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Abstract

Human skeletal muscle motion is a complex electrical, chemical, and mechanical process.

The electrical, or electromyography, signal originates from the brain and travels to the muscle

initiating the contraction of the muscle. This signal can be detected in the muscle roughly 500

ms before movement occurs and can be used to classify the motion of the subject to inform

the motion of an assistive robot. The electromyography signal can be monitored by surface

electromyography sensors adhered to the subject’s skin. These sensors are highly dependent

on position and orientation of the sensor with respect to the belly of the muscle being

monitored and requires both knowledge of musculature and extensive setup time to use. In

order to implement a better sensor solution capable of being applied without any knowledge

of anatomy, a textile suit was outfitted with electromyography sensors. The suit was shown

to accurately classify the motion of the user using a K-nearest neighbor algorithm compared

to the traditional method of sensor adhesion. This suit works to inform the movement of an

exoskeleton. Along with detecting intent of motion from the user, exoskeletons and assistive

robots need to move like their users. Shape memory alloy actuators have previously been

used as micro-actuators. With a high strength to weight ratio, small form factor, and low

cost, shape memory alloys are an attractive actuator option that contracts and lengthens

similarly to human skeletal muscles. However, shape memory alloy actuators also have high

power consumption, low strain (4-8%), and low operating frequency (< 3 Hz). In order to

overcome these drawbacks, a shape memory alloy actuator was designed and tested in a

bimorph configuration. This shape memory alloy actuator design addressed the drawbacks

of traditional shape memory alloy actuators and could potentially expand the usage of this

technology in biomimetic robots.
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Chapter 1

Introduction

Biomimetic robots and exoskeletons that move in parallel with a human operator present

more complex problems compared to traditional robotics. For biomimetic robots, mimicking

the motions of biological creatures involves complex joints and actuators. For exoskeletons,

sensing the intent of motion from the user in order to inform the motion of the exoskeletons

is needed for smooth operation. Biological creatures use skeletal muscles in order to actuate

their limbs and interact with the physical world. Skeletal muscles are linear actuators with a

complex microstructure and an activation process with electrical, mechanical, and chemical

components. This process along with the ligaments that stabilize the joints allow biological

creatures to create complex motions.

Exoskeletons are being used in both the medical and defense industry in order to aug-

ment the strength and motion of the user. Patients that have sustained a serious injury in

which they have lost the use of one or more extremities, such as their legs and can no longer

walk, can use exoskeletons to either regain or supplement this motion. Exoskeletons can also

be used as strength augmentation devices in order to allow the user to carry more weight

or walk/run for a longer period of time. In order for these various types of exoskeletons to

be the most effective, the exoskeleton must move in sync with the user as to not inhibit the

motion of one another. Traditionally, force/pressure sensors in the exoskeleton have been

used to detect the intended motion of the user. This produces a suit that lags behind the

user rather than moving in time with them. Electromyography, which is the electric poten-

tial generated in your muscle prior to muscle contraction, can be used to detect and classify

motion prior to the motion occurring. Recent efforts have focused on using this signal in

order to inform the motion of exoskeletons.
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Advancement of biomimetic robots depends on the advancement of the actuators that

move them and the batteries that power them. Research in artificial muscle technology

such as shape memory alloys could potentially improve the motion of the robots and allow

robots to move more similarly to their biological counterparts. Shape memory alloys are

a type of soft actuator that can “remember” its shape at various temperatures. Shape

memory alloy actuators are typically trained to contract at high temperatures and extend

at low temperatures similarly to how human skeletal muscles contract and extend in length.

Currently, shape memory alloy actuators have been limited by high power consumption and

low displacement and operational frequency requirements.

In this thesis, the use of textile-embedded surface electromyography sensors for motion

classification during dynamic actions was investigated. Surface electromyography sensors

were adhered to various lower limb and midsection muscles in order to detect the action

potential generated in the muscle. The sensor data was then fed into a K-nearest neighbor

algorithm in order to classify the motion being performed by the subject. Both the signal

quality and motion classification accuracy was compared using the method of traditional

sensor application with a textile embedded sensor suit using the same sensors sewn into a

commercial off-the-shelf garment.

For the advancement of biomimetic actuators, a bimorph shape memory alloy actuator

was designed and tested. This bimorph actuator was designed using the smallest diameter

of nitinol wire while minimizing length. These two qualities allow the shape memory alloy

to change temperature quickly while maintaining a low power consumption. The bimorph

actuator also allows for higher operational frequencies and increased displacement at the

actuator’s natural frequency. Bimorph actuators of various lengths were made and tested in

order to determine their natural frequencies and other dynamic characteristics.
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Chapter 2

Background and Literature Review

2.1 Wearable Robotics

The development of exoskeletons, active prostheses, and wearable robotics has increased

in recent years [1]. Exoskeletons can be divided into two classes: passive and active. Passive

exoskeletons, or those that do not consume power, attempt to reduce the metabolic cost of

certain activities performed by the wearer. Active exoskeletons, or those that do consume

power, are typically actuated by electric motors, hydraulic actuators, pneumatic actuators, or

a combination of these [2–7]. Many different control strategies have been proposed for active

devices [8]. Controlling the movement of an exoskeleton based on movement that has already

occurred (e.g., using data collected from inertial measurement units [IMUs]) requires reactive

control rather than predictive control. This is not ideal for exoskeleton operation because

this delay could hinder, rather than assist, the motion of the operator. Biological signals

generated by the operator, such as the electrical activity associated with muscle recruitment

collected using surface electromyography (EMG), are advantageous and can be sensed before

motion ensues. If processed fast enough, this information would allow an exoskeleton to

move in harmony with the operator, rather than lag behind due to latency. Previous studies

have used EMG to classify motions for active prostheses, such as pattern recognition in

arm prostheses [9–12], locomotion classification for lower limb active prostheses [13–17], and

motion classification for upper limb prostheses [18,19].
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2.2 Skeletal Muscles and Electromyography

Humans are made of three different types of muscles: smooth, cardiac, and skeletal.

Smooth muscles are responsible for the contraction of hollow organs, such as blood vessels.

Cardiac muscles compose the heart and produce rhythmic beating due to their intertwined

structure. Smooth and cardiac muscles produce involuntary motion. Skeletal muscles are

responsible for voluntary motions produced by humans, such as flexing and extending the

elbow joint. Skeletal muscles can only produce force while pulling and working in antagonistic

pairs to actuate a joint. An antagonistic pair is a pair of muscles where one contracts and

actuate the joint in the direction of which it pulls, while the other muscle relaxes/extends

and produces a force that resists the motion. An example of an antagonistic pair of muscles

in the human body is the biceps brachii and the triceps that produce flexion and extension,

respectively, about the elbow.

Skeletal muscles are organized in a unique way in order to optimize efficiency and power

production. Skeletal muscles are made of a combination of passive and active materials. The

muscle as a whole (such as the bicep brachii) is made up of fascicles. Fascicles are bundles

of 10-100 muscle fibers (muscle cells). The muscle fibers are made of bundles of myofibrils,

which consist of a series combination of sarcomeres. The main filaments of contraction,

actin and myosin, are housed in the sarcomere. Along with these structures that house the

active components of skeletal muscles, there are many elastic structures that hold the active

structures together. The epimysium surrounds the whole muscle. The perimysium surrounds

the fascicles. The endomysium separates individual muscle cells from one another in the

fascicle. While these elastic structures don’t contribute to the active component of force

generation of the muscle, they do provide structural support and passive force generation

when the muscle is extended beyond its resting length.

The process of muscle contraction begins when a nerve impulse reaches an axon terminal,

acetylcholine (ACh) is released. ACh diffuses to the receptors on the muscle fiber membrane

(sarcolemma) and Na+ channels open and allow Na+ to spread through the cell. This results
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in an action potential to spread over the sarcolemma and through channels in the muscle

cell called the transverse tubules. The action potential in the muscle cell is the signal that

is recorded during electromyography testing. The action potential causes a release of Ca+2

which binds to troponin resulting in the revealing of binding sites in the myofibril allowing

for contraction to happen between the thick and thin filaments.

The thick filament (primarily composed of myosin filament) and thin filament (primarily

composed of actin filament) are the primary contributors to the active force generation of

the skeletal muscles. The think filament is a bundle of individual myosin filaments. The

bundle consists of pairs of myosin filaments twisted together with the head extending off

the structure. The predominate theory on muscle contraction is called the sliding filament

theory. Once the binding sites are exposed on the actin filament, adenosine triphosphate

(ATP) causes the think filament to extend, bind to the thin filament and pull resulting in

a sliding motion of the two filaments over one another producing an overall contraction of

muscle length.

2.2.1 Traditional Surface Electromyography

The electromyography signal can be captured with both invasive and noninvasive tech-

niques. Invasive EMG, often times called needle EMG, involves sticking a needle like probe

into the belly of the muscle for data acquisition. This type of sensing technique is more accu-

rate than noninvasive EMG. However, the insertion of a needle into a muscle during dynamic

activities can cause discomfort and change the motion, and therefore the EMG signal, that

it is intended for capture. Noninvasive EMG, or surface EMG, sensors monitor the signal

on the surface of the skin. Surface EMG signals can be easily collected from the surface of

the skin [20, 21], but signal quality is highly dependent on the location of the sensor, the

tissue composition of the subject, and the skin preparation technique [22]. In order to use

surface EMG sensors, electrodes are adhered to the skin on the belly of the muscle being

monitored. While the sensor does add additional mass to the segment, there is considerably
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less discomfort during dynamic tasks compared to invasive EMG sensors. Since the signal is

measured on the surface, the signal is not as “clean” as invasive EMG. The action potential

that is generated in the muscle prior to contraction is propagated through the various layers

of muscle, skin, and fat until it reaches the electrodes of the sensor. These various anatomical

layers add resistance and, therefore, can change the signal. This propagation of the signal

through the skin also causes surface EMG to read signals from neighboring muscles. For

example, if a surface EMG sensor is placed to monitor the bicep brachii, the sensor could

pick up the EMG signal from the brachialis since both muscles run through the upper arm

in relatively similar locations. Invasive EMG does not have this problem as the electrode is

placed directly in the muscle of interest. Surface EMG sensors are also susceptible to motion

artifacts during dynamic activities. During dynamic activities, the skin can move relative

to the muscle. This causes a shift in the sensing area of the sensor resulting in a change

in signal characteristics. In order to remove motion artifacts from the actual signal, surface

EMG signals can be filtered in the post-processing stage. An example of raw EMG is shown

in Figure 2.1.

Traditionally, EMG sensors are adhered to the skin superficial to the muscle belly via

double-sided tape after the skin has been shaved, cleaned and abraded with an alcohol

wipe. The sensor is then wrapped with pre-wrap to ensure the sensor maintains contact

with the skin and to reduce the movement of the sensor as much as possible. This method

of application results in the most accurate surface EMG recordings of a single muscle, but

the application process adds substantial setup time, especially if a large number of muscles

are being monitored. This process can be a hindrance with EMG controlled prostheses and

wearable robotics as the operator may not have the time or technical knowledge to properly

apply all the EMG sensors that the device requires.
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Figure 2.1: Example of raw EMG data

2.2.2 Textile Electromyography

Alternatives to traditional EMG measurement techniques include array-based EMG

[23] and textile electrodes [19, 24]. EMG-embedded textile garments aim to circumvent the

drawbacks of traditional EMG. Many of these textiles are made by sewing conductive fibers

into the fabric to act as the electrodes. These fibers are typically used to collect the EMG

data from a group of muscles, whereas traditional electrodes monitor a single muscle. Since

these sensors are embedded in fabric rather than adhered to the skin, the sensors can move

relative to the skin causing movement artifacts to appear in the signal, which in turn may

change its characteristics. Previous studies have been conducted comparing the normalized

average rectified value (NARV) of EMG signals using traditional electrodes and textile-based

electrodes during isometric, low velocity activities [25], and highly dynamic activities [24].

The studies that considered isometric and low velocity activities observed good in-session

comparability between the two electrode designs. However, since the movements studied
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were isometric and low velocity, the possibility of movement artifacts due to the lack of skin-

to-sensor fixation was likely reduced. Colyer and McGuigan [24] compared the two methods

of EMG sensing during the dynamic activities of walking, running, cycling, and squatting.

They suggest that the two methods were comparable during lower activation levels, but

increased in variability as the activation levels increased.

2.2.3 Electromyography Signal Processing

In order for EMG data to be useful, it has to be processed from its raw state. Typically

the process involves rectifying, filtering, averaging, and then normalizing. The raw signal

(Figure 2.1) has both positive and negative values. However, only the magnitude of the

signal is of importance and not the direction (positive/negative). Therefore, the simplest

way of rectifying the signal is taking the absolute value. Once the signal is rectified, the

signal is filtered in order to remove any parts of the signal that are not the action potential

of the muscle such as movement artifacts. It is common practice to apply a 6th order

Butterworth bandpass filter with cutoff frequencies around 20 and 200 Hz. The part of the

signal associated with motion artifacts is the lower end of the frequency specturum which is

why the frequency components from 0 to 20 Hz is filtered out of the signal. The frequency

component of 200 Hz and above is filtered out to remove any high frequency noise. There is

variation of the cuttoff frequencies used in the published literature, but generally speaking

20 and 200 are the frequencies used in the filter.

This rectified and filter signal is then commonly averaged over a window of time. The

last step in processing is normalizing the signal. The raw signal is usually on the scale of

millivolts. The raw magnitude of the signal does not indicate anything about the level of

activation or give any valuable information about the action performed. As mentioned earlier

when using surface EMG sensors, the signal is propagated through various anatomical layers.

These layers change the magnitude of the signal depending on their thickness and various

properties. Therefore, depending on the person, the magnitude of the signal can be different if
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their anatomical layers are different despite the muscle producing similar forces. Therefore,

the signal needs to be normalized in order to compare across subjects and extract useful

information such as percent activation. There are numerous ways to normalize an EMG

signal. The most common is using a maximum voluntary isometric contraction (MVC). This

is done by having the subject activate the muscle as much as possible and applying a variable

resistance force in order to stop the joint from moving. For example, in order to achieve a

MVC for the bicep brachii, the subject will flex his arm as much as possible while a resistive

force is applied to the forearm in order to hold the angle between the upper arm and forearm

constant. An MVC needs to be recorded for each muscle used in the study and, therefore,

requires significant time to collect and also requires additional personal to apply the resistive

force. Another technique of normalizing is normalizing to a well-practiced activity such as

walking. This method is beneficial because normalizing data can be collected from multiple

muscles during a single trial. Since a motion like walking is well practiced, the EMG signal

for the muscles involved in this motion are consistent for that day.

2.3 Traditional Actuators

Robots have traditionally been actuated by electric motors, combustion engines, and

pneumatic/hydraulic actuators. These actuators have been well studied thus making these

actuators widely available, easily implemented, and have well defined control theories. How-

ever, these actuators typically have miniaturization problems, limited degrees of freedom,

and low strength to weight ratios. One of the biggest drawbacks of traditional actuators is

their low strength to weight ratios. This causes traditionally actuated robots to be bulky

and limits their usefulness. Along with a low strength to weight ratio, traditional actuators

have limited degrees of freedom. For example, a standard electric motor has just one degree

of freedom and it rotates about its axis. The motor is attached to a pin joint and rotates

one of the segments connected at the joint. In order to have multiple degrees of freedom at

a joint, additional motors would need to be used. Finally, traditional actuators can only be
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scaled down to a certain size. For example, an electric motor is made up of various parts

such as screws, wires and a circuit board. Therefore, a motor can only be scaled down to a

certain size depending on the sizes of its parts.

2.4 Soft Actuators

Recently, soft actuators such as ionic polymer-metal composites, shape memory alloys,

and dielectric elastomers have been developed as micro-actuators due to their excellent per-

formance at small scales [26–28]. These various types of soft actuators produce linear or

bending motion and can be molded to produce unique movements to emulate movements of

biological organisms, (eg., a human hand [29] and caterpillar [30]). Many of these actuators

perform well in aqueous environments leading to the development of biomimetic underwater

soft actuated robots (eg., jellyfish [31–33], turtles [34,35], and cuttlefish [36]).

Ionic polymer-metal composites (IPMC) are composed of an ionically conductive mem-

brane between two electrodes. The membrane contains the electrolyte, and, upon application

of a voltage, cations move from the anode to the cathode resulting in swelling of the cathode

and a bending of the actuator [37,38]. Dielectric elastomers (DE) are similar to parallel plate

capacitors with a compliant dielectric material between two electrodes. When a voltage is

applied to the electrodes, a resulting electric field creates an attracting force between the

two electrodes causing the dielectric material to decrease in thickness and increase in length

and width [39–41].

2.4.1 Shape Memory Alloys

Shape memory alloys (SMA) are metals that undergo a phase transformation based

on their temperature resulting in macroscopic strain [42, 43]. SMAs exhibit two working

principles, the shape memory effect and the pseudo-elastic effect. These principles produce

the same motion, but the motion is achieved by different means. The shape memory effect

is achieved by cycling temperature, whereas the pseudo-elastic effect is achieved by cycling
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stress. For actuation purposes, use of the shape memory effect is desired over the pseudo-

elastic effect since the temperature of the SMA is easier to manipulate than the stress on the

SMA. At low temperatures and low stress, the SMA is in its “twinned” martensite phase.

With the application of stress, the material is stretched into its “detwinned” martensite phase

(seemingly undergoing plastic deformation). Upon the application of heat, the material

will transform into the austenite phase and the material will recover the seemingly plastic

deformation and return to its short, compact structure. Substantial research and resources

have been invested into the construction of phase kinetic models and constitutive models

describing the behavior of SMA actuators while in use [44–50].

SMAs are an attractive actuator option compared to other types of soft actuators due to

their high strength to weight ratio, inexpensive cost, commercial availability, and small form

factor [51, 52]. Typically, SMA actuators are heated by resistive heating and are capable

of pulling payloads that are 500 times their own weight [53]. The most common shape

memory alloy is nickel-titanium (NiTi), commonly referred to as nitinol. In order to achieve

useful stroke and force generation, nitinol actuators are manufactured in the form of a wire

and trained to shorten in length (∼4%) as its temperature increases past the austenite

transformation temperature.

Composite SMA actuators aim to transform the linear motion of SMA actuators into

bending/twisting motions. The most common way that this is done is by creating a uni-

morph or bimorph structure. A unimorph actuator has a SMA layer coupled with a passive

noncompressible layer (commonly composed of a plastic such as polylactic acid). Since the

SMA is offset from the centerline, a shortening in the SMA wire (when heated) results in a

bending motion of the passive layer. As the SMA is cooled, the energy stored in the passive

layer as it is bent returns the unimorph to its original shape. A bimorph has two active layers

on both sides of a passive layer. The active layers work in antagonistic pairs to actuate the

bimorph. As the top layer is heated and contracted, the bottom layer is cooled (passively)

and lengthened. This causes the bimorph actuator to bend towards the top layer. Then,
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the bottom layer is heated while the top layer is cooled, which causes the bimorph to bend

towards the bottom layer.

Since SMA actuators rely on the temperature change of the actuator, their response time

is relatively slow compared to other types of soft actuators previously mentioned, which is a

major drawback of these actuators. However, recent research aimed at developing methods

of increasing the frequency of SMA actuators has been conducted, including using multiple

smaller wires [35] and using a wire with a diamond-shaped frame lattice cut by an ion

beam [54].

Song et al. developed a high frequency SMA bimorph bending actuator using multiple

small diameter SMA wires of various lengths with an acrylonitrile butadiene styrene (ABS)

passive layer [35]. They found that there was an increase in deformation length and angle

at certain frequencies and that the frequencies increased as the SMA actuator decreased in

length. However, they reported that their actuator required 50 watts or more for operation.

In order for high frequency and high displacement SMA actuators to advance the devel-

opment of biomimetic untethered robots, a low power and durable SMA bimorph actuator

needs to be developed.

2.4.2 Unimorph and Bimorph Actuators

Unimorph and bimorph actuator configurations have been used with multiple different

types of soft actuators. The main purpose of using one of these configurations is to augment

the strain and frequency of actuation. The focus of this thesis is shape memory alloys. Thus,

unimorph and bimorph configurations that use shape memory alloys will be investigated, but

it is worth noting that this principles can be applied to other soft actuators.

The unimorph actuator configuration is simply a passive material (such as PLA, ABS,

some type of metal or rubber) adhered to the active material (the SMA in the case) as shown

in Figure 2.2.
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Figure 2.2: Unimorph actuator design

The SMAs used in this paper are trained to shorten in length as they transform into the

austenite phase. Therefore, when the SMA layer deforms, the passive layer also deforms since

the ends of the two layers are constrained together and the passive layer is incompressible

(Figure 2.3). Once the SMA layer excitation signal is turned off and the SMA layer begins to

cool, the passive layer acts as the bias spring and pulls the active layer back into its original

state (Figure 2.2).

Figure 2.3: Unimorph actuator when deformed (Blue = SMA, Red = Passive layer)

The structure of the unimorph and bimorph actuator transforms the motion of soft

actuators and augments their strain. Traditional SMA acutators are trained to contract in

length when heated and have been reported as having 4-8% length change meaning that a

100 mm linear SMA actuator would only be capable of 4-8 mm of displacement. However,

SMAs in a unimorph or bimorph configuration have been shown to produce much more

displacement [32]. This is due to the constraints on the actuator. Since the SMA layer and

passive layer are adhered together on both ends, their radius of curvature will remain the

same when they bend.
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RSMA

RP

=
(1− ε)LSMA

LP

= (1− ε) (2.1)

RP = RSMA + d (2.2)

Where R is the radius of curvature, ε is the strain of the SMA, and L is the length (P

denotes quantities related to the passive layer). The two equations simplify to the following

relationship

RP =
d

ε
(2.3)

As the equation shows, in the unimorph configuration, the displacement becomes a

function of the strain from the active layer and the distance between the midline of the

active layer and the midline of the passive layer.

The bimorph configuration is similar to the unimorph configuration except that it has

an active layer on both sides of the passive layer (Figure 2.4).

Figure 2.4: Bimorph actuator design

The actuation cycle for a bimorph actuator is as follows:

1. One of the active layers (layer #1) is excited resulting in bending motion of the whole

structure in the direction of the excited active layer.

2. The excitation signal to layer #1 is stopped.
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3. The excitation signal to the other layer (layer #2) is started.

4. The structure bends towards layer #2.

5. The excitation signal to layer #2 is stopped.

In order to create an oscillatory response with a bimorph actuator, the cycle is repeated.

The bimorph actuator has many advantages compared to the unimorph actuator. Unimorphs

are limited to one direction of movement since the unimorph configuration has only one

active layer. Unimorph’s operational frequency is also slower than that of the bimorph. The

passive layer is responsible for returning the actuator from its actuated (bent) state to the

un-actuated (initial) state. Therefore, the operational frequency is dependent on how quickly

the passive layer pulls the active layer back to its initial state before the next actuation cycle

can begin. Conversely, bimorph actuators have two active layers that are alternatively excited

allowing one active layer to “pull” the opposing active layer out of its actuated state. The

antagonistic pairs of active layers allow bimorph actuators to be oscillated at the frequency

of excitation signal switching. However, since the bimorph actuator has two active layers, it

consumes more power than the unimorph.
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Chapter 3

Electromyography Clothing to Detect the Electrical Signal

in Muscles and Classify Motion

The focus of this chapter is the comparison of surface EMG applied in a traditional

manner (skin shaved and cleaned with alcohol with electrode taped to skin) and EMG

compressed to unprepared skin via a textile base suit built using commercial off-the-shelf

products. These EMG signals are then fed into a K-nearest neighbor classifier and used to

classify the motions of the wearer in order to advance exoskeleton control.

3.1 Subjects

A total of three (3) subjects were tested with the protocol described below. Various

anthropometric characteristics of the three subjects are shown in Table 3.1.

Table 3.1: Anthropometric values for subjects used in data collection.

Subject Height (m) Weight (lbs) Age (yrs)

1 1.75 145 25
2 1.72 140 33
3 1.71 183 25

Prior to participating in the study, all subjects provided written informed consent. All

subjects had no lower limb injury in the last six months, nor any history of adhesive allergies.

All study procedures were approved by the Auburn University Institutional Review Board.

3.2 Equipment

Gold-standard kinematic data was collected using a 10-camera motion capture system

(Vicon, Vantage V5 Wide Optics cameras, each with 22 high power IR LED strobe at 85
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nm; Vicon Motion Systems Ltd, Oxford Industrial Park, Oxford, UK), and ground reaction

force data was collected using two force plates (ATMI BP400600, 2000 lb. capacity; Ad-

vanced Mechanical Technology, Inc., Watertown, MA). Seventy-nine reflective markers were

placed on participants using double-sided tape using the Point Cluster Technique for maker

placement [55].

Continuous surface EMG (bandwidth 20-450 Hz, collected at 1111 Hz) and motion data

was acquired simultaneously and bilaterally using fourteen (14) Delsys Trigno IM sensors

that combine pre-amplified EMG electrodes with an IMU (accelerometer [148 Hz], gyroscope

[148 Hz], and magnetometer [74 Hz]; Delsys Trigno; Delsys Inc., Boston, MA). Each sen-

sor contained four silver bar contacts that allow for two differential EMG inputs with two

patented stabilizing references. The focus of this chapter is the comparison of surface EMG

applied in a traditional manner (skin shaved and cleaned with alcohol with electrode taped

to skin) and EMG compressed to unprepared skin via a textile base suit. As such, only the

EMG data from the Delsys sensors was analyzed and used to train the classification model.

The motion data from the IMU sensors was considered outside of the scope of this study,

and thus was not included.

For both traditional and suit-based testing, the EMG electrodes were located on the

surface of the skin directly over the bellies of the muscle listed below using published guide-

lines [56]:

• Gluteus maximus (one half the distance between the greater trochanter and the sacral

vertebrae at the level of the trochanter on an oblique angle, EMG #1 & 2).

• Biceps femoris (one fifth the distance from the gluteal fold to the bag of the leg, EMG

#3 & 4).

• Rectus femoris (one third the distance between the knee and iliac spine, EMG #5 &

6).
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• Gastrocnemius (just distal from the knee approximately 1-2 cm medial to the midline,

EMG #7 & 8).

• Tibialis Anterior (parallel to, and just lateral to the medial shaft of the tibia, at

approximately 1/3 the distance between the knee and ankle, EMG #9 & 10).

• Erector spinae (parallel to the spine approximately 2 cm lateral to the spinous process,

EMG #11 & 12).

• Rectus abdominus (approximately 2 cm lateral to the umbilicus, EMG #13 & 14).

These specific sensor locations were selected as they provide muscle activation infor-

mation associated with the initiation, maintenance, and inhibition phases of the activities

described in the experimental protocol described below. All raw EMG signals were digitized

at 1000 Hz using the Delsys EMGworks software. Finally, linear interpolation was used on

all sensor data that resulted in a rate of 2160 Hz for the development of the classification al-

gorithm to ensure the same number of data points for all signals collected. All data collection

took place in the Auburn University Biomechanical Engineering (AUBE) Laboratory utiliz-

ing Nexus software (Version 2.6.1) and a Lock+ Sync Box (Vicon) to ensure synchronicity

of all collected data.

3.3 Sensor Embedded Garment.

For the sensor-embedded textile EMG testing, a suit was created using an Under Ar-

mour compression shirt and pants (Under Armour, Baltimore, MD). A custom textile-sensor

interfacing clip was constructed in Solidworks and 3D printed in polylactic acid (PLA). The

clip (shown in Figure 3.1) was designed to allow the Delsys Trigno sensors to attach and

detach from the suit to be charged between uses.

Surface EMG signals are highly sensitive to the placement of the sensor in relation to

the desired muscle. In order to achieve optimal sensor location, the garments were initially
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Figure 3.1: Model of 3D printed sensor-textile interface clip

put on by Subject #1 (Reference Subject) and the locations of the muscles of interest were

marked on the garments. The clips were then sewn into the compression garment at the

corresponding markings (Figure 3.2). This suit was tailored to Subject #1, but used for all

other subjects in the study. Therefore, this initial process of locating and marking of the

muscles was only done once at the beginning of the data collection process for Subject #1.

All other subjects were instructed to put on the sensor-embedded garment as they would

normal clothes.

(a) front (b) back

Figure 3.2: Under Armour compression suit outfitted with sensor-textile interfacing clips

3.4 Sensor Embedded Textile Testing.

This test session utilized the Delsys EMG sensor-embedded compression suit for EMG

data collection. The subject was asked to put on the sensor embedded textile suit and then
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a researcher inspected the location of the EMG sensors to ensure that each sensor was at

the relatively correct location for the corresponding muscle. Once this initial inspection was

complete, there were no other inspections to correct any movement of the sensors during the

dynamic trials. It is also worth noting that EMG data collected with the suit was always

completed first before any shaving of the skin or other skin preparation was done. This

simulates undesirable conditions for operation in the suit since there is still hair and dirt

that can affect the contact of the sensor embedded EMG electrodes and the skin.

Once the subject put on the EMG-embedded suit, motion capture markers were adhered

to the suit. Motion capture data was used to determine the beginning and end of the various

tasks performed by the subject. The subject was then asked to perform nine tasks with

three trials per task. The order in which the tasks were performed was randomized for each

subject using a permutation generator that generates the order of the actions using the built

in random number generator in MATLAB. The tasks were as follows:

1. Walking (W): Subject walked across the laboratory space at a self-selected speed.

2. Running (R): Subject jogged across the laboratory space at a self-selected speed.

3. Backwards Walking (BW): Subject walked backwards across the laboratory space at

a self-selected speed while carrying a simulated “gun” (polyvinyl chloride (PVC) pipe,

2 inch diameter, 36 inch long) held in the “ready to shoot” position.

4. Gun Walk (GW): Subject walked across the laboratory space at a self-selected speed

while carrying a simulated “gun” held in the “ready to shoot position.

5. Gun Run (GR): Subject jogged across the laboratory space at a self-selected speed

while carrying a simulated “gun” held in the “ready to shoot position.

6. Pivot Left (PL): Subject walked towards the center of the laboratory space, planted

with their left foot, turned to the right and walked to the edge of the lab space,

performed with “gun” held in “ready to shoot” position.
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7. Pivot Right (PR): Subject walked towards the center of the laboratory space, planted

with their right foot, turned to the left and walked to the edge of the lab space,

performed with “gun” held in “ready to shoot” position.

8. Angled Reversal and Return (ARR): Subject walked towards the center of the labo-

ratory space, planted with their right foot, walked backwards three steps at an angle

of approximately 45◦ to initial progression, then walked forward through the center to

the edge of the laboratory space, performed with “gun” held in the “ready to shoot”

position.

9. Walk to Kneel (K): Subject walked towards the center of the laboratory space, dropped

into a kneeling position, then rose to continue walking across the laboratory space,

performed with “gun” held in the “ready to shoot” position.

These tasks were chosen as common actions that a soldier would perform in the field

while in combat since the objective is to develop motion classification capabilities for a

combat-ready exoskeleton.

3.5 Traditional Testing.

After the EMG-embedded suit testing, the subject took off the suit and the same Delsys

EMG sensors were adhered to the subject. First, the muscle bellies of the muscles previously

listed were identified and the area was shaven, cleaned and abraded with an alcohol wipe

before the EMG sensor was adhered with double-sided tape. The sensor was then wrapped

with pre-wrap to maintain compression and contact with the skin during the various tasks.

Once the sensors were applied to the subject, motion capture markers were again placed at

various anatomical positions as to determine beginning and end of the tasks. The same nine

tasks previously listed were again performed three times each with the traditional approach.

The same random permutation generator was used resulting in a different task order. This

testing was done immediately after the sensor-embedded textile testing.
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3.6 Second Sensor Embedded Textile Testing.

The same subjects were invited to the laboratory for a second round of suit testing on

another date following the initial data collection. The protocol for this round of testing was

identical to the sensor-embedded textile testing previously described. The order of the tasks

were again randomized and the same suit was used from the first round. The second day

of suit testing was used to compare the day-to-day repeatability of the suit designed in this

study.

3.7 Signal Processing

For signal analysis, the EMG data was processed in MATLAB R2017a (MathWorks,

Natick, MA). Each trial was first shifted to a zero mean, rectified, and filtered with a 6th

order low pass Butterworth filter with a cutoff frequency of 15 Hz. The signal was then

averaged over the length of the trial to yield the average rectified value. Since EMG signals

across participants can be highly variable due to physiological differences, the mean average

rectified value of the EMG signal during the three walking trials for each participant was

used to normalize the values of the other eight actions. This produced a normalized average

rectified value (NARV) per muscle, per task performed. Using the walking EMG data as the

method of normalization has been shown effective in comparing inter-subject EMG data [57].

For motion classification, the algorithm was written in Python. Confusion matrices were

created to illustrate percent correct and incorrect motion classifications while providing an

overall accuracy.

3.8 Analysis

Descriptive statistics (mean and standard deviation) were used to describe the tradi-

tional and sensor embedded textile measurement techniques measured on the same day.
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Bland-Altman plots were used to determine bias between the measurement techniques as

well as limits of agreement.

In order to classify the above actions, a K-Nearest Neighbor (K-NN) classifier was

developed using a custom distance function. A key piece to this classification algorithm is

the definition of the distance between two sensor collections, which is then utilized by the

classifier to determine the similarities between two signals. Since the classification algorithm

itself is not the subject of this paper, the details of the distance used for the classification

algorithm are in Appendix A. In short, the distance function is the sum over all sensors of

the l1 distance (or taxicab metric) between each collection at the sensor divided by the sum

of the l1 norm of each collection at that sensor as a normalization.

Informally, the goal of this classifier was to compare a slice of unknown movement data to

each of the known sensor collections and find the “closest example” of known measurement.

For example, a given 50 ms slice of EMG data for an unknown action was compared to

the “walking” training EMG signal to determine the place that minimizes that distance.

However, this was completed for all sensors simultaneously to find the shift that minimizes

the distance of all the signals at once. Then, comparing the distance for each action, the

algorithm classified the most likely match. Formally, the K-nearest neighbor classifier (with

K = 10) is defined with training data consisting of 50 ms slices of data each labeled by their

known actions. The distance alluded to above is the definition of “nearest” in this context.

For all results shown below, a 3-fold cross validation was performed of the models using two

trials to train and the remaining data as the test set. In order to create the training set,

50 ms worth of data at 5 ms intervals were extracted within each of the training samples.

The test samples were then 100 randomly chosen 50 ms windows from each test trial. 50

ms windows of data was chosen because it was found that the acceptable lag between the

EMG signal and movement is 300 ms based on empirical analysis [58].
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3.9 Results

The NARV and the standard deviation for the traditional electrode, textile electrodes

collected on the same day, and textile electrodes collected on a different day are shown in

Figure 3.3. The NARV collected by the traditional electrode was generally higher than

the textile electrode. The differences between the NARV of the measurement techniques

typically becomes larger for higher activation movements such as “run” and “gun run”.

Coefficients of variation were used to interpret the variability between the traditional

electrodes and textile embedded electrodes collected on the same day (Figure 3.4). The

sensors on the gluteus maximus, erector spinae, and rectus abdominus show high variability

when measured by the sensor-embedded textile EMG compared to the traditional EMG.

Bland-Altman plots were generated to assess bias of the NARV for two cases: (i)

the traditional EMG sensing technique and the sensor-embedded technique and (ii) sensor-

embedded sensing on two different days (Figure 3.5). The difference between the NARV of

the measurement techniques was plotted vs the mean NARV of the measurement techniques

for all activities except “walking” since “walking” served as the normalization method. Due

to the higher variability of the sensors located at the gluteus maximus and rectus abdomi-

nus, these sensors were excluded from this analysis so that loss of contact occurring at these

sensor sites did not skew the results. This analysis showed a bias of 0.864 NARV (2SD limits

of agreement = ± 9.032) towards the traditional EMG for Figure 3.5a and a bias of 0.017

NARV (2SD limits of agreement = ± 4.496) towards the sensor-embedded EMG collected

on the second day for Figure 3.5b. The cone-shaped distribution of the data suggests that

as the activation level increases (e.g., the mean of measurement increases) the difference

between the techniques also increases.
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Figure 3.3: Normalized average rectified value (NARV) EMG for the nine actions
performed during testing. Black - traditional electrode, Gray - suit collected on same day,

White - suit collected on different day.
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Even though the coefficients of variation were high with the textile embedded sensors,

the motion classification was highly accurate for training and testing across all three subjects.

The classification algorithm was more accurate using the traditional electrodes (accuracy of

92.7%, 87.3%, and 79.9% for Subjects #1, 2, and 3 respectively) compared to the textile

electrodes (accuracy of 90.4%, 80.4%, and 79.41% for Subjects #1, 2, and 3, respectively)

as shown in Figure 3.6-3.7.

The accuracy of the algorithm substantially decreased when training with traditional

electrodes and testing with textile-embedded electrodes to 54.6%, 18.6%, and 19.2% for

Subject #1, 2, and 3 respectively. Accuracy decreased further when training with textile

electrode data and testing on traditional data to 49.6%, 13.2%, and 29.5% for Subject #1,

2 and 3 respectively. For the latter case, the algorithm predicted only one or two actions

accurately for the majority of the time.

Additional training and testing procedures were conducting using data from different

participants, such as training using traditional electrode data from Subject #1 and testing

using traditional electrode data from Subject #2. The results of the different test configu-

rations are summarized in Table 3.2 with the diagonal of the table’s values being the results

of training and testing with the same subject’s data repeated from Figures 3.6-3.7. These

results suggest that cross-participant usage of training and testing data results in decreased

accuracy of the classification algorithm. Due to the low accuracy of the motion classification

algorithm of cross measurement techniques (e.g., training with sensor-embedded textile and

testing with traditional), cross participant cross measurement technique classifications were

not run resulting in the blank spaces in Table 3.2.

All subjects were brought back for a second round of testing using the sensor-embedded

garment. The set of data from the first collection was used to train the classification algo-

rithm and the set from the second round was used for testing resulting in an accuracy of

36.8%, 22.7%, and 35.3% for Subjects #1, 2, and 3 respectively (Figure 3.8).
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Figure 3.4: Mean percent coefficient of variation (%CV) for each muscle for each activity
(SD) for traditional measurement technique and sensor embedded textile technique (Black

- traditional on left side of the body, Dark Gray - textile on left side of the body, Light
Gray - traditional on right side of the body, White - textile on the right side of the body.
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(b) Sensor-Embedded on Different Days

Figure 3.5: Bland-Altman plots for (a) traditional EMG compared to sensor-embedded
EMG and (b) sensor-embedded EMG compared across two days.

Table 3.2: Motion Classification Accuracy for Cross Participant Tests (# indicates which
subject used, T = Traditional electrode, S1 = Suit Electrode collected same day).

Testing Set
#1 T #1 S1 #2 T #2 S1 #3 T #3 S1

T
ra

in
in
g
S
e
t #1 T 92.7 54.6 32.8 36.0

#1 S1 49.6 90.4 22.4 25.6
#2 T 27.4 87.3 18.6 26.1
#2 S1 15.6 13.2 80.4 11.6
#3 T 32.9 26.0 79.9 19.2
#3 S1 28.0 26.9 29.5 79.4

3.10 Discussion

The goal of this study was to evaluate the efficacy of an EMG-embedded textile garment

for the use of motion classification based on myoelectric activity using commercially available

EMG sensors and garments. Previously developed textile EMG sensors have been used to

capture the myoelectric activity of a muscle group, such as the hamstrings, whereas the textile

presented here aims to capture the activity of a specific muscle using commercial, off-the-

shelf products. This study has shown that the NARV collected by the suit was comparable

to that collected by the traditional electrode set-up for certain muscles being measured

(biceps femoris, rectus femoris, tibilias anterior, and gastronemius). As expected, the signals
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(a) Subject #1

(b) Subject #2

(c) Subject #3

Figure 3.6: Confusion matrix showing motion classification accuracy (%) using sensor
embedded textile electrodes for training and testing.

were the most comparable for activities involving lower activation levels such as walking

and kneeling. For higher activation actions, such as run, the difference in the magnitudes

of the NARV were larger and the percent coefficient of variation was substantially higher
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(a) Subject #1

(b) Subject #2

(c) Subject #3

Figure 3.7: Confusion matrix showing motion classification accuracy (%) using traditional
electrodes for training and testing.

for the sensor-embedded textile electrodes. This is also illustrated in the Bland-Altman

plots as the difference between the measurement techniques increases as the mean increases

resulting in the fan-like shape (Figure 3.5). This may be attributed to the higher potential
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(a) Subject #1

(b) Subject #2

(c) Subject #3

Figure 3.8: Confusion matrix showing motion classification accuracy (%) using
sensor-embedded garment data collected on different days for training and testing.

for movement of the sensor relative to the skin causing motion artifacts to be present in the

signal along with poor connection between the sensor and skin. The gluteus maximus, rectus

abdominus, and erector spinae showed the most variability among the monitored muscles.
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The rectus abdominus and erector spinae sensors are located in the shirt component of the

textile suit. The suit was custom made for one of the subjects (Subject #1), but used by

two others to test its performance on subjects of similar size. Due to different physiological

aspects of the subjects, the shirt was looser in the areas of the rectus abdominus and erector

spinae for the subjects for which the suit was not custom fitted. This led to decreased sensor

contact, especially during higher velocity activities, likely contributing to an increase in signal

variability. This indicates the need for properly fitted textiles for use of this technology.

Overall, the motion classification algorithm was highly accurate when training and test-

ing using the same type of electrode for the same subject. There were misclassifications when

using textile and traditional electrodes, but some of these misclassifications may be mislead-

ing. For example, in Figure 3.6, 35.33% of the “gun run” actions were classified as “run”

predictions for Subject #2. This is a misclassification, but only a minor distinction, holding

a PVC pipe while performing the running action in “gun run” trials, was present. Since the

majority of the EMG sensors were placed on the lower extremities, it is likely that the EMG

data during “run” is very similar to that of “gun run” leading to a misclassification. A similar

misclassification occurs between the “walk” and “gun walk” trials. Again, the only difference

between these two actions was carrying a PVC pipe in the “gun walk” action. This paper

focuses on macro actions of the operator (motions that involve movement of multiple joints

e.g., walking), but some of the actions performed by the subjects are combinations of other

bulk motions. For example, the “angled reversal and return” motion is a step forward, slight

pivot to the subject’s left side, two steps back, and then a walk forward. Since the action at

any one point in the “angled reversal and return” could demonstrate similar characteristics

of one of its components over a 50 ms window used in testing the motion classification, this

motion could easily be misclassified as one of its components. This is illustrated in Figure 3.7

for Subject #3 where the classification accuracy for “angled reversal and return” was 90.7%,

but the motion was classified as “walking” (2.7%), “backwards walking” (4.7%) and “pivot

left” (1.3%). Even though these classifications were stated as incorrect, the algorithm could
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have been correctly classifying what the subject was doing for the 50 ms during the testing

sample. This may indicate a need to classify smaller motions that can be combined to form

an overall bulk motion, such as classifying knee flexion/extension, hip flexion/extension, hip

abduction/adduction, and ankle dorsiflexion/plantar flexion combined into a walking mo-

tion. This could potentially eliminate possible misclassifications between “angled reversal

and return” and walking/backwards/pivot by simply classifying the motion of certain joints.

Cross-participant motion classification training and testing tests such as training using

textile electrodes from Subject #1 and testing using textile electrodes from Subject #2 were

also performed. The overall accuracy of the motion classification algorithm for each of these

test cases was lower compared to the test cases using the same subject’s data for training

and testing (Table 3.2). This highlights the importance of custom calibration data for each

intended user as the algorithm as currently designed is not transferable to subjects with a

lack of training data, but the physical suit developed in this study was transferable to other

people of similar size to the reference subject. Inter-day testing and training produced poor

motion classification accuracy (Figure 3.8). Misclassifications between similar activities such

as “run” and “gun run” produce an even greater decrease in accuracy. This also highlights

the need for motion classification at the joint level rather than the bulk motion level. The

addition of more EMG sensors located on the upper extremities would also likely increase

the overall accuracy and help distinguish between actions like “run” and “gun run”.

The limitations of the study include the small sample size of participants used for testing

due to the exploratory nature of the study. The classification algorithm was also limited to

the nine actions listed in the Methods section that are specific to combat. Many of those

actions are low velocity and are similar to that of walking. The difference between the

NARV of the sensor embedded suit and traditional set-up grew as the velocity of the action

increased. This could pose a potential problem if additional higher velocity actions were

included in the classification algorithm. The algorithm is also limited to only working for

motions that have training data.
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Ongoing work involves exploring implementing a more flexible sensor-textile clip (rather

than a PLA clip) that would allow the suit to be more durable and conform better to the user.

In addition, more compression in the suit would decrease the amount of variability in the

sensors resulting from lack of contact and movement between the sensor and skin. Additional

sensors will be added to the upper body in order to distinguish between certain actions in

addition to continuous improvements of the motion classification algorithm accuracy. This

will also allow the motions classified in the algorithm to be expanded to include upper body

motions. The Delsys sensors also contain IMU data. However, the focus of this paper

was the integration of a EMG sensor into a compression garment for the purposes of motion

classification so the IMU data was not included in this analysis, but the addition of IMU data

in the motion classification algorithm would likely increase the accuracy of the algorithm.

Future work will also focus on improving classification accuracy when training and testing

data are collected on different days.

In conclusion, the EMG embedded textile developed in this study utilized a commercially

available EMG sensor attached to a commercially available compression garment via a 3D

printed sensor-textile clip. The NARV of the EMG signal collected via the sensor-embedded

garment was shown to be comparable to traditional EMG placement for the biceps femoris,

rectus femoris, tibilias anterior, and gastronemius. The gluteus maximus, erector spinae, and

rectus abdominus were not comparable for the two sensing types, likely due to movement

artifacts and loss of contact with the sensing area. The variability and difference in NARV

between the sensor-embedded garment and traditional sensing techniques were larger for

higher velocity motions. However, the sensor-embedded garment was also shown to produce

accurate motion classification results (mean accuracy = 83.4%; SD = 6.08%) compared to

traditional EMG placement (mean accuracy = 86.6%; SD = 6.43%) for data tested on the

same day as data collected for training over various actions determined to be operationally

important to the development of exoskeletons for soldiers.
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Chapter 4

Vibratory Response Characteristics of High Frequency

Shape Memory Alloy Actuators

The focus of this chapter is the development of a high frequency and high deformation

shape memory alloy actuator using a bimorph configuration. This actuator can be applied

to robots that mimic the motion of biological creatures.

4.1 Actuator Design

A SMA actuator was designed and manufactured using a bimorph structure in order to

achieve high frequency motion. The active layers of the actuator consist of 37.5 µm SMA

wire (Flexinol, Dynalloy, Irvine, CA), which is adhered in a rectangular layer of 3D printed

thermoplastic polyurethane (TPU, Polymaker, Savannah USA). The SMA wires were routed

along the length on the top and bottom of the TPU layer and electrically connected at one

end as shown in Figures 4.1-4.2. In order to achieve low power consumption, the actuator

design consisted of one wire routed from the base to the tip and back to the base, which

allows all electrical connections to be placed on the base of the actuator, leaving the tip free of

any additional mass from crimping and wiring connections that could affect the motion. The

SMA wires were held in place by a layer of room-temperature-vulcanizing silicone (RTV).

The top and bottom SMA wires were electrically isolated due to the geometry of the

bimorph structure, allowing for independent heating/contraction of each side. TPU and RTV

silicone was selected for this actuator design since both have an operational temperature

encompassing the operational temperature of the SMA wire (20-100◦C). TPU and RTV

also allow the actuator to be extremely flexible and durable compared to a SMA bimorph
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Figure 4.1: Bimorph SMA actuator with TPU substrate and RTV silicone coating (CAD
Model - Top View)

Figure 4.2: Bimorph SMA actuator with TPU substrate and RTV silicone coating (CAD
Model - Side View)

actuator with a hard plastic passive layer, such as acrylonitrile butadiene styrene (ABS) or

polylactic acid (PLA).

As the goal of this study was the evaluation of the dynamic performance of a SMA

bimorph actuator while trying to minimize power consumption and maintenance, the mate-

rials were not optimized for heat transfer properties. The TPU substrate had a width of 6

mm and a thickness of 0.4 mm. The width of 6 mm was used for manufacturability of the

actuator. The displacement of unimorph and bimorph actuators are functions of the strain

of the active layer and the distance of the midline of the active layer to the midline of the

passive layer [31]. As such, thickness of the TPU passive layer was minimized to achieve

high displacement.

Actuators of various lengths (20, 25, 30, 35, and 40 mm) were tested at various peak

current inputs (110, 120, 130, and 140 mA) to determine the natural frequency and dis-

placement characteristics of the proposed SMA actuators. Figures 4.3-4.4 show one of the

manufactured actuators used in this study. The actuators were colored black in order to aid

in point tracking during testing.

4.2 Electrical Excitation

Oscillatory motion of the actuator was achieved by alternating excitation of the two

active SMA layers by a sine wave current (Figure 4.5). A sine wave current input was used
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Figure 4.3: Bimorph SMA actuator with TPU substrate and RTV silicone coating and
motion tracking markers (Top View)

Figure 4.4: Bimorph SMA actuator with TPU substrate and RTV silicone coating and
motion tracking markers (Side View)

in order to reduce the effects of a sudden impulse on the system when the current was

redirected between the SMA layers.

Figure 4.5: Sine wave voltage to oscillate actuator
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The amplitude of the current was varied in order to determine the actuator perfor-

mance and dynamic characteristics at different current inputs. A microcontroller was used

to control the current and frequency of oscillations via an H-bridge circuit powered by a

0-30 Vdc power supply (BK Precision 1671A). High frequency motion results from the abil-

ity of the bimorph to be alternatively activated in opposing directions, which negates the

necessity of cool down time that would otherwise be present for the actuator to return to

the starting position. During actuation, one side of the bimorph is heated while the other

side experiences no current input for a specified time. Then, the current is redirected to the

other side of the bimorph actuator and heats the other SMA wire resulting in an oscillatory

response. Experimental testing was conducted by first actuating at a frequency below the

natural frequency, and then quasistatically increasing the frequency until it was above the

natural frequency, as determined by previous trials. Since SMA wires can be damaged due

to overheating resulting in a decrease in strain, the actuators were not tested at frequencies

significantly lower than their natural frequency where overheating would be more likely.

The actuator was tested at 110, 120, 130, and 140 mA. These current values indicate

the amplitude of the sine wave current input used to electrically excite the actuator and will

be referred to as peak current input throughout the rest of the paper.

4.3 Equipment

An Edgertronic SC2+ camera (Sanstreak Corp., San Jose, CA) was used to collect

kinematic data at 1000 frames per second by circular markers at the base (non-moving)

and tip (moving) to track the movement of the actuator. The SMA actuator is realized as a

cantilever, with one end fixed and the other end free. MATLAB was used for image processing

to calculate the tip displacement of the actuator with respect to its initial position, allowing

for the determination of the displacement of the actuator at the corresponding operating

frequency. In addition to computer vision motion tracking, a slow-speed infrared camera

was used to monitor the temperature of the actuator during actuation. The thermal camera
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Figure 4.6: Temporal response of a 30 mm actuator with a 120 mA peak current frequency
sweep.

was mounted in the plane of the actuator, so that it recorded the temperature of one of the

top sides shown in Figure 4.2. The camera was used to verify that the actuator returned to

room temperature before each trial. This was done to ensure that the initial temperature

was the same for each trial.

4.4 Dynamic Characteristics

For a 30 mm actuator, the displacement is plotted against time using the high speed

photogrammetry data (Figure 4.6). It shows that the actuator does experience resonance,

as there is a substantial increase in displacement at a particular frequency. This agrees with

the findings of previous studies [35].

The temporal displacement data was transformed into the frequency domain to show

average displacement at excitation frequency. This data was then used to curve fit a modal
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frequency response function (Equation 4.1) in order to determine the approximate spring

constant, damping factor, and natural frequency of the actuator [59].

| G(Ω) |= 1

k
√

(1− Ω2)2 + (2ζΩ)2
(4.1)

A least-squares nonlinear curve fit was used in MATLAB to fit the experimental data

to the modal equation. For example, the results of the curve fit for the displacement data

shown in Figure 4.6 can be seen in Figure 4.7.
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Figure 4.7: Response of 30 mm actuator with 120 mA current frequency sweep

The experimental data and estimated frequency response curve can be seen for each

actuator length tested at each current input level of 110, 120, 130, and 140 mA in Figures 4.8-

4.11. Displacement of the actuator was measured as the one dimensional displacement of

the tip of the actuator from the neutral (un-actuated) initial position. The data shows that

maximum displacement increases with increasing peak current input; in addition, the natural

frequency increases with decreasing actuator length.
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Figure 4.8: Displacement vs operating frequency for various actuator lengths at 110 mA
excitation current

The peak current input and actuator length had an effect on both the natural frequency

and displacement characteristics of the SMA bimorph actuator described in this paper as

shown in Figure 4.12. For actuators of the same length at different peak current inputs,

the natural frequency had an approximate linear change of 0.08, 0.06, 0.10, 0.10, and 0.02

Hz/mA for actuators of length 40, 35, 30, 25, and 20 mm, respectively. The displacement

for the 25 mm actuator ranged from 1.12 to 2.54 mm for all peak current input levels. The

relatively small difference in displacement resulted in the small difference between natural

frequencies at various peak current input levels for this actuator length.

In the small-angle cantilever beam model (Equation 4.2), the natural frequency is in-

versely proportional to the cubed length. The actuator in this study showed similar char-

acteristics in that the natural frequency is inversely proportional to the length raised to the

-2.15, -2.24, -2.43, and -2.48 power for 110, 120, 130, and 140 mA, respectively.
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Figure 4.9: Displacement vs operating frequency for various actuator lengths at 120 mA
excitation current

Maximum displacement increased proportionally with actuator length. Similar to the

change in natural frequency at different peak current input levels, the maximum displacement

changed linearly at 5.96, 4.93, 3.13, and 1.88 mm displacement/mm length (slope of the

displacement versus actuator length in Figure 4.12). As the peak current was increased, the

slope of the max displacement versus actuator length shown in Figure 4.12 increases by 0.14

mm/mA.

The estimated frequency function curve approximated the spring constant and damping

factor for the system. The values can be seen in Figures 4.13-4.14. The damping factor

increased with the cube of the peak current. The approximated spring constant decreased

with increasing peak current. The amount of change depended on the length of the actuator.

For the 20 mm actuator, the spring constant decreased from 6.28 N/m at 110 mA to 1.72

at 140 mA. The negative slope in approximated spring constant and damping ratio is likely

caused by a combination of viscoelastic properties of the passive TPU layer and change in
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Figure 4.10: Displacement vs operating frequency for various actuator lengths at 130 mA
excitation current

material properties due to the increase in temperature of the actuator since more current is

being applied.

4.5 Modeling

Natural frequency modeling of cantilever beams is well studied and can be modeled by

Equation 4.2 [59], assuming a cantilever beam with a rectangular cross section and homoge-

neous material. This model can potentially be used to predict the natural frequency of the

actuator since the actuator designed in this study oscillates like a cantilever beam and the

natural frequency of the actuator was shown to trend similarly to a cantilever beam as the

length of the beam changes.

fn =
1

2π

√
Ewh3

4ml3
(4.2)
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Figure 4.11: Displacement vs operating frequency for various actuator lengths at 140 mA
excitation current

However, this simple cantilever beam does not accurately model this actuator since it

is made up of 3 different materials (SMA, RTV, and TPU). In order to account for all the

materials, the rule of mixtures was used to estimate an equivalent elastic modulus of the

actuator (Equation 4.3). The equivalent elastic modulus was used in Equation 4.2 with the

overall cross sectional dimensions and mass of the actuator.

Eequiv = Esmaνsma + Etpuνtpu + Ertvνrtv (4.3)

To compare with these previous two analysis, an equivalent cross sectional area, which

allows the system to be modeled as one material while maintaining the stiffness of the original

system, was also employed. This is done by scaling the widths of the materials based on

the ratio of their elastic moduli compared to the elastic modulus of the “parent” material

(the material into which the other materials are being “transformed”). This calculation was
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Figure 4.12: Natural frequency and max displacement of actuators at various lengths and
current inputs.
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Figure 4.13: Damping factor of actuators at various lengths and current inputs.
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Figure 4.14: Spring constant of actuators at various lengths and current inputs.

done using TPU as the parent material. After the transformation, the moment of inertia was

calculated and used to determine the spring constant and natural frequency of the system.

In order to verify and compare the various models, an ANSYS modal analysis was

used to determine the natural frequency of the system based on the 3D model shown in

Figures 4.1-4.2. Fixed supports were added to one end while the other remained free. The

results of the standard cantilever beam equation, rules of mixtures, and equivalent area are

shown in Figure 4.15 along with the experimental and simulation results.

The simulation was the most accurate with a percent difference of 5.6%. The equivalent

area and rule of mixtures had a percent difference of 6.5% and 21.1% respectively.

4.6 Power Consumption

In order for untethered, soft actuated robots to become increasingly more useful and

available, they need to have a power consumption that is capable of being generated by a
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Figure 4.15: Natural frequency system identification using rule of mixtures and cantilever
beam equations compared to experimental (at 110 mA peak current input) and ANSYS
results.

battery pack. Since a sine wave was used for the current input to the system, the root mean

square value was used to calculate the power consumption of the actuator using the following

equations:

Irms =
Ipeak√

2
(4.4)

P = I2rms ·Rsma (4.5)

Determining the resistance of the SMA wire is challenging due to the fact that the material

properties of the SMA change as it is transformed from martensite to austenite and back to

martensite. The resistivity of Flexinol SMA wire is 80 µΩcm in the martensite phase and

100 µΩcm in the austenite phase. Various mixture models have been proposed in order to
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model the material properties while the material is transforming phases, but, for simplicity,

a constant resistance was assumed and the resistance of the SMA in its resting state was

measured and used for power consumption calculations (Table 4.1).

Table 4.1: Resistance (Ω) for the actuator lengths tested.

Length (mm) Resistance (Ω)

45 79.9

40 65.2

35 56.1

30 45.7

25 38.1

Using Equations 4.4-4.5, the power consumption for the actuators tested was calculated

and shown in Table 4.2. The power consumption ranged from 0.23 watts for the shortest (20

mm) actuator at the lowest current tested (110 mA) to 0.78 watts for the longest (40 mm)

actuator at the highest current tested (140 mA).

Table 4.2: Power Consumption

Length 110 mA 120 mA 130 mA 140 mA

40 mm 0.48 W 0.58 W 0.68 W 0.78 W

35 mm 0.39 W 0.47 W 0.55 W 0.64 W

30 mm 0.34 W 0.40 W 0.47 W 0.55 W

25 mm 0.28 W 0.33 W 0.39 W 0.45 W

20 mm 0.23 W 0.27 W 0.32 W 0.37 W

4.7 Discussion

The actuator designed here used a simple rectangular piece of thermoplastic polyurethane

and commercially available nickel-titanium shape memory alloy wires adhered together with
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room-temperature-vulcanizing silicone into a bimorph configuration. The bimorph config-

uration allows for an increase in displacement and operating frequency compared to linear

SMA actuators. For a 40 mm linear actuator, the typical 4% of displacement would result

in 1.6 mm of movement. However, the 40 mm bimorph actuator presented in this paper

was shown to achieve one-sided displacements of 26.4 mm from its initially straight posi-

tion resulting in a total deformation of 52.8 mm (132%). Previous studies have shown a

40 mm SMA bimorph actuator to be capable of ∼80 mm displacement (∼200%), but at a

considerably higher power consumption (>50 Watts) [35].

Along with displacement, the operating frequency of a SMA bimorph actuator is higher

than traditional linear SMA actuators. Since SMAs rely on a temperature change to achieve

their length change, their operating cycle is typically limited to how fast they are passively

cooled. SMA actuators that rely on free convection for cooling are commonly reported with

maximum operating frequencies of < 3 Hz. The bimorph SMA actuator that consists of

antagonistic pairs, allow the opposing SMA layers to “pull” the actuated SMA layer out of

its strained state. Since this configuration does not rely on cooling, it can achieve much

higher operating frequencies. The 25 mm actuator tested in this study showed an operating

frequency of 27.3 Hz while maintaining a displacement of 15.7 mm resulting in a 62.8%

length change of the actuator. Both of these values are significantly larger than traditional

SMA linear actuators.

As the current input was varied in the actuator, the displacement and natural frequency

changed. This was likely due to the increase in strain rate of the actuator. When a higher

amount of power is input into the actuator, the SMA wire transforms from martensite to

austenite at a faster rate. This causes an increase in the bending velocity of the actuator,

which causes an increase in momentum as the actuator bends. This momentum contributes

to the increase in displacement as the peak current input is increased. TPU, which is a

viscoelastic material, was used as the passive layer in the bimorph since it was able to

withstand the high temperatures of the SMAs during their phase transformation. Since it
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is a viscoelastic material, its properties are strain rate dependent. Therefore, when a higher

current was passed through the actuator, a higher strain resulted in a decrease in the natural

frequency of the actuator. This can be seen in Figure 4.12. For the 20 mm actuator, the

one-sided displacements are relatively the same (max displacement of 1.12, 1.75, 2.17, and

2.54 mm for 110, 120, 130, and 140 mA, respectively). Similar displacement profiles mean

that the actuators have relatively similar strain rates at all peak current inputs. This results

in the 20 mm actuator having similar natural frequencies at all power levels (46.4, 46.4, 47.2,

and 45.8 Hz for 110, 120, 130, and 140 mA, respectively). The contrasting case is for the 40

mm actuator, where there is a significant change in displacement profiles (max displacement

of 8.66, 14.28, 21.89, and 26.40 mm for 110, 120, 130, and 140 mA, respectively). The change

in strain rate between peak current levels is higher resulting in a more significant change in

natural frequency (13.7, 13.2, 11.9, and 11.4 Hz for 110, 120, 130, and 140 mA, respectively).

The models presented in this paper (rule of mixtures and equivalent area) were shown to

produce accurate results of the natural frequency at various actuator lengths (Figure 4.15).

The error in the models is likely due to differences in the physical actuators compared

to the 3D model used for the calculations. For example, the model calculations assume

a constant cross-sectional area along the length of the actuator and that the actuator is

perfectly symmetric about the mid-plane of the passive TPU layer. However, when the

actuator is made, variations in the thickness of the RTV layer could result in nonuniform

cross-sectional areas and alter the results of the experimental data.

One of the most important characteristics of soft actuators and their advancement is

power consumption. Assuming a constant resistance and using the RMS value for the sine

wave current input, the power consumption ranged from 0.23 watts to 0.78 watts for the

actuator design. The actuator design in this study used the smallest diameter SMAs that

were available (37.5 µm) and the length of the SMA was kept as short as possible by routing

the wire from the base to the tip and back to the base so that all electrical connections

were located at the base. This keeps the mass as low as possible to allow the temperature
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change to happen as quickly as possible while consuming a low amount of power. Keeping all

electrical connections at one end also eliminates any effects on the actuator from electrical

wires crimped on the moving end. The low power consumption of the actuator constructed

in this study would allow for the use of this technology in unthethered applications. A single

actuator could be powered by a battery typically used in embedded systems.

Along with high displacement, high operating frequency, and low power consumption,

the materials used to construct the actuator are inexpensive. SMA wires trained to shorten

in length are commercially available along with the RTV silicone to adhere the SMA wires

to the TPU substrate (a popular filament used in 3D printers). Overall, the 40 mm actuator

proposed in this design costs approximately $2.50 to manufacture.

The force output of the actuators was not investigated in this current work as the focus

was to develop a SMA actuator with high displacement and operating frequency character-

istics with a low power consumption. The force output of a bending SMA actuator is less

than traditional SMA linear actuators. However, since linear SMA actuators are ∼500 times

stronger than human skeletal muscles, a decrease in force would likely still be comparable to

human skeletal muscles along with other forms of soft actuators. It is also worth noting that

only 37.5 µm diameter SMAs were used in this study in order to allow the wire to transform

phases as quickly as possible. A larger diameter wire would likely increase the force capa-

bilities of the actuator, but have an adverse effect on the operation frequency. The passive

materials used in this actuator design were not optimized for heat transfer in this study.

A more detailed analysis on how the material properties affect the actuator performance is

necessary and could possibly improve the performance of the design. In addition to mate-

rials used, alternate cross-sectional areas of the passive TPU layer were not investigated.

Previous studies have shown that the displacement of the unimorph and bimorph actuators

are functions of both the strain of the active material and the distance of the active layer

midline from the midline of the passive layer. Therefore, the thickness (0.4 mm used in this
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study) could be reduced in order to achieve more displacement. However, this would result

in a decrease in natural frequency of the actuator based on Equation 4.2.

The dynamic characteristics of the actuator presented in this paper are functions of ma-

terial properties, geometry, and current input. While this adds to the complexity of analysis,

it also allows for a wide range of customizable behavior based on the specific application of

the bimorph actuator. Future work will look at determining the force capabilities of the

actuator along with how force production affects the displacement and frequency responses

of the actuator.
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Chapter 5

Conclusions and Future Work

The literature presents various methods of exoskeleton designs and use of electromyog-

raphy to dictate the motion along with various biomimetic robots that use soft actuators in

order to produce biologically inspired motion. The electromyography sensor embedded suit

developed showed to produce accurate motion classification results from a bank of actions us-

ing only the electromyography sensor data. This allows for minimal technical knowledge for

the application of EMG sensors with an exoskeleton. For biomimetic actuators, a bimorph

shape memory alloy actuator was constructed and shown to have an increase in operational

frequency and displacement compared to traditional linear shape memory alloy actuators.

This actuator also consumed minimal amounts of power due to the small diameter of the

SMA wire used and limited length. This actuator could potentially improve SMA biomimetic

robots.

Future work will look at optimizing the bimorph SMA actuator design along with quan-

tifying the force output of the actuator. The object of the shape memory alloy research was

to test the bimorph configuration at various lengths and observe the change in natural fre-

quency, displacement, and other dynamic characteristics. As a result, force output was not

yet quantified and tested, but is important for use in biomimetic applications. Additionally

control of the oscillations and implementation of the actuator in biomimetic robots will be

pursued.
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Appendix A
Motion Classification Algorithm

Critical to the K-nearest neighbor classifier is the notion of distance. One 50 ms col-
lection of all EMG sensors, X , is defined as a series of N sensor measurements. X =
{X(1), X(2), ..., X(N)} where eachX(i) is a sensor consisting ofmi data pointsX(i) = {x(i)1 , x

(i)
2 , ..., x

(i)
mi}.

The distance, d(X ,Y), is defined between two sensor-collections X and Y via the following:

d(X ,Y) =
∑N

i=1
1

A(i) (fi(X
(i), Y (i))) (A.1)

where

fi(X
(i), Y (i)) =

{ ∑mi

j=1 | x
(i)
j − y

(i)
j | if A(i) > ε(i)

0 otherwise

with A(i) =
∑mi

j=1 | x
(i)
j | +

∑mi

j=1 | y
(i)
j | and ε(i) an appropriately chosen constant for each

sensor. Here the term A(i) serves as a normalization in order to equalize the weights of
sensors with varying magnitudes, and the inclusion of the constant ε(i) is to avoid similar
“small” signals from producing large distances due to that normalization.
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Appendix B
Arduino SMA Bimorph Actuating Code

This code is the arduino code used to osscilate the SMA bimorph actuator.

1 #include <Wire.h>

2

3 // Pins for H bridge circuit

4 #define input1 3

5 #define input2 4

6 #define enable1 10

7 #define input3 6

8 #define input4 7

9 #define enable2 9

10

11 // Pin for button that starts actuator

12 #define button 12

13

14 // counter variable

15 int count = 1;

16

17 // Initialize variables

18 float freq; // operating frequency of actuator

19 float delay_time; // delay time until circuit flips to send current

through other side of bimorph

20 int buttonState; // state of button pin

21 float pwm_out; // PWM signal

22 float wave_counter = 1; // number of sine waves counter

23 int freq_count = 0; // number of time that the frequency has been swept

through

24

25

26 // VARIABLES /////////

27 float freq_initial = 30; // initial frequency of actuator (Hz)

28 int num_per_cycle = 5; // number of cycles at each frequency

29 float freq_inc = 0.5; // increment of frequency sweep (Hz)

30 float freq_max = 65; // max frequency (Hz)

31 float freq_min = freq_initial; // min frequency (Hz)

32 int bit_res = 32; // resolution of PWM sine wave

33 uint16_t i; // counter for PWM sine wave

34 unsigned long prevMicros = 0;

35 unsigned long currentMicros;

36

37 // arrays for storage of sine wave PWM signal

38 const PROGMEM uint16_t DACLookup_FullSine_8Bit [256] =

39 {

40 0,4,8,11,15,18,22,25,

41 25,29,33,36,40,43,47,50,

42 50,54,57,61,64,68,71,75,

62



43 75,78,81,85,88,91,95,98,

44 98 ,101 ,105 ,108 ,111 ,114 ,118 ,121 ,

45 121 ,124 ,127 ,130 ,133 ,136 ,139 ,142 ,

46 142 ,145 ,148 ,151 ,154 ,157 ,159 ,162 ,

47 162 ,165 ,168 ,170 ,173 ,176 ,178 ,181 ,

48 181 ,183 ,186 ,188 ,191 ,193 ,195 ,198 ,

49 198 ,200 ,202 ,204 ,206 ,208 ,211 ,213 ,

50 213 ,214 ,216 ,218 ,220 ,222 ,224 ,225 ,

51 225 ,227 ,229 ,230 ,232 ,233 ,235 ,236 ,

52 236 ,237 ,239 ,240 ,241 ,242 ,243 ,245 ,

53 245 ,246 ,246 ,247 ,248 ,249 ,250 ,251 ,

54 251 ,251 ,252 ,252 ,253 ,253 ,254 ,254 ,

55 254 ,255 ,255 ,255 ,255 ,255 ,255 ,255 ,

56 255 ,255 ,255 ,255 ,255 ,255 ,255 ,254 ,

57 254 ,254 ,253 ,253 ,252 ,252 ,251 ,251 ,

58 251 ,250 ,249 ,248 ,247 ,246 ,246 ,245 ,

59 245 ,243 ,242 ,241 ,240 ,239 ,237 ,236 ,

60 236 ,235 ,233 ,232 ,230 ,229 ,227 ,225 ,

61 225 ,224 ,222 ,220 ,218 ,216 ,214 ,213 ,

62 213 ,211 ,208 ,206 ,204 ,202 ,200 ,198 ,

63 198 ,195 ,193 ,191 ,188 ,186 ,183 ,181 ,

64 181 ,178 ,176 ,173 ,170 ,168 ,165 ,162 ,

65 162 ,159 ,157 ,154 ,151 ,148 ,145 ,142 ,

66 142 ,139 ,136 ,133 ,130 ,127 ,124 ,121 ,

67 121 ,118 ,114 ,111 ,108 ,105 ,101 ,98 ,

68 98,95,91,88,85,81,78,75,

69 75,71,68,64,61,57,54,50,

70 50,47,43,40,36,33,29,25,

71 25,22,18,15,11,8,4,1,

72 };

73

74 const PROGMEM uint16_t DACLookup_FullSine_2Bit [64] =

75 {

76 0,13,26,39,51,63,76,88,100,

77 111 ,122 ,133 ,144 ,154 ,164 ,174 ,

78 183 ,192 ,200 ,208 ,215 ,221 ,227 ,

79 233 ,238 ,242 ,246 ,249 ,252 ,254 ,255 ,

80 255 ,255 ,255 ,254 ,252 ,249 ,246 ,242 ,

81 238 ,233 ,227 ,221 ,215 ,208 ,200 ,192 ,183 ,

82 174 ,164 ,154 ,144 ,133 ,122 ,111 ,100 ,88 ,

83 76,63,51,39,26,13,1

84 };

85 const PROGMEM uint16_t DACLookup_FullSine_1Bit [32] =

86 {

87 0,26,52,77,101, 124, 146, 167,

88 185, 202, 217, 229, 240, 247,

89 253, 255, 255, 253, 247, 240,

90 229, 217, 202, 185, 167, 146,

91 124, 101, 77, 52, 26, 1

92 };

93

94 void setup() {

95 // Initalize the pin modes for all pins

96 pinMode(input1 ,OUTPUT);
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97 pinMode(input2 ,OUTPUT);

98 pinMode(enable1 ,OUTPUT);

99 pinMode(enable2 ,OUTPUT);

100 pinMode(input3 ,OUTPUT);

101 pinMode(input4 ,OUTPUT);

102 pinMode(button ,INPUT_PULLUP); // use pullup resistor so that code is

triggered when it goes LOW

103 Serial.begin (9600); // begin Serial communication

104

105 // set inital pin modes H-bridge as LOW/0 so that no current goes

through actuator

106 digitalWrite(input1 ,LOW);

107 digitalWrite(input2 ,LOW);

108 digitalWrite(input3 ,LOW);

109 digitalWrite(input4 ,LOW);

110 analogWrite(enable1 ,0);

111 analogWrite(enable2 ,0);

112

113 freq = freq_initial; // set operating frequency as initial frequency

114 }

115

116 void loop() {

117 delay_time = ((1/ freq)*1000000) /2; // find the delay time based on the

current operating frequency (microseconds)

118 buttonState = digitalRead(button); // read the button state

119 if (buttonState == LOW) // if buttonState is pulled LOW , begin actuating

120 {

121 // if the frequency is equal to the max , cut off current to the

actuator

122 if (freq == freq_max)

123 {

124 while (1)

125 {

126 analogWrite(enable1 ,0);

127 analogWrite(enable2 ,0);

128 digitalWrite(input1 ,LOW);

129 digitalWrite(input3 ,LOW);

130 }

131 }

132

133 // if the actuator has hit the number of cycles per frequency ,

increase the operating frequency by the increment

134 if (count % num_per_cycle == 0)

135 {

136 freq = freq+freq_inc;

137 }

138

139 // Oscillate enable pin 1

140 analogWrite(enable1 ,0);

141 digitalWrite(input1 ,HIGH);

142 i = 0;

143 analogWrite(enable1 ,pgm_read_word (&( DACLookup_FullSine_1Bit[i])));

144 prevMicros = micros ();

145 i++;
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146 while (i < bit_res)

147 {

148 currentMicros = micros ();

149 if (currentMicros - prevMicros >= delay_time/bit_res)

150 {

151 analogWrite(enable1 ,pgm_read_word (&( DACLookup_FullSine_1Bit[i])));

152 i++;

153 prevMicros = currentMicros;

154 }

155 }

156 analogWrite(enable1 ,0);

157 digitalWrite(input1 ,LOW);

158

159 // Oscillate enable pin 2

160 analogWrite(enable2 ,0);

161 digitalWrite(input3 ,HIGH);

162 i = 0;

163 analogWrite(enable2 ,pgm_read_word (&( DACLookup_FullSine_1Bit[i])));

164 prevMicros = micros ();

165 i++;

166 while (i < bit_res)

167 {

168 currentMicros = micros ();

169 if (currentMicros - prevMicros >= delay_time/bit_res)

170 {

171 analogWrite(enable2 ,pgm_read_word (&( DACLookup_FullSine_1Bit[i])));

172 i++;

173 prevMicros = currentMicros;

174 }

175 }

176 analogWrite(enable2 ,0);

177 digitalWrite(input3 ,LOW);

178

179 count ++;

180 }

181 // if buttonState is pulled HIGH , reset counter and freq

182 if (buttonState == HIGH)

183 {

184 count = 1;

185 freq = freq_initial;

186 }

187 }
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Appendix C
MATLAB High Speed Camera Processing Code

This MATLAB code imports the video file that captured SMA movement and output
displacement.

1 clear; close all;

2 %find the video file and make a video object

3 video_name = ’35 mm_140ma_02_Trim ’;

4 v = VideoReader ([pwd ,’\’,video_name ,’.mp4’]);

5 videoPlayer = vision.VideoPlayer;

6 videoPlayer.Position = [136 50 1280 720];

7

8 % initialize

9 actuator_length = 35;

10 frame_rate = 1000;

11 frameCount = 0;

12 iwant = cell ([],1); % for easy matrix access

13

14 %reads in video and makes it bw

15 while hasFrame(v)

16 video = readFrame(v);

17 video = imcrop(video , [1 100 1281 501]);

18 thresh = graythresh(video);

19 imageBW = im2bw(video ,0.35);

20 BW2 = bwareaopen(imageBW ,50);

21 stats = regionprops(’struct ’,BW2 ,’Centroid ’,’MajorAxisLength ’,’

MinorAxisLength ’);

22 centers = stats.Centroid;

23 diameters = mean([stats.MajorAxisLength stats.MinorAxisLength ],2);

24 radii = diameters /2;

25 %hold on

26 %viscircles(centers ,radii);

27 % hold off

28 step(videoPlayer , BW2);

29 frameCount = frameCount + 1;

30 % iwant{frameCount} = video;

31 % iwantoriginal(frameCount).video = original;

32 %iwant(frameCount).processed = video;

33 %iwant(frameCount).mirror_processed = mirror_vid;

34 %iwant(frameCount).original = original_;

35

36 %check for extra circles

37

38

39 %smaller y is origin

40 x1 = stats (1).Centroid (1);

41 y1 = stats (1).Centroid (2);

42 x2 = stats (2).Centroid (1);
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43 y2 = stats (2).Centroid (2);

44

45 if y2 > y1 %y1 is fixed point

46 %coordinates in relation to fixed point

47 tip_x(frameCount) = x2-x1;

48 tip_y(frameCount) = y2-y1;

49 else

50 tip_x(frameCount) = x1-x2;

51 tip_y(frameCount) = y1-y2;

52 end

53 end

54

55 tip_x = tip_x .* (actuator_length/tip_y (1));

56 tip_y = tip_y .* (actuator_length/tip_y (1));

57 csvwrite ([’displacement_data_ ’,video_name ,’.csv’],tip_x ’);
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Appendix D
MATLAB SMA Displacement Processing Code

This MATLAB code processes the displacement data from the high speed camera and
determines the operational frequency.

1 %% PROGRAM DESCRIPTION

2 % Name: nonlinear_analysis.m

3 % Author: Scott Kennedy

4 % Sources: N/A

5 % Purpose: Inputs motion capture data , determines displacement during

6 % various frequencies.

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 clc , clear all , close all

10 warning(’off’,’all’)

11 set(0, ’DefaultTextInterpreter ’, ’none’)

12

13 % Map current directory and locate CSV files

14 folder_dir = pwd;

15 source_files = dir(fullfile(folder_dir ,’*.csv’));

16 mkdir plots

17

18 % Motion capture sampling frequency (240 Hz)

19 sample_freq = 1000;

20 final_mat = [];

21

22 % Loop through each source files contatining displacement data

23 for count1 = 1: length(source_files)

24 % Read in data and set time vector

25 raw_data = detrend(csvread(source_files(count1).name));

26 time = 0:1/ sample_freq :( length(raw_data) -1)*(1/ sample_freq);

27 % Loop through the data of the current source file and determine

28 % starting point of activation

29 for aa = 1: length(raw_data)

30 % Once displacement is greater than this limit , activation has

31 % begun and set time and displacement vectors

32 if raw_data(aa) > 0

33 start_time = time(aa);

34 new_time = time(aa:length(raw_data));

35 disp_data = raw_data(aa:length(raw_data));

36 break

37 end

38 end

39 disp_data = raw_data;

40 new_time = time;

41 % Find peaks of displacement data

42 [pks ,pks_loc] = findpeaks(disp_data ,’MinPeakDistance ’,12,’

MinPeakHeight ’ ,0.01);
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43 % Initialize storage matrices

44 freq_instant = zeros(1,length(pks) -1);

45 disp_freq = zeros(1,length(pks) -1);

46

47 % Loop through peaks and calculate frequency and average the

48 % displacements

49 for count2 = 1: length(pks)-1

50 time_lap = (new_time(pks_loc(count2 +1))-new_time(pks_loc(count2)))

;

51 freq_instant(count2) = 1/( time_lap);

52 disp_freq(count2) = (disp_data(pks_loc(count2))+disp_data(pks_loc(

count2 +1)))/2;

53 end

54 % Store the positives values

55 freq_instant_pos = freq_instant;

56 disp_freq_pos = disp_freq;

57

58 % Flip the data to find peaks on the negative displacement side

59 disp_data = -1.* disp_data;

60 [pks ,pks_loc] = findpeaks(disp_data ,’MinPeakDistance ’,11,’

MinPeakHeight ’ ,0.02);

61 % Re -initialize storage matrices

62 freq_instant = zeros(1,length(pks) -1);

63 disp_freq = zeros(1,length(pks) -1);

64

65 % Loop through data again

66 for count2 = 1: length(pks)-1

67 time_lap = (new_time(pks_loc(count2 +1))-new_time(pks_loc(count2)))

;

68 freq_instant(count2) = 1/( time_lap);

69 disp_freq(count2) = (disp_data(pks_loc(count2))+disp_data(pks_loc(

count2 +1)))/2;

70 end

71 % Store it in negative (neg) matrices

72 freq_instant_neg = freq_instant;

73 disp_freq_neg = disp_freq;

74

75 % Put the neg and pos matrices together

76 freq_instant = [freq_instant_pos ,freq_instant_neg ];

77 disp_freq = [disp_freq_pos ,disp_freq_neg ];

78

79 % Create a matrix with the displacement per frequency data

80 nat_freq_mat = [freq_instant;disp_freq ];

81 % Sort the data based on the frequency

82 nat_freq_mat = sortrows(nat_freq_mat ’);

83

84 % Initalize storage matrices and set initial frequencies to first

frequency

85 prev_freq = nat_freq_mat (1,1);

86 average_disp_mat = [];

87 average_disp = [];

88 average_freq = [];

89 average_freq_mat = [];

90
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91 % Loop through displacement vs frequency data and average displacement

92 % data at same frequency

93 count4 = 1;

94 for count3 = 1: length(disp_freq)

95 if (nat_freq_mat(count3 ,1) >= prev_freq -0.01 && nat_freq_mat(

count3 ,1) <= prev_freq +0.01)

96

97 else

98 average_freq_mat = [average_freq_mat ,mean(nat_freq_mat(count4:

count3 ,1))];

99 average_disp_mat = [average_disp_mat ,mean(nat_freq_mat(count4:

count3 ,2))];

100 if (count3 == length(disp_freq))

101 count4 = count3;

102 else

103 count4 = count3 +1;

104 end

105 end

106 prev_freq = nat_freq_mat(count3 ,1);

107 end

108 % add in final frequency data

109 %average_freq_mat = [average_freq_mat ,mean(nat_freq_mat(count4:count3

,1))];

110 %average_disp_mat = [average_disp_mat ,mean(nat_freq_mat(count4:count3

,2))];

111 final = [average_freq_mat;average_disp_mat ]’;

112

113 % Polyfit

114 fit_parameters = fit(average_freq_mat ’,average_disp_mat ’,’

smoothingspline ’,’SmoothingParam ’ ,0.97);

115

116 struct(count1).name = num2str(source_files(count1).name);

117 struct(count1).data = final;

118 struct(count1).fit = fit_parameters;

119

120 % Pull out length of actuator

121 length_loc = strfind(struct(count1).name ,’mm’);

122 struct(count1).length = str2num(struct(count1).name(length_loc -2:

length_loc -1));

123

124 % Pull out increase or decrease

125 if (strfind(struct(count1).name ,’increase ’) ~= 0)

126 struct(count1).direction = 1;

127 elseif (strfind(struct(count1).name ,’decrease ’) ~= 0)

128 struct(count1).direction = 0;

129 end

130

131 % Pull out specific parts of a string

132 current_loc = strfind(struct(count1).name ,’ma’);

133 struct(count1).current = str2num(struct(count1).name(current_loc -3:

current_loc -1));

134

135 % Find natural frequency of actual data

136 [max_disp ,max_disp_loc] = max(average_disp_mat);
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137 natural_freq = average_freq_mat(max_disp_loc);

138

139 % Find nautral frequency of spline data

140 spline_freq = linspace(average_freq_mat (1),average_freq_mat(length(

average_freq_mat)) ,1000);

141 spline_disp = fit_parameters(spline_freq);

142 [spline_max ,spline_max_loc] = max(spline_disp);

143 struct(count1).spline_nat_freq = spline_freq(spline_max_loc);

144

145 % Plot

146 cd([ folder_dir ,’\plots’])

147 figure

148 %plot(new_time(pks_loc),pks ,’o’)

149 hold on

150 grid on

151 %plot(new_time ,disp_data ,’b’)

152 plot(disp_data)

153 xlabel(’Time (s)’)

154 ylabel(’Displacement (mm)’)

155 title(num2str(source_files(count1).name),’Interpreter ’, ’none’)

156 saveas(gcf ,[’raw_data_ ’,num2str(source_files(count1).name) ,’.fig’]);

157 saveas(gcf ,[’raw_data_ ’,num2str(source_files(count1).name) ,’.png’]);

158

159 figure

160 plot(average_freq_mat ,average_disp_mat ,’.’)

161 hold on

162 grid on

163 plot(fit_parameters ,average_freq_mat ’,average_disp_mat ’)

164 s=findobj(’type’,’legend ’);

165 delete(s)

166

167 plot(natural_freq ,max_disp ,’*b’)

168 line([ natural_freq natural_freq ],[0 max_disp],’Color’,’b’)

169 line([ spline_freq(spline_max_loc) spline_freq(spline_max_loc)],[0

spline_max],’Color ’,’b’)

170 % set(0, ’DefaultTextInterpreter ’, ’tex ’)

171 % text(spline_freq(spline_max_loc),spline_max ,[’ \leftarrow ’,num2str(

round(spline_freq(spline_max_loc) ,1)),’ Hz ’])

172 xlabel(’Frequency (Hz)’)

173 ylabel(’Displacement (mm)’)

174 axis manual

175 axis auto

176 title(num2str(source_files(count1).name),’Interpreter ’, ’none’)

177 saveas(gcf ,[’disp_per_freq_ ’,num2str(source_files(count1).name) ,’.fig

’]);

178 saveas(gcf ,[’disp_per_freq_ ’,num2str(source_files(count1).name) ,’.png

’]);

179 cd(folder_dir)

180 set(0, ’DefaultTextInterpreter ’, ’none’)

181

182 end

183

184 %% Plot all data

185 cd([ folder_dir ,’\plots’])
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186 colormap winter;

187 cmap = hsv(length(struct));

188 figure

189 hold on

190 grid on

191 h = zeros (4,1);

192 for count1 = 1: length(struct)

193 %plot(struct(count1).data (:,1),struct(count1).data (:,2) ,’.’)

194 struct_plot = plot(struct(count1).fit ,struct(count1).data (:,1) ’,struct

(count1).data (:,2) ’);

195 set([ struct_plot (1) struct_plot (2)],’color’,cmap(count1 ,:))

196 set([ struct_plot (1)],’DisplayName ’,struct(count1).name)

197 h(count1) = plot(NaN ,NaN ,’Color ’,cmap(count1 ,:));

198 s=findobj(’type’,’legend ’);

199 set(s,’Interpreter ’,’none’);

200 delete(s)

201 end

202 legend(h,’110 mA’,’120 mA’,’130 mA’,’140 mA’)

203 xlabel(’Frequency (Hz)’)

204 ylabel(’Displacement (mm)’)

205 title(’45mm’)

206 save(’45 mm_data ’,’struct ’)

207

208 saveas(gcf ,[’displacement_vs_frequency.fig’]);

209 saveas(gcf ,[’displacement_vs_frequency.png’]);

210 saveas(gcf ,’displacement_vs_frequency.eps’,’epsc’);

211

212 figure

213 hold on

214 grid on

215 for count1 = 1: length(struct)

216 struct_plot = plot(struct(count1).current ,struct(count1).

spline_nat_freq ,’.’,’MarkerSize ’ ,20);

217 set(struct_plot ,’color’,cmap(count1 ,:))

218 end

219 xlabel(’Current Input (mA)’)

220 ylabel(’Natural Frequency (Hz)’)

221 saveas(gcf ,[’frequency_vs_current.fig’]);

222 saveas(gcf ,[’frequency_vs_current.png’]);

223 cd(folder_dir)
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