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Abstract

In this thesis, low-cost differential Global Positioning System (DGPS) techniques are

developed for use in automated vehicle convoying. The Global Positioning System (GPS)

pseudorange and carrier-phase measurements are used to determine a relative position vector

(RPV) between vehicles and between two antennas rigidly fixed to a vehicle in an attitude-

baseline configuration. The pseudorange measurements assist in the estimation of the integer

ambiguity term inherent in the highly accurate, but ambiguous carrier-phase measurement

necessary to achieve centimeter-level relative positioning accuracy. A technique, referred

to as Dynamic Base Real Time Kinematic (DRTK) positioning, is described in detail to

estimate the carrier-phase ambiguity to ultimately provide a relative position vector estimate

between GPS antennas. DRTK is capable of providing relative positioning with L1, L2, and

L5 frequencies standalone or in combination with one another. Performance improves with

an increasing number of satellites in view and number of frequencies tracked per satellite.

In this thesis, DRTK is aided by including an a priori baseline magnitude between

antennas in a baseline attitude configuration on a single vehicle as a constraint with a

technique referred to as Fixed Attitude-baseline DRTK (FAD). The RPV and relative integer

ambiguities between these two fixed antennas, referred to as the base and auxiliary antenna,

are computed and used to derive additional measurements between the base antenna and

a rover antenna on a separate vehicle via vector addition (FAD+DRTK). This approach

improves the availability of the solution by reducing the time-to-first-fix (TTFF) by one half

when compared against DRTK with two receivers. A comparative study of FAD+DRTK

and the conventional DRTK algorithm is presented when using low-cost single-frequency

receivers.
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Chapter 1

Introduction

One of the main functions of all brains is to take sensory information, use it to generate an

estimate of the current state of the world, and then to compare it to the desired state of the

world. If the two do not match, compensatory action is initiated, which is what we call

behaviour.

–Stanley Heinze [7]

Advancement in autonomous mobility technology has generated great interest in indus-

try and government to apply this technology to vehicle convoy operations to enhance overall

convoy performance by reducing specific driving tasks required by operators, improving ve-

hicle control, reducing training time, preventing collisions, and improving safety. In the

military, sustainment convoys are imperative for providing adequate supplies and support

to personnel across the full range of military operations [8, 9]. Another important result of

autonomy in the military is freeing drivers to defend the convoy if under attack by enemy

combatants. In industry, autonomous convoying technology shows promise in reducing fuel

consumption and greenhouse gas (GHG) emissions, reducing driver fatigue, and eliminating

drivers entirely when full autonomy is reached [10,11].

The ultimate goal of autonomous convoying is to essentially revert to the convenience of

traveling by rail without the burden of laying physical tracks; rather, autonomous convoys

operate by following a path determined by a leader. To continue the railroad analogy, one

may think of the lead vehicle as a locomotive. Just as a rail car follows the railroad tracks, the

vehicles behind the leader, followers, traverse the path laid by the leader. The objective of a

follower is simply to follow the path of the leader smoothly and at a distance that achieves

1



Figure 1.1: Auburn University trucks in a convoy configuration during testing on forest roads
in Canada.

mission specific goals or allows the follower(s) to reduce experienced drag to minimize fuel

consumption. A depiction of the configuration of an autonomous convoy is given in Figure

1.1.

1.1 Vehicle Sensing for Autonomous Convoying

Navigation is the field of study that focuses on the process of monitoring and controlling

the movement of an aircraft or ground vehicle from one place to another [12]. Navigation

requires knowledge of where one is and where one aims to be. Knowledge of one’s location is

described in relation to a reference. This reference can be global or local. Positioning is the

ability to accurately and precisely determine one’s location and orientation two-dimensionally

or three-dimensionally when required, referenced to a standard geodetic system. Relative

positioning, in the context of this thesis, is knowing where a follower is in relation to the

leader once the leader has been identified. The leader is localized to its environment or

positioned globally. According to Huang & Dissanayake [13], “Robot localization is the

process of determining where a mobile robot is located with respect to its environment.

Localization is one of the most fundamental competencies required by an autonomous robot

2



as the knowledge of the robot’s own location is an essential precursor to making decisions

about future actions.” To achieve these lofty goals, a variety of sensors have been utilized

with varying degrees of accuracy to provide valuable positioning and localization information

to navigate the autonomous vehicle. Sensors commonly used in vehicle positioning and

navigation systems are typically broken into two distinct categories: absolute and relative

sensing [14]. Before beginning discussion of the topic of this thesis, a brief survey of sensing

technologies commonly used in the field of autonomous mobility is presented.

1.1.1 Absolute Sensing

Absolute heading and position sensors are incredibly useful for solving positioning and

navigation problems. Absolute measurements are needed because a relative sensor alone is

not capable of providing an absolute orientation or position with respect to a reference. The

purpose of absolute sensing is to provide information about the vehicle’s orientation and

location with respect to a reference such as the Earth. The most common sensors to achieve

global positioning are the magnetic compass and the Global Positioning System (GPS) [15].

1.1.1.1 Magnetic Compass

Heading is the most significant navigation parameter in regard to its influence on accu-

mulated dead-reckoning errors [14]. Magnetic compasses use a measurement of the Earth’s

magnetic field to determine the orientation of vehicles, airplanes, and even Boy Scouts. The

first magnetic compasses were constructed over 2,000 years ago during the Han Dynasty in

China with lodestone, a naturally magnetized stone of iron [16]. A typical magnetic compass

is capable of providing a measurement of absolute heading with a precision of 0.1◦ and an

accuracy of 0.5◦ [14]. Orientation is measured with respect to Magnetic North.

Magnetometers are a commonly used sensor in robotics that measures the Earth’s mag-

netic field. In conjunction with a three-axis accelerometer, a three-axis magnetometer can

be used as a magnetic compass to determine heading with respect to Magnetic North. For
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Figure 1.2: Description of heading provided by a magnetic compass on an aircraft.

successful implementation, certain application specific limitations must be addressed. Ve-

hicles are partially made of ferrous materials that distort the Earth’s magnetic field, along

with components that produce a magnetic field (e.g. speakers, electric motors, seat warmers,

window defrost strips, etc.). Magnetometers measure the vector sum of all magnetic fields

present; therefore, the compass must be calibrated appropriately and monitored for errors

caused by long-term magnetic anomalies with an external reference (e.g. GPS, differential

odometer, International Geomagnetic Reference Field (IGRF), or World Magnetic Model

(WMM)). Additionally, it is beneficial for the magnetometer to operate at a level attitude as

much as possible. This may be achieved by gimbal-mounting the magnetometer to prevent

errors introduced by the vertical component of the geomagnetic field or using an external

attitude reference for correction [14]. The reader is directed to [15] for a more thorough

discussion about the application of magnetic compasses in vehicle navigation.

1.1.1.2 Global Positioning System
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Figure 1.3: An early navigator making use of a sextant.
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For thousands of years, humans have used the natural stars for navigation. Navigators

used a device called a sextant (see Figure 1.3) to make angular measurements to stars from

the horizon. This technique is known as celestial navigation, which uses the method of trian-

gulation to determine position by angular measurements. Over a long Labor Day weekend in

1973, a group of armed forces officers and civilians gathered in the Pentagon were completing

a plan that would revolutionize navigation. Rather than using angular measurements to a

celestial body, this system would use radio ranging to a constellation of artificial satellites

called NAVSTARs [17]. Determining one’s position based on distance measurements to the

artificial NAVSTARs is known as trilateration. GPS can provide service to an unlimited

number of users since the user receivers operate passively (i.e. receive only) [5]. The system

provides users the ability to determine their position, velocity, and synchronize their clocks

with GPS time with the only prerequisite being an appropriate receiver. To determine posi-

tion, a minimum of four of the thirty-one active satellites in the GPS constellation, as of the

time of this writing, must be in view for the receiver to resolve the unknowns of latitude,

longitude, altitude, and correction to the user’s clock. The United States is committed to

maintaining the availability of at least 24 operational GPS satellites 95% of the time. The

current Global Positioning System Standard Positioning Service Performance Standard re-

lease by the Pentagon in 2008 specifies a 2-σ accuracy of 7.8 m during normal operation

over all ages of Ephemeris data, which is the data used to estimate the location of satellites,

using a simple single-frequency receiver [18]. In practice, standalone positioning accuracy

with a GPS receiver is typically 3 m. However, a costlier dual-frequency receiver combined

with a correction service (e.g. real time kinematic (RTK)), this accuracy can reach centime-

ter level [19]. Not only does GPS offer global position solutions, multiple antennas may be

fixed in an attitude configuration on a vehicle to determine attitude (i.e. heading, pitch and

roll). The problems associated with using GPS for navigation are signal blockage, multipath

interference, and jamming or spoofing by adversaries [14]. A thorough discussion of GPS

will be provided in Chapter 2.
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Figure 1.4: Two Navcom SF-2040G StarFire GPS receivers, along with a Garmin 12XL
handheld. The Navcom on the right is using a Bluetooth serial adaptor.
Source: [1]

1.1.2 Relative Sensing

Relative, or displacement, sensors give the user a measurement of the change in dis-

tance, velocity, or orientation with respect to a previous measurement [15]. In a word, apart

from vision-based relative position sensing, relative position sensors are proprioceptive. Pro-

prioception, in the biological context, is the sense of self-movement and body position [20].

As an illustration, imagine a blindfolded person on a turntable that can translate and ro-

tate placed in an unfamiliar location. As the turntable changes orientation and position,

an assistant will say how much the turntable rotates and translates while the blindfolded

subject will record this information. At the end of the experiment, the blindfolded person

can easily give a history of their movement and where they are in relation to their starting

point but will be incapable of providing an accurate location apart from which city, county,

country, or planet they may inhabit. This describes the concept of dead-reckoning. However,

if the assistant gives the blindfolded person their absolute starting location and orientation

provided by GPS and a magnetic compass, the blindfolded person can also determine where

they are located. Dead-reckoning has been used for ages. Early European explorers like
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Christopher Columbus and Vasco de Gama used this technique to navigate to and from the

New World by recording their movements in relation to the port they departed [21].

1.1.2.1 Odometry

Odometry is the one of the most commonly used sensors for vehicle positioning [14]. Its

strengths are satisfactory short term accuracy, affordability, and high sample rate. The issues

lie in the inherent necessity to integrate successive motion history to provide information

about distance traveled. If any prior measurement is inaccurate, this error will propagate

and accumulate without bound. For instance, orientation errors lead to large errors in lateral

position that increase proportionally to distance traveled. The typical sensor used in odom-

etry of wheeled vehicles is a rotary encoder, a electro-mechanical device that converts the

angular position or motion of a shaft to analog or digital signals. This information combined

with knowledge of the radius of the wheel provides a measurement of linear translation. Note

that this measurement is dependent upon the radius of the wheel and the assumption that

the wheel does not slip. The rotary encoder shown in Figure 1.5 is an example of an encoder

likely to be found on a unmanned ground vehicle (UGV).

With pneumatic tires, this radius is at the mercy of temperature and loading which

can effect the effective radius of the wheel. Additionally, wheeled vehicles are expected to

experience wheel slip which is typically dependent on load, inflation pressure, and velocity

[22]. Quantifying odometry measurement errors is not well-defined. These measurement

errors are separated into two groups: systematic and non-systematic. Systematic errors

are errors in the kinematic model and non-systematic errors are errors arising from the

uncertainty in the interaction between the wheels and driving surface. To address these

errors, Borenstein and Fang developed methods in [23, 24] to measure systematic and non-

systematic errors; unfortunately, these methods depend on information about the surface

driven and a predefined square path that is unlikely to be available to autonomous vehicles

required to operate in many diverse environments.
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Figure 1.5: An example rotary encoder used to provide odometry measurements.

GPS may also be leveraged to provide an odometry measurement independent of the

aforementioned systematic and non-systematic errors. A technique known as time difference

carrier-phase (TDCP) odometry can be used to track changes in a GPS receiver’s motion with

high accuracy but at a lower sampling rate than a rotary sensor. TDCP odometry is achieved

by differencing successive GPS carrier-phase measurements in time to remove time correlated

errors. TDCP is capable of providing odometry measurements at the sub-centimeter level;

however, TDCP performance is subject to satellite visibility, satellite geometry, and GPS

receiver quality [25] .

1.1.2.2 Inertial

An inertial measurement unit (IMU) is comprised of three mutually orthogonal ac-

celerometers and gyroscopes. Gyroscopes measure angular rate about each orthogonal axis.

The first apparatus similar to a gyroscope was developed by the English sea captain John

Serson in 1743 [26]. Léon Foucault, the very same Foucault that developed the Foucault
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pendulum that can be seen as a reproduction on Auburn University’s campus in Ross Hall,

appropriated a device developed by Walter R. Johnson to observe the rotation of the Earth

and gave the device its modern name, gyroscope [27]. Accelerometers measure proper accel-

eration in the direction of each sensitive axis, which is the same acceleration that humans

experience in relation to an inertial frame [28], [29].

Figure 1.6: Schematic of an inertial navigation system.

An inertial navigation system (INS) is a complete three-dimensional dead-reckoning

navigation system comprised of the aforementioned IMU and a navigation processor as de-

scribed in Figure 1.6. The INS is able to provide navigation solutions at a high rate (e.g.

hundreds of times per second); however, like all dead-reckoning sensors, error grows with-

out bound as successive accelerometer and gyroscope errors are summed if not corrected

by external aiding. INS performance can vary by several orders of magnitude, depending

on the quality of the accelerometers and gyroscopes. The best INSs are reserved for use in

ships, submarines and select spacecraft. The INSs used by commercial airliners and mili-

tary aircraft experience a horizontal drift of less than 1,500 m over the first hour and cost

around $100,000. The cheapest and smallest inertial sensors, microelectromechanical sys-

tems (MEMS), are suitable for inertial navigation in vehicles and pedestrian dead-reckoning

10



(PDR) with external aiding (e.g. GPS) [4]. Recent work in PDR developed by the GPS and

Vehicle Dynamics Laboratory (GAVLAB) at Auburn University may be found in [30, 31].

Inertial sensors for vehicle navigation are typically installed in the strapdown configuration

that aligns the accelerometers with the navigating body with care to minimize misalignment

errors. Other common errors inertial sensors experience are inherent bias, scaling, and ran-

dom noise. The dominant error source for inertial sensors is often bias. Typical values of

internal bias for different IMU grades is given in Table 1.1.

GPS performance is limited by signal outages and low sampling rates (e.g. 10 Hz) but

provides long-term accuracy. INS performance is limited by error drift, thus provides short-

term accuracy may be sampled quickly (e.g. 100 Hz). The drawbacks of inertial sensors

and GPS are complementary, so by combining them, the advantages of the two technologies

are offered to provide a continuous, high-bandwidth, complete navigation solution with high

long and short-term accuracy. This is commonly referred to in the literature as GPS/INS in-

tegration. The GPS measurements provide corrections to correct error drift in the INS, while

the INS can smooth the GPS solution and bridges brief GPS signal outages [4]. Additionally,

gyroscopes alone are incredibly useful in positioning because they can assist in compensating

for the foremost weakness of odometry: any small momentary orientation error will cause a

constantly growing lateral position error [14].

Table 1.1: Representative Bias Values for Different IMU Grades (From: [4])
IMU Grade Accelerometer Bias (m/s2) Gyroscope Bias (deg/hr)

Marine 10−4 0.001
Aviation 3×10−4–10−3 0.01

Intermediate 10−3–10−2 0.1
Tactical 10−2–10−1 1–100

Automotive >1 >100
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1.1.2.3 Vision

In recent years, both video and light detection and ranging (LiDAR) sensors have been

deployed to determine the position of a leader vehicle, and identify obstacles and other im-

portant objects in the environment [32]. Additionally, radio detection and ranging (RADAR)

sensors are also used to determine the relative position of a leader vehicle. These sensors have

proven useful for tackling the problem of Simultaneous Localization and Mapping (SLAM),

which is the task of a mobile robot building a map of an unknown environment while simul-

taneously navigating through the environment using said map [33]. This problem was first

addressed in the mid-80s in the seminal work on SLAM by Chatila and Laumond in [34].

Feŕaud et al. implemented this technique in a convoy configuration and were able to localize

the follower vehicle in a 3D map with an accuracy of 10 cm.

The primary drawback of these sensors is maintaining line-of-sight (LOS) with the

target (i.e. the leader vehicle). Additionally, LiDAR and cameras are susceptible to adverse

environmental operating conditions (e.g. smoke, fog, dust, rain, snow). All of the vision-

based sensors are also limited to operate within approximately 800 m of the leader vehicle,

for radar, and less than 100 m for LiDAR [35]. For a more thorough discussion of vison-based

sensing in autonomous convoys, the reader is directed to [8, 10, 14,35–38].

1.2 Prior Work

Now that there has been a through review of sensing technologies commonly used in

mobile robotic positioning, and more specifically, autonomous convoying, the topic of this

thesis may be discussed in a more intelligible context. It is important to note that in the

field of autonomous convoying, a multi-sensor approach yields better performance, because

no sensor alone is perfectly suited for such a complex problem [39]. DRTK is an applica-

tion of the technique of differential GPS (DGPS). DGPS removes correlated errors between

two receivers, with one located at a well-surveyed location, to provide a highly accurate

global positioning solution by leveraging the highly accurate, but ambiguous, carrier-phase
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measurement. Carrier based positioning was first explored in the 1970s. The first use of

carrier-phase measurements for positioning in a dynamic application was in 1985 [40]. The

carrier-phase measurement will be discussed in Chapter 2. A good resource describing DGPS

is in [17]. The next advancement in satellite-based navigation was the advent of real-time

kinematic positioning (RTK) in the early 1990s that allows a user to receive corrections to

provide a highly accurate global position in real-time rather than in post-process [41]. Pre-

vious work in the area of formation flight [42,43], automated aircraft refueling, [44], and the

Joint Precision Approach and Landing System (JPALS) [45] developed methods to produce

relative positioning information with accuracy similar to RTK. Ultimately, the shoulders on

which this thesis work stands is that of the DRTK technique developed at Auburn Univer-

sity [46,47]. The DRTK algorithm will be discussed in detail in Chapter 3.

This thesis incorporates measurements from three GPS receivers to improve the perfor-

mance of the conventional DRTK technique where only two receivers are used. This thesis

work was inspired by Sperl in his Master’s thesis at Technische Universität München in Ger-

many. He showed that RTK with a virtual base station can be improved by incorporating

measurements from three antennas via vector addition with a known, rigidly fixed baseline

between two antennas once the integer ambiguity term and relative position vector between

the fixed baseline is resolved [48] . Additionally, Clark Cohen showed in [17] that including a

constraint of the a priori magnitude of the vector between two fixed antennas aids in integer

ambiguity resolution. Ultimately, the work of Sperl and Cohen led to the work of improving

the performance of DRTK when using low-cost single-frequency GPS receivers.

1.3 Contributions

The purpose of the research presented in this thesis is primarily to improve the perfor-

mance of the DRTK algorithm’s objective of providing a 3D relative position solution in an

autonomous convoy. With this in mind, the following contributions are made:
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• A priori baseline magnitude information is used to constrain the estimate of integer

ambiguities between two GPS antennas to provide a high precision relative position

vector (HPRPV). The constrained and unconstrained estimator are compared.

• Relative positioning algorithms incorporating measurements from three GPS antennas

with two in an attitude baseline configuration, and one acting as a rover, are developed

to provide RTK quality relative position solutions without a static base station. The

multi-antenna approach is compared to conventional DRTK with two receivers.

• The constrained estimator and the multi-antenna measurement approach are used to

improve the performance of DRTK with low-cost single-frequency receivers.

1.4 Thesis Outline

Beginning with a discussion of the history and development of GPS in Chapter 2, this

thesis continues discussion of the GPS signal structure and expected measurement errors.

Next, in Chapter 3, the DRTK algorithm is introduced with an explanation of the Least

Squares Decorrelation Adjustment Method (LAMBDA) for fixing float integer ambiguity

estimates to integers. To conclude Chapter 3, an explanation of the determination of a high

precision relative position vector (HPRPV) describing the relative position with cm level

accuracy is presented along with experimentation and results with this technique.

The main contributions of this thesis are presented in Chapters 4 and 5. Chapter

4 details the a priori baseline magnitude constraint used to more rapidly resolve integer

ambiguity terms by constraining the estimates of the integer ambiguity terms in a linear,

discrete Kalman filter framework. The technique applied to DRTK is presented followed by

experimentation and results. Chapter 5 discusses improvements in the DRTK solution with

low-cost single-frequency receivers provided by additional derived measurements. Finally,

Chapter 6 discusses future work in this approach and conclusions.

14



Chapter 2

The Global Positioning System

GPS in many ways is like the Internet. Both are gifts of the U.S. Department of Defense to

the civil world. Both continue to transform the way we do ordinary, everyday things as

individuals and society, delivering wide-ranging economic and social benefits far beyond

anything their designers could have dreamed of.

–Pratap Misra and Per Enge [21]

The initial principle purpose of GPS was to offer the U.S. military accurate estimates

of position, velocity, and time (PVT). These estimates were to be accurate to 10 m for po-

sition, 0.1 m/s for velocity, and 100 ns for time, all in the root-mean-square (rms) sense,

and were to be made available to an unlimited number of U.S. Department of Defense

(DoD)-authorized users globally, continuously, and instantaneously via the Precise Position-

ing Service (PPS) [21]. Additionally, the DoD planned to provide civil users of GPS a lower

quality positioning service, Standard Positioning Service (SPS), that was consistent with

national security considerations. The DoD achieved this by corrupting the civilian signal

with controlled errors via a feature called Selective Availability (SA). GPS was declared

operational in 1995 and exceeded the expectations of the service promised in its initial per-

formance specifications [18]. In 2000, a Presidential Order deactivated SA to provide civilian

users standalone positioning to an accuracy of around 3 m, rather than the accuracy of 100

m provided under SA corruption. With this level of accuracy for civilians, the applications

for civil use of GPS expanded and continues today.
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2.1 System Architecture

GPS consists of three segments: the Space Segment, the Control Segment, and the User

Segment. The Space Segment is comprised of the satellites, the Control Segment manages

satellite operations, and the User Segment is related to the development of civilian and

military GPS user hardware. A brief description of each segment’s function is provided

below.

2.1.1 Space Segment

The space segment is the constellation of satellites (i.e. space vehicles (SV)) that pro-

vides the signals from which users make ranging measurements. The SVs transmit a pseu-

dorandom noise (PRN)-coded signal unique to each SV known as the coarse/acquistion code

(C/A) from which the ranging measurements are made. As stated earlier, this is a passive

architecture. This ranging signal is also modulated with data that provides information that

defines the positions of the satellites. Additionally, each SV includes payloads and vehicle

control subsystems. One payload supports the original GPS position, velocity, and time

(PVT) mission; the other payload detects Earth-based radiation phenomena to serve as a

nuclear detonation detection system. The vehicle control system corrects the SV orbit and

SV orientation to maintain direct signal transmission to Earth and to ensure the on-board

solar panels are directed to the Sun [5].

The constellation was designed to provide all users with a clear view of the sky a

minimum of four SVs in view; fortunately, it is more likely to see six to eight SVs at any

time in practice. The constellation is currently comprised of 31 active SVs in six orbital

planes (A through F), all with inclination angles of 55◦ relative to the equatorial plane.

Each orbital plane is comprised of at least four SVs. The orbits are nearly circular with a

radius of 26,560 km measured from the center of Earth. Finally, each SV is identified by its

unique PRN number [21]. See Figure 2.1 for a visualization of the orbits and Table A.1 in

the Appendix for a list of active satellites.
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Figure 2.1: Depiction of the GPS orbits.

2.1.2 Control Segment

The Control Segment is comprised of a Master Control Station (MCS) and seventeen

monitoring stations around the Earth responsible for monitoring, commanding, and control-

ling the Global Positioning System. Figure 2.2 gives a map of the elements of the Control

Segment. The head of the Control Segment is the MCS at Schriever Air Force Base near

Colorado Springs, Colorado. The MCS operates the system and provides command and

control functions. The specific functions of the Control Segment are:

• to monitor satellite orbits,

• to monitor and maintain satellite health,

• to maintain GPS time,

• to predict satellite ephemerides and clock parameters,

• to update satellite navigation messages,
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• to command small maneuvers of satellites to maintain orbit, and relocations to com-

pensate for failures, as needed [21].
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Figure 2.2: Map of the elements of the Control Segment. Source: [2]

2.1.3 User Segment

The User Segment is comprised of the hardware required to capture the radio frequency

(RF) signals emitted by the SVs and perform calculations to estimate the user PVT. The

hardware required is a GPS receiver and antenna. Early receivers produced in the mid-1980s

were priced upwards of $100,000. In 1992, the first hand-held receiver could be purchased for

less than $1,000; in 1997, the industry broke below $100 for a pocket-sized receiver powered

by two AA batteries [21]. Today, survey-grade receivers range in price from $5,000-$30,000

or more. Low-cost single-frequency receivers can now be purchased for as low as $50.
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Signals are received by the GPS antenna, which provides near hemispherical coverage

(e.g. 160◦). Most GPS antennas have a built-in pre-amplifier that may be powered externally

or more commonly by the receiver’s RF coaxial cable. GPS antennas vary in cost from as

low as $5 for a passive antenna to several thousand dollars for a high-quality choke ring

antenna (see Figure 2.3) capable of rejecting erroneous reflected signals known as multipath.

Figure 2.3: Trimble choke ring antenna. Source: [3]

Given data describing current SV locations and a rough idea of user location, the receiver

determines which SVs are in view. With knowledge of the SV IDs, the receiver knows the

PRN code unique to each SV and attempts to align the receiver generated replica of the
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known PRN code to acquire the signal. After successful acquisition, the receiver uses a

feedback control loop (i.e. delay lock loop (DLL)) to continuously adjust the replica code to

maintain alignment with the incoming PRN code. The time shift discovered in this process

is multiplied by the speed of light to give the pseuodrange measurement. The time shift is

essentially comparing the user’s clock time at arrival to the SV clock time at transmission.

Additionally, after the alignment is successful, the PRN code is removed from the signal,

leaving only the navigation (NAV) message. The navigation message of each SV contains

the Ephemeris data necessary to calculate its own accurate location, time parameters and

clock corrections, and Almanac data necessary to roughly calculate the positions of all SVs

in the constellation. After PRN removal, the signal is now tracked with another feedback

control loop called a phase lock loop (PLL). Similarly, the receiver generates a sinusoidal

signal to match the frequency and phase of the incoming signal, and extracts the navigation

message. A depiction of L1 GPS carrier signal with modulation is shown in Figure 2.4.

Most importantly for the topic of this thesis, the carrier-phase measurement is made

in the PLL by measuring the initial fractional phase difference between the received and

receiver-generated signal, and then tracking changes in the signal phase by counting whole

cycles and keeping track of the fractional cycle at each measurement epoch. The total number

of whole cycles between the receiver and the SV is unknown. This is known as the integer

ambiguity. This measurement is much less noisy than the pseudorange measurement and can

provide centimeter level positioning accuracy once the integer ambiguity is determined [17].

This process is known as integer ambiguity resolution and the foundation of this thesis is to

describe methods to resolve the integer ambiguity.

2.1.3.1 Measurement Models

The two measurements of note in this thesis are the pseudorange and carrier-phase

measurement. In estimation and control, it is essential to have a good understanding of the

model of the system of interest. The models used in this thesis are those as described by
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Misra and Enge in their popular textbook [21]. The measurement models of the pseudorange

and carrier-phase measurement are given below in Equations (2.1) and (2.2), respectively.

ρju = ||rju||+ c(δtu − δtj) + T j + Ij + ηju (2.1)

φju = ||rju||+ c(δtu − δtj) + T j − Ij + +λN j + εju (2.2)

The variables are defined as follows:

• ρju is the pseudorange measurement between the user receiver, u, and the SV, j, in

units of m.

• φju is the carrier-phase measurement between the user receiver, u, and the SV, j, in units

of m after scaling the integer ambiguity term, N j, by the carrier signal’s wavelength,

λ.

• ||rju|| is the true range magnitude between receiver, u, and SV, j, in units of m.

• λ is the carrier signal wavelength in m.

• I is the ionospheric delay/advancement in units of m.

• T is the tropospheric delay in units of m.

• δtu,δtj are the clock errors, in s, at the receiver, u, and the SV, j.

• N j is the integer ambiguity term in cycles from receiver, u, to SV, j.

• ηju is the system noise on the pseudorange measurement including multipath.

• εju is the system noise on the carrier-phase measurement including multipath.
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Figure 2.4: Description of the L1 GPS carrier signal with data modulation.

2.2 Error Sources

2.2.1 Measurement Errors

The nondeterministic component of the measurement error is the system noise and

multipath. All other nonparametric components can be modeled or estimated. The noise

on the measurements can be quantified by determining the accuracy of the DLL and PLL

within the receiver as a function of the carrier to noise ratio, C/N0. The accuracy of both

measurements decreases with decreasing C/N0. The standard equations to estimate DLL

and PLL accuracy are given in (2.3) and (2.4) [5].

σDLL = λc

√
4d2Bnρ

C/N0

(
2 (1− d) +

4d

TsC/N0

)
(2.3)

σPLL =
λ

2π

√
Bnφ

C/N0

(
1 +

1

TsC/N0

)
(2.4)

The DLL and PLL tracking loop parameters are receiver dependent; for this work,

approximations were made based on those given in [5]. These values can be found in Table

2.1. A common approximation for a high-quality receiver is that measurements can be made
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Table 2.1: Tracking Loop Parameters. (From: [5])
Parameter Description Value Unit
Bnρ Code loop noise bandwidth 2 Hz
Bnφ Carrier loop noise bandwidth 18 Hz
C/N0 Carrier to noise ratio variable Hz
d Correlator spacing 0.5 chips

λ Carrier wavelength
L1: 0.1902
L2: 0.2442

m

λc Code chip width C/A: 293.05 m
Ts Predetection integration time 0.005 s

with accuracy to 1-2% of the signal wavelength. The C/A code from which the pseudorange

measurement is determined, has a wavelength of roughly 300 m and the carrier wave from

which the carrier phase measurements are determined, have wavelengths of 19 cm and 24 cm

for the L1 and L2 carrier frequencies, respectively. After accounting for noise and resolution

error, the 1σ values for the pseudorange measurement and carrier phase measurement are

1.5 m and approximately 3 mm, respectively [5].

2.2.2 Signal Modeling Errors

The GPS signal travels through a vacuum for approximately 95% of its travel distance

from the SV to the user receiver near Earth, which corresponds to a travel distance of about

20,000 km when the SV is directly overhead to about 26,000 km when the SV is setting or

rising at the horizon. The roughly 5% of travel distance through the atmosphere is where

the signal’s propagation is altered. The first layer of the atmosphere that alters the signal

is the ionosphere, which consists of a layer of charged particles. The next layer altering

the signal is the troposphere, a layer of electrically neutral gases. These layers change the

speed and direction of the signals by a phenomenon known as refraction. Refraction of the

signal changes the signal transit time, which affects the estimated range measurement. The

refractive index of a medium, n, is defined as the ratio of the speed of propagation of a signal

in a vacuum (e.g. the speed of light, c) to the speed in the medium, ν, given in (2.5).
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n =
c

ν
(2.5)

If the refractive index of a medium depends upon frequency of the signal, the medium

is dispersive. The ionosphere is a dispersive medium. The ionospheric advancement/delay

may be modeled with ionospheric model parameters given in the NAV message. Addition-

ally, if the user is equipped with a dual-frequency (L1-L2) receiver, the ionospheric advance-

ment/delay may be estimated by the measurements provided by the different frequency

signals. These techniques are described in detail in Section 5.3.2 in [21]. The troposphere

is less troublesome than the ionosphere. The unaccounted ionosphere can cause a delay of

several tens of m; while the troposphere causes a delay of a couple m. Of the many models

used to estimate the tropospheric delay, the Saastamoinen model is quite common [21]. The

estimation of tropospheric delay is based upon average meteorological conditions specific to

the user location for the year. A visual representation of the effects of the troposphere and

ionosphere on the GPS signal is given in Figure 2.5.

2.2.3 Control Segment Errors

The Control Segment sends Ephemeris and SV clock parameter values that are broad-

cast by the SVs. These parameters are computed by the Control Segment on the basis of

measurements at GPS monitor stations in a Kalman filter framework. A prediction model

is then used to generate Ephemeris and clock parameters to be uploaded to the SVs to

broadcast in the NAV message. As in all estimation attempts, there are errors with both

the estimation of the current and future parameters. The error grows with the age of data

(AoD), defined as the time since the last parameter upload. The root-mean-square (rms)

ranging error attributed to the Control Segment is approximately 3 m [21].
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Figure 2.5: The effect of the troposphere and ionosphere on GPS signals

2.2.4 Experimentation and Results

To observe the expected positioning error, 50 min of data taken at 1 Hz was collected

by a static patch antenna atop the Woltosz Engineering Research Laboratory on the campus

of Auburn University. The receiver used was a dual-frequency NovAtel OEM3 ProPak.

The collected data was compared against RTK truth. As expected, the total standalone

positioning accuracy was nearly 3 m. The receiver achieves this with a combined approach

of signal processing and atmospheric modeling to remove some of the errors discussed in

this Chapter [49]. The statistical results of this experiment are tabulated in Table 2.2, and

the error in solution at each sample time are displayed in Figure 2.7. The coordinate frame

used was Earth-Centered Earth-Fixed (ECEF). A description of this coordinate system is

given in Appendix B. The solution provided at every epoch is shown geographically atop

the Woltosz Engineering Research Laboratory roof in Figure 2.6.
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Figure 2.6: Receiver reported standalone positioning solutions.

Table 2.2: Error statistics from 50 minutes of receiver reported position compared with RTK.

RMSE (m) Var (m2)

x 0.729 0.526

y 0.856 0.709

z 0.846 0.593

Total 2.430 1.8290
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Figure 2.7: Error in receiver reported standalone positioning solutions.
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Chapter 3

Dynamic Base Real Time Kinematic Positioning

Chapter 2 described the error sources of the pseudorange and carrier-phase measure-

ment. A careful reader will notice that some of the error sources for each measurement are

dependent upon the receiver’s location (e.g. T j, and Ij) and one of the error sources is

unique to each SV (e.g. δtj). In theory, these error sources are common to two receivers

roughly in the same location. In fact, these error sources can be estimated by a well-surveyed,

static base receiver roughly in the same location (i.e. within 20 km) as the user receiver.

The base receiver can send error corrections to the user receiver to correct the pseudorange

measurement. This technique is referred to as code-phase DGPS. Carrier-phase DGPS

differences carrier-phase measurements between the base and user receiver to remove cor-

related errors and resolve the remaining integer ambiguity term to provide a user position

accurate to a couple of cm [17]. The trouble with these approaches is the necessity for a

static, well-surveyed base station to provide an accurate absolute position. In applications

where an accurate relative position is desired, DRTK may be used to provide the same level

of accuracy as carrier-phase DGPS [47].

3.1 DRTK

The DRTK technique described in this thesis is based upon the work done by various

authors in [42–45] and further developed at Auburn University by Travis et al. in [46, 47].

DRTK is a DGPS technique that provides cm level relative positioning accuracy without a

static base station. This is advantageous for convoying situations where a base station is

not available or the base station is too far away to remove correlated measurement errors.

The DRTK technique is especially useful in low-visibility desert environments during dust
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storms where vision-based sensors will fail, but the unobstructed sky provides many visible

satellites without multipath interference. The minimum hardware requirements for DRTK

are two GPS receivers and antennas, a communication link, and a central processing unit

(CPU).

3.1.1 Single-Difference Measurement Models

Similar to carrier-phase DGPS, GPS measurements are differenced to remove correlated

errors between GPS receivers in close proximity to improve the estimation of the integer

ambiguity in the carrier-phase measurement. The first difference computed is the difference

between measurements taken at two GPS receivers. This is known as the single-difference

measurement, denoted by the ∆ preceding the respective measurement’s symbols, and is

given in (3.1) and (3.2). The geometric representation of the single-difference measurement

is shown in Figure 3.1.

∆ρjr,b = ||rjr,b||+ cbr,b + ηjr,b (3.1)

∆φjr,b = ||rjr,b||+ cbr,b + λN j
r,b + εjr,b (3.2)

Comparing equations (2.1-2.2) and (3.1-3.2), respectively, the atmospheric error terms

are effectively removed and the clock error terms are combined in br,b. The combined clock

error term is the difference in relative clock errors between the receivers in relation to each

SV. The subscript r, b denote rover and base, respectively. The range term, ||rjr,b||, is now

the range between the receivers. λN j
r,b represents the difference in integer ambiguity terms

between the rover and base receiver. The respective nondeterministic noise terms on the

single-difference pseudorange and carrier-phase measurements are assumed to be independent

Gaussian random variables. By differencing or summing independent Gaussian random

variables, the variance of the sum is the sum of the variances as shown in (3.3).
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Figure 3.1: Single-difference ∆ρli,j = (ρli − ρlj), ∆ρki,j = (ρki − ρkj ). Two receivers observe
pseudoranges from two satellites simultaneously.

var

(
n∑
i=1

Xi

)
=

n∑
i=1

var (Xi) (3.3)

where X1, X2, ... is a sequence of uncorrelated random variables [50]. A depiction of this con-

sequence is depicted in Figure 3.2. This growth in noise is accounted for in the measurement

covariance matrix, R, of the Kalman filter in Section 3.1.2.1.

3.1.2 DRTK Algorithm

The DRTK technique requires multiple steps to achieve cm level accuracy. The process

is described by the following steps:

• Compute single-difference observations from the carrier-phase and pseudorange mea-

surements. This step effectively removes the atmospheric biases from the measurements
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Figure 3.2: The statistical qualities of the sum of two independent Gaussian random variables
as given in (3.3).

but leaves the integer ambiguity term on the carrier-phase measurement and the clock

bias term on pseudorange and carrier-phase measurements.

• Fuse pseudorange measurements and carrier-phase measurements in a Kalman filter to

estimate the relative floating point integer ambiguity term.

• Difference single-difference integer ambiguity estimates and their associated covariance

matrix to form double-difference estimates that are free of relative clock bias.

• Pass floating point double-difference integer ambiguity estimates and their associated

estimated state covariances to the LAMBDA method algorithm to ‘fix’ the floating

point estimates to integers.

• Difference the single-difference carrier-phase measurements and associated unit vectors

to form double-difference observations free of relative clock bias.
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• Subtract the fixed integer ambiguity estimates from the double-difference carrier-phase

measurements and estimate the high-precision relative position vector (HPRPV) with

least squares.

3.1.2.1 Kalman Filter Floating Point Ambiguity Resolution

Before beginning discussion of the Kalman filter implemented in this thesis, a brief

introduction of the Kalman filter fundamentals is presented. The linear discrete Kalman

filter assumes a process to be estimated can be modeled in the form shown in 3.4.

xk+1 = Φkxk + wk (3.4)

The measurement of the process is assumed to occur at discrete points in time in a linear

relationship described by 3.5.

zk = Hkxk + vk (3.5)

The terms introduced in (3.4) and (3.5) are as follows with m equal to the number of

measurements and n equal to the number of states estimated:

• xk is a (n× 1) state vector at time tk.

• Φk is a (n× n) state transition matrix relating xk to xk+1 in the absence of a forcing

function.

• wk is a (n× 1) vector assumed to be a white sequence with known covariance.

• zk is a (m× 1) vector of measurements at time tk.

• Hk is the (m × n) observation matrix mapping the measurements to the state vector

at time tk.
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• vk is a (n × 1) vector assumed to be a white sequence with known covariance and

having zero crosscorrelation with the wk sequence [51].

The Kalman filter described in this thesis uses single-difference pseudorange and carrier

phase measurements to estimate the integer ambiguity terms. Another common approach

is to use double-difference observations; however, this approach introduces complexities in

implementation. The main issue is described as satellite handover. This occurs when the

SV chosen as the master SV from which all single-difference measurements are differenced

is out of view and another SV must be chosen as the master. After satellite handover,

the Kalman filter must be initialized again. Additionally, double-difference observations are

noisier as described by the principal detailed in Section 3.1.1. The states estimated in this

thesis are the single-difference integer ambiguity terms corresponding to each SV in view on

each frequency (i.e. L1 and L2) tracked as described in (3.6).

x =

[
N1
r,bL1 . . . Nm

r,bL1 N1
r,bL2 . . . Nm

r,bL2

]T
(3.6)

The state vector, x, is a column vector of dimension 2m, where m is the number of common

SVs tracked on each frequency. This is under the assumption that a dual-frequency receiver

is used.

3.1.2.1.1 Measurement Model The Kalman filter requires a measurement equation

to fit the form of (3.7). The single-difference measurement models of (3.1) and (3.2) both

include a relative range term, ||rmr,b||, and the carrier phase measurement includes the relative

integer ambiguity terms, Nm
r,b. The relative range term is removed from the equation using

the leftnull technique first used in [44]. To illustrate this technique, the single difference

carrier phase and pseudorange measurement models given in (3.2) and (3.1) are rewritten in

matrix form in (3.8).

z = Hx (3.7)
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∆ρjr,b

∆φjr,b

 =

ajbx ajby ajbz 1

ajbx ajby ajbz 1




rjr,bx

rjr,by

rjr,bz

cbr,b


+

0

λ

N j
r,b (3.8)

Note that the respective noise terms on each measurement have been removed for simplicity.

The true range between receiver r and receiver b has been decomposed into the direction

cosines, (ajbx , a
j
by
, ajbz), of the unit vector pointing from receiver b to the SV j, and the x, y, and

z components of the relative position vector (RPV) in the ECEF Cartesian coordinate frame.

In this thesis, the matrix in (3.8) containing the direction cosines and the ones corresponding

to the relative clock bias term is referred to as the geometry matrix, G. Given that the relative

position between the two receivers is less than 20 km, the direction cosines between receiver b

and SV j are approximately equal to the direction cosines between receiver r and SV j. This

approximation holds because the direction cosines are by definition, the ratio of the difference

between the receiver position and satellite position in each dimension to the distance to

the jth SV [52]. The distance to the SV is much greater than the difference between the

receivers; therefore, it is an acceptable approximation to assume that the direction cosines

of each receiver to the SVs are approximately equal. Figure 3.3 illustrates this property.

Estimating the single-difference integer ambiguities, Nm
r,b, is achieved by isolating them

from the range information within the single-difference pseudorange and carrier phase mea-

surements. This operation is accomplished by premultiplying each term in (3.8) by the left

nullspace of the geometry matrix, G. The left nullspace of G is the nullspace of GT. The

useful property of this is by definition, every vector y in the nullspace of GT is perpendicular

to every column of G. The result is GTy = 0. Similarly, yTG = 0. This is known as the

Fundamental Theorem of Linear Algebra, Part 2 by Strang in [53]. The left nullspace of the

geometry matrix, G, is denoted by L. Multiplying (3.8) by L eliminates G and the column
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Figure 3.3: Position vector representation, where s is the vector computed with Ephemeris
data, u is the vector describing user position, and r is the SV-to-receiver vector.

vector containing the relative range terms and relative clock bias. The measurement vector

z is now given by 3.9.

z = L

[
∆ρ1...m

r,bL1
∆ρ1...m

r,bL2
∆φ1...m

r,bL1
φ1...m
r,bL2

]T
(3.9)

where z is a vector containing common single-difference pseudorange and carrier-phase mea-

surements from SV 1 to m on the L1 and L2 frequencies multiplied by the left nullspace of

G, L.

The measurement noise covariance matrix, R, represents the expected measurement

error. This stochastic measurement error is assumed to be a white sequence with known

covariance structure and having zero crosscorrelation with the process noise, wk, as described

in (3.10). The measurement covariance is calculated at each measurement update using (2.3)

and (2.4). Assuming the measurement noise between receivers is uncorrelated, the expected
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measurement covariance is the summation of the individual measurement error from each

receiver as described in Section 3.1.1. In matrix form, R is given by example for one SV in

(3.11). In actuality, the dimension of R is twice the number of visible SVs. Additionally, R

is updated using L as given in (3.12).

E[vkvi
T ] =


Rk, if i = k

0, if i 6= k

(3.10)

R =

σ2
rDLL

+ σ2
bDLL

0

0 σ2
rPLL

+ σ2
bPLL

 (3.11)

R = LRLT (3.12)

The observation model for the Kalman filter, H, contains rows of zeros relating the

single-difference pseudorange measurements to the states, and rows of appropriate carrier

wavelengths relating the single-difference carrier-phase measurements to the states. H is

given in 3.13.

H = L


02m×m 02m×m

λL1Im×m 0m×m

0m×m λL2Im×m

 (3.13)

The goal of fitting the Kalman filter form, z = Hx has now been completed. The update

step of the Kalman filter is given in (3.14-3.16).

Kk = P−
k HT

k [HkP
−
k HT

k + Rk]
−1 (3.14)

P+
k = [I−KkHk]P

−
k (3.15)

x̂+
k = x̂−

k + Kk[zk −HT
k x̂−

k ] (3.16)
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3.1.2.1.2 System Model The states estimated are assumed to be constant so long as

the receiver does not experience cycle-slip. Cycle-slip occurs when there is a discontinuity

in a receiver’s continuous phase lock on a SV’s signal. The assumption of constant integer

ambiguities yields a state transition matrix with no dynamics (i.e. identity matrix, I).

The state transition matrix, Φ, is an identity matrix with dimensions equal to the number

of single-difference integer ambiguity states. The process noise covariance matrix, Q, is by

definition the expected variance of disturbances affecting the system model as given in (3.17).

The Kalman filter assumes that this disturbance is a white sequence with known covariance

structure as given in (3.17). Theoretically, since the states are constant, the process noise

covariance matrix, Q, could be set to zero. However, this would cause the state covariance

matrix, P, to approach zero, thus causing the Kalman gain matrix, K, to approach zero.

The consequence of this is that the Kalman filter relies upon the system model and does not

account for new measurement information. This is commonly known as the filter going to

‘sleep’. To mitigate this, an empirically determined fictitious process noise term of 10×10−7

is introduced to Q. Therefore, Q is an identity matrix multiplied by the fictitious process

noise. The state estimates and state covariance matrix are propagated with the standard

Kalman filter time update equations given in (3.18) and (3.19).

E[wkwi
T ] =


Qk, if i = k

0, if i 6= k

(3.17)

x̂−
k = Φk−1x̂

+
k−1 (3.18)

P−
k = Φk−1P

+
k−1Φk−1

T + Q (3.19)
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3.1.2.1.3 Initialization and Implementation The initial state estimates are com-

puted by taking the difference in the single-difference carrier phase and pseudorange mea-

surements and dividing by the carrier wavelength to convert the estimate to units of cycles

as shown in (3.20).

x̂−
0 =



(
∆ρ1

r,bL1
−∆φ1

r,bL1

)
/λL1

...(
∆ρmr,bL1

−∆φmr,bL1

)
/λL1

(
∆ρ1

r,bL2
−∆φ1

r,bL2

)
/λL2

...(
∆ρmr,bL2

−∆φmr,bL2

)
/λL2



(3.20)

The state covariance matrix, P, is initialized with a value of 0.5, indicating an expected initial

estimate error of half a cycle. This result was determined empirically in [25]. Dimensionally,

P is (2m× 2m).

During operation, two events cause a necessary adjustment of the state vector and state

covariance matrix. The most common event is the loss or gain of a visible SV. When this

occurs, the state covariance matrix must be reduced to account for a lost SV, and appended

with the expected initial error value of 0.5 to account for a newly acquired SV. This operation

adds or removes rows and columns associated with the placement of the acquired or lost SV,

respectively. In the case of adding a new SV, a column and row of zeros is added to include

the new SV; however on the diagonal, the zero is replaced with the expected initial error

value of 0.5. Additionally, the state vector is appended with the initial estimate of the

integer ambiguity as described in (3.20). Conversely, when an SV is lost, its associated row

and column are removed from the state covariance matrix, and its integer ambiguity state

is removed from the state vector.
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The second event to be accounted for is a cycle-slip as briefly introduced earlier. When

this occurs, the integer ambiguity estimate is no longer valid and must be reinitialized with

the same routine described for a new SV. The cyle-slip may be reported by the receiver or

may be estimated independently by (3.21).

dN j
k,k−1 =

[(
∆ρjk −∆φjk

)
−
(
∆ρjk−1 −∆φjk−1

)]
/λ (3.21)

If the value of dN j
k,k−1 exceeds a threshold of plus or minus one cycle, the measurement is

deemed to have experienced a cycle-slip.

3.1.2.2 Double-Difference Operation

At each time step, the state vector and state covariance matrix provided by the Kalman

filter undergo the double-difference operation. This transformation is performed to remove

the residual relative receiver clock bias errors. First, the SV most directly overhead is

selected as the master SV from which to difference all other state estimates, measurements,

and state covariances. The SV most directly overhead is chosen because it is least affected

by propagation delays from the atmosphere, because it has the shortest path to Earth [17].

The geometric representation of the double-difference measurement is shown in Figure 3.4.

This linear operation is performed by a transformation matrix of the form given in (3.22).

D =



1 −1 0 0 0

0 −1 1 0 0

0 −1 0 1 0

0 −1 0 0 1


(3.22)

In this example, the second SV of five is chosen as the master. After using (3.22) to double-

difference x̂, one is left with (m− 1) double-difference state estimates. This transformation

is performed as follows on the state vector and state covariance matrix.

39



Figure 3.4: Double-difference ∆∇φl,ki,j = (ρli− ρlj)− (ρki − ρkj ). Two receivers observe pseudo-
ranges from two satellites simultaneously.

x̂DD = Dx̂ (3.23)

PDD = DPDT (3.24)

At each time step, the state vector containing the double-difference integer ambiguity es-

timates, x̂DD, and their associated state covariance matrix, PDD, are passed along to the

Least-squares Ambiguity Decorrelation Adjustment (LAMBDA) algorithm to aid in fixing

the float estimates of N j
r,b to integers.

3.1.2.3 LAMBDA Method for Integer Fixing

The obvious approach to fixing the float estimates to integers would be to simply round

the float estimates of N j
r,b up or down to integers; however, the float estimates of N j

r,b are
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correlated. Simple rounding does not take advantage of all the information available. The

LAMBDA method was developed by Peter Teunissen between 1993 and 1996 to address this

issue. Its MATLAB implementation was clearly described by de Jonge & Tiberius and is

freely available online today. The LAMBDA method takes into account both the variance

and covariance of each floating point integer ambiguity estimate. The algorithm can be

broken down into the following steps:

• refine the search space by decorrelating the estimates through a transformation,

• perform a sequential conditional least-squares based search [54].

The LAMBDA method provides the most likely set of integer ambiguities; however,

they are not guaranteed to be correct. A common metric to determine if the set of integer

ambiguity estimates is correct is known as the ratio test [55]. Two candidate sets of double-

difference integer ambiguities and their deviation from the original floating point estimates

transformed to double-difference are determined by LAMBDA. If the ratio of deviations

exceeds a certain threshold, the most likely candidate set of integer ambiguities is deemed

correct; otherwise, no fixed integer solution is available. The threshold value used in this

thesis is three, based on the results in [56]. According to Borre & Strang in [57], a common

commercial software for RTK by Ashtech uses a threshold of (1.2-1.4) with satisfactory

results. If fixed integers are available, the relative position solution is known as the high

precision relative position vector (HPRPV) or the fixed solution; if not, the float solution

is used and is known as the low-precision relative position vector (LPRPV) or the float

solution. A good resource for a thorough description of LAMBDA is presented in [57]. The

LAMBDA ratio result will be described by λR in this thesis.

3.1.2.4 Least Squares Relative Position Vector Estimation

The prior work presented thus far in this chapter is to determine the best estimate of

the double-difference integer ambiguity estimates. The final step in determining an RPV is
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to use least squares with the best integer ambiguity estimates available (i.e. float or fixed).

The solution procedure is the same regardless of the quality of the estimates. The RPV

estimate problem takes the form of 3.25.

∆∇φr,b − λ∆∇Nr,b = ∆~ab~rr,b + ε (3.25)

where SV notation has been removed for brevity. The nabla and delta pair, ∆∇, signifies

that the carrier phase measurements have been double-differenced with the same technique

described in (3.23). Additionally, the preceding ∆ before the unit vector ~ab signifies that the

unit vector has undergone differencing from the master SV to form the correct geometry.

The RPV is then estimated with the least squares solution given in (3.26).

~rr,b =
(
∆~aTb ∆~ab

)−1
∆~aTb (∆∇φr,b − λ∆∇Nr,b) (3.26)

3.2 Experimentation and Results

3.2.1 Experimentation

To verify this technique, dynamic data was taken with two NovAtel receivers and two

NovAtel pinwheel antennas fixed in an attitude baseline configuration atop the GAVLAB’s

Lincoln Mkz (see Figure 3.5). The Mkz was driven around the Auburn University campus

while an embedded software implementation of DRTK in C++ calculated the RPV between

the two antennas in real time. The path taken is shown in Figure 3.6. GPS data was

logged at 1 Hz. This experimental setup was implemented for ease of verification of the

algorithm, because the baseline could be hand measured and verified with RTK to ensure

the solution was accurate. The RTK solution was provided by NovAtel’s GrafNav RTK

post-processing software. Since the baseline magnitude is constant, the rms of the baseline

magnitude provided by RTK, which was 1.90 m, was used for comparison. The base station
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Figure 3.5: The GAVLAB’s Lincoln Mkz used for data collection and algorithm verification.

chosen for RTK correction was the ALA1 Continuously Operating Reference Station (CORS)

located near Auburn University’s campus.

3.2.2 Results

The results of this brief experiment are tabulated in Table 3.1. The rms error is mis-

leading, but is the expected result. DRTK is similar in principal to the RTK post-processing

software used to determine truth for comparison. DRTK and RTK have correlated errors that

are removed when differencing the two solutions. This result implies that DRTK achieves

performance similar to that of RTK, which is 2 cm [58] (see Figure 3.10). Throughout the

whole data run, which was 10 min, the DRTK fixed solution was available 82% of the time.

The periods that the fixed solution was lost was when driving under trees near Jordan-Hare

stadium and in urban canyons within Auburn University’s campus (see Figure 3.7-3.8). In

Figure 3.9, the LAMBDA ratio results are included to compare with the solution. An in-

creasing LAMBDA ratio indicates increased confidence in the solution. The LAMBDA ratio

threshold used was 3. Near sample 250, the LAMBDA ratio dipped under the threshold, so
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Figure 3.6: Total path of experiment.

the fixed solution was deemed incorrect. The initial fix occurred after two time steps, which

is a TTFF of two epochs or two seconds.

Table 3.1: Statistics on High-Precision and Low-Precision DRTK Baseline Errors
Solution Type RMSE (cm) Var (cm2)

Fixed 0.32 0.10
Float 33.3 1086

3.3 Conclusions

In conclusion, DRTK has been shown to provide RTK level relative positioning solutions

with one caveat. A DRTK solution will not be available as often as an RTK solution. DRTK

necessitates common measurements between two receivers just as RTK, but RTK always has
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Figure 3.7: Portion of experiment when DRTK solution was lost under foliage and obstruc-
tion by Jordan-Hare stadium.

one unobstructed receiver. For example, if two vehicles in a leader-follower formation are

traveling along and must drive through a tunnel, a DRTK RPV solution will be available

only when both vehicles are outside of the tunnel. With RTK, a solution will be available to

each vehicle as long as the vehicle has common SVs in view. However, DRTK is a marked

improvement to standalone positioning as described in Chapter 2, and is the best option

available for GPS based relative positioning when there is no base station or network RTK

service available.

The results shown in Table 3.1 are in agreement with previous treatments of this sub-

ject in [46, 47, 58, 59]. The contents of this chapter are the foundation for the rest of this

thesis. Chapter 4 will introduce a similar DRTK technique that includes a priori baseline

information as a constraint. Chapter 5 will then use the technique developed in Chapter 4

with the DRTK technique in this chapter in a cascaded Kalman filter framework to aid in

integer ambiguity resolution when using single-frequency receivers.
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Figure 3.8: Portion of experiment when DRTK solution was lost within an urban canyon.
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Figure 3.9: Comparison of DRTK solution with LAMBDA ratio result.
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Figure 3.10: Error in the DRTK baseline magnitude estimation.
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Chapter 4

Fixed Attitude Configuration of Antennas

When two antennas are fixed in a baseline attitude configuration on a vehicle, the

baseline magnitude is constant and known with a high degree of certainty when measured

with RTK [60]. This a priori baseline magnitude information may be leveraged to constrain

the possible positions of the auxiliary antenna to a virtual sphere with radius equal to the

baseline magnitude. The first treatment of this technique was done by Cohen in [17, 61].

A description of this relationship is depicted in Figure 4.1. The initial interest in this

relationship was in the application of spacecraft attitude determination; however, it is also

useful for determining valuable information for deriving additional measurements for relative

positioning between vehicles when necessitated by poor receiver quality.

4.1 Applying the Baseline Magnitude Constraint

Similar to the DRTK technique, a Kalman filter is used to estimate the floating point

relative integer ambiguity terms between the two antennas. The main difference is that

this estimator must include relative range terms in the state vector to apply the baseline

magnitude constraint. The same measurements are used as well as the same assumptions

about the process dynamics of the integer ambiguity states. The inclusion of the relative

range terms in the state vector necessitate modeling of expected receiver and clock bias

dynamics. The state vector for this filter is introduced in (4.1) with new subscripts a, b

introduced to represent the auxiliary and base antenna, respectively.

x =

[
xa,b ya,b za,b cba,b cḃa,b N1

r,b . . . N
m
r,b

]T
(4.1)
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Figure 4.1: Baseline magnitude constraint.

The notation used now is similar as before, but no attempt is made to differentiate

between measurement signal frequencies for brevity. The superscript m represents the total

number of common measurements between receivers regardless of frequency.

The baseline measurement model is equal to the norm of the relative position vector

between the two fixed antennas. The model used is simply shown by,

β =
√
x2
a,b + y2

a,b + z2
a,b (4.2)

where β represents the baseline magnitude. This baseline magnitude is determined via RTK

or a simple hand measurement with a tape measure. With RTK, the magnitude is known to

a couple of mm. For this thesis, the a priori baseline magnitude was determined using RTK.

If RTK was not available, the hand measurement could be used with an expected error of a

couple of cm, because the actual phase center of the antenna where measurements are made

is not necessarily the geometric center of the antenna and must be approximated [5].
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4.2 Fixed Attitude-Baseline DRTK

In essence, the technique presented here is similar to DRTK. There is no static base

station and both receivers are dynamic. The key difference is the inclusion of a priori baseline

magnitude information as a constraint. To differentiate this technique from DRTK, it will

be referred to as Fixed Attitude-Baseline DRTK (FAD) for the remainder of discussion.

4.2.1 Measurement Model

The measurements used are the same as those used for DRTK with the addition of the

a priori baseline magnitude measurement, β̂. The measurement vector is given in (4.3).

z =


∆ρ1...m

a,b

∆φ1...m
a,b

β̂

 (4.3)

To account for the baseline magnitude measurement, the geometry matrix given in (3.8)

is altered. The last row of the observation matrix, H, is linearized by differentiating the

measurement model in (4.2) with respect to the state vector in (4.3), which results in a unit

vector pointing from the auxiliary antenna to the base antenna. This newly constructed

observation matrix is given in (4.4).

H =


ajbx ajby ajbz 1 0 0m×m

ajbx ajby ajbz 1 0 λIm×m

xa,b
β

ya,b
β

za,b
β

0 0 01×m

 (4.4)

The measurement noise covariance matrix introduced in (3.11) is appended with the

expected error associated with the baseline magnitude measurement to account for the ad-

ditional measurement. This is known as constrained Kalman filtering. An RTK derived

measurement of the baseline has an expected variance of 0.1 cm2. This can be seen as a tun-

able parameter. In theory, setting this variance to zero would introduce a hard constraint;
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however this was determined to be undesirable because the carrier phase and pseudorange

measurements were devalued so much as to ignore their information. Additionally, setting

the measurement noise covariance of the baseline magnitude measurement may also intro-

duce numerical instability [62]. The Kalman filter is in essence a recursive Bayesian filter

that operates on the law of total probability, so the noisier measurements are weighted lower

and essentially ignored if the variance for the baseline measurement is set too low [63]. The

measurement noise covariance matrix in (4.5) is identical to the one introduced in (3.11)

with the addition of the expected baseline magnitude measurement error. For this work, the

best results were found when inflating the baseline measurement error to 0.72 cm2.

R =


σ2
aDLL

+ σ2
bDLL

0 0

0 σ2
aPLL

+ σ2
bPLL

0

0 0 σβ

 (4.5)

4.2.2 System Model

The assumptions for the process noise, QN , of the integer ambiguity states remains

the same as introduced in Chapter 3. The expected process noise of the relative baseline

xa,b, ya,b, za,b terms is expected to be low for a ground vehicle when compared to that of an

aircraft, especially since the two antennas are fixed to the same body in motion. This is

treated as a tunable parameter to achieve desired performance. These terms are represented

by Qx,y,z in (4.8). Finally, the state transition matrix is altered to account for the additional

states in (4.9).

4.2.2.1 Receiver Clock Process Model

To properly estimate the clock process dynamics, two states are required: clock bias, b,

and drift, ḃ. These states represent the phase and frequency errors in the atomic frequency

standard or crystal oscillator in the receiver [17]. This two state model represents the ex-

pectation that both the frequency and phase of the oscillator will experience a random walk
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over a short period of time. Therefore, the process model for the clock is commonly modeled

as given in (4.6). The clock’s process noise is represented by wc. The state transition matrix

for this two state clock model is given in (4.7). Qb is multiplied by two in (4.8) because

the stochastic components of each receiver clock are assumed to be uncorrelated. If the two

receivers don’t share clocks with the same model parameters, the process model in (4.6) may

be performed separately and summed in (4.8).

Qb = E[wcwc
T ] =

Sf∆t+ Sg
∆t3

3
Sg

∆t2

2

Sg
∆t2

2
Sg∆t

 (4.6)

Φc =

1 ∆t

0 1

 (4.7)

The white noise spectral amplitudes Sb and Sf can be related to the classical Allan variance

parameters. The approximate relation given by Brown & Hwang in [51] is Sf = h0/2 and

Sg = 2π2h−2. The coefficients needed for these approximations are given in Table 4.1. Note

that the coefficents given in Table 4.1 correspond to clock error in units of seconds; therefore,

they must be multiplied by the squared speed of light (3× 108)2.

Table 4.1: Typical Power Spectral Density Coefficients for Various Timing Standards

Timing Standard h0 h−2

Compensated Crystal 2(10−19) 2(10−20)

Ovenized Crystal 8(10−20) 4(10−23)

Rubidium 2(10−20) 4(10−29)

Q =


Qx,y,zI3×3 03×2 03×m

02×3 2Qb 02×m

0m×3 0m×2 QNIm×m

 (4.8)
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Φ =


I3×3 03×2 03×m

02×3 Φc 02×m

0m×3 0m×2 Im×m

 (4.9)

4.2.3 Initialization and Implementation

The initial integer ambiguity state estimates are computed the same way as conventional

DRTK with (3.20). The initial estimates of relative position are derived from differencing

the two receiver’s reported standalone position solution. The initial clock bias and clock

drift estimates were initialized with values given in [17]. Another approach would be to

use each receiver’s reported clock bias estimate and then difference the two, but this was

not explored. The state covariance matrix terms relating to the baseline components and

clock are initialized using the error budget given in [17]. Lastly, the same value of one half

cycle is used for initialization of the single-difference integer ambiguity states as presented

in Chapter 3.

The same procedures discussed in Section 3.1.2.1 are followed when a cycle-slip occurs.

This baseline estimator, like DRTK, produces floating point estimates of single-difference

integer ambiguities. Following the same routine, these estimates and associated state co-

variances are double-differenced and passed to the LAMBDA method for decorrelation and

integer fixing. It is important to note that since the state vector does not possess integer

ambiguity estimates exclusively, only the portion of the state covariance matrix associated

with integer ambiguity estimates is passed to LAMBDA. As an illustration, a matrix with

random numbers is presented in (4.10). In this example matrix, only the red portion of the

matrix is double-differenced to be passed to LAMBDA. This represents a scenario where

four integer ambuigities are estimated, however unrealistic. After the best integer ambiguity

estimates are determined, whether they are float or fixed solutions, the same least squares

equation in (3.26) is used to estimate the RPV.
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Pd =



1 2 3 3 8 3 4 5 5

3 55 2 4 6 5 5 6 5

23 47 74 5 65 7 5 4 5

42 61 3 5 7 21 2 45 8

67 1 2 3 4 6 234 7 83

54 44 2 24 3 24 5 2 3

78 11 3 33 27 42 3 3 3

54 4 25 5 3 47 2 2 45

3 5 5 7 75 36 87 4 56



(4.10)

4.3 Experimentation and Results

Verification and analysis of this technique was performed both in simulation and experi-

mentally. The simulations were performed primarily to ensure that the TTFF was improved

by including a priori baseline magnitude information as a constraint. Experimental data

was taken to observe the effects on the LAMBDA ratio results, TTFF, and to validate the

simulated results.

4.3.1 Simulation

The simulations were performed in MATLAB. The first step in generating the simulated

data was calculating SV positions using broadcast Ephemeris data uploaded to the Crustal

Dynamics Data System (CDDIS) website maintained by the National Aeronautics and Space

Administration (NASA). Next, arbitrary locations in Auburn, AL were chosen to form a

baseline of ≈ 8 m. Given locations on Earth and SV positions, dual-frequency pseudorange

and carrier phase measurements were generated at 10 Hz by determining the range between

the SVs and the simulated receiver locations, and adding biases and normally distributed

random noise according to the error budget for GPS given in [17]. The stochastic nature
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of the filters necessitated a Monte Carlo simulation to analyze performance [50, 51]. For

the simulation, 1,000 separate data sets were generated to compare the FAD and DRTK

techniques.

Figure 4.2: FAD converging to the correct baseline magnitude in simulation.

4.3.1.1 Results

The TTFF was determined by simply recording the epoch at which the integer ambi-

guity estimates equaled the arbitrary integer ambiguities used to construct the carrier phase

measurements. The mean TTFF was shown to improve by a factor of 1.4 using FAD. The

median TTFF showed an even greater improvement by a factor of 2.65. Lastly, the stan-

dard deviation statistics suggest that the TTFF using FAD are more tightly clustered than

DRTK, which implies predictability. The summary of statistics from the simulation are given

in Table 4.2.

A histogram of the TTFF results is given in Figure 4.4. Comparing FAD with DRTK,

it can be seen that the maximum TTFF is greater with DRTK as well as the occurrences
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Figure 4.3: Float estimates of four single-difference integer ambiguities converging to simu-
lated values.

of TTFF values greater than 4 s. The histogram shows a right-skewed distribution for both

methods; however, the majority of the FAD TTFF values are between 0.5 and 1.5 s, while

the DRTK TTFF values are between 1 and 3.5 s as Table 4.2 suggests. The norm of the

relative position state estimates and four of the integer ambiguity estimates are shown in

Figure 4.1-4.3.
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Figure 4.4: TTFF to correct integers with simulated GPS data after 1,000 simulations: (A)

FAD, (B) DRTK.

Table 4.2: Statistics on Simulated TTFF with FAD and DRTK

Method µ (s) t̃ (s) σ (s)

DRTK 2.40 3.30 2.60

FAD 1.75 1.25 1.40

4.3.2 Experimentation

Data was collected by two dual-frequency NovAtel OEM4 ProPak receivers with NovAtel

pinwheel antennas configured in a fixed attitude baseline configuration atop the GAVLAB
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Figure 4.5: Portion of experiment chosen for open sky testing.

Lincoln Mkz as previously shown in Figure 3.5. Raw GPS measurements were collected at 1

Hz and post-processed with NovAtel’s GrafNav software for RTK truth. The area selected

for open-sky testing can be seen in Figure 4.5. The separation difference between the base

station and the rover receiver’s effect on DGPS performance has been discussed throughout

this thesis. Data was collected around Auburn University’s campus to take advantage of

the ALA1 CORS base station. The separation distance between the vehicle and the base

station as shown in Figure 4.6 remained less than 2 km throughout the experiment. The

number of SVs in view over the experiment are given in Figure 4.7. Both the DRTK and

FAD algorithms were implemented in MATLAB for comparison. The LAMBDA ratio results

and TTFF statistics were generated by reinitializing the filter at 100 different epochs in the

data.
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Figure 4.6: Separation distance between the Lincoln Mkz and the base station used for RTK
corrections.

Figure 4.7: Number of SVs in view of the base receiver on-board the Lincoln Mkz.
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Table 4.3: Statistics on LAMBDA Ratio Passing Rate
Method % Pass on 1st Epoch % Pass on 2nd Epoch % Pass on 3rd Epoch
DRTK 53 90 100
FAD 87 97 100

4.3.2.1 Results

As expected, once the correct integer ambiguities are determined, both techniques pro-

vide practically the same solution. The comparisons of note are TTFF and the LAMBDA

ratio result. The simulated results indicated that the FAD technique converges to the correct

solution earlier than DRTK. The experimental results not only validated this, but outper-

formed the simulations. The experimental results are better because the receivers use a

technique known as carrier-smoothing to reduce the measurement error of the pseudorange

measurement by a couple of m [21]. This technique actually violates the assumption of

uncorrelated measurements for the Kalman filter but in practice provides better results.

The simulation generated raw pseudorange with greater variance, which makes resolving the

integer ambiguities more difficult.

4.3.2.1.1 LAMBDA and TTFF A summary of the LAMBDA ratio passing rate are

given in Table 4.3. Theses statistics represent the TTFF because the integer ambiguities

are unknown unless verified through comparison of solutions to the known fixed baseline.

Martin suggested the use of the known baseline to detect incorrect integer fixes in [60]. The

same technique is applied here to verify correct integer fixing. The experiment showed that

both DRTK and FAD achieved correct fixes within three epochs; however, FAD achieved the

correct fix on the first epoch 87% of time compared with 53% for DRTK. The gap between

ratio passage narrows when comparing passage rates over two epochs and is completely

eliminated over three epochs.

The next metric for comparison is the actual value of the LAMBDA ratio over each

epoch. FAD consistently provides a higher LAMBDA ratio result over DRTK. This indicates
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Table 4.4: Statistics on LAMBDA Ratio Results
Method Median λR on 1st Epoch Max λR on 1st Epoch Min λR on 1st Epoch
DRTK 3.24 15.51 1.70
FAD 4.49 22.50 2.03

a more confident solution. The LAMBDA ratio results over a single portion of data plotted

against sample epochs is given in Figure 4.8.

Figure 4.8: Comparison of the LAMBDA ratio results reported by DRTK and FAD over
each epoch.

4.3.2.1.2 Uncertainty in the Baseline Magnitude Measurement The uncertainty

of the baseline magnitude measurement, β̂, represented by the choice of σβ in (4.5) is crucial

to integer ambiguity resolution. Figure 4.9 shows the effects of varying the choice of σβ on

λR. If σβ is chosen too low (e.g. < 0.5 cm), FAD struggles to resolve the integer ambiguities

because this causes the Kalman filter to devalue the single-difference carrier-phase and single-

difference pseudorange measurements. If σβ is chosen too high (e.g. > 1.5 cm), FAD begins

to behave more like conventional DRTK without a priori baseline magnitude information.
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Tuning σβ correctly yields a higher initial λR that progressively increases over each epoch,

which results in a faster TTFF and overall confidence in solution, respectively.

Figure 4.9: The progression of the LAMBDA ratio, λr, over varying choices of baseline
magnitude measurement accuracy.

4.3.2.1.3 Unaccounted Bias in the Baseline Magnitude Measurement If the

baseline magnitude measurement, β̂, is incorrect (i.e. biased), FAD performance is severely

degraded as this unaccounted bias grows. Figure 4.10 illustrates this consequence. The level

portions of the plot show correct integer fixing determined by comparing the solution of the

HPRPV to the known baseline magnitude. Once the bias in β̂ increases past ≈ 57 cm, FAD

begins to provide solutions that do not pass the λR threshold of three. The unaccounted
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bias in β̂ degrades FAD so much as to provide much poorer performance than DRTK, which

concludes that an accurate β̂ is crucial for the performance of FAD.

Figure 4.10: The influence of bias in the baseline magnitude measurement on the estimation
of the relative integer ambiguities, Nm

a,b.

4.3.2.1.4 Error Analysis The main goal of including the a priori baseline magnitude

as a measurement is to provide better initial float solutions, which in turn, provide faster

fixed integer ambiguity estimates [60, 61]. The float solution dynamics are given in Figure

4.11. The initial float estimates are better initially with FAD, but then converge to similar

solutions. This is expected, because as time progresses, both filters converge to the correct

integer ambiguities (see Figure 4.3).
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Figure 4.11: Comparison of the DRTK and FAD float solutions.

Figure 4.12 and Figure 4.13 give the best RPV solutions available, and error for both

techniques, respectively. It can be seen that both filters not only estimate the correct baseline

magnitude (see Figure 4.14 and Figure 4.15), but also each individual component of the

RPV. FAD converges to the correct integer ambiguities on the first epoch, while DRTK

converges soon after. Once converged, both techniques provide essentially the same results

because both are dependent on the accuracy of the carrier-phase measurement. A summary

of statistics on the float and fixed RPV magnitude errors is given in Table 4.5, which is in

agreement with previous analyses in [25,46,47,58,59].

Table 4.5: Statistics on Float and Fixed RPV Magnitude Errors

Float Fixed

Method RMSE (cm ) Var (cm2) RMSE (cm) Var (cm2)

DRTK 9.21 62.85 0.45 0.07

FAD 3.76 14.14 0.46 0.07
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Figure 4.12: Comparison of the fixed DRTK and FAD RPV solutions.
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Figure 4.13: Comparison of the error in the fixed DRTK and FAD RPV solutions.
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Figure 4.14: Comparison of the DRTK and FAD magnitude solutions.

Figure 4.15: Comparison of the error in DRTK and FAD magnitude solutions.

68



4.4 Conclusions

In summary, the FAD technique outperforms DRTK with regard to TTFF and LAMBDA

ratio results. Both techniques, once converged, provide the same HPRPV solution. It is im-

portant to note that FAD depends on a priori baseline magnitude information that will be

unavailable when the antennas are not fixed in relation to one another. FAD’s application

is especially suited for attitude determination, but is also useful for providing estimates of

relative integer ambiguities, relative clock bias, and an RPV that may be used to derive

additional measurements between antennas on moving platforms via vector addition that

will be discussed in Chapter 5.
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Chapter 5

Low-Cost Implementation of FAD with DRTK

The use of low-cost single-frequency receivers has generated much interest in the auto-

motive vehicle industry. The cost sensitivity of the automotive industry requires low-cost

hardware without sacrificing safety and performance [64]. Single-frequency receivers differ

from dual-frequency receivers in the number of measurements available. Most importantly,

atmospheric corrections of the dispersive ionosphere are unavailable for standalone position-

ing when only a signal frequency is available. Additionally, the L2 frequency is higher than

L1; therefore it is less impeded by the atmosphere. The main consequence of less measure-

ments is that the TTFF using DGPS techniques is severely degraded [65].

Using the FAD technique described in Chapter 4 combined with the DRTK technique

described in Chapter 3 improves the TTFF and LAMBDA ratio results when compared with

DRTK alone by effectively doubling the number of measurements using a cascaded Kalman

filter architecture. This development of this technique by Tabb et al. was shown to improve

the performance of integer ambiguity resolution when using dual-frequency GPS receivers

[66]. It is important to note that this violates the Kalman filter assumption of uncorrelated

measurements and is known as the cascaded Kalman filter problem [51]. Treatments of this

subject may be found in [62, 63, 67]. The work presented here ignores this violation at the

consequence of optimality.

5.1 Additional Measurements Derivation

5.1.1 Hardware Configuration

The hardware configuration required for this technique is described in vector form in

Figure 5.2 and as an example on Auburn University trucks in Figure 5.1. It should be noted

70



that the trucks in Figure 5.1 are not actually outfitted with this hardware configuration but

were simply used for demonstration. A minimum of three GPS receivers and antennas with

a communication link between vehicles is required to achieve this technique. Additionally,

two of the receivers must be configured in a fixed attitude baseline with a priori baseline

magnitude information. The FAD algorithm accepts measurements from the base and auxil-

iary receivers to determine relative integer ambiguity terms, relative clock bias, and an RPV.

These estimates are given to the DRTK algorithm along with measurements from all three

receivers to derive additional measurements via vector addition. For the remainder of this

discussion, this technique will be described as FAD+DRTK. A diagram of the architecture

is given in Figure 5.3.

Figure 5.1: Representation of hardware configuration on Auburn University trucks.

5.1.2 Derivation

The measurements used in FAD+DRTK are single-difference pseudorange and carrier-

phase . The derivation of the additional measurements is given in (5.1-5.8) with subscripts
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Figure 5.2: Vector representation of hardware configuration.

a, b, and r, representing the auxiliary, base, and rover receivers, respectively. The noise terms

have been removed for brevity. The first step in the derivation is recognizing that the vector

between the rover and the auxiliary receiver is the difference between the vectors between

the rover and base, and the auxiliary and base shown in (5.1) and (5.5).

∆ρjr,a = ∆ρjr,b −∆ρja,b (5.1)

The actual single-difference measurement models between the rover and base is given in (5.4)

and (5.8). This may be approximated with the single-difference measurements between the

rover and auxiliary receivers with the addition of estimates of clock bias, relative integer

ambiguities, and RPV between the auxiliary and base shown in (5.3) and (5.7).

∆ρja,b = ~ab~ra,b + cba,b (5.2)

∆ρ̃jr,b = ∆ρjr,a + ~ab~ra,b + cba,b ≈ ~ab~rr,b + cbr,b (5.3)
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Figure 5.3: Description of cascaded Kalman filter architecture.

∆ρjr,b = ~ab~rr,b + cbr,b (5.4)

∆φjr,b = ∆φjr,b −∆φja,b (5.5)

∆φja,b = ~ab~ra,b + λNa,b + cba,b (5.6)

∆φ̃jr,b = ∆φjr,a + ~ab~ra,b + λNa,b + cba,b + εjr,b+a,b+r,a ≈ ~ab~rr,b + λNr,b + cbr,b (5.7)

∆φjr,b = ~ab~rr,b + λNr,b + cbr,b (5.8)

The measurement vector for the Kalman filter is given in (5.9). The tildes above ρ and

φ represent derived measurements. The additional noise on the derived measurements must

be accounted for in the R matrix of the Kalman filter given in (5.11), where σDρ represents

the noise introduced by the error in estimation of the RPV and clock between the base

and auxiliary receiver, and σDφ represents σDρ plus error in estimation of the float integer
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ambiguities. σDρ and σDφ were determined empirically to be approximately 2 m with the

dominant error sources being the error in estimation of λNr,b and cbr,b.

z =



∆ρ1...m
r,b

∆ρ̃1...m
r,b

∆φ1...m
r,b

∆φ̃1...m
r,b


(5.9)

Including the additional measurements is done in the same procedure as given in Chapter

3. The G matrix is now (4m× 4) representing twice the pseudorange and twice the carrier

phase measurements on the L1 frequency. The left nullspace of G is computed and augments

the observation matrix H as shown in (5.10).

H = L


02m×m 02m×m

λL1Im×m 0m×m

0m×m λL1Im×m

 (5.10)

R = L



σ2
rDLL

+ σ2
bDLL

0 0 0

0 σ2
rDLL

+ σ2
aDLL

+ σ2
Dρ 0 0

0 0 σ2
rPLL

+ σ2
bPLL

0

0 0 0 σ2
rPLL

+ σ2
aPLL

+ σ2
Dφ


LT

(5.11)

The system model remains the same as the conventional DRTK model given in Section

3.1.2.1.2. with the key difference in that the state covariance matrix, P, is (m×m) because

the only relative integer ambiguity states estimated are those between the rover and base on

the L1 frequency. Initialization of the filter is performed with (3.20). The implementation

steps are identical to the details in Section 3.1.2.2-3.1.2.4.
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5.2 Experimentation and Results

Experimental data was collected at 1 Hz in the area shown in Figure 4.5. Three dual-

frequency NovAtel receivers were used to collect data on the L1 frequency with NovAtel

pinwheel antennas. The two vehicles used for data collection in a leader-follower configura-

tion can be seen in Figure 5.4. The Infiniti G35 served as the leader vehicle, while the Lincoln

Mkz served as the rover. The base and auxiliary receivers were located on the Lincoln Mkz.

The rover receiver was located on the Infiniti G35. The gap distance between vehicles was

never greater than 50 m. RTK corrections for truth comparison were provided by GrafNav.

All algorithms were implemented in MATLAB.

Figure 5.4: Lincoln Mkz and Infiniti G35 in the leader-follower configuration used for data
collection.
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5.2.1 LAMBDA and TTFF

The results of the experiment showed that the derived measurements benefited estima-

tion of the integer ambiguities. A summary of the LAMBDA ratio passing rates is given in

Table 5.1. The LAMBDA ratio threshold used was 3. These statistics were generated the

same way as in Chapter 4 by initializing the filter at 100 different epochs within the experi-

mental data. FAD+DRTK with L1 approached the performance of DRTK with (L1-L2) by

fixing within three epochs (see Table 4.3). DRTK with L1 fixed within six epochs. Table 5.2

shows improvement in the initial estimate determined by the value of the LAMBDA ratio

with FAD+DRTK; however, neither FAD+DRTK or DRTK matched the performance of

DRTK with (L1-L2) (see Table 4.4).

Table 5.1: Statistics on LAMBDA Ratio Passing Rate with L1

Method % Pass on 1st Epoch % Pass on 2nd Epoch % Pass on 3rd Epoch

DRTK 2 61 77

FAD+DRTK 35 86 100

Table 5.2: Statistics on LAMBDA Ratio Results with L1

Method Median λR on 1st Epoch Max λR on 1st Epoch Min λR on 1st Epoch

DRTK 1.93 3.16 1.00

FAD+DRTK 2.59 5.02 1.22

5.2.2 Accuracy of the Derived Measurements

The accuracy of the derived single-difference pseudorange and carrier-phase measure-

ments were compared against the actual single-difference pseudorange and carrier-phase

measurements. Figures 5.5 and 5.6 show that the derived measurements track the actual

measurements, but not as closely as measurements on the L2 frequency. This can be at-

tributed to the error in estimation of λNr,b and cbr,b used to derive the additional mea-

surements. Additionally, it is important to recognize that measurements made on the L2
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frequency are higher in quality than those on the L1 frequency. The L2 frequency is higher

than the L1 frequency (see Table 2.1); therefore, L2 is altered less by atmospheric effects.

Therefore, five L1 and five derived L1 measurements is not equivalent to five L1 and five L2

measurements.

Figure 5.5: Comparison of the L1, L2, and derived L1 single-difference pseudorange mea-

surements between the rover and base antenna.

77



Figure 5.6: Comparison of the L1, L2, and derived L1 single-difference carrier-phase mea-

surements between the rover and base antenna.

A summary of error statistics on the derived L1 measurements and actual L1 mea-

surements compared against L2 measurements are tabulated in Tables 5.3 and 5.4. These

statistics were generated by taking the difference in derived L1 measurements and the L2

measurements, and the difference in the actual L1 measurements and the L2 measurements

on each respective receiver channel (i.e. SV PRN). The rms error of the derived L1 and

actual L1 measurements are similar for both pseudorange and carrier-phase; however, they

differ in variance, which is accounted for in (5.11).
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Table 5.3: Error Statistics of the difference in Actual and Derived L1 single-difference pseu-

dorange measurements compared against L2 single-difference pseudorange measurements.

SV PRN
L1 C/A

RMSE (m)

L1 C/A

σ(m)

Derived L1 C/A

RMSE (m)

Derived L1 C/A

σ(m)

3 1.17 0.07 2.44 2.36

14 1.03 0.07 1.51 1.41

16 0.82 0.22 2.51 2.43

22 1.00 0.01 1.76 1.64

26 0.95 0.06 1.74 1.67

Table 5.4: Error Statistics of the difference in Actual and Derived L1 single-difference carrier-

phase measurements compared against L2 single-difference carrier-phase measurements.

SV PRN
L1

RMSE (m)

L1

σ(m)

Derived L1

RMSE (m)

Derived L1

σ(m)

3 0.79 0.007 2.34 2.35

14 2.34 0.007 1.39 1.38

16 5.45 0.010 2.45 2.46

22 1.96 0.006 1.63 1.64

26 0.19 0.007 1.62 1.61

5.2.3 Error Analysis

Both DRTK and FAD+DRTK provided the same rms error values once fixed, since both

techniques use the true carrier phase measurement between the rover and base. A summary

of error statistics is given in Table 5.5. Error plots are provided in Figure 5.8 and Figure

5.10. Note the error plots include the initial float solution before fixing. Finally, Figure 5.7

and Figure 5.9 show that the FAD+DRTK solution tracks the RTK solution, as expected.
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Table 5.5: Error Statistics on DRTK and FAD+DRTK

Method RMSE (cm) Var (cm2)

DRTK 0.40 0.11

FAD+DRTK 0.40 0.11

Figure 5.7: HPRPV magnitude estimate compared with RTK.
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Figure 5.8: Error in HPRPV magnitude estimate.
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Figure 5.9: HPRPV estimates compared with RTK.
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Figure 5.10: Error in HPRPV estimates.

5.3 Conclusions

Combining measurements between three receivers in the described FAD+DRTK cas-

caded Kalman filter with L1 framework provided a faster TTFF and higher LAMBDA ratios

on average than DRTK with L1. Both techniques, once fixed, provide centimeter level rela-

tive positioning solutions. The FAD+DRTK technique gives an option for users to employ

low-cost single-frequency receivers to approach dual-frequency receiver performance in ap-

plications where low-cost sensing for relative positioning is desired. The hardware cost of
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three single-frequency receivers will be thousands of dollars less than two high quality dual-

frequency receivers, with the added benefit of the ability to determine vehicle attitude. This

approach ultimately offers relative positioning and attitude determination for collaborative

navigation at a low-cost for the cost sensitive automotive industry.
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Chapter 6

Conclusions and Future Work

6.1 Summary

Chapter 1 motivated the need for GPS based positioning in autonomous convoying

applications by describing the strengths and weaknesses of common sensors employed in

autonomy. GPS was shown to serve as a correction for relative sensors and provides an

independent measurement of velocity and odometry with high-accuracy. Additionally, the

ability of accurate GPS based relative positioning was presented. A brief survey of absolute

and relative sensors was presented to depict the current state of the art. This led to a

more detailed description of GPS. Next, prior work in the field of carrier based GPS relative

positioning was presented along with the contributions of this thesis.

Chapter 2 presented a brief history of GPS and its described purpose by the DoD. The

three segments of GPS, Space, Control, and User, were discussed to convey the multifaceted

collaboration required for operation and the unique error sources contributed by each seg-

ment. Within the User segment section, the GPS measurement models of pseudorange and

carrier phase were presented with their expected accuracy and individual components. The

method of measurement generation by the GPS receiver was briefly discussed. Finally, a 50

min experiment was conducted to validate the accuracy of standalone positioning with the

SPS of GPS.

Chapter 3 introduced the DRTK (L1-L2) algorithm. The DRTK technique was shown

to provide RTK quality relative positioning solutions. The LAMBDA method was presented

to describe the method used to fix double-difference carrier phase floating point ambiguities

to integers, and to discuss the LAMBDA ratio’s use for validation of solutions. The least

squares estimation technique was shown to be used to determine the RPV once integer
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ambiguities were fixed. An experiment was then conducted to validate the expected accuracy

of DRTK and the resulting LAMBDA ratio results. Lastly, the limitation of DRTK to provide

solutions only when both receivers have common satellites in view was discussed to compare

availability of solutions to RTK.

Chapter 4 introduced the fixed attitude-baseline DRTK (FAD) technique used to fix

integer ambiguities between antennas in a fixed attitude baseline configuration on a moving

platform. The inclusion of an a priori baseline magnitude for constrained Kalman filtering

was then presented. The FAD technique was shown to outperform DRTK with regards to

TTFF and LAMBDA ratio results. Both FAD and DRTK were shown to provide the same

HPRPV solution once integers were fixed.

Chapter 5 described the inclusion of relative integer ambiguity estimates, relative clock

bias, and RPV states estimated by FAD to derive additional measurements to aid DRTK

relative positioning with single-frequency receivers. The cascaded Kalman filter with FAD

and DRTK was presented along with a derivation of the additional measurements derived

from three independent GPS receivers. The FAD+DRTK technique was shown to provide a

faster TTFF and higher LAMBDA ratios on average than DRTK. Both FAD+DRTK and

DRTK were shown to provide the same RPV solution once integers were fixed correctly.

FAD+DRTK was recommended as an option to the cost sensitive automotive industry to

provide a lower cost hardware implementation for relative positioning in collaborative navi-

gation applications like autonomous convoying.

6.2 Conclusions

In conclusion, carrier based GPS relative positioning techniques for autonomous con-

voying were covered. Three estimation schemes were presented with a focus on TTFF and

confidence in solution gauged by the LAMBDA ratio result. DRTK, FAD, and DRTK+FAD

were all shown to provide relative positioning with accuracy of approximately 2 cm. DRTK is
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the best relative positioning option for applications where dual-frequency receivers are avail-

able, a base station is unavailable, and platform attitude isn’t a concern. FAD is an option for

applications where dual or single-frequency receivers are available and the user requires GPS

aided attitude estimation. When using single-frequency receivers, FAD+DRTK provided a

fixed integer solution within three epochs for every initialization, while DRTK provided a

fixed integer solution within six epochs for every initialization. The FAD+DRTK TTFF was

similar to dual-frequency DRTK in that fixed integer solutions were available within three

epochs but differed in the percentage of fixed integer solutions available within the first and

second epochs. Finally, DRTK+FAD is shown to be a good option for users sensitive to

hardware cost that desire attitude estimation and relative positioning between vehicles. All

carrier based GPS estimation schemes presented provide cm level relative positioning.

6.3 Future Work

6.3.1 FAD for Towed Implement Control

Agricultural implement control requires knowledge of the position of the towed imple-

ment. This can be achieved with a receiver fixed to the implement receiving RTK correction

or hitch angle measurements made by an optical encoder. Previous work using the DRTK

algorithm was presented in [46]. The FAD technique can aid this estimation by applying an

a priori baseline magnitude constraint when the velocity vector of the implement and the

tractor are aligned determined by GPS 3D velocity measurements. Additionally, in a tractor

trailer convoy, trailer position knowledge is useful for control. The same technique may also

be applied for this application.

6.3.2 Orientation and Distance Between Antennas

A comprehensive comparison of the effect of baseline attitude configurations of different

distances and orientations should be performed. A shorter baseline should result in better
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performance because correlation of errors increases with decreasing distance between anten-

nas. However, decreasing the distance between the fixed attitude-baseline affects geometric

diversity of measurements, which may harm integer ambiguity resolution between convoy-

ing vehicles. Additionally, orientation of the baseline attitude on the platform affects the

observability of the attitude states when only two antennas are used.

6.3.3 Validation with Low-Cost Receivers and Antennas

All work presented in this thesis used measurements from NovAtel pinwheel antennas

that perform similarly to choke ring antennas and high-quality GPS receivers. The work in

this thesis should be validated using low-cost patch antennas and single-frequency receivers.

6.3.4 The Use of an a priori Baseline Magnitude on Each Convoying Vehicle

The FAD technique described in Chapter 4 could be implemented on each convoying

vehicle, given that each vehicle is configured with a fixed attitude-baseline of antennas. The

low-cost of single-frequency receivers would justify this choice, because four single-frequency

receivers would still be less expensive than two dual-frequency antennas by thousands of

dollars. The FAD+DRTK technique described in Chapter 5 could then be used to derive

more additional measurements to effectively triple the number of available measurements.

A study should be conducted to determine if integer ambiguity resolution performance is

improved with this approach.

6.3.5 Cascaded vs. Centralized Approach

The work presented in Chapter 5 used a centralized approach to derive additional mea-

surements. A study should be performed to see if a centralized Kalman filter approach offers

any benefit.
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Appendix A

Current Active Satellites

The United States Department of Defense aims to guarantee a minimum of twenty-four

active satellites within the Global Position System constellation. As of this writing, there

are thirty-one active satellites, which can be found in Table A.1.
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Table A.1: The current active satellites in the GPS constellation with outage date informa-
tion as of June 7, 2019. (From: [6])

Plane PRN Outage Date
A 24
A 31
A 30 06 JUN 2019
A 7
B 16
B 25
B 28
B 12
B 26
C 29
C 27
C 8
C 17
C 19
D 2
D 1
D 21
D 6
D 11
D 18 02 JUN 2019
E 3
E 10
E 5
E 20
E 22
F 32
F 15
F 9
F 23
F 14
F 13
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Appendix B

Earth-Centered, Earth-Fixed Cartesian Coordinate System

The Earth-Centered, Earth-Fixed (ECEF) Cartesian coordinate system is widely used

in navigation. As the name implies, the coordinate system rotates with the Earth. The origin

is at the center of mass of the Earth. Simply described, The Z-axis coincides with the axis

of rotation, and the X-axis coincides with the intersection of the Mean Greenwich meridian

with the equatorial plane. However, the Earth’s rotation axis is not fixed in relation to the

Earth. The pole of rotation actually meanders in a roughly circular path several meters per

year around the surface of the Earth. This phenomenon is known as polar motion. This polar

motion alters the definition of the equatorial plane, therefore the entire coordinate system

would be dynamic if this wasn’t addressed. To resolve this polar motion issue, geodesists

between the years of 1900 and 1905 defined an average position of the pole of rotation.

This point, fixed to the Earth’s crust, is known as the Conventional Terrestrial Pole (CTP).

Figure B.1 offers a depiction of the ECEF coordinate frame.
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Figure B.1: Description of the earth-centered earth-fixed Cartesian coordinate system.
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