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Abstract

The main purpose of this study was to bring new mathematical and statistical methods

to the ecological community and highlight novel application of these methods to practical sci-

entific questions. Deepwater marine systems provide a challenge to understanding population

dynamics, and commercial fisheries are particularly interested in understanding how valuable

fish populations change with variable climate conditions. Several interdecadal climate modes

and their effects on marine systems have been studied, and many of those climate modes are

found to contribute to variability in the northern Pacific Ocean system. Studies on how climate

and marine environment affect commercially important fish populations in this region often

lean too heavily on the potential effect of climate modes. The importance of climate variability

induced by unknown sources in marine systems must also be considered when understanding

population changes in marine vertebrates. This study aimed to incorporate a variety of marine

and atmospheric variables to model population-level changes in seven groundfish species. The

response of these commercially valuable fishes to changes in climate and their marine envi-

ronment are not well understood, as they live in deep waters (ą 300 m) making experimental

studies on adults difficult. Such models involved considering population responses over space

and time for multiple variables, increasing model complexity beyond the capacity of basic sta-

tistical methods.

Several useful methods in statistics and mathematics allow for modeling of high-dimensional

data without assumptions on population distributions. While previous fisheries research relied

heavily on time series analysis, the past decade has seen a move to generalized additive models

(GAMs) as a nonlinear method of modeling fish populations using smooth coefficient functions.

The method provides the flexibility of fitting high-dimensional functions to allow incorporation

of space and time in a non-additive way. The single-index model combines the interpretabil-

ity of generalized linear models (GLMs) with GAMs, encasing a GLM in an unspecified link

function. An extension of this is the varying-coefficient single-index model, which models
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several common covariates within a single-index model and uses varying smooth coefficients

of the single-index model to quantify the relationship between other additive covariates and a

response. Quantifying the relationship of individual species’ responses to changes in climate

using these methods provides a starting framework to consider how these groundfish species

interact over time and space. A new mathematical tool called convergent cross mapping (CCM)

can factor in multiple variables and map dynamic causal relationships extracted from time se-

ries data. So far the method has been applied to a two-species sardine-anchovy system off

the coast of California, but there is the potential for this method to be expanded to measuring

spatiotemporal effects involving more than two species.

The goal of this study was to (1) quantify groundfish responses to climate and ecosystem

fluctuations using multiple indicators of ocean variability through improved statistical methods

described herein, and (2) detect causal factors and complex interactions involved in changes in

populations numbers found in Alaskan groundfish species by applying CCM to this complex

groundfish ecosystem. A combination of multiple sources of ecological, environmental, clima-

tological, and geographic data were used to investigate potential causal factors and attempt to

explain visible changes in groundfish populations. It is hypothesized that changes in fish pop-

ulations will be best explained by multiple interacting variables that, when modeled correctly,

will provide a more accurate system for monitoring and predicting the health of fish commu-

nities. Not only does this understanding have the potential to contribute to the development of

more informed management practices for wild fish populations, it also provides greater insight

for modeling changing ecosystems over time and creating more accurate prediction models

describing complex systems.

Over twenty years of fishery longline surveys collected by the NOAA were merged with

corresponding climate data from ICOADS, COPEPOD, WODA13, and WOD13. Multivari-

ate analysis methods were used to discover potentially significant clustering within the data,

examine relationships and dependence among variables, and uncover potential correlations for

further investigation. Robust and efficient nonparametric statistical procedures provided in-

ference for small samples. Single-index models (SIMs) including a host of environmental

variables were used to determine the most important environmental effects on groundfish catch
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rates. Single-index varying coefficient models (SIVCMs) provided framework for including

latitude and longitude to environmental variables that vary spatially, allowing for estimation

and prediction of groundfish catch over space and time without the ‘curse of dimensionality’.

SIMs and SIVCMs also permitted exploration of the effects of trophic and habitat interactions

by co-occurring groundfish on the species of interest. CCM was applied to the ecological sys-

tem to search for signals that indicate potential causal effects of common environmental forces

on the fish populations. All statistical analyses were performed using the free statistical com-

puting software environment R. Results from the analyses and modeling of interactions were

evaluated with the following main questions: (1) Do certain sources of variation influence fish

population dynamics more heavily? (2) Which model(s) tested herein most accurately predict

future ecological fluctuations? (3) Can CCM be applied to different complex systems effi-

ciently and precisely? Application of causal analyses such as CCM to marine ecosystem data

has the potential to provide explanations for changes in catch and improve prediction models

with applications to broader ecological modeling that can inform wildlife policies and fisheries

management. Considering that the first application of the CCM analytical protocol was on

a complex sardine-anchovy system over multi-year scales (Sugihara et al., 2012), the longline

surveys on groundfish populations in the northern Pacific Ocean and related environmental data

from sources such as ICOADS are ideal candidates for CCM and comparisons of successful

method deployment.

Based on the results of CCM and statistical analyses, I will create models to explain the

dynamic changes in the fish populations and test model prediction capabilities and limitations

utilizing cross-validation as well as data from future longline surveys. The models will in-

clude three main factors theorized to affect population dynamics: time, climate, and species

interactions. CCM techniques will be refined to improve the detection accuracy of causal rela-

tionships. Further research into the connections behind the complex ecological interactions of

the system may be explored using graph theoretic techniques. Future plans for modifications to

the CCM technique will increase accuracy of quantifying causes and creating models to predict

future population responses to potential ecosystem variations.
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Chapter 1

Modeling Environmental Effects on Groundfish Catch in the Northern Pacific

1.1 Northern Pacific Ocean Marine System Dynamics

Evidence of global climate change has generated strong interest in studying environmental

effects on animal populations. Current evolutionary theory models of species’ responses to

changing climate focus on single subspecies and local adaptation, but observations suggests a

more complex network of species interactions and ecological dynamics (De Mazancourt et al.,

2008; Urban et al., 2012). Ecological theories on adaptation consider species in isolation, but

the basis for emergence of biodiversity underpinning these theories are not typically represen-

tative of observed ecosystems (Scheffer et al., 2018). There is also a fundamental lack of theo-

retical studies supported by empirical evidence on the impact of global environmental change

on ecological interactions (e.g. complex trophic interactions, positive interactions such as mu-

tualism, competition’s effect on species coexistence, novel community assemblages) and how

these could affect evolutionary mechanisms and feedbacks on population dynamics and range

shifts (Lavergne et al., 2010). These studies are critical for generating appropriate community

models for predicting and understanding a wide range of potential eco-evolutionary dynamics

under climate change (Urban et al., 2012).

Studies have revealed potential amplified warming effects in the northern-high latitude

region (60˝N) relative to overall global warming trends (Holland and Bitz, 2003; Serreze and

Francis, 2006). This trend has brought about changes in Pacific marine systems and is predicted

to affect future fish diversity and population sizes (Brander, 2007; Cheung et al., 2013). As a

major intersection for several fluctuating climate systems (Anderson and Piatt, 1999; Bakun,

1



1999), a diverse and complex marine system (Livingston et al., 1999), and a significant source

of fishing income and food for the United States and Japan (National Marine Fisheries Service,

2014), Alaska’s surrounding waters are an ideal environment to study the effects of a changing

climate on an ecosystem with a dynamic structure, known anthropogenic pressures, and crucial

role in economics and the global food supply. Present research on the ecology of Alaskan

groundfish, a major commercial fishery for the area, is particularly limited due to the difficulty

of accurately studying and managing deepwater fishes. Modeling responses of adult groundfish

to persistent fluctuations in their marine environment while also accounting for their dynamic

system will contribute significantly to the knowledge of groundfish population dynamics and

behavior.

A major surge in research of the Pacific marine system came in the 1980s after a strong

regime shift was observed by fisheries along the northeastern Pacific coast of North America

and in the Alaskan waters in the late 1970s. This shift was found ecosystem-wide, characterized

by a strong increase in the catch of Alaskan salmon and several groundfish and flatfish species,

a dramatic change in patterns of phytoplankton biomass in the Gulf of Alaska and Californian

waters, and a steep drop in the abundance of many forager species such as shrimp and Pacific

northwest salmon (Anderson and Piatt, 1999; Francis et al., 1998). These substantial variations

prompted fisheries management experts and marine scientists to consider the environmental

forces behind these biological changes. Analysis of water temperatures and pressure anomalies

as related to marine populations stimulated further questions into the sources of atmospheric

and oceanic processes.

A primary focus of marine studies on the environmental effects on fish populations has

been to determine the processes behind changing temperatures and assess whether these pro-

cesses adhere to temporal cycles. Specifically for the northern Pacific, several hypothesized

climate patterns have been suggested for interdecadal anomalies in sea surface temperature

patterns and the North Pacific Pressure Index (Francis et al., 1998). An issue with these hy-

pothesized patterns is that these climate systems are harder to model and predict, and there is

little physical evidence to support one hypothesized pattern over all others. One climate pat-

tern conceptualized and modeled by Hollowed and Wooster (1992) suggested warm and cool
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periods based on the winter atmospheric circulation of the north Pacific, each period lasting 6

to 12 years. The pattern appeared to be linked with the El Nino-Southern Oscillation (ENSO)

phenomenon, and Hollowed and Wooster (1992) showed that groundfish recruitment success

in the northeast Pacific was associated with this pattern of warming and cooling eras. There is

a debate on whether this pattern is discernible in the California Current System during some

time periods, leading some scientists to question the model’s validity (Francis et al., 1998). The

more well-known measure of interdecadal climate variability is the Pacific Decadal Oscillation

(PDO), which is also based on the pressure changes in the north Pacific (Mantua and Hare,

2002; Mantua et al., 1997). PDO was also shown to affect SST and North Pacific Pressure

Index in northern Pacific waters, although it was not found to be linked with ENSO. Fluc-

tuations in salmon stocks appear to follow this regime more closely than the ENSO-related

model of Hollowed and Wooster (1992), however the connection between PDO and ground-

fish stocks is less supported. More recently, another climate cycle for variations in salinity,

nitrate, phosphate, silicate, dissolved oxygen (DO), and chlorophyll has been described and

termed the Northeast Pacific Gyre Oscillation (NPGO) by Di Lorenzo et al. (2008). The NPGO

is claimed to be a previously unrealized factor more predictive of dramatic ecosystem shifts

than the PDO by capturing important interannual and decadal biological patterns such as nutri-

ent cycling that are not explained by ENSO or PDO. The interplay between the PDO, ENSO,

and NPGO drive both low and high-frequency climate variability throughout the North Pacific

Ocean (Di Lorenzo et al. (2013), Figure 1.1). Large-scale indicators such as these often ac-

count for more variance within an ecosystem than a single environmental variable, because

these indicators integrate several environmental variables such as temperature, sea ice levels,

and current patterns (Drinkwater et al., 2010).

1.2 Environmental Variables Relevant to Marine Ecosystems in the North Pacific

Large changes in climate and associated oceanic conditions can be predicated by shifts in envi-

ronmental variables, which, in turn, can have cascading effects on primary production, trophic

structures, and population recruitment in marine life (Bakun, 1999). Temperature changes have
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Figure 1.1: Figure 1 from Di Lorenzo et al. (2013) illustrating the interplay between the Pacific
Decaldal Oscillation, El Niño-Southern Oscillation, and North Pacific Gyre Oscillation in the
North Pacific.

been a central focus in the climate change discussion, although with increasing global temper-

ature comes changes in winds, pressure systems, ocean transport systems, and coastal runoff.

Together, alterations in these factors can transform the composition of oceans (Brodeur et al.,

1999; Sadorus, 2012) and contribute to ecosystem stress (Livingston et al., 1999). Some of

the more common oceanic variables being collected for use in studying climatic effects on ma-

rine life include temperature, DO, salinity, acidity, chlorophyll, and nitrogen. More generally,

northward contraction in the distribution of several species has been observed as temperatures

increased in a 25-year study (Sadorus, 2012).

Salinity is a good indicator of the level of mixing in oceans and plays an important role

in stratification (Kakehi et al., 2017). Increased salt-stratification of upper ocean waters from

increased sea-ice melt and changes in the hydrologic cycle induced by global warming is likely

to constrain the flow of nutrients in the photic zone which will reduce primary production

and potentially favor webs dominated by low-energy predators (Carmack and McLaughlin,

2011). Oceans are becoming less saline as warmer polar conditions promotes the melting and
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runoff of ice-trapped freshwater into oceans (Sadorus, 2012). In the subarctic North Pacific,

decreased ocean salinity indicates increased freshwater concentrations from continental run-off,

increasing the supply of iron and thereby stimulating diatom production. Increased freshwater

also changes concentrations of silicate and nitrate concentrations in surface waters, limiting or

promoting diatom production (Dugdale et al., 1995; Wong and Matear, 1999).

Increasing acidity and decreasing DO in oceans are linked to rising levels of carbon diox-

ide and other greenhouse gases. Oceans are a major sink for anthropogenic carbon, which has

already resulted in a reduction of oceanic pH by 0.1 (acidification) and is predicted to decrease

by another 0.3 by 2100 (Caldeira and Wickett, 2003). Ocean acidification can cause metabolic

suppression in fishes and decreased ability to form shells in calcifying organisms, potentially

leading to drastic changes in trophic systems. Increased carbon in oceans can also promote

plankton blooms that vastly exceed consumption by zooplankton, leading to larger and more

persistent hypoxic zones which can harm marine life and obstruct growth, metabolism, and

predatory behavior of marine organisms (Sadorus, 2012).

The North Pacific Ocean is experiencing increasing upper ocean acidification at rates

closely following atmospheric CO2 rises (Byrne et al., 2010). Rates of acidification in the upper

500 m of the ocean have been significantly increasing since 1991, and increases in acidification

of near-surface and mixed-layer depth waters are primarily attributed to anthropogenic carbon

uptake (Caldeira and Wickett, 2003). Increased acidity of marine waters reduces the calcifica-

tion of carbonate-forming organisms such as bivalve molluscs and crustaceans (Wakita et al.,

2013). Not only does this affect these large shell-forming species, but it also affects calcify-

ing marine plankton such as abundant planktic foraminifera and pteropods in the North Pacific

(Bednaršek et al., 2014; Taylor et al., 2018). Negative impacts on these planktonic organisms

are likely to create cascading effects in trophic systems of the Northern Pacific (Wootton et al.,

2008). Acidification of oceans also resulted in over 10% decreased low-frequency sound ab-

sorption in most Pacific waters above 400 m and projected to decrease further (Hester et al.,

2008), which may alter predator-prey interactions of marine fishes through changes in abilities

to detect prey and avoid predators.
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Alkalinity is part of the ocean’s carbonate system and is often quantified through pH, dis-

solved inorganic carbon (DIC), or total alkalinity (TA) (Hagens and Middelburg, 2016). While

TA contributes to pH, a change in alkalinity does not necessarily translate to a change in pH.

Changes in temperature, salinity, silicate, and nitrate can also affect pH levels, and freshwater

inputs mainly control TA (Lee et al., 2006). Denitrification and consumption of nitrate by biota

increase alkalinity while use of calcium carbonate by calcifying organisms decreases alkalinity

in surface waters (Wong et al., 2002a). Increased TA in surface waters (or decrease of TA in

deeper waters) is typically brought about by vertical mixing, which brings deeper waters rich

in alkalinity to the surface; in contrast, TA decreases in surface waters occur from calcification

by primary producers, but it is not a smooth and continuous decrease (Fiadeiro, 1980; Wong

et al., 2002a). The carbonate system is rapidly changing due to anthropogenic atmospheric CO2

increases (Caldeira and Wickett, 2003; Feely et al., 2004; Orr et al., 2005). While alkalinity

is mainly decreasing due to increased atmospheric CO2 from anthropogenic sources, anthro-

pogenic increases in atmospheric nitrate and sulfur deposition also contribute to decreasing

alkalinity in waters of the Northern Hemisphere by altering saltwater chemistry (Doney et al.,

2007). Increased variability in the interannual carbonate system in the Pacific Ocean are also

attributed to variability in the PDO and ENSO (Fry et al., 2015).

Silicate is another important tracer for the ocean’s calcium carbonate system and an im-

portant nutrient for diatom growth (Wong and Matear, 1999). In the North Pacific, diatom

production and plankton productivity is limited by iron, which adversely affects diatom uti-

lization of silicate in the region (Wong and Matear, 1999). As diatoms in this region require

higher levels of silicon in order to grow, silicate is likely to become a limiting factor in plank-

ton biomass accumulation in the region (Wong and Matear, 1999; Wong et al., 2002a). Silicate

limitation is likely to co-occur with or may be induced by iron limitation in the Northern Pa-

cific Ocean. The process is initiated by an influx of iron, often through runoff from freshwater

systems into the ocean, favoring increased diatom production. Increased diatom growth leads

to depletion of iron, silicate, and nitrate. Silicate and iron are therefore important regulators of

phytoplankton growth in Alaskan marine waters (Harrison et al., 2004).
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Seasonal cycles of nitrate are important for assessing effective removal of atmospheric

CO2 by the world’s oceans, and nitrate is an essential nutrient contributing to primary pro-

duction. Measuring seasonal nitrate depletion at the ocean’s surface can be used to determine

the intensity of carbon and nutrient removal from surface waters to be sequestered to the deep

ocean in the form of dissolved and particulate organic matter (Wong et al., 2002b). The North-

ern Pacific Ocean at higher latitudes has high concentrations of surface nitrate (Fry et al., 2015).

The subarctic North Pacific is considered a high-nitrate low-chlorophyll (HNLC) region, where

it is rare for surface nitrogen to be depleted and seasonal depletion occurs in cycles of approx-

imately 4-6 months in duration (Wong et al., 2002a) Similar to effects of iron on silicate uti-

lization, iron-limited diatoms in the North Pacific do not utilize nitrate as efficiently as diatoms

less limited by iron in other regions (Wong and Matear, 1999). Large decreases in nitrate levels

may therefore be due to increased diatom production, however El Niño can impact seasonal

nitrate patterns which can alter seasonal primary production and nutrient depletion rates (Wong

and Matear, 1999; Wong et al., 2002b).

Phosphorus is another major nutrient contributing to primary production (Desmit et al.,

2015). Phosphorus is important for growth of plankton and bacteria especially for the creation

of cell membranes and DNA. However, excess phosphorus can result in overabundant algal

blooms that then create hypoxic zones in the ocean (Childers et al., 2005; Yoshimura et al.,

2007).

The distribution of DO in ocean waters is a primary habitat indicator for most marine

organisms. Photosynthetic activity generates oxygen in the photic zone, and benthic commu-

nities rely on strong mixing to deliver these oxygen-rich waters from the surface. Respiration

by algae and other organisms also removes oxygen from both pelagic and deep waters. DO

concentrations in the deep ocean and its relation to biological productivity are therefore strong

indicators of marine ecosystem function (Boyer et al., 1999; Loubere, 1994). A consequence of

increasing ocean temperatures is that less oxygen is contained in warmer sea water, thereby de-

creasing DO availability to marine organisms (Boyer et al., 1999). Marine DO concentrations

have been decreasing in subsurface (100–1000 m depth) waters in most of the world’s mid-

and high-latitude ocean basins over the past 50 years (Deutsch et al., 2005; Ono et al., 2001).
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Some of the most well-documented changes are in the North Pacific, where variations in the

Pacific Decadal Oscillation propel changes in basin-level circulation rates that affect biological

production and distribution of oxygen and other nutrients (Deutsch et al., 2005; Whitney et al.,

2007).

It is predicted that deepwater DO concentrations will decrease by 20-40% globally over the

next 100 years. Declines in ocean DO concentrations precipitate changes in primary and sec-

ondary production in regional waters and has been linked to declines in pelagic and deepwater

fish production (Koslow et al., 2011). For example, benthic and schooling rockfish communi-

ties were severely effected by inner-shelf hypoxia events in the California Current System in the

early 2000s (Grantham et al., 2004). In all areas of the northern Pacific, declines in DO levels

are being observed with decreasing trends at all depths up to 400 m for 50 years of data from

1956-2006, and these decreasing trends remain significant at up to 1000 m depths. Based on

approximate calculations of oxygen consumption rates and declining oxygen levels, it would

take roughly 20 years for the Northern Pacific waters to reach hypoxic levels. A few deepwater

species tolerant of low oxygen, such as sablefish and rockfish, may increase their ranges un-

der these conditions. Most other species dependent on high DO levels will move to shallower

waters, increasing competition and interactions with predators (Whitney et al., 2007).

Transport of nutrients from deep waters towards surface waters are important for enriching

phytoplankton communities. Since all phytoplankton contain chlorophyll, chlorophyll levels in

oceans are important for estimating phytoplankton biomass. Chlorophyll a strongly correlates

with winter levels of salinity, nitrogen, and phosphorus through plankton bloom formation and

peak biomass (Desmit et al., 2015). A reduction in deepwater plankton biomass and phyto-

plankton concentrations being confined to shelf and slope regions of the North Pacific basin

are characteristic of El Niño effects; these characteristics indicate reduced carbon transport to

the deep ocean (Sackmann et al., 2004). Spatiotemporal variation in plankton are important

for energy transfer to higher tropic levels and are also important to the transport of DO and

nutrients via respiration and decomposition to deepwater communities (Smith Jr and Baldwin,

1984). Dominant species of marine phytoplankton and zooplankton are being affected globally

by increased atmospheric CO2 concentrations through the decreased ability to form calcareous

8



skeletons, decreasing chlorophyll concentrations over recent decades (Benson and Trites, 2002;

Riebesell et al., 2000). Given these global trends in atmospheric CO2, there is growing inter-

est in how changes in phytoplankton dynamics will translate to commercially and ecologically

important fishes.

Wind and wave movements, especially from intense winter storm systems, are important

for mixing of oxygen-rich waters from the euphotic zone with benthic waters to distribute nu-

trients from the deep ocean. However, changes in global climate are precipitating shifts in

wind and wave patterns (Harrison and Wallace, 2005). Positive correlations between winter

wind speed and summertime plankton biomass have been observed globally (Feng et al., 2015;

Kahru et al., 2010). Primary and secondary production can therefore be affected by atmo-

spheric pressure changes that alter wind and wave circulation patterns and intensities (Benson

and Trites, 2002). Strong interannual changes in winds driven by pressure systems can affect

the duration of wind-mixing events and change the depth of the mixed-layer, affecting biolog-

ical production and resulting in strong ecosystem regime shifts, such as the ones noted in the

Northern Pacific Ocean (Polovina et al., 1995).

1.3 Fish of the Northern Pacific

Sablefish (Anoplopoma fimbria), also commonly known as black cod, has been managed by the

US government since 1988. These fish occupy the ocean floor at depths of 300 to 900 m along

the continental slope and live to 50 years or more. Females can grow to 110 cm in length and

weigh 14 kg, while males only reach 88 cm and 6.8 kg. Main predators on sablefish juveniles

are adult salmon, while as adults their main predator is Pacific halibut. Sablefish are oppor-

tunistic feeders and will prey on pollock, herring, and Pacific cod, among other fishes (Alaska

Fisheries Science Center, 2019a). Several laboratory studies have been conducted on juvenile

sablefish to understand how they may respond to temperature and light. Current research sug-

gests that sablefish prefer temperatures ranging from 2 to 8˝C (Stoner and Sturm, 2004), while

juveniles prefer warmer temperatures from 9 to 14˝C (Sogard and Olla, 1998b). Sogard and

Olla (1998b) found during nighttime-simulated light conditions, juvenile sablefish activity sig-

nificantly increased in the presence of colder (3˝C) temperatures, indicating potential avoidance
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behavior in low light when sablefish are typically not as active. These temperature preferences

also can affect sablefish feeding behavior. Stoner and Sturm (2004) found increases in attack

rates, consumption rates, and amount of food consumed by juvenile sablefish in 5˝C and 8˝C

waters when compared to those in 2˝C. Time to locate, attack, and consume bait decreased

with increasing temperature, indicating that sablefish may be able to detect olfactory cues of

bait more easily in warmer waters. Marine Ecology and Stock Assessment (MESA) longline

surveys bait with squid, therefore lab findings on juvenile sablefish such as those of Stoner

and Sturm (2004) may provide important insight into behavior of adult sablefish. Juvenile

sablefish only enter colder waters when strongly motivated by food (Sogard and Olla, 1998a).

Longer dives by small juvenile sablefish in sharp thermal gradients (approximately 10˝C differ-

ence between surface and bottom temperatures) resulted in loss of equilibrium and mortality.

Larger juveniles were able to sustain longer dives to cold waters, but showed preferences for

12˝C waters. Increasing temperature appears to have a positive effect on juvenile sablefish

growth, with Sogard and Olla (2001) reporting some of the highest growth rates among all

juvenile teleosts in water temperatures up to 14˝C. Schirripa and Colbert (2006) considered

oceanographic variables in relation to sablefish recruitment in the California Current System

and identified significant relationships with monthly mean sea level and north and east flow

of wind-driven water movement known as the Ekman transport. This southern population is

considered separate from the northern population present in the Gulf of Alaska and Bering Sea,

thus it is unknown if the northern sablefish population responds to the same oceanic conditions

as the southern population.

Pacific cod (Gadus macrocephalus) generally reach 130-140 cm in length and weigh up

to 25 kg, and they inhabits waters of up to 250 m in depth and migrate to shallower wa-

ters in the summer. As a commercially important and relatively short-lived (up to 18 years)

species, Pacific cod are susceptible to overfishing pressures. Pacific cod is also an important

prey species for Pacific halibut and endangered Stellar sea lions (Aydin et al., 2015; Goen and

Erikson, 2017). Therefore, there is strong interest in understanding the species’ response to

increasing temperatures. Like sablefish, Pacific cod have higher growth rates with increasing

water temperatures. Laurel et al. (2016) found highest growth rates for juvenile Pacific cod
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at 8˝C, whereas Hurst et al. (2010) found 11˝C to be most conducive for high growth rates

and potentially persistent temperature-dependent growth rates from time of hatching. There

is a significant effect of temperature on the size and survival of Pacific cod larvae from egg

stage to hatching, with warmer temperatures precipitating early hatchings with smaller lar-

vae Laurel et al. (2008). Early work by Forrester and Alderdice (1966) and Alderdice and

Forrester (1971) demonstrated Pacific cod sensitivity to temperature, salinity, and DO in em-

bryonic development. Wild Pacific cod cohorts in colder-than-average years had significantly

higher growth rates at colder temperatures, but also higher mortality at warmer temperature

treatments than those cohorts from a warmer-than-average year, indicating potential phenotypic

plasticity (Hurst et al., 2010, 2012b). Cold temperatures also negatively affect shoaling behav-

ior in juvenile Pacific cod (Davis and Ottmar, 2009), which can reduce foraging and protection

from predators. These temperature responses lead to concerns that the increased fluctuations

in weather conditions predicted to occur from climate change may make it difficult for Pacific

cod to adapt sufficiently to these variations. Results from Hurst et al. (2012a) hint at these

temperature effects producing changes in wild populations: range contraction of Pacific cod in

the Bering Sea was evident in years where poor recruitment coincided with cold conditions.

Pacific halibut (Hippoglossus stenolepis) are one of the largest known flatfish at lengths of

2.5 m and weights of 300 kg and thus one of the top marine fish predators in the northern Pacific

ecosystem. Pacific halibut are believed to remain in deep water (to 450 m) for much of their

adult life (Seitz et al., 2007), however pop-up tags have revealed much more vertical movement

and variations in migration behavior than previously estimated for Pacific halibut in the Gulf

of Alaska (Loher and Seitz, 2006). As with sablefish and Pacific cod, laboratory experiments

on juvenile Pacific halibut indicate responses to temperature and density. Temperature-related

activity and food motivation, such as food-absent movement and food searching and locating

frequency increasing with water temperature, have been observed (Stoner et al., 2006). Pacific

halibut were significantly slower in finding, attacking, and consuming prey in 2˝C, therefore

catchability of Pacific halibut may be influenced by temperature. The relationship between

catch and abundance has been explored more directly by considering size and density of young

Pacific halibut in finding bait (Stoner and Ottmar, 2004). Grouped fish were significantly faster

11



at finding bait, and larger fish were more likely to consume bait by either reaching the bait first

or through theft or bullying tactics on smaller fish. Absence of Pacific halibut being caught

may therefore be due to low densities where fish are unable to detect bait or are disinterested,

rather than absence of fish entirely (Stoner and Ottmar, 2004).

The Pacific halibut fishery is also one of the most valuable U.S. fishery resources, with

Pacific halibut landings in the US worth $115 million in 2014; of that, over $106 million comes

from Alaska landings alone (National Marine Fisheries Service, 2014). This has motivated

a considerable amount of new research into Pacific halibut distribution and catch rates with

technical advances in data collection to overcome the difficulties associated with tracking and

studying adult deepwater fish in the wild. The International Pacific Halibut Commission has

more recently prioritized research on climate change’s effect on Pacific halibut distribution

by collecting oceanographic data with catch data since 2000. The proposed effects of some

of these variables have been examined, and preliminary research identified minimum DO (0.9

ml/l) and temperature values (0.5˝C) for Pacific halibut numbers (Sadorus, 2012; Sadorus et al.,

2014). The relationship between DO and catch was significant, where catch increased for DO

values from 0.9 ml/l up to 3 ml/l. Sufficient DO is important for survival of marine life, although

deepwater species tend to be more tolerant of hypoxic conditions than pelagic species.

Giant grenadier (Albatrossia pectoralis) is a little-studied but abundant fish in the northern

Pacific. It is a deep-sea fish commonly occurring in 700 to 1100 m depths, but can be found at

depths greater than 2000 m (Rodgveller et al., 2010). The giant grenadier is the largest of all

the grenadier with average female weights in excess of 14 kg. Because of difficulties in deter-

mining ages of giant grenadier, their maximum age is unknown; however, some grenadier have

been estimated to be 58 years old and estimated to mature around 23 years of age (Rodgveller

et al., 2010) . Despite its lack of appeal to commercial fisheries due to its poor taste and texture,

the giant grenadier is likely of great ecological importance due to its biomass dominance and

position as an apex predator on the continental shelf (Drazen et al., 2001; Rodgveller et al.,

2010). Beaked whales will eat grenadier, however the species is an insignificant portion of the

whale diets (Walker et al., 2002). Fish, squid and scavenged material are a major portion of
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the diet of California Current giant grenadier, with the diet composition varying by size, habi-

tat depth, and latitude (Drazen et al., 2001). These results appear agree with giant grenadier

feeding habits in the North Pacific and Bering Sea. Due to its lack of commercial importance,

studies on the giant grenadier’s response to environmental variables and changing oceanic con-

ditions have not been the focus of deep-sea research. However, the giant grenadier diet appears

to overlap with sablefish and shortspine thornyhead (discussed below) and could exert consid-

erable pressure on these fish via competition for prey (Drazen et al., 2001; Rodgveller et al.,

2008).

Shortspine thornyhead (Sebastolobus alascanus), shortraker rockfish (Sebastes borealis),

and rougheye rockfish (Sebastes aleutianus) belong to the Sebastidae family. The rougheye

and shortraker rockfishes prefer steep, rocky habitat at 300-500 m depths and are long-lived:

the rougheye rockfish may be the longest-lived fish with a maximum reported age of 200 years.

These two species vary drastically in size, with the rougheye rockfish adults averaging 40 cm

in length, and the shortraker rockfish is the largest of all Sebastes with lengths up to 120 cm.

Shortspine thornyheads, which reach 80 cm in length, are similarly long-lived with estimated

maximum ages of more than 160 years (Andrews et al., 1999) and depths of 150-450 m. Large

rougheye rockfish, shortraker rockfish, and shortspine thornyhead prefer average bottom tem-

peratures of 3.6˝C to 4.1˝C (Reuter and Spencer, 2007). All three Sebastidae primarily con-

sume shrimp and fish as adults. Shortspine thornyhead and shortraker rockfish are estimated

to be tertiary carnivores based on nitrogen isotope ratios Kline Jr (2007). Shortspine thorny-

head co-occur with sablefish on the western US continental slope, which may relate to onto-

genetic shifts in depth distribution common to both species Tolimieri and Levin (2006). The

energy transfer provided by these shifts has the capacity to indirectly link shallow water effects

of fishing and climate change to deepwater assemblages (Tolimieri and Levin, 2006). Short-

raker and rougheye rockfishes may be under-represented in longline surveys because of hook

competition with more aggressive predators such as sablefish, Pacific cod, and Pacific halibut

(Rodgveller et al., 2008). However, the current rougheye rockfish population model used to

estimate rockfish abundance may be overestimating the efficacy of longline equipment, thereby

underestimating current rockfish populations in the northern Pacific (Rodgveller et al., 2011).
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An alternative best-fitting, two-part model to describe and predict presence and abundance of

shortspine thornyhead for 13 years of trawl data included depth, local bottom slope, thermo-

cline temperature, predation refuge, and prey abundance (Rooper and Martin, 2009). Unlike

many other studies on marine fish, temperature was only important in predicting presence of

shortspine thornyhead and found to be one of the least critical variables for abundance. Wa-

ter temperature varies little for adult shortspine thornyhead since they have a narrow preferred

depth range, therefore the effect of temperature on these fish may be limited (Rooper and Mar-

tin, 2009).

Walleye pollock (Gadus chalcogramma), also commonly known as Alaskan pollock, are

important prey species for Pacific halibut, sablefish, and Pacific cod in the Northern Pacific

Ocean (Hollowed et al., 2000; Livingston, 1993). Walleye pollock also serves as an important

food source for Arctic marine mammals including spotted seals (Phoca largha) and ribbon

seals (Phoca fasciata) (Bluhm and Gradinger, 2008). Cannibalism on age-0 pollock by adult

pollock is common throughout the Gulf of Alaska and Bering Sea, which influences interannual

recruitment variability through temperature changes that impact distribution overlap between

adults and juveniles (Livingston, 1993; Mueter et al., 2006; Wespestad, 1996; Wespestad et al.,

2000). Walleye pollock is also a commercially important species, composing over 40% of the

global whitefish production (Ianelli et al., 2011). Pollock are considered short-lived species,

typically living about 12 years. Pollock typically reach a maximum length of 50 cm long

and weight of 1.3 kg, although pollock up to 90 cm long have been reported (Dorn et al.,

2017; Smith, 1979). Walleye pollock commonly occur along the continental shelf at depths

of 150-900 m, and adults move vertically through the water column diurnally to forage. Ideal

temperatures for walleye pollock are between 3 and 7.5˝C, with growth rates increasing with

temperature, however under limited food availability, more rapid growth is observed at colder

temperatures (Smith et al., 1986; Sogard and Olla, 2000). Temperature also affects predator

avoidance behavior in walleye pollock . Small juvenile walleye pollock avoided colder waters

to reduce interactions with adults that concentrate above the thermocline, thereby reducing

cannibalism. Juveniles are also particularly sensitive to thermal stratification which may affect

their responses to predators (Sogard and Olla, 1993). Lower temperatures were also associated
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with faster swim speeds, increased group cohesiveness, and decreased path sinuosity, which

have varying effects on encounters with predators and their outcomes (Hurst, 2007). The North

Pacific regime shift has already drastically affected recruitment of walleye pollock, from being

largely dependent on environmentally controlled larval survival to being strongly controlled

by juvenile mortality dictated by abundance of predatory groundfish (Bailey, 2000). Hence,

increasing ocean temperatures are intensifying biotic effects on walleye pollock recruitment

by influencing pollock feeding conditions and exposure to predators, and these impacts are

expected to substantially reduce recruitment in the future, leading to steep declines in walleye

pollock production (Mueter et al., 2011).

1.4 Motivation and Implications for Analyses of Wild Groundfish Populations in the Northern

Pacific Ocean

Typical investigations about marine fish species have revolve around commercial fishing tech-

niques, improving catches, and mechanisms of reproduction that improve population numbers.

However, commercial fishing organizations are becoming increasingly aware of the role cli-

mate change plays on determination of suitable fishing quotas designed to maintain healthy

fish populations. It is now widely considered that marine fishes may not recover from popu-

lation collapses as quickly as previously thought (Hutchings, 2000), and that fishing amplifies

fluctuations in harvested populations that can predicate stock declines (Anderson et al., 2008).

There are four major types of response mechanisms by which climate can affect fish popula-

tions: physiological, behavioral, population-level, and ecosystem-level responses (Rijnsdorp

et al., 2009). Most of the studies described for the above eight target fishes focus on organism-

level physiological and behavioral responses, and the results of such studies are difficult to

transfer for understanding population and ecosystem-level responses. Commercial exploita-

tion further complicates the effects of climate change on these eight northern Pacific marine

species (Rijnsdorp et al., 2009). Interest in more flexible modeling techniques have attempted

to quantify temporal population-level changes in marine fishes, although duration of studies

and confounding environmental variables collected have limited conclusions from these ef-

forts. Further, considerations for trophic interactions and three-dimensional spatial movements
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have been difficult to incorporate using the historical modeling methods. More dynamic model-

ing structures are needed to describe and predict complicated marine systems in order to derive

useful inferences for management and scientific understanding of hard-to-observe adult dem-

ersal fishes. Connecting specific environmental changes to fluctuations in the populations of

these species will represent major progress in discerning the effect of climate change on marine

ecosystem health and food security.

1.5 Effect of environmental changes in the subarctic Pacific Ocean ecosystem

Under all scenarios of anthropogenic climate change, dramatic changes in the ecology of Arctic

and subarctic oceans have been detected (Orr et al., 2005; Overland et al., 2014; Walsh, 2008;

Wassman et al., 2011). Shifts in species composition and northward range expansions have

been observed with changing climate patterns and reduced sea ice persistence. Warming waters

and reduced sea ice affect timing and intensity of primary and secondary production as well

as impact pelagic-benthic nutrient cycling, the combination of which impact marine benthic

species and both marine and terrestrial higher trophic predators (Grebmeier, 2012).

Environmental properties have strong effects on specific characteristics of marine organ-

isms that can affect survival and reproductive success. The effect of temperature on marine

organisms is one of the most commonly studied environmental features. Temperature opti-

mizations and tolerances of marine organisms are theorized to enable optimal oxygen uptake by

species, maximizing individual growth and function. Changes in temperature outside the limit

of tolerances for marine animals have been shown to affect growth, swim speeds and activity,

reproduction, phenology, distribution, and recruitment. Verticial stratification and mixed-layer

depth are also affected by temperature as well as by salinity. Therefore temperature impacts

primary production via ocean stratification modifying light availability and mixture of nutri-

ents necessary for production (Drinkwater et al., 2010). Increase in the biomass of jellyfish, a

low-energy predator, and decline in benthic biomass in the Bering Sea have been attributed to

warming waters in the region (Grebmeier et al., 2006). With increasing atmospheric temper-

atures also comes rising sea levels as melting of glaciers increases the volume of freshwater

entering marine systems. Species relying on specific nearshore habitats may be in danger of
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losing these habitats due to both increasing sea levels and decreasing salinity from the influx

of glacial freshwater (Drinkwater et al., 2010). Long-term shifts in atmospheric temperature

and pressure cause alterations in climate systems, changing intensity and frequency of wind

and wave activity over large bodies of water (Harrison and Wallace, 2005; Hemer et al., 2013;

Weisse, 2010). Increased turbulence increases contact between plankton predators and prey,

while current patterns change nutrient fluxes across marine basins, affecting the dispersion of

fish eggs, larvae, and zooplankton as critical energy inputs for fish populations. (Drinkwater

et al., 2010)

Timing of sea ice retreat is another common environmental indicator studied for its effect

on subarctic and Arctic marine ecosystems. Early sea ice retreat is associated with late phy-

toplankton blooms and concomitant decreased zooplankton biomass (Drinkwater et al., 2010).

Extreme sea ice retreats in 2007–2009 have precipitated intrusion of Pacific zooplankton into

the Arctic waters, followed by appearances of walleye pollock and Pacific cod beyond their

typical ranges, indicating that these species’ distributions are expanding northward (Grebmeier

et al., 2010). Such range expansions often lead to changes in tropic interactions, including both

direct and indirect bottom-up forcing indicated in the North Pacific Ocean (Drinkwater et al.,

2010). Northward invasion of Pacific cod associated with sea ice changes and warming waters

reduced crab abundance in the Bering Sea (Orensanz et al., 2004); however Pacific cod spawn-

ing biomass has reduced in the Bering Sea in response to ocean warming and sea ice changes

(Overland and Stabeno, 2004). Walleye pollock, on the other hand, are experiencing northward

range shifts and increased biomass due to similar temperature and sea ice changes (Overland

and Stabeno, 2004; Wassman et al., 2011).

Large-scale climate indices are often favored when studying regime shifts of the Northern

Pacific marine system, but the underlying mechanisms for such effects on a population or com-

munity are difficult to identify. Furthermore, many common modeling methods are unable to

handle numerous nonlinear environmental properties and their myriad interactions with each

other along with accounting for differing responses of individual populations within a commu-

nity to the same variable. The aim of my dissertation research is to reconcile some of these

issues by investigating effects of specific environmental factors on individual fish populations
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as well as predator-prey systems while simultaneously accounting for spatial and temporal

changes in these populations brought about by regime shifts.

1.6 The Data

The major source of data for fish populations in the northern Pacific are derived from marine

fisheries catch surveys conducted or overseen by the National Oceanic and Atmospheric Ad-

ministration (NOAA), which are used to assess population health of major commercial fish

populations for management purposes. The Gulf of Alaska and Bering Sea are the focus of

commercial fisheries operations for important fish stocks such as salmon, cod, and flatfish.

The Marine Ecology and Stock Assessment (MESA) Program is the central focus of NOAA’s

Alaska Fisheries Science Center (AFSC) for marine stock assessment and habitat research in

the northern Pacific Ocean. The MESA Program includes annual longline surveys which have

been conducted for over three decades. This long-term dataset is particularly useful for con-

sidering climatic effects on fish populations, as the study is performed at over one hundred

locations along the shelf of the Alaskan coast surveyed at the same time each year. Seven

commercially important fishes are regularly sampled in the annual longline survey: sablefish,

Pacific cod, Pacific halibut, giant grenadier, shortspine thornyhead, rougheye rockfish, and

shortraker rockfish. For each species, the number of fish caught and mean weight are recorded

at each station, and catch per unit effort (CPUE), relative population number, and relative pop-

ulate weight have been calculated within each management area.

The Groundfish Assessment Program administered by the Resource Assessment and Con-

servation Engineering (RACE) Division of the AFSC is another important assessment survey

conducted regularly to understand groundfish distribution and abundance in marine waters off

the Alaskan coast. Bottom trawl surveys from 1982–2015 were obtained with catch weights

per area and catch numbers per area provided for all species caught in trawls. Location, surface

temperature, bottom temperature, and bottom depth were also reported for each haul. RACE

data were filtered for four species of interest: sablefish, Pacific cod, Pacific halibut, and walleye

pollock. Water temperatures recorded during surveys were useful measures of environmental

variation in locations in close proximity to sampled locations of the MESA longline survey.
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Due to the inconsistent sampling years of the RACE trawl surveys, records of fish catches

and weights were not useful to examine population dynamics between walleye pollock as an

important prey species and its groundfish predators.

More comprehensive climate data collection has only been prioritized in the last two

decades by the NOAA through satellite deployment and advanced buoy systems, however some

environmental data are available as far back as 1800 and have been digitized for public use

(NOAA, 2016). For my research, four sources of environmental data were of primary use in de-

termining the responses of the MESA fish species to climatic variables: ICOADS, COPEPOD,

WOD13, and WOA13. The ICOADS database is one of the most comprehensive collection of

marine surface data from a variety of measurement technologies dating back to 1800, including

ships, buoys, coastal stations, and drilling rigs (NOAA, 2016). Gridded summary data in 1˝ by

1˝ latitude-longitude boxes are available from 1960 onwards. COPEPOD is a global plankton

database containing quality-controlled plankton biomass and abundance data along with any

chemical and biological oceanographic variables included during collection (National Marine

Fisheries Service, NOAA, 2014). As discussed in section 1.2, plankton can be a significant

indicator of climate conditions affecting the oceans, and as primary producers they are a vi-

tal part of marine trophic systems. The WOD13 dataset contains quality-controlled historical

and recent physical, chemical and biological oceanographic data at both standard and observed

depth levels at collection sites across the world’s oceans (Boyer et al., 2013). WOA13 is a

set of long-term climatological means in 1˝ by 1˝ latitude-longitude grids at annual, seasonal,

and monthly periods. The dataset contains water temperature, salinity, alkalinity, chlorophyll,

DO, phosphate, silicate, and nitrate at standard depth levels from ocean’s surface to the sea

floor (Garcia et al., 2014a,b; Locarnini et al., 2013; Zweng et al., 2013). The WOA13 set uses

WOD13 data to build climatologies for the past six decades as a baseline for understanding

how the world’s oceans are changing over space and time. Large-scale climate patterns with

potential effects on the northern Pacific Ocean were considered, including PDO, multivariate

ENSO, and NPGO indices (Di Lorenzo, 2018; Mantua and JISAU, University of Washington,

2016; NOAA Earth Systems Research Lab, 2017).
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1.7 Modeling of Fisheries Data: The Present

Most of the previous studies discussed in section 1.3 used correlation tests, regression analysis,

analysis of variance, or generalized linear models (GLMs), mainly because the studies were

purely exploratory, relationships were already known from previous research, or the studies

were conducted in a controlled environment. In contrast, field studies are less predictable, and

relationships between catch and environmental variables more nuanced. Currently, time-series

analyses and generalized additive models (GAMs) are the most common statistical tools used

to analyze marine fish catch datasets for responses to environmental factors.

The generalized additive model is an extension of the GLM that uses estimated nonlinear

functions instead of real numbers as coefficients, providing a more flexible method for describ-

ing nonlinear relationships between the response and predictors (Hastie and Tibshirani, 1990).

GAMs therefore provide a method for modeling ecological systems where the relationships

are unknown or cannot be assumed to be linear. This is particularly true for the effects of cli-

mate change on marine systems, as the systems are usually too large or complex to be tested

experimentally or in controlled laboratory settings. Swartzman et al. (1992) was one of the

first to apply GAMs to fish survey data not long after Hastie and Tibshirani (1990) had pub-

lished the method. Since then, fisheries research has relied heavily on GAMs to describe spatial

distributions of marine populations ranging from single species of shrimp and squid to large as-

semblages of fauna (Augustin et al., 2013; Denis et al., 2002; Hulson et al., 2013; Katsanevakis

et al., 2009; Sohn et al., 2016; Sousa et al., 2006). Recently, research has focused more heavily

on environmental effects on marine populations (Mourato et al., 2014; Ortega-Garcı́a et al.,

2015; Phillips et al., 2014; Stige et al., 2014). A few unique applications of GAMs have made

use of developments in statistics to address specific problems. Arcuti et al. (2013) modeled

shrimp catch using the Tweedie distribution, which is more suitable for zero-inflated marine

catch data than other distributions. The Tweedie distribution has since become more common

for modeling catch data in fisheries surveys. Townhill et al. (2015) used historical catch data

of Atlantic cod to explain present and future population changes. Since many new statisti-

cal techniques and computational efficiencies were unavailable when management and survey
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implementation began, a renewed effort to digitize logbooks and clean historical data has pro-

vided scientists with long-term data required to determine patterns of abundance and responses

to long-term climate changes in fisheries stocks.

The GAM estimation algorithm has been improved several times, with the most recent

improvement based on penalized least squares (Wood, 2006). There are still other options

for improving estimation of these models, including optimization for zero-inflated data (Barry

and Welsh, 2002) common in marine surveys and M -estimators designed to make estimation

more robust (Alimadad and Salibian-Barrera, 2011; Croux et al., 2012; Wong et al., 2014).

Correia and Abebe (2017) proposed a robust GAM estimation method using an R-estimator,

and applied this method to describe sablefish and Pacific cod catch rates in relation to space,

time, and sea surface temperature (SST). A more thorough discussion of GAM estimation and

robust extensions can be found in Correia and Abebe (2017), and a summary of their results

can be found in section 1.7.1.

A major problem with using GAMs in modeling environmental data is that models be-

come overly complex for data with large numbers of covariates. Some environmental variables

are also known to be related to location (such as temperature decreasing as distance from the

equator increases), which requires higher-dimensional smoothers as illustrated in Arcuti et al.

(2013), Augustin et al. (2013), and Stige et al. (2014). These factors thus complicate fitting of

GAMs, reducing model precision, affecting model specification, and necessitating a different

approach to avoid the “curse of dimensionality”.

1.7.1 Results from Prior Research

Two papers (Correia and Abebe, 2017; Sun et al., 2019) explore MESA datasets using two mod-

eling techniques: GAMs and single-index varying coefficient models. Environmental data used

for modeling groundfish catches in these papers included sea surface temperature (SST), wind

speed and direction, wave height, wave period, and sea level pressure. These oceanographic

variables are known to change water movements and affect primary production (Bakun, 1999;

Brodeur et al., 1999), which are likely to impact recruitment of groundfish (Schirripa and Col-

bert, 2006) and thus population size and structure.
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Correia and Abebe (2017) explored the spatio-temporal and environmental effects of SST

on sablefish and Pacific cod in the Gulf of Alaska and Aleutian Islands from 1979 to 2013 using

MESA longline survey data. To account for spatio-temporal variation, SST was modeled using

a three-dimensional smoother. Sablefish were primarily caught in the Gulf of Alaska, though

heavier sablefish were found both in the central gulf and Bering Sea. Pacific cod were instead

primarily caught in the Bering Sea and waters surrounding the Aleutian Islands, with heavier

fish in the Bering Sea and southeast Alaska near the Dixon Entrance. It was also found that

modeling catch over space and time was more effective in parsing out patterns of catch that

could be separated into two main areas: catch patterns common to the Gulf of Alaska and those

in the Bering Sea and Aleutian Islands region.

Sun et al. (2019) pioneered understanding how groundfish species interact in their ecosys-

tem while also considering oceanographic influences such as wind, wave, pressure, and tem-

perature on these fish. The three fish considered in Sun et al. (2019) (Pacific cod, Pacific

halibut, and sablefish) are hypothesized to have interconnecting trophic relationships based on

inspections of stomach contents (Best and St-Pierre, 1986; Gaichas et al., 2010; Moukhametov

et al., 2008). No known trophic relationship models have been established for these species,

therefore the single-index varying coefficient model seemed appropriate to incorporate envi-

ronmental variables with fish catch rates without assuming linear relationships. It was shown

that Pacific cod catches had a negative effect on Pacific halibut catch when below a threshold

of environmental variables but had an increasing effect when above the threshold, while sable-

fish had a positive relationship on the catch of Pacific halibut when between lower and upper

thresholds. The estimated environmental matrix differs for Pacific halibut, where catches were

found to be decreasing independent of other fish effects. While the findings in Sun et al. (2019)

are not able to elucidate which environmental variables affect the differing species, it is clear

that species at similar trophic levels and with analogous habitats can still respond in opposing

ways to the same environmental variables.
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1.8 Modeling of Fisheries Data: The Future

One criticism of the GLMs and GAMs is their capacity as predictive models are sometimes

limited, as they natively incorporate biotic interactions and stochastic effects that may vary

regionally (Guisan et al., 2002). The GAMs in Correia and Abebe (2017) were compared for

their predictive capability and showed improved results when using the proposed iteratively

reweighted rank quasi-likelihood (IRRQL) estimation over the least squares (LS) based GAM

estimation. However, fisheries researchers desire to improve predictions of population and

catch estimates for future years. A preliminary extension of the GAM research will be to use

t ´ 1 previous years to build a spatial GAM for catch in year t for which data will already be

available but not used to build the model. The predictive capacity of the model for year t can be

compared to actual data for year t, then the model refit including year t data to predict year t`1.

The process will continue until the last year of available MESA data is reached. Approaches

related to this concept are surveyed in Arlot and Celisse (2010). This cross-validation procedure

will enhance fisheries management models and provide more accurate forecasting of managed

populations for informed regional policy-making.

The GAM formulations analyzed in Correia and Abebe (2017) only considered the effect

of SST on groundfish catch. However, there are many environmental predictors believed to af-

fect marine fish, as discussed in section 1.1.As there are several climatic and oceanic predictors

that should be considered when modeling groundfish catch, there is a need for more complex

models better equipped to handle dimensional expansions while also providing robust predic-

tions. One solution for dimension reduction is the single-index model (Hardle et al., 1993;

Ichimura, 1993; Stoker, 1986) given as

EpY q “ gpθTXq

where Y is the response, X is the vector of predictor variables, g is an unknown functional

coefficient, and θ is the unknown index vector. In this model, it is feasible to model the catch

of sablefish (Y ) in response to multiple environmental predictors (X), such as SST, salinity,
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DO, chlorophyll a, nitrate, silicate, etc. The focus is on estimating g and θ, which is typ-

ically achieved through a least-squares approach based on local linear smoothing estimation

that simultaneously estimates the functional coefficient and the index vector (Xia et al., 2002).

Rank-based estimation for the single-index model has been more recently developed by Feng

et al. (2012) using a Wilcoxon rank-based objective function, which is an R-estimator. Advan-

tages ofR-estimators for robust model estimation and prediction specifically for environmental

data are examined in Correia and Abebe (2017). A full exploration of the nonparametric re-

lationships of multiple environmental variables on six of the groundfish species from MESA

longline surveys using rank-estimated GAMs are discussed in Chapter 2. Additionally, Chap-

ter 3 presents a method incorporating the ability of GAMs to accommodate spatiotemporal data

into a forecasting procedure and presents an application of this method to MESA longline data.

An important factor that should be considered in modeling large-scale mobile populations

is location (Austin, 2002; Fisher et al., 2014; Guisan et al., 2002). For example, Suda et al.

(2015) reported temperature responses in Pacific cod catch varying considerably among geo-

graphically distinct regions of the waters surrounding Japan, indicating that a single population

of fish may have contrasting responses to environmental factors based on location. In GAMs,

modeling these location-varying responses is achieved using higher-dimensional smoothers

(Correia and Abebe, 2017; Wood, 2006; Wood and Augustin, 2002). As mentioned previously,

inclusion of more covariates using higher-dimensional smoothers complicates GAM fitting.

However, single-index models are unable to incorporate spatial smoothers for the predictors.

However, there are model alternatives that allow for many environmental effects to be modeled

over space and time. For example, the modeling of SST in the GAM formulation of Correia

and Abebe (2017) as

Ypu,v,tq “ β0 ` z1pu, v, tq ` z2pu, v, tq ¨ SSTpu,v,tq ` εpu,v,tq
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with pu, v, tq being a matrix of longitude, latitude, and time, respectively, can be considered a

varying-coefficient model of the form

gpEpY qq “ β0 ` β1pR1q ` β2pR1qx1,

where β0, β1 are functional coefficients; R1 is the matrix of longitude, latitude, and time; and x1

is SST. As the relationships between environmental variables and groundfish catch are unlikely

to be linear, a more flexible model is required for these analyses. The previous model can

therefore be translated into a single-index varying coefficient model (SIVCM) (Xia and Li,

1999):

gpEpY qq “ f0pθ
TZq ` f1pθ

TZqx1 (1.1)

where Z is a matrix of latitude, longitude, and time with its own coefficient θT ; x1 is SST.

Estimation of θ and f is least-squared-based (Xue and Pang, 2013; Xue and Wang, 2012),

however rank estimation for SIVCMs has been presented in Sun et al. (2019) with an appli-

cation on the MESA data focused on trophic relationships between sablefish, Pacific cod, and

Pacific halibut. Biological results of Sun et al. (2019) are discussed in section 1.7.1. As men-

tioned in sections 1.1 and 1.3, changes in trophic interactions and species compositions, such

as a decrease in foragers with simultaneous increase in predators, can signal strong regime

shifts in ocean ecosystems (Anderson and Piatt, 1999). Models such as the application in

Sun et al. (2019) allow for such examination of trophic relationships with potential for variable

selection of environmental variables most contributive to the systemic shift. My dissertation re-

search identifies these environmental variables and determine their contributions to variability

in catches of groundfish species, while also considering the interfacing relationships of fishes

with ecological interactions, such as the subgroup studied in Sun et al. (2019).

Motivated by the discussion above, one may further consider a no-intercept model of (1.1)

with only one functional coefficient

gpEpY qq “ f1pθ
TZqx
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but a whole suite of environmental variables in the vector x “ px1, x2, . . . , xqq measured over

space and time via the Z matrix. This idea has motivated the concept of a single-index model

with lasso-type selection on the environmental variables in vector x across a latitude-longitude-

year matrix to identify the most significant elements affecting catch rates of the seven ground-

fish species from a suite of oceanic and environmental factors. The application to the MESA

data is presented in Chapter 4.

The models discussed previously will substantially contribute to the understanding of

groundfish ecology in the northern Pacific, but there is an inherent connection among all species

in the system that share abiotic driving factors such as temperature, upwelling, and chemical

composition which can lead to ephemeral correlations between species, known in population

ecology as the Moran effect (Sugihara et al., 2012). The Moran effect is a recently popularized

concept (Engen and Sæther, 2005; Koenig, 2002; Massie et al., 2015; Ranta et al., 1997) that

explains the synchronization of separated populations by shared correlations in environmental

variation (Moran, 1953). Simple correlation studies often find a relationship between these pop-

ulations and can prove difficult to identify for some forms of causation (Sugihara et al., 2012).

A recently developed technique called ‘convergent cross mapping’ (CCM) extracts causes from

visible effects in complex systems (Sugihara et al., 2012). The technique avoids the difficulty

of “correlation does not imply causation” common to basic statistical methods by invoking

causal approaches to dynamic systems. While the issue of causality has been addressed previ-

ously (Granger, 1969), a key requirement of separability for these methods is not possible in

nonlinear dynamic systems common in nature. CCM separates out the effects of shared envi-

ronmental variables and can correctly identify whether those variables are causally affecting a

species without misidentifying couplings between unrelated species. Unlike Granger causality,

which can only determine if variable X causes Y by measuring if the complete removal of

variable X from the universe of all potential causal factors decreases the predictability of Y ,

CCM claims to be able to determine if X is causally linked to Y even if information about X

relevant to predicting Y cannot be completely removed from the system by eliminating X , as

is the case in deterministic dynamic systems. Therefore, CCM states that variable X causes Y

(or similarly, X drives Y ) if information about past states of X can be recovered from the time
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series of Y , but not vice versa (Sugihara et al., 2012). This version of causality is achieved

in ecological time series data by measuring the ability of the historical record of Y to reliably

estimate states of X with increasing predictability as the time-series length increases, which

occurs only if Y is causally influenced by X . CCM can also determine the strength of the

causal relationship, and by the transitive nature of causality, indirect causal links can also be

established in large interaction networks such as marine systems. This strength of CCM can

also be used to determine whether a predator-prey system is more heavily top-down (predator)

controlled or bottom-up (prey) controlled, as illustrated in the application by Sugihara et al.

(2012) on the classical Didinium-Paramecium system.

An interesting aspect of CCM is the incorporation of multiple species into the model

to determine causal effects. Sugihara et al. (2012) successfully applied CCM to a laboratory

predator-prey system and sardine-anchovy-SST dataset modeling the California current ecosys-

tem. They also showed the method was effective in a simulated five-species model and could

correctly distinguish between correlation and causality in a system with two non-interacting

populations sharing a common environmental forcing variable (e.g. SST). Therefore, not only

would CCM be suitable for determining if an environmental variable X causes changes in

species Y , but it would also be able to determine causal relationships among species and

correctly identify spurious correlations previously believed to be causal for specific popula-

tions. The northern Pacific groundfish system and related environmental variables determined

by GAMs, SIMs, and SIVCMs will test the flexibility and accuracy of CCM by attempting

to incorporate seven fish species and multiple environmental factors into a dynamical systems

model while accurately determining causal effects within the system. Recent extensions to

CCM for short time series highly replicated in space (Clark et al., 2015) and distinguishing be-

tween synchrony from strong unidirectional forcing and bidirectional cross mapping (Ye et al.,

2015) will be particularly useful in tackling the unique nature of the MESA data and associ-

ated climatic variables. The application of spatial CCM to MESA groundfish survey data is

provided in Chapter 5.
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Chapter 2

Effects of physical, chemical, and biological covariates affecting adult groundfish catches and
mean weights in the Gulf of Alaska
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Abstract

The North Pacific Ocean has undergone several regime shifts in which the environment

and community structure have changed substantially. It is also home to many commercially

important fisheries for the United States. I investigated the influence of multiple relevant envi-

ronmental variables on the catches per unit effort (CPUE) and mean weights of six groundfish

species in the Gulf of Alaska from 1979–2013 using generalized additive models. Compre-

hensive analyses of effects of chemical and physical ocean attributes on fishes in the wild has

not been performed on such a scale before. Common significant environmental variables for

all six groundfish CPUEs were sea surface temperature and average wave period. Bottom tem-

perature, wind speed, and nutrients phosphate, silicate and nitrate in deeper waters (600-900m)

were significant contributors to CPUE for most study species. Deepwater (900m) salinity was a

common significant variable to all rockfish CPUEs. Knowing the specific relationship of these

variables to commercially and ecologically important fish species outside of laboratory condi-

tions is crucial to understanding how these fish are responding to current changes in the marine

system and in planning effective management strategies for future environmental regime shifts.

Keywords and phrases: additive models, sablefish, rockfish, Pacific cod, Pacific halibut, envi-

ronmental effects
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2.1 Introduction

The Northern Pacific Ocean is a main focus in conversations about climate change effects on

marine systems, but limited research has been done on the effects of changes in physical and

chemical oceanic factors on major fish species in the wild. Laboratory studies have considered

the effects of extreme temperature changes on some species, but effects of key variables such as

salinity, plankton concentrations, and dissolved oxygen in natural landscapes are much less well

known, particularly in the Pacific Ocean (Pörtner et al., 2001; Rouyer et al., 2014). Typically

temperature is the simplest variable to measure over large regions, and because of its effect on

individuals movement and behavior, temperature is most often considered the primary causal

agent of change in marine fish populations (Baumann et al., 2006; Monllor-Hurtado et al.,

2017; Suda et al., 2015). Effects of large-scale climate patterns are instead used as proxies

for variations in individual environmental conditions, but it is difficult to disentangle which

environmental variables are primarily responsible for changes in marine populations (Stige

et al., 2006).

The North Pacific marine system, like most temperate and polar regional ocean systems,

exhibits seasonal fluctuations in nutrients and plankton concentrations. Wind-induced up-

wellings in late spring and summer lead to increased accumulation of phytoplankton biomass,

peaking in September. Shelf and slope concentrations of chlorophyll exhibit marked season-

ality, whereas deepwater concentrations vary much less (Sackmann et al., 2004). Upper-water

column concentrations of nitrate, silicate, and phosphate are at their maximums in March, be-

fore being utilized by phytoplankton, but after strong winter mixing has brought these nutrients

up from the deep. Annual minimums for these nutrients in the surface waters usually occur in

August and September, after they have been depleted by summer plankton growth and blooms

(Childers et al., 2005; Wong et al., 2002a). Silicate is particularly important in the North Pa-

cific, as the region is rich in diatoms that require higher than average silicate levels to grow

(Wong and Matear, 1999; Wong et al., 2002a). Silicate reaches maximal levels in March and

April and decreases over the summer from diatom utilization in the Alaskan Gyre, reaching
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minimum levels in August (Harrison et al., 2004; Wong and Matear, 1999). Dissolved oxy-

gen (DO) concentrations on the surface waters of the North Pacific also maximize in spring

after winter mixing events and photosynthetic activity of spring phytoplankton growth. DO

concentrations decrease on the surface over the summer from respiration by algae and pelagic

organisms, reaching a minimum in September (Boyer et al., 1999; Emerson, 1987). Salinity

levels also peak in the early spring (March and April) in the northeastern North Pacific and

Alaskan Gyre. Late spring and summer glacial melts push freshwater into nearshore ocean wa-

ters, decreasing salinity to minimum levels in September and October (Bingham et al., 2010).

Minimal pH is observed from January to March for waters near Alaska, as acidic deep waters

are brought to the surface by upwellings, whereas pH peaks in August due to photosynthetic

utilization of CO2 during the spring and summer (Fietzke et al., 2015; Takahashi et al., 2014).

Deeper waters (up to 275 m) exhibit contrasting maximal and minimal cycles from the

surface-level waters. Nitrate is at a maximum in August as plankton die and break down,

whereas silicate and phosphate peak in April. Low-pressure winter storms with high wind

and wave activity replenish surface water nitrate levels from decomposing material in deep

waters (Wong et al., 2002a). Nitrate, silicate, and phosphate all show minimums around Febru-

ary in deeper waters (Childers et al., 2005). Eddies are also important transport systems for

chlorophyll and phytoplankton distribution in surface waters and carry excess nutrients from

decomposition upward from deep waters, where they are subject to wind-forced mixing that

enriches plankton communities (Crawford et al., 2007). Highest concentrations of chlorophyll

have been observed in summer for the Aleutian Islands (Childers et al., 2005; Fietzke et al.,

2015). DO in and below the thermocline peaks in August; however maximum DO concentra-

tions are observed in the mixed layer in May and minimum concentrations in August (Emerson,

1987).

The aim of this study is to determine the shape of relationships of seasonal variations

in ocean nutrients and climatic activity on groundfish species in the Northern Pacific. I hy-

pothesized that effects of well-studied attributes such as water and temperature on groundfish

will follow similar trends in the wild as are seen in experimental and laboratory studies, and

environmental variables will exhibit nonlinear trends on groundfish catches and weights.
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2.2 Methods

I considered the effects of environmental covariates on six focal groundfish species in the

Northern Pacific Ocean: sablefish (Anoplopoma fimbria), Pacific cod (Gadus macrocephalus),

Pacific halibut (Hippoglossus stenolepis), shortspine thornyhead (Sebastolobus alascanus), short-

raker rockfish (Sebastes borealis), and rougheye rockfish (Sebastes aleutianus). I obtained

catch and weight data for these groundfish species for 1979-2013 from the NOAA Marine

Ecology Assessment (MESA) program (Alaska Fisheries Science Center, 2019a). Defined lo-

cations (hereafter stations) were sampled annually during the summer months using longlines,

and groundfish catch per unit effort (CPUE) and mean weights per survey in kilograms were

recorded. Only mature individuals were included in the survey data. Field collection methods

and calculation of summary statistics are detailed in Sigler and Lunsford (2009). During the

years of 1988-1994, both the US and Japan conducted longline surveys in the Bering Sea and

waters of the Aleutian Islands, resulting in repeated measures of groundfish CPUE and mean

weights for stations in those regions. For stations with repeated values for a given year, the

mean of the two survey values was taken.

Water temperatures at the bottom of the water column (hereafter bottom temperature) for

locations in close proximity to the stations where groundfish were sampled were obtained from

the NOAA Resource Assessment and Conservation Engineering (RACE) Division’s groundfish

assessment program (Alaska Fisheries Science Center, 2019b; von Szalay and Raring, 2016).

Nutrients limited to nitrate, phosphate, and silicate at depths of 75 m and 900 m, along with

chemical and biological tracers including alkalinity, chlorophyll, DO, and salinity for depths

of 75, 400, and 900 m were obtained from the NOAA’s 2013 World Oceans Database (WOD)

(Boyer et al., 2013). A depth of 75 m was chosen to best represent the mixed layer depth

(MLD), as MLD can range from 25 to 100 m throughout the year along the coast of Alaska

(Ohno et al., 2009). Most effort (i.e. percent of longlines deployed at the station at a given

depth range) across all areas of the MESA longline survey was concentrated at the 400 to 600

m depths (Echave et al., 2013), thus chemical and biological variables likely to affect adult

groundfish of spawning age were obtained at 400 m depths. Finally, 900 m depths were chosen
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to represent bottom ocean nutrient levels, as 75% of station depths reached 1000 m (Echave

et al., 2013).

Other environmental variables of interest were obtained from the National Data Buoy

Center, a collection of marine environment observations from buoy, ship, and land stations

(National Data Buoy Center, 2018a). Included variables were air temperature (ATMP) in de-

grees Celsius, sea level pressure (PRES) in hectopascals (hPa), wind speed in m/s (WSPD),

surface water temperature in degrees Celcius (WTMP), and significant wave height in meters

(WVHT). Formal definitions and details of these summary variables are given in National Data

Buoy Center (2018b). Concentrations of zooplankton biomass in number per cubic meter for

September 1979 through August 2007 were obtained from all available samples across the Gulf

of Alaska and the Bering Sea maintained in the NOAA’s global plankton database known as

COPEPOD (National Marine Fisheries Service, NOAA, 2014).

Since all environmental factors are measured on differing temporal scales and spatial

points to each other and to the fish data, interpolation of monthly averages for environmen-

tal variables to the fish station locations for years 1979-2013 was performed via spatiotemporal

inverse distance weighting (Li et al., 2014a) implemented in R using the package geosptdb

(Melo and Melo, 2015). In order to reduce issues with multicollinearity, backward variable

elimination of explanatory environmental variables using computed variance inflation factors

(VIF) was performed. The VIF for explanatory variable i was calculated as 1{p1 ´ R2
i q where

R2
i was the correlation coefficient of the linear model with variable i regressed against all other

explanatory variables. VIFs for all variables were computed, and the variable with largest VIF

that exceeded a value of 5 was removed (Neter et al., 1996; O’Brien, 2007a). The process was

repeated after each removed variable, until no variables had a VIF ă 5.

A seasonal amplitude was used to summarize the monthly means of the selected explana-

tory variables into meaningful yearly measures (Takahashi et al., 2014). For chemical and

nutrient tracers, seasonal amplitude was calculated as the August-September-October mean

value minus the March-April-May mean value. For physical variables, the seasonal amplitude

was calculated as the June-July-August mean minus the December-January-February mean.

Alternative calculations for physical versus chemical variables was optimized to capture the
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difference in maximal and minimal seasons of each variable type. The sign and magnitude

of seasonal amplitude indicated the phase of a given variable from winter to summer, where

a positive value indicated that the environmental variable increased from winter to summer,

while a negative value indicated that the environmental variable was maximal in winter and de-

creased throughout the spring and summer. Values close to zero indicated little change between

summer and winter monthly means for that environmental factor.

Since the fish targeted in the MESA survey are adults, environmental variables were lagged

based on the sexual maturity of the groundfish. Sablefish and Pacific cod female maturity is

reached around 5 years old (Mason et al., 1983; Stark, 2007). Average age of Pacific halibut

females reaching sexual maturity is 12 years whereas maturity for males is 8 years (Clark et al.,

1999). Rockfish sexual maturity is typically attained from 3-7 years of age (Echeverria, 1987).

Therefore, lags of 5 years were used for environmental variables in models with sablefish,

rockfish, or Pacific cod CPUEs and weights as responses. Lags of 10 years were used for

environmental variables in models with responses of Pacific halibut CPUE and weight.

A generalized additive model (GAM) of the form

Epyq “ f0 `
p
ÿ

j“1

fjpxjq ` z1pu, v, tq ` ε ,

was fit for each of the six groundfish, where y is the CPUE or mean weight of a species for

a given year and location, xj are the seasonal amplitudes of environmental factors, f0 is the

intercept function, fj are the smooths relating the environmental variables to the response, z1 is

a three-dimensional tensor smooth, u, v is the longitude-latitude pair at which each fish station

is located, and t is the year for which measures were recorded. Since the distribution of some

species’ CPUEs and mean weights were skewed or heavy-tailed, rank estimation of GAMs as

described in Correia and Abebe (2017) was employed. Significant explanatory variables were

plotted to visualize their effects on the specified responses. All analyses were performed in the

R open-source software environment (R Core Team, 2017).
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2.3 Results

All physical and chemical marine variables remained after backwards selection using the VIF ă

5 criterion. The following variables were therefore used in the models and abbreviated as fol-

lows throughout the text: ATMP; PRES; WSPD; WTMP; WVHT; bottom temperature; al-

kalinity at 75, 400, and 900 m (Alk 75m, Alk 400m, Alk 900m, respectively); chlorophyll

at 75, 400, and 900 m (Chl 75m, Chl 400m, Chl 900m, respectively); nitrate at 75 and 900

m (NO3 75m, NO3 900m, respectively); DO at 75, 400, and 900 m (Oxy 75m, Oxy 400m,

Oxy 900m, respectively); phosphate at 75 and 900 m (Phos 75m, Phos 900m, respectively);

salinity at 75, 400, and 900 m (Sal 75m, Sal 400m, Sal 900m, respectively); and silicate at 75

and 900 m (Sil 75m, sil 900m, respectively).

All models for fish CPUEs and mean weights had significant spatiotemporal terms, in-

dicating that groundfish CPUEs and mean weights varied significantly over space and time

(Tables A.1 to A.12). Sablefish catches increased in the western Gulf of Alaska from the mid

1980s (Figure A.7), whereas Pacific cod catch decreased during the 1980s and early 1990s in

the Bering Sea (Figure A.8). Catches of Pacific halibut and the three rockfish species increased

throughout the Gulf of Alaska and Bering Sea over the 35 year period of the study (Figures A.10

to A.12). Sablefish and Pacific cod weights became more spatially homogenous and increased

over the period of record, whereas weights of Pacific halibut became more spatially heteroge-

neous over time (Figures A.13 to A.15). Pacific halibut CPUE and weights of all three rockfish

species remained relatively consistent over space and throughout the study period (Figures A.9

and A.16 to A.18).

I first examined the environmental predictors of the GAMs with CPUEs of the six ground-

fish as responses. The GAM for sablefish CPUE had a good fit (adjusted R2 “ 0.928) and

had 17 significant environmental variables (Table A.1). Decreasing sablefish CPUE was re-

lated to positive values of WVHT, bottom temperature, Sal 400m, and Sil 75m, with Sal 400m

and Sil 75m exhibiting approximately linear relationships to sablefish CPUE. Positive values

of ATMP, WSPD, WTMP, NO3 75m, NO3 900m, and Phos 900m are related to increasing

sablefish CPUE, whereas the relationships of PRES, plankton, Chl 75m, Chl 400m, Chl 900m,
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Oxy 75m, and Sil 900m to sablefish CPUE exhibited fluctuations with no directional trend

(Figure 2.1). Fourteen variables were significant to Pacific cod CPUE and the model fit the

data well (adjusted R2 “ 0.914, Table A.2). Pacific cod CPUE increased with positive values

of ATMP, PRES, WTMP, plankton, Oxy 75m, Oxy 900m, Phos 75m, and Sil 75m, whereas

positive values of Phos 900m were associated with decreasing CPUE of Pacific cod. Positive

values of WSPD, WVHT, Alk 900m, Sal 75m, and Sil 900m did not contribute significant

overall changes to Pacific cod CPUE, however nonlinear fluctuations in their effects on cod

CPUE were apparent. The relationships of PRES, plankton, and Phos 900m to Pacific cod

CPUE were approximately linear (Figure 2.2). The GAM for Pacific halibut CPUE had 17 sig-

nificant variables and a good fit to the data (adjusted R2 “ 0.807, Table A.3). Positive values

of WTMP, WVHT, Alk 75m, Chl 400m, Chl 900m, NO3 75m, and Oxy 75m were associ-

ated with increasing values of Pacific halibut CPUE, whereas positive values of PRES, bottom

temperature, Alk 900m, Oxy 400m, Oxy 900m, and Sal 400m were related to decreasing val-

ues of halibut CPUE. Bottom temperature, Alk 75m, Chl 75m, Oxy 900m, and Sal 400m had

approximately linear relationships with Pacific halibut CPUE (Figure 2.3).

GAMs for the CPUEs of the three rockfish species had some variables in common, how-

ever few shared the same relationships to rockfish CPUEs over all three species’ models. The

GAM for shortspine thornyhead CPUE was a good fit to the data (adjustedR2 “ 0.902) and had

16 significant environmental factors (Table A.4). Positive values of ATMP, WVHT, plankton,

Alk 75m, NO3 75m, and Sal 900m were related to decreasing values of shortspine thornyhead

CPUE, whereas increasing CPUE for shortspine thornyhead was associated with positive val-

ues of PRES, WSPD, WTMP, Alk 900m, Chl 400m, Oxy 75m, Oxy 400m, and Oxy 900m

(Figure 2.4). The relationships of Alk 75m, Alk 900m, and Oxy 75m to shortspine thornyhead

CPUE were approximately linear, whereas Chl 75m and bottom temperature showed nonlinear

patterns that had negative impacts on shortspine thornyhead CPUE when their values were neg-

ative. Fifteen variables were significantly related to rougheye rockfish CPUE, and the GAM

was a good fit to the data (adjusted R2 “ 0.777, Table A.5). Generally decreasing values

of rougheye rockfish CPUE were related to positive values of PRES, WTMP, bottom tem-

perature, Oxy 75m, and Sil 900m, whereas increasing rougheye rockfish CPUE was related to
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Figure 2.1: Significant smooths in rank GAM for sablefish CPUE.

positive values of NO3 900m and Oxy 400m. Positive values of ATMP, WSPD, WVHT, plank-

ton, Alk 900m, Chl 400m, Chl 900m and Sal 400m did not heavily impact rougheye rockfish

CPUE, however negative values had an impact on rougheye rockfish CPUE and nonlinear rela-

tionships were apparent. Negative, approximately linear relationships between rougheye rock-

fish CPUE and bottom temperature and NO3 900m were observed (Figure 2.5). The GAM for

shortraker rockfish CPUE fit the data well (adjusted R2 “ 0.838) and 14 variables were found

to be significant in the model (Table A.5). Positive values of WTMP, plankton, Alk 900m, and

Chl 75m were associated with approximately increasing values of shortraker rockfish CPUE,
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Figure 2.2: Significant smooths in rank GAM for Pacific cod CPUE.

whereas positive values of PRES, WSPD, bottom temperature, Alk 75m, Sal 75m, Sal 400m,

Sil 75m, and Sil 900m were related to decreases in shortraker rockfish CPUE (Figure 2.6). Bot-

tom temperature exhibited an approximately linear relationship to shortraker rockfish CPUE,

whereas negative values of WHVT and Chl 400m resulted in nonlinear decreased in shortraker

rockfish CPUE.

I then looked at the environmental predictors of the GAMs with mean weights of the six

groundfish as responses. The GAM for sablefish mean weights moderately fit the data (adjusted

R2 “ 0.604) and four environmental variables were significant to sablefish weight (Table A.7).

Decreasing values of sablefish weight were associated with positive values of ATMP, WTMP

and bottom temperature, whereas overall increasing sablefish weight was associated with neg-

ative values of WSPD. Nine environmental variables were significantly related to Pacific cod
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Figure 2.3: Significant smooths in rank GAM for Pacific halibut CPUE.

weight, and the GAM fit the data moderately well (adjusted R2 “ 0.460, Table A.8). Nega-

tive, approximately linear relationships between WVHT, NO3 75m, Sal 75m, and Sil 75m and

weights of Pacific cod were observed, while there was a positive, approximately linear relation-

ship between Alk 400m and Pacific cod weight. Large positive values of PRES (ą 10) were

associated with increasing weights of Pacific cod, whereas negative values of bottom tempera-

ture and positive values of Sil 900m were associated with decreasing Pacific cod weights (Fig-

ure A.2). The model for Pacific halibut weight moderately fit the data (adjusted R2 “ 0.468),

and eight variables were significant to Pacific halibut weight (Table A.9). Positive values of
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Figure 2.4: Significant smooths in rank GAM for shortspine thornyhead CPUE.

Chl 75m were related to an increase in halibut weight, whereas positive values of Sal 900m

were associated with halibut weight decrease. As plankton and Alk 900m values became more

negative, halibut weight increased. WSPD and Phos 900m had positive, approximately linear

relationships to halibut weight, whereas Alk 75m and Oxy 400m had negative linear relation-

ships to halibut weight (Figure A.3).

The models for rockfish weights shared DO as common significant variables. Three envi-

ronmental factors were significantly related to shortspine thornyhead weights, and the model fit

the data well (adjusted R2 “ 0.844, Table A.10). Positive values of Oxy 75m, Oxy 400m, and
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Figure 2.5: Significant smooths in rank GAM for rougheye rockfish CPUE.

Oxy 900m were associated with decreasing shortspine thornyhead weights, however the rela-

tionship for positive values of Oxy 400m was parabolic (Figure A.4). The GAM for rougheye

rockfish weights fit the data moderately (adjusted R2 “ 0.638). Five variables were significant

to rougheye rockfish weights, of which two were approximately linear, WSPD and NO3 900m

(Table A.11). Positive values of WSPD and NO3 900m were associated with decreasing rough-

eye rockfish weights, while positive values of Chl 75m and Chl 400m and negative values of

Oxy 75m were related to increasing weights (Figure A.5). The GAM for shortraker rock-

fish weights moderately fit the data (adjusted R2 “ 0.604). Five variables were significant to

shortraker rockfish weights, with positive values of ATMP, Alk 75m, and Sal 400m increas-

ing weight and positive values of Oxy 75m and Sal 75m associated with decreasing weights

(Table A.12, Figure A.6).
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Figure 2.6: Significant smooths in rank GAM for shortraker rockfish CPUE.

2.4 Discussion

Nonlinear dynamics in marine ecosystems both between species and of external environmental

effects on marine populations are well known, and more recent studies have attempted to ac-

count for such nonlinearity (Frainer et al., 2017; Hewitt et al., 2016; Liu et al., 2012). It is clear

from the smooths of GAMs used in these analyses that many of the environmental variables

collected in the Gulf of Alaska and Bering Sea are also likely to exhibit nonlinear relationships

to groundfish catches and weights. Nonlinear relationships between water temperature and

weight, prey consumption, and time to reach 50% maturity have been observed for sablefish

and rockfish species in the California Current (Harvey, 2009). In the Gulf of Alaska, wind, air

temperature, and predation were also observed to have nonparametric effects on the survival of

pollock, an important prey species for the sablefish, Pacific cod, and Pacific halibut considered

in this study (Ciannelli et al., 2004). It is therefore unsurprising that nonlinear environmental

effects on groundfish catches and weights were evident in these analyses, and it is likely that

these are manifested both directly and indirectly.
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Before discussing more specific inference regarding some of the environmental and phys-

ical variables in the GAMs, I will first focus on some of the spatial and temporal trends of the

seasonal amplitudes of these variables in the North Pacific region. Negative seasonal ampli-

tudes indicated that summer or fall means were lower than winter or spring means, whereas

positive seasonal amplitudes indicated higher means in the latter part than the early part of the

year. The magnitude of these seasonal amplitudes indicated the amount by which the fall and

spring means (or in the case of physical variables, summer and winter means) varied. Based on

the minimal concentrations of chemical variables observed in the months of August, Septem-

ber, and October and maximal concentrations observed in March, April, and May in the Gulf

of Alaska and Bering Sea regions, alkalinity nitrate, DO, phosphate, salinity, and silicate were

all expected to show negative seasonal amplitudes in surface and near-surface waters. In many

cases, seasonal patterns hold for deeper waters, although nitrate was at a maximum in August

and minimum in February for waters ą250 m. From known cycles of biological activity in the

waters around Alaska, zooplankton and chlorophyll were generally expected to exhibit posi-

tive seasonal amplitudes. Winter storms along the coast of Alaska create intense downwelling

winds, promoting eddies and wave activity that transports nutrients across the ocean and from

the deep to surface waters (Whitney et al., 2005; Whitney and Robert, 2002). Seasonal ampli-

tudes for wind and wave activity were therefore expected to be negative under the conditions of

strong winter storms and calmer summer weather. Air pressure, which is typically low during

storm activity, was expected to have a positive seasonal amplitude. Air temperature, water tem-

perature, and bottom temperature being typically maximal in the summer months and minimal

in the winter months resulted in a positive expected seasonal amplitude for these measures.

To summarize these seasonal amplitudes over all stations for the period of record, I took

the sign of the value for each year and location, then calculated the percentage of values that did

not exhibit the expected signs as indicated from observed patterns in biology or climatology.

For simplicity, only 75-m depths of chemical and biological variables were plotted. Bottom

temperature and plankton had more than half of the years exhibit opposing trends (negative

values rather than the expected positive values) for many stations along the coast of Alaska

(Figures 2.7f and 2.8a). Oxygen, phosphate, and silicate at 75 m also saw at least half the years
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exhibiting opposite trends (positive values rather than negative expected seasonal amplitudes)

for most stations in the MESA longline survey (Figures 2.8e, 2.8g and 2.8h). More than 60%

of the seasonal amplitudes for chlorophyll, alkalinity, and nitrate were opposite their expected

trends for a large portion of the Alaskan stations (Figures 2.8b, 2.8c and 2.8f). It should be

noted that silicate and phosphate may only exhibit short periods of interannual variability in

deep waters with minimum concentrations in February and maximums in April (Childers et al.,

2005). The “unexpected” seasonal amplitudes in 75-m nutrient concentrations and biological

activity may be partially explained by changes in the MLD and surface water nutrient cycling

(Ohno et al., 2009). Alkalinity and salinity exhibited some spatial trends in the anomalous sea-

sonal amplitudes. Stations demonstrating mostly negative chlorophyll (opposite the positive

values expected) were clustered around the central and eastern Gulf of Alaska (Figure 2.8d).

Locations with mostly positive seasonal amplitudes for alkalinity (opposite the expected neg-

ative values) were concentrated along the Aleutian Islands and the western Gulf of Alaska

(Figure 2.8c). Changes in the North Pacific Current and Alaskan Gyre circulation over several

decades have altered the upwelling system in the Gulf of Alaska (Buil and Di Lorenzo, 2015).

These changes are likely to modify the transport of nutrients and plankton across the Alaskan

shelf, where distinct spatial clustering of mostly positive or negative seasonal amplitudes such

as those seen in our analyses could be expected.

For most GAMs where plankton and chlorophyll were both significant variables, which in-

clude those for sablefish, Pacific halibut, rougheye rockfish, and shortspine thonyhead CPUEs,

zooplankton and chlorophyll exhibited similar patterns within each model. Increasingly neg-

ative differences between fall and spring means translated to decreased CPUEs for sablefish,

rougheye rockfish, and shortspine thornyhead. A reasonable explanation of these mirrored

patterns is that chlorophyll indicates phytoplankton biomass, and the relation of zooplank-

ton distribution to its phytoplankton prey’s distribution means that increased chlorophyll will

approximately translate to accumulation of zooplankton biomass (Kang and Ohman, 2014;

Longhurst, 1976; Moeller et al., 2019; Taniguchi, 1973). A positive correlation between sum-

mer plankton biomass and winter wind speeds has also been reported in the Bering Sea, though
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(a) ATMP (b) PRES

(c) WSPD (d) WVHT

(e) WTMP (f) Bottom temperature

Figure 2.7: Percent of years in which each of the physical attributes’ seasonal amplitudes ex-
hibited trends opposite their expected sign. ATMP, PRES, WTMP, and bottom temperature
were expected to be positive, while WSPD and WVHT were expected to be negative. Each
circle represents a station, with blue circles indicating ă40% of the years for which measures
were available for that location were opposite of expectations, and red circles indicating ą60%
of years were opposite of expectations.

parallel relationships between wind speed and shallow water chlorophyll or zooplankton were

only apparent in the sablefish CPUE model (Sugimoto and Tadokoro, 1997).

Atmospheric pressure, wind speed, water temperature, zooplankton biomass, and bottom

temperature were significant variables for all six species’ CPUEs. Wind speeds that were

modestly higher in the summer that in the winter resulted in high predicted Pacific halibut

CPUE, while wave heights approximately 1.5 m higher in winter than in summer resulted in

the largest increase in halibut CPUE. Indeed, most groundfish CPUE maximized when mean
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(a) plankton (b) Chl 75m

(c) Alk 75m (d) Sal 75m

(e) Oxy 75m (f) NO3 75m

(g) Phos 75m (h) Sil 75m

Figure 2.8: Percent of years in which each of the chemical attributes’ seasonal amplitudes
exhibited trends opposite their expected sign. Plankton and chlorophyll were expected to be
positive, while alkalinity, salinity, DO, nitrate (NO3), phosphate, and silicate were expected
to be negative. The most selected depth for each chemical variable was plotted to be repre-
sentative of the parameter’s general pattern. Each circle represents a station, with blue circles
indicatingă40% of the years for which measures were available for that location were opposite
of expectations, and red circles indicating ą60% of years were opposite of expectations.
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wave heights were around 1.5 m higher in winter than summer. A notable exception was sable-

fish CPUE, which was instead at a minimum for wave heights 1.5 m higher in winter than

summer. Rockfish CPUE generally maximized when mean surface water temperatures in sum-

mer were around 6˝C higher than winter. Anything more than that difference often resulted in

an appreciable decline in predicted CPUEs. Cod, sablefish, and halibut CPUEs increased for

more negative seasonal amplitudes. As the difference between summer and winter bottom tem-

peratures increased from negative to positive, most groundfish CPUEs decreased and had max-

imums when summer bottom temperatures were lower than those in winter. Such occurrences

can be explained by the lag in deep-water temperatures in relation to air and surface-water tem-

peratures of anywhere from two to five months (Turner et al., 2017). Deep ocean waters can

take up significantly more heat than the ocean at less than 300 m depths (Meehl et al., 2011).

With global air temperatures increasing substantially due to increased atmospheric CO2, deep

water warming could therefore outpace sea surface temperature increases. As the North Pacific

has recorded trends of increasing water temperatures, these results can generally be interpreted

as most groundfish being intolerant of warmer waters, which agrees with available laboratory

studies on these species (Fukasawa et al., 2004; Hurst et al., 2010, 2012b; Laurel et al., 2008;

Levitus et al., 2000). One exception is sablefish, which may be slightly more tolerant of higher

water temperatures than other North Pacific fish (Leeuwis et al., 2019). This result may also

be borne out in our analyses, as sablefish CPUEs did not see any decline at higher positive dif-

ferences between summer and winter mean water temperatures. In past deglaciation periods,

sudden increases in subsurface water temperatures have led to widespread hypoxic events in the

Gulf of Alaska (Praetorius et al., 2015). These events can be disruptive to ocean ecosystems

through mass die-offs of fish and invertebrate populations (Grantham et al., 2004). Notably,

DO did not play a significant role in sablefish mean weights, and only DO at 75 m was signifi-

cant to sablefish CPUE. This may reflect sablefish tolerance of low DO environments (Leeuwis

et al., 2019; Mandic et al., 2008; Rummer et al., 2010).

Models for groundfish weights were inconstant in the number and type of variables deemed

significant for each species. As only groundfish that had reached maturity (at approximately
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three to five years) were surveyed in these analyses, and given that weight of adult fish corre-

sponds to growth rate, it is likely that conditions during juvenile development of these fishes

permanently reduced or enhanced fish growth rates (Hurst et al., 2010; Laurel et al., 2008, 2016;

Sogard and Olla, 2000). I attempted to take into account effects of environmental variables on

recently mature adults, but it is likely that multiple lags are necessary to capture several years

of recently recruited adults in the population. However, because of the limitations of additive

models, it would be difficult to include multiple lagged covariates for all physical and chem-

ical variables considered in this study. Given the inconsistent results in this paper, I would

recommend future research to incorporate multiple lags of environmental predictors on adult

groundfish weights in a model structure able to accommodate so many variables given the

modest size of the data presently available for the North Pacific.

A consensus in the field of statistics is that p-values are poorly understood and abundantly

misused (Wasserstein et al., 2019). Effect sizes for nonparametric models fit using splines have

not been developed, and the traditional effect size measures do not appear to be effective for

such models (Correia and Abebe, 2017). Strong caution should therefore be given to making

inference about individual variables’ relations to the catches or weights of specific groundfish

species or putting heavy weight on only the variables selected by GAMs from this study. How-

ever, the results of my study and others like it emphasize the need to consider the potentially

large effects of multiple environmental variables, even surface-level and atmospheric condi-

tions, on population dynamics of not only pelagic fish species but also deep-ocean species

(Leverette and Metaxas, 2005; Levin et al., 2001). The effects of changes in such variables

to biological populations can also be used to trace temporal shifts in the environment to both

anthropogenic and ecological changes in connected ecosystems (Whitney et al., 2005).

It would be more appropriate to be able consider a suite of physical and chemical variables

holistically, and even consider these environmental effects on individual species as part of larger

networks. A limitation of many current methods is that they assume linear or simplistic non-

linear relationships between putative effects and responses (e.g. structural equation models);

such assumptions are not realistic assumptions for marine systems as evident from the results

presented in this study. It is also surmised that the effects of environment on groundfish catches
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in the Gulf of Alaska vary over space and time (Correia and Abebe, 2017). A GAM struc-

ture can accommodate predictors changing over space and time, but the models can quickly

run into problems with excessive dimensionality for relatively few spatiotemporal predictors.

A model structure related to the GAM but able to incorporate many spatiotemporal predictors

and select important variables from these is the single index model (SIM) (Xia and Li, 1999;

Xue and Pang, 2013). I suggest that SIM selection will provide a more realistic representation

of nonparametric effects of environmental conditions on groundfish catches in the North Pa-

cific Ocean and allow me to consider whether the subset of variables selected as important to

groundfish catches change over time. However, despite the obvious weaknesses of the GAM

analyses presented here, my inference focused on overall trends and motivated the suitability

of more complex, but more flexible modeling structures to better capture the nature of climatic

and environmental effects on groundfish populations and on ocean communities in general.
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Chapter 3

Spatio-temporally explicit model averaging for forecasting
of Alaskan groundfish catch
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Abstract

1. Fisheries management is dominated by the need to forecast catch and abundance of com-

mercially and ecologically important species. The influence of spatial information and

environmental factors on forecasting error is not often considered. I propose a forecasting

method called spatio-temporally explicit model averaging (STEMA) to combine spatial

and temporal information through model averaging.

2. I examine the performance of STEMA against two popular forecasting models and a

modern spatial prediction model: the autoregressive integrated moving averages with ex-

planatory variables (ARIMAX) model, the Bayesian hierarchical model, and the varying

coefficient model. I focus on applying the methods to four species of Alaskan groundfish

for which catch data are available.

3. My method reduces forecasting errors significantly for most of the tested models when

compared to ARIMAX, Bayesian, and varying coefficient methods. I also consider the

effect of sea surface temperature (SST) on the forecasting of catch, as multiple studies

reveal a potential influence of water temperature on the survival and growth of juvenile

groundfish. For most of the preferred models, inclusion of SST in the model improved

forecasting of catch.

4. It is advisable to consider both spatial information and relevant environmental factors in

forecasting models to obtain more accurate projections of population abundance. The

STEMA method is capable of accounting for spatial information in forecasting and can

be applied to various types of data because of its flexible varying coefficient model struc-

ture. It is therefore a suitable forecasting method for application to many fields including

ecology, epidemiology, and climatology.

Keywords and phrases: Forecast, model averaging, multi-model inference, spatio-temporal.
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3.1 Introduction

Forecasting is a vital component of fisheries management and furnishes necessary input for

management decisions. However, forecasting models are often based on simplistic time se-

ries trend analyses, which do not capture spatial information. Parametric time series methods

such as autoregressive integrated moving averages (ARIMA) models provide accurate forecasts

when the trend is consistent or many time points are supplied (Box and Jenkins, 1970). These

time series methods often fail when there are insufficient measures over time or the response

fluctuates with little apparent trend (Koutroumanidis et al., 2006; Stergiou and Christou, 1996).

Another issue with these models is the inclusion of covariates. Often the covariates of interest

must be forecast individually and the relationship between those predictors and the response

are assumed to be linear (Box et al., 2013). This is an unrealistic assumption for recent climate

data that exhibit anthropogenic-driven trends where the pattern of the relationship between pre-

dictors and response can change over time. Additionally, time series methods are unable to

consider covariates that also vary over space.

Varying coefficient models offer a flexible modeling structure which allows for nonlinear

relationships between predictors and the response; these models are also capable of handling

covariates that change over space and time (Augustin et al., 2013; Hastie and Tibshirani, 1993;

Phillips et al., 2014). Unlike time series models, prediction in varying coefficient models is

limited to the model structure and cannot produce forecasts beyond the time range of the data.

It would thus be ideal to combine the nonlinear spatial information from varying coefficient

models with the forecasting capabilities of time series methods. Model averaging allows the

combination of information from multiple models to inform the predictions of a response while

accounting for model uncertainty. The models are often weighted according to best fit using

the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC) (Buckland

et al., 1997) in the aggregation process, however other criteria for weighting are also possible

(Hansen, 2007; Raftery et al., 2005). I propose a methodology based on a combination of

information gained through the flexibility of varying coefficient models with the trend analyses

of ARIMA models to obtain predictions for catch rates at specific locations, thereby creating
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predicted species distributions. The method takes advantage of varying coefficient models and

model averaging while refining these for use in spatio-temporal forecasting. My technique is

the result of complex leave-one-out construction procedures used to create forecast stability.

This procedure provides prediction errors that are used as weights for model averaging.

Water temperature has effects on the growth, survival, and behavior of juvenile fish. Sur-

vival of juveniles to reproductive age is a key indicator of population maintenance and growth.

Fisheries management and restoration strategies are keen to monitor recruitment and abundance

for target species. However, information on reproductive success and recruitment to model

population abundance is often lacking for deepwater marine species. Catch rates are related

to population size and are commonly used in fisheries management as an index of abundance

(Battaile and Quinn, 2004; Council, 2000; Ricker, 1975). Many deepwater species move in-

shore to reproduce, and thus offspring are affected by the temperature of surface waters in the

first few years of life when they are sensitive to environmental extremes. Changes in SST affect

plankton availability, distribution, and composition, which are an important nutrition resource

for deepwater species and act as a carbon sink (Brierley and Kingsford, 2009). Additionally,

SST acts as a proxy for many other oceanic processes, affecting currents, ocean mixing, and

sea ice retreat, all of which have effects on both fish biomass (Bouchard and Fortier, 2008;

Hunt et al., 2002) and catch (Cheung et al., 2009; Kim et al., 2012; Monllor-Hurtado et al.,

2017). Further, it is evident that management strategies must now consider temperature trends

in order for managers to provide accurate long-term advice (Biswas et al., 2005; Ianelli et al.,

2011; Vaidyanathan, 2017). Still, current management implementation rarely includes ecosys-

tem processes that have been shown to affect fish stock productivity (Skern-Mauritzen et al.,

2015). It is therefore meaningful to consider SST in predicting catch, particularly in studies

where recruitment information is not available or difficult to assess. While adding additional

variables will improve model fit, it will not necessarily improve prediction. Thus, I assess

whether prediction of catch is improved through the inclusion of SST.
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3.2 Background

Prediction of fish abundance and catch is crucial in creating management strategies for com-

mercially important species, particularly in oceans with high system variability. The northern

Pacific Ocean has undergone several recent regime shifts that affect marine groups differently

(Napp and Hunt, 2001). Changes in abundance and population dynamics of various marine

fishes, including salmon, cod, halibut, and sardines, have manifested in response to climatic

regime shifts in the past century (Benson and Trites, 2002; Möllmann and Diekmann, 2012;

Noakes and Beamish, 2009). Abrupt changes in climatic cycles via persistent, area-specific

shifts in trends of water temperature, ocean currents, and primary production create profound

changes in the marine ecosystem, though the precise mechanisms through which these changes

occur are still not well understood (Anderson and Piatt, 1999; Francis et al., 1998). Sea surface

temperature (SST) is a simple measure to obtain. It acts as an easily identifiable representative

for more complex relationships between oceanic and atmospheric conditions that precede or

accompany marine regime shifts (deYoung et al., 2008; Möllmann et al., 2015). Consequently,

SST is the most commonly used environmental variable considered when modeling fish catch

and abundance in the wild. However, not many studies consider the effect of sea surface tem-

perature (SST) on the forecasting of fish catch, especially in management settings. Water tem-

perature has also been shown to affect the feeding motivation, metabolism, reproduction, and

behavior of many fish species (Donelson et al., 2010; Pörtner et al., 2001), which in turn in-

fluences recruitment and abundance. Increased water temperatures due to climate change are

therefore likely to affect the amount and composition of aquatic species in northern latitudes

(Pörtner and Knust, 2007; Sharma et al., 2007). Along with increased water temperatures, cli-

mate variability is expected to increase as a result of climate change (Easterling et al., 2000;

Timmermann et al., 1999). Anomalous oceanic conditions brought about by persistent changes

in atmospheric patterns, such as the warm SST anomaly known as “the Blob” in the Northern

Pacific Ocean (Tseng et al., 2017), have effects on regional weather and impacts on coastal and

deepwater fisheries operations as well as the composition of ecosystems (Bond et al., 2015).

Extreme changes in the marine environment that often accompany ocean anomalies are more
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detrimental to juvenile fish and can affect their recruitment into the adult population (Baumann

et al., 2006; Beaugrand et al., 2003; Stige et al., 2006).

Three commercially important groundfish species, Pacific cod (Gadus macrocephalus),

Pacific halibut (Hippoglossus stenolepis), and sablefish (Anoplopoma fimbria), and the most

abundant groundfish species, giant grenadier (Albatrossia pectoralis), are located within the

north Pacific ecosystem. The commercial fisheries of Pacific cod, Pacific halibut, and sablefish

are predominantly or solely longline, and catch of giant grenadier is predominantly through by-

catch on sablefish longlines (Goen and Erikson, 2017; NPFMC, 2017; Rodgveller et al., 2008).

Pacific halibut, Pacific cod, and sablefish also have management guidelines in effect that would

likely benefit from new and more accurate prediction techniques. Winter ocean conditions in

the northeast Pacific Ocean have been linked to recruitment in groundfish stocks (Hollowed and

Wooster, 1992; Schirripa and Colbert, 2006). Studies on juveniles of these four species show

that increased water temperatures affect behavioral responses, growth, and survival (Laurel

et al., 2016; Sogard and Olla, 2001; Stoner et al., 2006; Stoner and Sturm, 2004). No labora-

tory studies have been conducted on the temperature tolerances of giant grenadier. Sablefish

and giant grenadier are known to compete for baited hooks in longline surveys (Rodgveller

et al., 2008). These results indicate that giant grenadier may inhabit similar temperature zones

as sablefish. This highlights the need to understand the relationship of temperature to an apex

deepwater predator likely to be the most abundant fish in the northern Pacific (Rodgveller and

Hulson, 2014).

Climate change is characterized in many areas of the globe as a consistent warming trend

which favors acclimation in fishes (Crozier and Hutchings, 2014). Variability in global cli-

mate systems is also increasing the occurrence of extreme climate events and changing ma-

rine ecosystems dramatically and suddenly (Hoegh-Guldberg and Bruno, 2010; Walther et al.,

2002). If oceanic conditions continue to experience increased variability and instability, per-

sistent changes to the physiology of fishes as a result of acclimatisation are likely to translate

into reduced phenotypic plasticity (Reed et al., 2011; Seebacher et al., 2014). Pacific cod dis-

played “cold-adapted” responses in hatching, growth rates, and mortality when sampled from

the coldest cohort in three decades (Hurst et al., 2012b). This illustrates that groundfish from a
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cohort experiencing more extreme temperature changes, either anomalously cold or warm, may

be at a disadvantage when experiencing the opposing extreme conditions to which they experi-

enced when hatching. The effect is likely to be pronounced if an intensely cold year during the

hatching of a cohort is followed by an extremely warm year (or vice versa) when those fish are

still in their vulnerable juvenile state. It is therefore important to gain a greater understanding

of the effects of temperature on commercially and ecologically important species such as those

discussed here.

3.3 Data

The data for this study were collated from two data sets provided by the National Oceanic and

Atmospheric Administration (NOAA). Of primary use were the annual longline survey data

of the Marine Ecology and Stock Assessment (MESA) Program conducted by the Auke Bay

Laboratories in Alaska (Alaska Fisheries Science Center, 2019a). The MESA Program has per-

formed longline surveys independently since 1979, dropping baited lines at specific locations

(“stations”) off the coast of Alaska to collect information on groundfish species. Seven major

groundfish species are surveyed in the MESA Program by the Alaska Fisheries Science Cen-

ter (AFSC), of which four (sablefish, Pacific cod, Pacific halibut, and giant grenadier) will be

considered in these analyses. The AFSC records number of fish per species collected at each

location and calculates a catch per unit effort (CPUE) within each management area from the

total number of fish caught divided by the total number of skates, 100-meter longlines with 45

evenly spaced hooks per line, deployed each day (Sigler and Lunsford, 2009). The CPUE is

therefore a standardized measure of catch at each location. Longline surveys recording CPUE

have been shown to be an accurate fishery-independent index of abundance for sablefish (Sigler,

2000) and Pacific halibut (Monnahan and Stewart, 2018) when properly accounting for hook

spacing and spatial stratification.

Daily global SST readings, available for dates starting in 1981 through 2012, were ob-

tained from the National Centers for Environmental Information (NOAA, 2015). The data

were interpolated and optimized from satellites, buoys, and ships on 1{4˝ latitude-longitude
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grids using a method devised by Richard W. Reynolds at the National Centers for Environmen-

tal Prediction. A coefficient of variation for SST was derived for each 1{4˝ latitude-longitude

grid for the winter season (November through April), because the groundfish studied in the

MESA surveys undergo reproductive activity in the winter months in the waters surrounding

Alaska. In addition, evidence has suggested that winter conditions have the greatest influence

on groundfish populations (Hollowed and Wooster, 1992). The winter coefficient of variation

for SST was calculated as

cv “
σ

µ

at each latitude-longitude pairing, with σ being the winter seasonal standard deviation and µ the

winter season’s mean of SST. The coefficient of variation is an improved measure of seasonal

SST over the mean, because it standardizes scale and allows us to consider the changes in

variation of SST with the changes in mean over time.

Fluctuations in CPUE are likely to be linked to changes across cohorts which are often

determined by survival in the first year of life. Water temperature has been found to affect the

MESA groundfish covered by my analyses, and juvenile fish are more susceptible to environ-

mental changes than their adult counterparts. Therefore, CPUE for a given year is likely to be

linked to the winter SST encountered at the juvenile state by fish entering the adult population.

Since the MESA survey targets waters where adults reside during the summer, and the four

species covered in my analyses reach maturity at five to eight years, SST was lagged for years

one through five to allow us to capture the effect of SST on the juvenile stages and recruitment.

All five lagged SST measures were included for modeling.

I focused on determining the spatio-temporal catch predictions for four of the species in

the MESA study area known as the Gulf of Alaska which ranges from the Dixon Entrance west

to Chuginadak Island. The fisheries data were matched with winter SST data from 1982 to

2012. With lagged winter SST included, this created a dataset of CPUE for four groundfish

species spanning 23 years from 1990 to 2012. There are 1679 observations each for sablefish,

Pacific cod, giant grenadier, and Pacific halibut.
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3.4 Methods

My proposed forecasting method consisted of two parts, a model averaging technique made up

of a spatially variant coefficient model with prediction obtained via an ARIMA model and a

temporally-varying coefficient model with prediction incorporated via an ARIMA model. The

proposed method was applied to the Alaska groundfish data. I then compared three main meth-

ods of forecasting to my proposed method: a simple ARIMA model with covariates (ARIMAX)

with lagged winter SST from one to five years used as predictors, a naı̈ve spatially varying co-

efficient model in which the fitted values for the current year were considered the predicted

values for the next year, and a hierarchical Bayesian forecasting procedure. The ARIMAX

and Bayesian implementations are linear models, while the naı̈ve spatially varying coefficient

model and the proposed forecasting method make use of nonlinear models.

The distribution of CPUE values for Pacific cod and Pacific halibut were right-skewed

and were accommodated in the model fitting, while sablefish and giant grenadier CPUE values

were Gaussian distributed.

All of the methods were subjected to a leave-one-out procedure. This allowed us to deter-

mine if the success of the proposed technique was mainly due to its predictions being verified

and adjusted using the leave-one-out procedure. Since the naı̈ve spatially varying coefficient

model is not a typical forecasting procedure, only the leave-one-out setting was considered

for this model. For the naı̈ve model, a station was removed from the dataset and the spatial

model fitting was performed on the t1, 2, . . . , b´ 1, b` 1, . . . , nu stations. The spatial forecast

obtained after each leave-one-out operation is denoted rY
spp´bq
J , where b is the removed station.

The ARIMAX and hierarchical Bayesian models go through a similar leave-one-out procedure,

where a year c was removed from the dataset and the ARIMAX (or Bayesian) modeling pro-

cedure was performed on the t1, 2, . . . , c´ 1, c` 1, . . . , J ´ 1u years. The ARIMAX forecast

obtained after each leave-one-out-procedure is similarly denoted rY
tp´cq
J for the removed year

c. A mean and standard deviation of the leave-one-out forecasts for each station’s ARIMAX,

Bayesian, and naı̈ve spatial models were calculated. The means of the leave-one-out forecasts

for each station were used as the final forecast CPUE values for the leave-one-out versions of
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the ARIMAX, Bayesian, and naı̈ve spatial models. Weights for the model averaging of the two

component predictions for the proposed method were determined by the standard error of the

leave-one-out predictions for each. A minimum of ten observations per location was considered

to provide a sufficient number of points to obtain a trend over time; that is, a minimum of ten

yearly observations per station were included in the training datasets that were used to predict

the subsequent year. For each of the following models, let J be the year for which prediction

is sought, where J “ 2000, 2001, . . . , 2012.

In Section 3.4.1, I introduce and describe the basic ARIMAX model, the spatially varying

coefficient model, and the Bayesian forecasting method to which I compared my proposed

forecasting technique. I then show how the ARIMA model and spatially varying coefficient

model were combined using model averaging to produce my proposed forecasting method in

Section 3.4.2.

3.4.1 Some existing forecasting procedures

3.4.1.1 ARIMAX model

An ARIMAX of order p, d, q in the form

˜

1´
p
ÿ

m“1

φmL
m

¸

p1´LqdYi “ δ`

˜

1`
q
ÿ

m“1

θmL
m

¸

εi`

˜

1´
p
ÿ

m“1

φmL
m

¸

p1´LqdXT
i β ,

was fit for each location. The lag operator is denoted by L, φm are the autoregres-

sive parameters, θm are the moving average parameters, β is the predictor coefficient

matrix, and εi are the error terms (Box et al., 2013). The predictor vector Xi “

pSSTi´1, SSTi´2, SSTi´3, SSTi´4, SSTi´5q
T includes lagged winter SST values for one to

five years. The order pp, d, qq with drift δ{p1´ Σφmq for the ARIMAX model is automatically

determined using minimization of AIC and MLE to determine the best ARIMAX model using

the function auto.arima in the forecast package (Hyndman, 2017; Hyndman and Khan-

dakar, 2008) in R (R Core Team, 2017). The right-skewed distributions of Pacific cod and

Pacific halibut CPUEs does not affect the fitting of the ARIMAX models, as each location is

fit individually. At most, only one outlier was identified per station for Pacific cod and Pacific
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halibut when modeling the entire range of training data for one station representative of each of

the four management areas (Figs S1 and S2 in Appendix A). The fitted ARIMAX model was

then used to predict year J using known winter SST values from years J ´ 5 to J ´ 1,

˜

1´
p
ÿ

m“1

pφmL
m

¸

p1´LqdpYJ “ δ`

˜

1`
q
ÿ

m“1

pθmL
m

¸

εJ`

˜

1´
p
ÿ

m“1

pφmL
m

¸

p1´LqdXT
J
pβ ,

with the predicted value for year J denoted rY A
J , employing the forecast function from the

forecast package.

3.4.1.2 Naı̈ve spatially varying coefficient model

A spatially varying coefficient model for CPUE of a given species including lagged winter SST

for five years to one year that varies over space is fit for year J ´ 1,

YJ´1 “ XT
J´1GJ´1pUq ` εJ´1 ,

where XJ´1 “ p1, SSTpJ´1q´1, SSTpJ´1q´2, SSTpJ´1q´3, SSTpJ´1q´4, SSTpJ´1q´5q
T and

GpJ´1qpUq “ pg0,J´1pUq, g1,J´1pUq, g2,J´1pUq, g3,J´1pUq, g4,J´1pUq, g5,J´1pUqq
T is the func-

tional coefficient vector of winter SSTs with U being the longitude-latitude pairs representing

sampled locations along the Gulf of Alaska. The fitted CPUE values for year J ´ 1 given as

pYJ´1 “ XT
J´1

pGJ´1pUq “ pg0pJ´1q `
5
ÿ

k“1

pgkpJ´1qpUqSSTpJ´1q´k

were considered to be the predicted values for year J . The predicted values from this naı̈ve

spatial model are denoted rY N
J . The spatially varying coefficient models used rank-based es-

timation as described in Correia (2018). Rank estimation techniques are more suitable than

least squares estimation for reducing the influence of outliers and contamination common in

fisheries and ecological data on prediction. The rank-based estimation for varying coefficient

models was coded as a modification to the gam function in the mgcv package (Wood, 2006) in

R (R Core Team, 2017) and is included as supplemental material in Correia (2018). To accom-

modate the right-skewed distributions of Pacific cod and Pacific halibut CPUE values, I used
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the Gaussian distribution and weights given by the bent score function (Kloke and McKean,

2014) in the varying coefficient model fitting process.

3.4.1.3 Hierarchical Bayesian forecasting

To implement Bayesian forecasting methods, I chose a hierarchical independent Gaussian pro-

cess model. Let Zi denote the observed data, and Oi be the corresponding true values for

station sr, r “ 1, . . . , n at time i “ 1, ¨ ¨ ¨ , J ´ 1. Also let Zi “ pZps1, iq, . . . , Zpsn, iqq
T ,

Oi “ pOps1, iq, . . . , Opsn, iqq
T , and N “ n ˆ pJ ´ 1q be the total number of observations

modeled. The Gaussian process model is specified as

Zi “ Oi ` εi and Oi “ Xiβ ` ηi ,

where β is the regression coefficient vector, and εi “ pεs1,i, . . . , εsn,iq „ Np0, σ2
ε Inq is the

pure error term, σ2
ε is the unknown variance and In is the identity matrix of order n. The

spatio-temporal random effects are denoted ηi “ pηps1, iq, . . . , ηpsn, iqq
T „ Np0,Σηq, where

Ση “ σ2
ηSη is composed of the spatial variance, σ2

η , and the spatial correlation matrix, Sη. The

spatial correlation matrix is derived from the Matérn correlation function

κpsi, sj : φ, νq “
1

2ν´1γpνq
p2
?
ν||si ´ sj||φq

νKνp2
?
ν||si ´ sj||φq, φ ą 0, ν ą 0 ,

where φ controls the correlation decay rate as distance between two spatial points ||si ´ sj||

increases, Kν is the modified Bessel function of order ν, and ν controls the smoothness of the

random field. Let all of the parameters of the model be denoted θ “ pβ, σ2
ε , σ

2
η, φ, νq, and

let πpθq denote the prior distributions. The prior distribution for the inverse variance model

parameters is given as
ˆ

1

σ2
ε

,
1

σ2
ν

˙

„ Γ
´a

b
,
a

b2

¯

,

where a “ 2 and b “ 1, while the prior distributions for the mean parameter β is Npµβ, δ
2
βq,

where µβ “ 0 and δ2β “ 1010. The logarithm of the joint posterior distribution for this Gaussian
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process model is

log πpθ,O, z˚|zq9 ´
N

2
log σ2

ε ´
1

2σ2
ε

J´1
ÿ

i“1

pZi ´Oiq
T
pZi ´Oiq

´
1

2
log |σ2

ηSη| ´
1

2σ2
η

J´1
ÿ

i“1

pOi ´XiBq
TS´1η pOi ´XiBq ` log πpθq .

The Bayesian forecasting method was implemented via the R package spTimer (Bakar et al.,

2015).

3.4.2 Spatio-temporally explicit model averaging

The spatio-temporally explicit model averaging (STEMA) technique was derived from the

combination of a spatially varying coefficient model (Section 3.4.1.2) and a yearly varying

coefficient model where latitude-longitude pairs in the spatially varying coefficient model were

replaced by year. Each model’s fitted values were then used to fit an ARIMA and forecast

the year for which prediction was sought. The separate model forecasts were averaged using

weights based on standard deviations of the leave-one out procedure, giving more weight to

the model with lower standard deviation to produce a final forecast for each station. The com-

ponents of the STEMA forecasting procedure are described in the following three subsections,

with example code of the procedure given in the Supplementary Materials.

3.4.2.1 Spatial model with ARIMA

A spatially varying coefficient model as described above was fit over space for each year i “

1990, 1991, . . . , J ´ 1. The fitted CPUE values for year i given as

pY sp
i “ XT

i
pGipUq “ pg0i `

5
ÿ

k“1

pgkipUqSSTi´k

were then used to fit an ARIMA model for each station,

˜

1´
p
ÿ

m“1

φmL
m

¸

p1´ LqdpY sp
i “ δ `

˜

1`
q
ÿ

m“1

θmL
m

¸

εi ,
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yielding the fitted ARIMA values rY sp
J , where the order pp, d, qq with drift δ{p1 ´ Σφmq is

automatically determined using the auto.arima function as described in section 3.4.1.1. The

two-step process allows for inclusion of multiple lagged winter SST variables smoothed over

space in the varying coefficient model setting while providing a method for future prediction

which is not available in these models.

3.4.2.2 Temporal model with ARIMA

A time varying coefficient model of the form

YJ´1 “ g0Jptq ` g1JptqSSTt´5 ` εJ´1

was fit for each location, where i “ 1990, 1991, . . . , J ´ 1; t “ t1990, 1991, . . . , J ´ 1u; and

SSTt´5 is the winter SST for that location lagged by five years. The fitted values from this

model,

pY t
i “ pg0Jpiq ` pg1JpiqSSTi´5 ,

were then used to fit an ARIMA model

˜

1´
p
ÿ

m“1

φmL
m

¸

p1´ LqdpY t
i “ δ `

˜

1`
q
ÿ

m“1

θmL
m

¸

εi ,

yielding the fitted ARIMA values rY t
J , where the order pp, d, qq with drift δ{p1 ´ Σφmq is au-

tomatically determined as described for the spatial model. The coefficient model smooths the

CPUEs for each location, thereby allowing the time series model to determine a more accurate

trend despite highly variable CPUE values.

3.4.2.3 Model averaging

The STEMA method underwent the same leave-one-out procedures as described for the ARIMA

and naı̈ve spatial models, where the temporal model with ARIMA used the temporal leave-

one-out procedure and the naı̈ve spatial model utilized the spatial leave-one-out steps. For the

STEMA technique, the means of the spatial and temporal leave-one-out procedures (srY sp
J and
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s

rY t
J , respectively) were weighted for each location using a ratio of the spatial (σspn) and temporal

(σtn) standard deviations from the leave-one-out predictions,

ωsp “
σt

σsp ` σt
and ωt “

σsp
σsp ` σt

,

where ωsp ` ωt “ 1. The final spatio-temporally explicit model averaged prediction was ob-

tained for each location by

rYJ “ ωsp
s

rY sp
J ` ωt

s

rY t
J .

The standard error of the spatio-temporally explicit model averaged predictions is given as

SE
´

rYJ

¯

“

c

ω2
spSE

´

s

rY sp
J

¯

` ω2
tSE

´

s

rY t
J

¯

3.5 Assessment of forecast performance via cross-validation

3.5.1 Model comparison

A time series cross-validation based on one-step forecasts was performed on the ARIMAX

model (A), the hierarchical Bayesian model (B), the naı̈ve spatially varying coefficient model

(N1), the spatio-temporally explicit model averaging technique (STEMA), and the leave-out-

out versions of the ARIMAX (A1) and Bayesian (B1) models. I consider h to be the mini-

mum number of years needed to create a reliable forecast and proceed as follows: for f “

1, 2, . . . , T ´ h where T is the total number of years available and j “ h ` f , train on

Fh, . . . , Fj´1, and forecast and validate on Fj . For each estimation technique, a forecast pYaj ,

a “ A, A1, B, B1, N1, STEMA was computed from the training sets, and the error on the vali-

dation set was recorded as

eaj “ Yj ´ pYaj.

To compare estimation techniques, I used a Friedman rank sum test on the absolute er-

rors to determine if there were significant differences among methods (Friedman, 1937). If
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the Friedman test indicated significant differences, I then performed pairwise multiple com-

parisons on the differences between the absolute errors for each pair of methods (Bretz et al.,

2016; Tukey, 1949). In order to control for the effect of location, a generalized linear mixed

model was fit with the stations set as random effects. P-values calculated for the pairwise

tests were adjusted using the Benjamini-Hochberg procedure to control the false discovery rate

(Benjamini and Hochberg, 1995). If the difference was significantly less than zero, the first of

the two compared methods was the method that produced smaller errors; if the difference was

significantly greater than zero, the second method produced smaller errors. The mixed model

was fit using the glmer function in the lme4 package (Bates et al., 2015), while the pairwise

multiple comparisons were performed in the multcomp package (Hothorn et al., 2008) using

the glht function in R (R Core Team, 2017).

3.5.2 Forecast performance in the presence of an environmental covariate

In order to determine if adding SST to the models improved forecasting, a null model for

each of the four techniques was fit, subjected to the same leave-one-out procedure as described

previously, and a forecast obtained for each. The null A and A1 models are of the form

˜

1´
p
ÿ

m“1

φmL
m

¸

p1´ LqdpYi “ δ `

˜

1`
q
ÿ

m“1

θmL
m

¸

εi,

where the order p, d, q is determined as before. The fitted CPUE values for year J ´ 1 from the

null naı̈ve spatially varying coefficient model given as

pYJ´1 “ pGJ´1pUq “ pg0pJ´1q

are considered to be the predicted values for year J . The spatio-temporally model averaged

forecasts were derived from the two null varying-coefficient models

Y sp0
i “ g0i ` εi and Y t0

J´1 “ g0Jptq ` εJ´1,
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of which the fitted values were each used to fit ARIMA models following the steps in section

3.4.2. The forecasts obtained from those fitted ARIMA models were averaged as described in

section 3.4.2.3 to form the final prediction. The null model errors were compared to the errors of

their model counterparts which include winter SST for each method using one-sided Wilcoxon

signed-rank tests, where the errors are matched by station and year. If SST is important to

forecasting, the inclusion of SST in the model will significantly reduce forecasting error.

In order to obtain the magnitude of the effect of winter SST on prediction using the pre-

ferred methods, I calculate a rank-correlation r statistic using the asymptotic normal distribu-

tion of the Wilcoxon signed-rank statistic W on the absolute error differences Di between the

null model and the SST model. W is calculated as

W “

N
ÿ

i“1

Rankp|Di|q ˆ IpDi ą 0q ,

where N is the total number of calculated errors. Under the hypothesis that winter SST has no

impact on prediction, W is asymptotically normal as

Z “
W ´

NpN`1q
4

b

NpN`1qp2N`1q
24

(Hollander and Wolfe, 1999). The rank-correlation is given by

r “
Z
?
N

with estimated variance p1 ´ r2q{pN ´ 2q (Rosenthal et al., 1994). Small, medium, and large

effect sizes are .10, .30, and .50, respectively (Cohen, 1992).

3.5.3 Control of Bayesian parameter φ in cross-validation

One issue that arises from using the time series cross-validation on the Bayesian forecasting

method is the fluctuation in spatial point acceptance rate as the available years of data change.

While the spatial decay parameter φ can be chosen by the user to obtain optimal acceptance

rate of spatial points for the calculation of the spatial correlation matrix, the appropriate value
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of φ changes given varying data structure. There is also insufficient guidance on how forecast

values are affected by misspecification of φ. According to Bakar et al. (2015), the choice of φ

is obtained with acceptance rates between 20% and 40%, which is justified by Gelman et al.

(2004).

I chose to apply a search similar to Paci et al. (2013) for the optimal φ value by fitting the

current data set with values of φ starting at 10 and decreasing by an order of magnitude of 1 for

each subsequent fitting. Once the model achieved an acceptance rate closest to 32%, that model

was then used to obtain forecasting estimates for year J . This ensured that φ was selected for

each model fitting step to always obtain an optimal acceptance rate despite the changing size

of training data. Variable training data that occurs when using the temporal cross-validation

affects the spatial information available, making a fixed value of φ unsuitable for accurate

forecasting using the Bayesian method with temporal cross-validation.

3.6 Results

Friedman tests for all four species revealed significant differences across model techniques

(sablefish: χ2 “ 74.022, p ă“ 0.0001; Pacific cod: χ2 “ 365.501, p ă“ 0.0001; Pacific

halibut: χ2 “ 152.471, p ă“ 0.0001; giant grenadier: χ2 “ 460.030, p ă“ 0.0001). The

STEMA method had lowest mean absolute errors for Gaussian distributed species (sablefish

and giant grenadier) when ignoring station and year effects (Table 3.1). Pairwise multiple

comparisons were therefore performed on method pairings for all species to determine the

best methods of forecasting for each species. The results of these pairwise comparison tests

of the different methods are given in Tables 3.2 to 3.5. Based on the differences in mean

absolute errors that are significant, the following methods had the lowest significant absolute

errors: the STEMA method for sablefish; the naı̈ve and STEMA methods for Pacific cod; the

naı̈ve method for Pacific halibut; and the STEMA method for giant grenadier. STEMA did

not significantly improve forecasting over the N1 model in the case of Pacific cod, and the N1

method outperformed STEMA in lowering forecasting errors for Pacific halibut.

The results of the one-sided Wilcoxon signed-rank tests for comparing models including

winter SST to those without for all forecasting methods are summarized in Table 3.6. For all
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Table 3.1: Mean absolute error of each method for four species, ignoring station effects. Lowest
mean absolute errors for each species are in bold.

A A1 N1 B B1 STEMA

Sablefish 1.771 1.688 1.612 1.558 1.562 1.369
Pacific cod 0.280 0.267 0.136 0.180 0.175 0.145

Pacific halibut 0.293 0.285 0.199 0.205 0.204 0.205
Giant grenadier 1.599 1.480 1.614 1.844 1.839 1.086

Table 3.2: Pairwise multiple comparisons of absolute errors of forecasting methods with win-
ter SST included in the models for sablefish. P-values are adjusted using false discovery rate
method. A p-value ă 0.05 indicates the difference in absolute errors of the comparison are sig-
nificant (in bold). Differences significantly less than zero indicate the first of the two compared
methods was the method that produced smaller errors; estimates significantly greater than zero
indicate the second method produced smaller errors.

Linear Hypotheses Estimate Std. Error z value Pr(>|z|)
A1 - A ´0.050 0.038 ´1.323 0.253
B - A ´0.130 0.038 ´3.435 0.002
B - A1 ´0.080 0.038 ´2.115 0.057
B1 - A ´0.128 0.038 ´3.369 0.002
B1 - A1 ´0.078 0.038 ´2.049 0.061
B1 - B 0.002 0.038 0.066 0.947
N1 - A ´0.090 0.038 ´2.378 0.033
N1 - A1 ´0.040 0.038 ´1.057 0.335
N1 - B 0.040 0.038 1.058 0.335
N1 - B1 0.038 0.038 0.993 0.344

STEMA - A ´0.254 0.038 ´6.707 0.000
STEMA - A1 ´0.204 0.038 ´5.386 0.000
STEMA - B ´0.124 0.038 ´3.264 0.002
STEMA - B1 ´0.126 0.038 ´3.331 0.002
STEMA - N1 ´0.164 0.038 ´4.330 0.000

1 Leave-one-out procedure used
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Table 3.3: Pairwise multiple comparisons of absolute errors of forecasting methods with winter
SST included in the models for Pacific cod. P-values are adjusted using false discovery rate
method. A p-value ă 0.05 indicates the difference in absolute errors of the comparison are
significant (in bold). Differences significantly less than zero indicate the first of the two com-
pared methods was the method that produced smaller errors; differences significantly greater
than zero indicate the second method produced smaller errors.

Linear Hypotheses Estimate Std. Error z value Pr(>|z|)
A1 - A ´0.033 0.040 ´0.835 0.454
B - A ´0.275 0.040 ´6.828 0.000
B - A1 ´0.241 0.040 ´6.004 0.000
B1 - A ´0.307 0.040 ´7.626 0.000
B1 - A1 ´0.273 0.040 ´6.802 0.000
B1 - B ´0.032 0.040 ´0.800 0.454
N1 - A ´0.525 0.040 ´12.996 0.000
N1 - A1 ´0.492 0.040 ´12.185 0.000
N1 - B ´0.251 0.040 ´6.226 0.000
N1 - B1 ´0.219 0.040 ´5.434 0.000

STEMA - A ´0.550 0.040 ´13.699 0.000
STEMA - A1 ´0.516 0.040 ´12.879 0.000
STEMA - B ´0.275 0.040 ´6.855 0.000
STEMA - B1 ´0.243 0.040 ´6.061 0.000
STEMA - N1 ´0.024 0.040 ´0.609 0.542

1 Leave-one-out procedure used
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Table 3.4: Pairwise multiple comparisons for absolute errors of forecasting methods with win-
ter SST included in the models for Pacific halibut. P-values are adjusted using false discovery
rate method. A p-value ă 0.05 indicates the difference in absolute errors of the comparison are
significant (in bold). Differences significantly less than zero indicate the first of the two com-
pared methods was the method that produced smaller errors; differences significantly greater
than zero indicate the second method produced smaller errors.

Linear Hypotheses Estimate Std. Error z value Pr(>|z|)
A1 - A ´0.034 0.006 ´5.413 0.000
B - A ´0.384 0.006 ´61.003 0.000
B - A1 ´0.350 0.009 ´39.580 0.000
B1 - A ´0.387 0.006 ´61.442 0.000
B1 - A1 ´0.353 0.009 ´39.895 0.000
B1 - B ´0.003 0.009 ´0.334 0.739
N1 - A ´0.423 0.006 ´67.557 0.000
N1 - A1 ´0.389 0.009 ´44.229 0.000
N1 - B ´0.040 0.009 ´4.494 0.000
N1 - B1 ´0.037 0.009 ´4.160 0.000

STEMA - A ´0.391 0.006 ´62.332 0.000
STEMA - A1 ´0.357 0.009 ´40.516 0.000
STEMA - B ´0.008 0.009 ´0.860 0.450
STEMA - B1 ´0.005 0.009 ´0.526 0.642
STEMA - N1 0.032 0.009 3.634 0.000

1 Leave-one-out procedure used
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Table 3.5: Pairwise multiple comparisons for absolute errors of forecasting methods with win-
ter SST included in the models for giant grenadier. P-values are adjusted using false discovery
rate method. A p-value ă 0.05 indicates the difference in absolute errors of the comparison are
significant (in bold). Differences significantly less than zero indicate the first of the two com-
pared methods was the method that produced smaller errors; differences significantly greater
than zero indicate the second method produced smaller errors.

Linear Hypotheses Estimate Std. Error z value Pr(>|z|)
A1 - A ´0.075 0.040 ´1.887 0.068
B - A 0.274 0.040 6.797 0.000
B - A1 0.349 0.040 8.661 0.000
B1 - A 0.271 0.040 6.733 0.000
B1 - A1 0.346 0.040 8.595 0.000
B1 - B ´0.002 0.040 ´0.058 0.954
N1 - A 0.010 0.040 0.255 0.856
N1 - A1 0.085 0.040 2.134 0.041
N1 - B ´0.263 0.041 ´6.500 0.000
N1 - B1 ´0.261 0.041 ´6.435 0.000

STEMA - A ´0.367 0.040 ´9.218 0.000
STEMA - A1 ´0.292 0.040 ´7.333 0.000
STEMA - B ´0.641 0.040 ´15.895 0.000
STEMA - B1 ´0.639 0.040 ´15.817 0.000
STEMA - N1 ´0.378 0.040 ´9.478 0.000

1 Leave-one-out procedure used
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four groundfish species, the STEMA method of forecasting had significantly reduced absolute

errors when lagged winter SSTs were included as covariates. For Pacific cod, Pacific halibut,

and giant grenadier, the models using the naı̈ve method of forecasting benefited significantly

from the addition of SST. The A and A1 methods for all species had higher absolute errors upon

the addition of SST to the models.

Table 3.6: One-sided Wilcoxon signed-rank test comparing the absolute errors of the rank-
estimated GAMs including winter SST with the absolute errors of the null model. Mean ab-
solute errors and standard deviations in parentheses are given. A p-value ă 0.05 indicates the
absolute errors of the models including winter SST are significantly smaller than the absolute
errors of the null models. Methods with lowest forecast errors as determined by the pairwise
multiple comparisons in Tables 3.2 to 3.5 are in bold.

Species Method Abs. Errors w/o SST Abs. Errors w/ SST P-value

Sablefish

A 1.455 (1.017) 1.771 (1.291) 1.000
A1 1.396 (1.055) 1.688 (1.237) 1.000
B 1.626 (1.053) 1.558 (1.034) 0.000
B1 1.619 (1.059) 1.562 (1.046) 0.000
N1 1.585 (1.186) 1.612 (1.161) 0.845

STEMA 1.386 (1.057) 1.369 (1.093) 0.006

Pacific cod

A 0.157 (0.180) 0.280 (0.314) 1.000
A1 0.165 (0.186) 0.267 (0.289) 1.000
B 0.222 (0.146) 0.180 (0.120) 0.000
B1 0.215 (0.138) 0.175 (0.116) 0.000
N1 0.142 (0.136) 0.136 (0.134) 0.000

STEMA 0.153 (0.159) 0.145 (0.162) 0.000

Pacific halibut

A 0.242 (0.153) 0.293 (0.286) 1.000
A1 0.227 (0.147) 0.285 (0.277) 1.000
B 0.193 (0.177) 0.205 (0.176) 1.000
B1 0.193 (0.177) 0.204 (0.176) 1.000
N1 0.207 (0.181) 0.199 (0.179) 0.001

STEMA 0.208 (0.165) 0.205 (0.164) 0.011

Giant grenadier

A 1.041 (1.126) 1.599 (1.505) 1.000
A1 1.055 (1.131) 1.480 (1.393) 1.000
B 1.847 (1.381) 1.844 (1.572) 0.020
B1 1.817 (1.391) 1.839 (1.590) 0.168
N1 1.747 (1.474) 1.614 (1.386) 0.001

STEMA 1.149 (1.165) 1.086 (1.109) 0.000
1 Leave-one-out procedure used
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3.7 Discussion

I propose a model averaging forecasting technique to capture both spatial and temporal infor-

mation in ecological time series data. The method incorporates a flexible model capable of

handling spatially-dependent covariates with the familiarity and forecasting ability of ARIMA

models for time series analysis. I applied my method to catch data of four ecologically and

commercially important species of groundfish where information regarding juvenile survival is

often difficult to obtain and life history data are sparse or unknown, thereby making projections

of population and catch challenging.

The A and A1 models were inadequate for forecasting annual catch by location for any

of the four species in the analysis. Previous studies indicated that ARIMA models outperform

other linear time series methods when forecasting monthly data (Stergiou et al., 1997), however

ARIMA is less suited to yearly data (Stergiou and Christou, 1996) and non-linear time series

(Koutroumanidis et al., 2006). Spatial information is therefore an important component of

modeling and forecasting catch in mobile marine species. A more flexible model, such as the

varying coefficient model I employed, is also more desirable for capturing unknown nonlinear

relationships between the response and predictors in complex systems.

My proposed STEMA method was always chosen as a preferred method for forecasting

over ARIMAX and Bayesian models. It should be noted that catches for the two species in

which STEMA did not significantly outperform the N1 model were right-skewed, as noted in

section 3.4. For these two species, the N1 and STEMA methods which employed the rank-

based estimation of Correia (2018) using a Gaussian distribution with bent score function out-

performed the A, A1, B, and B1 techniques for forecasting. Correia (2018) showed that a bent

score function in the estimation of generalized additive models (GAMs) improved model fit

for Pacific cod catch over modeling with a Gamma distribution using a log link function. This

Gamma distribution is one of the typical methods employed in fisheries research to deal with

skewed catch data. However, the bent score function more appropriately accounted for skew-

ness in the distribution of Pacific cod catch. The lower absolute forecasting errors for models

using rank-based estimation (N1 and STEMA) for Pacific cod and Pacific halibut data indicate

73



that the success of the bent score function to accommodate skewness also reaches to forecasting

applications of varying coefficient models, which are an extension of GAMs. The application of

the estimation techniques of Correia (2018) to the varying coefficient models used in STEMA

takes advantage of the improved fit for heavy-tailed distributions common in fisheries data.

While the STEMA method did not beat the N1 method in two of the species, naı̈ve methods

are notoriously difficult to beat in time-series forecasting, particularly for annual data (Athana-

sopoulos et al., 2011; Kilian and Taylor, 2003). The bent score function used in the estimation

of the varying coefficient models in the N1 and STEMA methods for Pacific cod and Pacific

halibut reduces the effect of extreme values on estimation. This dampens large deviations in

Pacific cod and Pacific halibut CPUE and produces fitted values closer to the mean CPUE.

Naı̈ve methods will invariably do better for very short term forecasts, because responses close

to their mean values behave more like a random walk (Kilian and Taylor, 2003). The fact that

STEMA was better than or equal to the N1 method for short term forecasts in three out of the

four species despite the known strengths of the naı̈ve method illustrates the effectiveness of the

STEMA method.

A statistically significant reduction in forecasting errors was discernible when winter SST

was included for all preferred forecasting methods with lowest absolute errors. Thus, adding

covariates relevant to the ecology of the species under consideration can significantly improve

the forecasting power of a model. The inclusion of SST in the A and A1 models increases the

absolute forecasting errors for all species. Covariates in the ARIMAX and Bayesian settings

are incorporated linearly, however the effect of winter SST on groundfish catch is likely to

be nonlinear (Laurel et al., 2008; Rooper and Martin, 2009; Sadorus et al., 2014), which is

apparent in Fig. S3 (Appendix A); therefore the effect’s nonlinear shape is not being taken into

account in the A, A1, B, and B1 forecasting methods.

I broke down size of the effect of winter SST on groundfish catch for the preferred fore-

casting methods by management area as defined by the Alaska Fisheries Science Center for the

MESA survey in Figure 3.1, where the order of the areas is from west to east along the coast

of Alaska. Effect size of winter SST on the forecasting errors varies from none to large as de-

fined by Cohen (1992), depending upon species and management area. It is likely that a given
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species will respond to SST differently in different locations (Rouyer et al., 2014), which is ev-

ident by the variable effect sizes of winter SST by station provided in Figs S4 to S8 (Appendix

A). Other factors such as habitat, prey availability, and proximity to other individuals of the

same species may influence the effects of SST on survival of juveniles. For example, while all

these groundfish are not schooling species, Stoner and Ottmar (2004) found that young Pacific

halibut were more likely to locate and attack baits in groups than when solitary. Therefore Pa-

cific halibut, which experience reduced ability to locate bait in low temperatures, may instead

successfully find bait in the presence of other individuals. SST may also be a proxy for other

environmental variables, such as dissolved oxygen (DO) levels, ocean mixing, and plankton

availability, that may affect these groundfish to varying degrees. Sadorus et al. (2014) found

a significant relationship between DO and catch rates of Pacific halibut. Primary production

(plankton) concentration and distribution and subsequent changes in secondary production lev-

els have also been linked to groundfish abundance (Francis et al., 1998; McGowan et al., 1998).

Correia (2018) found improved prediction when adding winter SST to models for sablefish and

Pacific cod catches, however model fit did not substantially improve with the addition of winter

SST. Therefore the link of SST to groundfish catches is likely complex and difficult to quantify

directly in wild populations.

I have shown that spatial information is crucial to forecasting in large-scale data, and my

spatio-temporally explicit model averaging technique is successful in reducing forecasting er-

rors. Additionally, the inclusion of environmental covariates can improve forecasting in many

cases. As is the case with forecasting and prediction techniques, predictions outside the range

of observed covariates (i.e. extrapolation) is ill-advised (Conn et al., 2015; Steyerberg et al.,

2010). Forecasts more than one time point ahead can be achieved for the STEMA technique

via the forecast function after fitting the ARIMA models in the spatial model with ARIMA

(Section 3.4.2.1) and temporal model with ARIMA (Section 3.4.2.2). The leave-one-out pro-

cedure and model averaging would be performed as described (Section 3.4.2.3) for each time

point for which forecasts were estimated. While the proposed technique is only suitable to

forecast future, regular time points for the same locations, this is typically desirable for many

ecological and epidemiological analyses where predicting the status of a fixed population at
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Figure 1: Effect size of lagged winter SST on CPUE of each species broken down by management
area using best forecasting method as determined by the results of pairwise multiple comparisons:
(a) Sablefish (STEMA), (b) Pacific cod (N1), (c) Pacific cod (STEMA), (d) Pacific halibut (N1),
and (e) Giant grenadier (STEMA). The rank correlation r statistic is given as the effect size.
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Figure 3.1: Effect size of lagged winter SST on CPUE of each species broken down by man-
agement area using best forecasting method as determined by the results of pairwise multiple
comparisons: (a) Sablefish (STEMA), (b) Pacific cod (N1), (c) Pacific cod (STEMA), (d) Pa-
cific halibut (N1), and (e) Giant grenadier (STEMA). The rank correlation r statistic is given as
the effect size.
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future time points is desired. It would be feasible to extend STEMA-generated forecasts to

new locations by using any of several spatial interpolation methods including inverse distance

weighting, kriging, and smoothing splines. Migratory and irregular population values can also

be forecast provided seasonality is appropriately accounted for in the ARIMA model structure

portion of the STEMA method. The STEMA technique is also as intuitive, accessible, and

simpler to deploy than other forecasting methods compared in this paper, making it a suitable

forecasting method for population ecology, fisheries and wildlife management, vector-borne

disease research and monitoring, and econometrics.
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Chapter 4

Selecting environmental covariates affecting adult groundfish catches in the Gulf of Alaska
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Abstract

Fisheries management organizations are interested in monitoring economically important

marine fish species and using this information to inform management strategies. Determining

environmental factors that best predict changes in these populations are therefore a priority to

ecologists. I illustrate the application of the least squares-based spline estimation and group

LASSO (LSSGLASSO) procedure for selection of coefficient functions in single index vary-

ing coefficient models (SIVCMs) on an ecological data set including environmental covariates

suspected to play a role in the catches and weights of six groundfish species. Temporal trends

in variable selection were apparent, though the selection of variables was unrelated to com-

mon North Pacific climate indices. These results indicate that the strength of an environmental

variable’s effect on a groundfish population may change over time, and not necessarily in-

step with known low-frequency patterns of ocean-climate variability commonly attributable to

large-scale regime shifts in the North Pacific.

Keywords and phrases: Single index model, group LASSO selection
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4.1 Introduction

It is well-understood that the northern Pacific system is controlled by multiple interdecadal

patterns of climate variability that stem from different physical sources (Francis et al., 1998).

Groundfish populations in the northeastern Pacific Ocean followed the six- to 12-year warm-

ing and cooling periods of the El Niño-Southern Oscillation (ENSO) (Hollowed and Wooster,

1992). Sea surface temperature and pressure changes in the North Pacific are captured by the

Pacific Decadal Oscillation (PDO), which is mainly separate from ENSO behavior in the re-

gion (Mantua and Hare, 2002). A third climate cycle described recently by Di Lorenzo et al.

(2008) and termed the Northeast Pacific Gyre Oscillation (NPGO) follows variations in ocean

nutrient cycling and phytoplankton abundance and plays a role in the larger system of climate

variability with ENSO and PDO (Di Lorenzo et al., 2013).

Dramatic, permanent changes in marine species compositions in response to shifts in cli-

mate modes (commonly referred to as regime shifts) such as the strong one observed in 1976-

1977 may likely be the convergence of several climate patterns switching phases within the

same time period. This switching of regimes makes it difficult to identify which specific pat-

terns are culprits in affecting distinct marine populations, particularly in deepwater populations

where relationships between the marine environment and atmospheric trends are more nuanced

and may involve complex lagged effects. Many studies on fisheries systems continue to fo-

cus on these interdecadal climate modes as primary sources of variability in population sizes

of marine fishes. Litzow et al. (2014) highlighted the insufficiency of climate modes alone to

accurately describe variability found in many commercially valuable marine populations on

multi-year scales. Other sources of oceanic variability not directly linked to climate modes ex-

ist and should be considered when attempting to create accurate models to describe and predict

changes in marine populations, even in areas that appear to be dominated by shifts in climate

regimes. The complicated interplay of ocean-climate systems in the North Pacific region makes

it difficult to identify which and how specific indices are culprits in affecting distinct marine

populations.
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Many of the marine fishes in the Northern Pacific Ocean are commercially important

species that contribute significantly to the economy of the United States and are an important

source of food both domestically and internationally (Council, 2016; Goen and Erikson, 2017;

Johnson et al., 2016). Several of these populations are managed by international or regional

fishing commissions to control commercial harvests and monitor population health (Goen and

Erikson, 2017; NPFMC, 2017; Pennoyer and Balsiger, 1998; Rodgveller et al., 2008). These

organizations are becoming increasingly concerned about the role climate plays in maintaining

healthy fish populations, especially as marine fishes do not recover from population collapses

as quickly as previously believed (Hutchings, 2000). Fishing activities are becoming increas-

ingly concentrated on deeper-dwelling species (Moore and Mace, 1999; Moore, 1999). While

focus on the effect of various climate modes has dominated ecological research on fishes in

the North Pacific region, relationships between the marine environment and atmospheric trends

are nuanced and may involve complex lagged effects, particularly for deepwater populations

(Rijnsdorp et al., 2009). It is also problematic to study organisms that inhabit the deep ocean,

as they are not adapted to surface-level conditions and prove difficult to sample and keep alive,

making experiments in laboratory conditions impossible or prohibitively expensive. Determin-

ing which specific environmental variables contribute to fluctuations in the populations of these

species from observational data would represent major progress in discerning the impact of cli-

mate variability on marine ecosystem health and how those changes affect the economy and

food security. A model structure able to accommodate a suite of environmental variables that

vary spatiotemporally would be necessary to examine effects of many environmental covariates

on deepwater marine populations simultaneously.

Consider the single index variable coefficient model (SIVCM) of the form

yi “ tGpθ
T
0Ziqu

TXi ` εi i “ 1, . . . , n , (4.1)

where θ0 is a vector of unknown coefficients representing the single-index direction, Gp¨q “

tgp¨q0, . . . , gp¨qpu
T are nonparametric coefficient functions, and ε are the random errors. The
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SIVCM is a convenient structure for incorporating spatiotemporal effects for multiple envi-

ronmental predictors. Forward selection, backwards elimination, and stepwise selection meth-

ods are unstable for models with many predictors and even with advancements to the algo-

rithms, these methods are considered sub-optimal for variable selection, particularly for high-

dimensional models (Cai et al., 2009). Penalty-based regression procedures, such as ridge

regression and least absolute shrinkage and selection operator (LASSO) estimation, penalize

large regression coefficients to reduce overfitting. LASSO additionally performs variable selec-

tion by penalizing small regression coefficients to zero, effectively removing these coefficients

from the model. LASSO works particularly well for models with many predictors because it

shrinks large coefficients to zero rather than minimizing them, and it is computationally effi-

cient (Ledolter, 2013). Group LASSO incorporates information about groupings of variables

into the penalty function, which is particularly important for categorical predictor variables

(Meier et al., 2009). While selection for varying coefficient models (VCMs), a lower-order

relative of the SIVCM, have built on both the smoothly clipped absolute deviation (SCAD) and

LASSO approaches (Fan et al., 2003; Matsui and Misumi, 2015; Wang and Xia, 2009; Xue

and Qu, 2012), selection procedures of the single-index direction coefficients or the functions

in SIVCMs has so far exclusively used SCAD penalties (Feng and Xue, 2013; Song et al.,

2016; Yang and Yang, 2017). SCAD procedures are unbiased, but they are sensitive to initial

estimation and parameter tuning (Xue and Qu, 2012). LASSO procedures are typically sim-

pler to implement than SCAD, and group LASSO has been shown to correctly select important

variables for VCM where the number of dimensions far exceeds the number of observations

(Wei et al., 2011). Here, I will use a combination of least squared-based spline estimation

and group LASSO proposed by Sun (2017) to select coefficient functions and estimate the in-

dex parameters in a SIVCM of spatiotemporally-varying environmental covariates potentially

contributing to changes in groundfish populations in the North Pacific Ocean. With this appli-

cation, I aimed to establish relevant environmental conditions that affect populations of focal

groundfish species in this region.
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4.2 Methods

Annual surveys of several groundfish species are taken at established locations in the waters

along the coast of Alaska by the Alaska Fisheries Science Center (AFSC), a division of the

National Oceanic and Atmospheric Administration (NOAA). Catch per unit effort (CPUE)

and mean weight in kg of six groundfish species determined at each location for each sur-

vey year were obtained for years 1979–2013 (Alaska Fisheries Science Center, 2019a; Sigler

and Lunsford, 2009). Air temperature in degrees Celcius (ATMP), sea level pressure in hPa

(PRES), wind speed in meters per second averaged over eight-minute periods (WSPD), sea

surface temperature in degrees Celsius (WTMP), and the average height in meters of the high-

est one-third of all waves in 20-minute sampling periods (WVHT) measured daily from buoys

in the Gulf of Alaska were obtained from the National Data Buoy Center and summarized by

monthly means (National Data Buoy Center, 2018a). Temperature in degrees Celsius measured

at the sea floor (hereafter bottom temperature) was obtained from the AFSC Resource Assess-

ment and Conservation Engineering (RACE) Division’s bottom trawl surveys (Alaska Fisheries

Science Center, 2019b). Zooplankton biomass volume given in number per cubic meter were

obtained from the NOAA’s Coastal and Oceanic Plankton Ecology, Production, and Observa-

tion Database (O’Brien, 2007b). Alkalinity (Alk), chlorophyll (Chl), nitrate (NO3), dissolved

oxygen (Oxy), phosphate (Phos), and silicate (Sil) concentrations at depths of 75, 400, and 900

meters were obtained from the NOAA’s World Ocean Database (Boyer et al., 2013).

Since measurements of environmental variables were not measured at the same locations

across all years for which groundfish surveys were performed, spatiotemporal interpolation

via inverse distance weighting was used to obtain environmental measures at exact locations

where MESA surveys were conducted (Li et al., 2014b). For all environmental variables, a

seasonal amplitude was calculated for each survey year. For physical variables ATMP, PRES,

WSPD, WTMP, WVHT and bottom temperature, seasonal amplitude was defined as the mean

of June, July, and August minus the mean of December, January, and February because of

temperatures maximizing in the summer and minimizing in winter and winter storms enabling

strong mixing of ocean nutrients. Seasonal amplitude for chemical and biological variables
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including plankton, chlorophyll, alkalinity, nitrate, dissolved oxygen (DO), phosphate, salinity,

and silicate was calculated as the mean of August, September, and October minus the mean

of March, April, and May. Zooplankton biomass in May is increasing after winter vertical

mixing of deepwater nutrients and benefiting from spring plankton blooms but has not yet

been depleted by grazing from summer-migrating pelagic fishes and cephalopods (Brodeur and

Ware, 1992; Chiba et al., 2006). Therefore nutrients are generally maximal in the spring and

minimal in fall after depletion by phytoplankton, whereas zooplankton and chlorophyll would

be maximal in fall after nutrient consumption and growth over the summer in the North Pacific

region (Childers et al., 2005; Sackmann et al., 2004; Wong et al., 2002a).

A SIVCM of the form given in (4.1) was fit, where yi was the CPUE or mean weight of a

groundfish at each location for each year, X “ px0i, . . . , xpiqT with x0i “ 1 and x1i, . . . , xpi be-

ing the seasonal amplitudes of environmental variables described previously, andZ “ pz1i, z2i, z3iqT

are the longitude, latitude, and year for each observation. Heat maps were used to visualize se-

lection of variables per year and over all years for each groundfish species. The dissimilarity

between variables was calculated, where distances between variable x and y was calculated

as the L2 norm,
b

ř

i pxi ´ yiq
2. Dendrograms were added to the heat maps to visualize dis-

similarities. After selection, models for all years were refit with scaled Y,X, and Z using

only variables selected by LSSGLASSO to make the coefficient functions comparable between

different responses.

To further explore if regional climate conditions had an effect on the variables being se-

lected each year, I considered potential relationships between the selection of a variable over

time and corresponding climate indices. The Pacific Decadal Oscillation (PDO) monthly index,

multivariate El Niño/Southern Oscillation bi-monthly index (MEI), and North Pacific Gyre Os-

cillation (NPGO) monthly index for 1979–2013 were obtained from Di Lorenzo (2018), NOAA

ESRL Physical Sciences Division (2019) and Mantua and JISAU, University of Washington

(2016). Annual signs for climate indices were defined for each year as the sign of the annual

mean, where `1 indicated more positive monthly indices than negative indices in a year, ´1

indicated more negative than positive monthly indices in a year, and 0 indicated equal number

of positive and negative indices in a year. Logistic regression was then used to fit the model
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gpEpyiqq “ β0 ` βkxki for years i “ 1979, . . . , 2013 for each variable within a groundfish

response, where gp¨q was a log-link function; β0 was the intercept term; βk were linear co-

efficients, k P tPDO, MEI, NPGOu; xki were annual signs of k index; and yi were binary

indicators of whether a variable was or was not selected for each year. A Chi-square test was

used to compare the models to an intercept-only model. P-values from the Chi-square test were

adjusted within groundfish response to control for the false discovery rate (FDR) of multiple

testing using the Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995).

4.3 Results

Variables consistently selected by LSSGLASSO as important to Pacific cod CPUE were Alk 75m,

plankton, Chl 75m, Sil 75m, bottom temperature, Sil 900m, and Chl 400m, which usually

were in years 1985, 1990, 1992, 1995, and 2010 (Figure 4.1). Variables consistently selected

in 1992, 1996, and 2002 for Pacific cod weight were bottom temperature, plankton, Alk 75m,

Alk 400m, Alk 900m, Chl 75m, Chl 400m, Oxy 75m, and Sil 900m (Figure 4.2). Alk 400m,

Alk 900m, Chl 75m, Chl 900m, Sal 400m, Sal 900m, WTMP, PRES, and WVHT in years

1991-1992, 1997-1999, and 2013 were selected variables for Pacific halibut CPUE, whereas

variables important for Pacific halibut weight included Alk 75m, Chl 400m, Chl 900m, plank-

ton, Oxy 75m, Oxy 400m, and Sil 75m for years 1989, 1991, 1993, 1994 (Figures 4.3 and 4.4).

Chl 900m, plankton, NO3 900m, and Oxy 400m were consistently selected together in years

1984 and 1992 for sablefish CPUE, while WSPD and ATMP were the only variables selected

as important to sablefish weight more than once over the 30-year period of record (Figures 4.5

and 4.6). A wide array of environmental variables were selected for rougheye rouckfish CPUE

consistently and almost exclusively in years 1991, 1995, 2001, 20011, and 2013, whereas 1990

was the only year when more than one variable was selected for rougheye rockfish weight (Fig-

ures 4.7 and 4.8). This was also the case for shortraker rockfish, where most variables were

selected in 1992, 1998, 2001, 2001, 2005, 2007, and 2009 for CPUE and only selected in 1994,

2003, and 2008 for weight (Figures 4.9 and 4.10). Chl 900m, Alk 900m, Oxy 400m, Sal 75m,

and Sil 900m as a suite were selected for shortspine thornyhead CPUE in 1984 and 1986, how-

ever many environmental variables contributed to thornyhead weight in 1984-1986, 2000, and
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2004 (Figures 4.11 and 4.12). Only sablefish CPUE, rougheye rockfish CPUE and weight,

and Pacific cod CPUE had variables selected as important predictors of groundfish CPUE or

weights when analyzing selection across all available years. Alk 900m was the main selected

variable for Pacific cod and sablefish CPUEs for all years included in the selection procedure.

Annual signs of PDO and NPGO climate indices in the North Pacific were not significantly

related to the selection of any environmental variables; however, MEI was related to the se-

lection of several environmental variables in the Pacific cod weight SIVCM (Figure 4.13 and

Tables C.1 to C.3).
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Figure 4.1: Variable selection analyzed for each available year and all years together for the
SIVCM with Pacific cod CPUE as the response. X-axis represents years for which selection
was performed, and all available years of data used in selection labeled as “allyrs”. Y-axis
contains all variables in SIVCM from which selection was performed. Dark purple indicates
the selected variable(s). Dendrograms represent the dissimilarity between selected variables
calculated using the L2 norm.

I plotted the selected coefficient functions of WTMP, Alk 400m, Alk 900m, Sil 75m, and

Sil 900m for sablefish CPUE using all years of data to provide a detailed example of interpreta-

tion of the SIVCM functions (Figure 4.14). Parameters representing the single-index direction

estimated by the LSSGLASSO procedure were pθ “ p0.9372,´0.3296,´0.1146q. For a given

location specified by a fixed longitude-latitude pair, trends of sablefish catch for a given coeffi-

cient function are opposite what is shown because of the negative value of the year coefficient
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Figure 4.2: Variable selection analyzed for each available year and all years together for the
SIVCM with Pacific cod weight as the response. Axes, colors, and dendrograms are as de-
scribed in Figure 4.1.
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Figure 4.3: Variable selection analyzed for each available year and all years together for the
SIVCM with Pacific halibut CPUE as the response. Axes, colors, and dendrograms are as
described in Figure 4.1.
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Figure 4.4: Variable selection analyzed for each available year and all years together for the
SIVCM with Pacific halibut weight as the response. Axes, colors, and dendrograms are as
described in Figure 4.1.
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Figure 4.5: Variable selection analyzed for each available year and all years together for the
SIVCM with sablefish CPUE as the response. Axes, colors, and dendrograms are as described
in Figure 4.1.
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Figure 4.6: Variable selection analyzed for each available year and all years together for the
SIVCM with sablefish weight as the response. Axes, colors, and dendrograms are as described
in Figure 4.1.
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Figure 4.7: Variable selection analyzed for each available year and all years together for the
SIVCM with rougheye rockfish CPUE as the response. Axes, colors, and dendrograms are as
described in Figure 4.1.
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Figure 4.8: Variable selection analyzed for each available year and all years together for the
SIVCM with rougheye rockfish weight as the response. Axes, colors, and dendrograms are as
described in Figure 4.1.
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Figure 4.9: Variable selection analyzed for each available year and all years together for the
SIVCM with shortraker rockfish CPUE as the response. Axes, colors, and dendrograms are as
described in Figure 4.1.
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Figure 4.10: Variable selection analyzed for each available year and all years together for the
SIVCM with shortraker rockfish weight as the response. Axes, colors, and dendrograms are as
described in Figure 4.1.
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Figure 4.11: Variable selection analyzed for each available year and all years together for the
SIVCM with shortspine thornyhead CPUE as the response. Axes, colors, and dendrograms are
as described in Figure 4.1.
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Figure 4.12: Variable selection analyzed for each available year and all years together for the
SIVCM with shortspine thornyhead weight as the response. Axes, colors, and dendrograms are
as described in Figure 4.1.
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(b) MEI seasonal amplitude
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(c) NPGO seasonal amplitude

Figure 4.13: FDR-corrected p-values for relationship between selection of each environmen-
tal variable contributing to groundfish CPUEs or WTs each year and yearly signs of climate
indices PDO (a), MEI (b), and NPGO (c) fitted using logistic regression. Abbr: cod = Pacific
cod; halibut = Pacific halibut; sable = sablefish; rrock = rougheye rockfish; srock = shortraker
rockfish; thorny = shortspine thornyhead; CPUE = catch per unit effort; WT = mean weight in
kg. P ă 0.1 are indicated by red colors. Grey indicates a p-value could not be calculated due
to insufficient sample size (n “ 6) for the model.
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in the single-index direction. Sablefish catch initially decreased sharply, followed by a moder-

ate increase over more recent years (approximately 2003–2013), as indicated by the intercept

function in Figure 4.14. The coefficient functions for WTMP and Sil 900m showed these hav-

ing decreasing effects on mean sablefish CPUE in earlier (1984–1993) and later (2005-2013)

years and an increasing effect on sablefish catch in 1994–2004. The effect of Alk 400m at a

given location had a decreasing effect on sablefish catch through around 1993 before increasing

rapidly. Alk 900m shared a similar trend for the latter years of the data, but tended towards a

more cubic relationship on sablefish catch for a given location. Sil 75m showed an overall neg-

ative effect on sablefish CPUE for increasing time at a given location until about 1997, when

the effect on sablefish increased before resuming its negative relationship from around 1999

onward.
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Figure 4.14: Coefficient functions selected and estimated by LSSGLASSO as significant pre-
dictors of sablefish CPUE.

4.4 Discussion

Selection of environmental variables appeared to be unrelated to annual signs of both the PDO

and NPGO climate indices. However, large-scale climate patterns have previously been shown

to be associated with groundfish responses (Francis et al., 1998; Hollowed and Wooster, 1992).

To explore whether PDO, MEI, or NPGO were good estimators of groundfish catches and
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weights and if the effect of a climate index on the selection of variables is related to that in-

dex’s effect on the groundfish populations directly, I fit GAMs with seasonal amplitudes of

PDO, MEI, and NPGO (lagged by five years for all groundfish except Pacific halibut, which

was lagged 10 years) as three additive smooth predictors and groundfish CPUEs or weights

as responses (Wood, 2006). P-values were estimated for each smooth predictor in each model

and plotted in a heatmap for efficient visualization (Figure 4.15). Lagged PDO and MEI were

good estimates of sablefish CPUE and provided a moderate fit for the data (adjusted R2=0.445).

Pacific cod weight was mostly explained by lagged PDO, with the GAM fitting the data well

(adjusted R2=0.643). Lagged PDO was also a good estimator of rougheye rockfish weight

and provided a good fit to the data (adjusted R2=0.642). Therefore, climate indices are not

universally ideal for modeling groundfish CPUE and mean weights along the coast of Alaska.

Interestingly, Pacific cod weight was best predicted by PDO annual signs and not those of

MEI, which was related to the selection of variables affecting cod weight. This result suggests

that the selection of variables affecting cod weight was not the result of an existing, strong effect

of MEI on cod populations, but rather the existence of several pathways of climate and/or other

environmental effects on groundfish responses. These indices could be useful predictors of

fish catches and weights, although there is no way to ascertain what specific changes in the

atmosphere and ocean summarized by these indices affect these fish. Therefore, these climate

indices may be suitable for prediction or describing long-term temporal trends, but are less

useful for inference and motivating specific further study. For select groundfish whose catches

or weights can be reasonably predicted by one or more of the climate indices, separate pathways

of environmental effects on responses of groundfish populations may exist.

The coefficient functions of the SIVCM for sablefish CPUE confirmed the nonlinear rela-

tionships of physical and environmental covariates to groundfish catch in Chapter 2 even when

spatiotemporal effects are accounted for across all predictors. As shown by my examination

of atmospheric oscillations to the selection of variables and the groundfish responses, tempo-

ral patterns in specific groups of variables being selected can be used to consider associations

of large-scale ecosystem variations to variable selection behavior. Deepwater species such as
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Figure 4.15: Heatmap of p-values for nonparametric relationship between groundfish CPUEs
or WTs each year and lagged yearly seasonal amplitudes of climate indices PDO, MEI, and
NPGO fitted using GAMs. Colors and abbr. are as described in Figure 4.13.

the groundfish examined in this study are difficult to monitor regularly, so determining envi-

ronmental variables that most accurately predict population health of deep water fishes and

incorporating these into forecasting models are useful for management organizations to make

more appropriate recommendations.
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Chapter 5

Spatial convergent cross mapping for a predator-prey system in the North Pacific
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Abstract

Historically, causal dynamics in ecology have been difficult to analyze and reproduce, es-

pecially in field data, although recently causality-based applications have been advanced. I ex-

plored whether one such method, convergent cross mapping (CCM), could be used on realistic

ecological data to identify potential causal dynamics and produce clearly interpretable results.

Spatial CCM was applied to a dataset containing population data of North Pacific deepwater

sablefish, Pacific cod, and Pacific halibut, along with lagged environmental variables. Some re-

sults were intuitively expected, but in other cases there was no clear intuition and false positives

were suspected when prior knowledge of putative causal relationships were not already well-

established for the system. It is clear that the technique is only suitable for confirming causal

dynamics in well-studied systems or as part of exploratory analyses for unknown systems, as

CCM can produce conclusions that may be no more helpful in understanding population dy-

namics in ecological systems than observational field studies analyzed using more traditional

statistical methods.

Keywords and phrases: causal analysis, convergent cross mapping, groundfish population dy-

namics
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5.1 Introduction

Distinguishing between causal effects and correlations in ecological research continues to be a

challenge, particularly for examination of relationships between climate fluctuations and pop-

ulation changes in long-term studies. Causal inference attempts to distinguish causal rela-

tionships from statistical associations. Two main versions of causal analysis exist The most

predominant version and the one with a statistical formulation is based in the probabilities of

causes and counterfactuals, and was popularized by Rubin (1974) and Robins (1986). It is also

most heavily used in biostatistics. Establishment of causality in this framework requires obser-

vation of both potential outcomes, the causal outcome and the counterfactual outcome, at once

with all other factors held constant (i.e. comparison of different states of the same world). The

impossibility of actually observing both states simultaneously is known as the ‘fundamental

problem of causal inference’ (Holland, 1986). For causal modeling, this dilemma is typically

treated as a missing data problem, where blocking in experimental studies and matching in ob-

servational studies are methods used to account for it. However even in randomized controlled

trials, which are considered the gold standard for causal analyses, these causal analysis methods

requires untestable, highly restrictive identifying assumptions that may not realistically hold,

often leading to sub-optimal analyses (Blalock, 2018; Rubin, 2008).

The second version of causality was primarily introduced by Wiener (1956), Sims (1972),

and Granger (1969) for use in econometric time series. Often referred to as “predictive causal-

ity”, it is based on hypothesis testing derived from correlations between time series of observed

outcomes. Granger causality was proposed by Granger (1969) as a method for testing causality

by determining if past observations of one time series could be used to accurately predict future

observations in a different time series. For two stationary time series Xt, Yt with zero means,

the general causal model defined by Granger (1969) is

Xt “

m
ÿ

j“1

ajXt´j `

m
ÿ

j“1

bjYt´j ` εt

Yt “
m
ÿ

j“1

cjXt´j `

m
ÿ

j“1

djYt´j ` ηt ,

(5.1)
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where εt and ηt are uncorrelated white noise. Causality in this framework implies Yt causes Xt

if bj ‰ 0, and Xt causes Yt if cj ‰ 0. Intuitively, Yt is said to cause Xt if past observations Yt´j

contain information that improves prediction of Xt more than past observations Xt´j do alone.

If both bj ‰ 0 and cj ‰ 0, a feedback relationship (bidirectional causality) where Xt is causing

Yt and Yt is also causing Xt is possible, though synchrony, where Xt and Yt are being forced

by an unmeasured external mechanism, may also be suspected. As seen in (5.1), causality

in this setting is only suitable to test for linear causal relationships; however extensions for

nonlinear systems have been developed (Bell et al., 1996; Diks and Panchenko, 2006; Hiemstra

and Jones, 1994; Marinazzo et al., 2008).

Despite the limitations of causal methods and debates surrounding their role and interpre-

tation in science (reviewed in Gelman (2011)), the promise of being able to detect and measure

causal dynamics in populations is attractive to ecologists, particularly those with the need to

understand how changing global climate affect ecosystem dynamics. Granger causality and its

extensions are the most often used causal analysis variant in large-scale biological and climate

systems (Arjas and Eerola, 1993; Elsner, 2007; Wang et al., 2004). A newer causality detec-

tion method related to Granger causality was developed by Sugihara et al. (2012) and coined

convergent cross mapping (CCM). Sugihara et al. (2012) asserted that Granger causality had a

considerable weakness if applied to nonlinear dynamic systems that needed to be addressed if

the approach was to be useful for exploring biological systems’ dynamics. Granger causality

requires separability, i.e. if Y causes X , information about Y should not be contained in the

time series of X , which is typically not satisfied in general dynamic systems. Sugihara et al.

(2012) claims CCM is able to distinguish causal interactions from effects of shared driving

variables, known as the Moran effect. Several ecological applications of CCM have been pub-

lished since the original paper, including applications in atmospheric science (van Nes et al.,

2015), climate effects on marine fish populations (Deyle et al., 2013), and nutrient and plankton

interactions in deep lakes (Frossard et al., 2018).

Modeling animal responses to climate variability using causal analysis techniques such as

CCM has the potential to improve understanding of intricate environmental processes involved
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in ecosystem dynamics. As a major intersection for several fluctuating climate systems (Ander-

son and Piatt, 1999; Bakun, 1999), a diverse and complex marine system (Livingston, 1993),

and a significant source of fishing income and food for the United States and Japan (National

Marine Fisheries Service, 2014), the North Pacific marine system is an ideal environment to

study the effects of a changing climate on an ecosystem with nonlinear, dynamic interactions,

known anthropogenic pressures, and a crucial role in economics and the global food supply.

The North Pacific marine system is influenced by multiple interacting climate modes, includ-

ing the Pacific Decadal Oscillation (PDO), El Niño-Southern Oscillation (ENSO), and North

Pacific Gyre Oscillation (NPGO) (Di Lorenzo et al., 2013). Present research on the influences

of environment on Alaskan groundfish, stocks of which support major commercial fisheries

for the area, is particularly limited due to the difficulty of accurately studying and managing

deepwater fishes. Determining potential causal effects of environmental fluctuations on adult

groundfish populations while accounting for their nonlinear, dynamic system can contribute

significantly to the knowledge of groundfish population dynamics and behavior. Identifying

environmental variables causing changes in groundfish populations would be useful in focus-

ing the collection of such variables during groundfish surveys and predicting commercial catch

for management purposes using forecasts of such variables from climate models.

Here I applied CCM to time series of three deepwater groundfish populations and related

environmental variables in the Northern Pacific Ocean. I focused on the catches of sablefish,

Pacific cod, and Pacific halibut along the coast of Alaska, as they have interacting trophic re-

lationships. All three species share a common prey, walleye pollock (Hollowed et al., 2000;

Livingston, 1993). Additionally, Pacific cod and sablefish serve as an important prey species for

Pacific halibut, and sablefish opportunistically prey on Pacific cod (Best and St-Pierre, 1986;

Moukhametov et al., 2008; Yang et al., 2006). No known trophic models or networks of com-

munity dynamics have been established for these commercially important fishes, thus it is of

interest to examine potential causal relationships between groundfish catches and their envi-

ronment as well as community dynamics among the three species. Applicability and reliability

of CCM to systems with time delays and nonlinear influences are not known (BozorgMagham

et al., 2015), along with CCM’s known potential to produce false positives in simulations (Clark
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et al., 2015); thus, along with interpretation of results, potential issues with the CCM applica-

tion and similar causal analysis methods to ecological data were discussed.

5.2 Methods

5.2.1 Convergent cross mapping and the multispatial extension

CCM relies on the construction of shadow manifolds, say MX and MY , built from lagged co-

ordinates of time series X “ txtu
L
t“1 and Y “ tytu

L
t“1 respectively with length L P N, which

according to Takens’ theorem act as proxies for underlying dynamic processes (Takens, 1981).

More specifically, the attractor manifold MX “ txtu
L
t“1`pE´1qτ is a set of E-dimensional vec-

tors where xt “ rxt, xt´τ , xt´2τ , . . . , xt´pE´1qτ s
T for t “ 1 ` pE ´ 1qτ to t “ L, E is the

embedding dimension and τ is the time lag. Under CCM, a cross-mapped estimate of yt is

formed by locating the time-corresponding vector on MX and determining its E ` 1 nearest-

neighbor points in xt. The time indices of these nearest neighbor points ordered from nearest

to farthest are t1, . . . , tE`1 and are then used to identify neighbors in yt, by which pyt is obtained

using a locally weighted mean,

pyt|MX “

E`1
ÿ

i“1

wiyti , (5.2)

which is known as simplex projection (Sugihara and May, 1990). Here, wi are distance-based

weights,

wi “
kpuiq

řE`1
i“1 kpuiq

, where ui “
}xt ´ xti}

}xt ´ xt1}
(5.3)

and kpuiq represents the Gaussian kernel and } ¨ } is the Euclidean norm on the E-dimensional

real space. Equation (5.2) is a linear smoother also known as the Nadaraya-Watson esti-

mator which is based on the method of least squares. As L increases, pyt|MX converges

to Y ptq. The efficacy of cross mapping is the Pearson’s correlation coefficient ρ between

tpyt|MXu
L
t“1`pE´1qτ and tytuLt“1`pE´1qτ . A cross-mapped estimate of xt and its cross mapping

efficacy are defined analogously. If Y causes X (unidirectional causality), Y can be estimated
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from X , but the reverse is not possible. In CCM, this is represented as a high values of ρ be-

tween tpyt|MXu
L
t“1`pE´1qτ and tytuLt“1`pE´1qτ compared to ρ between tpxt|MY u

L
t“1`pE´1qτ and

txtu
L
t“1`pE´1qτ .

Construction of shadow manifolds by simplex projection as described in Sugihara et al.

(2012) typically requires one long time series, which is not common in ecological data. Hsieh

et al. (2008) was able to show that simplex projection could be successfully performed us-

ing several short time series considered equivalent to create one longer composite time series

(dewdrop regression). Clark et al. (2015) adopted this technique by using spatial replicates

as versions of multiple short time series to create the single long time series. Incorporation

of spatially-replicated short time series was achieved by sampling from all spatial replicates

assumed to come from the same dynamical system, then a weighted average of observations

with similar historical dynamics from across all samples is used to perform simplex projection.

Bootstrapping of the estimation procedure is used to average multiple combinations of spatial

data (Clark et al., 2015).

5.2.2 Application of CCM to Alaskan groundfish populations

The MESA data was prepared as described in Section 4.2. I tested for causal relations between

catches of each groundfish (Pacific halibut, sablefish or Pacific cod) and the following envi-

ronmental variables: surface temperature, bottom temperature, chlorophyll at 75 and 150 m,

and zooplankton biomass. I then tested for a causal relationship between the catches of Pacific

halibut, and sablefish, Pacific halibut and Pacific cod, and sablefish and Pacific cod. The spatial

version of CCM assumes some level of homogeneity across spatial replicates, which is unlikely

to hold for my data. I therefore reran CCM for each of the 6 management areas defined by the

Alaska Fisheries Science Center and for each of 13 regions defined by hierarchical clustering

using complete linkage to compare results of CCM at different spatial scales. Regions created

through clustering were defined with a distance threshold of 400 km, as effects of environmen-

tal and physical covariates and metapopulation dynamics are most influential in the population

dynamics of deep-sea marine fish at regional scales of thousands of kilometers (Levin et al.,

2001; Williams et al., 2010).
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To appropriately test for causal relationships using CCM, several prior steps were taken

before testing for significant causal relationships between processes A and B. First, all miss-

ing values and zeros were removed from the data, as zeros do not provide any information in

time series. Next, stations with incomplete time series or inconsistent sampling schedules (e.g.

switching from annual surveys to every two years during the study) were removed, since CCM

is only suitable for time series with equal sampling intervals fixed throughout the series (Chang

et al., 2017). Incomplete time series could be imputed, however imputation is likely to create

artifacts that may bias any potential causal relationships. An optimal embedding dimension E

is then optimized (see Clark et al. (2015)), with the caveat that τ , the length of time steps used

for lagged components in the attractor space, was also optimized. For the analysis done on the

whole data together, E being an integer between 2 and 6 (i.e. E P r2 . . 6s) and τ P r1 . . 5s

were tested for each pair of variables. Due to the decreasing size of data included in analyses

done for each area or clustered region, E P r2 . . 5s and τ P r1 . . 4s were tested for the area

analyses, whereas only E P r2 . . 4s and τ P r1 . . 3s were tested for analyses on each of the

small regions defined by hierarchical clustering. Using the optimal E and tau, I then tested for

nonlinearity, since CCM is mainly suited for nonlinear systems. Only once significant nonlin-

earity was established was CCM then used to calculate the ability of process A to predict the

dynamics of process B, and vice versa, using Pearson’s correlation coefficient ρ. Bootstrap-

ping sampled spatial replicates with replacement was performed to allow for information from

multiple spatial locations to be incorporated into the CCM procedure. For my analyses, the

number of bootstrapping iterations was set at 500 for CCM done by region and area, whereas

100 iterations were done when performing CCM on the full data. Last, significance of the

causal relationship (i.e. convergence) was ascertained if both ρ ą 0 was significantly monoton-

ically increasing determined by Kendall’s τ test and ρLmax ą ρLmin
was significant by Fisher’s

∆ρ Z test for at least 95% of the bootstrapped iterations, where Lmax and Lmin are the mini-

mum and maximum library sizes, respectively, used in the analysis. The implementation of the

multispatial CCM algorithm was carried out using the package multispatialCCM in R (Clark

et al., 2015). Spearman’s rank correlation coefficient was also calculated between process A

and process B for each region, area, and for the full data set.
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5.3 Results

Examination of potential causal relationships between Pacific halibut CPUE and environmen-

tal variables revealed some signals that were immediately apparent. For regions or areas with

sufficient complete time series, unidirectional forcing of zooplankton on halibut CPUE was

consistent for most regions (Figure 5.1). Chlorophyll at 75 m lagged five years causally forced

halibut CPUE in the West Yakutat, however significant cross-map correlations for both chloro-

phyll forcing halibut and halibut forcing chlorophyll were observed in the nearby region 10.

Likewise, five-year lagged bottom water temperature had significant cross-map skills for both

causal directions across regions and areas. CCM cross-map skills for lagged SST and halibut

catch, as well as lagged chlorophyll at 150 m and halibut CPUE, were inconsistent across areas

and regions. Cross-map correlations for sablefish versus Pacific halibut CPUEs were high and

significant for both causal directions, which was also true for Pacific cod and halibut CPUEs,

except at region 11. Spearman’s correlation coefficients between halibut CPUE and five-year

lagged environmental covariates were low for all cases (Figure 5.1).

CCM analysis of sablefish and lagged environmental variables generally reflected similar

patterns as those of Pacific halibut. Cross-map correlations with sablefish were inconsistent

across regions and areas for five-year lagged SST and chlorophyll at 150 m, with higher signif-

icant Pearson’s ρ values for environment forcing CPUE for some regions, but in other regions

higher ρ for CPUE forcing environment (Figure 5.2). Two regions observed unidirectional

forcing for chlorophyll at 150 m on sablefish catch, whereas the results in region 7 indicated

sablefish causing chlorophyll at 150 m unilaterally. Zooplankton biomass lagged five years

unlaterally forced sablefish CPUE in regions 6 and 10, whereas sablefish catch was unidirec-

tionally forced by lagged bottom water temperature at regions 4 and 7. In cases where CCM

was done for all spatial locations together, no clear forcing direction was apparent. Spearman’s

correlation coefficients between sablefish CPUE and five-year lagged environmental covariates

were low for all cases, whereas moderate correlation was observed between cod and sablefish

CPUEs for the West Yakutat and Central Gulf of Alaska management areas and regions 3, 6,

and 10 (Figure 5.2).

105



|_

|
_ _
| _

| _
|

|
_

_ |
|

_

|
_

|
_

_ |

_
| |
_ _

|

|
_

|_ _
|

|
_

_ |

_ |

|
_ _ |

|_ _
|

_ | _ | _ | _ | _ |

_ | _ |

|_ |_

|_

s
u

rf
a

c
e

 w
a

te
r 

te
m

p
.

b
o

tt
o

m
 w

a
te

r 
te

m
p

.
z
o

o
p

la
n

k
to

n
c
h

lo
ro

p
h

y
ll 

7
5

m
c
h

lo
ro

p
h

y
ll 

1
5

0
m

s
a

b
le

fi
s
h

P
a

c
if
ic

 c
o

d

A
ll

A
le

u
ti
a

n
s

E
a

s
t 

Y
a

k
u

ta
t/

S
o

u
th

e
a

s
t

W
e

s
t 

Y
a

k
u

ta
t

W
e

s
te

rn
 G

u
lf
 o

f 
A

la
s
k
a

C
e

n
tr

a
l 
G

u
lf
 o

f 
A

la
s
k
a

B
e

ri
n

g
 S

e
a 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

0
.0

0
.5

1
.0

0
.0

0
.5

1
.0

0
.0

0
.5

1
.0

0
.0

0
.5

1
.0

0
.0

0
.5

1
.0

0
.0

0
.5

1
.0

0
.0

0
.5

1
.0

c
ro

s
s
-m

a
p
 c

o
rr

e
la

ti
o
n
, 
ρ

Fi
gu

re
5.

1:
M

ax
im

um
co

rr
el

at
io

n
of

cr
os

s-
m

ap
pe

d
ve

rs
us

ob
se

rv
ed

va
lu

es
as

a
fu

nc
tio

n
of

tim
e

se
ri

es
le

ng
th

fo
rc

om
pa

ri
so

ns
be

tw
ee

n
en

vi
ro

n-
m

en
t,

co
d,

an
d

sa
bl

efi
sh

(p
ro

ce
ss

es
A

,a
s

co
lu

m
ns

)
an

d
Pa

ci
fic

ha
lib

ut
C

PU
E

(p
ro

ce
ss

B
).

Si
gn

ifi
ca

nt
fo

rc
in

g
of

A
on

B
is

re
pr

es
en

te
d

as
re

d
ho

ri
zo

nt
al

ba
rs

,w
hi

le
si

gn
ifi

ca
nt

fo
rc

in
g

of
B

on
A

ar
e

bl
ue

ve
rt

ic
al

ba
rs

.N
on

-s
ig

ni
fic

an
tr

el
at

io
ns

hi
ps

ar
e

in
di

ca
te

d
as

da
rk

gr
ey

ho
ri

zo
nt

al
ba

rs
(A
Ñ

B
)a

nd
ve

rt
ic

al
ba

rs
(B
Ñ

A
).

Sp
ea

rm
an

’s
ra

nk
co

rr
el

at
io

n
co

ef
fic

ie
nt
ρ

is
re

pr
es

en
te

d
as

op
en

ci
rc

le
s.

E
m

pt
y

pl
ot

s
in

di
ca

te
th

at
th

er
e

w
er

e
in

su
ffi

ci
en

to
bs

er
va

tio
ns

fr
om

a
co

m
pl

et
e

tim
e

se
ri

es
fo

r
th

e
m

ul
tis

pa
tia

lC
C

M
al

go
ri

th
m

to
be

gi
n.

Pl
ot

s
w

ith
on

ly
Sp

ea
rm

an
’s
ρ

in
di

ca
te

th
at

th
e

pr
ed

ic
tiv

e
ab

ili
ty

of
on

e
or

bo
th

pr
oc

es
se

s
di

d
no

ts
ig

ni
fic

an
tly

de
cr

ea
se

w
ith

in
cr

ea
si

ng
tim

e
di

st
an

ce
,s

o
C

C
M

w
as

no
tp

er
fo

rm
ed

.

106



_ |

|
_ _

| _ |
|_ _ | |_ |
_ _ |

_ | _ |
_

|
|

_ _
|

_
|

_
|

_ |

|_

|_

_
|

_
|

_
| _

|

|_ _ | _
| _ | |

_

|_ |_
_

|

|
_

|
_

_
|

_
| |_ _
| _ |

|_

|_ |_ _ |

_ | |_ _ |

|_ |_ _ | _ | _ |

s
u

rf
a

c
e

 w
a

te
r 

te
m

p
.

b
o

tt
o

m
 w

a
te

r 
te

m
p

.
z
o

o
p

la
n

k
to

n
c
h

lo
ro

p
h

y
ll 

7
5

m
c
h

lo
ro

p
h

y
ll 

1
5

0
m

P
a

c
if
ic

 c
o

d
P

a
c
if
ic

 h
a

lib
u

t

A
ll

A
le

u
ti
a

n
s

E
a

s
t 

Y
a

k
u

ta
t/

S
o

u
th

e
a

s
t

W
e

s
t 

Y
a

k
u

ta
t

W
e

s
te

rn
 G

u
lf
 o

f 
A

la
s
k
a

C
e

n
tr

a
l 
G

u
lf
 o

f 
A

la
s
k
a

B
e

ri
n

g
 S

e
a 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

0
.0

0
.5

1
.0

0
.0

0
.5

1
.0

0
.0

0
.5

1
.0

0
.0

0
.5

1
.0

0
.0

0
.5

1
.0

0
.0

0
.5

1
.0

0
.0

0
.5

1
.0

c
ro

s
s
-m

a
p
 c

o
rr

e
la

ti
o
n
, 
ρ

Fi
gu

re
5.

2:
M

ax
im

um
co

rr
el

at
io

n
of

cr
os

s-
m

ap
pe

d
ve

rs
us

ob
se

rv
ed

va
lu

es
as

a
fu

nc
tio

n
of

tim
e

se
ri

es
le

ng
th

fo
rc

om
pa

ri
so

ns
be

tw
ee

n
en

vi
ro

n-
m

en
t,

co
d,

an
d

ha
lib

ut
(p

ro
ce

ss
es

A
,a

s
co

lu
m

ns
)a

nd
sa

bl
efi

sh
C

PU
E

(p
ro

ce
ss

B
).

Si
gn

ifi
ca

nt
fo

rc
in

g
of

A
on

B
is

re
pr

es
en

te
d

as
re

d
ho

ri
zo

nt
al

ba
rs

,w
hi

le
si

gn
ifi

ca
nt

fo
rc

in
g

of
B

on
A

ar
e

bl
ue

ve
rt

ic
al

ba
rs

.
N

on
-s

ig
ni

fic
an

tr
el

at
io

ns
hi

ps
ar

e
in

di
ca

te
d

as
da

rk
gr

ey
ho

ri
zo

nt
al

ba
rs

(A
Ñ

B
)

an
d

ve
rt

ic
al

ba
rs

(B
Ñ

A
).

Sp
ea

rm
an

’s
ra

nk
co

rr
el

at
io

n
co

ef
fic

ie
nt
ρ

is
re

pr
es

en
te

d
as

op
en

ci
rc

le
s.

E
m

pt
y

pl
ot

s
in

di
ca

te
th

at
th

er
e

w
er

e
in

su
f-

fic
ie

nt
ob

se
rv

at
io

ns
fr

om
a

co
m

pl
et

e
tim

e
se

ri
es

fo
r

th
e

m
ul

tis
pa

tia
lC

C
M

al
go

ri
th

m
to

be
gi

n.
Pl

ot
s

w
ith

on
ly

Sp
ea

rm
an

’s
ρ

in
di

ca
te

th
at

th
e

pr
ed

ic
tiv

e
ab

ili
ty

of
on

e
or

bo
th

pr
oc

es
se

s
di

d
no

ts
ig

ni
fic

an
tly

de
cr

ea
se

w
ith

in
cr

ea
si

ng
tim

e
di

st
an

ce
,s

o
C

C
M

w
as

no
tp

er
fo

rm
ed

.

107



For causal dynamics of Pacific cod CPUE and bottom water temperature, significant uni-

directional forcing of temperature on cod catch was consistently detected across most regions

and areas (Figure 5.3). Significant nonlinear dynamics for lagged zooplankton and chlorophyll

at 75 m when considering cod CPUE were not detected in most areas and regions, so CCM was

not conducted. For the one region where nonlinear dynamics were significant for zooplankton

(region 6), unilateral forcing of zooplankton on cod CPUE was suggested. Moderate Spear-

man’s correlation coefficient values between cod CPUE and both depths of chlorophyll were

observed for the West Yakutat and Western Gulf of Alaska management areas and regions 3,

4, 5, 8, 10, and 11, but Spearman’s ρ values between CPUE and both water temperatures along

with plankton were low (Figure 5.3).

5.4 Discussion

Regions determined by hierarchical clustering approximately followed larger management ar-

eas defined by the MESA survey (Figure 5.4) (Sigler and Lunsford, 2009). Cross-mapping

correlations were often high and significant in both causal directions for areas, but these tended

to separate and become indicators of unidirectional forcing when broken down into the smaller

spatial units of regions. A main issue highlighted here that is likely to hamper the use of

CCM in large-scale ecological data is its inability to adequately accommodate spatially hetero-

geneous dynamics. As illustrated with my CCM analysis on all locations across the Gulf of

Alaska simultaneously, potential signals within time series may be swamped by high noise of

heterogeneous time series. Tests for spatial homogeneity based on distances should be consid-

ered before applying the multispatial CCM algorithm to data at large spatial scales (Anderson,

2006). CCM on smaller homogeneous clusters of data may be required to obtain accurate

causal inference (Wang et al., 2018).

Another concern with the CCM approach is the interpretation of more ambiguous cross-

map correlation results seems to vary depending on the application. Several possible variations

of patterns between cross-mapping correlation ρ and library size L for my data are given in

Figure 5.5. Unidirectional causality that agrees with prior knowledge of the system is relatively

straightforward - A causes B has a high and significant ρ compared to B causing A with a low ρ
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Figure 5.4: Regions of MESA stations defined by hierarchical clustering with MESA manage-
ment areas labeled and borders indicated with dashed lines. Regions were determined using a
400 km distance threshold. Stations are colored by region.

that is not significant (Figures 5.5a and 5.5b). Unidirectional causality that does not agree with

prior knowledge, such as the forcing of sablefish CPUE on SST in Figure 5.5c, is interpreted

similarly; however, conclusions to be drawn from this case are unclear. The question remains

if such results should be ignored/discarded as uninteresting as suggested by Sugihara et al.

(2017), or viewed as legitimate signals that CCM behaves inconsistently in its ability to detect

causal mechanisms (Baskerville and Cobey, 2017; McCracken and Weigel, 2014). Cases of

synchrony, when forcing of one process is so dominant that response dynamics are similar to

dynamics of the causal force, are also not well-defined. In Sugihara et al. (2012) and Clark et al.

(2015), a rapid rise in cross-map skill ρ with L such as that of Figure 5.5e is likely an indication

of synchrony, and any inference of a causal link is spurious. Wang et al. (2018) noted similar

behavior as strong coupling but not synchrony, since optimal cross-map lags τ for their cases are

all negative. This situation may also be the case for Figure 5.5e; however, analysis of cross-map

lags as outlined in Ye et al. (2015) would be required to confirm strong coupling for such a case.

It should be noted that discerning optimal cross-map lags is wholly different from identifying

the lag τ for optimum cross-map correlation ρ between time series (van Nes et al., 2015).

Another version of results with several possible interpretations is shown in Figure 5.5d, where

both causal directions are significant and which could be bidirectional coupling despite large
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differences in cross-map correlation ρ between the two causal directions. In a similar result in

Mønster et al. (2017), however, the direction with the largest ρ is believed to be the true driving

factor and synchronization is increasing in the system over time. Equations for the system

are already known in the case presented in Mønster et al. (2017), making inference simpler

than observational data applications. Last, the version of CCM results in Figure 5.6 has not

been seen or addressed in any CCM publications to my knowledge. In the case of Figure 5.6a,

Spearman’s rank correlation between the original time series observations for CPUE and five

year lagged chlorophyll at 150m was moderate (ρ “ 0.422), which may indicate the presence

of the Moran effect.

Sugihara et al. (2012) claimed that CCM can accurately distinguish between true causal

effects and correlation, however this claim may be untrue in systems with weak to moder-

ate coupling (Mønster et al., 2017). The two time series in Figure 5.6b were uncorrelated

(ρ “ 0.028), so weak bidirectional forcing may be present in this system. In the case of Fig-

ure 5.6c, Spearman’s correlation between the two time series was also low (ρ “ 0.026), how-

ever bidirectional forcing does not fit with common knowledge of this system: it is farcical to

conclude that Pacific halibut force SST at such spatial scales. That leaves synchrony, although

the cross-map Pearson’s correlation does not rise sharply at low values of L as would be ex-

pected of synchrony cases. From these select exemplar result of CCM application to groundfish

system dynamics, along with the varying conclusions derived from other applications of CCM,

inference from anything other than clear results such as those in Figures 5.5a and 5.5b should

be viewed with considerable skepticism.

Legitimacy of some comparisons made with CCM that produce illogical results has also

been argued. Sugihara et al. (2017) argued that directionality of causation is not a pertinent

question when it is counterintuitive to strongly established directions of causality (e.g. flu can-

not “cause” humidity). One could argue that this sort of behavior from CCM, while obvious

to discard when prior knowledge or intuition about the system is clear, could easily apply to

systems where minimal to no prior knowledge exists. This situation would lead to CCM identi-

fying a forcing that is illogical for the system and be a false positive of causal dynamics present

(Baskerville and Cobey, 2017; McCracken and Weigel, 2014). This would lead to spurious
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Figure 5.5: Variations of possible CCM ρ values changing with library size L.
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Figure 5.6: Variations of possible CCM ρ values changing with library size L with overlap.

conclusions that may persist if CCM analysis is accepted as a strong analytical technique for

nonlinear dynamics.

Granger (2004) cautioned that applications outside of econometrics were likely to con-

clude unlikely causal relationships and the usefulness in empirical areas has yet to emerge. It

should be noted that Granger causality and its variants have come under scrutiny as not neces-

sarily true causality in the strictest and most intuitive sense. They are instead typically consid-

ered causal discover techniques used for exploratory causal analysis. Though success of CCM

in a few well-behaved and well-studied dynamical systems has precipitated many applications

to observational data from several nonlinear dynamical systems, these studies are highlighting
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concerns about whether CCM can accurately detect causal relationships, even after all require-

ments for CCM have been met (Baskerville and Cobey, 2017; McCracken and Weigel, 2014;

Mønster et al., 2017). The use of CCM for any policy or management decisions is therefore

strongly cautioned against given the number of open questions about the precise conditions for

which CCM are suitable (Mønster et al., 2017). As mentioned above, many recept applications

of CCM have been applied to well behaved dynamics and mostly served as confirmatory anal-

yses for these systems(Liu et al., 2019; van Nes et al., 2015). Until further simulations and

empirical studies can clearly identify when and how weaknesses in CCM occur and how to

minimize or understand them, this method should only be considered as exploratory analysis

of unknown systems where a starting point is needed for efficient experimental designs and not

necessarily evidence of causal dynamics.

5.5 Proposed Future Extensions for CCM

The construction of shadow manifolds in Sugihara et al. (2012) and Clark et al. (2015) are non-

linear difference equations, however these lagged models could theoretically be more complex

and take the form of a GAM or SIM to more suitably capture nonlinearity and spatial variation

in the time series. This is the first suggested improvement I propose for CCM as applied to

MESA groundfish, since it has already been shown that groundfish can be appropriately mod-

eled with GAMs (Correia and Abebe, 2017) and SIVCMs (Sun et al., 2019). For example,

consider a system where a species’ abundance for year t ` 1 is affected by the same species’

abundance the previous year t and the species’ main predator abundance in the same year t`1.

An appropriate GAM model for this system would be

gpEpYt`1qq “ s1pYtq ` s2pXt`1q,

where Yt`1 is the species’ abundance in year t`1, Yt is abundance the following year, Xt is the

predator’s abundance in the following year, and sp¨q are unknown smooth functions. Sugihara

et al. (2012) illustrated the successful application of CCM in a simulated five-species model

using five difference equations (see (S5) in the Sugihara et al. (2012) supplementary material).
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More than one X that may causally influence Y can instead be considered using a SIM similar

to the incorporation of multiple environmental variables discussed previously.

I propose a second improvement to CCM: In the estimation of Xptq and Y ptq, the weights

given by Sugihara et al. (2012) in (5.3) use Gaussian kernel functions. These weights are known

to have a complex bias, which may lead to difficulty with certain bandwidth choices (Gasser

and Engel, 1990). Therefore, the weighting scheme for (5.2) can be improved, which provides

an opportunity to test use of robust estimators in CCM.
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Table A.1: Rank GAM parameter estimates for sablefish CPUE using n=2398 observations.
R2
adj “ 0.928.

Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 7.2254 0.0174 415.5173 ă 0.0001
Smooth terms edf Ref.df F-value p-value

te(Longitude,Latitude,Year) 95.3729 101.6192 194.8051 ă 0.0001
s(ATMP samp5) 6.9385 8.0600 10.6985 ă 0.0001
s(PRES samp5) 7.8014 8.5915 30.1157 ă 0.0001
s(WSPD samp5) 7.3308 8.3118 20.9802 ă 0.0001
s(WTMP samp5) 8.2409 8.8246 9.0155 ă 0.0001
s(WVHT samp5) 8.7219 8.9716 15.4024 ă 0.0001
s(plankton samp5) 6.4871 7.6038 4.1760 0.0001
s(BOT TEMP samp5) 8.1180 8.7933 5.3048 ă 0.0001
s(Alk 75m samp5) 3.1184 3.8901 0.9029 0.4012
s(Alk 400m samp5) 1.6382 2.0681 1.3967 0.2375
s(Alk 900m samp5) 2.5165 3.2245 1.2233 0.3017
s(Chl 75m samp5) 2.4834 3.0127 6.1409 0.0004
s(Chl 400m samp5) 6.2628 7.3231 8.6350 ă 0.0001
s(Chl 900m samp5) 6.6054 7.6737 3.7224 0.0003
s(NO3 75m samp5) 4.3167 5.4085 2.4268 0.0326
s(NO3 900m samp5) 4.8212 6.0040 6.8127 ă 0.0001
s(Oxy 75m samp5) 7.2372 8.1097 2.4270 0.0117
s(Oxy 400m samp5) 3.0222 3.6969 1.1343 0.3826
s(Oxy 900m samp5) 5.7075 6.7157 1.1203 0.3095
s(Phos 75m samp5) 1.0009 1.0017 0.1946 0.6596
s(Phos 900m samp5) 7.0527 8.1404 5.6123 ă 0.0001
s(Sal 75m samp5) 1.0002 1.0003 2.1582 0.1419
s(Sal 400m samp5) 1.4661 1.8274 5.7839 0.0116
s(Sal 900m samp5) 1.0002 1.0003 0.1776 0.6735
s(Sil 75m samp5) 1.0001 1.0002 13.0594 0.0003
s(Sil 900m samp5) 8.2496 8.8407 3.3021 0.0004
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Table A.2: Rank GAM parameter estimates for Pacific cod CPUE using n=1913 observations.
R2
adj “ 0.914.

Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 0.8180 0.0052 158.6443 ă 0.0001
Smooth terms edf Ref.df F-value p-value

te(Longitude,Latitude,Year) 104.0860 110.6271 90.7087 ă 0.0001
s(ATMP samp5) 8.4778 8.9170 4.8940 ă 0.0001
s(PRES samp5) 1.0001 1.0002 19.0707 ă 0.0001
s(WSPD samp5) 8.7041 8.9698 5.0235 ă 0.0001
s(WTMP samp5) 3.6058 4.5886 2.6911 0.0239
s(WVHT samp5) 7.8638 8.6520 3.0774 0.0040
s(plankton samp5) 1.0000 1.0000 41.2428 ă 0.0001
s(BOT TEMP samp5) 2.8713 3.7540 1.5875 0.1576
s(Alk 75m samp5) 1.0000 1.0000 0.0010 0.9746
s(Alk 400m samp5) 1.5980 2.0128 2.2699 0.1033
s(Alk 900m samp5) 6.4916 7.6758 10.6967 ă 0.0001
s(Chl 75m samp5) 1.0000 1.0000 2.0350 0.1539
s(Chl 400m samp5) 1.0000 1.0000 2.4281 0.1194
s(Chl 900m samp5) 1.0000 1.0000 1.0658 0.3020
s(NO3 75m samp5) 1.5864 1.9989 0.8693 0.4280
s(NO3 900m samp5) 1.0000 1.0000 2.6490 0.1038
s(Oxy 75m samp5) 6.2843 7.3519 6.5191 ă 0.0001
s(Oxy 400m samp5) 1.0000 1.0000 3.2147 0.0732
s(Oxy 900m samp5) 7.6227 8.4716 4.5539 ă 0.0001
s(Phos 75m samp5) 4.0950 5.1702 3.6168 0.0028
s(Phos 900m samp5) 1.0000 1.0000 5.0976 0.0241
s(Sal 75m samp5) 7.0594 8.1341 2.4860 0.0105
s(Sal 400m samp5) 2.5947 3.3615 2.4974 0.0530
s(Sal 900m samp5) 2.8908 3.7389 0.9288 0.3729
s(Sil 75m samp5) 4.7415 5.9042 6.5153 ă 0.0001
s(Sil 900m samp5) 4.7344 5.9042 3.6886 0.0015
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Table A.3: Rank GAM parameter estimates for Pacific halibut CPUE using n=1848 observa-
tions. R2

adj “ 0.807.

Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 0.5471 0.0035 154.9622 ă 0.0001
Smooth terms edf Ref.df F-value p-value

te(Longitude,Latitude,Year) 96.5370 104.3250 52.2808 ă 0.0001
s(ATMP samp10) 7.7749 8.5159 4.6300 ă 0.0001
s(PRES samp10) 7.7202 8.5403 8.1055 ă 0.0001
s(WSPD samp10) 8.4696 8.9105 7.5199 ă 0.0001
s(WTMP samp10) 8.4365 8.8659 11.6876 ă 0.0001
s(WVHT samp10) 7.9253 8.6884 3.0946 0.0012
s(plankton samp10) 5.6423 6.8262 3.8428 0.0005
s(BOT TEMP samp10) 1.6476 2.1084 17.5220 ă 0.0001
s(Alk 75m samp10) 1.0000 1.0000 7.4190 0.0065
s(Alk 400m samp10) 5.8171 6.9878 1.9821 0.0584
s(Alk 900m samp10) 5.2359 6.4368 4.3486 0.0001
s(Chl 75m samp10) 1.0000 1.0000 5.3250 0.0211
s(Chl 400m samp10) 8.3827 8.8804 3.1097 0.0010
s(Chl 900m samp10) 7.3932 8.3578 2.7981 0.0039
s(NO3 75m samp10) 4.4938 5.5923 3.3164 0.0035
s(NO3 900m samp10) 1.0000 1.0000 3.7890 0.0518
s(Oxy 75m samp10) 1.8553 2.3108 4.1154 0.0141
s(Oxy 400m samp10) 2.9386 3.7809 13.2686 ă 0.0001
s(Oxy 900m samp10) 1.0000 1.0000 8.8952 0.0029
s(Phos 75m samp10) 1.0000 1.0000 0.0302 0.8621
s(Phos 900m samp10) 1.0000 1.0000 2.6976 0.1007
s(Sal 75m samp10) 1.0000 1.0000 0.5784 0.4471
s(Sal 400m samp10) 1.0000 1.0000 5.4792 0.0194
s(Sal 900m samp10) 1.0000 1.0000 1.4096 0.2353
s(Sil 75m samp10) 4.8343 6.0144 1.7151 0.1135
s(Sil 900m samp10) 1.0000 1.0000 0.0831 0.7732
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Table A.4: Rank GAM parameter estimates for shortspine thornyhead CPUE using n=2243
observations. R2

adj “ 0.902.

Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 1.3154 0.0042 311.8674 ă 0.0001
Smooth terms edf Ref.df F-value p-value

te(Longitude,Latitude,Year) 91.6437 99.5099 112.4463 ă 0.0001
s(ATMP samp5) 7.9823 8.7326 18.8092 ă 0.0001
s(PRES samp5) 8.0947 8.7483 6.1895 ă 0.0001
s(WSPD samp5) 7.7099 8.5628 2.8806 0.0022
s(WTMP samp5) 8.6577 8.9560 6.1947 ă 0.0001
s(WVHT samp5) 8.4758 8.9102 3.6489 0.0003
s(plankton samp5) 6.8943 7.9585 4.4118 ă 0.0001
s(BOT TEMP samp5) 7.3882 8.3859 6.1857 ă 0.0001
s(Alk 75m samp5) 1.0000 1.0000 7.2954 0.0070
s(Alk 400m samp5) 7.0167 8.0832 1.2468 0.2382
s(Alk 900m samp5) 1.2366 1.4362 9.6023 0.0015
s(Chl 75m samp5) 5.2171 6.1523 6.6079 ă 0.0001
s(Chl 400m samp5) 8.0296 8.6962 4.1306 0.0001
s(Chl 900m samp5) 1.0000 1.0000 0.9615 0.3269
s(NO3 75m samp5) 7.3448 8.3521 2.5239 0.0099
s(NO3 900m samp5) 3.8175 4.8525 1.9601 0.0868
s(Oxy 75m samp5) 1.0000 1.0000 19.0360 ă 0.0001
s(Oxy 400m samp5) 6.7665 7.6687 2.2766 0.0272
s(Oxy 900m samp5) 7.6209 8.4204 2.8485 0.0036
s(Phos 75m samp5) 3.1096 4.0208 0.8525 0.4991
s(Phos 900m samp5) 1.0000 1.0000 0.2975 0.5855
s(Sal 75m samp5) 3.5007 4.4495 2.1180 0.0688
s(Sal 400m samp5) 5.8388 7.0112 2.0170 0.0518
s(Sal 900m samp5) 4.7618 5.8937 2.3864 0.0244
s(Sil 75m samp5) 1.0000 1.0000 0.0953 0.7575
s(Sil 900m samp5) 1.0000 1.0000 2.3049 0.1291
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Table A.5: Rank GAM parameter estimates for rougheye rockfish CPUE using n=1731 obser-
vations. R2

adj “ 0.777.

Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 0.5455 0.0032 170.3336 ă 0.0001
Smooth terms edf Ref.df F-value p-value

te(Longitude,Latitude,Year) 90.7873 98.7796 37.1464 ă 0.0001
s(ATMP samp5) 8.4175 8.8982 5.9154 ă 0.0001
s(PRES samp5) 5.3917 6.5186 5.3192 ă 0.0001
s(WSPD samp5) 8.4091 8.8898 5.4173 ă 0.0001
s(WTMP samp5) 8.4476 8.8991 5.6473 ă 0.0001
s(WVHT samp5) 8.2977 8.8588 6.4698 ă 0.0001
s(plankton samp5) 3.3387 4.1922 2.7785 0.0223
s(BOT TEMP samp5) 1.0000 1.0000 13.5388 0.0002
s(Alk 75m samp5) 1.0000 1.0000 2.1800 0.1400
s(Alk 400m samp5) 1.0000 1.0000 0.8320 0.3619
s(Alk 900m samp5) 7.5266 8.4256 6.3466 ă 0.0001
s(Chl 75m samp5) 4.6916 5.6664 1.5070 0.2468
s(Chl 400m samp5) 6.2099 7.2647 6.3643 ă 0.0001
s(Chl 900m samp5) 6.5118 7.5620 3.9499 0.0003
s(NO3 75m samp5) 1.0000 1.0000 0.5681 0.4511
s(NO3 900m samp5) 1.0000 1.0000 11.1183 0.0009
s(Oxy 75m samp5) 8.6466 8.9018 4.5532 ă 0.0001
s(Oxy 400m samp5) 8.5038 8.8413 4.9083 ă 0.0001
s(Oxy 900m samp5) 1.0000 1.0000 0.1580 0.6910
s(Phos 75m samp5) 2.9951 3.8372 1.4937 0.2550
s(Phos 900m samp5) 1.0000 1.0000 1.1963 0.2742
s(Sal 75m samp5) 1.0000 1.0000 0.1071 0.7436
s(Sal 400m samp5) 7.5601 8.4934 3.1115 0.0023
s(Sal 900m samp5) 1.0000 1.0000 0.2126 0.6448
s(Sil 75m samp5) 4.3872 5.4680 1.5260 0.1932
s(Sil 900m samp5) 8.3852 8.8886 7.4664 ă 0.0001
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Table A.6: Rank GAM parameter estimates for shortraker rockfish CPUE using n=1738 obser-
vations. R2

adj “ 0.838.

Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 0.4363 0.0029 150.7043 ă 0.0001
Smooth terms edf Ref.df F-value p-value

te(Longitude,Latitude,Year) 74.6394 84.6966 61.1331 ă 0.0001
s(ATMP samp5) 3.4919 4.4888 1.5848 0.1760
s(PRES samp5) 6.7978 7.8477 7.0194 ă 0.0001
s(WSPD samp5) 8.7698 8.9751 9.4908 ă 0.0001
s(WTMP samp5) 8.2760 8.8292 8.0358 ă 0.0001
s(WVHT samp5) 7.9906 8.7211 4.9348 ă 0.0001
s(plankton samp5) 4.0199 4.9514 3.5680 0.0037
s(BOT TEMP samp5) 1.0000 1.0000 25.8542 ă 0.0001
s(Alk 75m samp5) 6.3648 7.5427 9.0931 ă 0.0001
s(Alk 400m samp5) 1.0000 1.0000 0.0076 0.9307
s(Alk 900m samp5) 2.0435 2.5163 4.2013 0.0126
s(Chl 75m samp5) 3.8181 4.6600 2.3642 0.0281
s(Chl 400m samp5) 6.5707 7.6031 3.3546 0.0013
s(Chl 900m samp5) 6.6084 7.6501 1.5082 0.1914
s(NO3 75m samp5) 4.2631 5.3322 1.7806 0.1202
s(NO3 900m samp5) 1.0000 1.0000 0.1829 0.6690
s(Oxy 75m samp5) 1.0000 1.0000 0.2132 0.6443
s(Oxy 400m samp5) 2.1535 2.6589 1.6637 0.2561
s(Oxy 900m samp5) 2.7380 3.3410 0.8778 0.4757
s(Phos 75m samp5) 1.0000 1.0000 0.0121 0.9126
s(Phos 900m samp5) 1.0000 1.0000 0.8050 0.3697
s(Sal 75m samp5) 2.3780 3.0440 2.6762 0.0472
s(Sal 400m samp5) 3.0211 3.8655 2.5857 0.0325
s(Sal 900m samp5) 1.0000 1.0000 1.1457 0.2846
s(Sil 75m samp5) 7.7498 8.5676 2.8813 0.0032
s(Sil 900m samp5) 8.0671 8.7554 7.9205 ă 0.0001
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Table A.7: Rank GAM parameter estimates for sablefish mean weight (kg) using n=2385 ob-
servations. R2

adj “ 0.604.

Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 2.9552 0.0074 397.4390 ă 0.0001
Smooth terms edf Ref.df F-value p-value

te(Longitude,Latitude,Year) 91.8757 99.4588 26.3834 ă 0.0001
s(ATMP samp5) 3.1427 4.0676 3.0505 0.0159
s(PRES samp5) 1.5165 1.8942 1.2482 0.3464
s(WSPD samp5) 8.5225 8.9228 5.0531 ă 0.0001
s(WTMP samp5) 7.0264 8.0926 5.1804 ă 0.0001
s(WVHT samp5) 5.8098 7.0317 1.9633 0.0550
s(plankton samp5) 1.0000 1.0000 1.3904 0.2385
s(BOT TEMP samp5) 2.4347 3.1841 2.7054 0.0382
s(Alk 75m samp5) 1.0000 1.0000 0.0898 0.7645
s(Alk 400m samp5) 3.1981 4.0425 1.3086 0.2595
s(Alk 900m samp5) 1.5756 1.9715 1.0634 0.3738
s(Chl 75m samp5) 1.0000 1.0000 0.0834 0.7727
s(Chl 400m samp5) 1.0000 1.0000 2.5716 0.1089
s(Chl 900m samp5) 1.3341 1.5949 0.4125 0.4891
s(NO3 75m samp5) 2.4542 3.1829 1.6885 0.1741
s(NO3 900m samp5) 1.0000 1.0001 1.8071 0.1790
s(Oxy 75m samp5) 1.0001 1.0003 0.3519 0.5531
s(Oxy 400m samp5) 1.7460 2.2022 2.0640 0.1297
s(Oxy 900m samp5) 1.0001 1.0002 0.0050 0.9434
s(Phos 75m samp5) 6.2562 7.4676 1.6029 0.1212
s(Phos 900m samp5) 1.0000 1.0000 0.3379 0.5611
s(Sal 75m samp5) 4.1734 5.1842 1.3524 0.2383
s(Sal 400m samp5) 1.0000 1.0000 0.2073 0.6489
s(Sal 900m samp5) 1.2529 1.4640 0.0531 0.8403
s(Sil 75m samp5) 3.3933 4.3039 1.4801 0.1975
s(Sil 900m samp5) 1.0000 1.0000 0.4509 0.5020
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Table A.8: Rank GAM parameter estimates for Pacific cod mean weight (kg) using n=1892
observations. R2

adj “ 0.460.

Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 2.9375 0.0102 288.5356 ă 0.0001
Smooth terms edf Ref.df F-value p-value

te(Longitude,Latitude,Year) 89.3338 96.7584 14.0390 ă 0.0001
s(ATMP samp5) 1.0000 1.0001 2.9858 0.0842
s(PRES samp5) 8.4050 8.8826 5.6667 ă 0.0001
s(WSPD samp5) 2.0402 2.6416 1.2792 0.2451
s(WTMP samp5) 1.6118 2.0256 3.5598 0.0284
s(WVHT samp5) 1.0000 1.0000 25.6873 ă 0.0001
s(plankton samp5) 1.0000 1.0000 2.0771 0.1497
s(BOT TEMP samp5) 3.4141 4.4298 8.4963 ă 0.0001
s(Alk 75m samp5) 1.3024 1.5435 0.3389 0.7436
s(Alk 400m samp5) 1.0000 1.0000 4.1426 0.0420
s(Alk 900m samp5) 4.7524 5.8810 1.9887 0.0653
s(Chl 75m samp5) 1.3690 1.6356 0.3576 0.7326
s(Chl 400m samp5) 1.3036 1.5410 0.2787 0.5880
s(Chl 900m samp5) 1.0000 1.0000 2.1520 0.1426
s(NO3 75m samp5) 1.0000 1.0000 6.8731 0.0088
s(NO3 900m samp5) 1.0000 1.0000 0.5033 0.4782
s(Oxy 75m samp5) 1.0000 1.0000 0.4636 0.4960
s(Oxy 400m samp5) 1.0000 1.0001 2.5303 0.1119
s(Oxy 900m samp5) 1.0000 1.0000 0.1998 0.6550
s(Phos 75m samp5) 5.5218 6.7462 1.1261 0.3431
s(Phos 900m samp5) 2.9359 3.7662 1.2331 0.3315
s(Sal 75m samp5) 1.0000 1.0000 4.3804 0.0365
s(Sal 400m samp5) 1.0000 1.0000 0.4454 0.5046
s(Sal 900m samp5) 1.0000 1.0000 0.0297 0.8632
s(Sil 75m samp5) 1.0000 1.0000 8.0143 0.0047
s(Sil 900m samp5) 3.5048 4.4759 2.8198 0.0200
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Table A.9: Rank GAM parameter estimates for Pacific halibut mean weight (kg) using n=331
observations. R2

adj “ 0.468. Due to low number of observations, the number of knots per
spline was reduced from the default of 10 to 5 for fitting of the GAM.

Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 2.6543 0.0303 87.5738 ă 0.0001
Smooth terms edf Ref.df F-value p-value

te(Longitude,Latitude,Year) 18.5680 22.4492 5.3606 ă 0.0001
s(ATMP samp10) 3.6880 3.9210 1.5502 0.1455
s(PRES samp10) 1.7873 2.1805 1.3292 0.2885
s(WSPD samp10) 1.0000 1.0000 4.7954 0.0294
s(WTMP samp10) 1.0000 1.0000 3.4762 0.0633
s(WVHT samp10) 1.4979 1.7639 1.4641 0.2135
s(plankton samp10) 3.1523 3.6391 3.9262 0.0168
s(BOT TEMP samp10) 1.4500 1.7614 0.5407 0.6496
s(Alk 75m samp10) 1.0000 1.0000 6.7142 0.0101
s(Alk 400m samp10) 1.0000 1.0000 0.2147 0.6435
s(Alk 900m samp10) 3.7967 3.9660 5.0430 0.0007
s(Chl 75m samp10) 3.7019 3.9420 10.3416 ă 0.0001
s(Chl 400m samp10) 1.0000 1.0000 2.9501 0.0870
s(Chl 900m samp10) 1.0000 1.0000 0.4532 0.5014
s(NO3 75m samp10) 3.2386 3.7003 0.9307 0.2985
s(NO3 900m samp10) 1.0000 1.0000 0.2906 0.5903
s(Oxy 75m samp10) 1.0000 1.0000 2.5562 0.1110
s(Oxy 400m samp10) 1.0000 1.0000 4.7042 0.0310
s(Oxy 900m samp10) 1.8010 2.2872 0.9010 0.5108
s(Phos 75m samp10) 1.0000 1.0000 0.0096 0.9222
s(Phos 900m samp10) 1.0000 1.0000 3.9448 0.0480
s(Sal 75m samp10) 1.0000 1.0000 0.0494 0.8243
s(Sal 400m samp10) 1.0000 1.0000 1.8463 0.1754
s(Sal 900m samp10) 4.0000 4.0000 3.6574 0.0064
s(Sil 75m samp10) 2.7769 3.3122 2.4872 0.0593
s(Sil 900m samp10) 2.7939 3.2986 1.9542 0.0969
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Table A.10: Rank GAM parameter estimates for shortspine thornyhead mean weight (kg) using
n=2222 observations. R2

adj “ 0.844.

Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 0.6936 0.0024 292.7378 ă 0.0001
Smooth terms edf Ref.df F-value p-value

te(Longitude,Latitude,Year) 121.7052 122.7425 87.8403 ă 0.0001
s(ATMP samp5) 1.0004 1.0008 1.0367 0.3089
s(PRES samp5) 1.0011 1.0022 2.8464 0.0915
s(WSPD samp5) 1.0001 1.0003 1.0980 0.2948
s(WTMP samp5) 1.4612 1.8130 0.2810 0.7024
s(WVHT samp5) 1.0003 1.0006 0.6043 0.4372
s(plankton samp5) 1.0002 1.0004 2.6903 0.1011
s(BOT TEMP samp5) 1.0004 1.0009 0.3481 0.5557
s(Alk 75m samp5) 1.0002 1.0003 0.0700 0.7913
s(Alk 400m samp5) 2.9380 3.7292 1.2783 0.2659
s(Alk 900m samp5) 1.0000 1.0001 1.4570 0.2275
s(Chl 75m samp5) 1.0000 1.0000 1.8945 0.1688
s(Chl 400m samp5) 1.0000 1.0000 2.3143 0.1283
s(Chl 900m samp5) 1.0000 1.0001 0.8982 0.3434
s(NO3 75m samp5) 1.0011 1.0022 0.2708 0.6036
s(NO3 900m samp5) 1.0007 1.0013 1.4006 0.2369
s(Oxy 75m samp5) 1.0001 1.0002 10.1491 0.0015
s(Oxy 400m samp5) 8.7545 8.9713 3.7499 0.0003
s(Oxy 900m samp5) 2.6087 3.2114 5.9168 0.0004
s(Phos 75m samp5) 1.0002 1.0003 2.1469 0.1430
s(Phos 900m samp5) 1.0001 1.0002 0.5581 0.4551
s(Sal 75m samp5) 1.0005 1.0010 0.7886 0.3745
s(Sal 400m samp5) 1.0002 1.0005 2.6166 0.1059
s(Sal 900m samp5) 1.0002 1.0004 1.0494 0.3057
s(Sil 75m samp5) 1.0004 1.0007 0.0536 0.8174
s(Sil 900m samp5) 1.0002 1.0004 0.7257 0.3944
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Table A.11: Rank GAM parameter estimates for rougheye rockfish mean weight (kg) using
n=1660 observations. R2

adj “ 0.638.

Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 1.4499 0.0055 262.4880 ă 0.0001
Smooth terms edf Ref.df F-value p-value

te(Longitude,Latitude,Year) 47.6426 48.6173 47.0077 ă 0.0001
s(ATMP samp5) 1.0001 1.0001 0.3490 0.5548
s(PRES samp5) 1.0000 1.0001 1.9676 0.1609
s(WSPD samp5) 1.0000 1.0000 6.3452 0.0119
s(WTMP samp5) 1.4784 1.8375 0.4470 0.6774
s(WVHT samp5) 1.0000 1.0001 0.3366 0.5619
s(plankton samp5) 5.5740 6.7099 1.6557 0.1103
s(BOT TEMP samp5) 1.0000 1.0001 2.4451 0.1181
s(Alk 75m samp5) 2.2781 2.9020 0.8651 0.5448
s(Alk 400m samp5) 1.0000 1.0001 1.3441 0.2465
s(Alk 900m samp5) 1.0001 1.0001 2.4015 0.1214
s(Chl 75m samp5) 2.2949 2.8310 5.1131 0.0033
s(Chl 400m samp5) 3.3233 4.1110 11.6975 ă 0.0001
s(Chl 900m samp5) 1.1052 1.1980 2.8355 0.0956
s(NO3 75m samp5) 1.0001 1.0001 0.8282 0.3629
s(NO3 900m samp5) 1.0000 1.0000 6.4465 0.0112
s(Oxy 75m samp5) 4.5590 5.5398 2.3118 0.0392
s(Oxy 400m samp5) 1.4954 1.8343 0.3831 0.5849
s(Oxy 900m samp5) 1.0000 1.0001 0.0448 0.8325
s(Phos 75m samp5) 1.3484 1.6254 0.3355 0.7385
s(Phos 900m samp5) 1.0000 1.0001 3.0987 0.0785
s(Sal 75m samp5) 1.4805 1.8512 0.3705 0.6886
s(Sal 400m samp5) 1.0001 1.0001 0.4107 0.5217
s(Sal 900m samp5) 1.0000 1.0001 0.4135 0.5203
s(Sil 75m samp5) 1.2753 1.5025 0.1271 0.7310
s(Sil 900m samp5) 1.0000 1.0001 0.7093 0.3998
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Table A.12: Rank GAM parameter estimates for shortraker rockfish mean weight (kg) using
n=1547 observations. R2

adj “ 0.604.

Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 1.4491 0.0073 197.7515 ă 0.0001
Smooth terms edf Ref.df F-value p-value

te(Longitude,Latitude,Year) 42.5210 48.0894 37.3158 ă 0.0001
s(ATMP samp5) 2.1302 2.7591 3.6608 0.0122
s(PRES samp5) 1.0000 1.0000 0.0702 0.7911
s(WSPD samp5) 1.0000 1.0000 0.0019 0.9653
s(WTMP samp5) 1.0000 1.0000 0.0839 0.7721
s(WVHT samp5) 1.0000 1.0000 2.0169 0.1558
s(plankton samp5) 1.0000 1.0000 0.7302 0.3930
s(BOT TEMP samp5) 1.7390 2.2387 1.6841 0.1875
s(Alk 75m samp5) 1.0000 1.0000 0.2042 0.6514
s(Alk 400m samp5) 1.0000 1.0000 1.3139 0.2519
s(Alk 900m samp5) 5.5674 6.7252 2.0580 0.0448
s(Chl 75m samp5) 1.0000 1.0000 1.6130 0.2043
s(Chl 400m samp5) 1.0000 1.0000 0.1568 0.6922
s(Chl 900m samp5) 1.0000 1.0000 1.5636 0.2113
s(NO3 75m samp5) 5.5463 6.7237 1.5914 0.1538
s(NO3 900m samp5) 1.0064 1.0127 0.6245 0.4274
s(Oxy 75m samp5) 3.7585 4.6434 3.8596 0.0037
s(Oxy 400m samp5) 6.3236 7.4316 0.6980 0.6035
s(Oxy 900m samp5) 1.0000 1.0000 0.2895 0.5906
s(Phos 75m samp5) 1.9761 2.5524 0.8646 0.5292
s(Phos 900m samp5) 2.6623 3.4091 1.1441 0.3020
s(Sal 75m samp5) 2.5124 3.2307 3.7728 0.0089
s(Sal 400m samp5) 1.0000 1.0000 12.5844 0.0004
s(Sal 900m samp5) 1.0000 1.0000 0.0340 0.8537
s(Sil 75m samp5) 1.6222 2.0358 0.4334 0.6728
s(Sil 900m samp5) 1.0000 1.0000 0.1690 0.6811
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Figure A.1: Significant smooths in rank GAM for sablefish mean weight (kg).
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Figure A.2: Significant smooths in rank GAM for Pacific cod mean weight (kg).

2.0

2.5

3.0

3.5

-1.0 -0.5 0.0 0.5 1.0 1.5

s(WSPD_samp10)

P
re

d
ic

te
d

 M
e

a
n

W
tK

g
_

p
h

2

3

4

5

-0.1 0.0 0.1

s(plankton_samp10)

P
re

d
ic

te
d

 M
e

a
n

W
tK

g
_

p
h

1.5

2.0

2.5

3.0

0.00 0.04 0.08

s(Alk_75m_samp10)

P
re

d
ic

te
d

 M
e

a
n

W
tK

g
_

p
h

1.5

2.0

2.5

3.0

3.5

0.00 0.04 0.08

s(Alk_900m_samp10)

P
re

d
ic

te
d

 M
e

a
n

W
tK

g
_

p
h

2

3

4

5

6

7

-1 0 1 2

s(Chl_75m_samp10)

P
re

d
ic

te
d

 M
e

a
n

W
tK

g
_

p
h

2.0

2.5

3.0

0.0 0.5 1.0

s(Oxy_400m_samp10)

P
re

d
ic

te
d

 M
e

a
n

W
tK

g
_

p
h

2.4

2.8

3.2

3.6

-0.1 0.0 0.1 0.2

s(Phos_900m_samp10)

P
re

d
ic

te
d

 M
e

a
n

W
tK

g
_

p
h

-2

0

2

4

-0.5 0.0 0.5 1.0

s(Sal_900m_samp10)

P
re

d
ic

te
d

 M
e

a
n

W
tK

g
_

p
h

Figure A.3: Significant smooths in rank GAM for Pacific halibut mean weight (kg).
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Figure A.4: Significant smooths in rank GAM for shortspine thornyhead mean weight (kg).
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Figure A.5: Significant smooths in rank GAM for rougheye rockfish mean weight (kg).
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Figure A.6: Significant smooths in rank GAM for shortraker rockfish mean weight (kg).
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Figure A.7: Spatial distribution of sablefish CPUE for selected years between 1979 and 2013
from rank GAM.
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Figure A.8: Spatial distribution of Pacific cod CPUE for selected years between 1979 and 2013
from rank GAM.
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Figure A.9: Spatial distribution of Pacific halibut CPUE for selected years between 1979 and
2013 from rank GAM.
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Figure A.10: Spatial distribution of shortspine thornyhead CPUE for selected years between
1979 and 2013 from rank GAM.
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Figure A.11: Spatial distribution of rougheye rockfish CPUE for selected years between 1979
and 2013 from rank GAM.
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Figure A.12: Spatial distribution of shortraker rockfish CPUE for selected years between 1979
and 2013 from rank GAM.
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Figure A.13: Spatial distribution of sablefish mean weight (kg) for selected years between 1979
and 2013 from rank GAM.
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Figure A.14: Spatial distribution of Pacific cod mean weight (kg) for selected years between
1979 and 2013 from rank GAM.
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Figure A.15: Spatial distribution of Pacific halibut mean weight (kg) for selected years between
1979 and 2013 from rank GAM.
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Figure A.16: Spatial distribution of shortspine thornyhead mean weight (kg) for selected years
between 1979 and 2013 from rank GAM.
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Figure A.17: Spatial distribution of rougheye rockfish mean weight (kg) for selected years
between 1979 and 2013 from rank GAM.
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Figure A.18: Spatial distribution of shortraker rockfish mean weight (kg) for selected years
between 1979 and 2013 from rank GAM.
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Figure B.1: Residuals for Pacific cod CPUE
for given stations and years 1981 ´ 2011 fit
using the ARIMA model.
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Figure B.2: Residuals for Pacific halibut
CPUE for given stations and years 1981´2011
fit using the ARIMA model.
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Figure B.3: Loess smooths of CPUE and winter SST by management area over time for each of
the four species. Solid line is CPUE; dashed line is the coefficient of variation of winter SST;
shaded regions are confidence intervals for each smooth.
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Figure B.4: Forest plot of SST effect on sablefish CPUE by station using the STEMA forecast-
ing method. The rank correlation r statistic is given as the effect size.
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Figure B.5: Forest plot of SST effect on Pacific cod CPUE by station using the naı̈ve forecasting
method. The rank correlation r statistic is given as the effect size.
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Figure B.6: Forest plot of SST effect on Pacific cod CPUE by station using the STEMA fore-
casting method. The rank correlation r statistic is given as the effect size.
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Figure B.7: Forest plot of SST effect on Pacific halibut CPUE by station using the naı̈ve fore-
casting method. The rank correlation r statistic is given as the effect size.
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Figure B.8: Forest plot of SST effect on giant grenadier CPUE by station using the STEMA
forecasting method. The rank correlation r statistic is given as the effect size.
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