Genome Wide Association Study (GWAS) on Root-Knot Nematode Resistance in Cultivated Peanut

by

Fulya Eda Kumral

A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science

Crop, Soil, and Environmental Sciences College of Agriculture

> Auburn, Alabama August 3, 2019

Keywords: peanut, root-knot nematode, genome wide association study

Approved by

Charles Y. Chen, Chair, Professor of Crop, Soil, and Environmental Sciences Kathy Lawrance, Professor of Entomology and Plant Pathology Alvaro Sanz-Saez, Assistant Professor of Crop, Soil, and Environmental Sciences

ABSTRACT

The peanut root-knot nematode, Meloidogyne arenaria, is one of the major soil-borne pests for peanut (Arachis hypogaea L.). It causes economic losses in the production of peanut in the southeastern region, especially in Alabama, Georgia, Florida, and in Texas as well. Losses due to root-knot nematodes can reach up to 50% at dense infested fields without using nematicides. The use of nematode resistant cultivars is the most convenient economical way of biological control method for producers. The identification of resistant peanut germplasm to nematode diseases is a fundamental task for breeding nematode resistant cultivar. The objectives of this research are to evaluate 161 accessions of peanut germplasm in the greenhouse for resistance and to identify SNP markers associated with root-knot nematode resistance via genome-wide association study (GWAS). Randomized complete block design with three replications for each genotype is performed for phenotyping by using greenhouse inoculation techniques. The genetic diversity panel used in this experiment was genotyped by Affymetrix version 2.0 SNP assay. Forty-six quantitative trait loci (QTLs) located on twelve different chromosomes underlying root-knot nematode resistance were determined with phenotypic variation explained (PVE) between 7.8% and 17% by GWAS. Out of 46 QTLs, 957 candidate genes detected including 520 genes on A sub-genome and 437 genes o on B sub-genome. Specifically, 26 candidate genes related to LRR encoding gene were found on chromosomes A01, A04, A05, B07, B08, and B10. The associated markers could be applied in breeding programs for marker assisted selection.

ii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Dr. Charles Y. Chen for his continuous guidance and encouragement throughout this project. This thesis would not have been possible without him endless patience and support. I am also grateful for the support and advice of the committee members Dr. Alvaro Sanz-Saez and especially Dr. Kathy Lawrence, who provided me to work her lab during this thesis.

I would like to thank my sponsor, Ministry of National Education in Turkey, which has provided me with an excellent opportunity for my academic studies.

I would also like to deeply acknowledge, Muhammed Çağatay Kent, for his valuable contributions and helpful support on my thesis. I also thank my colleagues, Bisho R. Lawaju, Li Li, Yan Yu, Hui Zhang, and Merve Göre and Hatice Sarı, for their friendship and help.

I am whole-heartedly appreciative to my lovely family, Mualla Kumral, Faruk-Emel Kumral, Firuzan-Hakan Doğusoy, and Alper-Türker-Beril Temiz, for their unwavering support, encouragement, and love during my life. Without you, my thesis would not have been possible. Lastly, I would like to thank God for providing me the ability, strength, knowledge, and opportunity to undertake this research.

TABLE OF CONTENTS

Abstract ii
Acknowledgmentsiii
List of Tables vi
List of Figures vii
List of Abbreviations viii
Chapter One: Literature Review
The Origin and Early History of Peanut1
The Characteristics of Peanut1
Economic Importance3
Major Plant Parasitic Nematodes Associated with the Peanut
Overview of Root-knot Nematodes4
Life Cycle of the Root-knot Nematode5
Development of Resistant Peanut Cultivars5
Symptoms of Root-knot Nematode Infestation6
Methods for Managing the Root-knot Nematode7
Genome Wide Association Study8
Objectives10
References11
Chapter Two: Introduction

Materials and Methods	19
Phenotyping in Greenhouse	19
Extraction of Nematode Eggs from Plant Roots	20
DNA extraction, Genotyping and Quality Control	20
Statistical Analysis	21
Genome Wide Association Analysis	21
Results and Discussion	22
Conclusion	25
References	36
Appendix	39

LIST OF TABLES

Table 1: Analysis of variance of plant height, shoot fresh weight, root fresh weight, eggs/g root
fresh weight and biomass26
Table 2: Resistance classification for peanut genotypes tested in the greenhouse 27
Table 3: Distribution of QTLs in twelve chromosomes identified
Table 4: Total number of QTLs associated with traits. 29
Table 5: 26 significant SNPs and candidate genes including LRR encoding genes associated with
RKN
Table 6: Tukey-Kramer's results for eggs per gram of the root fresh weight and plant height39
Table 7: Tukey-Kramer's results for shoot fresh weight, root fresh weight and biomass

LIST OF FIGURES

Figure 1: Disease cycle of root-knot caused by nematodes of the genus <i>Meloidogyne</i> 10
Figure 2: Frequency distribution of mean of all traits
A: Frequency distribution for eggs per gram of the root fresh weight
B: Frequency distribution for plant height
C: Frequency distribution for root fresh weight
D: Frequency distribution for shoot fresh weight
E: Frequency distribution for biomass
Figure 3: Manhattan plots of genome-wide association for RKN resistance
A: P-values by linkage group and Q-Q plots for plant height
B: P-values by linkage group and Q-Q plots for biomass
C: P-values by linkage group and Q-Q plots for eggs per gram of the root fresh weight34
D: P-values by linkage group and Q-Q plots for root fresh weight
E: P-values by linkage group and Q-Q plots for shoot fresh weight
Figure 4: Population structure analysis. The y-axis is the subgroup membership, and x-axis
is the genotypes. G1-G4 indicate for subpopulations47
Figure 5: Principal component analysis based on Chord distance
Figure 6: Distribution of botanical variety within each subpopulation
Figure 7: Screening of resistance to root-knot nematode in the greenhouse

LIST OF ABBREVIATIONS

ANOVA	analysis of variance
BLAST	basic local alignment search tool
BM	biomass
сс	cubic centimeter
DNA	deoxyribonucleic acid
Eggs/g RFW	eggs per gram of the root fresh weight
GLM	general linear model
GWAS	genome wide association study
NBS-LRR	nucleotide binding site-leucine-rich repeat
PCA	principal component analysis
PH	plant height
QTL	quantitative trait locus
RFW	root fresh weight
RKN	root-knot nematode
SAS	statistical analysis software
SFW	shoot fresh weight
SNP	single nucleotide polymorphism
SSR	simple sequence repeat
USDA	United States Department of Agriculture

CHAPTER ONE

LITERATURE REVIEW

The Origin and Early History of The Peanut

The peanut (*Arachis hypogaea* L.) likely originated in South America near what is now present-day Brazil and Peru, and where almost 15 wild peanut species are found, before being spread worldwide by European traders (Acquaah, 2012). Since then it has been grown extensively in the tropical and subtropical regions of Asia, Africa, and North America (Hammons et al., 2016). Although some commercial peanut farms were present in the United States during the 1700s and 1800s, the peanut was primarily used as animal feedstock during that time; it was not commonly grown for human consumption until the 1900s (Tillman & Stalker, 2009). In the early 1900s, George Washington Carver encouraged peanut production in the United States, suggesting that it be planted in rotation with cotton (National Peanut Board, 2017). While cotton depletes nitrogen levels in the soil, the peanut, which is a legume, has the ability to fix nitrogen and thereby replenish those levels (Tallury, 2017). Increased demand for high-protein food sources during World War I saw a surge in the consumption of peanut products like peanut butter and peanut-based candies (National Peanut Board, 2017).

The Characteristics of Peanut

The peanut is a legume within the botanical family Fabaceae. The peanut is a leading oilseed crop, whose contents include 36% to 54% oil, 16% to 36% protein, and 10% to 20%

carbohydrates. The peanut is also a good source of several vitamins (E, K, and B1) and minerals (Ca, Mg, P, and K) (Tillman & Stalker, 2009).

The peanut is self-pollinated, and propagated commercially via its seed, with planting dates occurring anytime from late April until June. There are around 80 peanut species (Tallury, 2017); however, all cultivated peanut species are allotetraploid (AABB; 2n=40), while all wild species are diploid (2n=20) except *A. monticola* (2n=40). *Arachis hypogaea* is an allotetraploid (AABB; 2n=40) that has originated from the hybridization of two ancient diploid species followed by a natural duplication of chromosomes. These two ancient diploid species, *A. Duranensis*, and *A. ipaensis*, are the progenitors of A-genome and B-genome, respectively (do Nascimento et al., 2018).

Cultivated peanuts are categorized into two subspecies, *hypogaea* and *fastigiata*, which are further divided into six botanical varieties depending on their morphology (e.g. leaf color and branching patterns) and growth habits. More specifically, while the subspecies *hypogaea* has two botanical varieties, *hypogaea* and *hirsuta*, the subspecies *fastigiata* has four botanical varieties, *fastigiata*, *vulgaris*, *aequatoriana*, and *peruviana*. Of these subspecies, four are market types grown in the U.S—namely, Runner (subsp. *hypogaea* var. *hypogaea*), Virginia (subsp. *hypogaea* var. *hypogaea*), Virginia (subsp. *hypogaea* var. *hypogaea*), Virginia (subsp. *fastigiata* var. *vulgaris*) (Tallury, 2017; Vishwakarma et al., 2017). The Runner variety is the type most commonly used in peanut butter, and accounts for 80% of total U.S. peanut production, while the Virginia variety is primarily used to make gourmet snacks, and accounts for about 15% of total U.S. peanut production (National Peanut Board, 2017).

Economic Importance

Total global peanut production in 2017-2018 was almost 45 million metric tons. The major peanut-producing countries in 2018 were China, India, the United States, Nigeria, and Sudan (U.S. Department of Agriculture [USDA], 2018). Peanuts have a variety of commercial uses including as animal feeds like peanut hay, in foodstuffs like roasted peanuts, and in industrial products like cosmetics. As such, the peanut constitutes an excellent cash crop for U.S. domestic and international trade (National Peanut Board, 2017). The United States is the world's fourth largest peanut producer with roughly 3.5 million metric tons, with exports totaling roughly 250,000 metric tons per year (USDA, 2017). Within the United States, Georgia is the largest peanut producing state, accounting for over 50% of the country's total annual production. Alabama, which is the United States' second largest peanut producing state, accounts for only 14%. More than 80% of U.S. peanut exports are to Canada, Mexico, Europe, and Japan. Worldwide peanut exports reached \$690 million dollars in 2016. China and Argentina are important peanut exporters; however, India and Vietnam are also major players when crop quality and demand are high (USDA, 2017).

Major Plant-parasitic Nematodes Associated with The Peanut

Plant-parasitic nematodes are microscopic, bilateral, and unsegmented worm-like animals that live in water, soil, and as the parasites of plants and animals. Plant-parasitic nematodes include only 10% of all nematode species but result in 14% of annual crop losses worldwide (Agrios, 2005). As one of the most important soilborne diseases affecting peanuts, plant-parasitic nematodes are a major threat to peanut production. The plant-parasitic nematode species that are economically significant threats to peanut production include *Meloidogyne spp.* (three species), *Pratylenchus brachyurus, Belonolaimus longicaudatus, Criconemoides ornatus, Aphelenchoides arachidis, Scutellonema cavanessi, Tylenchorynchus brevilineatus,* and *Ditylenchus africanus* (Dickson & Waele, 2005).

Overview of Root-knot Nematodes

Root-knot nematodes (*Meloidogyne spp.*) (RKN) were first described in 1855 by Joseph Berkeley after he noticed damage that had occurred to cucumbers. Root-knot nematodes include nearly 100 different species of plant-parasitic roundworms (Mitkowski & Abawi, 2003). Some of the most noteworthy species of root-knot nematodes are *M. arenaria*, *M. incognita*, *M. javanica*, and *M. hapla* (Jones et al., 2013). However, peanut is a non-host of *M. incognita* (Davis & Webster, 2005). Three of them, *M. areneria*, *M. javanica*, and *M. hapla*, are present in the peanut producing regions of North, Central, and South America as well as Africa, Asia, Europe, and Australia. While *M. hapla* is common in temperate regions, *M. arenaria* and *M. javanica* occur mostly in warmer areas (Dong et al., 2008). Though plant-parasitic nematodes as a whole account for 14% of annual crop losses worldwide, 5% of those losses are attributable to root-knot nematodes alone (Sasser et al. 1983).

In the United States, the most damaging nematode species for peanut production is *M*. *arenaria* (Neal) Chitwood race 1. *M. arenaria* was first identified by Chitwood from a diseased peanut plant. Two host races of *M. arenaria* had been defined in 1978; while race 1 reproduces on peanuts, race 2 requires a different host (Dickson, 1985). *M. arenaria* race 3 were identified but it was found that could not reproduce on peanut Florunner (Robertson et al, 2009).

M. arenaria can be found throughout much of the southern United States including in Alabama, Florida, Georgia, Texas, and South Carolina. Its presence in these regions causes an estimated 3-15% decrease in peanut yields each year (Dong et al., 2007). In fact, RKN are so pervasive in Florida, and peanut fields with heavy infested RKN have more than 75% yield losses (Rich & Tillman, 2009).

Life Cycle of the Root-knot Nematode

There are six stages in the life cycle of the root-knot nematode, and these include the egg stage, four juvenile steps, and adulthood. The root-knot nematode disease cycle in peanut begins when an egg hatches into a juvenile; the disease cycle progresses to the infective stage when the juvenile 2 (J2) penetrates the plant's roots with its stylet by repeatedly puncturing the surface cells. Then, the juvenile migrates to a place near the vascular tissue where it will remain to feed. After two or three days, the nematode enlarges and becomes sedentary—that is, unable to move. Root-knot nematodes must molt four times before entering the adult stage (Figure 1). The mature female nematode is pear-shaped, which facilitates the swelling necessary to produce eggs, while males are vermiform and can move freely. Notably, however, root-knot nematodes do not need males to reproduce since they are parthenogenetic. At 27°C, the entire RKN life cycle lasts 25 days, but under different environmental conditions it can last anywhere from 3 to 6 weeks (Williamson and Hussey, 1996; Agrios, 2005).

Development of Resistant Peanut Cultivars

In the early 1970s, a field in Central Texas had extensive root-knot nematode stress. As a result, the wild peanut species present were analyzed for genes conferring resistance to different root-knot nematode species (Acquaah, 2012). Genes for resistance to root-knot nematode were determined in three wild peanut species: *A. batizocoi*, *A. cardenasii*, and *A. diogoi* (Simpson, 1990). Moreover, Garcia et al. (1996) identified two important resistance genes (R-genes) against *M. arenaria* race 1 from the cross of 4x (*A. hypogaea* x *A. cardenasii*)- GA 6 and PI 261942. The first found gene, *Mae*, restricts nematode egg number, while the second gene, *Mag*, inhibits RKN galling. The TxAG-6 germplasm line was created to transmit nematode R-genes from wild diploid peanut species into cultivated tetraploid species (Nagy et al., 2010).

The COAN and NemaTAM cultivars were generated by backcrossing from a hybrid between TxAG-6 and Florunner as these varieties have a high level of RKN resistance. These cultivars carry *Rma*, a resistance gene for the root-knot nematode, and have an equally high-level of root-knot nematode reproduction (Nagy et al., 2010). However, COAN had one major flaw: the resulting plant was too small, and this restricted its seed production. Although COAN yields under severe nematode pressure were 150–200% better than susceptible cultivars, overall COAN yields were still too low to be profitable for growers. However, NemaTAM crop yields average of 30% higher than those of COAN (Acquaah, 2012).

Tifguard is a runner-type peanut cultivar that was released by the USDA Agricultural Research Service (USDA-ARS) and the Georgia Agricultural Experiment Stations in 2007. This cultivar has a resistance not only to the root-knot nematode *M. arenaria* (Neal) Chitwood race 1, but also against tomato spotted wilt virus (TSWV). More specifically, Tifguard was produced from the hybridization of TSWV resistant C-99R and the RKN resistant COAN (Holbrook et al., 2008). In addition, another cultivar, TifNV-High-O/L, was produced by hybridizing RKN-resistant Tifguard with Florida-07, a high-oleic cultivar. The desired characteristics of the final cultivar—RKN resistance and a high oleic to linoleic fatty acid ratio (O/L)—were selected with the aid of marker-assisted selection (Holbrook et al., 2017).

Symptoms of Root-knot Nematode Infestation

The root-knot nematode *M. arenaria* (Neal) Chitwood race 1 is one of the world's major soilborne pests. It is found in tropical, subtropical, and warm temperate soils. *M. arenaria* primarily damages the plant root system and obstructs nutrient transport (Dufour et al., 1998). In addition, environmental stressors such as drought, flooding, nutrient deficiencies, and soil compactness will worsen the aboveground damage observed in RKN-infested plants. In dry

weather conditions, plants with severe infections are noticeably stunted and exhibit a yellowing of their foliage (Kenneth & Curtis, 1973).

RKN-infected plants have irregular swellings, or galls, on their pods and roots. These galls include one or more sedentary, adult female RKNs. The total number of galls present reflects the density of the nematodes and the timing of the infection. However, each gall is less than 1mm in size, making them difficult to identify. (Grabau & Dickson, 2018).

Methods for Managing the Root-knot Nematode

There are several different disease management methods for dealing with plant-parasitic nematodes—namely, biological, cultural, and chemical controls. The most convenient biological control method is the use of nematode-resistant plants. Moreover, this approach is affordable for producers and growers (Lambert & Bekal, 2002). RKN-resistant peanut cultivars include TifGP-2, Tifguard, Georgia14N, TifNV-High O/L, NR 0812, and NR 0817 (Hajihassani et al., 2018).

The primary cultural control method is crop rotation, which acts by decreasing nematode population density. For example, cotton is affected by *M. incognita*, while peanuts are not a host for this nematode species. Therefore, rotating cotton and peanut crops helps lower the density of the *M. incognita* population (Hajihassani et al., 2018). According to Star et al. (2002), two-year rotations between peanut crops and either bahiagrass or velvet grass are also effective against RKN (Starr et al., 2002).

In general, plant-parasitic nematodes can survive in patchy clusters throughout a field. However, their distribution may change depending on soil texture, plant growth, and the exact nematode species in question. By sampling according to a systematic grid, researchers can determine where nematodes are located within a field. If the nematode population reaches the economic threshold level, nematicides should be used (Hajihassani et al., 2018). Studies have shown that the nematicides aldicarb (granular) and 1,3-dichloropropene (a fumigant) are successful against RKN (Starr et al., 2002). Ultimately, controlling RKN populations requires a combination of all of these strategies as part of an integrated pest management plan (Escobar & Fenoll, 2015).

Genome Wide Association Studies

Traditional breeding methods have been very successful at developing new cultivars throughout the 10,000-year history of plant domestication. Moreover, since the middle of the 1990s, the use of traditional pre-genomic breeding methods has yielded improvements to modern cultivars that allow for a dramatic increase in staple crop yields. These days, genomic tools and other new plant breeding technologies make it possible to study the genotypes associated with desirable phenotypes. Developments in next generation sequencing (NGS) and bioinformatics have facilitated the mass sequencing of genomes and transcriptomes as well as the identification of new regulatory sequences, molecular markers, and their loci (Pérez-de-Castro et al., 2012).

The detection of a quantitative trait locus (QTL) depends on a linkage analysis; however, it is restricted by the number of recombination possible per generation that are needed to improve the mapping population (Brachi et al., 2011) Linkage disequilibrium mapping, also known as association mapping, is a new and effective way to map complex traits. Relying on statistics, this method can detect the strength of the linkage between a marker locus and trait. Nowadays, association mapping may be categorized into two approaches. The first is candidate gene association, which requires comprehension of biochemistry and trait genetics. The second is genome wide association study (GWAS), which is also called a whole-genome scan (Pérez-de-Castro et al., 2012).

The first successful GWAS occurred in 2002 and involved the identification of the susceptibility gene for myocardial infarctions (Ikegawa, 2012). Over the past fifteen years, genome wide association studies have continued to evolve into powerful tools for investigating the genetic architecture of common diseases and for improving agriculture. For example, Genome wide association studies can help researchers understand the genetics of disease resistance in both wild and cultivated plants (Bartoli & Roux, 2017). Moreover, methods are now available to allow for GWAS on large samples within reasonable timeframes. This allows for the quick discovery of thousands of single nucleotide polymorphisms (SNPs) (Zhao et al., 2016). Unlike genome wide association studies in humans, genome wide association studies in plants have been successful, particularly with respect to rice and maize (Brachi et al., 2011).

In order to conduct an association mapping of seed quality traits in peanuts, Wang et al. (2011) evaluated 94 *A. hypogaea* mini-core collection germplasm accessions with 81 simple sequence repeat (SSR) markers and two functional SNP markers made from fatty acid desaturase 2. The authors concluded that the peanut mini-core set is appropriate for association mapping studies. Later, Pandey et al. (2014) used GWAS to investigate 300 genotypes for 36 traits including disease resistance, oil content and quality, drought tolerance, yield components, and overall yield. More recently, GWAS on peanuts tested 158 genotypes for 11 important agronomic traits. In doing so, the study explored the complex genetic relationship between agronomic traits and domestication processes in peanuts (Zhang et al., 2017).

Objectives

This research aims to screen 161 accessions for RKN resistance in peanuts and to define the SNP markers responsible for resistance. More specifically, this project will:

1) Evaluate 161 accessions for RKN resistance in peanut germplasm maintained in a greenhouse.

2) Identify SNP markers associated with RKN resistance via a genome-wide association study.

Figure 1: Disease cycle of root-knot caused by nematodes of the genus *Meloidogyne* (Agrios, 2005; reprinted with permission from Elsevier)

REFERENCES

- Acquaah, G. (2012). Principles of plant genetics and breeding. 2nd ed. Hoboken, NJ: Wiley.
- Agrios, G. (2005). Plant Pathology. 5th Edition, Elsevier Academic Press, Amsterdam.
- Bartoli, C., & Roux, F. (2017). Genome-Wide Association Studies in Plant Pathosystems: Toward an Ecological Genomics Approach. *Frontiers in plant science* 8: 763.
- Brachi, B., Morris, G.P., & Borevitz, J.O. (2011). Genome-wide association studies in plants: The missing heritability is in the field. *Genome Biology* 12(10), 232.
- Davis, R., & Webster, T. (2005). PLANT PATHOLOGY AND NEMATOLOGY Relative Host Status of Selected Weeds and Crops for Meloidogyne incognita and *Rotylenchulus reniformis. Journal of Cotton Science* 9, 41–46.
- Dickson D.W., & Waele, D.D. (2005). Nematode parasites of peanut nematode parasites of cotton and other tropical fibre crops. In: Luc M, Sikora RA, Bridge J (eds) *Plant parasitic nematodes intropical and subtropical agriculture*. (2nd ed., pp. 393-436).CAB International, Wallingford.
- Dickson, D. W. (1985). Nematode Diseases of Peanut. Nematology Circular, 121.
- do Nascimento, E.F.M.B., dos Santos, B.V., Marques, L.O.C., Guimarães, P.M., Brasileiro, A.C.M., Leal-Bertioli, S.C.M., Bertioli, D.J., & Araujo, A.C.G. (2018). The genome structure of Arachis hypogaea (Linnaeus, 1753) and an induced Arachis allotetraploid revealed by molecular cytogenetics. *Comparative Cytogenetics* 12(1), 111–140.
- Dong, W. B., Holbrook, C.C., Timper, P., Brenneman, T.B., Chu, Y., & Ozias-Akins, P. (2008).
 Resistance in peanut cultivars and breeding lines to three root-knot nematode species. *Plant Disease* 92, 631-638.

- Dong, W., Holbrook, C.C., Timper, P., Brenneman, T.B., & Mullinix, B.G. (2007). Comparison of Methods for Assessing Resistance to *Meloidogyne arenaria* in Peanut. *Journal of Nematology* 39(2), 169–175.
- Dufour, R., Earles, R., Kuepper, G., & Greer, L. (1998). Alternative Nematode Control. Elsevier Academic Press Is an Imprint of Elsevier 1, 1-26.
- Escobar, C., & Fenoll, C. (2015). *Advances in botanical research*. London: Academic Press 76, 1-24.
- Garcia, G.M., Stalker, H.T., Shroeder, E., & Kochert, G. (1996). Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. *Genome* 39, 836–845.
- Grabau, Z.J., & D.W. Dickson. (2018). Management of Plant-Parasitic Nematodes in Florida Peanut Production1. UF/IFAS Extension ENY069.
- Hajihassani A., Lawrence K.S., & Jagdale G.B. (2018) Plant Parasitic Nematodes in Georgia and Alabama. In: Subbotin S., Chitambar J. (eds) Plant Parasitic Nematodes in Sustainable Agriculture of North America. Sustainability in Plant and Crop Protection. *Springer* 2, 357-385.
- Holbrook, C. C., Ozias-Akins, P., Chu, Y., Culbreath, A.K., Kvien, C.K., & Brenneman, T.B. (2017). Registration of 'TifNV-High O/L' Peanut. J. Plant. Reg 11, 228-230.
- Holbrook, C. C., Timper P., Culbreath, A.K., & Kvien, C.K. (2008). Registration of 'Tifguard' peanut. *Journal of Plant Registrations* 2, 92-94.
- Ikegawa, S. 2012. A Short History of the Genome-Wide Association Study: Where We Were and Where We Are Going. *Genomics & Informatics* 10(4), 220.

- Jones, J. T., Haegeman, A., Danchin, E.G., Gaur, H.S., Helder, J., Jones, M.G., Kikuchi, T., Manzanilla-López, R., Palomares-Rius, J.E., Wesemael, W.M., & Perry, R.N. (2013). Top 10 plant-parasitic nematodes. *Molecular Plant Pathology* 14, 946-961.
- Kenneth, H.G., & Curtis, R.J. (1973). Peanuts--culture and uses: Chapter 13-Peanut diseases. Stillwater, OK: American Peanut Research and Education Association.
- Lambert, K. & Bekal, S. (2002). Introduction to Plant-Parasitic Nematodes. The Plant Health Instructor.
- Mitkowski, N.A., & Abawi G.S. (2003). Root-knot nematodes. The Plant Health Instructor.
- Nagy, E., Chu, Y., Guo, Y. Khanal, S., Tang, S., Li, Y., Dong, W., Timper, P., Taylor, C., Ozias-Akins, P., Holbrook, C.C, Beilinson, V., & Nielsen, N., Stalker, H., & Knapp, S. (2010).
 Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. *Molecular Breeding* 26, 357-370.
- National Peanut Board. Peanut types. [Online]. (Verified 17Nov.2017). Available at <u>http://nationalpeanutboard.org/peanut-info/peanut-types.htm</u>
- Pandey, M. K., Upadhyaya, H.D., Rathore, A., Vadez, V., Sheshshayee, M.S., Sriswathi, M., Govil, M., Kumar, A., Gowda, M.V., Sharma, S., Hamidou, F., Kumar, V.A., Khera, P., Bhat, R.S., Khan, A.W., Singh, S., Li, H., Monyo, E., Nadaf, H.L., Mukri, G., Jackson, S.A., Guo, B., Liang, X., & Varshney, R.K. (2014). Genomewide association studies for 50 agronomic traits in peanut using the 'reference set' comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. *PloS one* 9(8), e105228.
- Pérez-de-Castro, A. M., Vilanova, S., Cañizares, J., Pascual, L., Blanca, J.M., Díez, M.J., Prohens,
 J., & Picó, B. (2012). Application of genomic tools in plant breeding. Current genomics. 13(3): 179-95.

- Rich, J., & Tillman, B. (2009). Root-Knot Nematode Resistance in Peanut1. UF/IFAS Extension ENY057.
- Robertson, L., Díez-Rojo, M. A., López-Pérez, J. A., Piedra Buena, A., Escuer, M., López Cepero,
 J., Martínez, C., & Bello, A. (2009). New host races of Meloidogyne arenaria, M. incognita,
 and M. javanica from horticultural regions of Spain. *Plant Dis* 93, 180-184.
- Sasser, J.N., Eisenback, J.D., Carter, C.C., & Triantaphyllou, A.C. (1983). The International meloidogyne project-Its goals and accomplishments. [Online] Available <u>https://www.researchgate.net/profile/Jonathan Eisenback/publication/234837889 The In</u> <u>ternational Meloidogyne ProjectIts Goals and Accomplishments/links/0fcfd51277c243</u> 929f000000/The-International-Meloidogyne-Project-Its-Goals-and-Accomplishments.pdf
- Simpson, C.E. (1990). Pathways for introgression of pest resistance into Arachis hypogaea L. *Peanut Science* 18, 22–26.
- Hammons, R.O., Herman, D., Stalker, H.T. Origin and Early History of the Peanut. In: Peanuts: Genetics, Processing, and Utilization. Stalker, H. T., Wilson R. F. (Eds). (2016). Peanuts Genetics, Processing, and Utilization. American Oil Chemists' Society Press, 1-22.
- Starr, J.L., Morgan, E., & Simpson, C.E. (2002). Management of the peanut root-knot nematode, Meloidogyne arenaria, with host resistance. [Online] Plant Health Progress. doi: 10.1094/PHP-2002-1121-01-HM.
- Tallury, S.P. 2017. Peanut (Arachis hypogaea L.): Origin and botanical descriptions. In: Varshney,R. K., Pandey, M.K., & Puppala, N. The Peanut Genome (pp. 27-31). Springer International Publishing, Cham.
- Tillman B.L., & Stalker, H.T. (2009). Peanut. In: Vollmann J., Rajcan, I. (eds). *Oil Crops*. Handbook of Plant Breeding. (vol 4, pp. 287-315). Springer, New York, NY

- US Department of Agriculture (USDA) National Agricultural Statistics Service (NASS). (Online). Available at <u>https://quickstats.nass.usda.gov/results/22E5CD7F-2BA4-3718</u> <u>B2C4C5F5DF6B2A0E?pivot=short_desc</u> (Verified 17Nov.2017)
- US Department of Agriculture (USDA). (2018). Foreign Agricultural Service. World Agricultural Production. *Circular Series* WAP, 8-18
- Vishwakarma, M. K., Kale, S.M., Sriswathi, M., Naresh, T., Shasidhar, Y., Garg, V., & Varshney, R.K. (2017). Genome-wide discovery and deployment of insertions and deletions markers provided greater insights on species, genomes, and sections relationships in the genus *Arachis. Frontiers in Plant Science* 8, 2064. <u>http://doi.org/10.3389/fpls.2017.02064</u>
- Wang, M.L., Sukumaran, S., Barkley, N.A., Chen, Z., Chen, C.Y., Guo, B., Pittman, R.N., Stalker,
 H.T., Holbrook, C.C., Pederson, G.A., & Yu, J. (2011). Population structure and marker–
 trait association analysis of the US peanut (*Arachis hypogaea L.*) mini-core
 collection. *Theoretical and Applied Genetics 123(8)*, 1307-1317.
- Williamson, V. M., & Hussey S.R. (1996). Nematode pathogenesis and resistance in plants. *Plant Cell* 8, 1735–1745.
- Zhang, X., Zhang, J. He, X., Wang, Y., Ma, X., & Yin, D. (2017). Genome-Wide Association Study of Major Agronomic Traits Related to Domestication in Peanut. *Frontiers in Plant Science* 8, 1611.
- Zhao, Y., Zhang, C., Chen, H., Yuan, M., Nipper, R., Prakash, C.S., & He, G. (2016). QTL mapping for bacterial wilt resistance in peanut (*Arachis hypogaea L.*). *Molecular Breeding* 36, 13.

CHAPTER TWO

INTRODUCTION

The peanut is a globally important crop, both for smallholders as well as large commercial producers. Widely grown in tropical and subtropical regions, the peanut can be classified as either a grain legume or an oil crop. Worldwide, annual peanut production reaches around 46 million tons (Bilello, 2016). In the United States, specifically, peanuts are the 12th most valuable cash crop, boasting a total farm value of more than \$1 billion (National Peanut Board, 2018).

Nematode damage is one of the most important factors affecting peanut production. A recent study identified root-knot nematodes (*Meloidogyne spp.*), in particular, as the most economically destructive genus of plant-parasitic nematodes. Root-knot nematodes include nearly 100 species. Of these, *Meloidogyne arenaria* is one of the most problematic for agricultural crop production (Jonesh et al., 2013). Moreover, *M. arenaria* race 1 is the primary root-knot nematode species that infects the peanut plant (Sasser et al., 1983).

The roots of plants infected with nematodes typically exhibit galls filled with *M. arenaria* females and their egg masses (Sasser et al., 1983). Root galls containing RKN eggs inhibit plant nutrient absorption, which results in slowed growth, stunting, and yellowish leaves. RKN-infected pegs weaken, eventually breaking during harvest, and this results in yield losses. By remaining in the soil, detached pods further reduce crop yields. Moreover, pod infections caused by root-knot nematodes result in low quality harvests (Starr et al., 2002).

Root-knot nematodes can be effectively controlled with Termik 15G applying mid-season and can be provided an increase in yield of about 130% in infested RKN field (Kemerait & Davis, 2003). Another viable method is crop rotation with cotton, velvet bean, or bahiagrass (Bridge & Starr, 2007).

Plants that possess RKN-resistant genes are able to limit nematode reproduction; consequently, nematode population density is lower in those cultivars. More specifically, resistant cultivars are able to decrease the number of galls that develop on their roots (Williamson, 1999). There was no resistant peanut cultivar for RKN until 2001. The first RKN-resistant peanut cultivar, COAN, was released in 2001; however, the second such a resistant cultivar, NemaTAM, was released shortly after in 2002. Unfortunately, both COAN and NemaTAM have low yield potential compared to parent Florunner planted in noninfected fields (Dong et al., 2008). As such, COAN and NemaTAM are rarely used in agricultural applications. However, in 2014 the USDA-ARS and the Georgia Agricultural Experiment Stations released TifNV-High-O/L, a newer cultivar that exhibits substantial resistance to both *M. arenaria* (Neal) Chitwood race 1 and TSWV. TifNV-High-O/L presented notably higher yields compared with extensively preferable susceptible Georgia-06G in nematode infested fields (Holbrook et al., 2017).

Still, there is continuous evolutionary pressure on disease-causing nematodes to overcome the genetic resistance of cultivars like COAN, NemaTAM, Tifguard. Indeed, if a plant has only one RKN-resistant gene, then RKNs will eventually evolve the ability to subvert that resistance, thereby leaving the plant susceptible to infection. In order to increase the longevity of RKNresistance, breeders must continue to search for new resistance genes to combine them in multiresistant variety. Developing new cultivars with nematode resistance requires reliable and effective screening techniques that identify resistant progeny within segregated breeding populations. Breeding lines can be evaluated in naturally infested fields; however, seasonal restrictions and soil non-uniformity mean that standardized comparisons are not possible. Thus, field-based screening may not be ideal. The screening method used to identify RKN-resistant breeding lines should be capable of readily and reliably evaluating thousands of genotypes. Greenhouses are key tools in this pursuit because they allow screening to occur throughout the year. In addition, greenhouse-based screening allows for important standardizations like sterilized soil and a uniform inoculum level (Boerma & Hussey, 1992). Data obtained from greenhouse-based testing can be analyzed with GWAS. As GWAS can directly use available genotype and phenotype data, researchers save time and resources. Moreover, GWAS can help identify the genes that confer RKN-resistance to different cultivars. This research aims to screen 161 accessions for RKN resistance in peanuts and to define the SNP markers responsible for resistance.

MATERIALS AND METHODS

This experiment consisted of 161 accessions including 124 from the U.S. peanut mini-core collection and 37 from commercial cultivars and breeding lines. These accessions covered six botanical varieties: *fastigiata*, *hypogaea*, *peruviana*, *vulgaris*, *aequatoriana*, and *hirsute* (Figure 4). TifNV-High-O/L was selected as the resistant control. Tested accessions were classified into three groups based on the number of eggs per gram of root fresh weight (Eggs/g RFW): resistant, moderately resistant, and susceptible.

Phenotyping in Greenhouse

The 161 peanut accessions were germinated on germination paper for 4 days, and then one peanut seed was transplanted into one cone-tainer (150cc) each containing soil (33.3%) and sandy mixture (66.3%) on June 15th, 2018. One day after planting, the plants were inoculated with 1 ml of nematode suspension; each suspension contained 3000 eggs. Plants were watered regularly to keep up soil moisture. A randomized complete block design with three replications for each sample was utilized for this research at the Plant Science Research Center and maintained $27^{\circ}C \pm 1$. One month after planting, plant height (PH), shoot fresh weight (SFW), and root fresh weight (RFW) were measured. For the dried plant weight, shoot fresh plant were stored with 70 ° C for 2- 3 days or until the consistent weight was obtained, and then they were measured.

Extraction of Nematode Eggs from Plant Roots

Washed peanut roots were blotted, weighed, and then placed into beakers. Roots were covered with 0.625% NaOCI solution and stirred with a motorized stirrer for 4 minutes (Hussey & Barker, 1973). In order to collect eggs, roots were rinsed in a 75 µm pore sieve nested within a 25 µm pore sieve. The liquid remaining in the 25 µm pore sieve was poured very slowly into a clean cup. Sucrose solution (454g sugar/1L water) was added to the sample collected in the cup. The contents of the cup were mixed until homogenous, and then transferred into new tubes. These were placed into a centrifuge at 1400 rpm for 1 minute. After centrifuging, the liquid that separated to the top of each tube was again passed through the mesh sieves (75 µm pore sieve nested within 25 µm pore sieve). The liquid remaining in the 25 µm pore sieve was poured very slowly into a clean cup. Finally, the number of nematode eggs collected within the liquid were counted under the Nikon TS100 inverted microscope.

DNA Extraction, Genotyping and Quality Control

Plant samples were taken from grown plants in the greenhouse and protected at -80 °C for DNA extraction. The modified CTAB method was used for DNA extraction (Porebski et al., 1997). Purified DNA was dissolved in TE buffer for the next analysis. The ND 2000 was used to measure the quantity and quality of DNA.

GeneSeek (Lincoln, Nebraska, USA) conducted the genotyping by using SNP array (Affymetrix). The call rate for a given SNP is the proportion of individuals that do not lack corresponding SNP information. Samples of low quality or with a low call rate were excluded (< 0.95). Following filtering, SNPs were retained at a <0.95 minor allele frequency <0.05, depending on the Mendelian law. STRUCTURE 2.2.3 was used to identify the optimal value of K.

Statistical Analysis

All data were performed by using SAS 9.4 PROC GLIMMIX (SAS Institute Inc., Cary, NC), and LS-means were compared between accessions and replications using Tukey-Kramer's method with a significance level of $P \le 0.05$. Dependent variables were plant height (PH), root fresh weight (RFW), shoot fresh weight (SFW), the number of *M. arenaria* eggs per gram of the root fresh weight (Eggs/g RFW), and biomass (BM). Independent variable was genotypes. A log transformation was applied to Eggs/g RFW the normal assumption. The LS-means estimates for the lognormal distribution function were back transformed to the original data by using PROC MEANS. The ANOVA table and associated P-values was created separately for each trait.

Genome-Wide Association Analysis

116 peanut genotypes were used in association analyses using TASSEL 5.0 software. The general linear model (GLM) comprises the principal component analysis (PCA) model. PCA is a potential approach that can be used in GWA studies and raise the power of QTL detection. The threshold of significance level between traits and SNPs was determined as P < 0.001, (for example, $-\log_{10}(p) = 3.0$) (Zhang et al., 2015; Zhang et al., 2016; Li et al., 2017). The regions approximately 1 Mb upstream and downstream of peak SNPs were checked for candidate genes associated with the traits of interest (database at https://peanutbase.org). BLAST was used to find the gene positions on the physical map.

The GWAS results were visualized with Manhattan and quantile-quantile (Q-Q) plots that were generated using R package qqman (Figure 3). In Figure 3, the alternating orange and blue dots represent SNPs mapped to different chromosomes. Dots above the red horizontal line are SNPs with *P*-value < 0.001.

RESULTS AND DISCUSSION

A total of 161 accessions were screened for RKN in the greenhouse. There was a statistically significant difference in the mean of PH, SFW, RFW, Eggs/g RFW, and BM between genotypes and replications ($P \le 0.05$). At $P \le 0.01$, there was no difference in RFW among replications and in Eggs/g RFW among genotypes (Table 1). Means that have more than 2500 Eggs/g RFW are significantly different from each other (Table 6); however, mean of PH (Table 6), RFW, SFW, and BM are significantly different from each in own accessions of its group (Tukey–Kramer test, P > 0.05) (Table 7). Mean of all traits were shown with frequency distribution in Figure 2.

A plant's resistance or susceptibility to plant-parasitic nematodes can be measured by nematode reproductive success (Cook and Evans, 1987). Thus, for the classification of resistance, the ability to produce nematodes was considered, and TifNV-High-O/L was determined as resistant control. More specifically, accessions were classified as resistant (R), moderately resistant (MR), and susceptible (S) based on Eggs/g RFW (Table 2). Compared to the resistant control, eleven accessions could be classified resistant or moderately resistant to *M. arenaria*. The number of Eggs/g RFW varied between 95 and 7129, with genotype PI 370331 having the least and genotype PI 494034 having the most. Genotypes PI 370331, Lot4-37Line-2, PI390428, PI497648, PI268868, PI295309, and PI407667 were classified as R because their number of Eggs/g RFW were fewer than that of TifNV-High O/L (except for Fla-07 with 190 Eggs/g RFW). In addition, genotypes PI 461434, AU-17, and PI 493938 were classified as MR because their

number of Eggs/g RFW were around 150% of that in TifNV-High-O/L. Genotypes with a higher number of Eggs/g RFW than this were categorized as S. All genotypes whose number of Egg/g RFW \leq 807 are listed in Table 2.

In order to identify genetic loci related to resistance, five traits (PH, SFW, RFW, Eggs/g RFW, and BM) were examined. In total, 46 QTLs associated with four traits reached the corrected *P*-value (p < 0.001, $-log_{10}(p) = 3.0$). No QTL was significantly related to SFW (Table 3). Fortysix quantitative trait loci (QTLs) located on twelve different chromosomes underlying root-knot nematode resistance were determined with phenotypic variation explained (PVE) between 7.8% and 17% by GWAS from greenhouse data (Table 4). Distribution of 46 QTLs on 12 different chromosomes illustrate that 27 QTLs were on the A sub-genome while 19 QTLs took part in the B sub-genome (Table 3). However, B07 contained the highest quantity with 11 QTLs, and the next one is A07 with 9 QTLs. Besides this, there were no QTL on several chromosomes, namely, A02, A03, A10, B01, B02, B03, B04, and B05. Overall, the A sub-genome had more resistant regions than the B sub-genome. Pandey et al. (2017) similarly found that the A sub-genome hosts a large number of resistant genes. That is, out of 42 total QTLs, 34 were located on the A subgenome, while 8 were located on the B sub-genome (Pandey et al., 2017). Likewise, Bertioli et al. (2016) found more the nucleotide-binding (NB) and leucine-rich repeat (LRR) encoding disease resistant genes on the A sub-genome (397) than on the B sub-genome (345).

Out of 46 QTLs, 957 candidate genes detected including 520 genes on A sub-genome and 437 genes o on B sub-genome. B07 contained the greatest number of genes (210 genes, 21.94%), and also A07 and A08 included 124 and 126 genes corresponding to 12.95 and 13.16%, respectively. Specifically, 26 out of 957 candidate genes related to LRR encoding gene were found on chromosomes A01, A04, A05, B07, B08, and B10 (Table 5). Moreover, 80.76% of these LRR

encoding genes took part in chromosome B07 at location 2810620 surrounding 1 Mb. Most disease resistance in plants is conferred by genes of the nucleotide binding site-leucine-rich repeat (NBS-LRR) class. LRR domains are found in various protein groups, including among process regulators that both control development and plant defense (Knepper and Day, 2010). QTL for resistance to *M. arenaria* (Neal) Chitwood 1 was found on chromosome A02 of *Arachis stenosperma* V10309. This included a cluster of 38 NB-LRR–encoding genes covering 6.1 Mb. Another source of nematode resistance, which has been widely used in the United States arises from the introgression of the A-genome species *Arachis cardenasii* (Bertioli et al., 2016). More specifically, a gene called *Rma* is assumed to be a dominant gene related to RKN introduced into *Arachis hypogaea* from TxAG-6 such as the superfamily of NBS-LRR encoding R genes. The R gene in wild peanut was located on chromosome A09 and B09. Moreover, *Mag* and *Mae*, which are also genes that confer resistance to RKN, are associated with *Rma* (Nagy et al., 2010).

CONCLUSION

Root-knot nematodes are some of the most economically destructive pathogens in peanut production areas of the Southern USA. The identification of genes that confer resistance to RKNs will guide researchers in future screening and mapping experiments of the peanut genome, moreover, help to eliminate this disease. As a result of the evaluation of peanut germplasm in the greenhouse experiment, in the total, eleven accessions were identified as resistant or moderately resistant to RKN compared with resistant control TifNV-High-O/L. These genotypes may be beneficial to future breeding efforts aimed at RKN prevention. The results of GWAS, the R gene located on the A09 and B09 chromosomes, a dominant root-knot nematode resistance gene was not found to be among the tested QTLs. Nonetheless, this study identified 26 candidate genes related to LRR-encoding gene on chromosomes A01, A04, A05, B07, B08, and B10. This thesis research will extend the knowledge on the sources of resistance to root-knot nematode in peanut as well as give a lead for improvement of resistant peanut cultivar.

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Plant Height					
Genotype	160	10351.6413	64.69776	3.26	<.0001
Replication	2	495.31388	247.65694	12.49	<.0001
Shoot Fresh Weight					
Genotype	160	3029.03393	18.931462	1.73	<.0001
Replication	2	290.661515	145.330757	13.29	<.0001
Root Fresh Weight					
Genotype	160	812.175423	5.0760964	1.83	<.0001
Replication	2	21.1558918	10.5779459	3.81	0.0231
Eggs/g RFW					
Genotype	160	794337449	4964609.1	1.36	0.0106
Replication	2	255031899	127515949	35.03	<.0001
Biomass					
Genotype	160	123.883551	0.7742722	1.5	0.0013
Replication	2	34.9169084	17.4584542	33.79	<.0001

Table 1: Analysis of variance of plant height, shoot fresh weight, root fresh weight, eggs/g root

 fresh weight and biomass

PI#	Egg/g RFW	RL	PI#	Egg/g RFW	RL	PI#	Egg/g RFW	RL	PI#	Egg/g RFW	RL
PI 370331	95	R	PI 476025	603	S	Valencia	491	S	PI 338338	631	S
Lot4-37 Line-2	111	R	PI 482120	325	S	Grif 12579	496	S	Florunner	644	S
PI 390428	123	R	PI 290620	328	S	PI 475863	506	S	PI 270998	655	S
PI 497648	127	R	PI 259658	334	S	Grif 12545	509	S	PI 494018	666	S
PI 268868	133	R	PI 196705	335	S	NM Val	513	S	PI 290536	672	S
PI 295309	139	R	PI 270905	345	S	Grif 14051	516	S	PI 502111	674	S
PI 407667	149	R	PI 157542	352	S	PI 576634	527	S	PI 493717	674	S
TifNV- High-O/I	174	R	C99R	372	S	PI 290560	527	S	PI 240560	687	S
Fla-07	190	R	PI 576636	403	S	C76-16	530	S	PI 481795	692	S
PI 461434	229	MR	PI 331297	403	S	PI 155107	542	S	PI 576614	695	S
AU-17	239	MR	PI 482189	409	S	PI 200441	545	S	EXP27-	705	S
PI 493938	243	MR	PI 158854	431	S	G06G	563	S	PI 298854	708	S
PI 471954	262	S	PI 493880	454	S	PI 442768	575	S	PI 343384	714	S
PI 290594	276	S	PI 355271	459	S	PI 152146	579	S	Lot5- 101/Line 8	730	S
PI 162655	288	S	PI 313129	462	S	PI 268696	581	S	PI 162857	738	S
PI 372305	292	S	PI 268847	468	S	PI 478819	581	S	PI 648241	740	S
PI 259851	304	S	PI 372271	475	S	PI 648242	583	S	CG7-A	746	S
PI 268755	309	S	PI 355268	477	S	PI 295250	595	S	PI 496448	776	S
FL-279	311	S	PI 296550	477	S	PI 288146	604	S	SPT06-6	788	S
VC-2 (1)	319	S	NC-3033	482	S	PI 496401	612	S	PI 290566	805	S
PI 648250	320	S	PI 259748	488	S	PI 268586	627	S	Ga Green	807	S

Table 2: Resistance classification for peanut genotypes tested in the greenhouse.

RL: Resistant Level

R: Resistant, < eggs/g RFW of TifNV-High O/L and

eggs/g RFW up to "TifNV-High O / L + 10% of TifNV-High O / L" \geq eggs/g RFW MR: Moderately resistant, eggs/g RFW up to "TifNV-High O / L + 50% of TifNV-High O / L" S: Susceptible, eggs/g root > 50% of TifNV-High O / L

Trait	Marker	Chromosome	Position	P-Value	- log ₁₀	PVE
					(P value)	(%)
BM	AX-176809414	A05	1.04E+08	4.84E-05	4.31	16.62
BM	AX-176796238	A05	1.04E+08	1.39E-05	4.85	15.89
BM	AX-176794905	A05	1.04E+08	4.12E-04	3.38	13.24
BM	AX-176812683	A07	18777607	8.32E-04	3.07	12.13
Eggs/g RFW	AX-147219410	A04	9307072	4.50E-05	4.34	14.93
Eggs/g RFW	AX-176821623	B06	2198106	8.23E-04	3.08	10.88
Eggs/g RFW	AX-176822589	B07	2810620	6.42E-04	3.19	8.90
Eggs/g RFW	AX-177644370	B08	1.24E+08	3.08E-04	3.51	10.26
PH	AX-176805890	A01	1580925	3.25E-04	3.48	11.17
PH	AX-176796691	A05	86185395	3.03E-04	3.51	9.29
PH	AX-147225431	A06	63883081	9.88E-04	3.00	7.80
PH	AX-177637748	A07	56104900	1.18E-04	3.92	12.54
PH	AX-176822013	A07	59068844	1.18E-04	3.92	12.54
PH	AX-176821798	A07	63657369	1.18E-04	3.92	12.54
PH	AX-176812653	A07	64217536	1.18E-04	3.92	12.54
PH	AX-177639255	A07	58292539	3.73E-04	3.42	11.06
PH	AX-177639847	A07	68894297	5.35E-04	3.27	10.59
PH	AX-177637603	A07	24206696	5.53E-04	3.25	10.54
PH	AX-177637650	A07	58745504	6.31E-04	3.19	8.37
PH	AX-177637432	A08	4160623	3.24E-06	5.48	16.96
PH	AX-176822307	A08	2405445	1.77E-05	4.75	14.91
PH	AX-177638264	A08	2401835	1.18E-04	3.92	12.54
PH	AX-176821485	A08	2924597	1.18E-04	3.92	12.54
PH	AX-177637391	A08	4130418	1.18E-04	3.92	12.54
PH	AX-177637155	A08	4160628	1.18E-04	3.92	12.54
PH	AX-176794999	A09	81732757	3.89E-04	3.41	8.90
PH	AX-176810505	A09	1.02E+08	3.89E-04	3.41	8.90
PH	AX-176820309	B06	50767609	9.88E-04	3.00	7.80
PH	AX-147255972	B07	99843248	5.14E-06	5.28	16.50
PH	AX-177637764	B07	51500083	1.17E-04	3.93	12.68
PH	AX-147255754	B07	57047298	1.18E-04	3.92	12.54
PH	AX-176823112	B07	1E+08	1.18E-04	3.92	12.54
PH	AX-147255998	B07	1.02E+08	1.18E-04	3.92	12.54
PH	AX-147256091	B07	1.06E+08	1.18E-04	3.92	12.54
PH	AX-177637951	B07	68777401	8.54E-04	3.06	9.97
PH	AX-147256234	B07	1.12E+08	9.88E-04	3.00	9.78
PH	AX-177638959	B07	88051816	9.28E-04	3.03	7.93
PH	AX-177638466	B07	24656861	9.52E-04	3.02	7.86
PH	AX-177644247	B08	9988581	7.04E-04	3.15	8.14
PH	AX-177643492	B09	1.39E+08	8.15E-04	3.08	8.12
PH	AX-177639393	B10	1.1E+08	4.08E-04	3.38	8.89
PH	AX-177643787	B10	95718840	9.88E-04	3.00	7.80

Table 3: Distribution of QTLs in twelve chromosomes identified

 Table 3: Continued.

Trait	Marker	Chromosome	Position	P-Value	- log10	PVE
					(P value)	(%)
RFW	AX-176794905	A05	1.04E+08	2.22E-04	3.65	13.78
RFW	AX-176806726	A05	1.04E+08	7.47E-04	3.12	9.52
RFW	AX-147223670	A05	1.03E+08	7.51E-04	3.12	9.49

Table 4: Total number of QTLs associated with traits.

Traits	Determined	Determined- log10 (P value)PVE (%)				
	QTLs					
BM	4	4.85-3.07	16.62-12.13			
Eggs/g	4	4.34-3.08	14.93-8.90			
PH	35	5.48-3.00	16.96-7.81			
RFW	3	3.65-3.12	13.78-9.49			
Total	46	3.00-5.48	7.80-16.96			

Trait	SNP Location	Candidate Gene	Gene Location
	(bp)		(bp)
Egg/g RFW	A04-9307072	Arahy.CT5ZD3	9616353-9621745
Egg/g RFW	B07-2810620	Arahy.18C3F6	2756450-2763400
Egg/g RFW	B07-2810620	Arahy.21TZH2	2812840-2814981
Egg/g RFW	B07-2810620	Arahy.24K8LL	2750311-2753514
Egg/g RFW	B07-2810620	Arahy.2ZUN3L	2637378-2640386
Egg/g RFW	B07-2810620	Arahy.6DS8WC	2669806-2670378
Egg/g RFW	B07-2810620	Arahy.6R79T7	2670436-2672808
Egg/g RFW	B07-2810620	Arahy.BBM6FL	2909926-2919339
Egg/g RFW	B07-2810620	Arahy.DKBS4X	2807891-2812032
Egg/g RFW	B07-2810620	Arahy.F3E022	2710902-2713877
Egg/g RFW	B07-2810620	Arahy.FXNF4I	2359004-2369234
Egg/g RFW	B07-2810620	Arahy.HW8B30	2344577-2347990
Egg/g RFW	B07-2810620	Arahy.L85DV8	2719236-2722201
Egg/g RFW	B07-2810620	Arahy.R600FJ	2692253-2695219
Egg/g RFW	B07-2810620	Arahy.S3Z82H	2794965-2798706
Egg/g RFW	B07-2810620	Arahy.TTKZ9K	2728271-2733731
Egg/g RFW	B07-2810620	Arahy.U2RA4L	2347581-2350586
Egg/g RFW	B07-2810620	Arahy.V485GG	2644198-2647224
Egg/g RFW	B07-2810620	Arahy.WH0DJX	2811829-2812563
Egg/g RFW	B07-2810620	Arahy.S3Z82H	2654758-2657706
Egg/g RFW	B07-2810620	Arahy.XTV6UZ	2622342-2633564
Egg/g RFW	B07-2810620	Arahy.ZU31CU	2687768-2691573
PH	A01-1580925	Arahy.ZKQR71	1679221-1680513
PH	B08-9988581	Arahy.VNIH7N	10098971-10104661
PH	B10-110263083	Arahy.JVX2H3	109849739-109860797
RFW	A05-103711123	Arahy.IGT6GQ	104068602-104072237
BM	A05-104023520	Arahy.IGT6GQ	104068602-104072237

Table 5: 26 significant SNPs and candidate genes including LRR encoding genes associated with RKN.

Figure 2: Frequency distribution of mean of all traits. **A**: Frequency distribution for eggs per gram of the root fresh weight. **B**: Frequency distribution for plant height. **C**: Frequency distribution for root fresh weight. **D**: Frequency distribution for shoot fresh weight. **E**: Frequency distribution for biomass.

B

Figure 3: Manhattan plots of genome-wide association for RKN resistance. The red line demonstrates the genome-wide significant threshold: $-\log_{10}(P \text{ value}) = 3.0$. **A:** P-values by linkage group and Q-Q plots for plant height. **B:** P-values by linkage group and Q-Q plots for biomass. **C:** P-values by linkage group and Q-Q plots for root fresh weight. **D:** P-values by linkage group and Q-Q plots for root fresh weight. **E:** P-values by linkage group and Q-Q plots for root fresh weight.

REFERENCES

- Bertioli, D. J., Cannon, S. B., Froenicke, L., Huang, G., Farmer, A. D., Cannon, E. K. S., et al. (2016). The genome sequences of *Arachis duranensis* and *Arachis ipaensis*, the diploid ancestors of cultivated peanut. *Nature Genetics*. 48, 438–446.
- Bilello, S. (2016). 21st Centruy Homestead: *Nitrogen-fixing crops*. Place of publication not identified: LULU COM.
- Boerma, H. R., & Hussey, R. S. (1992). Breeding plants for resistance to nematodes. *Journal of Nematology*, 24:242-252.
- Bridge, J., & Starr, J. L. (2007). *Plant nematodes of agricultural importance a color handbook*.Boston, MA: Academic Press.
- Cook, R., & Evans, K. (1987). Resistance and tolerance. Pp. 179–231 in R. H. Brown and B. R. Kerry, eds. *Principles and practice of nematode control in crops*. Marrickville, NSW, Australia: Academic Press.
- Dong, W. B., Holbrook, C. C., Timper, P., Brenneman, T. B., Chu, Y., & Ozias-Akins, P. (2008). Resistance in peanut cultivars and breeding lines to three root-knot nematode species. *Plant Disease*. 92, 631-638.
- Holbrook, C. C., Ozias-Akins, P., Chu, Y., Culbreath, A.K., Kvien, C.K., & Brenneman, T.B.
 (2017). Registration of 'TifNV-High O/L' Peanut. *Journal of Plant Registrations*, 11, 228-230.
- Hussey, R. S., & Barker, K. B. (1973). A comparison of methods of collecting inoculate of *Meloidogyne spp.*, including a new technique. Plant Disease Reporter 57:1025-1028.

- Jones, J. T., A. Haegeman, E.G. Danchin, H.S. Gaur, J. Helder, M.G. Jones., T. Kikuchi, R. Manzanilla-López, J.E. Palomares-Rius, W.M. Wesemael, & R.N. Perry. (2013). Top 10 plant-parasitic nematodes. *Molecular Plant Pathology* 14, 946-961.
- Kemerait, R.C., & Davis, R.F. 2003. Evaluation of nematicides to reduce losses to root-knot nematode in peanut [abstract]. Fungicide and Nematicide Tests. 58 Report No. NO14.
- Knepper, C., & Day, B. (2010). From perception to activation: the molecular-genetic and biochemical landscape of disease resistance signaling in plants. *The arabidopsis book*, 8, e012. doi:10.1199/tab.0124
- Li, H., Zhang, L., Hu, J., Zhang, F., Chen, B., Xu, K., Gao, G., Li, H., Zhang, T., Li, Z. and Wu,
 X. (2017). Genome-Wide Association Mapping Reveals the Genetic Control Underlying
 Branch Angle in Rapeseed (*Brassica napus L.*). *Frontiers in Plant Science*, 8, 1054.
- Nagy, E., Chu, Y.Y., Guo, S., Khanal, & Tang, S. (2010). Recombination is suppressed in an alien introgression in peanut harboring *Rma*, a dominant root-knot nematode resistance gene. *Molecular Breeding* 26, 357-370.
- National Peanut Board. Peanut types. [Online]. (Verified 15Nov.2018). Available at https://www.nationalpeanutboard.org/peanut-info/history-peanuts-peanut-butter.htm
- Pandey, M. K., Wang, H., Khera, P., Vishwakarma, M. K., Kale, S. M., Culbreath, A. K., ...
 Guo, B. (2017). Genetic Dissection of Novel QTLs for Resistance to Leaf Spots and
 Tomato Spotted Wilt Virus in Peanut (*Arachis hypogaea* L.). *Frontiers in plant*science, 8, 25.
- Porebski, S., Bailey, G. & Baum, B.R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. *Plant Molecular Biology Reporter* 15, 8-15.

- Sasser, J.N., Eisenback, J.D, Carter, C.C., & Triantaphyllou, A.C. (1983). The International meloidogyne project-Its goals and accomplishments. *Ann. Rev. Phytopathol* 21, 271-88.
- Starr, J.L., Morgan, E., & Simpson, C.E. (2002). Management of the peanut root-knot nematode, *Meloidogyne arenaria*, with host resistance. [Online] Plant Health Progress. doi: 10.1094/PHP 2002-1121-01-HM.

Williamson, V. M. (1999). Plant nematode resistance genes. Plant Biology 2, 327-331.

- Zhang, H., Li, C., Davis, E.L., Wang, J., Griffin, J.D., Kofsky, J., & Song, B.H. (2016) Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (*Heterodera glycines*)
 HG Type 2.5.7 in Wild Soybean (*Glycine soja*). Frontiers Plant Science 7, 1214.
- Zhang, J.P., Song, Q.J., Cregan, P.B., Nelson, R.L., Wang, X.Z., Wu, J.X., & Jiang G.L. (2015).
 Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (*Glycinemax*) germplasm. *BioMed Central (BMC) Genomics* 16, 217.

APPENDIX

RFW(cm)PI 494034 7129 <.0001A 27.67 <.0001ABCDEFGHPI 476636 6521 <.0001AB 18.00 <.0001BCDEFGHIPI 259617 5661 <.0001ABCD 20.33 <.0001BCDEFGHIPI 356004 5290 <.0001ABCD 31.33 <.0001ABCDPI 292950 5225 <.0001ABCDE 14.50 <.0001EFGHIPI 40381349170.0002ABCDEF 39.33 <.0001ALot5-83 Line-5 4873 0.0002ABCDEF 19.00 <.0001BCDEFGHIOlin45990.0004ABCDEF 20.00 <.0001BCDEFGHIPI 47643240620.0015BCDEFG 26.33 <.0001ABCDEFGHIPI 47643240620.0019BCDEFGH 15.33 <.0001ABCDEFGHIPI 49358137870.0029BCDEFGHI 15.33 <.0001BCDEFGHIPI 49358137870.0059BCDEFGHI 12.333 <.0001ABCDEFGHIPI 3710933140.0086CDEFGHIJ 12.00 <.0001BCDEFGHIPI 50127232330.013CDEFGHIJ 17.67 <.0001BCDEFGHIPI 49731826930.031CDEFGHIJ 17.67 <.0001BCDEFGHIPI 49731825290.0422CDEFGHIJ 16.00 <.0001BCDEFGHIPI 49354723690.0564DEFGHIJ 16.00 <.0001BCDEFGHI <th>I</th>	I
PI 494034 7129 $<.0001$ A 27.67 $<.0001$ ABCDEFGHPI 476636 6521 $<.0001$ AB 18.00 $<.0001$ BCDEFGHIPI 259617 5661 $<.0001$ ABC 20.33 $<.0001$ BCDEFGHIPI 356004 5290 $<.0001$ ABCD 31.33 $<.0001$ ABCDPI 292950 5225 $<.0001$ ABCDE 14.50 $<.0001$ EFGHIPI 403813 4917 0.0002 ABCDEF 39.33 $<.0001$ ALot5-83 Line-5 4873 0.0002 ABCDEF 19.00 $<.0001$ BCDEFGHIOlin 4599 0.0004 ABCDEF 20.00 $<.0001$ BCDEFGHIPI 476432 4062 0.0015 BCDEFG 26.33 $<.0001$ ABCDEFGHIPI 493581 3787 0.0029 BCDEFGHI 35.33 $<.0001$ ABSunOleic 93R 3487 0.0059 BCDEFGHI 23.33 $<.0001$ ABCDEFGHIPI 37139 3144 0.0086 CDEFGHII 12.333 $<.0001$ BCDEFGHIPI 271019 2760 0.0272 CDEFGHII 17.67 $<.0001$ BCDEFGHIPI 497318 2693 0.031 CDEFGHII 17.67 $<.0001$ BCDEFGHIPI 497418 2529 0.0422 CDEFGHII 16.00 $<.0001$ BCDEFGHIPI 497518 2365 0.0564 DEFGHII 17.67 $<.0001$ BCDEFGHIPI 493631 2160 0.0527 CDEFGHII	ł
PI 476636 6521 <.0001 AB 18.00 <.0001 BCDEFGHI PI 259617 5661 <.0001	
PI 259617 5661 <.0001 ABC 20.33 <.0001 BCDEFGHI PI 356004 5290 <.0001	
PI 356004 5290 <.0001 ABCD 31.33 <.0001 ABCD PI 292950 5225 <.0001	
PI 292950 5225 <.0001	
PI 403813 4917 0.0002 ABCDEF 39.33 <.0001 A Lot5-83 Line-5 4873 0.0002 ABCDEF 19.00 <.0001	
Lot5-83 Line-5 4873 0.0002 ABCDEF 19.00 $<.0001$ BCDEFGHIOlin 4599 0.0004 ABCDEF 20.00 $<.0001$ BCDEFGHIPI 476432 4062 0.0015 BCDEFG 26.33 $<.0001$ ABCDEFGHIPI 648245 3979 0.0019 BCDEFG 15.00 $<.0001$ DEFGHIPI 493581 3787 0.0029 BCDEFGH 35.33 $<.0001$ ABSunOleic 93R 3487 0.0059 BCDEFGHI 18.33 $<.0001$ BCDEFGHIPI 337399 3314 0.0086 CDEFGHIJ 23.33 $<.0001$ ABCDEFGHIFlavorunner 458 3265 0.0096 CDEFGHIJ 16.00 $<.0001$ DEFGHIPI 501272 3233 0.0103 CDEFGHIJ 12.00 $<.0001$ BCDEFGHIPI 497318 2693 0.031 CDEFGHIJ 17.67 $<.0001$ BCDEFGHIPI 274198 2529 0.0422 CDEFGHIJ 16.00 $<.0001$ BCDEFGHIPI 461427 2410 0.0527 CDEFGHIJ 16.00 $<.0001$ BCDEFGHIAU16-28 2407 0.0527 CDEFGHIJ 16.00 $<.0001$ BCDEFGHIPI 493547 2365 0.0568 DEFGHIJ 19.67 $<.0001$ BCDEFGHIPI 493631 2160 0.0812 EFGHIJ 15.67 $<.0001$ BCDEFGHIPI 274194 2156 0.0816 FGHIJ 14.00 $<.0001$ FGHIPI 196622 2113	
Olin 4599 0.0004 $ABCDEF$ 20.00 $<.0001$ $BCDEFGHI$ PI 476432 4062 0.0015 $BCDEFG$ 26.33 $<.0001$ $ABCDEFGH$ PI 648245 3979 0.0019 $BCDEFG$ 15.00 $<.0001$ $DEFGHI$ PI 493581 3787 0.0029 $BCDEFGH$ 35.33 $<.0001$ AB SunOleic 93R 3487 0.0059 $BCDEFGHI$ 18.33 $<.0001$ $ABCDEFGHI$ PI 337399 3314 0.0086 $CDEFGHIJ$ 23.33 $<.0001$ $ABCDEFGHI$ Flavorunner 458 3265 0.0096 $CDEFGHIJ$ 16.00 $<.0001$ $DEFGHI$ PI 501272 3233 0.0103 $CDEFGHIJ$ 22.00 $<.0001$ $BCDEFGHI$ PI 271019 2760 0.0272 $CDEFGHIJ$ 17.67 $<.0001$ $BCDEFGHI$ PI 497318 2693 0.031 $CDEFGHIJ$ 21.00 $<.0001$ $BCDEFGHI$ PI 274198 2529 0.0422 $CDEFGHIJ$ 16.00 $<.0001$ $BCDEFGHI$ PI 461427 2410 0.0524 $CDEFGHIJ$ 16.00 $<.0001$ $BCDEFGHI$ AU16-28 2407 0.0527 $CDEFGHIJ$ 16.00 $<.0001$ $BCDEFGHI$ PI 493547 2369 0.0568 $DEFGHIJ$ 19.67 $<.0001$ $BCDEFGHI$ PI 493631 2160 0.0812 $EFGHIJ$ 15.67 $<.0001$ $BCDEFGHI$ PI 493631 2160 0.0816 $FGHIJ$ 14.00 $<.0001$ <	
PI 476432 4062 0.0015 BCDEFG 26.33 $<.0001$ ABCDEFGHPI 648245 3979 0.0019 BCDEFG 15.00 $<.0001$ DEFGHIPI 493581 3787 0.0029 BCDEFGH 35.33 $<.0001$ ABSunOleic 93R 3487 0.0059 BCDEFGHI 18.33 $<.0001$ BCDEFGHIPI 337399 3314 0.0086 CDEFGHIJ 23.33 $<.0001$ ABCDEFGHIFlavoruner 458 3265 0.0096 CDEFGHIJ 22.00 $<.0001$ BCDEFGHIPI 501272 3233 0.0103 CDEFGHIJ 22.00 $<.0001$ BCDEFGHIPI 497318 2693 0.031 CDEFGHIJ 21.00 $<.0001$ BCDEFGHIPI 295730 2673 0.0321 CDEFGHIJ 17.67 $<.0001$ BCDEFGHIPI 461427 2410 0.0524 CDEFGHIJ 21.00 $<.0001$ BCDEFGHIAU16-28 2407 0.0527 CDEFGHIJ 16.00 $<.0001$ BCDEFGHIPI 493547 2369 0.0564 DEFGHIJ 19.67 $<.0001$ BCDEFGHIPI 493631 2160 0.0812 EFGHIJ 19.67 $<.0001$ BCDEFGHIPI 274194 2156 0.0816 FGHIJ 14.00 $<.0001$ BCDEFGHIPI 371521 2039 0.0991 FGHIJ 12.00 $<.0001$ BCDEFGHI	
PI 64824539790.0019BCDEFG15.00<.0001DEFGHIPI 49358137870.0029BCDEFGH35.33<.0001	II
PI 493581 3787 0.0029 BCDEFGH 35.33 $<.0001$ ABSunOleic 93R 3487 0.0059 BCDEFGHI 18.33 $<.0001$ BCDEFGHIPI 337399 3314 0.0086 CDEFGHIJ 23.33 $<.0001$ ABCDEFGHIFlavorunner 458 3265 0.0096 CDEFGHIJ 16.00 $<.0001$ DEFGHIPI 501272 3233 0.0103 CDEFGHIJ 22.00 $<.0001$ BCDEFGHIPI 271019 2760 0.0272 CDEFGHIJ 17.67 $<.0001$ BCDEFGHIPI 497318 2693 0.031 CDEFGHIJ 21.00 $<.0001$ BCDEFGHIPI 295730 2673 0.0321 CDEFGHIJ 17.67 $<.0001$ BCDEFGHIPI 461427 2410 0.0524 CDEFGHIJ 16.00 $<.0001$ BCDEFGHIAU16-28 2407 0.0527 CDEFGHIJ 16.00 $<.0001$ BCDEFGHIPI 493547 2365 0.0564 DEFGHIJ 19.67 $<.0001$ BCDEFGHIPI 493631 2160 0.0812 EFGHIJ 19.67 $<.0001$ BCDEFGHIPI 274194 2156 0.0816 FGHIJ 14.00 $<.0001$ BCDEFGHIPI 196622 2113 0.0878 FGHIJ 18.00 $<.0001$ BCDEFGHIPI 371521 2039 0.0991 FGHIJ 12.00 $<.0001$ BCDEFGHI	
SunOleic 93R 3487 0.0059 BCDEFGHI 18.33 $<.0001$ BCDEFGHIPI 337399 3314 0.0086 CDEFGHIJ 23.33 $<.0001$ ABCDEFGHFlavorunner 458 3265 0.0096 CDEFGHIJ 16.00 $<.0001$ DEFGHIPI 501272 3233 0.0103 CDEFGHIJ 22.00 $<.0001$ BCDEFGHIPI 271019 2760 0.0272 CDEFGHIJ 17.67 $<.0001$ BCDEFGHIPI 497318 2693 0.031 CDEFGHIJ 21.00 $<.0001$ BCDEFGHIPI 295730 2673 0.0321 CDEFGHIJ 17.67 $<.0001$ BCDEFGHIPI 274198 2529 0.0422 CDEFGHIJ 16.00 $<.0001$ BCDEFGHIPI 461427 2410 0.0524 CDEFGHIJ 16.00 $<.0001$ BCDEFGHIAU16-28 2407 0.0527 CDEFGHIJ 16.00 $<.0001$ BCDEFGHIPI 493547 2365 0.0568 DEFGHIJ 19.67 $<.0001$ BCDEFGHIPI 493631 2160 0.0812 EFGHIJ 15.67 $<.0001$ BCDEFGHIPI 274194 2156 0.0816 FGHIJ 14.00 $<.0001$ BCDEFGHIPI 196622 2113 0.0878 FGHIJ 18.00 $<.0001$ BCDEFGHIPI 371521 2039 0.0991 EGHIJ 12.00 <0001 BCDEFGHI	
PI 3373993314 0.0086 CDEFGHIJ 23.33 $<.0001$ ABCDEFGHFlavorunner 4583265 0.0096 CDEFGHIJ 16.00 $<.0001$ DEFGHIPI 5012723233 0.0103 CDEFGHIJ 22.00 $<.0001$ BCDEFGHIPI 2710192760 0.0272 CDEFGHIJ 17.67 $<.0001$ BCDEFGHIPI 4973182693 0.031 CDEFGHIJ 21.00 $<.0001$ BCDEFGHIPI 2957302673 0.0321 CDEFGHIJ 17.67 $<.0001$ BCDEFGHIPI 2741982529 0.0422 CDEFGHIJ 16.00 $<.0001$ BCDEFGHIPI 4614272410 0.0524 CDEFGHIJ 16.00 $<.0001$ BCDEFGHIAU16-282407 0.0527 CDEFGHIJ 16.00 $<.0001$ BCDEFGHIPI 4935472369 0.0564 DEFGHIJ 19.67 $<.0001$ BCDEFGHIPI 4936312160 0.0812 EFGHIJ 15.67 $<.0001$ BCDEFGHIPI 2741942156 0.0816 FGHIJ 14.00 $<.0001$ FGHIPI 1966222113 0.0878 FGHIJ 18.00 $<.0001$ BCDEFGHIPI 3715212039 0.0991 EGHIJ 12.00 $<.0001$ GHI	
Flavorunner 45832650.0096CDEFGHIJ16.00<.0001DEFGHIPI 50127232330.0103CDEFGHIJ22.00<.0001	II
PI 50127232330.0103CDEFGHIJ22.00<.0001BCDEFGHIPI 27101927600.0272CDEFGHIJ17.67<.0001	
PI 27101927600.0272CDEFGHIJ17.67<.0001BCDEFGHIPI 49731826930.031CDEFGHIJ21.00<.0001	
PI 49731826930.031CDEFGHIJ21.00<.0001BCDEFGHIPI 29573026730.0321CDEFGHIJ17.67<.0001	
PI 29573026730.0321CDEFGHIJ17.67<.0001BCDEFGHIPI 27419825290.0422CDEFGHIJ16.00<.0001	
PI 27419825290.0422CDEFGHIJ16.00<.0001DEFGHIPI 46142724100.0524CDEFGHIJ21.00<.0001	
PI 46142724100.0524CDEFGHIJ21.00<.0001BCDEFGHIAU16-2824070.0527CDEFGHIJ16.00<.0001	
AU16-2824070.0527CDEFGHIJ16.00<.0001DEFGHIPI 49354723690.0564DEFGHIJ19.67<.0001	
PI 49354723690.0564DEFGHIJ19.67<.0001BCDEFGHIPI 47591823650.0568DEFGHIJ20.67<.0001	
PI 47591823650.0568DEFGHIJ20.67<.0001BCDEFGHIPI 49363121600.0812EFGHIJ15.67<.0001	
PI 49363121600.0812EFGHIJ15.67<.0001DEFGHIPI 27419421560.0816FGHIJ14.00<.0001	
PI 274194 2156 0.0816 FGHIJ 14.00 <.0001 FGHI PI 196622 2113 0.0878 FGHIJ 18.00 <.0001	
PI 196622 2113 0.0878 FGHIJ 18.00 <.0001 BCDEFGHI PI 371521 2039 0.0991 FGHII 12.00 <.0001	
PL371521 2039 0.0991 FGHII 12.00 < 0001 GHI	
Lot 5-100 Line-7 2016 0.1029 FGHIJ 27.00 <.0001 ABCDEFGH	ł
PI 493329 2012 0.1036 FGHIJ 23.00 <.0001 ABCDEFGH	II
PI 323268 1909 0.1034 FGHIJ 20.51 <.0001 BCDEFGHI	
PI 478850 1859 0.1318 FGHIJ 15.67 <.0001 DEFGHI	
PI 493729 1796 0.1452 FGHIJ 34.67 <.0001 ABC	
PI 262038 1790 0.1464 FGHIJ 28.33 <.0001 ABCDEFG	
PI 494795 1729 0.2342 FGHIJ 17.62 <.0001 BCDEFGHI	
PI 274193 1723 0.162 FGHIJ 19.33 <.0001 BCDEFGHI	
PI 159786 1662 0.1771 FGHIJ 20.67 <.0001 BCDEFGHI	
Lot5-73 Line-1 1641 0.1825 FGHIJ 14.00 <.0001 FGHI	
PI 331314 1580 0.1991 FGHIJ 17.33 <.0001 BCDEFGHI	

Table 6: Tukey-Kramer's results for eggs per gram of the root fresh weight and plant height.

PI#	Eggs/g	Pr > t		PH	Pr >	
	RFW			(cm)	t	
PI 337406	1516	0.2176	GHIJ	18.67	<.0001	BCDEFGHI
PI 497517	1482	0.2278	GHIJ	30.67	<.0001	ABCDE
PI 468250	1451	0.2375	GHIJ	22.67	<.0001	BCDEFGHI
PI 337293	1448	0.2385	GHIJ	17.67	<.0001	BCDEFGHI
PI 339960	1411	0.2507	GHIJ	24.67	<.0001	ABCDEFGHI
PI 268806	1393	0.2567	GHIJ	18.33	<.0001	BCDEFGHI
PI 296558	1310	0.2856	GHIJ	24.00	<.0001	ABCDEFGHI
PI 196670	1301	0.2892	GHIJ	20.33	<.0001	BCDEFGHI
PI 325943	1296	0.291	GHIJ	30.00	<.0001	ABCDEF
NC-7	1295	0.2913	GHIJ	17.67	<.0001	BCDEFGHI
PI 270786	1259	0.3046	GHIJ	20.33	<.0001	BCDEFGHI
PI 504614	1254	0.3068	GHIJ	24.33	<.0001	ABCDEFGHI
PI 319768	1251	0.3076	GHIJ	24.67	<.0001	ABCDEFGHI
PI 269037	1218	0.3207	GHIJ	21.67	<.0001	BCDEFGHI
PI 493356	1216	0.3212	GHIJ	21.67	<.0001	BCDEFGHI
Lot5-63 Line-6	1130	0.3565	GHIJ	16.67	<.0001	CDEFGHI
Ap-4	1118	0.3616	GHIJ	23.00	<.0001	ABCDEFGHI
GA Greener	1110	0.3651	GHIJ	16.33	<.0001	DEFGHI
PI 502120	1076	0.3798	GHIJ	20.00	<.0001	BCDEFGHI
Lot5-80 Line-3	1065	0.3845	GHIJ	14.33	<.0001	EFGHI
PI 429420	1056	0.2946	GHIJ	26.51	<.0001	ABCDEFGHI
PI 196635	1052	0.3903	GHIJ	18.00	<.0001	BCDEFGHI
PI 497395	1047	0.3928	GHIJ	21.00	<.0001	BCDEFGHI
PI 576637	1036	0.3978	GHIJ	26.33	<.0001	ABCDEFGHI
N0808201	1029	0.4009	GHIJ	17.33	<.0001	BCDEFGHI
PI 288210	1021	0.4044	GHIJ	19.33	<.0001	BCDEFGHI
PI 343398	993	0.4173	HIJ	15.00	<.0001	DEFGHI
Ga HI O/L	990	0.4189	HIJ	18.67	<.0001	BCDEFGHI
PI 497639	988	0.4195	HIJ	20.67	<.0001	BCDEFGHI
PI 471952	978	0.4243	HIJ	14.67	<.0001	EFGHI
PI 270907	903	0.4607	HIJ	20.67	<.0001	BCDEFGHI
PI 259836	868	0.4781	HIJ	18.33	<.0001	BCDEFGHI
PI 268996	847	0.4887	HIJ	22.00	<.0001	BCDEFGHI
PI 648249	841	0.4919	HIJ	15.33	<.0001	DEFGHI
AT 3085RO	840	0.4924	HIJ	17.33	<.0001	BCDEFGHI
Lot4-8 Line-4	824	0.5003	HIJ	14.33	<.0001	EFGHI
PI 502040	811	0.5074	HIJ	17.00	<.0001	CDEFGHI
Ga Green	807	0.5094	HIJ	17.00	<.0001	CDEFGHI
PI 290566	805	0.5103	HIJ	20.00	<.0001	BCDEFGHI
SPT06-6	788	0.5193	HIJ	18.33	<.0001	BCDEFGHI
PI 496448	776	0.5257	HIJ	22.00	<.0001	BCDEFGHI
PI 274195	774	0.5268	HIJ	10.00	0.0001	Ι
Tifrunner	772	0.528	HIJ	11.67	<.0001	HI

Table: continued.						
PI #	Eggs/g	$\mathbf{Pr} > \mathbf{t} $		PH	Pr >	
	RFW			(cm)	t	
CG7-A	746	0.5415	HIJ	16.00	<.0001	DEFGHI
PI 648241	740	0.5449	HIJ	14.33	<.0001	EFGHI
PI 162857	738	0.5462	HIJ	20.67	<.0001	BCDEFGHI
Lot5-101 Line-8	730	0.5502	HIJ	17.33	<.0001	BCDEFGHI
PI 343384	714	0.5589	HIJ	12.33	<.0001	GHI
PI 298854	708	0.5626	HIJ	16.67	<.0001	CDEFGHI
EXP27-1516	705	0.5644	HIJ	18.33	<.0001	BCDEFGHI
PI 576614	695	0.5695	HIJ	15.00	<.0001	DEFGHI
PI 481795	692	0.5712	HIJ	13.67	<.0001	FGHI
PI 240560	687	0.574	HIJ	22.67	<.0001	BCDEFGHI
PI 493717	674	0.5813	HIJ	14.00	<.0001	FGHI
PI 502111	674	0.5816	HIJ	17.67	<.0001	BCDEFGHI
PI 290536	672	0.5826	HIJ	22.33	<.0001	BCDEFGHI
PI 494018	666	0.5858	HIJ	22.00	<.0001	BCDEFGHI
PI 270998	655	0.5918	HIJ	13.67	<.0001	FGHI
Florunner	644	0.5984	HIJ	20.00	<.0001	BCDEFGHI
PI 338338	631	0.6054	HIJ	15.00	<.0001	DEFGHI
PI 268586	627	0.6079	HIJ	24.67	<.0001	ABCDEFGHI
PI 496401	612	0.6167	HIJ	15.33	<.0001	DEFGHI
PI 288146	604	0.6211	IJ	22.33	<.0001	BCDEFGHI
PI 476025	603	0.6218	IJ	17.67	<.0001	BCDEFGHI
PI 295250	595	0.6261	IJ	20.00	<.0001	BCDEFGHI
PI 648242	583	0.6333	IJ	23.00	<.0001	ABCDEFGHI
PI 478819	581	0.6343	IJ	19.33	<.0001	BCDEFGHI
PI 268696	581	0.6346	IJ	23.67	<.0001	ABCDEFGHI
PI 152146	579	0.6358	IJ	19.33	<.0001	BCDEFGHI
PI 442768	575	0.638	IJ	21.67	<.0001	BCDEFGHI
G06G	563	0.4778	IJ	17.01	<.0001	BCDEFGHI
PI 200441	545	0.6552	IJ	15.00	<.0001	DEFGHI
PI 155107	542	0.6575	IJ	16.33	<.0001	DEFGHI
C76-16	530	0.6645	IJ	20.33	<.0001	BCDEFGHI
PI 290560	527	0.666	IJ	15.33	<.0001	DEFGHI
PI 576634	527	0.6664	IJ	21.00	<.0001	BCDEFGHI
Grif 14051	516	0.6726	IJ	19.00	<.0001	BCDEFGHI
NM Val	513	0.6745	IJ	22.00	<.0001	BCDEFGHI
Grif 12545	509	0.6766	IJ	18.33	<.0001	BCDEFGHI
PI 475863	506	0.6788	IJ	23.00	<.0001	ABCDEFGHI
Grif 12579	496	0.685	IJ	22.00	<.0001	BCDEFGHI
Valencia	491	0.688	IJ	20.33	<.0001	BCDEFGHI
PI 259748	488	0.6893	IJ	27.33	<.0001	ABCDEFGH
NC-3033	482	0.693	IJ	14.00	<.0001	FGHI
PI 296550	477	0.6964	IJ	13.67	<.0001	FGHI
PI 355268	477	0.6964	IJ	22.67	<.0001	BCDEFGHI
	1			1		

Table: Continued.						
PI #	Eggs/g	Pr > t		PH	Pr >	
	RFW			(cm)	t	
PI 372271	475	0.6971	IJ	19.67	<.0001	BCDEFGHI
PI 268847	468	0.7014	IJ	13.67	<.0001	FGHI
PI 313129	462	0.7053	IJ	13.67	<.0001	FGHI
PI 355271	459	0.7068	IJ	16.67	<.0001	CDEFGHI
PI 493880	454	0.7099	IJ	15.33	<.0001	DEFGHI
PI 158854	431	0.7243	IJ	15.67	<.0001	DEFGHI
PI 482189	409	0.7378	J	20.67	<.0001	BCDEFGHI
PI 331297	403	0.7415	J	19.00	<.0001	BCDEFGHI
PI 576636	403	0.7416	J	21.00	<.0001	BCDEFGHI
C99R	372	0.7605	J	16.67	<.0001	CDEFGHI
PI 157542	352	0.7731	J	14.00	<.0001	FGHI
PI 270905	345	0.7775	J	21.67	<.0001	BCDEFGHI
PI 196705	335	0.7841	J	23.33	<.0001	ABCDEFGHI
PI 259658	334	0.7847	J	21.00	<.0001	BCDEFGHI
PI 290620	328	0.7882	J	23.33	<.0001	ABCDEFGHI
PI 482120	325	0.7901	J	18.33	<.0001	BCDEFGHI
PI 648250	320	0.7931	J	14.00	<.0001	FGHI
VC-2 (1)	319	0.7941	J	25.67	<.0001	ABCDEFGHI
FL-279	311	0.799	J	16.67	<.0001	CDEFGHI
PI 268755	309	0.8004	J	24.00	<.0001	ABCDEFGHI
PI 259851	304	0.8033	J	21.67	<.0001	BCDEFGHI
PI 372305	292	0.8109	J	14.67	<.0001	EFGHI
PI 162655	288	0.8133	J	16.67	<.0001	CDEFGHI
PI 290594	276	0.8214	J	22.67	<.0001	BCDEFGHI
PI 471954	262	0.8304	J	15.67	<.0001	DEFGHI
PI 493938	243	0.8423	J	25.00	<.0001	ABCDEFGHI
AU-17	239	0.8449	J	20.00	<.0001	BCDEFGHI
PI 461434	229	0.8515	J	23.67	<.0001	ABCDEFGHI
Fla-07	190	0.8766	J	21.00	<.0001	BCDEFGHI
TifNV-High O/L	174	0.8868	J	17.67	<.0001	BCDEFGHI
PI 407667	149	0.903	J	20.00	<.0001	BCDEFGHI
PI 295309	139	0.6758	J	18.51	<.0001	BCDEFGHI
PI 268868	133	0.9132	J	14.00	<.0001	FGHI
PI 497648	127	0.9173	J	16.17	<.0001	DEFGHI
PI 390428	123	0.9196	J	12.33	<.0001	GHI
Lot4-37 Line-2	111	0.9278	J	13.33	<.0001	GHI
PI 370331	95	0.9854	J	16.62	<.0001	CDEFGHI

Significant differences indicated by Tukey by P < 0.05. Means followed by the same letter are not significantly different. Statistical analysis of Eggs/g RFW was performed on log transformed data, but the means presented are untransformed.

PI #	SFW	Pr >		RFW	Pr >		BM	Pr >	
	(g)	t		(g)	t		(g)	t	
PI 494034	11.37	<.0001	ABC	5.87	<.0001	ABC	2.48	<.0001	AB
PI 476636	11.27	<.0001	ABC	3.61	0.0002	ABC	1.83	<.0001	AB
PI 259617	12.76	<.0001	ABC	5.03	<.0001	ABC	2.71	<.0001	AB
PI 356004	16.34	<.0001	ABC	6.39	<.0001	ABC	2.78	<.0001	AB
PI 292950	11.95	<.0001	ABC	5.02	<.0001	ABC	3.18	<.0001	AB
PI 403813	11.09	<.0001	ABC	3.50	0.0003	ABC	2.06	<.0001	AB
Lot5-85 Line-5	13.76	<.0001	ABC	2.21	0.0224	BC	2.08	<.0001	AB
Olin	11.83	<.0001	ABC	2.67	0.0058	BC	2.23	<.0001	AB
PI 476432	14.83	<.0001	ABC	5.45	<.0001	ABC	2.47	<.0001	AB
PI 648245	6.90	0.0004	С	4.78	<.0001	ABC	1.42	0.0007	В
PI 493581	16.09	<.0001	ABC	5.81	<.0001	ABC	2.57	<.0001	AB
SunOleic 93R	12.70	<.0001	ABC	6.86	<.0001	ABC	2.60	<.0001	AB
PI 337399	13.81	<.0001	ABC	4.54	<.0001	ABC	2.88	<.0001	AB
Flavorunner 458	15.05	<.0001	ABC	6.29	<.0001	ABC	2.65	<.0001	AB
PI 501272	10.60	<.0001	ABC	3.06	<.0001	BC	1.50	0.0004	В
PI 271019	10.31	<.0001	ABC	2.92	0.0026	BC	1.79	<.0001	AB
PI 497318	16.14	<.0001	ABC	5.85	<.0001	ABC	2.84	<.0001	AB
PI 295730	14.10	<.0001	ABC	5.70	<.0001	ABC	2.26	<.0001	AB
PI 274198	14.61	<.0001	ABC	4.39	<.0001	ABC	3.07	<.0001	AB
PI 461427	12.27	<.0001	ABC	7.04	<.0001	ABC	2.78	<.0001	AB
AU16-28	13.38	<.0001	ABC	4.87	<.0001	ABC	2.17	<.0001	AB
PI 493547	16.20	<.0001	ABC	5.96	<.0001	ABC	3.07	<.0001	AB
PI 475918	14.09	<.0001	ABC	7.32	<.0001	ABC	2.94	<.0001	AB
PI 493631	13.11	<.0001	ABC	4.86	<.0001	ABC	2.59	<.0001	AB
PI 274194	10.70	<.0001	ABC	5.84	<.0001	ABC	2.30	<.0001	AB
PI 196622	13.43	<.0001	ABC	4.75	<.0001	ABC	2.40	<.0001	AB
PI 371521	13.00	<.0001	ABC	6.21	<.0001	ABC	2.08	<.0001	AB
Lot5-100 Line-7	14.89	<.0001	ABC	6.57	<.0001	ABC	3.34	<.0001	AB
PI 493329	13.42	<.0001	ABC	4.76	<.0001	ABC	2.76	<.0001	AB
PI 323268	15.39	<.0001	ABC	6.21	<.0001	ABC	2.64	<.0001	AB
PI 478850	14.33	<.0001	ABC	6.43	<.0001	ABC	2.48	<.0001	AB
PI 493729	16.31	<.0001	ABC	4.86	<.0001	ABC	2.66	<.0001	AB
PI 262038	15.53	<.0001	ABC	6.40	<.0001	ABC	2.95	<.0001	AB
PI 494795	14.24	<.0001	ABC	4.89	<.0001	ABC	2.16	<.0001	AB
PI 274193	15.00	<.0001	ABC	5.39	<.0001	ABC	2.76	<.0001	AB
PI 159786	14.08	<.0001	ABC	4.83	<.0001	ABC	2.00	<.0001	AB
Lot5-73 Line-1	9.44	<.0001	BC	3.97	<.0001	ABC	1.49	0.0004	В
PI 331314	14.50	<.0001	ABC	6.14	<.0001	ABC	2.94	<.0001	AB
PI 337406	12.64	<.0001	ABC	5.56	<.0001	ABC	2.47	<.0001	AB
PI 497517	21.09	<.0001	AB	8.55	<.0001	ABC	3.79	<.0001	AB
PI 468250	14.21	<.0001	ABC	4.80	<.0001	ABC	2.64	<.0001	AB
PI 337293	13.45	<.0001	ABC	4.14	<.0001	ABC	2.76	<.0001	AB
PI 339960	15.87	<.0001	ABC	4.92	<.0001	ABC	2.94	<.0001	AB

Table 7: Tukey-Kramer's results for shoot fresh weight, root fresh weight and biomass.

n #	u.	D		DEW	Dera		DM	D	
P1 #	SF W	Pr >		KF W	Pr >			Pr >	
DI 260006	(g)	l ≤ 0001	ADC	(g)	l < 0001	ADC	(g)	l ≤ 0001	AD
PI 200000	10.15	<.0001	ADC	5.51	<.0001	ADC	2.09	<.0001	
PI 290558	22.39	<.0001	A	0.70	<.0001	ABC	3.88	<.0001	
PI 196670	15.17	<.0001	ABC	6.29	<.0001	ABC	2.91	<.0001	AB
PI 325943	11.07	<.0001	ABC	4.33	<.0001	ABC	1.98	<.0001	AB
NC-/	16.61	<.0001	ABC	6.83	<.0001	ABC	3.00	<.0001	AB
PI 270786	15.86	<.0001	ABC	6.64	<.0001	ABC	2.80	<.0001	AB
PI 504614	9.72	<.0001	BC	6.09	<.0001	ABC	1.84	<.0001	AB
PI 319768	13.37	<.0001	ABC	5.82	<.0001	ABC	2.70	<.0001	AB
PI 269037	13.67	<.0001	ABC	5.05	<.0001	ABC	2.42	<.0001	AB
PI 493356	11.99	<.0001	ABC	6.21	<.0001	ABC	2.53	<.0001	AB
Lot5-63 Line-6	14.39	<.0001	ABC	7.15	<.0001	ABC	2.41	<.0001	AB
Ap-4	13.96	<.0001	ABC	4.01	<.0001	ABC	2.34	<.0001	AB
GA Greener	12.68	<.0001	ABC	7.22	<.0001	ABC	2.19	<.0001	AB
PI 502120	15.43	<.0001	ABC	7.67	<.0001	ABC	3.26	<.0001	AB
Lot5-80Line-3	11.45	<.0001	ABC	4.91	<.0001	ABC	2.31	<.0001	AB
PI 429420	14.13	<.0001	ABC	7.02	<.0001	ABC	2.57	<.0001	AB
PI 196635	15.23	<.0001	ABC	6.55	<.0001	ABC	2.92	<.0001	AB
PI 497395	17.26	<.0001	ABC	7.71	<.0001	ABC	3.36	<.0001	AB
PI 576637	20.60	<.0001	AB	7.21	<.0001	ABC	4.19	<.0001	А
N0808201	13.29	<.0001	ABC	4.84	<.0001	ABC	2.69	<.0001	AB
PI 288210	13.92	<.0001	ABC	6.32	<.0001	ABC	2.46	<.0001	AB
PI 343398	14.97	<.0001	ABC	6.93	<.0001	ABC	2.85	<.0001	AB
Ga HI O/L	15.81	<.0001	ABC	5.25	<.0001	ABC	2.65	<.0001	AB
PI 497639	15.85	<.0001	ABC	6.36	<.0001	ABC	3.11	<.0001	AB
PI 471952	10.39	<.0001	ABC	7.58	<.0001	ABC	2.63	<.0001	AB
PI 270907	11.58	<.0001	ABC	5.41	<.0001	ABC	1.60	0.0001	В
PI 259836	11.12	<.0001	ABC	6.45	<.0001	ABC	2.14	<.0001	AB
PI 268996	16.14	<.0001	ABC	6.27	<.0001	ABC	2.82	<.0001	AB
PI 648249	11.91	<.0001	ABC	7.00	<.0001	ABC	2.44	<.0001	AB
AT 3085RO	16.85	<.0001	ABC	8.47	<.0001	ABC	3.40	<.0001	AB
Lot4-8 Line-4	13.03	<.0001	ABC	5.28	<.0001	ABC	2.54	<.0001	AB
PI 502040	13.92	<.0001	ABC	5.85	<.0001	ABC	2.41	<.0001	AB
Ga Green	16.75	< 0001	ABC	5.93	< 0001	ABC	2.98	< 0001	AB
PI 290566	14.03	< 0001	ABC	5 84	< 0001	ABC	2.50	< 0001	AB
SPT06-6	13.01	< 0001	ABC	5.18	< 0001	ABC	2.30	< 0001	AB
DI 100 0 PI 496448	14.82	< 0001	ABC	5.10 6.49	< 0001	ABC	2.27	< 0001	AB
PI 27/195	13.02	< 0001	ABC	5 45	< 0001	ABC	2.50	< 0001	ΔB
Tifrunner	8 00	< 0001	RC	<u> </u>	< 0001	ARC	1 74	< 0.0001	ΔR
	0.70	< .0001		7 25	< .0001		1.74	<.0001 < 0001	
UU/-A DI 649241	13.02	<.0001		7.55	<.0001		2.23	<.0001	
FI 040241 DI 160957	11.02	<.0001	ADC	7.03	<.0001	ABC	2.08	<.0001	
ri 10283/	18.38	<.0001	ABC	7.02	<.0001	ABC	3.33	<.0001	AD
LOTD-101 Line-8	14./0	<.0001	ABC	0./1	<.0001	ABC	2.04	<.0001	AB
PI 343384	11.15	<.0001	АВС	5.05	<.0001	ABC	1.81	<.0001	AB

Table: Continued.

Table: Continue	Table: Continued.									
PI #	SFW	Pr >		RFW	Pr >		BM	Pr >		
	(g)	t		(g)	t		(g)	t		
PI 298854	13.37	<.0001	ABC	5.22	<.0001	ABC	2.74	<.0001	AB	
EXP27-1516	12.78	<.0001	ABC	6.53	<.0001	ABC	2.20	<.0001	AB	
PI 576614	14.92	<.0001	ABC	7.21	<.0001	ABC	2.65	<.0001	AB	
PI 481795	11.24	<.0001	ABC	4.55	<.0001	ABC	2.26	<.0001	AB	
PI 240560	11.71	<.0001	ABC	6.45	<.0001	ABC	2.31	<.0001	AB	
PI 493717	12.41	<.0001	ABC	7.06	<.0001	ABC	2.21	<.0001	AB	
PI 502111	13.00	<.0001	ABC	7.69	<.0001	ABC	2.41	<.0001	AB	
PI 290536	12.26	<.0001	ABC	5.19	<.0001	ABC	1.94	<.0001	AB	
PI 494018	16.65	<.0001	ABC	6.83	<.0001	ABC	3.13	<.0001	AB	
PI 270998	11.73	<.0001	ABC	5.70	<.0001	ABC	2.45	<.0001	AB	
Florunner	16.03	<.0001	ABC	7.09	<.0001	ABC	2.95	<.0001	AB	
PI 338338	9.01	<.0001	BC	6.23	<.0001	ABC	2.14	<.0001	AB	
PI 268586	15.52	<.0001	ABC	6.72	<.0001	ABC	3.02	<.0001	AB	
PI 496401	12.11	<.0001	ABC	3.77	<.0001	ABC	1.47	0.0005	В	
PI 288146	13.43	<.0001	ABC	8.14	<.0001	ABC	2.65	<.0001	AB	
PI 476025	16.68	<.0001	ABC	7.21	<.0001	ABC	3.17	<.0001	AB	
PI 295250	15.20	<.0001	ABC	6.49	<.0001	ABC	2.98	<.0001	AB	
PI 648242	11.72	<.0001	ABC	5.70	<.0001	ABC	2.06	<.0001	AB	
PI 478819	11.18	<.0001	ABC	5.94	<.0001	ABC	1.83	<.0001	AB	
PI 268696	12.49	<.0001	ABC	4.86	<.0001	ABC	2.46	<.0001	AB	
PI 152146	12.77	<.0001	ABC	5.49	<.0001	ABC	2.33	<.0001	AB	
PI 442768	16.78	<.0001	ABC	6.73	<.0001	ABC	3.38	<.0001	AB	
G06G	17.40	<.0001	ABC	8.06	<.0001	ABC	3.32	<.0001	AB	
PI 200441	13.30	<.0001	ABC	4.82	<.0001	ABC	2.77	<.0001	AB	
PI 155107	16.58	<.0001	ABC	8.30	<.0001	ABC	3.18	<.0001	AB	
C76-16	17.71	<.0001	ABC	5.26	<.0001	ABC	3.28	<.0001	AB	
PI 290560	11.32	<.0001	ABC	5.90	<.0001	ABC	2.06	<.0001	AB	
PI 576634	15.02	<.0001	ABC	6.38	<.0001	ABC	2.80	<.0001	AB	
Grif 14051	15.06	<.0001	ABC	6.57	<.0001	ABC	3.00	<.0001	AB	
NM Val	18.66	<.0001	ABC	7.53	<.0001	ABC	3.59	<.0001	AB	
Grif 12545	13.96	<.0001	ABC	8.33	<.0001	ABC	2.54	<.0001	AB	
PI 475863	17.66	<.0001	ABC	4.45	<.0001	ABC	3.16	<.0001	AB	
Grif 12579	14.46	<.0001	ABC	7.18	<.0001	ABC	2.66	<.0001	AB	
Valencia	18.02	<.0001	ABC	4.89	<.0001	ABC	3.41	<.0001	AB	
PI 259748	14.89	<.0001	ABC	6.20	<.0001	ABC	2.92	<.0001	AB	
NC-3033	16.04	<.0001	ABC	6.88	<.0001	ABC	3.20	<.0001	AB	
PI 296550	15.63	<.0001	ABC	6.88	<.0001	ABC	2.92	<.0001	AB	
PI 355268	17.89	<.0001	ABC	5.04	<.0001	ABC	3.61	<.0001	AB	
PI 372271	16.59	<.0001	ABC	6.02	<.0001	ABC	2.93	<.0001	AB	
PI 268847	8.99	<.0001	BC	7.31	<.0001	ABC	2.18	<.0001	AB	
PI 313129	14.11	<.0001	ABC	7.72	<.0001	ABC	2.56	<.0001	AB	
PI 355271	10.29	<.0001	ABC	5.19	<.0001	ABC	1.84	<.0001	AB	
PI 493880	13.00	<.0001	ABC	6.20	<.0001	ABC	2.53	<.0001	AB	

PI#	SFW	Pr >		RFW	Pr >		BM	Pr >	
	(g)	t		(g)	t		(g)	t	
PI 158854	16.03	<.0001	ABC	7.02	<.0001	ABC	3.06	<.0001	AB
PI 482189	11.45	<.0001	ABC	5.09	<.0001	ABC	2.14	<.0001	AB
PI 331297	14.12	<.0001	ABC	6.82	<.0001	ABC	2.99	<.0001	AB
PI 576636	15.77	<.0001	ABC	7.34	<.0001	ABC	2.88	<.0001	AB
C99R	9.49	<.0001	BC	6.55	<.0001	ABC	2.68	<.0001	AB
PI 157542	17.30	<.0001	ABC	6.20	<.0001	ABC	3.16	<.0001	AB
PI 270905	13.19	<.0001	ABC	7.65	<.0001	ABC	2.53	<.0001	AB
PI 196705	16.24	<.0001	ABC	4.61	<.0001	ABC	2.90	<.0001	AB
PI 259658	17.03	<.0001	ABC	5.53	<.0001	ABC	2.56	<.0001	AB
PI 290620	13.61	<.0001	ABC	4.87	<.0001	ABC	2.41	<.0001	AB
PI 482120	10.37	<.0001	ABC	9.05	<.0001	AB	2.02	<.0001	AB
PI 648250	10.80	<.0001	ABC	7.43	<.0001	ABC	2.12	<.0001	AB
VC-2 (1)	16.49	<.0001	ABC	5.76	<.0001	ABC	3.08	<.0001	AB
FL-279	15.96	<.0001	ABC	7.15	<.0001	ABC	3.13	<.0001	AB
PI 268755	15.60	<.0001	ABC	7.36	<.0001	ABC	3.21	<.0001	AB
PI 259851	16.66	<.0001	ABC	6.01	<.0001	ABC	2.90	<.0001	AB
PI 372305	11.71	<.0001	ABC	9.00	<.0001	AB	2.03	<.0001	AB
PI 162655	14.65	<.0001	ABC	8.21	<.0001	ABC	2.83	<.0001	AB
PI 290594	16.55	<.0001	ABC	3.47	0.0004	ABC	3.14	<.0001	AB
PI 471954	18.68	<.0001	ABC	6.45	<.0001	ABC	3.23	<.0001	AB
PI 493938	13.67	<.0001	ABC	5.47	<.0001	ABC	2.94	<.0001	AB
AU-17	13.72	<.0001	ABC	6.86	<.0001	ABC	2.80	<.0001	AB
PI 461434	18.22	<.0001	ABC	9.59	<.0001	А	3.62	<.0001	AB
Fla-07	17.25	<.0001	ABC	6.08	<.0001	ABC	2.98	<.0001	AB
TifNV-High O/L	11.84	<.0001	ABC	6.77	<.0001	ABC	1.97	<.0001	AB
PI 407667	13.89	<.0001	ABC	7.13	<.0001	ABC	3.02	<.0001	AB
PI 295309	12.38	<.0001	ABC	5.26	<.0001	ABC	2.28	<.0001	AB
PI 268868	14.96	<.0001	ABC	8.19	<.0001	ABC	3.39	<.0001	AB
PI 497648	12.23	<.0001	ABC	7.33	<.0001	ABC	2.91	<.0001	AB
PI 390428	13.60	<.0001	ABC	5.17	<.0001	ABC	2.59	<.0001	AB
Lot4-37 Line-2	13.24	<.0001	ABC	6.02	<.0001	ABC	2.46	<.0001	AB
PI 370331	19.25	<.0001	ABC	8.62	<.0001	ABC	3.82	<.0001	AB

Table: Continued.

Significant differences indicated by Tukey by P < 0.05. Means followed by the same letter are not significantly different. Statistical analysis of Eggs/g RFW was performed on log transformed data, but the means presented are untransformed.

Figure 4: Population structure analysis. The y-axis is the subgroup membership, and x-axis is the genotypes. G1-G4 indicate for subpopulations.

Figure 5: Principal component analysis based on Chord distance.

Figure 6: Distribution of botanical variety within each subpopulation.

Figure 7: Screening of resistance to root-knot nematode in the greenhouse.

