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Abstract

A graph G is edge-regular with parameters n, d, and λ if ∣V (G)∣ = n, the degree of every

vertex of G is d, and for any pair of adjacent vertices u and v, ∣NG(u) ∩NG(v)∣ = λ. We say

such graphs are in ER(n, d, λ).

In this dissertation we examine properties of edge-regular graphs, especially those with

d = 6 and λ = 2. In particular, multiple infinite families of graphs in ER(n,6,2) are exhibited,

and it is shown that ER(n,6,2) contains a connected graph for each n ≥ 12.

Several ways of obtaining edge-regular graphs from old ones are discussed. These come

in the form of a graph transformation called the triangle graph, in addition to multiple graph

products.
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Chapter 1

Introduction

A graph G is an ordered pair (V (G),E(G)), where V (G) is the set of vertices of G, E(G)

is the set of edges of G, and two elements of V (G), say, u and v, are adjacent in G iff uv is

in E(G); that is, uv is an edge in G. We mainly concern ourselves with finite, simple graphs.

Finite graphs are those with a finite number of vertices, and simple graphs are graphs with

no repeated edges or edges from a vertex to itself, called a loop. The set of vertices adjacent

to a vertex v in G is called the open neighbor set of v, and is denoted by NG(v) = {v ∈

V (G) ∶ uv ∈ E(G)}. The closed neighbor set of v is similarly defined: NG[v] = NG(v) ∪ {v}.

The degree of a vertex v in V (G) is dG(v) = ∣NG(v)∣. A graph G is said to be d−regular

if every vertex of G has degree d. A subgraph of G is a graph H = (V (H),E(H)) where

V (H) ⊆ V (G) and E(H) ⊆ E(G). The graph induced by a set of vertices S ⊆ V (G) is the

graph G[S] = (S,E(G[S])), where E(G[S]) = {uv ∶ u, v ∈ S and uv ∈ E(G)}. The complete

graph on n vertices is the graph Kn such that ∣V (Kn)∣ = n, and for which every pair of vertices

is adjacent. The clique number ofG, denoted ω(G), is the size of the largest complete subgraph

in G. In the notations dG and NG, if the underlying graph is obvious, the subscript G may be

omitted.

If G,H are graphs, then G +H is the disjoint union of G and H . mG is understood to be

the disjoint union of m copies G. The join of two graphs of G and H , denoted G ∨H , is the

graph formed by taking disjoint copies of G and H and adding edges so that every vertex in

V (G) is adjacent to every vertex in V (H).

A graph G is edge-regular with parameters n, d, and λ if ∣V (G)∣ = n, the degree of every

vertex of G is d, and for any pair of adjacent vertices u and v, ∣NG(u) ∩NG(v)∣ = λ. We say
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such graphs are in ER(n, d, λ). Edge-regular graphs are called strongly-regular if there exists

µ such that for any pair of distinct non-adjacent vertices u, v in V (G), ∣NG(u) ∩NG(v)∣ = µ.

Graphs with the aforementioned parameters are said to be in SR(n, d, λ, µ).

A graph G is a regular clique assembly with parameters n, d, and k if the following hold:

1. G is d-regular on n vertices with k = ω(G) ≥ 2;

2. every maximal clique in G is maximum; and

3. each edge in E(G) belongs to exactly one maximal clique of G.

If G is such a graph, we say G ∈ RCA(n, d, k).

Theorem 1.1 (Bragan et al, 2017). For all integers n > d > λ ≥ 0, ER(n, d, λ) ⊇ RCA(n, d, λ+

2) with equality if either λ ∈ {0,1} or ER(n, d, λ) = ∅.

It is already known that ER(n, d,0) = RCA(n, d,2) consists of triangle-free d-regular

graphs on n vertices. ER(n, d,1) = RCA(n, d,3) has been described in [1]. Also, edge-

regular graphs for which d = λ + k for k ∈ {1,2,3} have been fully described in [3].

Our goal is to describe, as best as possible, RCA(n, d,4) and ER(n, d,2). To do this

succinctly, we later define the concepts of spectra for both regular clique assemblies and edge-

regular graphs.

In Chapter 2 we investigate regular clique assemblies, in particular those with d = 6 and λ =

2. By construction, we show thatRCASc(6,4) = {n ∶ RCA(n,6,4) contains a connected graph} =

{16} ∪ {20,22,24, ...}.

In Chapter 3 we explore a different type of edge-regular graph for which λ = 2 - graphs for

which the open neighbor set of any vertex induces not a disjoint union of complete graphs, as

in the RCA case, but a disjoint union of cycles. The uniqueness of such graphs in ER(n,3,2),

ER(n,4,2), ER(n,5,2), and ER(12,6,2) are proved. As before, special attention is given

to the d = 6 case, and so two new infinite families of edge-regular graphs for which the open

neighbor set of any vertex induces a C6 are shown. Considering these constructions, we see

that the spectrum of ER(n,6,2) = Sc2(6) = {n ∶ ER(n,6,2) contains a connected graph} =

{12,13,14, ...}. Even stronger, this set is also equal to {n ∶ ER(n,6,2) contains a connected graph,

and for which G[NG(v)] ≃ C6 for all v ∈ V (G)}.
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In Chapter 4 we briefly discuss a new graph transformation, which we call the triangle

graph. Taking the triangle graph of RCAs yields new edge-regular graphs that are otherwise

not so easy to find. In particular, the triangle graph of a complete graph has a nice local structure

similar to what interests us in chapters 2 and 3.

In Chapter 5, graph products of edge-regular graphs are investigated. In particular, we

interest ourselves in when the Cartesian product, the tensor product, the strong product, and

the lexicographic product of two edge-regular graphs is also edge-regular. In addition to the

triangle graph, these graph products effortlessly produce examples of edge-regular graphs with

higher values of d and λ, which is usually a difficult task.
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Chapter 2

Regular Clique Assemblies

Recall that a graph G is a regular clique assembly with parameters n, d, and k if the following

hold:

1. G is d-regular on n vertices with k = ω(G) ≥ 2;

2. every maximal clique in G is maximum; and

3. each edge in E(G) belongs to exactly one maximal clique of G.

If G is such a graph, we say G ∈ RCA(n, d, k).

Let RCA(d, k) = ⋃
n>0

RCA(n, d, k). It is shown in [1] that if G ∈ RCA(n, d, k) and

v ∈ V (G), then the number of Kks in G is nd
k(k−1) , and G[NG(v)] ≃

d
k−1Kk−1. The converse also

holds: if k − 1∣d and G[NG(v)] ≃
d
k−1Kk−1 for every v in V (G), then G ∈ RCA(n, d, k). Also,

recall that if ER(n, d, λ) ≠ ∅, then ER(n, d, λ) ⊇ RCA(n, d, λ + 2) with equality if λ = 0 or

1. If k = 4 then 3∣d, so the smallest value d for which an RCA(n, d,4) could be nonempty

is 3. K4, being the only connected graph in ⋃
n
ER(n,3,2), is the only connected graph in

RCA(3,4). Therefore, we shall begin our search for graphs in RCA(d,4) with d = 6. By the

previous result of Bragan, if RCA(n,6,4) ≠ ∅, then n must be even and at least 12. Also,

since k − 1∣d, if RCA(n, d,4) ≠ ∅ for some n, then 3∣d. We begin our study of regular clique

assemblies using the scaffold method.

2.1 The Scaffold Method for RCA(n,6,4)

We begin with what we call the primary scaffold of RCA(n,6,4).
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u

v xy

Figure 2.1: Primary Scaffold of RCA(6,4).

We say a graph G is a scaffold of RCA(d, k) if G is a graph on n vertices and v ∈ V (G)

implies thatG[NG(v)] ≃ rKk−1 for some r = r(v) = {1,2, ..., d
k−1}. The set ofRCA(d, k) scaf-

folds will be denoted SC(d, k). The set of RCA(d, k) scaffolds on n vertices will be denoted

SC(n, d, k). A vertex in such a scaffold is finished if r = d
k−1 . If 1 ≤ r < d

k−1 then the vertex

is unfinished. Finally, we define the spectrum of RCA(d, k) to be RCASc(n, d, k) = {n ∶

RCA(n, d, k) contains a connected graph}. The spectrum of ER(n, d, λ) is similarly defined:

Scλ(d) = {n ∶ ER(n, d, λ) contains a connected graph}.

In the d = 6, k = 4 case, the possible degrees of the vertices are 3 and 6, so the unfinished

vertices are of degree 3, and the finished vertices are of degree 6.

In general, a scaffold of RCA(n,6,4) is a (not necessarily induced) connected subgraph

of a graph in RCA(6,4) with the properties that any two vertices adjacent in the scaffold have

exactly two common neighbors in the scaffold, any two nonadjacent vertices have at most one

common neighbor in the scaffold. There are two types of vertices that a scaffold of RCA(d,4)

may have - finished vertices and unfinished vertices. Finished vertices are those of degree 6

(labeled u, v, x, and y in the primary scaffold), and unfinished vertices are those of degree 3.

Finished vertices are called that because, as a vertex of a graph in RCA(6,4), that particular
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vertex has the required degree. Unfinished vertices need a degree of 3 larger than their current

degree to be a part of a graph in RCA(6,4), and an unfinished vertex can become finished by

the addition of 3 more edges in the scaffold which are adjacent to it.

The primary scaffold of RCA(6,4), which we call the primary (6,4) scaffold, may be

finished, that is, be made into a graph in RCA(6,4), by adding edges, and possibly vertices,

to the scaffold. In particular, the primary scaffold may be finished by adding edges to create

K4s out of the following sets of four vertices - {ui, vi, xi, yi}, 1 ≤ i ≤ 3, resulting in a graph in

RCA(16,6,4). This graph is also the Cartesian product of K4 with itself.

u1

u2

u3

v1

v2

v3

x1

x2

x3

y1

y2

y3

Figure 2.2: A graph inRCA(16,6,4). Not shown are the edges ofK4s u1v1x1y1 and u2v2x2y2.

Instead of immediately finishing the primary scaffold, it is also possible to extend the

primary scaffold, that is, add vertices and edges to create a new scaffold in SC(6,4). There are

four main ”methods” of extending not just the primary scaffold, but any scaffold subgraph in

RCA(d,4).

Method M1 consists of adding to the scaffold a new K3, and adding edges so that each

vertex in the new K3 is adjacent to a previously unfinished vertex.
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Method M2 consists of adding a new K2 to the scaffold, and adding edges so that the new

K2 and two previously unfinished vertices that were at least distance 3 apart in the original

scaffold form a K4. It’s necessary in M2, in addition to in M3 and M4, that the previously

unfinished vertices be distance at least 3 apart from each other. If u, v are unfinished vertices

in a scaffold that are distance 1 apart, then u, v share 2 common neighbors in the scaffold.

Applying M2 to these vertices would result in ∣N(u)∩N(v)∣ = 4, contradicting the fact that the

eventual finished graph will be in RCA(n,6,4) ⊂ ER(n,6,2). Additionally, suppose u, v are

unfinished vertices that are distance 2 apart in the scaffold. Then u, v share 1 common vertex.

Similar to before, applying M2 to u and v will force ∣N(u) ∩N(v)∣ = 3, making it impossible

to obtain a graph in RCA(n,6,4). A similar argument can be used to justify the unfinished

vertices needing to be sufficiently far apart when applying M0 and M3 to a scaffold.

Method M3 consists of adding to the scaffold a new vertex, and adding edges so that the

new vertex and three previously unfinished vertices, each pair distance at least 3 apart, form a

K4.

If we stick with this convention, we can also define M4 to be the process of adding edges

to a scaffold so that four unfinished vertices, each pair at least distance 3 apart, form a K4.

Finally, M0 is the addition of a new K4 to the scaffold without the addition of any other edges.

It should be observed that M4 was applied three times to finish the primary scaffold, which

resulted in a graph in RCA(16,6,4).

2.1.1 Multiple Applications of M1

Let P be the primary scaffold of RCA(n,6,4). P has 12 unfinished (degree 3) vertices and

4 finished (degree 6) vertices. Each application of M1 to the primary scaffold increases the

number of vertices by 3, so m1M1, the application of M1 to the scaffold m1 times, results in

the scaffold having 16 + 3m1 vertices. Since the number of vertices of a graph in RCA(d,4)

must be even, so must m1.

It is possible to apply M1 four times to the primary scaffold to obtain a finishable scaf-

fold subgraph of RCA(28,6,4). The simplest way to do this is by applying M1 to the ver-

tices u1, v1, x1, and y1. The new vertices produced by applying M1 to u1 are u1,1, u1,2, and
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u1,3. Similarly for v1, x1, and y1. After this, M4 can be applied 5 times to the vertex sets

{ui, vi, xi, yi}, i = 2,3, and {u1,i, v1,i, x1,i, y1,i}, i = 1,2,3, in order to finish the scaffold and

obtain a graph in RCA(28,6,4).

This same pattern can be repeated to obtain finishable scaffolds of RCA(16+12m1,6,4),

form1 a positive multiple of 4. Suppose M1 is appliedm1 times to u1, v1, x1, y1, u1,1, v1,1, x1,1, y1,1

, ..., u1,1,...,1, v1,1,...,1, x1,1,...,1, y1,1,...,1, where {1,1, ...,1} is a string of m1

4 1’s. After applying

these M1’s to the primary scaffold, there are 12+2m1 unfinished vertices, and so 3+ 1
2m1 appli-

cations of M4 are needed to finish the scaffold. As in the previous example, M4 will be applied

to the vertex sets {u1, v1, x1, y1}, {u2, v2, x2, y2}, {u1,2, v1,2, x1,2, y1,2}, {u1,3, v1,3, x1,3, y1,3},

{u1,1,2, v1,1,2, x1,1,2, y1,1,2}, {u1,1,3, v1,1,3, x1,1,3, y1,1,3}, {u1,...,1,1, v1,...,1,1, x1,...,1,1, y1,...,1,1},

{u1,...,1,2, v1,...,1,2, x1,...,1,2, y1,...,1,2}, and {u1,...,1,3, v1,...,1,3, x1,...,1,3, y1,...,1,3}, where 1, ...,1,1 is a

string of m1

4 + 1 1’s, and 1, ...,1,2 and 1, ...,1,3 are strings of m1

4 1’s followed by a 2 or 3,

respectively.
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u2

u3

v2

v3

x2

x3y2

y3

x1,2

x1,3

v1,2

v1,3

u1,2

u1,3

y1,2

y1,3

y1,…,1,1

y1,…,1,2

y1,…,1,3

x1,…,1,1

x1,…,1,2

x1,…,1,3

v1,...,1,1

v1,…,1,2

v1,…,1,3

u1,…,1,1

u1,…,1,2

u1,…,1,3

. . .

. . . . . .

. . .

Figure 2.3: Scaffold in SC(n,6,4) for n = 16 + 12m.

Using the above construction shows that {16 + 12m ∶ m ≥ 1} are values of n for which

RCA(n,6,4) ≠ ∅. However, these are not the only permissible n values.

2.1.2 Using Other Methods

Aside from using strictly M1’s to build scaffolds, it is possible to use M2’s, M3’s, or M4’s,

possibly in combination with M1’s, to obtain graphs in RCA(n,6,4) for values of n other than

n = 16 + 12k.

Consider again the primary scaffold subgraph of ⋃
n
RCA(n,6,4). We may apply M2 four

times in order to get a scaffold of RCA(24,6,4). M2 can be applied to vertex sets {u3, v2},

{v3, x2}, {x3, y2}, and {y3, x2}. We label the vertices of the new K2’s as {u′3, v
′

2}, {v′3, x
′

2},

{x′3, y
′

2}, and {y′3, x
′

2}, respectively.
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u1

u’2

u’3

v1

v’2

v’3

x1

x’2

x’3

y1

y’2

y’3

Figure 2.4: Scaffold of RCA(24,6,4).

Now, M0 can be applied three times to finish the scaffold. We add all possible edges

to vertex sets {u1, v1, x1, y1}, {u′2, v
′

2, x
′

2, y
′

2}, and {u′3, v
′

3, x
′

3, y
′

3}. The resulting graph is in

RCA(24,6,4).

Further, the application of 4 M1’s to the vertices u1, v1, x1, and y1 of the unfinished scaf-

fold shown above yields a finishable scaffold of RCA(36,6,4). Continuing in this manner

allows us to generate graphs in RCA(24 + 12m,6,4) for all m ≥ 1.

M3 can be applied four times to the primary scaffold to generate a scaffold ofRCA(20,6,4).

Let M3 be applied to vertex sets {u1, v1, x1}, {v2, x2, y2}, {x3, y3, u3}, and {u2, v3, y1}. Name

the new vertices arising from these applications of M3 y4, u4, v4, and x4, respectively. Now,

applying M0 to these four new vertices yields a graph in RCA(20,6,4).

Before finishing this scaffold, as you might guess, we can apply M1 to the four new ver-

tices u4, v4, x4, and y4, and then finish the scaffold as before, or apply M1 a multiple of 4 more

times before finishing the resulting scaffold. This yields graphs in RCA(20 + 12m,6,4).
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There is only one way to apply M1 twice to the primary scaffold so that the new scaf-

fold may be finished in order to obtain a graph in RCA(22,6,4). In particular, M1 must

be applied to two neighbors in the primary scaffold. Suppose M1 is applied to u2 and u3 in

the primary scaffold. Let’s call the new vertices u2,1, u2,2, u2,3 and u3,1, u3,2, u3,3, respectively.

This new scaffold may be finished by adding edges so that the following vertex sets induce

K ′

4s: {u2,1, u3,1, v1, x1}, {u2,2, u3,2, x2, y2}, {u2,3, u3,3, v2, y1}, and {u1, v3, x3, y3}. This yields

a graph in RCA(22,6,4).

u1

v1

v2

v3

x1

x2

x3

y1

y2

y3

u3,1

u3,3
u3,2

u2,1

u2,3

u2,2

Figure 2.5: Scaffold of RCA(22,6,4).

Naturally, instead of finishing the aforementioned scaffold ofRCA(22,6,4), we can apply

4M1 to u1, v1, x1, and y1 and finish the resulting scaffold to obtain a graph in RCA(34,6,4).

Multiple applications of 4M1 to the scaffold gives us graphs in RCA(22 + 12k,6,4).

Applying M1 to two neighbors, as in the RCA(22,6,4) case, is occasionally necessary

to fill out the spectrum of RCA(n,6,4). This particular type of application of 2M1 will be

denoted 2M1∗.
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One such case is for RCA(26 + 12k,6,4). Take the primary scaffold with 2M1∗ applied

to u2 and u3. Then apply M2 to {v3, x2} and to {x3, y2} to create new vertices {v′3, x
′

2} and

{x′3, y
′

2}, respectively.

u1

v1 v’3

x1

x’2

x’3

y1

y’2

u3,1

u3,2

u2,1

u2,3

u3,3

u2,2

v2

y3

Figure 2.6: Scaffold of RCA(26,6,4).

If we add edges to this new scaffold to form K4’s out of vertex sets {u1, v1, x1, y1},

{u2,2, u3,2, x′2, y
′

2}, {u2,3, u3,3, v′3, x
′

3}, and {u2,1, u3,1, v2, y3}, we finish the scaffold and obtain

a graph in RCA(26,6,4). Again, if we apply M1 to u1, v1, x1, and y1 in the previous scaffold,

it is easy to add edges to get a graph in RCA(38,6,4). Multiple applications of 4M1 in this

manner gives us graphs in RCA(26 + 12k,6,4).

Consider again the scaffold of RCA(22,6,4). We apply M2 four times to {u2,2, y3},

{u3,3, v2}, {v3, x2}, and {v3, x2}, calling the new vertices {u′2,2, y
′

3}, {u′3,3, v
′

2}, {v′3, x
′

2}, and

{v′3, x
′

2}, respectively. The resulting scaffold is shown below.
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u1

v1

v’2

v’3

x1

x’2

x’3

y1

y’2

y’3

u3,1

u’3,3

u3,2

u2,1

u2,3

u’2,2

Figure 2.7: Scaffold of RCA(30,6,4).

Now, we can finish this scaffold by adding all possible edges to the vertex sets {u′2,2, v
′

2, x
′

2, y
′

2},

{u′2,3, u
′

3,2, x1, y1}, {u2,1, u3,1, v1, x′3}, and {u1, u′3,3, v
′

3, y
′

3}. The resulting graph is inRCA(30,6,4).

Yet again, if we apply M1 to each of the vertices u′2,2, v
′

2, x
′

2, and y′2, the resulting scaffold of

RCA(42,6,4) can be finished. Doing this multiple times yields graphs inRCA(30+12k,6,4).

Using these constructions tells us that RCASc(6,4) ⊇ {16} ∪ {20,22,24, ...}. Recall that

if ER(n, d, λ) ≠ ∅ then n ≥ 3(d − λ). This means that it’s possible that 12, 14, or 18 are also

members of RCASc(6,4). We now prove that this is not the case.

Suppose G ∈ RCA(n,6,4) for some n, and pick an arbitrary K4 from G, say, uvxy. The

closed neighbor set of that K4, NG(u, v, x, y), induces the primary (6,4) scaffold, which has

16 vertices. Thus, 12 and 14 cannot be in RCASc(6,4).

Now, consider the primary scaffold of RCA(6,4). If RCA(18,6,4) ≠ ∅, then there must

be two other vertices, w1 and w2 which are not adjacent to u, v, x, or y. w1 must be adjacent to

six other vertices. Suppose w1 is part of a K4 with, say, u1, v1, and x1. w1 must also be part of

13



another K4 with three of the remaining vertices. If w2 and y1 are two of those vertices, then w1

has no other choice for a third neighbor without violating the λ = 2 condition. Therefore, 18 is

also not in RCASc(6,4), resulting in the following theorem.

Theorem 2.1. RCASc(6,4) = {16} ∪ {20,22,24, ...}.
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Chapter 3

Edge-regular graphs with other local structure properties

While regular clique assemblies are edge-regular graphs for which the open neighbor set of

each vertex induces a disjoint union of complete graphs of the same order, there is another

natural restriction on the subgraph induced by the open neighbor set of any vertex that will be

satisfied only by edge-regular graphs with λ = 2. That restriction is that the open neighbor sets

induce cycles. If G ∈ ER(n, d,2) and the open neighbor set of any vertex induces a cycle, the

length of the cycle must be equal to d. We start by exhibiting some examples of such graphs.

Since the shortest cycle in a simple graph is of length 3, we start with that case.

3.1 G[N(v)] ≃ Cd for 3 ≤ d ≤ 5

It is easy to see that G =K4 is the only connected graph in ER(n,3,2) for which G[NG(v)] ≃

C3 for each v in V (G).

Similarly, G =K6 −M , where M is a perfect matching of K6, is the only connected graph

in ER(n,4,2) for which G[NG(v)] ≃ C4 for each v in V (G). To see this, we construct such

a graph. First, notice that a necessary subgraph of G must be a wheel with, say, vertex v in the

center, and a 4-cycle wxyz on the outside. Vertex x currently has degree 3, so we must find

another neighbor for it. If w’s fourth neighbor is z, then x and z would share v, w, and y as

neighbors, violating the λ = 2 condition. So the fourth neighbor of x must be a new vertex,

say, a. a must also be adjacent to w and y to satisfy G[NG(x)] ≃ C4, so we add the edges aw

and ay. Now a must be adjacent to precisely one more neighbor which is adjacent to both w

and y. The only possibility for this last vertex is w. So by adding the edge az, we obtain the

aforementioned graph in ER(6,4,2).
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In the same vein, and with a little more work, we can construct a graph G in ER(n,5,2)

for which G[NG(v)] ≃ C5 for each v in V (G). Again, notice that since the open neighbor set

of a vertex v induces a cycle, say, uwxyz, we construct G starting with this wheel. Vertex x

currently has degree 3, so it must be adjacent to 2 more vertices. These vertices cannot be u

or z as it would make the number of vertices adjacent to both v and x more than 2. So x must

be adjacent to 2 more vertices, say, a and b. To satisfy G[NG(x)] ≃ C5, we also add the edges

aw, ab, and by. Vertex y has degree 4 and must be adjacent to a new vertex, say, c. Then we

add the edges bc and cz. w must be adjacent to a new vertex d, and d must also be adjacent to

a and u. u must be adjacent to a new vertex e, which is also adjacent to d and z. Now, since

z has degree 5, we must complete the cycle induced by its neighbors by adding edge ce to the

graph. a has degree 4 and needs a new vertex, say, f , to be adjacent to. Then, to complete the

cycle around a, edges bf and df must be added. Finally, to complete the cycles around b and d,

we must add edges cf and ef , respectively. This completes G, which is in ER(12,5,2). We

call this graph I , the icosahedron graph.

v

u

w

xy

a

d

z

b

e

c
f

Figure 3.1: The icosahedron graph.

These constructions also show that K4, K6 −M , and I are the only connected graphs in

ER(n, d,2), for d = 3,4,5, respectively, regardless (or, as we say in Alabama, irregardless) of
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what we want the open neighbor set of any vertex to look like. The situation is much more

interesting for the d = 6 case.

3.2 G[N(v)] ≃ C6

G = K4,4,4 − {the edges of a 2-factor consisting of disjoint triangles} ∈ ER(12,6,2) and sat-

isfies G[NG(v)] ≃ C6 for each v in V (G). This has been shown to be the only graph in

ER(12,6,2) [2], and until recently was the only known edge-regular graph whose open neigh-

bor sets induce a C6. However, as we will show, this is far from the only graph in ER(n,6,2)

with that property. The following two constructions exhibit infinite families of edge-regular

graphs satisfying the aforementioned property.

3.2.1 First construction

We defined the class of graphs, for now called ”New” graphs, as follows:

Let m,n be positive integers, both greater than or equal to 3, and at least one greater than

or equal to 4. We define New(m,n) to be the graph uniquely determined by m,n as follows.

The vertex set of New(m,n) consists of all ordered pairs (i, j) from ZmxZn. Two vertices

(i, j) and (i′, j′) are adjacent inNew(m,n) if and only if one of the following three conditions

holds:

1) i′ = i + 1 and j′ = j

2) i′ = i and j′ = j + 1

3) i′ = i + 1 and j′ = j + 1

Theorem 3.1. G = New(m,n) ∈ ER(mn,6,2) and G[NG(v)] ≃ C6 for all v in V (G).

Proof. Clearly ∣V (New(m,n))∣ =mn.

Each vertex (i, j) is adjacent to the following six vertices: (i − 1, j) and (i + 1, j) by

adjacency condition 1; (i, j − 1) and (i, j + 1) by adjacency condition 2; and (i − 1, j − 1) and

(i + 1, j + 1) by adjacency condition 3.
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(0,0)

(4,3)

(2,1)

Figure 3.2: The graph New(5,4) with three labeled vertices.

To show λ = 2, suppose (i, j) and (i′, j′) are adjacent.

If (i′, j′) = (i − 1, j) then both (i, j) and (i′, j′) are adjacent to (i − 1, j − 1) and (i, j + 1).

If (i′, j′) = (i + 1, j) then both (i, j) and (i′, j′) are adjacent to (i + 1, j + 1) and (i, j − 1).

If (i′, j′) = (i, j − 1) then both (i, j) and (i′, j′) are adjacent to (i − 1, j − 1) and (i + 1, j).

If (i′, j′) = (i, j + 1) then both (i, j) and (i′, j′) are adjacent to (i − 1, j) and (i + 1, j + 1).

If (i′, j′) = (i − 1, j − 1) then both (i, j) and (i′, j′) are adjacent to (i − 1, j) and (i, j − 1).

If (i′, j′) = (i + 1, j + 1) then both (i, j) and (i′, j′) are adjacent to (i, j + 1) and (i + 1, j).

The above paragraph also shows that the neighbor set of any vertex inNew(m,n) induces

a C6.

3.2.2 Second construction

For the next construction, first consider the Paley graph on 13 vertices, P (13). P (13) has vertex

set V (P (13)) = Z13, and a vertex v in V (P (13)) is adjacent to v ± 1, v ± 3, and v ± 4. P (13) is

in SR(13,6,2,3). The neighbors of v induce the 6-cycle (v + 1, v − 3, v − 4, v − 1, v + 3, v + 4).
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P (13) is only one example of the class of Paley graphs P (q). There are many general-

izations of Paley graphs, but one generalization in particular, called the Paley-like graphs, is

useful to us.

Let a, b, and n be positive integers with a < b and n ≥ 3(a+b)+1. We define the Paley-like

graph P (a, b, n) to be the graph on the vertex set Zn, with vertex v adjacent to all vertices

which differ from v by a, b, and a + b. Using this notation, the familiar Paley graph on 13

vertices is given by P (1,3,13).

Theorem 3.2. If b ≥ 3, thenG = P (1, b, n) is a connected graph inER(n,6,2) andG[N(v)] ≃

C6 for all v in V (G).

Proof. P (1, b, n) has n vertices.

Let v ∈ V (P (1, b, n)) = Zn. Since v is adjacent to v±1, v±b, and v±(1+b), d ≤ 6. We need

to check that no two of those six vertices are the same. It suffices to check that the ”farthest”

vertices from v are different. These farthest vertices are v + (1 + b) and v − (1 + b). Since n ≥

3(1+b)+1, the difference in the labels of these two vertices is at least (1+b)+(1+b) = 2(1+b),

or 3(1 + b) + 1 − 2(1 + b) = b. Since their difference is not 0, these vertices are different, and so

d = 6.

We list the vertices to which v is adjacent as follows: N(v) = {v + 1, v − b, v − (1 + b), v −

1, v + b, v + (1 + b)}. Listing v’s neighbors this way suggests that the open neighbor set of v

induces a C6 as long as we can show that each vertex in N(v) is adjacent to exactly two other

vertices in N(v).

v+1 is adjacent to v−b and v+(1+b) as permissible differences are 1+b and b, respectively.

v + 1 is not adjacent to v + b because b − 1 ∉ {1, b,1 + b}. Also, v + 1 is not adjacent to v − 1 or

v − (1 + b) as 2,2 + b ∉ {1, b,1 + b} either.

v + b is adjacent to v − 1 and v + (1 + b) as their differences are 1 + b and 1, respectively.

v + b is not adjacent to v − b or v − (1 + b) as their distances are 2b and 2b + 1, respectively.

v + (1 + b) is adjacent to v + 1 and v + b as their differences are b and 1, respectively. v − 1

and v − b are not neighbors of v as their differences are 2 + b and 1 + 2b, respectively. Also,
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v−(1+b) is not a neighbor of v+(1+b) as their difference is either 2(1+b) or, as we’ve shown

before, at least 2 + b.

By symmetry, analogous results hold for v − 1, v − b, and v − (1 + b). This shows that

G[N(v)] ≃ C6 and, as a consequence, λ = 2.

Finally, the subgraph of P (1, b, n) with only the edges resulting from the difference of 1

is a Hamiltonian cycle on all n vertices, so P (1, b, n) is connected.

The construction for P (1,3, n) fills in the rest of the spectrum of ER(n,6,2), resulting in

the following theorem:

Theorem 3.3. Sc2(6) = {n ∣ n ≥ 12}. Further, for each integer n ≥ 12, there exists a connected

graph in ER(n,6,2) for which the open neighbor set of each vertex induces a C6.

a = 1 is not the only value that yields such a graph. The previous result generalizes nicely.

Theorem 3.4. Let a, b be positive integers with a < b, b ≥ 3, and b ≠ 2a. If at least one of

gcd(a,n), gcd(b, n), or gcd(a + b, n) is equal to 1, then P (a, b, n) is a connected graph in

ER(n,6,2) with the property that G[N(v)] ≃ C6 for all v in V (P (a, b, n)).

Proof. This proof follows the previous proof, with a few addenda.

That ∣N(v)∣ = 6 for any vertex v is clear. The condition that b ≠ 2a is necessary to make

sure thatG[N(v)] ≃ C6 and does not merely contain C6 as an induced subgraph. b ≠ 2a assures

us that v − a and v + a are not adjacent. If v + a and v + b were adjacent, or if v − a and v − b

were adjacent, that would imply that b − a ∈ {a, b, a + b}; that is, b − a = a. b ≠ 2a takes care of

that possibility, too.

Finally, if gcd(a,n) = 1, then the cycle {a,2a,3a, ..., (n − 1)a,0} includes all n vertices.

Similarly for gcd(b, n) = 1 or gcd(a+ b, n) = 1. Thus, P (a, b, n) is connected, provided at least

one of those is true.
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Chapter 4

Triangle graphs

Let G be a regular clique assembly. Define the triangle transformation T ∶ G → T (G) as

follows: T sends K3s in G to vertices in T (G), and vertices are adjacent in T (G) iff the

corresponding K3s share an edge in G.

Theorem 4.1. If G ∈ RCA(n, d, k) ⊆ ER(n, d, λ), where k = λ + 2 ≥ 4, then T (G) ∈

ER(n′, d′, λ′), where n′ = ndλ
6 , d′ = 3(λ − 1), and λ′ = λ = k − 2.

Proof. We find n′ by counting the number of triangles in G. G has nd
2 edges and each edge in

G is part of λ triangles. So there are ndλ
2 edge-triangle pairs in G. But this counts each edge 3

times, so there are ndλ
6 triangles in G.

If uvw is a triangle in G, then d′ is the number of triangles in G sharing an edge with

uvw. That is, d′ is the number of vertices in G adjacent to uv, uw, or vw. u and v share λ − 1

neighbors that are not w, u and w share λ − 1 neighbors that are not v, and v and w share λ − 1

neighbors that are not u. Therefore, d′ = 3(λ − 1).

Suppose uvw and uvx are triangles in G with w ≠ x. Since k ≥ 4, the triangles uwx and

vwx share an edge with uvw and an edge with uvx. Additionally, there are λ− 2 triangles with

edge uv. So λ′ = 2 + (λ − 2) = λ.

Corollary 4.1.1. T (Kn) ∈ ER((
n
3
),3(n − 3), n − 2) for n ≥ 4.

Corollary 4.1.2. The only connected regular clique assemblyG for whichG ≃ T (G) isG =K4.

Proof. Set n = ndλ
6 and d = 3(λ − 1).
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Proposition 4.1.1. If H = T (Kn) and n ≥ 4, then H[NH(v)] ≃Kn−3 ◻K3 for all v ∈ V (H).

Proof. Let H = T (Kn), and let v ∈ V (H) be the vertex defined by the triangle xyz in G. There

are three types of vertices in NH(v): vertices whose first, second, or third coordinate is one of

the n − 3 vertices in G that are not x, y, or z, respectively. Let the vertices of the first, second,

and third type belong to T1, T2, and T3, respectively. A vertex in any Ti is adjacent to every

other vertex in that Ti, so each Ti induces a Kn−3. Additionally, each vertex in Ti is adjacent to

exactly one vertex in each Tj , j ≠ i, inducing n − 3 copies of K3.

This construction can be used to generate edge-regular graphs, with arbitrarily large λ,

having that structure.
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Chapter 5

Products of Edge-Regular Graphs

In this chapter we consider the Cartesian product, the tensor product, the strong product, and

the lexicographic product on edge-regular graphs.

5.1 The Cartesian Product

Let G1,G2 be graphs. The Cartesian product of G1 and G2, G1 ◻G2, is defined by: V (G1 ◻

G2) = V (G1)xV (G2), and (u, v) ∼ (u′, v′) in G1xG2 iff either u = u′ and v ∼ v′, or u ∼ u′ and

v = v′. Let H = G1 ◻G2.

Since V (H) = V (G1)xV (G2), ∣V (H)∣ = ∣V (G1) ◻G2∣ = ∣V (G1)∣∣V (G2)∣ = n1n2.

If (u, v) ∈ V (G1)xV (G2) = V (H), then (u, v) is adjacent, in H , to, and only to, the

dG1(u) pairs (u′, v), u′ ∈ NG1(u), and the dG2(v) pairs (u, v′), v′ ∈ NG2(v). Thus, if Gi is di

regular, i = 1,2, then H is d1 + d2 regular.

Suppose (u, v) ≃ (u′, v′) in H . Then either u = u′ and v ≃ v′, or u ≃ u′ and v = v′. In the

former case, (u, v) and (u′, v′) have as many common neighbors in H as do v and v′ in G2. In

the other case, (u, v) and (u′, v′) have as many common neighbors in H as do u and u′ in G1.

So, for the Cartesian product of G1 and G2 to be edge-regular, we need λ1 = λ2.

Theorem 5.1. If G1 ∈ ER(n1, d1, λ) and G2 ∈ ER(n2, d2, λ), then G1 ◻G2 ∈ ER(n1n2, d1 +

d2, λ).
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5.2 The Tensor Product

Let G1,G2 be graphs. The tensor product of G1 and G2, G1xG2, is defined by: V (G1xG2) =

V (G1)xV (G2), and (u, v) ∼ (u′, v′) in G1xG2 iff u ∼ u′ in G1 and v ∼ v′ in G2.

Let G1 ∈ ER(n1, d1, λ) and G2 ∈ ER(n2, d2, λ), and let H = G1xG2.

Since V (H) = V (G1)xV (G2), ∣V (H)∣ = ∣V (G1)xG2∣ = ∣V (G1)∣∣V (G2)∣ = n1n2.

Suppose (u, v) ∈ V (H). Then dH(u, v) = ∣NH(u, v)∣ = ∣{(u′, v′) ∶ (u′, v′) ∼ (u, v) in H}∣ =

∣{(u′, v′) ∶ u′ ∼ u in G1 and v′ ∼ v in G2}∣ = d1d2.

Let (u, v), (u′, v′) ∈ V (H) and (u, v) ∼ (u′, v′). This means u ∼ u′ in G1 and v ∼ v′

in G2. NG1(u) ∩ NG1(u
′) = {u1, u2, ..., uλ1} and NG2(v) ∩ NG2(v

′) = {v1, v2, ..., uλ2}. So

NH(u, v)∩NH(u′, v′) = {(ui, vj) ∶ 1 ≤ i ≤ λ1, 1 ≤ j ≤ λ2}, and so ∣N(u, v)∩N(u′, v′)∣ = λ1λ2.

This results in the following theorem:

Theorem 5.2. IfG1 ∈ ER(n1, d1, λ1) andG2 ∈ ER(n2, d2, λ2), thenG1xG2 ∈ ER(n1n2, d1d2, λ1λ2).

Proposition 5.2.1. The tensor product of two graphs is regular iff the factor graphs are regular.

Proof. The if direction was already proved.

Suppose G1 is regular of degree d and G2 is not regular. That is, G2 has two vertices, say,

v and v′, with different degrees t and t′, respectively. The vertices (u, v) and (u, v′) in G1xG2

have degrees dt and dt′, respectively. The same result holds if neither G1 nor G2 is regular.

Proposition 5.2.2. If G1xG2 is edge-regular, then G1 and G2 are also edge-regular.

Proof. Suppose G1 ∈ ER(n1, d1, λ1) and G2 is a d2-regular graph on n2 vertices, but is not

edge-regular. G2 has two pairs of adjacent vertices, say, v ∼ v′ and w ∼ w′, such that ∣NG2(v)∩

NG2(v
′)∣ = t and ∣NG2(w) ∩ NG2(w

′)∣ = t′, with t ≠ t′. Let H = G1xG2. If u ∼ u′ in G1,

then ∣NH(u, v) ∩NH(u′, v′)∣ = λ1t and ∣NH(u,w) ∩NH(u′,w′)∣ = λ1t′. Thus, H is not edge-

regular.
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5.3 The Strong Product

Define the strong product of two graphs G1,G2, G14G2, to be the graph with vertex set

V (G1)xV (G2), and (u, v) ∼ (u′, v′) in G14G2 iff u = u′ and v ∼ v′, or v = v′ and u ∼ u′,

or u ∼ u′ and v ∼ v′.

Let G1 ∈ ER(n1, d1, λ1) and G2 ∈ ER(n2, d2, λ2), and let H = G14G2. Since V (H) =

V (G1)xV (G2), ∣V (H)∣ = ∣V (G1)xV (G2)∣ = ∣V (G1)∣∣V (G2)∣ = n1n2.

Suppose (u, v) ∈ V (H). Then dH(u, v) = ∣{(u′, v′) ∶ u′ = u and v′ ∼ v}∣ + ∣{(u′, v′) ∶ u′ ∼

u and v = v′}∣ + ∣{(u′, v′) ∶ u′ ∼ u and v′ ∼ v}∣ = d2 + d1 + d1d2.

To find λH , let (u, v), (u′, v′) ∈ V (H) and (u, v) ∼ (u′, v′). There are three cases for

the adjacency of (u, v) and (u′, v′), and some further subcases for the adjacency of (u, v) and

(u′, v′) to a third vertex (u′′, v′′).

1. u = u′ and v ∼ v′

(a) u′′ = u = u′ and v′′ ∼ v and v′′ ∼ v′

There is 1 choice for u′′ and λ2 choices for v′′ so there are λ2 possible (u′′, v′′).

(b) u′′ ∼ u and u′′ ∼ u′ and v′′ = v or v′′ = v′

There are d1 choices for u′′ and 2 choices for v′′ so there are 2d1 possible (u′′, v′′).

(c) u′′ ∼ u and u′′ ∼ u′ and v′′ ∼ v and v′′ ∼ v′

There are d1 choices for u′′ and λ2 choices for v′′ so this case contributes d1λ2

possible (u′′, v′′).

(u, v) and (u′, v′) have λ2 + 2d1 + d1λ2 common neighbors in H .

2. u ∼ u′ and v = v′

(a) u′′ ∼ u and u′′ ∼ u′ and v′′ = v = v′

There are λ1 choices for u′′ and 1 choice for v′′ so there are λ1 choices for (u′′, v′′)

(b) u′′ = u or u′′ = u′ and v′′ ∼ v or v′′ ∼ v′

There are 2 choices for u′′ and d2 choices for v′′ so there are 2d2 choices for (u′′, v′′)
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(c) u′′ ∼ u or u′′ ∼ u′ and v′′ ∼ v and v′′ ∼ v′ There are λ1 choices for u′′ and d2 choices

for v′′ so there are λ1d2 choices for (u′′, v′′)

(u, v) and (u′, v′) have λ1 + 2d2 + d2λ1 common neighbors in H .

3. u ∼ u′ and v ∼ v′

(a) u′′ ∼ u and u′′ ∼ u′ and v′′ = v or v′′ = v′

There are λ1 choices for u′′ and 2 choices for v′′ so there are 2λ1 choices for

(u′′, v′′).

(b) u′′ = u or u′′ = u and v′′ ∼ v and v′′ ∼ v′

There are 2 choices for u′′ and λ2 choices for v′′ so there are 2λ2 choices for

(u′′, v′′).

(c) u′′ = u and v′′ = v′

There is 1 choice for u′′ and 1 choice for v′′ so there is 1 choice for (u′′, v′′).

(d) u′′ = u′ and v′′ = v

There is 1 choice for u′′ and 1 choice for v′′ so there is 1 choice for (u′′, v′′).

(e) u′′ ∼ u and u′′ ∼ u′ and v′′ ∼ v and v′′ ∼ v′

There are λ1 choices for u′′ and λ2 choices for v′′ so there are λ1λ2 choices for

(u′′, v′′).

In this case, in total, (u, v) and (u′, v′) have 2λ1 + 2λ2 + 2 + λ1λ2 common neighbors in

H .

If we can get the permissible values of λH to agree, then we can conclude that H ∈

ER(n1n2, d1 + d2 + d1d2, λH).

λH = d1λ2 + 2d1 + λ2 = d2λ1 + 2d2 + λ1 = λ1λ2 + 2λ1 + 2λ2 + 2

(d1 + 1)(λ2 + 2) − 2 = (d2 + 1)(λ1 + 2) − 2 = (λ1 + 2)(λ2 + 2) − 2
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(d1 + 1)(λ2 + 2) = (d2 + 1)(λ1 + 2) = (λ1 + 2)(λ2 + 2)

These equalities imply that d1 = λ1+1 and d2 = λ2+1, which in turn imply thatG1 ≃Kλ1+2

and G2 ≃ Kλ2+2. Thus, if G14G2 is edge-regular, then G1 ≃ Kn1 and G2 ≃ Kn2 . On the other

hand, if G1 ≃ Kn1 and G2 ≃ Kn2 , then G14G2 ∈ ER(n1n2, n1n2 − 1, n1n2 − 2). That is,

Kn14Kn2 ≃Kn1n2 .

Theorem 5.3. A strong product G14G2 of graphs G1 and G2 is edge-regular iff G1 =Kn1 and

G2 =Kn2 for some n1, n2.

5.4 The Lexicographic Product

Define the lexicographic product of two graphsG1 andG2, G1[G2], to be the graph with vertex

set V (G1)xV (G2), and (u, v) ∼ (u′, v′) in G1[G2] iff u ∼ u′, or u = u′ and v ∼ v′.

Let G1 ∈ ER(n1, d1, λ) and G2 ∈ ER(n2, d2, λ), and let H = G1[G2].

Since V (H) = V (G1)xV (G2), ∣V (H)∣ = ∣V (G1)xV (G2)∣ = ∣V (G1)∣∣V (G2)∣ = n1n2.

Suppose (u, v) ∈ V (H). Then dH(u, v) = ∣{(u′, v′) ∶ u′ ∼ u}∣ + ∣{(u′, v′) ∶ u′ = u and v′ ∼

v}∣ = d1n2 + d2.

To find λH , let (u, v), (u′, v′) ∈ V (H) and (u, v) ∼ (u′, v′). There are three cases for

the adjacency of (u, v) and (u′, v′), and some further subcases for the adjacency of (u, v) and

(u′, v′) to a third vertex (u′′, v′′).

1. u ∼ u′ and v = v′

(a) u′′ ∼ u and u′′ ∼ u′

There are λ1 choices for u′′ and n2 choices for v′′ so there are λ1n2 choices for

(u′′, v′′)

(b) u′′ = u and v′′ ∼ v = v′

There is 1 choice for u′′ and d2 choices for v′′ so there are d2 choices for (u′′, v′′)

(c) u′′ = u′ and v′′ ∼ v = v′ There is 1 choice for u′′ and d2 choices for v′′ so there are

d2 choices for (u′′, v′′)
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(u, v) and (u′, v′) have 2d2 + λ1n2 common neighbors.

2. u ∼ u′ and v ∼ v′

(a) u′′ = u

There is 1 choice for u′′ and d2 choices for v′′ so there are d2 possible (u′′, v′′).

(b) u′′ = u′

There is 1 choice for u′′ and d2 choices for v′′ so there are d2 possible (u′′, v′′).

(c) u′′ ∼ u and u′′ ∼ u′

There are λ1 choices for u′′ and n2 choices for v′′ so this case contributes λ1n2

possible (u′′, v′′).

(u, v) and (u′, v′) have 2d2 + λ1n2 common neighbors.

3. u ∼ u′ and v ≠ v′ and v /∼ v′

(a) u′′ = u

There is 1 choice for u′′ and d2 choices for v′′ so there are d2 possible (u′′, v′′).

(b) u′′ = u′

There is 1 choice for u′′ and d2 choices for v′′ so there are d2 possible (u′′, v′′).

(c) u′′ ∼ u and u′′ ∼ u′

There are λ1 choices for u′′ and n2 choices for v′′ so this case contributes λ1n2

possible (u′′, v′′).

(u, v) and (u′, v′) have 2d2 + λ1n2 common neighbors.

4. u = u′ and v ∼ v′

(a) u′′ ∼ u = u′

There are d1 choices for u′′ and n2 choices for v′′ so there are d1n2 possible (u′′, v′′).
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(b) u′′ = u = u′ and v′′ ∼ v and v′′ ∼ v′

There is 1 choice for u′′ and λ2 choices for v′′ so there are λ2 possible (u′′, v′′).

(u, v) and (u′, v′) have d1n2 + λ2 common neighbors.

Theorem 5.4. IfG1 ∈ ER(n1, d1, λ1) andG2 ∈ ER(n2, d2, λ2) thenG1[G2] ∈ ER(n1n2, d1n2+

d2, λ) if λ = 2d2 + λ1n2 = d1n2 + λ2.

Corollary 5.4.1. Suppose G1 ∈ ER(n1, d1, λ1), G2 ∈ ER(n2, d2, λ2), and G1[G2] is edge-

regular.

1. If G1 =Kn1 then d1 = λ1 + 1, and so d2 = n2+λ2
2 .

2. If G2 ≃Kn2 then G1 ≃Kn1 , and Kn1[Kn2] ≃Kn1n2 ∈ ER(n1n2, n1n2 − 1, n1n2 − 2).

5.5 Subgraphs induced by open neighbor sets

In this section we explore what the subgraph induced by the open neighbor set of any vertex in

a product graph looks like.

Proposition 5.4.1. SupposeG1 ∈ ER(n1, d1, λ) andG2 ∈ ER(n2, d2, λ). Also supposeG1[NG1(u)] ≃

H1 for all u ∈ V (G1) and G2[NG2(v)] ≃ H2 for all v ∈ V (G2). If H = G1 ◻ G2 then

H[NH(u, v)] ≃H1 +H2 for all (u, v) in V (H).

Proof. Let H = G1 ◻ G2 be the Cartesian product of G1 and G2, and (u, v) ∈ V (H). The

open neighbor set of (u, v) consists of all vertices of the form N((u, v)) = {(u′, v′) ∶ u′ =

u in G1 and v′ ∼ v in G2 or u′ ∼ u in G1 and v′ = v in G2} = {(u′, v′) ∶ u′ = u in G1 and v′ ∼

v in G2}∪ {(u′, v′) ∶ u′ ∼ u in G1 and v′ = v in G2} = (NG1(u)x{v})∪ ({u}xNG2(v)). So the

induced neighbor set of (u, v) is H[NH((u, v))] ≃ G1[NG1(u)] +G2[NG2(v)].

This need not be edge-regular. However, if λ = 2, we can at least say the following:

Theorem 5.5. If G ∈ ER(n, d,2) and G[NG(v)] ≃ H for all v in V (G), then H is a disjoint

union of cycles, not necessarily of equal length.
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Proof. Suppose G ∈ ER(nG, dG, λG), and H ≃ G[NG(v)] for some v in V (G). ∣V (H)∣ = dG

since ∣NG(v)∣ = dG. If v′ ∈ V (G) and v′ ∼ v in G, then v and v′ have λG neighbors in common

in G. So the degree of v in H is equal to λG. If v ∼ v′ in G, then those two vertices have

common neighbor set {vi ∶ 1 ≤ i ≤ λG}. So dH = ∣NH(v′)∣ = λG. It follows that when λG = 2,

H is 2-regular, and so H must be a disjoint union of cycles.

While the above theorem shows that the open neighbor set of a vertex of a graph in

ER(n, d,2) induces a disjoint union of edge-regular graphs (in particular, cycles), we can-

not conclude that this disjoint union is edge-regular. If G = K4 ◻ I , for example, then G ∈

ER(48,8,2). But the open neighbor set of a vertex in G induces C3 + C5, which is not edge-

regular.

If λ > 2, then H need not be a disjoint union of other edge-regular graphs. For example,

consider T (K5) ∈ ER(10,6,3) and vertex a ∈ V (T (K5)). H = T (K5)[NT (K5)
(a)] is a 3-

regular graph on 6 vertices, but H contains a pair of adjacent vertices b, c with one common

neighbor i, while c, d is another pair of adjacent vertices in H having two common neighbors

e, f .
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Figure 5.1: The graph T (K5).
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Chapter 6

Future Work

6.1 Chapter 2

Can every graph in RCA(n,6,4) be obtained by the scaffold building process?

How useful is the scaffold method for building graphs in RCA(n,3t,4) for t > 2?

6.2 Chapter 3

Do there exist graphs G in ER(n, d,2), with d > 6, such that G[NG(v)] ≃ Cd for all v in

V (G)?

6.3 Chapter 4

For which graphs G in ER(n, d, λ)/RCA(n, d, λ + 2) is T (G) also edge-regular?

6.4 Chapter 5

It is known that the complete graph on n vertices,Kn, is inER(n,n−1, n−2), and that the Turán

graph T (mp, p), the complete regular p-partite graph on mp vertices, is in ER(mp,m(p −

1),m(p−2)). n−1 = n+(n−2)
2 andm(p−1) = mp+m(p−2)

2 . For which other graphs inER(n, d, λ)

is d = n+λ
2 ? Answering this would give us more understanding of the lexicographic product as

it relates to edge-regular graphs.
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By taking the Cartesian product of K4 ∈ ER(4,3,2) with a graph in ER(n,6,2), we see

that Sc2(9) ⊇ {4t : t ≥ 12}. What else can we say about Sc2(9) and, in general, Sc2(3t) for t > 2?

Similarly, by taking the Cartesian products of K6 ∈ ER(6,5,4), K2,2,2,2 ∈ ER(8,6,4),

K4,4,4 ∈ ER(12,8,4), and T (K6) ∈ ER(20,9,4), we get that Sc4(d) ≠ ∅ for all d ≥ 5, except

possibly d = 7. Two obvious questions arise from this observation: Is Sc4(7) = ∅, and what are

Sc4(d) equal to for all permissible values of d?

33



References

[1] Guest, K. B., Hammer, J. M., Johnson, P. D., Roblee, K. J. (2017). Regular clique as-

semblies, configurations, and friendship in Edge-Regular graphs. Tamkang Journal of

Mathematics, 48 (4), 301-320.

[2] P.D. Johnson and K. J. Roblee, On an extremal subfamily of an extremal family of nearly

strongly regular graphs, Australasian Journal of Combinatorics 25 (2002), 279-284.

[3] Peter Johnson, Wendy Myrvold and Kenneth Roblee, More extremal problems for edge-

regular graphs, Utilitas Mathematica, 73 (2007), 159-168.

34


