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Abstract

In this thesis we prove that triangulations of maximum degree 5 are 6-list-edge-colorable.

We also find necessary conditions for maximum degree to extend a list-edge-precoloring to

E(G) for a planar graph G. The techniques used for these two results are the kernel method,

the quantitative combinatorial nullstellensatz, and the discharging method.
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Chapter 1

Introduction

An edge-coloring of a graph G is an assignment of colors to the edges of G so that adjacent

edges receive different colors; if at most k colors are used we say such a coloring is a k-edge-

coloring. The main focus of our work is on a special type of edge coloring called a list-edge

coloring, where the color assigned to an edge must come from a previously defined list of

available colors. Formally, an edge list assignment is a function L that assigns to each edge

e ∈ E(G) a list of colors L(e). An L-edge-coloring of G is an edge-coloring of G such that

every edge e is given a color from L(e). Note that a classical k-edge-coloring of G can be

viewed as an L-edge-coloring for the list assignment L defined by L(e) = {1, . . . , k} for all

e ∈ E(G).

In general, we want to know what size the lists of L must be in order to guarantee an

L-edge coloring. We say a graph G is k-list-edge-colorable if it is L-edge-colorable for every

edge list assignment L such that ∣L(e)∣ ≥ k for all e ∈ E(G). The list-chromatic index of G,

denoted χ′`(G), is the minimum k such that G has a k-list-edge coloring. The chromatic index

of G, denoted χ′(G), is the minimum k such that G is k-edge-colorable. Given our previous

comment, we know that χ′`(G) ≥ χ′(G) for every graph G.

If we let ∆ ∶= ∆(G) be the maximum degree of G, then we see a vertex of degree ∆ is

incident to ∆ distinct edges so χ′(G) ≥ ∆. In this thesis we consider every graph to be simple

(without loops or parallel edges) unless stated otherwise, hence Vizing’s Theorem [34] says

that χ′(G) ≤ ∆ + 1 for all graphs G. Vizing [31] conjectured that this upper bound also holds

for list-edge coloring.

Conjecture 1.1 (Vizing [31]). If G is a graph, then χ′`(G) ≤ ∆ + 1.
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The study of list-edge colorings has now become dominated by a strengthening of Vizing’s

conjecture known as the List-Edge Coloring Conjecture, or LECC. The LECC is attributed to

many sources, some as early as 1975 (see eg. [18]).

Conjecture 1.2 (LECC). If G is a graph, then χ′(G) = χ′`(G).

Progress on Conjectures 1.1 and 1.2 has been somewhat limited for general graphs, al-

though Conjecture 1.1 has been verified for all graphs with ∆ ≤ 4. The ∆ = 3 case was proved

by Vizing [31] in 1976 and independently by Erdős, Rubin, and Taylor [12] in 1979. The ∆ = 4

case of Vizing’s conjecture was proved in 1998 by Juvan, Moher, Škrekovski [19]. Since there

are graphs with ∆ ≤ 4 having χ′(G) = ∆ + 1, these results are tight.

In 1994 Galvin [13] showed that if G is a bipartite graph, then χ′`(G) = ∆. This landmark

result verified the LECC for bipartite graphs and is commonly regarded as the best progress

towards the conjecture.

In this thesis our focus is on planar graphs which are graphs that can be drawn in the plane

without edge-crossings. Both edge-coloring and list-edge-coloring planar graphs are somewhat

simpler. In [17], Holyer showed it is NP-complete to decide whether a graph has chromatic

index ∆ or ∆ + 1, but this does not appear to be the case for planar graphs. For ∆ = 2,3,4,5

there are examples of planar graphs with chromatic index ∆ and ∆ + 1. However, Vizing [33]

showed that every planarGwith ∆ ≥ 8 is ∆-edge-colorable which was then strengthed to ∆ = 7

independently by Grünewald [15], Sanders and Zhao [26] and Zhang [38]. The collective work

of the above is summarized by the following theorem.

Theorem 1.1. If G is planar with ∆ ≥ 7, then χ′(G) = ∆.

Note that the case ∆ = 6 is still open as it is unknown whether or not there exists a planar

graph with ∆ = 6 and chromatic index ∆ + 1.

Borodin, Kostochka, Woodall [6] proved the following theorem in 1997 which verified the

LECC for planar graphs with ∆ ≥ 12.

Theorem 1.2 (Borodin, Kostochka, Woodall [6]). If G is planar with ∆ ≥ 12, then χ′`(G) = ∆.

2



Theorem 1.1 leads us to expect all planar graphs with ∆ ≥ 7 to have χ′`(G) = ∆, but this is

only known for ∆ ≥ 12. Ellingham and Goddyn [11] were able to verify the LECC for regular

planar graphs with χ′(G) = ∆ without imposing restrictions on ∆, but little other work on the

LECC does so.

Borodin verified Conjecture 1.1 for planar graphs with ∆ ≥ 9 in 1990 [5], and Cohen

and Havet provided an alternate proof in 2010 [8], which we shall discuss later. The latest

contribution to Conjecture 1.1 was made by Bonamy [4] in 2013 who showed that planar graphs

with ∆ ≥ 8 have χ′`(G) ≤ ∆ + 1. This leaves the conjecture open for planar graphs with

5 ≤ ∆ ≤ 7. In chapter 3 we will prove the conjecture for triangulations (planar graphs where

every face is a triangle) with ∆ = 5. In this result we encounter some small graphs that must be

list-edge-colored and we use two different techniques to this end; the kernel method, initially

developed by Galvin [13] in his aforementioned work and the Quantitative Combinatiorial

Nullstellensatz, initially developed by Alon [1] in 1993 . Both techniques are described in

detail in the first two sections of chapter 2.

In chapter 4 we look to edge-color or list-edge color a graph G, but with the additional

constraint that some edges have already been colored and cannot be changed. In this scenario

we have no control over the edge-precoloring – if the edge-precolored subgraph is H , then it

will certainly have at least χ′(H) colors, but it could have many more, perhaps even more than

χ′(G) colors. If we are looking to extend the edge-precoloring to a k-edge-coloring of G, then

we will certainly need that k is at least the maximum degree of G, and that the edge-coloring

of H uses at most k colors (i.e. is a k-edge-coloring).

In general we consider the following question, first posed by Marcotte and Seymour [22],

Given a graph G with maximum degree ∆ and a subgraph H of G that has been (∆+ t)-edge-

colored, can the edge-precoloring of H be extended to a (∆ + t)-edge-coloring of G?

Marcotte and Seymour’s main result in [22] is a necessary condition for the answer to their

question to be “yes”; they prove that this condition is also sufficient when G is a multiforest

(the condition is rather technical, so we do not state it here). The above question was shown

to be NP-complete by Colbourn [9], and Marx [23] showed that this is true even when G is a
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planar 3-regular bipartite graph. Given Holyer’s above-mentioned result, the special case t = 0

of the question is also NP-complete for general graphs.

In chapter 4 we focus on Marcotte and Seymour’s question for planar graphs. Our result

extends previous work on this problem by Edwards, Girão, van den Heuvel, Kang, Sereni and

Puleo [10], who considered the case when ∆(H) = t = 1. As Edwards et al. observe, extending

an edge-precoloring to an edge-coloring is closely related to list-edge coloring. In particular,

if we are trying to k-edge color a graph G which has a precolored subgraph H , then we can

think of each edge in G −H as having a list made by starting with {1,2, ..., k} and deleting the

colors of any adjacent edges in H . Even with this connection, we were surprised to be able to

prove our main result in chapter 4 for both edge-coloring and list-edge-coloring. We roughly

prove for a given graph G and edge-list assignment L with ∣L(e)∣ ≥ ∆ + t for all e ∈ E(G),

that if H ⊆ G has been L-edge-colored, then the edge-precoloring can be extended to an L-

edge-coloring of G, provided that ∆(H) ≤ t and either ∆(H) is small enough or ∆(G) is large

enough. It is worth noting that as a corollary of this result, we get Borodin’s Theorem 2.8.

The content of chapter 4, which is joint work with Greg Puleo (in addition to my advisor

Jessica McDonald), requires the so-called Discharging Method. We will discuss this technique

in general in the third section of chapter 2. As a demonstration of the discharging method

we will present Cohen and Havet’s proof of Borodin’s result, which played a large role in

influencing this thesis as we will discuss later.

In the conclusion, chapter 5, we will discuss our two results with emphasis on their relation

to Vizing’s Conjecture and how the result could be extended. For graph theoretic definitions

not stated here, we follow the conventions of West [37].
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Chapter 2

Three Techniques for List-Edge Coloring

We will now discuss three techniques used for list-edge-coloring: the kernel method, the quan-

titative combinatorial nullstellensatz, and the discharging method.

2.1 The Kernel Method

Although the focus of this thesis is on simple graphs, in this section we shall discuss multi-

graphs, which are graphs where parallel edges are permitted. In particular, a clique is consid-

ered to be a set of vertices such that any two vertices are joined by at least one edge. We say a

multigraphG contains a clique as a submultigraph if the clique is induced by a subset of V (G).

We define an orientation of G = (V,E) to be the digraph D = (V,A), where every edge

uv ∈ E(G) is either oriented from the vertex u to the vertex v or oriented from the vertex v to

the vertex u. We note that this definition of orientation is in keeping with Borodin, Kostochka,

and Woodall in [7] as opposed to many other papers surveying the kernel method which allow

orientations to contain bidirected edges.

A kernel in a digraph is an independent set of vertices K such that every vertex outside K

has at least one edge into K. We say a digraph is kernel-perfect if every induced subdigraph

has a kernel.

The study of kernels is quite rich, but we will focus on what is known for line multigraphs

as this will lead us to conclusions about edge-colorings. As noted by Alon and Tarsi in Remark

2.4 in [3], Bondy, Boppana, and Siegel provided a wonderful implication for kernel-perfect

orientations of line multigraphs. Their theorem is as follows.
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Theorem 2.1. (Bondy, Boppana, Siegel) LetG be a multigraph and supposeL(G) has a kernel-

perfect orientation where d+(e) ≤ k − 1 for all e ∈ V (L(G)) = E(G). Then G is k-list-edge-

colorable.

We should note this theorem was actually proved for orientations which allow bidirected

edges. In his aforementioned result Galvin constructed a special orientationD of the line graph

of an arbitrary bipartite graphG by edge-coloringG and then directing edges according to their

colors. He then showed that an easy consequence of this orientation was d+(e) ≤ k − 1 for all

e ∈ V (D). Lastly, Galvin showed D must contain a kernel due to a result by Maffray [21] and

proceeded by induction to yield that D is kernel-perfect.

Galvin’s Theorem was generalized by Borodin, Kostochka, and Woodall who character-

ized when all line multigraphs are kernel-perfect. Their theorem defines a pseudochord in a

directed cycle v1, ..., vt to be a directed edge vivi−1 for some 1 ≤ i ≤ t.

Theorem 2.2 (Borodin, Kostochka, Woodall [6]). Let G be a bipartite graph and let L be an

edge list assignment on G. If ∣L(xy)∣ ≥ max{deg(x),deg(y)} for every edge xy ∈ E(G), then

G is L-edge-colorable.

Theorem 2.3. (Borodin, Kostochka, Woodall [7]) An orientation of a line multigraph is kernel-

perfect iff every clique has a kernel and every directed odd cycle has a chord or pseudochord.

Using this characterization in conjunction with Theorem 2.1 we get the following corol-

lary:

Corollary 2.1. The multigraph G is k-list-edge-colorable if there is an orientation of L(G),

call it DL, such that the following conditions are true:

1. Every clique in DL has a kernel.

2. Every directed odd cycle in DL has a chord or pseudochord.

3. d+(e) ≤ k − 1 for all e ∈ V (DL).

Proof. If conditions 1 and 2 hold, thenDL is a kernel-perfect orientation of a line multigraph by

Theorem 2.3. If condition 3 holds, thenDL is a kernel-perfect orientation of the line multigraph
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of G where d+(e) ≤ k − 1 for all e ∈ V (DL). So by Theorem 2.1 we see G is k-list-edge-

colorable.

The above corollary gives us a list-edge-coloring of G provided L(G) has a special type

of orientation. In the actual application of the corollary it will be helpful for us to simply look

at G rather than L(G).

Let L(G) be a labeling of G which is an assignment of labels to the ends of every edge in

G which orients the edges of the line multigraph L(G). If two edges, e1 and e2, are incident

to the same vertex v in G, we consider their labels at v which we call Lv(e1) and Lv(e2)

respectively. If e1 has a smaller label than e2, then we say Lv(e1) < Lv(e2) and e1e2 is the

directed edge in L(G). If e2 has a smaller label than e1, then e2e1 is our directed edge in L(G).

If an edge has ends labeled 1 and 2, then we say it is a (1,2)-edge.

Figure 2.1: A labeling of G and it’s resulting line multigraph.

By putting conditions on a labeling of G we implicitly put conditions on the orientation

of L(G) which gives us a way to describe list-edge-coloring in terms of G rather than L(G).

We present the following corollary to better understand list-edge-coloring as conditions on G

rather than on L(G).

Definition 2.1. A k-kernel-perfect-labeling of G is a labeling of G which orients L(G) so that

the following hold:

1. For all v ∈ G, the set of labels {Lv(e) ∶ e incident to v} has a total ordering.

2. Every directed odd cycle in L(G) that corresponds to an odd cycle in G has a pseudo-

chord.
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3. d+(e) ≤ k − 1 for all e ∈ V (L(G)).

Corollary 2.2. The multigraphG is k-list-edge-colorable if there is a k-kernel-perfect-labeling

of G.

Proof. We will show the conditions of a k-kernel-perfect-labeling imply the conditions of

Corollary 2.1.

The final condition of Corollary 2.1 is equivalent to the final condition of Definition 2.1.

So let us show the first condition of Corollary 2.1 is satisfied by the first condition of Definition

2.1. Every clique in L(G) comes from either the edges of a single vertex in G or a triangle

in G. If the set of labels {Lv(e) ∶ e incident to v} has a total ordering, then the edge with

the highest label at v will be a sink in the resulting clique of L(G) so every other edge of the

resulting clique will be directed to it. This means the resulting clique has a kernel. The only

other cliques in L(G) must come from triangles in G. We know triangles in G correspond to

triangles in L(G) that are either directed or undirected. If they correspond to a directed triangle

in L(G), then condition (2) of Definition 2.1 tells us that directed triangle has a pseudochord.

Otherwise a triangle in G corresponds to an undirected triangle in L(G), either case provides a

sink in the induced submultigraph.

We now show every directed odd cycle in L(G) has a chord or pseudochord to complete

the proof. An odd cycle in L(G) comes from either an odd cycle in G or a circuit in G. If a

directed odd cycle C in L(G) comes from an odd cycle in G, then C must have a pseudochord

by condition (2) of Definition 2.1. If a directed odd cycle C in L(G) comes from a circuit H

in G which is not an odd cycle, then H has a repeated vertex v which serves as a cut-vertex

having two ends in each component of H − v. Since these ends meet at v they must form a

clique in L(G) meaning C has a chord.

Although conditions (2) and (3) of Definition 2.1 are not completely in terms of G we will

see they are able to be verified without having to inspect L(G). Condition (2) is the most dif-

ficult to verify but verification is simplified by noting every odd cycle in G must correspond to

an odd cycle in L(G). If the corresponding cycle is undirected we have nothing more to show,

so it suffices to show that correspoding directed cycles of L(G) must contain a pseudochord.
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This can be shown using two generic steps: find a large bipartite submultigraph H of G and

iteratively show the edges of G −H cannot be contained in directed odd cycles of L(G).

To illustrate this process we now present an example of how kernel-perfect-labelings can

easily show the Petersen Graph is 4-list-edge-colorable.

Theorem 2.4. The Peterson graph is 4-list-edge-colorable.

Proof. Let P be the Petersen graph and let L be the labeling of P given by figure 2.2. We will

show L is a 3-kernel-perfect-labeling.

Figure 2.2: How to orient L(P )

We see every vertex has a label set which has a total ordering so condition 1 of Definition

2.1 is satisfied.

Let us consider a (1,2)-edge, e ∈ P , which has labels 1 and 2 on its ends. The 1 will direct

two edges out of e in L(P ) and the 2 label will direct one edge out of e in L(P ). So we see

d+(e) ≤ 4 − 1 = 3. We also see the only way for an edge of P to have out-degree 4 in L(P ) is

for both of its ends to be labeled with 1. A quick check verifies no edge of P was labeled in

such a way, so condition 3 of Definition 2.1 is satisfied.
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To finish the proof we show that our labeling of P has no odd cycle in G corresponding to

a directed odd cycle in L(P ). We illustrate this is so with the figure below.

Figure 2.3: Such a labeling of P yields no directed cycles in L(P )

The dashed edges of P in Figure 2.3 correspond to vertices of L(P ) which cannot be

contained in directed cycles. Any (3,3)-edge of P is a sink in L(P ) and cannot be contained

in a directed cycle, so we dash through e1 and e10. The only edge-labels e3 is adjacent to which

are not (3,3) are 1’s, meaning it cannot be contained in a directed cycle of L(G). Dashing

through e3 leaves e2 and e11 ends which are adjacent to only dashed edges meaning they are

not contained in a directed odd cycle of L(G) so we may dash through e2 and e11. Both e5

and e13 are (2,3)-edges such that the end labeled 2 is adjacent to only undashed edges of label

1. This means a directed cycle would have to come in through the 2 label and leave through

the 3 label which cannot happen. Dashing through e5 and e13 leaves e4 and e15 ends which are

adjacent to only dashed edges meaning they are not in a directed cycle. Dashing through e4 and

e15 yields the picture in figure 2.3. Only a C6 is not dashed which cannot yield a directed odd

cycle in L(P ).

2.2 The Quantitative Combinatorial Nullstellensatz

Hilbert’s Nullstellensatz or “Root Theorem” is a well known result in algebraic geometry which

concerns polynomials [35]. In 1999, Alon and Tarsi used Hilbert’s result to yield a combina-

torial version of the Nullstellensatz [2]. This Combinatorial Nullstellensatz has been used in
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many graph theoretic arguments. In particular it was used by Ellingham and Goddyn in their

previously mentioned result which verified the List-Edge-Coloring Conjecture for regular pla-

nar graphs with χ′(G) = ∆.

In 2008, Schauz generalized Alon and Tarsi’s work, see [29], into what was named the

Quantitative Combinatorial Nullstellensatz, or QCN. Then in 2014 Schauz used the QCN to

show infinitely many 1-factorable complete graphs of prime degree satisfy the LECC [28].

Let G be a k-regular graph on the vertices v1, . . . , v2n and let F = {e1, e2, . . . , en} be a

1-factor of G. Label the vertices so that e` = vi`vj` with i` < j` for all ` ∈ {1,2, . . . , n}. We say

that an edge e` ∈ F intersects another edge eh ∈ F if i` < ih < j` < jh or ih < i` < jh < j`. We

define

int(e`, eh) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if e` instersects eh

0 otherwise,

and define

int(F ) = ∑
1≤`<h≤n

int(e`, eh) and sign(F ) = (−1)int(F ).

Note that if the 2n vertices are positioned consecutively around a cycle and the edges are drawn

as straight lines, then an intersection is an actual intersection between the lines.

Schauz introduced the above definitions in [27] and proved the following in 2018.

Theorem 2.5. (Schauz [27]) Let G be a k-regular graph on the vertices v1, v2, . . . , v2n. Let

OF(G) be the set of all 1-factorizations of G. For each F = (F1, F2, . . . , Fn) ∈ OF (G), let

sign(F) = ∏
1≤i≤k

sign(Fi).

Then

∑
F∈OF (G)

sign(F) ≠ 0 ⇒ G is k-list-edge-colorable.

Schauz proves Theorem 2.5 using his Quantitive Combinatorial Nullstellenstaz from [29].

In [27], Schauz also provides an algorithm that computes the value of∑F∈OF (G) sign(F) when

G is a small (up to about 10-vertex) regular graph on an even number of vertices. This algo-

rithm, which was implemented in SageMath [25] using only python commands, is printed as
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Algorithm 1 in the appendix of this paper. We shall apply Algorithm 1 and Theorem 2.5 to-

gether to several specific graphs in this section in order to show 6-list-edge-colorability.

To illustrate the calculation of this sum of signs we provide the following example also

found in example 3 of [27].

Example 2.1. Let G = K3,3 have partitions U = {u1, u2, u3} and W = {w1, w2, w3}. Let the

edges of G be drawn with straight lines as in figure 2.4 and let w1 < w2 < w3 < u1 < u2 < u3

be our cyclic arrangement of the vertices, then G is a 3-regular graph on an even number of

vertices and the sign of an edge-coloring is (−1)int(c).

G has only two edge colorings which we label F ′ and F” and illustrate in figure 2.4. First

we calculate sgn(F ′) by counting the number of times edges of the same color class intersect.

We see the blue edges have 0 intersections, the green edges have 2 intersections, and the red

edges have 2 intersections. So sgn(F ′) = (−1)4 = 1. Now we calculate sgn(F”) the same

way. We see the blue edges have 1 intersection, the green edges have 3 intersections, and red

edges have 1 intersection. So sgn(F”) = (−1)5 = −1.

This means∑F ∈OF (G) sgn(F ) = 1−1 = 0 and a conclusion cannot be reached via Theorem

2.5.

Figure 2.4: The two edge-colorings of K3,3

Our use of the algorithm was to verify three specific triangulations of ∆ = 5 have χ′(G) ≤

6. To this end we find 6-regular graphs on an even number of vertices which contain our

12



triangulations as subgraphs and prove that the 6-regular graphs are 6-list-edge colorable via

Algorithm 1 as mentioned in chapter 3, with computations in Appendix A.

2.3 The Discharging Method

The Discharging Method was originally developed to aid in the proof of the Four Color Theo-

rem and has been used frequently since to prove a variety of results especially coloring results

for the family of planar graphs.

We can summarize the method into three basic steps which are:

1. Choose a set X of elements of G to charge. (e.g. X = V (G) or X = V (G) ∪ F (G))

2. Assign an initial charge, α(x) for all x ∈X

3. Use Discharging Rules to distribute charge among the elements of X .

4. Find the final charge, α′(x) for all x ∈X .

5. Remark that the sum of charges is preserved α(X) = α′(X) or α(G) = α′(G).

There are many proofs which assign an initial charge to all vertices, edges, and faces of a

graph. There are also many proofs which assign charges to only one of these structures. The

following proof of the degree-sum formula illustrates the method in its most basic form:

Theorem 2.6. If G is a graph, then ∑v∈V (G) deg(v) = 2e(G).

Proof. Define the initial charges: α(e) = 2 ∀e ∈ E(G) and α(v) = 0 ∀v ∈ V (G). Discharge by

having every edge give a charge of 1 to each of its endpoints. After discharging we have α′(v) =

deg(v) ∀v ∈ V (G) and α′(e) = 0 ∀e ∈ E(G). So 2e(G) = α(G) = α′(G) = ∑deg(v).

At its core the discharging method is a counting argument which allows us to quantify

structures within the graphs we are concerned with. The more structure a graph has the better

use we can make out of discharging which is why the method has been used so frequently for

planar graphs. In particular, many proofs utilize the structure of planar graphs given in Euler’s

Theorem.

13



Theorem 2.7 (Euler). Let G be a connected planar graph with v vertices, f faces, and e edges.

Then v − e + f = 2.

Most discharging arguments start with a minimum counterexample, show α(G) > 0 via

Euler’s Formula, and then show discharging along specific structure in G forces α′(G) < 0 to

yield a contradiction.

We end this chapter with an example of the discharging method for list-edge coloring

example. As mentioned in the introduction Borodin verified Vizing’s conjecture for planar

graphs if ∆ ≥ 9, see [5]. Nearly ten years later Cohen and Havet provided the following

alternate proof of the result in [8] which makes clever use of discharging reducing the argument

to little more than a page long.

Theorem 2.8 (Borodin [5]). If G is a planar graph with ∆(G) ≥ 9, then G is ∆ + 1-list-edge-

colorable.

Proof. (Cohen & Havet [8])

Let Vi ∶= {v ∈ V (G)∣deg(v) = i} and let V[a,b] ∶= {v ∈ V (G)∣a ≤ deg(v) ≤ b}. We

consider an edge-minimal counterexample G, that is for some list assignment L which assigns

lists of size ∆+ 1 to the edges of G we assume there is no L-edge-coloring of G but there is an

L-edge-coloring for G − e for all e ∈ E(G).

Claim 2.1. If uv ∈ E(G), then deg(u) + deg(v) − 2 ≥ ∆ + 1.

Proof of Claim. Assume for contradiction there is an edge uv ∈ E(G) such that deg(u) +

deg(v)− 2 < ∆+ 1. We know G−uv is L-edge-colorable and we see the edge uv is adjacent to

deg(u) + deg(v) − 2 edges meaning it sees at most ∆ colors which is a contradiction.

Note this claim implies that δ(G) ≤ 3 and N(V3) ⊆ V∆.

Claim 2.2. ∣V3∣ <
1
2 ∣V∆∣

Proof of Claim. Let F be the bipartite subgraph of G induced by V3 ∪ V∆. If F is acyclic, then

we have 3∣V3∣ = e(F ) < v(F ) = ∣V3∣ + ∣V∆∣. So to prove our claim it will be sufficient to show

F is acyclic.
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Assume for contradiction that F is not acyclic. Since F is bipartite this means F must

contain an even cycle C. Let uv ∈ C where u ∈ V3 and v ∈ V∆. We know G − C is L-edge-

colorable and we see uv is adjacent to ∆ − 1 edges in G −C meaning every edge of C has two

available colors. This is a contradiction as even cycles are 2-list-edge colorable.

We now introduce a discharging argument. For every vertex v of G let α(v) = deg(v) − 4.

For every face f of G let α(f) = `(f) − 4. We also define an artificial structure P and let

α(P ) = 0.

Using the Degree-Sum Formula and Euler’s Formula we note that

α(G) = ∑
v∈V (G)

α(v) + ∑
f∈F (G)

α(f) = 2e(G) − 4v(G) + 2e(G) − 4f(G) = −8

We discharge along the following rules

(a) If v ∈ V∆, then v gives 1
2 charge to P .

(b) If v ∈ V3, then v takes 1 unit of charge from P .

(c) If v ∈ V[8,∆], then v gives 1
2 charge to incident triangles.

(d) If v ∈ V[5,7], then v gives deg(v)−4
deg(v) to each triangle incident to v.

We will now show that the final charge of every vertex, face, and P is nonnegative which

will yield a contradiction.

We know α(P ) = 0 and rules (a) and (b) manipulate this charge, however ∣V3∣ <
1
2 ∣V∆∣ by

our second claim means more is given to P than is taken which implies α′(P ) > 0.

Let v ∈ Vd for some 3 ≤ d ≤ ∆. We see α′(v) = deg(v) − 4 + pv − tv where p and t are the

amounts of charge v gives or receives from P and incident triangles respectively.

If v ∈ V3, then v receives 1 charge from P and gives no charge to incident triangles so

α′(v) = 3 − 4 + 1 − 0 = 0.

If v ∈ V[5,7], then v gives no charge to P and gives deg(v)−4
deg(v) to incident triangles. So

α′(v) ≥ deg(v) − 4 + 0 − deg(v)−4
deg(v) = deg(v) − 5 + 4

deg(v) > 0 since 5 ≤ deg(v) ≤ 7.
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If v ∈ V[8,∆−1], then v gives no charge to P and gives 1
2 charge to incident triangles. So if

v lays in t′ triangles, then α′(v) = deg(v) − 4 − 1
2t
′ ≥ 1

2deg(v) − 4 ≥ 0 since t′ ≤ deg(v).

If v ∈ V∆, then v gives 1
2 charge to P and gives 1

2 charge to incident triangles. So if v lays

in t′ triangles, then α′(v) = deg(v) − 4 − 1
2 −

1
2t
′ ≥ 1

2deg(v) −
1
2(9) ≥ 0 since deg(v) ≥ t′ and

deg(v) ≥ 9.

We have now shown that every vertex of G has final nonnegative charge. We will now

show every face has final nonnegative charge to complete the proof.

If a face f of G has `(f) = `, then α′(f) = ` − 4 + r + 1
2d where r is the charge received

from vertices in V[5,7] and d is the number of vertices incident to f in V[8,∆].

If `(f) ≥ 4, then f receives no charge from any vertex and α′(f) = ` − 4 ≥ 0.

If `(f) = 3, then f receives deg(v)−4
deg(v) from vertices in V[5,7] and receives 1

2 from vertices in

V[8,∆].

If f contains a vertex in V[3,4], then the other two vertices of f must be in V[∆−1,∆] by our

first claim. This means α′(f) = 3 − 4 + 2(1
2) = 0.

If f contains a vertex in V5, then the other two vertices of f must be in V[∆−2,∆] where

∆ − 2 ≥ 7. So α′(f) ≥ 3 − 4 + 1
5 + 2(3

7) > 0.

If f contains vertices in V[6,∆], then α′(f) ≥ 3 − 4 + 3(1
3) = 0 which concludes the proof.
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Chapter 3

List-Edge-Coloring Triangulations with ∆ = 5

We will primarily discuss triangulations with maximum degree 5 in this chapter. We begin

exploring the properties of such graphs in the following section before list-edge-coloring them

in later sections.

3.1 Triangulations with ∆ = 5

Lemma 3.1. Let G be a triangulation with ∆(G) = 5. If v ∈ V (G), then 3 ≤ deg(v) ≤ 5.

Proof. There are no triangulations which contain leafs. The only triangulation with a vertex of

degree 2 is the triangle. Since ∆(G) = 5 we get 3 ≤ deg(v) ≤ ∆(G) = 5.

Lemma 3.2. Let G be a triangulation with ∆(G) = 5 and let Vx = {v ∈ V (G)∣deg(v) = x}. It

follows that 12 = 3∣V3∣ + 2∣V4∣ + ∣V5∣

Proof. Let n and e be the number of vertices and edges in G respectively. Since G is a trian-

gulation we know e = 3n − 6. By the Degree-Sum formula we get the following:

e = 3n − 6

⇔
1

2
∑

v∈V (G)
deg(v) = 3n − 6

⇔ ∑
v∈V (G)

deg(v) = 6n − 12

⇔ 12 = 6n − ∑
v∈V (G)

deg(v)
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⇔ 12 = 6(∣V3∣ + ∣V4∣ + ∣V5∣) − (3∣V3∣ + 4∣V4∣ + 5∣V5∣)

⇔ 12 = 3∣V3∣ + 2∣V4∣ + ∣V5∣

From the count given by Lemma 3.2 we see there is a small set of linear combinations

of ∣V3∣, ∣V4∣, ∣V5∣ which give 12. The different linear combinations are organized into cases and

listed in Table 3.1.

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
∣V3∣ 4 3 3 2 2 2 2 1 1 1 1 1 0 0 0 0 0 0 0
∣V4∣ 0 0 1 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 6
∣V5∣ 0 3 1 6 4 2 0 9 7 5 3 1 12 10 8 6 4 2 0

Table 3.1: Linear combinations of ∣V3∣, ∣V4∣, ∣V5∣ satisfying 12 = 3∣V3∣ + 2∣V4∣ + ∣V5∣.

If G is a triangulation with ∆(G) = 5, then we will show G is 6-list-edge-colorable. We

see Cases 1, 7, and 19 are not possible for G. In the next section we will show that a number

of cases have a unique embedding in the plane which is 6-list-edge colorable.

3.2 6-list-edge-coloring case 4 and cases 13 through 18

Lemma 3.3 (Case 4). There is a unique 8-vertex triangulation with ∣V3∣ = 2 and ∣V5∣ = 6.

Moreover, this graph is G4 (pictured on the left-hand side of Figure 3.1), and G4 is 6-list-edge-

colorable.

Proof. Let G be an 8-vertex triangulation with ∣V3∣ = 2 and ∣V5∣ = 6. Consider a 5-vertex v in G

and observe that since G is a triangulation, the neighbourhood of v contain a 5-cycle C. Let U

consist of the two vertices of G that are not in C ∪ {v}.

If C contains both 3-vertices, then there are at most 6 edges between C and U (at most

two from each of the three 5-vertices on C). On the other hand, U consists of two 5-vertices in

this case, meaning that are at least 8 edges between U and C. Hence C contains at most one

3-vertex (and in fact any 5-vertex in G is adjacent to at most one 3-vertex).

Suppose now that C contains only 5-vertices, i.e, U consists of two 3-vertices. Since 5-

vertices are adjacent to at most one 3-vertex, each 5-vertex must be adjacent to at least one
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Figure 3.1: The graphs G4 and G′
4 from the proof of Lemma 3.3. The bolded edges in G′

4 are a
copy of G4, and the numerical labelling corresponds to the input for Computation A.1.

non-consecutive vertex on C. However, planarity makes this impossible. Hence C contains

exactly one 3-vertex.

Let u be the 5-vertex in U . In order to have enough degree, it must be adjacent to four of

the vertices on C (i.e. all the 5-vertices on C), and to the other vertex in U as well. The fact

thatG is a triangulation forces the two neighbours of the 3-vertex on C to also be adjacent. The

final edges of G (between the 3-vertex in U and the two 5-vertices on C still in need of degree)

are thus forced, and we get that G is the graph G4 depicted on the left-hand side of Figure 3.1.

The graph G′
4 on the right-hand side of Figure 3.1 is a 6-regular graph on an even number

of vertices which contains G4 as a subgraph. Labelling the vertices of G′
4 as 0,1, . . . ,7 (as

indicated in the figure), we can input G′
4 into Algorithm 1 and get that ∑F ∈OF (G′) sgn(F ) ≠ 0

(see Computation A.1 in the Appendix). Hence, by Theorem 2.5, G′
4 (and hence G4) is 6-list-

edge-colorable.

Lemma 3.4 (Case 18). There is a unique 7-vertex triangulation with ∣V4∣ = 5 and ∣V5∣ = 2.

Moreover, this graph is G18 (pictured in the center of Figure 3.2), and G18 is 6-list-edge-

colorable.

Proof. Let G be a 7-vertex triangulation with ∣V4∣ = 5 and ∣V5∣ = 2. Let v ∈ V (G) have degree

5, and consider a 5-cycle C contained in N(v). There is only one vertex outside the C ∪ {v},

call it u.

Suppose first that there are consecutive vertices x, y, z on C such that x and z are adjacent.

Consider the separating cycle xvz in the plane (see the left-most picture in Figure 3.2, where

this cycle is bolded). In order for u to have degree at least 4, it must be on the opposite side of

this cycle as compared to y. However that means that y has degree only 3, contradiction.
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Figure 3.2: Three graphs from the proof of Lemma 3.4. The bolded edges in G′
18 are a copy of

G18, and the numerical labelling shows that G′
18 = G

′
4.

We now know that no non-consecutive vertices on C are adjacent. Hence they must all be

adjacent to u, forcing the graph G18 in Figure 3.2). The graph G′
18 in Figure 3.2 is a 6-regular

graph on an even number of vertices which contains G18 as a subgraph. In fact, labelling the

vertices of G′
18 as 0,1, . . . ,7 (as indicated in the figure), we can compare it to Figure 3.1 and

observe that G′
18 = G

′
4 (although G4 /⊆ G18, G18 /⊆ G4). Since we showed that G′

4 is 6-list-edge-

colorable in the proof of Lemma 3.3, we now also know that G18 is 6-list-edge-colorable.

Alternatively we can show that G18 is 6-list-edge-colorable by providing the 6-kernel-

perfect-labeling illustrated in figure 3.3. We see the labels at each vertex have a total order-

ing. Note edges with ends labeled with one of the following pairs has outdegree at least 6;

{(1,3), (1,2), (1,1), (1, b), (1, a), (2,2), (2, a), (a, a)}. A quick check will verify every edge

in figure 3.3 has outdegree at most 5. We will now show our labeling of G18 yields no directed

odd cycle in L(G18). We will do so by iteratively deleting edges which cannot be in an odd

cycle until we are left with the bipartite graph H , illustrated by the blue edges of figure 3.3.

Note that the edge with ends labeled (5, d), call it e1 will have all adjacent edges directed to-

wards it in the line graph, so it cannot be in a directed odd cycle. By deleting e1 we may also

delete the edge with ends labeled (5, c) since the edge it is directed towards is e1. This means

the edges with ends labeled (4, d) can now be deleted. Doing so leaves the edge with ends

labeled (3, c) and the edge with ends labeled (c, d) free to be deleted. So we are left with the

bipartite subgraph H which cannot yield a directed odd cycle in the line graph. By definition

2.1 we see our labeling in figure 3.3 is a 6-kernel-perfect-labeling and by corollary 2.2, G18 is

6-list-edge-colorable.
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Figure 3.3: A 6-kernel-perfect-labeling ofG18 where the blue edges form the bipartite subgraph
H .

Lemma 3.5. (Case 17) There is a unique 8-vertex triangulation with ∣V4∣ = 4 and ∣V5∣ = 4.

Moreover, this graph is G17 (pictured in the center of Figure 3.4), and G17 is 6-list-edge-

colorable.

Proof. Let G be an 8-vertex triangulation with ∣V4∣ = 4 and ∣V5∣ = 4. Let v be a 5-vertex in G.

Since G is a triangulation, N(v) contains a 5-cycle, C. Let u,w be the two vertices of G not in

C ∪ {v}.

Suppose first that there are consecutive vertices x, y, z on C such that x and z are adjacent.

Consider the separating cycle xyz in the plane (see the left-most picture in Figure 3.4, where

this cycle is bolded). In order for y to have degree at least 4, at least one of u,w (without loss,

say u) must be on the opposite side of this cycle as compared to v. However, since u must also

have degree at least 4, in fact w must also be on the opposite side of xyz as compared to v.

Moreover, in order to have degree at least four, both u,w are adjacent to all of x, y, z. However

this implies that x is adjacent to v, the two vertices before and after it on C, z, as well as w,u.

That is, x has degree at least 6, contradiction

Now suppose that there are two consecutive 5-vertices on C, say x, y. Since neither can

be adjacent to any non-consecutive vertex on C, both x and y must be adjacent to both u and

w. It must either be the case that the cycle xyw separates v and u in the plane, or that the cycle

xyu separates v and w in the plane; suppose, without loss, that it is the former. However, then

the only possible neighbors of u are x, y,w, contradicting the fact that u must have degree at

least 4.
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Figure 3.4: Three graphs from the proof of Lemma 3.5. The bolded edges in G′
17 are a copy of

G17, and the numerical labelling shows that G′
17 = G

′
18 = G

′
4.

We now know that there are at most two 5-vertices on C. In fact, we claim that there must

be exactly two 5-vertices on C. If there is only one 5-vertex on C, then both u,w have degree

5, and so there must be at least 8 edges between C and {u,w}. On the other hand, C contains

only one 5-vertex along with four 4-vertices, so there are at most (in fact, exactly) 6 edges from

C to {u,w}, which is a contradiction.

We now know that there are exactly two 5-vertices on C, and they are non-consecutive.

Say x, y, z are consecutive vertices on C, x, z are 5-vertices. Since x, z cannot be adjacent to

any no-consectuive vertices on C, they must both be adjacent to both u and w. It must either

be the case that the cycle xyzw separates v and u in the plane, or that the cycle xyzu separates

v and w in the plane; suppose, without loss, that it is the former. Since u has degree at least 4 it

must be adjacent to all of x, y, z,w, and must be a 4-vertex. This forces w to be a 5-vertex that

is adjacent to all vertices on C except for y, giving the graph G17 in Figure 3.4.

The graph G′
17 in Figure 3.4 is a 6-regular graph on an even number of vertices which

contains G17 as a subgraph. In fact, labelling the vertices of G′
17 as 0,1, . . . ,7 (as indicated in

the figure), we can compare it to Figure 3.1 and observe that G′
17 = G

′
4 = G

′
18 (although none of

G17,G18,G4 are subgraphs of one another). Since we showed that G′
4 is 6-list-edge-colorable

in the proof of Lemma 3.3, we now also know that G17 is 6-list-edge-colorable.

Alternatively we can show that G17 is 6-list-edge-colorable by providing the 6-kernel-

perfect-labeling illustrated in figure 3.5. We see the labels at each vertex have a total order-

ing. Note edges with ends labeled with one of the following pairs has outdegree at least 6;

{(1,3), (1,2), (1,1), (1, b), (1, a), (2,2), (2, a), (a, a)}. A quick check will verify every edge

in figure 3.3 has outdegree at most 5. We will now show our labeling of G17 yields no directed
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Figure 3.5: A 6-kernel-perfect-labeling ofG17 where the blue edges form the bipartite subgraph
H .

odd cycle in L(G17). We will do so by iteratively deleting edges which cannot be in an odd

cycle until we are left with the bipartite graph H , illustrated by the blue edges of figure 3.5.

We first delete the edge with ends labeled (5, d) and the edge with ends labeled (5,5). This

will free the edge labeled (4,5) to be deleted. Last, we can delete all edges with ends labeled

(4, d). So we are left with the bipartite subgraph H which cannot yield a directed odd cycle in

the line graph. By definition 2.1 we see our labeling in figure 3.5 is a 6-kernel-perfect-labeling

and by corollary 2.2, G17 is 6-list-edge-colorable.

Lemma 3.6. If G is a triangulation with ∆(G) = 5 which is in case 16, then G is 6-list-edge

colorable.

Proof. Let G be a 9-vertex triangulation with ∣V4∣ = 3, ∣V5∣ = 6. Let v be a 5-vertex in G. Since

G is a triangulation, N(v) contains a 5-cycle, C. Let U denote the set of 3 vertices not in

C ∪ {v}.

Suppose first that there are consecutive vertices x, y, z on C such that x and z are adjacent.

Consider the separating cycle xyz in the plane (as in the left-most picture in Figure 3.4, where

this cycle is bolded). In order for y to have degree at least 4, at least one vertex from U must

be on the opposite side of this cycle as compared to v. However, since all vertices in G have

degree at least 4, in fact at least two vertices from U must also be on the opposite side of xyz

as compared to v. If just two of the U -vertices are there, then as argued above in the proof of
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Figure 3.6: Four graphs from the proof of Lemma 3.6. The bolded edges in G′
16 are a copy of

G16, and the numerical labelling corresponds to the input for Computation A.3.

Lemma 3.5, this means that x has degree at least 6, contradiction. So, in fact, all three vertices

of U must be on the opposite side of xyz as compared to v. However this means that it is not

possible for both of the two other vertices on C (besides x, y, z) to have degree at least four, due

to planarity. Hence, no non-consecutive vertices on C are adjacent. In fact, since we choose v

arbitrarily, this means that the neighbourhood of any 5-vertex in G induces a 5-cycle.

Suppose now that there are two consecutive 4-vertices on C, x, y. Since G is a triangu-

lation, x, y must be adjacent to a common u ∈ U , and moreover, u must be adjacent to the

two other neighbours of x and y on C (see the top-left picture in Figure 3.6). Since there is

at most one 4-vertex in U , we can choose w ∈ U , w ≠ u such that deg(w) = 5. The vertex w,

since it is not adjacent to x and y, must be adjacent to all of the other three vertices on C, as

well as u, and as well as the third vertex in U . However, this means that the third vertex in U

cannot be adjacent to v, x, y, u (since u already has degree 5 now). So, in order for this vertex

to have degree at least four, it must be adjacent to all three vertices on C besides x, y, which is

impossible by planarity. Hence, C has no consecutive 4-vertices.

Suppose now that C has three consecutive 5-vertices, x, y, z. Since C is an induced cycle

in G, x must have two neighbours in U , say t, u. However we also know that N(x) induces a

5-cycle, forcing t ∼ u, and two edges from t, u to C, including say uy (see the top-right picture
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in Figure 3.6). The neighborhood of y also induces a 5-cycle, and since y /∼ t (otherwise N(x)

would not be an induced cycle), we get that y ∼ w, where U = {t, u,w}. The vertex z cannot be

adjacent to u (otherwise N(y) would not be an induced cycle), so since z is a 5-vertex and C is

an induced cycle, z must be adjacent to t. Since the two vertices on C besides x, y, z must both

have degree at least 4, in fact they both have degree exactly four. However, this contradicts the

fact that C cannot have two consecutive 4-vertices.

We now know that C cannot have three consecutive 5-vertices, so in particular it has at

most three 5-vertices. Since no 4-vertices on C can be adjacent, C must in fact have exactly

three 5-vertices, with its two 4-vertices being non-consecutive. Since G is a triangulation,

this forces G to be the graph G16 pictured on the bottom-left in Figure 3.6. The graph G′
16,

pictured on the bottom-right of Figure 3.6, is a 6-regular graph on an even number of vertices

which contains G16 as a subgraph. Labelling the vertices of G′
16 as 0,1, . . . ,9 (as indicated

in the figure), we can input G′
16 into Algorithm 1 and get that ∑F ∈OF (G′) sgn(F ) ≠ 0 (see

Computation A.3 in the Appendix). Hence, by Theorem 2.5, G′
16 (and hence G16) is 6-list-

edge-colorable.

Lemma 3.7. (Case 15) There is a unique 10-vertex triangulation with ∣V4∣ = 2 and ∣V5∣ = 8.

Moreover, this graph is G15 (pictured in the bottom-left of Figure 3.8), and G15 is 6-list-edge-

colorable.

Proof. Let G be a 10-vertex triangulation with ∣V4∣ = 2, ∣V5∣ = 8. Let v be a 4-vertex in G,

and note that its neighbours contain a 4-cycle, C. By planarity, C must contain a pair of non-

adjacent vertices, say x, y. We claim that we can choose x, y so that the other pair of vertices on

C, say u,w, are both 5-vertices. If not, then u,w are adjacent and deg(u) = 4, without loss (see

the left-most picture in Figure 3.7). Note that this means that x has degree 5, since G has only

two 4-vertices. Hence, x must have two neighbours that are separated from v by the triangle

uxw (bolded in the picture). Since u has no more neighbours however, it is not possible to do

this, since G is a triangulation. Hence we may indeed assume that u,w are both 5-vertices.
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Figure 3.7: Three graphs from the proof of Lemma 3.7. The two right-most images show the
transition from G to G′.

Define G′ to be the triangulation obtained from G by deleting v and joining x and y

inside the 4-face created by the deletion of v (see the right two pictures in Figure 3.7 for this

transition). Note that in G′, all vertices have the same degree as in G, except for u,w, which

both went from degree 5 to degree 4. Hence G′ is a 9-vertex triangulation with ∣V4∣ = 3 (lost

v, gained u,w) and ∣V5∣ = 6. Hence, by Lemma 3.6, G′ = G16. In the top-left of Figure 3.8,

see a copy of G16 with three edges labelled e1, e2, e3. These are the only 3 edges in G16 that

could be the edge xy in G′, given that after deletion of the edge xy, all four vertices on the

4-face created would have degree at most 4. The version of G that would result from each of

e1, e2, e3 being xy, respectively, are also pictured in Figure 3.8. It is not hard to see that these

three graphs are isomorphic, so we indeed get that G is unique (call it G15). The graph G′
15

pictured in Figure 3.8 is a 6-regular graph on an even number of vertices which contains G15

as a subgraph. Labelling the vertices of G′
15 as 0,1, . . . ,11 (as indicated in the figure), we can

input G′
15 into Algorithm 1 and get that ∑F ∈OF (G′) sgn(F ) ≠ 0 (see Computation A.2 in the

Appendix). Hence, by Theorem 2.5, G′
15 (and hence G15) is 6-list-edge-colorable.
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Figure 3.8: Five graphs from the proof of Lemma 3.7. The bolded edges in G′ are a copy of G
(in particular, the e3 = xy image). The numerical labelling of G′ corresponds to the input for
Computation A.2.

Lemma 3.8. (Case 14) There is no 11-vertex triangulation with ∣V4∣ = 1 and ∣V5∣ = 10.

Proof. Let G be an 11-vertex triangulation with ∣V4∣ = 1, ∣V5∣ = 10. Let v be the 4-vertex in

G, and note that its neighbours induce a 4-cycle, C. By planarity, C must contain a pair of

non-adjacent vertices, say x, y. Define G’ to be the triangulation obtained from G by deleting

v and joining x and y inside the 4-face created by the deletion of x (see the two right-most

images in Figure 3.7). Note that in G′, all vertices have the same degree as in G, except for two

which went from degree 5 to degree 4. Hence G′ is a 10-vertex triangulation with ∣V4∣ = 2 and

∣V5∣ = 8. Hence, by Lemma 3.7, G′ = G15. However, looking at the image of G15 in Figure 3.8

we see that it does not have two 4-vertices on a 4-cycle, contradiction.

Lemma 3.9. If G is a triangulation with ∆(G) = 5 which is in case 13, then G is 6-list-edge-

colorable.

Proof. Observe that if G is a triangulation in case 13, then it is a regular planar graph of

maximum degree 5 which is known to have χ′(G) = 5 and therefore is 5-list-edge-colorable by

the previsouly mentioned result of Ellingham and Goddyn [11].
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3.3 Proof of our result via minimality

We will now show that the remaining cases cannot be an edge minimal triangulation with ∆ = 5.

It is worth noting that, as part of this argument, we will need to appeal to the fact that planar

graphs cannot contain K3,3, nor can they contain a subdivision of K3,3.

Theorem 3.3. If G is a triangulation with ∆(G) = 5, then χ′`(G) ≤ ∆(G) + 1.

Proof. Let G be an edge-minimal counterexample. So, in particular, there is an edge list as-

signment L of G with ∣L(e)∣ ≤ 6 for all e ∈ E(G), such that G is not L-edge-colorable. By

Lemmas 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 in the previous section and our comments at the end of the

introduction, it is sufficient to show that G cannot have the degree sequence prescribed in any

of the cases 2, 3, 5, 6, or 8–12 (as listed in Table 3.1).

Claim 3.1. If v ∈ V3, then N(v) ⊆ V5

Proof of Claim. Let v ∈ V3, and let x ∈ N(v). Since G is a triangulation N(v) induces a

triangle, hence G′ = G− v is also a triangulation. We know that degG(x) = {3,4,5} by Lemma

3.2.

If degG(x) = 3, then degG′(x) = 2. However G′ is a triangulation, which implies that

G′ =K3, and hence that G has no vertex of degree 5. So, we may assume that degG(x) = 4.

By the minimality of G, we know that χ′`(G
′) ≤ 6. Let φ be an L-edge-coloring of G′

(where L is restricted toG′). For the three edges e incident to v inG, let L−(e) be obtained from

L(e) by removing all colors used by φ on the edges of G′ adjacent to e. Since degG(x) = 4, we

get that degG′(x) = 3. This means that vx sees at most 3 colors in φ, leaving 3 available colors

for L−(vx). Let y, z be the other two vertices in NG(v) (aside from x). Since ∆(G) = 5 we

know degG(y), degG(z) ≤ 5. Hence vy and vz see at most 4 colors in φ, leaving to 2 available

colors for each of L−(vy) and L−(vz). In order to extend φ to an L-edge-coloring of G, we can

first choose distinct colors from L−(vy) and L−(vz), and then, since ∣L−(vx)∣ ≥ 3, there will

be at least one color left that we can use on vx. Hence, G is not a counterexample.

Claim 3.1 automatically precludes G having the degree sequence prescribed by any of the

cases 3, 6, or 12, since each has a 3-vertex, but less than three 5-vertices. If G has the degree
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Figure 3.9: Three graphs from the proof of Theorem 4.2. The triangle T is bolded in G11, and
the numerical labelling corresponds to the labels of G′

4 in Figure 3.1.

sequence of case 2 then ∣V3∣ = ∣V5∣ = 3, but then Lemma 3.1 implies that G contains a copy of

K3,3, which contradicts planarity. We can make a similar argument for case 5, as follows.

Claim 3.2. G cannot have the degree sequence prescribed by case 5.

Proof of Claim. Suppose that G is a 7-vertex triangulation with ∣V3∣ = 2, ∣V4∣ = 1, ∣V5∣ = 4.

By Claim 3.1 the two 3-vertices are only adjacent to 5-vertices. This also means that the

neighbourhood of the single 4-vertex must consist of all the 5-vertices. If the two 3-vertices

share the same three 5-vertices as neighbors, thenG has a copy ofK3,3 (see the left-most image

in Figure 3.9). So, there are two 5-vertices (say, x, y) that are each adjacent to only one 3-vertex

each (with these 3-vertices being distinct); see the center image in Figure 3.9. Then x, y must

therefore be adjacent, in order to have enough degree. By deleting the edge between x and V4,

and then suppressing x, we again get a K3,3.

We will now deal with each of the remaining possible degree sequences for G: those

prescribed by cases 8–11.

Claim 3.3. G cannot have the degree sequence prescribed by any of the cases 8–11.

Proof of Claim. Suppose, on the contrary, thatG is a triangulation which has a degree sequence

prescribed by one of the cases 8–11. In each case, this means G has a single 3-vertex, say v.

SinceG is a triangulation, the neighbourhood of the 3-vertex induces a triangle T , and by Claim

3.1, the three vertices in T are all 5-vertices in G. Consider the triangulation G′ = G − v.

Suppose first that G falls into one of cases 8, 9, or 10. In moving from G′ to G, we lost

our one 3-vertex, we lost three 5-vertices, and we gained three 4-vertices (which induce T ). So
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the degree sequence of G′ is now, respectively (for cases 8, 9, 10): ∣V4∣ = 3, ∣V5∣ = 6; ∣V4∣ = 4,

∣V5∣ = 4, or; ∣V4∣ = 5, ∣V5∣ = 2. By Lemmas 3.6, 3.5, and 3.4, respectively, this means that

G′ must be either G16, G17, or G18, as pictured in Figures 3.6, 3.4, 3.2. However, none of

these three graphs contain a triangle induced by 4-vertices. Since T is a part of G, this is a

contradiction.

We may now assume that G has the degree sequence prescribed by case 11, meaning that

G is a 7-vertex triangulation with ∣V3∣ = 1, ∣V4∣ = 3, and ∣V5∣ = 3. In order to have enough

degree, each of the three 5-vertices must be adjacent to precisely two of the 4-vertices. Since

this means exactly 6 edges between T and the 4-vertices, the three 4-vertices must themselves

induce a graph with 3(4)−6
2 = 3 edges. Hence, the 4-vertices induce a triangle, and each must be

adjacent to exactly two vertices on T . Hence G must be the graph G11 pictured on the right of

Figure 3.9 (the edges of T are in bold). However, by labelling the vertices of G11 to correspond

to the labels of G′
4 in Figure 3.1, we see that G11 is actually a subgraph of G4. By Lemma 3.3,

G11 is therefore L-edge-colorable.

We have now eliminated all possible cases and shown there is no edge-minimal counterex-

ample to our hypothesis.

As mentioned in the introduction Vizing conjectured that for any graph G it should be true

that χ′`(G) ≤ ∆ + 1. This conjecture is currently open for planar graphs with 5 ≤ ∆ ≤ 7. Our

result makes progress on the ∆ = 5 case but is limited to triangulations. In the conclusion we

will discuss ideas for extending our result for all planar graphs with ∆ = 5.
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Chapter 4

List-edge-coloring graphs with precolored subgraphs

In this chapter we present our contribution to Marcotte and Seymour’s precoloring question

and discuss its connection to list-edge-coloring.

4.1 Marcotte & Seymour’s Question and our results

Recall the question of Marcotte and Seymour [22] discussed in the introduction:

Question 4.1. “Given a graphGwith maximum degree ∆ and a subgraphH ofG that has been

(∆ + t)-edge-colored, can the edge-precoloring of H be extended to a (∆ + t)-edge-coloring

of G?”

If t is huge – say at least ∆ − 1 – then the answer is yes, and moreover, the extension

can be done greedily. This is because an edge in G sees at most 2(∆ − 1) other edges, and

when t ≥ ∆ − 1, this value is at most ∆ + t − 1. If the maximum degree of H is ∆ then this

threshold for t is actually sharp. To see this, consider the graph G shown in Figure 4.1, formed

by taking a copy of K1,∆ with one edge colored ∆ and the rest uncolored, and joining each leaf

to ∆ − 1 distinct new vertices via edges colored 1,2, . . . ,∆ − 1. Then G has maximum degree

∆, as does its edge-precolored subgraph. However, in order to extend the edge-precoloring to

a (∆ + t)-edge-coloring of G, we need ∆ − 1 new colors, which forces t ≥ ∆ − 1.

Given the above paragraph, Question 4.1 is only interesting when d ∶= ∆(H) is strictly less

than ∆. Here, we get a natural barrier to extension when d > t, via nearly the same example as

above. Let G be the graph shown in Figure 4.2, formed by taking an (uncolored) copy of K1,∆

and joining each leaf to d < ∆ distinct new vertices, via edges colored 1,2, . . . , d. The resulting
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Figure 4.1: A graph G with maximum degree ∆ = 3 with a precolored subgraph of maximum
degree ∆. In order to extend the edge-precoloring to a (∆ + t)-edge-coloring of G we need
t ≥ ∆ − 1.
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Figure 4.2: A graph G with maximum degree ∆ = 4 and a precolored subgraph of maximum
degree d = 2. In order to extend the edge-precoloring to a (∆ + t)-edge-coloring of G we need
t ≥ d.

graphG has maximum degree ∆, and contains a precolored subgraphH with maximum degree

d. However, in order to extend the edge-precoloring to G, we need ∆ new colors, meaning that

for a (∆ + t)-edge-coloring of G, we need d ≤ t.

If it happened that H was edge-colored efficiently (i.e. using at most χ′(H) colors),

then our problem would be significantly reduced. In this special situation, one could use a

completely new set of χ′(G − E(H)) colors to extend to an edge-coloring of G with at most

the following number of colors (according to Vizing’s Theorem):

χ′(G −E(H)) + χ′(H) ≤ χ′(G) + χ′(H) ≤ ∆ + d + 2. (4.1)

That is, when H has been edge-colored efficiently, the answer to Question 4.1 is yes whenever

d ≤ t−2. Since extension can be impossible when d > t (according to the above paragraph), this

makes d ∈ {t − 1, t} the only interesting values in this case, with further restrictions if any of

the inequalities in (4.1) are strict. For example, if both G and H have chromatic index equal to
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their maximum degrees, then the coloring described above works whenever d ≤ t, and hence we

get a sharp threshold. Of course, this only works when H has been edge-precolored efficiently,

and in general we have no control over the edge-precoloring on H .

We make progress on Question 4.1 in this chapter by focusing on planar graphs. In par-

ticular, we prove that the answer to Question 4.1 is yes whenever d ≤ t, provided d is small

enough or ∆ is large enough. As discussed above, the d ≤ t assumption is sharp.

Theorem 4.1. LetG be a planar graph of maximum degree at most ∆, let t be a positive integer,

and let H be a subgraph of G that has been (∆ + t)-edge-colored. If H has maximum degree

at most d, then the edge-precoloring can be extended to a (∆+ t)-edge-coloring of G provided

that either:

1. d ≤ t − 4, or

2. t − 3 ≤ d ≤ t and

∆ ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

16 + d, if d = t,

9 + d, if d = t − 1,

8 + d, if d = t − 2,

7 + d, if d = t − 3.

Theorem 4.1 does not include the case t = 0, however the requirement of d ≤ t means that

would correspond to H being edgeless. Then the problem is not about precoloring at all, but

simply about edge-coloring planar graphs as discussed above.

The case d = t = 1 of Theorem 4.2 was previously established by Edwards, Girão, van

den Heuvel, Kang, Sereni and the third author [10], with the slightly stronger assumption of

∆ ≥ 19. (Note that the restriction of our proof for Theorem 4.1 to this case provides a somewhat

new proof; both arguments use global discharging, but we discharge in a different way). After

the seminal work of Marcotte and Seymour [22], the vertex-version of the precoloring exten-

sion problem received much more attention than Question 4.1. Edwards et al. [10] re-initiated

this study in their paper, with planar graphs being only one of the many families they consid-

ered. The main concern in [10] however is when H is a matching, and in order to guarantee
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extensions they often impose distance conditions on the edges in the precolored matching. In

particular, this means avoiding the issues with t being too small as exhibited in Figures 4.1

and 4.2. Specifically, in addition to the aforementioned result for d = t = 1, they showed that

if H is an edge-precolored matching in a planar graph G where edges are at distance at least

3 from one another, then any ∆-edge-coloring on H can be extended to G provided ∆ ≥ 20.

More recently, Girão and Kang [14] studied extension from precolored matchings in general

graphs, proving that if H is a matching in a (not necessarily planar) graph G where edges are

distance at least 9 from each other, then any (∆ + 1)-edge-coloring on H can be extended to a

(∆ + 1)-edge-coloring of G.

As state in the introduction we have in fact proved the list-edge-coloring analog of Theo-

rem 4.1. This stronger result is as follows.

Theorem 4.2. Let G be a planar graph of maximum degree at most ∆, let L be an edge list

assignment on G with ∣L(e)∣ ≥ ∆ + t for all e ∈ E(G), where t is a positive integer, and let H

be a subgraph of G that has been L-edge-colored. If H has maximum degree at most d, then

the edge-precoloring can be extended to an L-edge-coloring of G provided that either:

1. d ≤ t − 4, or

2. t − 3 ≤ d ≤ t and

∆ ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

16 + d, if d = t,

9 + d, if d = t − 1,

8 + d, if d = t − 2,

7 + d, if d = t − 3.

We again omit the case t = 0, however the required d ≤ t condition means that H is edge-

less and hence the best result is that of Theorem 1.2 above. Theorem 4.2 does have something

meaningful to say when H is edgeless however: the case t = 1 and d = 0 gives Theorem 2.8

precisely.
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The following section contains some technical results needed for our proof of Theorem

4.2, which comprises Section 5.3. The final section of this chapter, Section 5.4, extends Theo-

rem 4.2 beyond planar graphs. We show that requiring G−E(H) to be planar is sufficient, and

in fact “planar” can be replaced by “non-negative Euler characteristic”.

4.2 Technical Lemmas

In this section, we gather some technical lemmas that will be needed for the proof of Theo-

rem 4.2.

Edwards et al. [10] applied Theorem 2.2 to obtain a precoloring extension result for bi-

partite graphs (Theorem 15 of [10]), which we will use as part of our proof. While the result

as stated in [10] only applies to classical edge-precoloring, a list-edge-coloring version can be

obtained using essentially the same proof:

Theorem 4.3. Let G be a bipartite multigraph, and let L be an edge list assignment on G with

∣L(e)∣ ≥ ∆ + t for all e ∈ E(G). Let H be a subgraph of G that has been L-edge-colored. If

H has maximum degree at most d, then the edge-precoloring can be extended to an L-edge-

coloring of G provided that t ≥ d.

Proof. Let G′ = G − E(H). For each edge e ∈ E(G′), let L′(e) be obtained from L(e) by

removing all colors used on the edges of H incident to e. Let xy be an arbitrary edge of G′.

Now

∣L′(xy)∣ ≥ ∣L(xy)∣ − degH(x) − degH(y) ≥ ∆ + t − degH(x) − degH(y).

Since t ≥ d ≥ ∆(H), this implies that

∣L′(xy)∣ ≥ ∆ − degH(x), and

∣L′(xy)∣ ≥ ∆ − degH(y).
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On the other hand,

degG′(x) = degG(x) − degH(x) ≤ ∆ − degH(x), and

degG′(y) = degG(y) − degH(y) ≤ ∆ − degH(y).

Thus, ∣L′(xy)∣ ≥ max{degG′(x),degG′(y)}, this inequality holds for all xy ∈ E(G′). By

Theorem 2.2, it follows that G′ is L′-edge-colorable, and any L′-edge-coloring of G′ gives the

desired L-edge-coloring of G.

In what follows and in the main argument, given a graph G, we define Vi(G) = Vi as the

set of all vertices v ∈ V (G) with deg(v) = i, and we define V[a,b](G) = V[a,b] as ∪i∈[a,b]Vi.

Lemma 4.1. Let G be a graph of maximum degree at most ∆, and let L be an edge list assign-

ment on G with ∣L(e)∣ ≥ ∆ + t for all e ∈ E(G). Let H be a subgraph of G with maximum

degree at most d. Suppose that H has been L-edge-colored, and that this extends to an L-edge-

coloring of G − e for all e ∈ E(G) ∖E(H), but not to G.

Let A = V[a0,a] and B = V[b0,∆], where a0, a, b0 are positive integers with a0 ≥ t + 1, b0 > a,

and a+ b0 ≥ ∆+ t+ 1. Let X be the bipartite subgraph of G−E(H) induced by the bipartition

(A,B). If every vertex u ∈ A has the property that

degX(u) ≥ degG(u) − d,

then

(t + 1 − d)∣A∣ ≤
∆

∑
i=b0

(a + i − 1 − (∆ + t))∣Vi∣.

Moreover, if a0 > t + 1 and a + b0 > ∆ + t + 1 then the above inequality is strict.

Proof. Say that an induced subgraph J ⊆X is bad if

• degJ(u) ≥ degG(u) − t for all u ∈ A ∩ V (J), and

• degJ(v) ≥ a + degG(v) − (∆ + t) for all v ∈ B ∩ V (J).
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Notice that for all u ∈ A, v ∈ B,

degG(u) − t ≥ a0 − t ≥ 1 (4.2)

and

a + degG(v) − (∆ + t) ≥ a + b0 − (∆ + t) ≥ 1, (4.3)

so that if a bad induced subgraph exists, it has no isolated vertices, and in particular has at least

one edge. We will first show that X has no bad induced subgraph, and then show that this

implies the desired claim.

Suppose that X has a bad induced subgraph J . Let G′ = G − E(J). Since E(J) is

nonempty, G′ is a proper subgraph of G, so by assumption, the edge-precoloring on H extends

to an L-edge-coloring ϕ of G′. We derive a contradiction by showing we can further extend

to an L-edge-coloring of G. To this end, let LJ be the edge list assignment on J defined as

follows: for each edge uv ∈ E(J), LJ(uv) is the set of colors from L(uv) that do not appear

on any G′-edge adjacent to uv. Observe that for each uv ∈ E(J), we have

∣LJ(uv)∣ ≥ ∆ + t − degG(u) − degG(v) + degJ(u) + degJ(v).

Since J is bad, we have degJ(u) ≥ degG(u) − t, so that

∣LJ(uv)∣ ≥ ∆ − degG(v) + degJ(v) ≥ degJ(v),

and likewise degJ(v) ≥ degG(v) + a − (∆ + t) so that

∣LJ(uv)∣ ≥ a − degG(u) + degJ(u) ≥ degJ(u).

Hence, for every uv ∈ E(J), we have ∣LJ(uv)∣ ≥ max{d(u), d(v)}. By Theorem 2.2, J is LJ -

edge-colorable. Now any proper LJ -edge-coloring of J , combined with the L-edge-coloring ϕ

of G′, yields a proper L-edge-coloring of G that extends the edge-precoloring of H as desired;

contradiction.
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Hence, X contains no bad induced subgraph, and so every induced subgraph J of X

contains a vertex violating the definition of a “bad” subgraph. By iteratively removing these

vertices and counting the edges removed when each vertex is deleted, we see that

∣E(X)∣ ≤ ∑
u∈A

[degG(u) − t − 1] + ∑
v∈B

[a + degG(v) − (∆ + t) − 1] (4.4)

≤ ∑
u∈A

[(degX(u) + d) − t − 1] + ∑
v∈B

[a + degG(v) − (∆ + t) − 1]

= ∣E(X)∣ + ∑
u∈A

[d − t − 1] +
∆

∑
i=b0

(a + i − (∆ + t) − 1)∣Vi∣.

Rearranging the last inequality yields

(t + 1 − d)∣A∣ ≤
∆

∑
i=b0

(a + i − 1 − (∆ + t))∣Vi∣,

which is the desired conclusion. If we additionally know that a0 > t + 1 and a + b0 > ∆ + t + 1,

then inequalities (4.2) and (4.3) become strict. Hence each u ∈ A and v ∈ B is contributing a

positive amount to the right-hand-side of (4.4). Since the last vertex removed is isolated, this is

an overcount, and hence we get a strict inequality.

4.3 Proof of Theorem 4.2

For fixed values of ∆, t, d, we choose a counterexample (G,H) where the quantity 3∣E(G)∣ +

∣V[2,t+1](G)∣ is as small as possible.

Claim 4.1. The edge-precoloring on H can be extended to an L-edge-coloring of G−e for any

e ∈ E(G) ∖E(H).

Proof of Claim. Let any e ∈ E(G) ∖ E(H) be given, and let G′ = G − e. Note that (G′,H)

satisfies the hypotheses of the theorem with ∆, t, d. Exactly two vertices in G′ have lower

degrees than in G, so ∣V[2,t+1](G′)∣ may be as large as ∣V[2,t+1](G)∣ + 2. However, since G′ has

one edge less than G, we still get that

3∣E(G′)∣ + ∣V[2,t+1](G
′)∣ < 3∣E(G)∣ + ∣V[2,t+1](G)∣.
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Figure 4.3: Moving from (G,H) to (G′,H ′) in the proof of Claim 4.4.

Hence, by our choice of counterexample, the edge-precoloring of H extends to an L-edge-

coloring of G′.

Claim 4.2. If uv ∈ E(G) ∖E(H), then degG(u) + degG(v) ≥ ∆ + t + 2.

Proof of Claim. By Claim 4.1, the edge-precoloring of H can be extended to an L-edge-

coloring ϕ of G − uv. The edge uv sees at most degG(u) + degG(v) − 2 different colors in

ϕ, so since (G,H, t) is a counterexample, it must be that degG(u) + degG(v) − 2 ≥ ∆ + t.

Claim 4.3. If v ∈ V[1,t+1], then every edge incident to v in G is also in H .

Proof of Claim. Assume for contradiction that v ∈ V[1,t+1] and v is incident to an edge not in

H , say uv. By Claim 4.2, we know that degG(u) + degG(v) ≥ ∆ + t + 2. However, since

degG(v) ≤ t + 1, this implies that degG(u) ≥ ∆ + 1, a contradiction.

Claim 4.4. V[2,t+1] = ∅.

Proof of Claim. Suppose not, and take v ∈ V[2,t+1]. By Claim 4.3, every edge uv incident to v

must lie in H .

Let G′ and H ′ be the graphs obtained from G and H , respectively, by deleting v and, for

each u ∈ NG(v), adding a new vertex vu adjacent only to u. We precolor each edge uvu with

the same color received by the edge uv in the precoloring of H . See Figure 4.3. Observe that

the edge-precoloring of H ′ extends to G′ if and only if the edge-precoloring of H extends to

G.

Now G′ has the same number of edges as G, and has one fewer vertex in V[2,t+1]. As

∆(G′) ≤ ∆ and ∆(H ′) ≤ d, our choice of counterexample implies that the edge-precoloring of

H ′ extends to G′, but this means that the edge-precoloring of H extends to G as well.
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Claim 4.5. Every vertex of G is either a leaf incident to an edge in H , or of degree at least

t + 2.

Proof. This follows by combining Claim 4.3 and Claim 4.4.

Let Fm be the set of faces in G with exactly m vertices on its boundary having degree 3 or

higher in G.

Claim 4.6. F0 = F1 = F2 = ∅.

Proof of Claim. Suppose that f ∈ F0 ∪ F1 ∪ F2; we will show a contradiction. We know that

V2 = ∅ by Claim 4.5, since t ≥ 1. So, if the boundary of f contains a cycle, then it contains

at least three vertices of degree at least three, yielding a contradiction. Thus, the boundary

of f contains no cycle. This means that G is a forest, and f is its one face. In particular,

G is bipartite. By Theorem 4.3, this implies that the precoloring of H extends to all of G,

contradicting our choice of G as a counterexample.

We now introduce a discharging argument. To each vertex in G assign an initial charge of

α(v) = 3 degG(v) − 6. To each face in G assign an initial charge of α(f) = −6. We also define

an additional structure P (a “global pot”) and assign to it an initial charge of α(P ) = 0. We

discharge along the following rules:

(a) For each m, every face f ∈ Fm takes 6
m from each vertex of degree 3 or higher on its

boundary.

(b) Every vertex v ∈ V1 takes 3 from its neighbor.

In the special case where t = d + ` for ` ∈ {0,1,2,3}, we also add the following rules:

(c) For every vertex v ∈ Vi, where i ∈ {t + 2, . . . , t + 5 − `}:

v takes t + 6 − ` − i from P .

(d) For every vertex v ∈ Vj , where j ∈ {∆ − 3 + `, . . . ,∆}:

v gives q(j)(q(j)+1)
2(`+1) to P , where q(j) = j −∆ + 4 − `.
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While it is not immediately obvious, discharging rules (c) and (d) never apply to the same

vertex, due to the following claim.

Claim 4.7. If t = d + ` for some ` ∈ {0,1,2,3}, then ∆ − 3 + ` > t + 5 − `.

Proof of Claim. We get the desired inequality if and only if ∆ + 2` > 8 + t. If ` = 0, then we

have d = t, so the hypothesis of Theorem 4.2 yields

∆ + 2` = ∆ ≥ 16 + d = 16 + t > 8 + t.

If ` ∈ {1,2,3} we may rewrite hypothesis of Theorem 4.2 as

∆ ≥ 10 + d − ` = 10 + (t − `) − ` = 10 + t − 2`, so

∆ + 2` ≥ 10 + t > 8 + t.

Using Euler’s formula for planar graphs, the sum of initial charges is at most −12:

α(P ) + ∑
v∈V (G)

α(v) + ∑
f∈F (G)

α(f) = 0 + ∑
v∈V (G)

(3 degG(v) − 6) + ∑
f∈F (G)

(−6)

= 6∣E(G)∣ − 6∣V (G)∣ − 6∣F (G)∣ ≤ 6(−2) = −12. (4.5)

For each graph element x (either a vertex, a face, or the global pot), let α′(x) denote the final

charge of x. Since each discharging rule conserves the total charge, we see that ∑xα
′(x) =

∑xα(x) = −12. We will achieve our desired contradiction by showing that the final charge of

each element is nonnegative.

First consider a face f . By Claim 4.6, f ∈ Fm for m ≥ 3. So according to discharging rule

(a) (the only rule affecting f ),

α′(f) = (−6) +m( 6
m) = 0.
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Now consider the global pot P . We know α(P ) = 0 and that the charge of P is unaffected

when d ≤ t − 4, so the following claim precisely amounts to showing showing that α′(P ) > 0

when t − 3 ≤ d ≤ t.

Claim 4.8. If t = d + ` for some ` ∈ {0,1,2,3}, then

t+5−`
∑
i=t+2

(t + 6 − ` − i)∣Vi∣ <
∆

∑
j=∆−3+`

q(j)(q(j) + 1)

2(` + 1)
∣Vj ∣. (4.6)

Proof of Claim. For each k ∈ {0, . . . ,3−`}, defineAk = V[t+2,t+5−`−k] andBk = V[∆−3+`+k,∆] and

let Xk be the bipartite subgraph of G−E(H) induced by the partition (Ak,Bk). We will show

we can apply Lemma 4.1 for each value of k, and then we will sum the resulting inequalities

to get our desired result. For fixed k, this means we want to apply Lemma 4.1 with parameter

choices

a0 = t + 2, a = t + 5 − ` − k,

b0 = ∆ − 3 + ` + k,

and hence to do so we must verify that a0 ≥ t+ 1 (true) and that a+ b0 ≥ ∆+ t+ 1, which is true

since

(t + 5 − ` − k) + (∆ − 3 + ` + k) = t + 2 +∆.

In fact, since both these inequalities hold strictly, we will apply the strict version of Lemma

4.1. Of course, there are several other hypotheses we must check. In particular, we must verify

that b0 > a, which is equivalent to showing that ∆ > t + 8 − 2`. Since t = d + `, we get this

inequality by Claim 4.7. By Claim 4.1, we can therefore apply Lemma 4.1 for k provided that

every vertex u ∈ Ak has the property that

degXk
(u) ≥ degG(u) − d.
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Consider such a vertex u with incident edge uv in E(G) ∖E(H). Since u ∈ Ak, and by Claim

4.2, we know that

degG(v) ≥ ∆ + t + 2 − degG(u) ≥ ∆ + t + 2 − (t + 5 − ` − k) = ∆ − 3 + ` + k.

This means, by definition of Xk, that the edge uv is in Xk. So degXk
≥ degG(u) − degH(u) ≥

deg(u) − d, as desired.

For any fixed k, we can now apply Lemma 4.1 to get

(` + 1)∣Ak∣ <
∆

∑
j=∆−3+`+k

(q(j) − k)∣Vj ∣, (4.7)

since t + 1 − d = ` + 1 by the hypothesis of Claim 8, and since, for our choices of parameters,

a + j − 1 − (∆ + t) = (t + 5 − ` − k) + j − 1 − (∆ + t)

= j −∆ + 4 − ` − k

= q(j) − k.

Dividing (4.7) by (` + 1) and summing over all k yields

3−`
∑
k=0

∣Ak∣ < ( 1
`+1

)
3−`
∑
k=0

∆

∑
j=∆−3+`+k

(q(j) − k)∣Vj ∣. (4.8)

The left-hand-side of (4.8) is

3−`
∑
k=0

∣V[t+2,t+5−`−k]∣ = ∣V[t+2,t+5−`]∣ + ∣V[t+2,t+4−`]∣ + ⋯ + ∣V[t+2,t+2]∣

= (4 − `)∣Vt+2∣ + ⋯ + 2∣Vt+4−`∣ + ∣Vt+5−`∣

=
t+5−`
∑
i=t+2

(t + 6 − ` − i)∣Vi∣,
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matching the left-hand side of (4.6). It remains only to show that the right-hand-side of (4.8)

equals the right-hand side of (4.6). To this end, note that

j ≥ ∆ − 3 + ` + k ⇐⇒ k ≤ j −∆ + 3 − ` = q(j) − 1, and so

3−`
∑
k=0

∆

∑
j=∆−3+`+k

(q(j) − k)∣Vj ∣ =
∆

∑
j=∆−3+`

⎛

⎝

q(j)−1

∑
k=0

(q(j) − k)
⎞

⎠
∣Vj ∣.

Now the bracketed sum can be rewritten as

q(j)−1

∑
k=0

(q(j) − k) = q(j) + (q(j) − 1) + (q(j) − 2) +⋯ + 1 = q(j)(q(j)+1)
2 ,

which is precisely what we needed to prove.

We have now shown α′(P ) > 0, so it remains only to consider the final charge of an

arbitrary vertex v. If v ∈ V1, then only discharging rule (b) affects v, and we get

α′(v) = (−3) + 3 = 0.

By Claim 4.5, we may now assume that degG(v) ≥ t + 2.

Suppose v lies on the boundary of x distinct faces and is incident to y leaves. We know

that x is no more than degG(v) − y, so x + y ≤ degG(v). We also know that y ≤ d, by Claim

4.5 and by definition of d. By doubling the first inequality and adding the result to the second

inequality we get

2x + 3y ≤ 2 degG(v) + d. (4.9)

Since F0, F1, F2 = ∅ by Claim 4.6, each of the x distinct faces incident to v has at least 3

vertices of degree at least 3 on their boundary. This means that each of these x faces takes

charge at most 2 from v, according to discharging rule (a). Each of the y leaves incident to

v takes exactly 3 from v, according to discharging rule (b). Hence by inequality (4.9), after

applying discharging rules (a) and (b) (but before considering discharging rules (c) or (d)), the
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charge of v is at least

3 degG(v) − 6 − (2x + 3y) ≥ degG(v) − 6 − d. (4.10)

Note that since d ≤ t, the additional discharging rules (c) and (d) are applied precisely when

d ≥ t − 3. If d ≤ t − 4, then we do not apply them, and by inequality (4.10),

α′(v) ≥ degG(v) − 6 − d ≥ degG(v) − 6 − (t − 4) = degG(v) − (t + 2) ≥ 0.

We may now assume that t = d + ` for ` ∈ {0,1,2,3}. Let p denote the total charge

transferred from P to v according to discharging rules (c) and (d); note that p may be positive,

negative, or zero. In all cases, by inequality (4.10), we have that

α′(v) ≥ degG(v) − 6 − d + p. (4.11)

If neither discharging rule (c) nor (d) applies to v, then we know that t + 5 − ` < degG(v)

and therefore (4.11) says that

α′(v) ≥ (t + 5 − ` + 1) − 6 − d + (0) = (t − d) − ` = 0,

as desired.

Now suppose that discharging rule (c) applies to v (and hence (d) does not, according to

Claim 4.7). In this situation, (4.11) implies that

α′(v) ≥ degG(v) − 6 − d + (t + 6 − ` − degG(v)) = 0.

Finally, we may assume that discharging rule (d) applies to v (and hence (c) does not,

according to Claim 4.7). In this case, we have t = d + `, where ` ∈ {0,1,2,3}, and degG(v) ∈
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` = 0 ` = 1 ` = 2 ` = 3

degG(v) = ∆ − 3 + ` ∆ − d − 10 ∆ − d − 17/2 ∆ − d − 22/3 ∆ − d − 25/4
degG(v) = ∆ − 2 + ` ∆ − d − 11 ∆ − d − 17/2 ∆ − d − 7 ∗

degG(v) = ∆ − 1 + ` ∆ − d − 13 ∆ − d − 9 ∗ ∗

degG(v) = ∆ − 0 + ` ∆ − d − 16 ∗ ∗ ∗

Table 4.1: Lower bounds on α′(v) when discharging rule (d) applies. Starred entries are
impossible due to degG(v) ≤ ∆.

{∆ − 3 + `, . . . ,∆}. By (4.11),

α′(v) ≥ degG(v) − 6 − d − (
(degG(v) − (∆ − 4 + `))(degG(v) − (∆ − 5 + `))

2(` + 1)
) .

Writing degG(v) as ∆ − h + `, where h ∈ {`, . . . ,3}, we can rewrite this lower bound as

α′(v) ≥ ∆ − h + ` − 6 − d − (
(∆ − h + ` − (∆ − 4 + `))(∆ − h + `) − (∆ − 5 + `)

2(` + 1)
)

= ∆ − h + ` − 6 − d − (
(4 − h)(5 − h)

2(` + 1)
)

= ∆ − d − (6 + h − ` +
(4 − h)(5 − h)

2(` + 1)
) .

Table 4.1 computes the bracketed quantity for each permissible combination of degG(v) and

`. For each possible value of `, the hypothesis of Theorem 4.2 ensures that this lower bound is

always nonnegative.

We have proved that α′(x) ≥ 0 for every graph element x, and this completes the proof of

Theorem 4.2.

4.4 Extensions

In the proof of Theorem 4.2 our initial charges sum to at most −12, and after discharging the

vertices and faces all have nonnegative charge and the global pot has a strictly positive charge.

In fact, when we examine inequality (4.5), we see that the sum of initial charges is at most

−6ε, where ε is the Euler characteristic of the plane. Hence our argument works identically

well for any surface of non-negative Euler characteristic; namely G may be embedded on the
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plane, torus, Klein bottle, or projective plane. Moreover, this embedding requirement need not

concern the edges of the precolored H: imagine applying Theorem 4.2 to the graph obtained

by replacing every edge e = uv in H with a pair of edges eu = uu′ and ev = vv′ where u′, v′

are new leaves, and eu and ev retain the precoloring (and lists) of e. Given these observations,

we can strengthen Theorem 4.2 by removing the assumption that “G is planar” and replacing

it by the somewhat milder “G − E(H) can be embedded in a surface of nonnegative Euler

characteristic”.
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Chapter 5

Conclusion

In chapter 3 we prove (in Theorem 3.3) that every triangulation with ∆ = 5 is 6-list-edge-

colorable. This is a step towards answering Conjecture 1.1 which is open for planar graphs

with 5 ≤ ∆ ≤ 7. One natural extension to our result would be to prove that every triangulation

with ∆ = 6 is 7-list-edge-colorable, however such an attempt would require techniques beyond

what we employed in chapter 3. This is primarily due to our use of Lemma 3.2. Recall the last

three lines of that proof read as follows:

⇔ 12 = 6n − ∑
v∈V (G)

deg(v)

⇔ 12 = 6(∣V3∣ + ∣V4∣ + ∣V5∣) − (3∣V3∣ + 4∣V4∣ + 5∣V5∣)

⇔ 12 = 3∣V3∣ + 2∣V4∣ + ∣V5∣

By allowing a triangulation to have ∆ = 6 we require the set V6 to be nonempty; however

it will still vanish in the equations above. This means we cannot develop a short list of cases

for triangulations with ∆ = 6, though we could still use Lemma 3.2 to limit vertices with

3 ≤ deg(v) ≤ 5 and use an argument similar to claim 3.1 to say there are more vertices in V6

than in V3.

The other natural extension to Theorem 3.3 would be to show that all planar graphs with

∆ = 5 are 6-list-edge-colorable. Cohen and Havet’s proof of Theorem 2.8 redistributes the

charge of high degree vertices to low-degree vertices and to triangular faces, proving that every

element which was assigned charge ends with nonnegative charge. This means high degree
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vertices must have sufficient charge for the other elements of the graph, which is why Cohen

and Havet’s proof requires ∆ ≥ 9. If one could show that high-degree vertices lie in few

triangles or have few low-degree neighbors, then one could possibly lower their maximum

degree condition. This is to some extent what Bonamy [4] accomplishes by finding special

configurations which cannot occur in a minimal counterexample.

There is some benefit to working with ∆ = 5 in the discharging argument of Cohen and

Havet, we can think of our Theorem 3.3 as the base case of an induction on the number of

nontriangular faces in planar graphs with ∆ = 5. If we assume G is a nontriangular-face

minimal graph, then we can show that every face has at most 2 vertices which are not maximum

degree. We then proceed with the typical discharging argument assigning charges α(v) =

deg(v) − 4 and α(f) = `(f) − 4 to all vertices and faces respectively. Since ∆ = 5, we need

only worry about some very specific configurations. Unfortunately, we need to reduce such

configurations in order to make progress. Even if we assume G is 5-regular each vertex must

give more charge than it has to since we have not limited the number of triangles each vertex

lies in.

Although Algorithm 1 is able to deal with the cases of Theorem 3.3 we are still interested

in the kernel method. If one could extend Theorem 2.3 to allow for bidirected edges in the

orientation, then we believe most if not all of the cases of Theorem 3.3 could be addressed.

This brings us to question for what other families of graphs could we employ the kernel method

to yield list-edge coloring results.

We do not expect any improvement to Theorem 4.2 without the use of techniques beyond

those discussed in chapter 4. However, in the proofs of both our Theorem 4.2 and Borodin’s

Theorem 2.8 a list-edge coloring result for bipartite graphs is exploited in order to show there

are more high-degree vertices than low-degree vertices in a graph. In particular Theorem 2.8

uses the result that even cycles are 2-list-edge-colorable and Theorem 4.2 uses Lemma 4.1.

This relation is then used in a discharging argument to yield a list-edge coloring result for

all planar graphs of a bounded maximum degree. This means that list-edge coloring results

for well-known families of graphs, or even other list-edge coloring results on bipartite graphs,
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could be used to further build connections between list-edge-coloring and list-edge-precoloring

or used to extend Theorem 3.3.
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Appendix A

Algorithm 1

The following code is an algorithm due to Schauz [27]. It takes as an input a k-regular graph

on an even number of vertices and outputs ∑F ∈OF (G) sgn(F ) as mentioned in chapter 2. The

code is designed for SageMath and uses only python commands. Further details can be found

in the appendix of [27].

Algorithm 1

1 def weighted_sum(Graph, previous_Unmatched = [-1..9], \

2 next_Unmatched = [1..11]): # 2 optional param.

3 # by default, start = next_Unmatched[-1] = 11 > len(Graph)

4 # next_Unmatched[j] is the unmatched vertex after j

5 # previous_Unmatched[j] is the unmatched vertex before j

6 to_match = next_Unmatched[-1] # next_Unmatched[-1] is start

7 if to_match < len(Graph): # 1-factor under construction

8 neighbors = Graph[to_match]

9 elif len(Graph[0]) <> 0: # start next 1-factor

10 to_match = 0 # 0 shall be matched first

11 neighbors = [Graph[0][0]] # to avoid color permutations

12 previous_Unmatched = [-1..9] # fresh bootstrapping

13 next_Unmatched = [1..11]

14 else: return 1 # 1-factorization complete, edgeless graph

15 um = next_Unmatched[to_match]

16 previous_Unmatched[um] = -1 # bypass to_match

17 next_Unmatched[-1] = um # bypass to_match

18 w_sum = 0 # subtotal of weighted_sum()

19 sgn = 1 # initial sign of edge {to_match,nbr}

20 for i in range(len(neighbors)):

21 nbr = neighbors[i] # iˆth neighbor of to_match
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22 while um < nbr: # um is bridged by {to_match,nbr}

23 sgn = -sgn # bridged unmatched vertices flip sgn

24 um = next_Unmatched[um]

25 if um == nbr: # match to_match with nbr

26 gr = [[n for n in lst] for lst in Graph] # deepcopy

27 del gr[to_match][i] # remove edge {to_match,nbr}

28 p_um = [n for n in previous_Unmatched] # deepcopy

29 n_um = [n for n in next_Unmatched] # deepcopy

30 p_um[n_um[nbr]] = p_um[nbr] # bypass nbr

31 n_um[p_um[nbr]] = n_um[nbr] # bypass nbr

32 w_sum = w_sum + sgn * weighted_sum(gr,p_um,n_um)

33 return w_sum # output w_sum

34

35 graph = [[1,2,3,4,5],[2,3,4,5],[3,4,5],[4,5],[5],[]] # K6

36 # vertex 0 is adjacent to vertices 1,2,3,4,5; 1 adjacent to 2,3,4,5

37 (and 0); etc.

38 weighted_sum(graph) # the initial call of weighted_sum()

39 # returns the sum of all signs of all 1-factorizations of graph

We use Algorithm 1 to compute weighted sum(graph) for the following three graphs as
mentioned in chapter 3.

Computation A.1 (Case 4)
Input: graph = [[1,2,3,4,5,6],[2,3,4,5,7],[3,5,6,7],[4,6,7],[5,6,7],[6,7],[7],[]]

Output: weighted sum(graph) = −288

Computation A.2 (Case 15)
Input: graph = [1,2,3,4,5,11],[2,4,6,9,11],[3,6,7,11],[4,7,8,11],[8,9,11],[6,7,8,9,10],[7,9,10],[8,10],[9,10],[10],[11],[]]

Output: weighted sum(graph) = −384

Computation A.3 (Case 16)
Input: graph = [[1,2,3,6,8,9],[2,3,4,5,8],[3,5,7,8],[4,6,9],[5,6,7,9],[6,7,9],[7,8],[8,9],[9],[]]

Output: weighted sum(graph) = 256
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