θ) is the amount of

information for item j at ability level θ, and J is the number of items on the test. It is easy

to see, since I is non-negative, as the number of items on a test increase, the test information

function increases. Therefore, the more items on the test, the more precise one can measure

the unknown ability parameters, and the more test information. If we plot the test information

function against θ, we arrive at the Test Information Curve (TIC). This TIC is of primary interest

because it gives important characteristics of the test and how it will function and perform at

various ability levels.

To begin creating a test using IRT, first we must develop a pool of calibrated test questions.

To do this, questions are created and administered to a group of examinees; this is considered

“piloting” the test. In practice, the way this is often done is delivering a small set of pilot items

mixed into an actual test that examinees take, and examinees do not know which items are

“real” and which are pilot items. The pilot items are not scored as part of the test administration,

but instead used for future test development. These pilot items are scored, calibrated to the

ability metric, and item parameter estimates are made for each item. Over several such “pilot”

administrations, a pool of calibrated items is developed.

Next, the IIC are plotted for each item. The purpose of the test comes into play here. [1] If

this is meant to be a benchmark test, such as a pass-fail test or a test centered around a certain

threshold, then the test should be constructed by picking items for the test that have IIC peaked

as much as possible and centered over the threshold for θ. This will maximize the parameter

estimate information on each item, and give the best delineation between passing/meeting the

threshold or failing/not meeting the threshold. If this is meant to be a general purpose knowl-

edge test to place examinees somewhere on an ability scale (but where is not of particular

interest), then items should be selected which have IIC maximums at varied and mixed levels
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of θ. This will give a test whose information can, as accurately as possible, place examinees

anywhere along the ability metric. In the threshold-based test, the TIF will ideally be a sharp

peak at the threshold with a high amount of information, and a low near-0 amount elsewhere.

In the general-purpose test, the TIF will ideally be elevated as much as possible above 0 but

very flat over the range of θ.
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Chapter 5

An Analysis of MSATB Scores

The data set used for this paper comes from Drabinova & Martinkova (2017) [8]. The data are

scores from 20 selected questions from a Medical School Admissions Test in Biology (MSATB)

in the Czech Republic. The data set consists of responses of 1,407 subjects (484 males, 923

females). Each question has 4 answer choices, and any combination of these answer choices

could be correct. For example, a correct answer may be A or BC or BCD. Since the data is

still marked all right or all wrong, it is still treated as dichotomous data. A correct answer is

coded as a “1” and an incorrect answer is coded as a “0”. In addition, male is coded as “0”

and female is coded as “1”. The study [8] found previously that Item 49 functioned better

for females than for males. This item asks about a childhood disease caused by deficiency of

vitamin D in childhood with possible answers A. rickets (correct), B. scurvy, C. dwarfism, and

D. intellectual disability. It was theorized that women in the Czech Republic tend to be more

experienced in looking after children and know about their diseases.

To begin an analysis of the data, some overall descriptive statistics were ran on the data

set. The overall mean score of examinees taking the test was 0.55, ie, the proportion that was

marked “correct”. The minimum score is 0.1 and the max score is 1. The data is symmetric,

with the median also 0.55 (after rounding), and a histogram of the data (see Figure 5.1) confirms

the data is mostly symmetric. In addition, the overall standard deviation of the item scores was

0.19.

The item-level descriptive statistics were computed next. Of the 20 items on the test, the

average difficulty (as found before) was 0.55. The hardest item has a correct-rate of 0.18, while
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Figure 5.1: A histogram of the MSATB raw scores
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Figure 5.2: A histogram of the MSATB item scores

the easiest item had a correct-rate of 0.92. The median lf 0.58 shows that the distribution of

item scores isn’t perfectly symmetric, and the histogram (see Figure 5.2) shows this.

It is also of interest to look at differences between male and female. The data were split

into two groups, one for male and one for female. When separated into groups, males scored

an average percent correct of 56%, while females scores 55%. The standard deviations of 0.19

were almost identical. Histograms for male (Figure 5.3) and female (Figure 5.4) show minor

differences.

Next, a t-test was run on the two groups (male and female) to see if the group means

significantly differed from one another. The t-test found a 95% confidence interval of -0.01

- 0.03 for the difference of means, so the test found that there was no significant difference

between the two means. The obtained p-value was 0.31, and the obtained t test statistic was

1.0152.

With descriptive statistics done, attention turned to estimating item and ability parameters

and characteristics of the items and test. To do this, each of four models were fit to the data -

Rasch, two-parameter logistic, three-parameter logistic, and four-parameter logistic.
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Figure 5.3: A histogram of the MSATB raw scores for Males

Figure 5.4: A histogram of the MSATB raw scores for Females
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Figure 5.5: Rasch model Item Characteristic Curves

The Rasch model was fit first. The ICC, IIC, TIC and cSEM plot, and expected total score

plots are shown in the following figures. Notice that each curve has identical item discrimina-

tion slope parameters. This makes this model the simplest of all, but it also produces the worst

fit. After the item parameters are estimated, we estimate the ability parameters of the exami-

nees. Once the ability parameters are estimated, it is found that the mean ability parameter is

0.05260.

Diagnostics are run on the Rasch model next. To begin with, three chi-square-based statis-

tics are computed to find the goodness of fit of the data. The chi-square test (specifically Zh)

indicates that 13 of the 20 items fit a Rasch model, while the remaining do not.The Zh statis-

tic quantifies how far the observed values deviate from the theoretical values. Finally, the Zh

statistic for person-fit is shown, and a score of -2 or higher means the model fits the person

data. As we can see, most of the examinees fit the data well.

We next turn our attention to the two-parameter logistic model. The same plots as above

are shown below for the 2PL model as well. Notice that, since the discrimination (slope)

parameter can now vary, we get very different shapes for some of the ICC, where the slope

is steeper or shallower than before. The fact that the parameter is now allowed to vary for
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Figure 5.6: Rasch model Item Information Curves

Figure 5.7: Rasch model Test Information Curve
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Figure 5.8: Rasch model Test Characteristic Curve

Figure 5.9: Empirical Plot Rasch Model for Item 1
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Figure 5.10: Empirical Plot Rasch Model for Item 10

Figure 5.11: Empirical Plot Rasch Model for Item 19

21



Figure 5.12: Histogram for the Zh Person-Fit Statistic

discrimination also means that it can carry more information, so the ICC are generally more

responsive in this case than the Rasch. When ability parameters are estimated, the mean of 0.06

is found, similar to the Rasch model.

Diagnostics are run on the two-parameter model next. The chi-square statistics (specifi-

cally the Zh statistic) finds 15 of the 20 items fit the model (at the 90% significance level). (90%

is chosen because all of the commonly-used statistics tend to be imperfect and sometimes are

overly restrictive, so a 10% alpha level gives room for this error.) Empirical plots of the same

items as the Rasch model are shown below, showing how well the model fits the data. In addi-

tion, the Zh person-fit statistic histogram is shown, indicating most examinees can be fit under

the model.

Third, a three-parameter logistic (3PL) model is fit against the data. In this model, there

is a pseudo-guessing parameter c that serves as the lower asymptote of the curve. When this

is taken into account, notice how different the Item Characteristic Curves look. The addition

of the third parameter really gives the model freedom to take into account many different item

features. When ability parameters are estimated, the mean is approximately 0.07, close to the
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Figure 5.13: Two-Parameter Logistic Item Characteristic Curves

Figure 5.14: Two-Parameter Logistic Item Information Curves
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Figure 5.15: Two-Parameter Logistic Test Information Curve

Figure 5.16: Two-Parameter Logistic Test Characteristic Curve
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Figure 5.17: Two-Parameter Logistic Empirical Plot for Item 1

Figure 5.18: Two-Parameter Logistic Empirical Plot for Item 10
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Figure 5.19: Two-Parameter Logistic Empirical Plot for Item 19

Figure 5.20: Two-Parameter Logistic Zh Person-Fit Statistic
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Figure 5.21: Three-Parameter Logistic Item Characteristic Curve

other two models. The plots shown for the previous two models are shown here as well for

comparative purposes.

Diagnostics are run next on the 3PL model. The chi-square statistic indicates that 15 of

the 20 items fit well in the 3PL model at the 90% level. The plots, as above, are shown below

displaying the fit against the model of selected items, as well as the Zh statistic for person-fit.

Again, a person-fit Zh statistic of -2 or more is desired to show model fit, and this is largely met

by the vast majority of examinees.

Finally, we turn our attention to the four-parameter logistic model (4PL). In this model,

there is additionally an upper asymptote that may differ from 1. It can be seen by observing the

ICCs below that the presence of both lower and upper asymptotes give rise to a wide variety of

S-shaped curves in the ICCs. This could be a benefit, allowing the most flexibility of any of the

models to fit the data. However, the addition of a new asymptote may or may not be needed

in the model, and this will be explored more below. The mean of ability scores is measured as

0.12. Now, we give the standard plots, as in the other three models:
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Figure 5.22: Three-Parameter Logistic Item Information Curves

Figure 5.23: Three-Parameter Logistic Test Information Curve
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Figure 5.24: Three-Parameter Logistic Test Characteristic Curve

Figure 5.25: Three-Parameter Logistic Empirical Plot for Item 1
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Figure 5.26: Three-Parameter Logistic Empirical Plot for Item 10

Figure 5.27: Three-Parameter Logistic Empirical Plot for Item 19
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Figure 5.28: Three-Parameter Logistic Zh Person-Fit Statistic

Figure 5.29: Four-Parameter Logistic Item Characteristic Curves
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Figure 5.30: Four-Parameter Logistic Item Information Curves

Figure 5.31: Four-Parameter Logistic Test Information Curve
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Figure 5.32: Four-Parameter Test Characteristic Curve

The last step is to run the diagnostics on this last model. The Zh statistic at 90% level

shows 13 of the 20 questions are adequately fit by the model. The other chi-square-based statis-

tics are more strict but still have about half of the questions fitting the model. The person-fit

statistic histogram shows that most of the examinees are adequately represented by the model.

The empirical plots are shown, as in the other cases, as well.

So, all four models have been specified. The big question now is “Which model is best?”

This is partly answered with the statistician’s own knowledge and partly answered with the use

of statistical tests. As with the rest of this analysis, the computing will come from the mirt

package in R [5]. The comparison will be made pairwise with the “winner” pairing off with the

next-higher model.

The first model is the Rasch model versus the 2PL model. The AIC, AICc, and BIC are all

lower for the 2PL model. Additionally, the chi-square statistic (based on likelihood ratio test)

is 158.769,p <.005, so this implies that the 2PL model fits better than the Rasch model.

We repeat this procedure with the 2PL and the 3PL. In this case, the AIC and AICc is

lower for the 3PL, but the BIC is (slightly) lower for the 2PL model. The chi-square statistic

here is 141.232, p <.005, so this would mostly warrant the 3PL being the choice over the 2PL.
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Figure 5.33: Four-Parameter Empirical Plot for Item 1

Figure 5.34: Four-Parameter Empirical Plot for Item 10
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Figure 5.35: Four-Parameter Empirical Plot for Item 19

Figure 5.36: Four-Parameter Zh Person-Fit Statistic
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This is also likely, as if we look back and examine the Item Characteristic Curves between

the 2PL and 3PL, we will note quite a few of the items have distinct lower asymptotes when

allowed to do so in the 3PL. The fact that the ICCs respond to the addition of a third parameter

lends credence to the idea of the 3PL being superior in this case to the 2PL. So, we select the

3PL to move on.

In our last comparison, we examine the 3PL and 4PL. The 3PL in this case has lower

AIC, AICc, and BIC. Additionally, The chi-square is not significant with 12.838 being the test

statistic and p = 0.884. This means perhaps the 3PL is effective over the 4PL. Looking at the

Item Characteristic Curves for both models, there does appear to be the presence of an upper

asymptote in a couple of the items, but in almost every case, the upper asymptote is near to

1. In fact, out of the 20 items, only 3 items in the 4PL item parameter estimates have upper

asymptotes below 0.90 (the lowest is 0.81), and only 4 have upper asymptotes below 0.95. The

vast majority hover very close to 1. This implies that a fourth parameter is not needed in our

model. Therefore, the model that we will select as our final model is the 3PL model.

We also want to briefly look into the idea of test construction and creation. We will treat

the existing test questions as our item pool and create a small test from those questions. With

an item pool of only 20 questions, we are limited in scope at what can be accomplished, but

we will create a 5-question threshold test that attempts to classify examinees as “pass” or “fail”

based on the cutoff score of +2 on the ability scale. To do this, we look at the data and carefully

select 5 questions that have high information values around +2 and also high discrimination

values to help discriminate between slight adjustments in ability level. With a larger pool of

questions, an algorithmic approach would need to be programmed to find such items. With

such a small pool, however, it is easy to pick items by inspection only. Items selected are Item

27, Item 17, Item 64, Item 1, and Item 2.

The usual plots are shown with this short 5-question subtest. Some important points are of

note here. First, notice the all of the ICCs (particularly 2 of them) are very steep, approaching

jagged corners instead of smooth curves. This shows the high discrimination that is useful in

a threshold type of test. Secondly, the Item Information Curves are peaked near +2, two of

them particularly high peaks, yielding much information near that ability level. This is crucial

36



in creating such a test. This is exemplified in the Test Information Curve (that also shows the

Standard Error of Measurement), and notice the extremely sharp peak near +2. This means that

this test will provide accurate estimates of ability near +2, which is important because that is the

cutoff level for this test’s “pass” or “fail”. The SEM is also low around +2, which indicates that

we can be confident in our estimates near +2. The Expected Total Score/Test Characteristic

Curve elevates steeply between +1.5 and +2, showing the expected score jumping from 2 to

4 in a very brief space. All of these indicators show a good test for this purpose. Do note,

though, that away from +2, this test’s performance rapidly depletes, so examinees scoring very

differently than +2 are not likely to be accurately estimated by this test.

Also, it was attempted to create a general-purpose subtest as well (as can be seen in the R

code). However, this was much less successful, with the Test Information Curve not creating

the needed rounded flat peak necessary for that type of test. The main issue was a lack of

questions in the lower ability levels from which to choose. After contemplating about the data

set, however, this makes perfect sense; the data is from a medical school admissions test, which

means the questions have likely already been chosen to perform well at a (positive) certain

ability level for the purposes of discriminating between candidates that should be admitted and

those that should not.

After these diagnostics were ran on the subtest, attention turned to prediction. We wanted

to see if a classification could be made based on gender.

The labels for gender are present in the original dataset, so the data were split into a test

and training set and a logistic regression model ran on the training set. The result here is that

the model is able to correctly predict gender 62% of the time, leading to a 38% error rate. An

interesting note is that most of the misclassification was on males; of the 151 males in the test

set, only 5 were correctly classified as male, and only 8 females were incorrectly classified as

male.

To see if a better classifier for gender was possible, a random forest model was run on the

data. This produced very similar results of 59% accuracy and about 41% error rate. Principal

component analysis is run on the training data set to see if a dimension reduction technique

might prove beneficial in the classification. From the original 20 dimensions, it would have
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Figure 5.37: Threshold Test Item Characteristic Curves

Figure 5.38: Threshold Test Item Information Curves
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Figure 5.39: Threshold Test Information Curve

Figure 5.40: Threshold Test Characteristic Curve
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Figure 5.41: Optimal Number of Clusters

taken 17 principal components to reach 90% of the total variance, so principal component

reduction looked less desirable. A k-nearest-neighbor model was tested against the data next,

and this achieved similar results of 59% accuracy/ 41% error rate. The final approach attempted

on classifying gender was a neural network. This achieved the best accuracy rate out of all of

the statistical learning approaches, with an accuracy of 69% and error rate of 31%.

So, since there was some success (albeit far from perfect success) in classifying examinees

based on gender, it supported the idea that overall, based on all of the data, there was likely some

limited bias to gender. The less-than-ideal accuracy, though, and the other evidence presented

throughout this paper supported the idea that, if there was any gender bias, it was small and

likely not very significant.

Lastly, finding any clustering or groupings was examined, as it is hypothesized that with

many tests taken, there is a more-prepared and a lesser-prepared cohort.

To begin with, the optimal number of clusters is explored. The available evidence suggests

that two groups is the optimal number of clusters within this data.
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Figure 5.42: Number of Clusters Optimal with Selected Methods

Therefore, k-means clustering was undertaken with k=2, using 50 different random sets

chosen. The graphical depiction is shown:
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Figure 5.43: K-Means Clustering with k=2

There was clearly some separation between the two groups, so the clustering appeared fair;

although, there was definitely room for improvement. A hierarchical approach to clustering was

plotted with the dendogram shown:
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Figure 5.44: Hierarchical Clustering Dendrogram

Figure 5.45: Silhouette Plot of the Two Clusters
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Figure 5.46: Cluster Means with k=2

It definitely appeared that the k-means grouping was more prominent and it was chosen

for a further check. The item comparison for the two groups was analyzed and shown:

As apparent, the first group performed significantly better on most items than the second

group. To further check this, the mean of the entire first group’s performance was checked, and

this group average 14.68 correct questions out of the 20 total questions in the set. Meanwhile,

the second cluster averaged as score of only 8.36 correct questions out of the 20 total questions

in the set. If the Expected Total Score for the 3PL model were examined, these scores would

be equivalent to approximately a +1.5 ability level and a -0.5 ability level, respectively. This

implied that the two groupings, roughly speaking, corresponded to those that were prepared

and did well versus those that were not prepared and did poorly.

As a small caveat here, it was desired to check and see if there was any clear gender bias

between the two clusters, ie, were mostly males present in the upper group versus females in

the lower group, or vice versa? The means between the groups with gender included are very

small differences. For Group 1 (high group) females, the mean was 14.56, and for males 14.76.

For Group 2 (the low group), the mean was 8.36 for both males and females. Therefore, there

does not appear to be evidence of a gender bias among the two clusters.

We also wanted to look and see if there were any natural clusterings among the questions.

To do this, we first removed about a dozen participants who scored all 1’s, so that the analysis

wouldn’t produce matrices that wouldn’t work. Then, the number of clusters was tested as

before, with 2 being the number chosen. So, the k-means algorithm was run on the 20 questions,

with the following plot produced showing clear separation into two groups:

Among these two groups, the mean item difficulty of Group 1 was 70.4% correct, while

the mean item difficulty of Group 2 was 32.9% correct. This represented a huge difference in

the items. Since the questions themselves are unknown, it is impossible to truly know why.

However, these questions may have represented two distinct sub-categories within Biology
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Figure 5.47: Cluster Among Questions (Variables) with k=2

(which the test was on). Or one group may have represented more obscure knowledge or

a higher level of critical thinking than the other group. Or it could be that one group is an

effectively performing set of questions and the other group, with only 32.9% of participants

getting them right, is a poorly written or poorly performing group of questions and should

be analyzed further. Should the questions have been known, this type of question analysis is

exactly the type of investigation that should be conducted. With less than 1/3 of all examinees

getting Group 2 questions correct, if the domain of Group 1’s questions is not well known to an

examinee, then inevitably they do badly on the test. So this type of analysis has proven fruitful,

although the answers themselves remain obscured behind the question content.
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Chapter 6

Conclusions

The field of Item Response Theory is an important and dynamic field in educational and psy-

chological assessment. With a background intertwined in statistics, IRT makes it possible to

administer standardized tests on a large scale basis and have the results be both interpretable

and consistent throughout a large population of examinees. Before the underpinnings of IRT

became widely used, Classical Test Theory attempted to use statistics to validly construct,

administer, score, and interpret tests, but the limitations were huge in that the results were de-

pendent on the examinees who took the test and on the test questions itself. IRT overcame these

restrictions to become the most widely used paradigm in standardized testing today. However,

as demonstrated in this paper, the ideas of statistical machine learning can readily compete with

IRT in terms of classification and interpretation.

This paper delved into the basics of Item Response Theory and its paramater estimation

techniques before analyzing a real data set using those techniques. Various graphs and curves

were developed that showed the 3PL model fit the data the best. A subset of the data was

then selected, using the full number of items as an item bank, to create a subtest based on

a cutoff score. The diagnostics of this test were calculated, and its effectiveness discussed.

Finally, statistical machine learning algorithms were used to compare with the IRT methods and

demonstrate their potential usefulness in supplementing or replacing traditional IRT methods

in testing theory and administration.

In their 2012 paper, Bergner et. al. [3] discussed that IRT parameter estimation is a

technical and complicated iterative process and the goodness-of-fit analysis continues to be a
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subject of research. They argue that a machine-learning approach to testing theory will be more

powerful moving forward and provide more flexibility to estimate examinees ability accurately.

IRT also holds promise for working together with machine learning in unexpected ways.

Martinez in 2016 [9] found that there are some interesting uses of IRT in machine learning

models, particularly in IRT’s methods of equating test sets for evaluation purposes. In the

paper, Martinez applies IRT frameworks to a variety of machine-learning models and claims

promise in using the two harmoniously in future endeavors.

IRT is also playing a big role in intelligent tutoring systems and computerized adapative

testing (CAT), as mentioned by Desmarais and Baker [7] in their 2012 paper. Complicated

algorithms such as Bayesian Knowledge Tracing and Deep Knowledge Tracing [10] (2015)

use IRT and neural networks together to create a dynamic, responsive learning system that

looks to the future in its important applications in educational and psychological testing. With

the ability to adapt in real time to examinees responses, these complex systems are able to show

a degree of flexibility and self-learning that is already proving useful.

This paper just scratched the surface on the deep and exciting field of Item Response

Theory. However, even as more complex and sophisticated methods from machine and statis-

tical learning become more widely available and used, the tenants of Item Response Theory

still stand as the benchmark for standardized tests. Even if IRT is eventually supplanted by the

advanced techniques of Deep Knowledge Tracing and Bayesian Knowledge Tracing with Com-

puterized Adapative Testing, IRT will leave its legacy as the fingerprints inside the algorithms

and will vicariously live on with its important contributions.
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Appendices

The R code used for this paper is provided here.
# i n c l u d e g r a p h i c s i n l a t e x document

# graph a b a s i c l o g i s t i c c u r v e

t h e t a <− seq (−3 ,3 , .1 )

beta <− 0

a l p h a <− 1

P <− 1 / (1+ exp(−a l p h a∗ ( t h e t a−beta ) ) )

p l o t ( t h e t a , P , t y p e =” l ” )

# load da ta s e t

l i b r a r y ( difNLR )

View (MSATB)

w r i t e . csv (MSATB, ” t h e s i s d a t a . c sv ” ) # make a c s v o f t h e msat−b da ta

d a t a 1 <− MSATB

summary ( d a t a 1 ) # o v e r a l l upper end v iew o f t h e da ta

sum ( d a t a 1 $ ge n de r ) # number o f f e m a l e s i n t h e da ta s e t ( coded as ”1”) , 923

nrow ( d a t a 1)−sum ( d a t a 1 $ g en de r ) # number o f males i n t h e da ta s e t ( coded as ”0”) , 484

A l l S c o r e s <− NULL

f o r ( i i n 1 : nrow ( d a t a 1 ) ){

examineeScore <− NULL

examineeScore <− sum ( d a t a 1 [ i , 1 : 2 0 ] ) / 20

A l l S c o r e s <− cbind ( A l l S c o r e s , examineeScore )

}

l e n g t h ( A l l S c o r e s ) # 1407 examinees

mean ( A l l S c o r e s ) # Average s c o r e o f a l l examinees , 0 . 5 5 3 5 8 9 2 .

min ( A l l S c o r e s ) #Minimum score , 0 . 1

max ( A l l S c o r e s ) #Maximum score , 1

median ( A l l S c o r e s ) # Median score , 0 . 5 5

h i s t ( A l l S c o r e s ) # M os t l y n o r m a l l y d i s t r i b u t e d i t l o o k s l i k e

sd ( A l l S c o r e s ) # O v e r a l l SD o f 0 . 1 9

A l l I t e m s <− NULL

f o r ( i i n 1 : ( nco l ( d a t a 1 )−1)){ .

i t e m S c o r e <− NULL

i t e m S c o r e <− sum ( d a t a 1 [ 1 : 1 4 0 7 , i ] ) / 1407

A l l I t e m s <− cbind ( A l l I t e m s , i t e m S c o r e )

}

l e n g t h ( A l l I t e m s ) # 20 i t e m s

mean ( A l l I t e m s ) # Average d i f f i c u l t y o f a l l i t e m s , 0 .5535892

min ( A l l I t e m s ) #Minimum d i f f i c u l t y ( h a r d e s t i t e m ) , 0 .1848

max ( A l l I t e m s ) #Maximum d i f f i c u l t y ( e a s i e s t i t e m ) , 0 .9240

median ( A l l I t e m s ) # Median d i f f i c u l t y , 0 .5785

h i s t ( A l l I t e m s )

sd ( A l l I t e m s ) # I t em SD o f 0 . 2 2
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aggrega te ( da ta1 , by= l i s t ( d a t a 1 $ g en de r ) ,FUN=mean )

A l l M a l e S c o r e s <− NULL

A l l F e m a l e S c o r e s <− NULL

f o r ( i i n 1 : nrow ( d a t a 1 ) ){

maleScore <− NULL

i f ( d a t a 1 [ i , 2 1 ] == 0) {

maleScore <−sum ( d a t a 1 [ i , 1 : 2 0 ] ) / 20

A l l M a l e S c o r e s <− cbind ( Al lMaleScores , ma leScore )

} e l s e {

f e m a l e S c o r e <− NULL

f e m a l e S c o r e <− sum ( d a t a 1 [ i , 1 : 2 0 ] ) / 20

A l l F e m a l e S c o r e s <− cbind ( A l lFema leSco re s , f e m a l e S c o r e )

}

}

l e n g t h ( A l l M a l e S c o r e s ) #484 males , as i t s h o u l d be

l e n g t h ( A l l F e m a l e S c o r e s ) #923 f e m a l e s , as i t s h o u l d be

mean ( A l l M a l e S c o r e s ) # Males average a s c o r e o f 0 . 5 6

mean ( A l l F e m a l e S c o r e s ) # Females average a s c o r e o f 0 . 5 5

range ( A l l M a l e S c o r e s ) # S c o r e s range from 0 . 1 t o 1 . 0 f o r males

range ( A l l F e m a l e S c o r e s ) #Same f o r f e m a l e s c o r e s

median ( A l l M a l e S c o r e s ) # 0 . 5 5 f o r male median

median ( A l l F e m a l e S c o r e s ) # 0 . 5 5 f o r f e m a l e median

sd ( A l l M a l e S c o r e s ) #SD o f 0 . 1 9 f o r males

sd ( A l l F e m a l e S c o r e s )

h i s t ( A l l M a l e S c o r e s )

h i s t ( A l l F e m a l e S c o r e s )

t . t e s t ( x= Al lMaleScores , y= Al lFema leSco re s , a l t e r n a t i v e =” two . s i d e d ” , p a i r e d =F )

# #################################

# #################################

l i b r a r y ( m i r t )

# Rasch f i t t o t h e da ta

r a s c h mod <− ”F = 1 − 20 ”

r a s c h f i t <− m i r t ( data= d a t a 1 [ , 1 : 2 0 ] , model= r a s c h mod , i t e m t y p e =” Rasch ” , SE = T )

r a s c h params <− c o e f ( r a s c h f i t , IRTpars =T , s i m p l i f y =T )

r a s c h i t e m s <− r a s c h params $ i t e m s

r a s c h i t e m s

p l o t ( r a s c h f i t , t y p e =” t r a c e ” ) #ICC f o r each i t e m

p l o t ( r a s c h f i t , t y p e =” i n f o t r a c e ” ) # I IC f o r each i t e m .

p l o t ( r a s c h f i t , t y p e =” in foSE ” ) # TIC and cSEM p l o t f o r t h e t e s t

p l o t ( r a s c h f i t , t y p e =” s c o r e ” ) # E x p e c t e d t o t a l s c o r e on t h e t e s t

a b i l i t y mle <− f s c o r e s ( r a s c h f i t , method=”ML” , f u l l . s c o r e s =T , f u l l . s c o r e s . SE=T )

head ( a b i l i t y mle )

a b i l i t y f i n i t e <− a b i l i t y mle [ i s . f i n i t e ( a b i l i t y mle [ , 1 ] ) , ]

a b i l i t y summary <− apply ( a b i l i t y f i n i t e , 2 , summary )

a b i l i t y summary

r a s c h i t e m f i t <− i t e m f i t ( r a s c h f i t , f i t s t a t s = c ( ”X2” , ”G2” , ”Zh” ) )

r a s c h i t e m f i t # da ta f o r t h e most p a r t do n o t f i t t h e Rasch model

# Three i t e m s chosen below t o p l o t t h e i r e m p i r i c a l p l o t

i t e m f i t ( r a s c h f i t , e m p i r i c a l . p l o t =c ( 1 ) )

i t e m f i t ( r a s c h f i t , e m p i r i c a l . p l o t =10)

i t e m f i t ( r a s c h f i t , e m p i r i c a l . p l o t =19)

sum ( r a s c h i t e m f i t $X2 ) #616 t o t a l ch i−sq ua re

r a s c h p e r s o n f i t <− p e r s o n f i t ( r a s c h f i t )
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h i s t ( r a s c h p e r s o n f i t $Zh , x l a b =”Zh S t a t i s t i c ” )

a b l i n e ( v=−2, lwd =2 , l t y =2)

#2PL f i t t o t h e da ta

twop l mod <− ”F = 1 − 20 ”

twop l f i t <− m i r t ( data= d a t a 1 [ , 1 : 2 0 ] , model= twop l mod , i t e m t y p e =” 2PL” , SE=T )

twop l params <− c o e f ( twop l f i t , IRTpars = T , s i m p l i f y = T )

twop l i t e m s <− twop l params $ i t e m s

twop l i t e m s

p l o t ( twop l f i t , t y p e =” t r a c e ” ) #ICC f o r each i t e m

p l o t ( twop l f i t , t y p e =” i n f o t r a c e ” ) # I IC f o r each i t e m

p l o t ( twop l f i t , t y p e =” in foSE ” ) #TIC and cSEM p l o t f o r t h e t e s t

p l o t ( twop l f i t , t y p e =” s c o r e ” ) # E x p e c t e d t o t a l s c o r e on t h e t e s t

a b i l i t y mle2 <− f s c o r e s ( twop l f i t , method=”ML” , f u l l . s c o r e s =T , f u l l . s c o r e s . SE=T )

head ( a b i l i t y mle2 )

a b i l i t y f i n i t e 2 <− a b i l i t y mle2 [ i s . f i n i t e ( a b i l i t y mle2 [ , 1 ] ) , ]

a b i l i t y summary2 <− apply ( a b i l i t y f i n i t e 2 , 2 , summary )

a b i l i t y summary2

twop l i t e m f i t <− i t e m f i t ( twop l f i t , f i t s t a t s = c ( ”X2” , ”G2” , ”Zh” ) )

twop l i t e m f i t # a l m o s t none o f t h e da ta f i t s t h e 2PL model w e l l

# Three i t e m s chosen below t o p l o t t h e i r e m p i r i c a l p l o t

i t e m f i t ( twop l f i t , e m p i r i c a l . p l o t =c ( 1 ) )

i t e m f i t ( twop l f i t , e m p i r i c a l . p l o t =10)

i t e m f i t ( twop l f i t , e m p i r i c a l . p l o t =19)

sum ( twop l i t e m f i t $X2 ) # 467 .18 t o t a l ch i−sq ua re

twop l p e r s o n f i t <− p e r s o n f i t ( twop l f i t )

h i s t ( twop l p e r s o n f i t $Zh , x l a b =”Zh S t a t i s t i c ” )

a b l i n e ( v=−2, lwd =2 , l t y =2)

#3PL f i t t o t h e da ta

t h r e e p l mod <− ”F = 1 − 20 ”

t h r e e p l f i t <− m i r t ( data= d a t a 1 [ , 1 : 2 0 ] , model= t h r e e p l mod , i t e m t y p e =” 3PL” , SE = T )

t h r e e p l params <− c o e f ( t h r e e p l f i t , IRTpars = T , s i m p l i f y = T )

t h r e e p l i t e m s <− t h r e e p l params $ i t e m s

t h r e e p l i t e m s

p l o t ( t h r e e p l f i t , t y p e =” t r a c e ” ) #ICC f o r each i t e m

p l o t ( t h r e e p l f i t , t y p e =” i n f o t r a c e ” ) # I IC f o r each i t e m

p l o t ( t h r e e p l f i t , t y p e =” in foSE ” ) #TIC and cSEM p l o t f o r t h e t e s t

p l o t ( t h r e e p l f i t , t y p e =” s c o r e ” ) # E x p e c t e d t o t a l s c o r e on t h e t e s t

a b i l i t y mle3 <− f s c o r e s ( t h r e e p l f i t , method=”ML” , f u l l . s c o r e s =T , f u l l . s c o r e s . SE=T )

head ( a b i l i t y mle3 )

a b i l i t y f i n i t e 3 <− a b i l i t y mle3 [ i s . f i n i t e ( a b i l i t y mle3 [ , 1 ] ) , ]

a b i l i t y summary3 <− apply ( a b i l i t y f i n i t e 3 , 2 , summary )

a b i l i t y summary3

t h r e e p l i t e m f i t <− i t e m f i t ( t h r e e p l f i t , f i t s t a t s = c ( ”X2” , ”G2” , ”Zh” ) )

t h r e e p l i t e m f i t # da ta f o r t h e most p a r t do n o t f i t t h e 3PL model

# Three i t e m s chosen below t o p l o t t h e i r e m p i r i c a l p l o t

i t e m f i t ( t h r e e p l f i t , e m p i r i c a l . p l o t =c ( 1 ) )

i t e m f i t ( t h r e e p l f i t , e m p i r i c a l . p l o t =10)

i t e m f i t ( t h r e e p l f i t , e m p i r i c a l . p l o t =19)

sum ( t h r e e p l i t e m f i t $X2 ) #433 t o t a l ch i−sq ua re

t h r e e p l p e r s o n f i t <− p e r s o n f i t ( t h r e e p l f i t )

h i s t ( t h r e e p l p e r s o n f i t $Zh , x l a b =”Zh S t a t i s t i c ” )

a b l i n e ( v=−2, lwd =2 , l t y =2)

#4PL f i t t o t h e da ta

f o u r p l mod <− ”F = 1 − 20 ”

f o u r p l f i t <− m i r t ( data= d a t a 1 [ , 1 : 2 0 ] , model= f o u r p l mod , i t e m t y p e =” 4PL” , SE = T )

f o u r p l params <− c o e f ( f o u r p l f i t , IRTpars = T , s i m p l i f y = T )

f o u r p l i t e m s <− f o u r p l params $ i t e m s
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f o u r p l i t e m s

p l o t ( f o u r p l f i t , t y p e =” t r a c e ” ) #ICC f o r each i t e m

p l o t ( f o u r p l f i t , t y p e =” i n f o t r a c e ” ) # I IC f o r each i t e m

p l o t ( f o u r p l f i t , t y p e =” in foSE ” ) #TIC and cSEM p l o t f o r t h e t e s t

p l o t ( f o u r p l f i t , t y p e =” s c o r e ” ) # E x p e c t e d t o t a l s c o r e on t h e t e s t

a b i l i t y mle4 <− f s c o r e s ( f o u r p l f i t , method=”ML” , f u l l . s c o r e s =T , f u l l . s c o r e s . SE=T )

head ( a b i l i t y mle4 )

a b i l i t y f i n i t e 4 <− a b i l i t y mle4 [ i s . f i n i t e ( a b i l i t y mle4 [ , 1 ] ) , ]

a b i l i t y summary4 <− apply ( a b i l i t y f i n i t e 4 , 2 , summary )

a b i l i t y summary4

f o u r p l i t e m f i t <− i t e m f i t ( f o u r p l f i t , f i t s t a t s = c ( ”X2” , ”G2” , ”Zh” ) )

f o u r p l i t e m f i t # da ta f o r t h e most p a r t do n o t f i t t h e Rasch model

# Three i t e m s chosen below t o p l o t t h e i r e m p i r i c a l p l o t

i t e m f i t ( f o u r p l f i t , e m p i r i c a l . p l o t =c ( 1 ) )

i t e m f i t ( f o u r p l f i t , e m p i r i c a l . p l o t =10)

i t e m f i t ( f o u r p l f i t , e m p i r i c a l . p l o t =19)

sum ( f o u r p l i t e m f i t $X2 ) #382 t o t a l ch i−sq ua re .

f o u r p l p e r s o n f i t <− p e r s o n f i t ( f o u r p l f i t )

h i s t ( f o u r p l p e r s o n f i t $Zh , x l a b =”Zh S t a t i s t i c ” )

a b l i n e ( v=−2, lwd =2 , l t y =2)

# model f i t compar i son

anova ( r a s c h f i t , twop l f i t )

anova ( twop l f i t , t h r e e p l f i t )

anova ( t h r e e p l f i t , f o u r p l f i t )

# c o n s t r u c t i n g a t e s t u s i n g c u t o f f s c o r e o f +1

# our model , as found above , w i l l be t h e 3PL

t h r e e p l i t e m s

s u b t e s t <− d a t a 1 [ , c ( 2 , 1 0 , 1 3 , 1 6 , 2 0 ) ]

s u b t e s t mod <− ”F = 1 − 5 ”

s u b t e s t f i t <− m i r t ( data= s u b t e s t , model= s u b t e s t mod , i t e m t y p e =” 3PL” , SE = T )

s u b t e s t params <− c o e f ( s u b t e s t f i t , IRTpars = T , s i m p l i f y = T )

s u b t e s t i t e m s <− s u b t e s t params $ i t e m s

s u b t e s t i t e m s

p l o t ( s u b t e s t f i t , t y p e =” t r a c e ” ) #ICC f o r each i t e m

p l o t ( s u b t e s t f i t , t y p e =” i n f o t r a c e ” ) # I IC f o r each i t e m

p l o t ( s u b t e s t f i t , t y p e =” in foSE ” ) #TIC and cSEM p l o t f o r t h e t e s t

p l o t ( s u b t e s t f i t , t y p e =” s c o r e ” ) # E x p e c t e d t o t a l s c o r e on t h e t e s t

s u b t e s t 2 <− d a t a 1 [ , c ( 4 , 8 , 1 0 , 1 2 , 1 7 ) ]

s u b t e s t mod2 <− ”F = 1 − 5 ”

s u b t e s t f i t 2 <− m i r t ( data= s u b t e s t 2 , model= s u b t e s t mod2 , i t e m t y p e =” 3PL” , SE = T )

s u b t e s t params2 <− c o e f ( s u b t e s t f i t 2 , IRTpars = T , s i m p l i f y = T )

s u b t e s t i t e m s 2 <− s u b t e s t params2 $ i t e m s

s u b t e s t i t e m s 2

p l o t ( s u b t e s t f i t 2 , t y p e =” t r a c e ” )

p l o t ( s u b t e s t f i t 2 , t y p e =” i n f o t r a c e ” )

p l o t ( s u b t e s t f i t 2 , t y p e =” in foSE ” )

p l o t ( s u b t e s t f i t 2 , t y p e =” s c o r e ” )

s u b t e s t S c o r e s <− f s c o r e s ( s u b t e s t f i t , method=”ML” , f u l l . s c o r e s =T )

f o r ( i i n 1 : l e n g t h ( s u b t e s t S c o r e s ) ){

i f ( ! i s . f i n i t e ( s u b t e s t S c o r e s [ i , 1 ] ) ){

i f ( s u b t e s t S c o r e s [ i , 1 ] <0){

s u b t e s t S c o r e s [ i , 1 ] <− min ( s u b t e s t S c o r e s [ i s . f i n i t e ( s u b t e s t S c o r e s [ , 1 ] ) , ] )

} e l s e {
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s u b t e s t S c o r e s [ i , 1 ] <− max ( s u b t e s t S c o r e s [ i s . f i n i t e ( s u b t e s t S c o r e s [ , 1 ] ) , ] )

}

}

}

P a s s S c o r e <− t a b l e ( s u b t e s t S c o r e s >=1.5)

P a s s S c o r e

R e s u l t V e c t o r <− NULL

f o r ( i i n 1 : l e n g t h ( s u b t e s t S c o r e s ) ){

i f ( s u b t e s t S c o r e s [ i ,1] >=1.5){

r e s <− ”PASS”

R e s u l t V e c t o r <− rbind ( R e s u l t V e c t o r , r e s )

} e l s e {

r e s <− ”FAIL”

R e s u l t V e c t o r <− rbind ( R e s u l t V e c t o r , r e s )

}

}

S c o r e R e s u l t s <− as . data . frame ( cbind ( R e s u l t V e c t o r , s u b t e s t S c o r e s [ , 1 ] ) )

colnames ( S c o r e R e s u l t s ) <− c ( ” R e s u l t ” , ” Score ” )

rownames ( S c o r e R e s u l t s )<−1 :1407

rawData <− d a t a 1 [ , c ( 2 , 1 0 , 1 3 , 1 6 , 2 0 ) ]

Sco reDa ta <− as . data . frame ( cbind ( S c o r e R e s u l t s , rawData ) )

colnames ( Sco reDa ta ) <− c ( ” R e s u l t ” , ” Score ” , ”Q1” , ”Q2” , ”Q3” , ”Q4” , ”Q5” )

t r a i n i n g S e t 1 <− ScoreDa ta [ 1 : 1 0 0 0 , ]

t e s t S e t 1 <− ScoreDa ta [ 1 0 0 1 : 1 4 0 7 , ]

l i b r a r y ( arm )

modelLog <− bayesglm ( data= t r a i n i n g S e t 1 , R e s u l t ˜ Q1+Q2+Q3+Q4+Q5 ,

f ami ly =” b i n o m i a l ” , c o n t r o l = l i s t ( max i t =100) , p r i o r . df =10)

summary ( modelLog )

predLog <− p r e d i c t ( modelLog , t e s t S e t 1 )

t a b <− t a b l e ( round ( predLog ) , t e s t S e t 1 $ R e s u l t )

t a b

t r a i n D a t a <− d a t a 1 [ 1 : 1 0 0 0 , ]

t e s t D a t a <− d a t a 1 [ 1 0 0 1 : 1 4 0 7 , ]

t r a i n L o g <− glm ( data= t r a i n D a t a , t r a i n D a t a $ g en de r ˜ . ,

f ami ly =” b i n o m i a l ” , c o n t r o l = l i s t ( max i t =100 ) )

summary ( t r a i n L o g )

p r e d t r a i n L o g <− p r e d i c t ( t r a i n L o g , t e s t D a t a , t y p e =” r e s p o n s e ” )

t a b 2 <− t a b l e ( round ( p r e d t r a i n L o g ) , t e s t D a t a $ g en de r )

t a b 2

e r r o r R a t e L o g <− 1−sum ( diag ( t a b 2 ) ) / ( sum ( rowSums ( t a b 2 ) ) )

e r r o r R a t e L o g

l i b r a r y ( r a n d o m F o r e s t )

t r a i n D a t a $ g en de r <− as . f a c t o r ( t r a i n D a t a $ g en de r )

t e s t D a t a $ g en de r <− as . f a c t o r ( t e s t D a t a $ g en de r )

f <− as . formula ( p a s t e ( ” t r a i n D a t a $ g en de r ˜ ” ,

p a s t e ( ” t r a i n D a t a [ , ” , 1 : 2 0 , ” ] ” , c o l l a p s e =”+” ) ) )

r f <− r a n d o m F o r e s t ( data= t r a i n D a t a , x= t r a i n D a t a [ , 1 : 2 0 ] ,

y= t r a i n D a t a $ gender , x t e s t = t e s t D a t a [ , 1 : 2 0 ] , y t e s t = t e s t D a t a [ , 2 1 ] , n t r e e =1000)

mean ( r f $ e r r . r a t e ) #41% e r r o r r a t e

summary ( prcomp ( t r a i n D a t a [ , 1 : 2 0 ] ) )

b i p l o t ( prcomp ( t r a i n D a t a [ , 1 : 2 0 ] ) )

s c r e e p l o t ( prcomp ( t r a i n D a t a [ , 1 : 2 0 ] ) )

l i b r a r y ( c l a s s )

k <− knn ( t r a i n = t r a i n D a t a [ , 1 : 2 0 ] , t e s t = t e s t D a t a [ , 1 : 2 0 ] , c l = t r a i n D a t a [ , 2 1 ] , k =5 , prob =T )

summary ( k )
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t a b 3<− t a b l e ( k , t e s t D a t a [ , 2 1 ] )

t a b 3

e r r R a t e <− 1 − sum ( diag ( t a b 3 ) ) / sum ( rowSums ( t a b 3 ) )

e r r R a t e # e r r o r r a t e o f a l m o s t 41%, m o s t l y due t o males .

l i b r a r y ( n e u r a l n e t )

t r a i n D a t a $ g en de r <− as . numeric ( t r a i n D a t a $ g en de r )

t e s t D a t a $ g en de r <− as . numeric ( t e s t D a t a $ g en de r )

n <− n e u r a l n e t ( formula= t r a i n D a t a $ g en de r ˜ . , data= t r a i n D a t a ,

h i dd en =c ( 5 , 2 ) , s tepmax =1e +06 , a l g o r i t h m =” backprop ” , l e a r n i n g r a t e = 0 . 0 0 1 , l i n e a r . o u t p u t =F )

summary ( n )

computeN <− compute ( n , t e s t D a t a [ , 1 : 2 0 ] )

p l o t ( t e s t D a t a [ , 2 1 ] , computeN$ n e t . r e s u l t )

mean ( abs ( computeN$ n e t . r e s u l t−t e s t D a t a [ , 2 1 ] ) / t e s t D a t a [ , 2 1 ] ) #31% e r r o r , b e s t y e t .

l i b r a r y ( c l u s t e r )

l i b r a r y ( f a c t o e x t r a )

l i b r a r y ( NbClus t )

f v i z n b c l u s t ( da ta1 , kmeans , method=” s i l h o u e t t e ” , k . max=20)

NbClus t ( da ta1 , method=” kmeans ” )

# Says 2 groups i s t h e b e s t , bo th methods

km . data <− kmeans ( da ta1 , 2 , n s t a r t =50)

f v i z c l u s t e r (km . data , data= d a t a 1 [ , 1 : 2 0 ] , frame . t y p e =” convex ” )+ theme minimal ( )

p r i n t (km . data )

l i b r a r y ( c l V a l i d )

c l <− c l V a l i d ( da ta1 , n C l u s t = 2 : 1 0 ,

c lMethods =c ( ” h i e r a r c h i c a l ” , ” kmeans ” , ”pam” ) , v a l i d a t i o n =” i n t e r n a l ” , maxi tems =1500)

summary ( c l )

data . hc <− h c u t ( da ta1 , k =2 , s t a n d =T )

f v i z dend ( data . hc , r e c t =T , cex = 0 . 5 )

f v i z s i l h o u e t t e ( data . hc ) # n o t a v e r y s t r o n g c l u s t e r i n g

g<−g e t c l u s t t e n d e n c y ( da ta1 , n =300 , g r a d i e n t = l i s t ( low=” b l u e ” , h igh =” w h i t e ” ) )

g$ h o p k i n s s t a t # 0 . 4 2 , da ta i s n o t t h a t c l u s t e r a b l e .

g$ p l o t

Dat2Sum <− NULL

Dat2Sum2 <− NULL

d a t a 2 <− as . data . frame ( cbind ( da ta1 , km . data $ c l u s t e r ) )

f o r ( i i n 1 : nrow ( d a t a 2 ) ){

i f ( d a t a 2 [ i , 22 ]==1){

Dat2Sum <− cbind ( Dat2Sum , sum ( d a t a 2 [ i , 1 : 2 0 ] ) )

} e l s e {

Dat2Sum2 <− cbind ( Dat2Sum2 , sum ( d a t a 2 [ i , 1 : 2 0 ] ) )

}

}

mean ( Dat2Sum ) #mean s c o r e o f 14 .68 c o r r e c t

mean ( Dat2Sum2 ) # mean s c o r e o f 8 . 3 6 c o r r e c t

a <− aggrega te ( d a t a 2 [ , 1 : 2 0 ] , by= l i s t ( d a t a 2 [ , 2 1 ] , d a t a 2 [ , 2 2 ] ) , mean )

rowSums ( a [ , 3 : 2 2 ] )
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#We a l s o want t o l o o k and s e e i f t h e r e are n a t u r a l c l u s t e r i n g s among t h e q u e s t i o n s .

t r <− t ( d a t a 1 )

t r <− t r [,−which ( colSums ( t r [ 1 : 2 0 , ] ) = = 2 0 ) ]

f v i z n b c l u s t ( t r [ 1 : 2 0 , ] , kmeans , method=” s i l h o u e t t e ” , k . max=15)

NbClus t ( t r [ 1 : 2 0 , ] , method=” kmeans ” ) # e r r o r

km . d a t a 2 <− kmeans ( t r [ 1 : 2 0 , ] , 2 , n s t a r t =50)

f v i z c l u s t e r (km . da ta2 , data= t r [ 1 : 2 0 , ] , frame . t y p e =” convex ” )+ theme minimal ( )

# D e f i n i t e g r o u p i n g s be tween i t e m s .

#What i s t h e mean o f t h e two groups o f q u e s t i o n s ?

t r <− t ( d a t a 1 )

d a t a 3 <− as . data . frame ( cbind ( t r [ 1 : 2 0 , ] , km . d a t a 2 $ c l u s t e r ) )

a2 <− aggrega te ( d a t a 3 [ , 1 : 1 4 0 7 ] , by= l i s t ( d a t a 3 [ , 1 4 0 8 ] ) , mean )

rowSums ( a2 [ , 1 : 1 4 0 7 ] ) / 1407
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