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Abstract

Accurate estimatioof the state of charge (SOC), capacity fade (Sfp&hd power fade
(SOH) arecritical for ensuring safe and reliable operations of Lithiom batteriesTraditional
estimationmethods using complex modedadlook-up tablesdo not satisfy either the required
accuracy or computational time necessary for real dpmications In thispaper we propose a
methodthatsimultaneosly estimate®othSOC and SOHbverdifferent temperatureanges under
aging conditionsThe batteryis modeled with a second order equivalent circuit (ECM) and then
its states and parameters are estimated by implementing a combinationaofblémodel
framework (VM) basedAdaptive ExtendedKalman Filter along with a forgetting factdoased
Recursive keast Square (RLS) filtedgorithm in a closetbop framework.

The VM-AEKF is employed to efficientlyestimate the fast varyingOC andmodel
parameteswhere the W framework is designed specificallyitaprove the stability and accuracy
of the estimatounder conditions when theystem is not sufficiently excited by the input signal
Simultaneously, the RL8stimats the slowly varying maximum capacitgnd updates the value
based on a delayed approathe parameters estimated by the proposed estira@&tnenused
to calculatehe SOH and SOh.

The proposed algorithms are validateith a large format NMC/Carbon poutypepower
cell with a nominal capacity of 58.4 Attmultiple chargedischarge cyclesonsidering aging and
temperature effect3he experimental resulteave showrtess than 5% SOC estimation error and

less than 3% capacity estimation error for the typical SOC raint@% to 90%
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Nomenclature

Qmax Maximum charge capacity at full chard&h]

Qreleasable | Dischargeable charge capacitéh]

Qnominal Maximumcharge capacity at full charged nominal condition$Ah]

Pavailable Maximumavailable poweat full chargeand any instant state, [W]

Prominal Maximumavailable poweat full chargeand nominal conditions, [W]

I Current of the battery, [A]

Vi Terminal voltage, [V]
ReoL Resistance of the cell at the EofiLife, [q]
ReoL Resistance of the cell at the BeginniofgLife, [q ]
Roat Resistance of the cell at any given instafgé¢,

Y RY Ohmic resistancdq ]

Ru Equivalent resistance of the first® circuit of ECM,[q]
R Equivalent resistance of tlsecondR-C circuit of ECM,[q]
C Equivalent capacitor of the first-R circuit of ECM, F]

C2 Equivalent capacitor of the second@Rcircuit of ECM, F]
@ Voltagedrop across the fir&R-C circuit of ECM, [V]

@ Voltagedrop across the secoRC circuit of ECM, [V]
ocv Ideal voltage or Open circuit voltage, [V]

— Cell overpotential, [V]

t At Time constants of the ECM, [sec]
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Ts Sample time[sec]

h Coulombic efficiency

X State vector

y Measurement vector

A State matrix
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% Measurement noise

Q State noise covariance
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R Priori Error covariancat step k

Ky Kalman gairat step k
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1. Introduction

1.1 Background

The recent shift towards battery technology in the sectors of transport, buildinyseerd
grid, has pushed for development of more sophisticated and accurate battery management systems
(BMSs). A major cause for this recent shift can be attributed toinipeovements inthe
performance ofithium-ion batteries. These improved Lithidion batteries, with high energy and
power densities, argable for electric vehicles (EVs) and as energy storage systems (ESSs) for
smart grids.

BMSs are a vital componeat battery packs, with two major roles: (1) To ensure the safe
operating area of the battery, defined by manufacturing and architecture related specifications,
such as the overcharge and under discharge, maximum depth of discharge, upper add&wer
voltage of the individual cells, and (2) To continuously measure battery parameters, to determine
or predict its status, health, and performance figures generally referred to as battery monitoring.
This is accomplished bgontinuously monitang the curent, voltage and temperature of the
battery while accurately estimating essential battery states like the State of Charge (SOC), State of
Health (SOH).

1.1.1 NMC Lithium -ion cell

Lithium-ion cells usinga combination of nickeinanganeseobalt (NMC)as the cdtode
chemistry and carbon graphite as the anode chemistopaentlyone of the most successfukLi
ion batteried1]. These cellaredesigned to work as either energy or powdiscén addition, ,
adding nickel to the cathode provides a higheergy density, loer cost, and longer cycle life

thanonly the cobaklbased cellswhich leads to NMC base-ion systems as the preferred choice
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for energy storage systems @Epand aubmotive systems like electric vehicles (EVs), hybrid
electric vehicles (HEVS) and pltig hybrid electric vehicles (PHEVS).

A typical Li-ion cell consists of three primary components; a positive electrode made of a
lithium metal oxide, LiMD.2, where M is ametal alloy of Ni, Mn, and Co in case of NMC; a
negative electrode made of carbon and graphite is preferred for most commercial purposes; an
electrolyte made of a lithium salt in an organic solvent. The metal oxide determines the cell
performance§l], [2], where @balt is the main active materialit hasa relatively short life span,
low thermal stabilityand limited load capabilities likepecific power Nickel provideshigh
specific energy buhas poor stability while Manganese has the benefit of forming a spinel
structure to achieve low internal resistance but offers low specific efflérgynetals are combined
such that to enhan@ach othdy strengths.

The negative and the positive electrodes are the reactanesetettirochemical reactions
while the electrolyte provides a conductive medium for lithium ions to move freely between the
electrodes. Lithium ions are free to move in and out of both the electrodes through the process of
insertion (intercalation) or extrdon (deintercalation) respectively. The schematic of a common
Li-ion cell along with the direction of the flow of electrons and the positively charged lithium ions
(Li*) during discharging and charging is depicteffigurel.

During discharging, the Lions deintercalate from the negative electroded are
transported, and intercalate into the positive electf8délhe process is reversed when charged.

The halfreaction at the negative electrode:
Li,Cq = Cg+ XLi* e~ (1)
Thehalf-reaction at the positive electrode is:
Li(l_ X)I\/IOZ +xLi" #«e = LiMG, )
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Combining Eq. (Land (3, the full cell reaction is describex:

Flow of electrons during Discharge

—

Flow of electrons during charge

Current
Collector (Cu)

Anode active material
particle
(Li,Ce)

1.1.2 Definition of states

Various metrics have been defined to continuously monitor and evaluate the performance

of a cell[4]i [7]. These metrics are identified as the states of the cell. The most common cell state

are

1. State of barge (SOC):SOC isdefined aghe percentageatio between thamounts of

releasable chargelative to thenaximum charge stored laost recent fully charged state.

It is given as:

Positive
Electrode

Current
Collector (Al)

Cathode active
material particle
(Li(Jﬁx)MOZ)

Electrolyte

Figure 1 Schematic of a Ltion cell
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SOC(%) = _Qrgeasab'e 100 (4)

max
, WhereQmaxis the maximum capacity in a fully charged state at any given
operating condition anQreleasablelS the maximum capacity that can be extracted from the
cell at any given instant.
SOCis a key indicatr of the instant statugquivalent of adel gauge, fobattery
systemsA simplemethodto findthe SOQn reaktimeis using the Coulomb (Ah) coung

method:

SOG (%) = rj('?d—f 3100 (5)

. State of health (SOHPescription othe instantaneous stdig SOC is not sufficient alone

to representhedegradation of the cell due to the irreversible processes referred to as aging.
A new metric, SOH, is defined as a measure of this-teng wear and tear. A common
measure of SOH, based on the impedance increase, have been desdB8he@]irand

defined in[5] as:

SOH(%) :—RFZEOOLL_' F::i 3100 ©6)

, whereReoL, Rvat,andRgoL is the resistance at the EnéiLife (EOL), at the instance
of observation and, at the BeginniafyLife (BOL), respectivelyThis definition has been
interchangeably used to describe both the power fade {58id the general SOH of the
cell. SOH can be divided into Capacity Fade (SO§ and Power Fade (SOF),
respectively.

i. SOH, indicateshe percentage decrease in capacity ovecyhbke life:
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SOH, (%) = SOmax_ 5100 @)

nominal

ii.  SOHkindicateghe percentage decrease in power capability ovesyitie life:

SOHP (%) — F)available 3100 (8)

nominal
1.1.3 Literature Review

SOC is an important indicator of the instantaneous state of the betidigwide variety
of methodsis proposed irthe literature for itsestimation[3]1[5], [7], [10]i [18]. The Coulomb
counting methodis the most commonly implemented method due to its simplicity and low
computatioml time However, itsaccuracyis affected by erras accumulatediuring current
integration initial valuesand operatingonditions[7]. Open Circuit Voltage (O€) methods,
based on the relationship between the OCV and SOC, have alsexbersively usefll9]. These
methodsare not suitable faieal timeapplicatiors as batteriesequire dongrestingperiod before
the OCV can bemeasuredaccurately. Datalriven methods based on Neural Network (NN),
Support vector machine (SVM) and Fuzzygic [14], [15], [20] have high estimation accuracy
but requireextended training times atarge amourtof reliable data. Modebased methadusing
Bayesian filters are prominently used feal timeapplicatiors due to their high robustness and
estimation accuracy.eastSquares (LSmethodsJike moving window LS filter[21], estimate
SOCusing an equivalent circuit modé@ther variation®f LS methodsnclude UD(U represent
the upper triangle matrix and D is the Diagonal matfiac}jorizationbased RcursivelLS (RLS)
[22], combined RLS and &manFilter (KF) [23] and Instrumental Variable RLEV-RLS) [24].
Extended KHEKF) canestimate the battery SOC based on ECM with less than 5% error for
different driving cycled17]. Advanced KFs like Adaptive EKF (AEKH)LO], Sigma point KF
(SPKF)[25], Ln normalized UnscenteF (Ln-UKF) [26] and Dual EKF (BEKF) [16] have
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also beenproposed These methods are suitable for rale applicatios and provide low
estimation errors but have certain drawbacks. Their accuracy decreases due to accumulation of
numeri cal errors over extended operational p e
due to a large number of states being egahavhich is explained in detail ahapter3.

Several methods for estimation of the S@Hmmarized irFigure2, have been discussed
in the literaturg11], [27], [28] and can be categorized into two wafi Experimental methods

or (2) Modetbased methods.

SOH
Experimental methods Model based
methods
Data Based X
Direct Measurement 1. Look-up tables/ 1. Least Squares
1. Impedance empirical equations 2. Kalman Filter
2. Ohmic Resistance 2. Support Vector Machine 3. Non-linear KF
3. Neural Network 4. Dual KF
4. Fuzzy Logic 5. others
5. Others

Figure 2. Summary of SOH estimation methods

Experimental methods use testing data and previous knowledge of cell performance to
predict their states.These methods argpecific to a cell and cannot be used for other cells
Impedance measurement is one of the most popular experimental methods, wedaaaap over
a wide range of AC frequencies at different charge and discharge currents are mesisgred
Electrochemical Impedance Spectroscopy (HIR), [29]. Another method6] measurs the
Ohmic resistance of a calsingHybrid Pulse Power Characterization (HPPC) &&stording to

guidelines provided bpepartment of Energy (DOE)hich is usedto measure available power
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and has been extensively used to meas8f@H [8], [9], [30]. However, thesenethods though
usually used for offline identificationrgan be implemented for online estimatiasing data
obtained to build empiricduncions probabilisticrelaion or lookup tables (LUTs)13], [31].

Recent developments have shifted the famusesearchowards implementing machine
learning based methofis4], [20], [32]i [34] that includeSVM [34], Fuzzy logic algorithm§gl4]
andNN [32]. Thesemethods ee easy to implement arwnprovide accurate results but are not
suitable for online estimation due to high computational efiod large set of training data
required befordeingimplemented Furthermore, they are n@uaptive and highly sensitive to
changes of cell parameters.

On the other hand, modbhsedmethods estimate parameters based on models that are
sensitive tdhe states of the cell, whicdanbe appliedor batteries with differenthemistries with
minimum tuning effos. The estimated pameters are eithelirectly related toSOH orinclude
the dependent variablfs], [9]. These parameters have been estimated by emplogiiaus state
observer$10], [21], [22], [25], [35] [40], with KF being the most implementddnear KF(LKF)
has beerusedfor parameter and state estimati@3] but since mosinodels are nonlinear, the
EKF [35], [36], [38] and UKF[25] are preferred. Notinear Dual KF (DKF) has also been
proposed15], [16], [41], where one filteestimateghe parameters and the otlestimatesSOH.
Despite showingfavorable results, these methods are highly complex, requiring matrix
differentiation of the large error covariance matrix shared between the tiwatess. The order
of EKF can be different, like a second order EKF usediastrvarying SOC and voltagehile a
fourth order for slowing varying SOH the voltag error exceeds a thresh¢g8¥]. A Lyapunov
based adaptive obsenaan also be used to estimate SOH basetlomple firstorder ECM [5],

however its long-term performanceneeds to beerified as it is dependent on offline identified
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parametersModelbasedapproachesare widely preferredover experimental methodsue to
accuracyand relatively reduced experimental time
1.2 Experimental Setup

The testing is performed in an-housedesignedesting station consisting of a thermal
chamber, @ower supply for charging and an electronic loaddiecharging that is controlled by
a host computer to control and store datse test statiorfacilitates charging and dischargirg
battery with any desired current profile asm@bient temperature, including the EIS measurement
of the Li-ion battery. All the experimentsare conductedon large format NMC/C power cells
which specifications are asrmmarizedn Table1l.

Table 1. Specifications of the NMC cell

Item Specification
Chemistry Active Material:0 "Q "QD &€ 30 €5 0
Cell dimensions Size: 99.7 mm 301.5 mm 13.17 mm Weight: 835 gm
Nominal Capacity 58.9 Ah @discharge C/3
Nominal Voltage 3.633V
Cutoff Voltage 25V,42V
Energy Density 528 Wh/L

Block diagram for the test station is depictedrigure3. The capability and specifications
of the st station are shownTrable2. National Instuments LabVIEW software is used to control
the test stationTesting profiles can beonstant current (C.C.), constant voltage (C.¥r)the

combined chargingnddischarging.
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Cell Terminal control et T “ f
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Temperature voltage Current —|/ -:—4
=T Overcharg ry
> | overdischarge
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|
|
Cell I
|
|
|

Programmable
Thermal Chamber _ ]

Figure 3. Test station blockdiagram

Table 2. Performance of the test station

Term Values
Max. charge current 50A
Max. discharge current 125A

A range of the ambient temperature | -20~60°C

16 Analog input channels

Channel 24 Digitalinput/output channels
Data acquisition Analog output channels
channels Frequency 625 kS/s
) 1 mA (current)
Resolution
0.01mV (voltage)
Frequencyangeof EIS 1mHz~1kHz

1.3 Motivations and objectives

Battery states and parameters cannot be measured directly while the systepeistion
and thus need to be estimat&d continuoushestimatethese statefor accurate BMS operation,
advanced algorithms have been researched extensMalprity of this researchfocuses on
estimating individual statdike SOC or SOHnstead of providing a comprehensive approach to

estimatehemsimultaneouslywhich isnecessarymplementingseparatalgorithms foreachstae
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requirehigh computational effortvhich is undesiralel for a BMS. Furthermore, battery states are
inter-dependent and should be estimated simultaneously to imgreasecuracy of BMS

Further eview ofcurrentliteraturehasshown thata majority ofthemethodghatestimae
the states simultaneousfpcuson estimating SOGlalong with SOJd4], [27], [37], [42], while
SOH, is overlooked BMSs used in HEVs require a precise riale estimateof the power
available. Thepeak powerestimate provides the necessary information required to optimally
balance theelatiorshipbetween power performance of the battery packlamdHEV, to meet the
acceeration and gradient climbing poweqguirementand to maximize regenerative brak[B0].

In addition to avoidovercharging or ovedischarging and extend ilisespan[43]. Degradation
of this power availability or @k power is described by the S@which iswhy it is necessaryo
estimate ialong withthe other states.

Monitoring of batteries is a challenging task, because their states are dependtarhah
parameters that have a nonlinear relation to a vaoétgxternal operating conditions like
temperature and load profiles. In addition, these parameters change significantly as the cell ages,
which makes it rather difficult to predidts behavior.Thus, advanced battery algorithms are
needed for BMS that arcapable of estimating these parameters throughout the calblifg with
considering external operating conditions.

There are certailimitationsthat must be considered whievelopingagorithms forBMS.
Firstly, these algorithmsre commonlyimplementedusing microcontrolles, which haslimited
computational poweand hus a simple model, such as equivalent circuit mo{leCM) is
prefered. Secondly, there is limited memory space in a microcont@atidas suchrecursive
methods ar@referred because thelp not need to storelarge amount oinformationas it gets

updatel with each sample time. Lastly, the estimation results should have high accuracy and
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reliability. Thus, advanced estimation techniqw®uld beapplied to achievehe required
performance
Based on the above analysis, an approach that esablgsaneous estimation 8OC and
SOH, including SOH and SOHy, of lithium-ion cellsis proposedThis thesis focuses dhree
major topicsaslisted below:
A Analysis ofcell behavior with respect to aging and temperature
A Longterm SOC and parameter estimation underdifferent temperature and aging
conditions

A SOH-and SOH calculation
1.4 Thesis outline
The basic structure of the thesis is shown as follows
1. Introduction

This chapter discusses the research backgraxmbrimental setup and theotivations
and objectives of this thesi$he research backgrourwiefly introduces the basics 6fMC/C
lithium ion cell along with a definition of cell states antharough literature review of SOC and

SOH estimation methods.
2. Modeling

First, he different types of cell models are introducethis chapterAfter reviewing the
various modeling methods, ECiBlselected for this research. The different types of E@Mhan
described and their performances are compared. Based on this, the second order ECM is chosen
and then its parameters are identified usingffline identification method. An analysis of these
parameters, with respect to temperature and agingpwded along with the testing schedules

employed.
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3. SOC and SOH estimation

This chapter is the main focus of thediseand describesethod for online SOC and SOH
estimation. First, an overview of the various online parameter estimation approaches #iong wi
the proposed approach is provided. Ttlenperformance of a traditional EKér SOC and ECM
parameter estimatias analyzed and an improved estimator algorithm is propddezteafteran
approach foQmax estimation is described along with a simptey computation framework to
implement the two algorithms together. The combined estimator is then validated at different
temperature and aging conditions using various test profiles. Finally, the cell parameters are used
to estimate SOH and the resulte aalidated using offline data.

4. Conclusion and future work

Concluding remarks and future works are providethis chapter
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2. Modeling

2.1 Overview

Battery modeling is an importanttask within BMS development.Various modeling
techniques have been suggestethe literaturg7], [44]i [46] and can be categorized into three
groups:

1. Electrochemical model
2. Empirical modelsand
3. Semiempiricalmodel

Electrochemical models arphysicsbased modeldhat describe the electrochemical
processes occurring inside the cell governed by physical laws that include electrochemical kinetics,
mass, chargeand energy balance along with potential theory, which $oanset of coupled
nonlinearpartial differentid equations (PDEs)The models can providan explanation of key
behaviors of battery at the microscopic scileddition all the internal states are fully observable
and unique, all owing o6virtual me a s umeasured) t s 6
which allows for analysis and research purp$3g417], [47], [48]. However, a large number of
parameters, sometimes as high as 50, is needed along with a high configuration effort to establish
these models, which increases complexity and remeinégs for needed memory size and
computation time and are unsuitable for practicattiead applications.

Empirical models aréatadriven modelghat are based on empirical parameters that do
not include any physical significancEhe approacheareeasy to configure, and able to deliver
quick responses and predictions. However, their accuracy is dependent on the complexity of the
model. Recently, more advanced models based on fuzzy logic and/or neural networks have been
developed and can estimatatet with high accuracy but require extensive testing data for training

them[12], [15], [20], [29], [31], [33], [49]
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Conversely, seraempirical models provide eelatively effective way to characterize
battery dynamics with low complexity and high accuracy.s€meodels use simple equations by
utilizing an understanding of the cell behavior, where the parameters are loosely based on the
physical processes of thelkcthat can be easily obtained using adaptive-deteen techniques.

The low complexity and high adaptability of such models make them the perfect choice for most
practical application€quivalent circuit models (ECBJ are the most popular one that alfofor

a simple electrical circuit to replace the complex electrochemical process. ECMs are constructed
by putting resistors, capacitors and voltage sources in a ¢btUit0], [13], [15], [16], [21], [36]

[38] and a comparative study of different ECMs is showid#]. The corréation with battery
dynamics is preserved by adding capacitors into the circuit. A summary of the different models is
provided inTable3.

Table 3. Summary of battery models

X High accuracy.
: X Quick convergence.
. Use complex equations t X . .
rIil((;:‘((j:terlochemlcal describecell internation WV tEr;(l;(ﬁirr]]sg;ve testing data required for 513’][17]’ [47],
LU s W High storage requirement.

W High computational cost.

X High accuracy.
i Use datebased empirical i,(v glpdate based on the dependent varial [12], [15], [20],
mogels relation to describe cell W E (?[W cgnvtergte_nc%. ¢ ired f [29], [31], [33],

behavior xtensive testing data required for [49]
training.

W Low stability.

X No stored data required.

X No extensive test datrequired for
Equivalent Use simplified circuit gf“”'”g- [5], [10], [13],
circuit models  diagrams to represent ce oW convergence. [15], [16], [21],
(ECM) dynamics W Low stability. [36]i [38]

W Difficult to distinguish the effects of the

different estimated states.
W Extensive reference work not available
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2.2 Equivalent circuit model

The cell terminal voltagey under load is described by the open circuit volt@§eV , the

voltage drop caused by internal Ohmic resistaiYce, and the overpotentials caused by various

electrochemical phenomenon like diffusion , charge transfer pafization —
concentration polarization , etc.[13], [19], [50]:
Vt =0cCV 'IFﬂwt hdiff @1,tr (,jg'nc 9)

, Wherel is the cell current and idefined agpositive for dischargng and negativdor
chargng. The internal Ohmic resistance encompasses the resistivity of the components in a battery
that include current collectors, the active material of the anode and eatruithe electrolyte
[50].

Typically, ECMs consist of an ideal voltage source, a series oesetd one or several
resistorcapacitor groups connected in sength the resistance where the ideal voltage source
represents the OCV of the battefjne ECM can be categorized into four groups dependent on the

order of the circuit.

1. Zero Order ECMAIso called the Rt model, shown ifrigure4, consists of an ideal voltage
source OCV) and an internal resmst Y , which are a function of SOC, SOH and
temperatureThe model is described by Hd.0), and te terminal voltages:

V; =0CV -IR (10
As the model does not represémansient behavior, it is not suitable for accurate

estimation of battery states during any dynamic operation¢oostant load).
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p——a V.

Figure 4. Zero Order ECM

. First Order ECM:AIlso called theThevenin Modekonsists of a parallel RC circuit added
in series to the R model. As showim Figureb, the model is composed of a voltage source,
internal resistors and capacitors. The internal resistors include the mwisiorY and
polarizationresistorY . The capacitor) ,is used to describe the transient response during

charging and dischairgy. w is the voltage drop across tREpair. The electrical behavior

of the model can be expressed as follows;

dv, \/ |

¢._. %o |

&t RG G (1D
V, =0CV -\ 1R (12)

Eq. (19-(12) can be expressed in discrete forrithva small sampling tim&Y  pi Q®

as:
s a Ts
Ve, k1= Vg i€ RG 'Hleg- e R4 (13
¢
Vikst =OCM 3 Vo k » I 1Fo (14
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The termsY and0 are arbitrary coefficients that can have any combination of

values as long as the teranY g s satisfied with the system. To ensure a system with

unique parameters, the tetynd is replacd by the time constariil, which is related to

the eigenvaluef the system. The equations can then be updated

s a TIs
¢
Viks1 = OCY 4 'Vq,k ¥ k1R (16)

, WhereTsdenotes the sampling time.

Cl
&
e VAYAY: ® [ -+
A R% ]
— -
+ VC1

—_ocr

S

Figure 5. First Order ECM

. Second Order ECMThe FirstOrder model can simulate voltage behavior to a certain
extent. However, the various slow and fast acting processes lead to an inaccurate
representation for extended charge or discharge periods. To improve the performance of
the model an extra R@etwork is added in series, which becomes a second order model,

also called th®ual Polarization Model
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It is composed of three parts, as shawfigure6; (1) OCV, (2) internal resistors
such as the ohmic resistY and the polarization resistdisgatinclude’Y andY , and (3)
the capacitors witld ando , which are used to mimic thdynamicresponse during
charging and dischargingo andw are the overpotentials acro$s6 and’Y 0

respectively. The electrical behavior of the circuit can be expressed

dve, = Vg I
wTRG G
dVC2 _ VC2 |
& RG G 18

Vi=0CV -\¢ ¢, IR (19

C c,
e
— AN, O
7.' l f\%f\ ! {-{/%.f \ \
1 + VC1 - + VC2 -
—— ocr

Figure 6. Second Order ECM

Substituting again with time constants, the description in discretelbmainis given by:
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Ts a I

_ W
Ve ki = Ve k@ +|I<R_§ ef (20)
¢
s a Is
ch,|<+1:Vg,|<e[2 +|kRZ§ et (21)
¢

Vikii=OCM g -V kv Yok 1+ k1R (29

4. Higher Order Models:Models consisting of three or moReC circuits can be used to
increase accuratdynamic responsesut increase complexity and computational time.

Similar to first and second order ECMs, the output equation is described as:
Viker TOCV 3 -l R0 Mk s M kze Ve (23

, Where, the overpotential is defined as:

T a Is
_ ‘
Ve, ki1 = Ve, k8 +|kRn£- et (24)
¢

Higher order models are rarely used for online application due to the high number

of parameters and statés.addition,OCV is a function of SOCOCV = f( SOQ, where

SOCin discrete forms defined as:

1
S0Ga = SO¢ —oo— 1T @29

, wheref is the coulombic efficiency (CE). CE is defined as the ration of discharge capacity

and charge capacity of the cell acycle and reaas almost 1 or 100% for most commercial

lithium-ion batterieg51]
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The first and second order model provide the best balance between accuracy and complexity
for most practical applicatiori24], [44]. Thus, the performance of both modisiEomparedn

orderto select one for application of S@Hrediction.
2.3 Measurement and analysis ofcell parameters

Parameters of a cell are known to be strongly affected by operating conditions like
temperature[18], [52] and aging53]. Generally, he cell parameters are identified offline and
provide areference valuéo analyze effects of aging ateinperaturen these parameterghis
also helps in studying the relatginpbetween these parameters and states of the cell.

Specialoffline testing routinesshown inFigure7, are designed t@xtract the parameters
andstudy the effects of aging and temperausig several cellS he offline testing schedule in
Figure7 (a) consists of a static capacity tasybrid pulse power characterizatiifPPQ test,and
Dynamic stress tesDST) as defined by DOH6], followed by thirty cycles that consists of
constant current (CC) discharging and constant cureanstant voltage (GCV) charging
profile to age the celllhis profile is repeatéuntil EOLand all these tests were performed &t 25
C.

Temperature effectare studied by applying théemperature based testing schedule in
Figure7 (b) at 10 C, 18 C, 258 C, and 48 C. Temperature testing was done using a thermal
chamber where the cell was allowed to rest for 24 hours to ensure the cell is at thermal equilibrium.
Static capacity test and HPPC test were selected for this schedule as all the cell parameters can be
evaluatd from these two testBour cellsare used for the offline testing schedate2® C andfor
the test afl0° C, 15° C and 43 C, respectivelyThe current profile and description for all the test

implemented is provided iAppendix1: Testing profiles
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P Static Capacity Test

Set Temperature

HPPC Test
‘ Static Capacity Test
DST Test *
* HPPC Test
| 30 CC-CV Discharge/Charge | _I

(b) Temperature based testing

(a) Offline testing schedule schedule

Figure 7. Testing £hedules.

2.3.1 OQmax

QmaxiS measured using the static capacity test at every 30 cycles aedgesature range
from 10 C to 4% C while the nominal capacityQ,,mina, for a fresh cell is provided by the

manufacturer The Static capacity test measurt®e capacity in amperbours at a C/3CC
discharge rate corresponding to the rated capgajityFirstly, the cell isfully chargedby a CCG
CV charging profilefollowed by a rest periodhat takes2 hoursto ensurghecell is at thermal
equilibrium Finally, thecell is dischargedntil it reacheghelower cut-off voltage

The measurementom Figure8 show thaQmaxdecays as the numberofy ¢ Inaeass
butis randomly affected bgmperature, with decreased capacity8tC and 48 C and increased

capacity at 15C and 25C.
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Figure 8. Variation of Qmaxwith (a) aging, (b) temperature

2.3.2 OCV
As OCVis a function of SOC, thEOCGOCVrelationship is measuresinga speciapulse

discharge testshownin Figure9. The pulse current profile consssif a 0.5 C discharge pulse

with a duration that discharges the cell capacity by, T¥6lwed bya onehourrest period which

is repeatedill 0% SOCWhen no load is connected, the cell reacdresquilibrium stateafter an

extended period of relaxati@mdthere is nochange in terminal voltag&hen theterminal voltage

is the same as the OGWhdoverpotentials can be considered zero.
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Figure 9. Pulse discharge profile

SOGOCYV curve measuredt 25° C, is shown inFigure10. Thecurve fitted by a ninth

order polynomial, is as follows:
ocv(y=px +pR w% 8% px pk pxk P> Ppx#y (26)

, Wherex is the SOC that is normalized ab@uneanof zeroanda standard deviatioof
0.3317 A ninth order polynomial was chosen because of the accuracy, where the root mean square
error (RMSE) is 0.0049 as compared to those of other lower order polynomgifggraiom 0.009
to 0.15.Thefitted coefficientsresults in

n modnp mWrixdp modp TR xdAg ™o

N ™ol ™®cHp ™o T p oPH XU
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4.2
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4r SOC-OCV Curve
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Figure 10. SOC-OCV curve.

Themeasure@OCGOCVccurves for different temperatiwandnumber of cycleare shown
in Figure11. In Figure11 (a) and (c), the value d®,omina is fixed, equal toQ,,,, at 28 C, while
in Figure11 (b) and (d), the valuef Quomina is varying, equal to the value df,,, at respective
temperatures and number of cycl€ee SOCOCYV curve varies withemperature and aging, as
shown inFigurel1 (a) and (c)whenthe value ofQ,ominal is fixed. Theseariations are noticeable

at the endemperatures, P0C and 48 C, while they vary slowly as the cell is agedrhus, the

SOGOCV function can be assumed constant for all aging condition¥hese variations are
adjusted by updatinthe valueof Qugmina @S shown irFigure 11 (b) and (d) Hence the SOG
OCV curvecan befixed asdepicted inEq. (&) over the entire operation ramg the value of

Qrominal Is updated

37



4.2
I
4l 1
|
[
3.8 i
|
- 36 ;;esh T:ell :1‘
< cycles N
3 X 60 cycles */@\§ N |
o34 90 cycles f\\? f
120 cycles \\\\\\ I
3.2 v 150 cycles \\\\\ \lq
/A 180 cycles 1y ,‘Vl|
% 210 cycles W[
3r X 270 cycles Iy f
+ 300 cycles
28} . : "
100 80 60 40 20 0
SOC (%)
(a) SOC-OCV curve without Q__ update
4.2 T T T T T
4t N
\Q\
3.8 SN
3.6 =
R % I
S it
> 3.4 Bsg
8 \
o \ \
3.2 L
0 o \
o 10°c \ b
3r 15%¢ % i
0 25%C 5
28+ O 450¢ o
26 . . . . .
100 80 60 40 20 0
SOC (%)

(c) SOC-OCV curve without Qmax update

4.2
4
3.8
~36 Fresh cell
E 30 cycles ~
&) L X 60 cycles
© 34 90 cycles
120 cycles
3.2 ¥ 150 cycles
/A 180 cycles
3t % 210 cycles
ix 270 cycles
+ 300 cycles
28 L Il 1 L 1
100 80 60 40 20
SOC (%)
(b) SOC-OCV curve with Q __ update
4.2 T
N
N
al [N
3.8
36 =g _
= T8
> 34 B
O A\
© .l W\
' 0 10°¢c \©
I\
15°¢c
3L
O 25%c %
281t o 450 C
26 | . | | |
100 80 60 40 20 0
SOC (%)
(d) SOC-OCV curve with Q update

max

Figure 11. SOG-OCV curve under different aging (a, b) and temperature (c, d) conditions

2.3.3 Impedanceparameters

from the voltage response at pulse discharge curwisiagle pulse current and voltage response

ParametersRy, R.f1,R, and & were estimated using Nelinear Least Square (NLLS)

depicted inFigure12, wasanalyzedo identify the individual parameters:as

1 SubintervalY (0 0): the battery output current is zeamd the SOCis constantIn

addition,the terminal voltage is constaamidhas reached the 6 &Y ®
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1 SubintervalY (0 0 0): the battery is discharged with a constant curi@nt
1. Initially, a steep decrease of the output voltage can be seen due to the internal
resistance®’ , and then continues to exponentially decremgen by theOCV (as the SOC
is decreasig) and theRCcircuits.

1 Subinterval’Y (0 0 0): the battery current is zero so the output voltagérst, will

have a steep increase duéYto and therthere isan exponential increase until it reaches

00 QYD
4.1 T T T T 30
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—————————————————————————————————— 525
4.05
20
=
@ 15 _
g ¢ <
° I=
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Figure 12. Single pulse profile

From the above analysis, intern&lor S can be used to determine REparameters. Interval
S is preferred because (DCVis constant throughout the interval, (2) curreist zero and thus
voltage dop due to internal resistance is zero and@Lis constant, thus value of the parameters

can be estimated at a fix&DC
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Ry = — 0

I discharge

(27)

1. Internal ResistancéR,): Ry was calculated from the instantaneous voltage drop that takes
places when a battery is charged or discharged from a restingctgb< |:

Ry=—0

28

Idischarge ( )

2. First Order Model: To find the first order parameters, two cases are analyzed: (1)
Discharging/Charging and (2) Resting. For the first case, subintéfytie value of input

currentl is constant, and Eq. (16an be modified as:

_ tcurrent é tcurrent 6 é tcurrent
Ve, =Ve,e8 * +HRA e { 0 R 1®e-:f
Gt TGl I;"‘)ae 6 i & (29)
¢ - ¢
, Where 0 denotesthe duration 6 0 for when the battery is charged or

discharged and ; 1. For resting caseubinterval’Y, input current is zero, and Eq. (33s

modified as:

Ve, = Ve, © (30)
, where0  denotesheduration 6 0 for whenthe battery is at rest. The value of

@ O isrequiredto more accurately define the dynamics at the beginning of the resting phase

From Eg. (29 and (30, the overpotentiab can be defined as

é, é _ tCUrrent w t rest
Vo =SIR® -e 1+ O 1
SERPUs B o (31
é ¢ e

, The output voltage, from equation {1&:

40



V, =OCV(SOG - ¥ (32

Using Eg. (3] and (33, the parameters can be evaluated by methods ofimear

regression. The regression equation is

a - Leurrent O frest
I eflr OUgf
RE 0t @3

S

y=0OCV(SOG -V

@\CD\ND\ -
O

3. Second Order ModeParameter estimation results for a second order ECM can be obtained
using a similar approach as above. Using E@)-(22), that is simplified for the resting phase,

the equation for a secormtder ECM is given as:

é' é _ tcurrent & Et é é_ _ tcurl’ent (’“ﬂﬁt
—e e ! O £ —€ e ! O £
Vo, =glRZ e & e (34, Ve, = gRZ e o (35
e ¢ Y e ¢ g’
Vi =0CV(SOG -¥ -¥ (36
The equation in regression form is
é, é . tcurrent w tcurrent é é_ t current @s
— - e 4] ou f 4+ 3 ce 2t ol
y=0CV(SOQg -V g IE% e (_jge g?lae e % (37)
e ¢ Y e ¢ mY

To validate theabovemethod, voltageurrent data is simulated using kmo parameter
values. The output voltage response is generated using SIMULINK models. The first and second
order SIMULINK based ECMs are shownhkigure13. The pulse discharge profile used,and
white noise is added to the system to simulate the effects of sensor noises. The standard deviation
is assumed as 0.05 A and 0.002 V for the curredtv@ltage sensor respectively. The estimated

voltage and parameter identification results for firet order ECM is shown idrigure 14 and
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Figure 15 respectively. Similarly,Figure 16 and Figure 17 show the estimated voltage and

parameterdentification results for theecondorder ECM.

Figure 13. SIMULINK base ECM

Figure 14. Voltage estimation using offline identified parameters First Order ECM
42











































































































































































