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ABSTRACT

A segment ofAlabama Highway AL -5) located in Perry County, Alabama has been
experiencing severe pavement distithss is mostlycaused by thbehavior ofsoil beneath the
roadway AL -5 is a farmto-market road thawas built directly on the subgrade which consists of
expansive chgs with no compacted basBrevioudaboratory testconfirmedshrink-swell
behavior in the soil with swell pressuresupfto1500 psf Five remediation techniques were
investigatedn sections ofAL -5 in an attempt to identify a method that would incecthe span
between resurfacing hese remediation techniques includestind blanket, vertical moisture
barriers, lime columns, paved shoulders, and edge drains. Sensors were installed to remotely
monitor the subgrade and asphalt conditions for the darafithe projectTo further
characterize the subgrade behavior, torsional ring sheanesicompleted to determine the
drained residual strength of the soil. Specimens from each remediation semgé@onsolidaed
andthen subjected to torsional stien the ring shear device to determine the shear strength of
the subgrade soils which may have contributed to pavement distress.

Continuous monitoring of the pavement and subgrade instrumentation has shown
improvement in the pavement distress over st few years with the lime column test section
as the most improved h€ torsional ring shear tests resulted in very low angles of peak and
residual resistance for the subgrade; therefore, the material was very wéiklgriths
contributed to the pavesnt distress. Slope stability analyses concluledoadway
embankments were stable at the end of construction, but quickly began to fail as the peak and

residual shear strength values were reached.
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CHAPTER 1: INTRODUCTION

1.1Background

Roadwaysn many parts of th&nited Statesndaroundthe world experierepavement
distress due to expansielys. Expansive clays undergarbe volume changgsimarily
occuring due to fluctuating moisture conterttributable taseasoal changes in precipitation
In theUnited States, damage from expansive clagekaeeded $10 billion in 1984kely
closer to $25 billion todayyith half of the damages involving highways, streets, and roadways.
(Steinberg 1985)

Alabama Highway 5 (AL5) is a heavy traffic roadway coreiang Mobile to
Birminghamin AlabamaAL-5 is a farmto-market roadand it was constructed Ipavement
directly on the subgradeith little or noaggregate basén the segment studied in this research
project, he subgrade consists of expansive theathas caused significant pavement distress
over many yearsThe distress includes large patches, rutting, and longitudinal cracks located
along the majority of the roadwag shown irFigurel andFigure2. In order to maintain safe
roadway conditiongpatching, levelling, andesufacingis needed often on Ab and similar

roads over expansive clayhich has been very expensive for the state of Alabama



Figure 1: DistressPavement atAL -5 (Herman 2015)

Figure 2: Longitudinal Cracking along AL -5 (Herman 2015)

The Alabama Department of Transportation (ALDOT) sponsored research pinafect
this thesis contributes tmnsists of dour-mile ssgmentof AL-5 located in Perry County,
Alabama.Several emediation techniquasereimplemented along four-mile length section of
AL-5 to identify designs that couektend the life of the pavemieinstruments were installed

into the subgrade and pavement to monitor the changes of the soil corafitibpavement



distressover an extended period of time to evaluate the performance of each renediat
technique.

Field observations have concluded possible slope stability problems on the roadway
embankmentsThese slope failures at Ak could have occurred due to the drained fully soften

strength of the clays.

1.2 Objective

The primary objectivef this investigatiorwas to determine the drained residual shear
strength of the subgrade and the impact of the shear strength on the stabilit} of AL
embankments. A secondary objective was to continue monitoring the test section instrumentation

and report the observations arahclusions of the performance of the test sections.

1.3Scope

Eighteen ring shear tests were performed using the Bromhead Ring Shear Device
(Bromheadl979) The results of the tests were used to develop failure envelopes to determine
the drainedesidual shear strength of the clay. The results were used on slope stability
calculations to investigate the impact of the clay strength on the performance of the
embankments sections of AL Periodic data collection was conducted onA\sensors along
with quarterly IRI tests completed by The National Center of Asphalt Technology (NCAT). Data
collection occurred remotely and through site visits. Data was reduced and plotted to observe

potential trends in each section.



CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

Shrink-swell behavior of soilss generally related to fluctuations in water content in soils
and minerology Thereforesaturated andnsaturated soil mechasigrinciples should be

reviewedalong with the minerology of expansive clays

2.1 Saturated Soils

Saturated soil is known as a tpbase system consisting of water and soil partidles.
system allows soil to be completely saturated meaning no air in the Naitsmaterial is
bdow the water table, then the soil is mostlikfully saturated. However, if the soil is located

above the water tablthe material willgenerallybe in an unsaturated state.

2.2 Unsaturated Soik

Unsaturatedal is generally known to bethreephasesystemconsistingof air, water,
and soil particlesThis system allows soil to be completely dry meaning no water in the voids.
This assumptions rarely found irthe field therefore, soil is normally in an unsaturated state

locatedsomewhere itbetweerbeing completelylry or completely saturated.

2.2.1 Soil as a Four Phase System

Instead of characterizing soil ashseephasesystem, unsaturated soil can be considered
afour-phasesystem for stress analysis. The fourth phase consists of tvatair interface also
known as theontractile skin(Fredlund and Morgenstern 197There can be changes in the
stress state of the contractile skin resulting in changes in water contanieyor shear strength
(Fredlund et al. 2012Figure3 showsanunsaturated elemeaf soil with the four phases

labeled.



Air 7
Contractile skin £ Soil particle
(air-water interface) VA

Figure 3: Unsaturated Soil Element with Four Phases Labele(Fredlund et al. 2012)

Figure4 shows the free body diagram for the contractile skin. The air pressure is greater
than the water pressure in the unsaturated soil; therefore, the contractile skin will show a concave
curvature towards the air pressure and tension will be applied torttraatde skin in order to
maintain equilibrium(Fredlundet al.2012) UsingFigure4, an equilibrium equation is
computed and is given lguation I(NelsonandMiller 1992) Equat i on 1 i s known
capillary model in which the surface tension of the contractile skin varies with temperature
(FredlundandRahardjo 1993)The matric suction can be defined as the pressure diffedence
0 in Equationl. The matric suction and radius of curvature are inversely related because when

the matric suction increases, the radius of curvature of thteactile skin decreases.

AIR - WATER
INTERFACE
" MEMBRANE"_—

Figure 4: Free Body Diagram of Contractile Skin(Nelson and Miller 1992)



Equationl

kgl
<

Whered = air pressure

0 = water pressure

“Y = surface tension

i = radius of curvature

2.2.2 States of Stress for Unsaturated Soils

The state of stress must be considered when characterizing the behavior of a given soil. A
st at e v ar rnmterlalesariabke requiref forothee characterizatn o f  (&redbugds t e mo
andRahardjo 1993)A state variable can be a stress state variable or a deformation state variable.
A stress state variable characterizes stress equilibrium conditions; whereas, a deformation state
variable characterizes deviatis from an initial state. A relationship between different state
variablesgeneratainique empirical mathematical relationships catledstitutive relations

(FredlundandRahardjo 1993)

The soil behavior of saturated soils can be described kstdteof the effective stress on
the soil shown irEquation2. Changes in volume and shear strength are governed by the changes

in effective stresgFredlundet al.2012)

” ., O Equation2



Where,, = effective normal stress

, = total normal stress

0 = pore watepressure

Adding the fourth phase for an unsaturated soil increases the complexity for describing
the behavior of the soil. An effective stress concept like the one used for saturated soil was
created for unsaturated soil; however, it is much more diff{fEwedlundandRahardjo 1993)

Efforts were made to produce a single effective stress relationship for unsaturaté@reaiy
et al.1958 Bishop 1959Aitchison 1961 Jenningsl961) but all the relationships incorporate
soil properties; therefore, the relationships are considered to be constitutive rather than stress

state description@-redlundandRahardjo 1993)

An idea using two independent stress state variables to descubsataorated soil was
proposed by Fredlund and Morgenstern (1977). They based their analysis ephassi
continuum mechanics and included the fourth phase for unsaturate@FssdsindandRahardjo
1993) Three stress state variables were generatédh® most common ones used are the net
normal stress,( 6 and the matric suctiord 0 . These stress state variables were
experimentally testefFredlund 1973and are commonly accepted and uggedlundet al.
2012) This is important becaast describes the volume change responsible for the stmek

behavior beneath pavements.

To define the volume change of unsaturated soils, there are three common deformation
state variables that are widely used. These deformationvatéles include void ratid},

gravimetric water content(), and degree of saturatioif( There are other deformation state

7



variables possible if continuum mechanics notation is (Sexilundet al.2012) When
combined with the stress state vatés in mentioned above, two constitutive relationships are

created and are shownkguation3 andEquation4 .

nQ »Q, 0 W Qo o Equation3

Q0 ©Q, 6 ®wQo6 o Equation4

whereQ & incremental change in void ratio
‘Q 0= incremental change in water content (gravimetric)
Q, 0 =incremental change in net normal stress
Q06 6 =incremental change in matric suction
« = coefficient of compressibility with respect to change in net normal stress
« = coefficient of compressibility with respect to change in matric suction

~
¥

w = coefficient of water content change with respect to change in net normal stress

w = coefficient of water content change with respect to change in matric suction

0 = pore air pressure

O = pore water pressure



Since volume change uses two stress state variables, the ptpiaifon3 andEquation
4 must take the form of a three dimensional shifpire5 shows an example of thleree
dimensionakhape for the void ratio and water content. As showigare5, the void ratio and
water content are affected by a change in net normal stress and matric #uistegood
assumption to assume the net normal stress will remain constant for an estistitigre or
undeneath thgpavement; therefore, volume change is solely controlled by the changes in matric

suction.

Void ratio,

y ~‘\ '\\r ”n
L N L O S
A R B
N
53
: ey Stress state variable
\"‘5 (s - UW)
\ @
A}

Water content, w (%)
j
V4
/’,7

%
/\ ‘,\10' (g - Uw)

Figure 5: Constitutive Surfaces for an Unsaturated Soil: (a) Void Ratio Constitutive
Surface; (b) Water Content Constitutive Surface(Fredlund et al. 2012)

2.3 Minerology

Montmorillonite is a very common and important mineral found in clays.
Montmorillonite crysals can be very small in size, but the crystals have a strong attraction for

water. Shrinkswell potential of soils containing montmorillonite is very high. Swelling pressures



develop and have caused damage to structures and pav@rwtaet al.2011) Holtz et al.
(2011) suggest using Atterberg limits to classify active clay minerofdlgys containing

montmorillonite generally plot near thellhe onC a s a g r phastiditg dhart shown ifigure

6.

Plasticity index

20—

Chlorites
Liquid limit

Figure 6: Location of Common Clay minerals on Cas
from Casagrande, 1948, and data in Mitchell and Soga, 2008Joltz et al. 2011)

Specific surface is an important concept in soil minerology. Specific surface is the
surface area of the soil divided by the unit volume. Therefore, the specific surface of a soil is
inversely proportional to its grain size. Clay, made up of small sditfes; will have a larger

specific surface than the same amourtazrsegrainedsoil (Holtz et al.2011)

Water naturally is attracted to clay partickecause of the polar nature of water. A water
molecule is electrostatically attracted to the surface of a clay crystal because of a positive and
negative separate center of charge for each molecule. Hydrogen bonding creates the bond

between the water arthy particle. Hydrogen bonding occurs when the hydrogen atom of the

10



water is attracted to the oxygen atoms on the surface of theltlaygations in a water molecule

can contribute to the hydration of clay minersitsce the surface of a clay is negaiveharged

(Holtz et al.2011) The cationn the water molecules are generally more concentrated near the
surface of the clay crystals. The cations thermally diffuse away from the clay surfaces in order to
achieve equilibrium on the surface of the clapweéver, the diffusion is counterbalanced by the
electrical attraction the cation has to the negatively charged surface of the clay which creates the

diffuse double layefHoltz et al.2011)

2.4 Soil Suction

24.1 Soil Suction Components

As explained ative, volume change in expansive soils is primarily caused by a change in
matric suction. Another type of soil suction includssnotic suctionvhich is commonly found
in soils. Osmotic suction is caused by the presence of salts and cations as they dissolve in the
pore water of the soiDsmotic suction is fairly constant and is not considered in this
investigation because the ground and poremate assumed to be homogenous. In soils with
very low water contents, osmotic suction can affect the soiEgu@tion5 should be used.

Equation5 shows the relationship between matric and osmotic suction to create total suction.

I 60 O “ Equation5

wherg = total suction
0 O = matric suction

= osmotic suction

11



2.4.2 Active Zone

As mentioned previously, the water content; therefore, the soil suction, is a primary cause
of the shrinkswell behavior of expansive unsaturated clays. In the upper few meters of soil, the
water catent fluctuates because of environmental factors. These environmental factors include
vegetation and trees along with rainfall and temperature changes. The uppestéreof soil
which experience seasonal suction changes is callexttive zon€NelsonandMiller 1992).

Figure7 illustrates the active zone for a groymafile.

-MOISTURE BARRIER
(FLOOR SLAB OR

PAVEMENT )
WATER CONTENT : WATER CONTENT
PROFILE WITH E.T, — , WITH SLAB
Y (NQ SLAB) 5 —(WARM SEASON)
Z| HYOROSTATIC WATER _ .
M| CONTENT PROFILE — ‘ _(COOL SEASON)
T b
= >
al &
o <
WATER CONTENT N >

Figure 7: Water Content Profiles in the Active Zone(Nelson and Miller 1992)
2.5 Shear Strength
2.5.1 MohrCoulomb Failure Criterion

For saturated soil, the Mol@oulomb failure criterion can be usedctculate the shear
strength of a given soil speci mewnintguatong. Ter z a

Equation6 shows the MohCoulomb failure criterion.

12



T w , 0@ Equation6

wheret = shear strength
o= effective cohesive intercept
, = effective normal stress

» = effective angle of internal friction

The slope of the failurenvelopds the effective angle of internal friction and the y
intercept is the effective cohesion of the sedr most norcemented soils, the effective

cohesion is zerdsigure8 shows a general Mof€oulomb failure criterion for a saturated soil.

Shear Stress, v

T3 O] Oy T]
Effective Normal Stress, ¢’

Figure 8: Mohr -Coulomb Failure Criterion for Saturated Soil (Burrage 2016)

2.52 Typical and Correlated Values for Soil and Asphalt Concrete

Lambe and WhitmafiL969)provide typical values for the drained shear strength of soil

based on the Atterberg limitssing data by Kenney (195%jigure9 shows the correlation

13



between simof the peak friction angland the plasticity index for normally consolidated soils. As
the plasticity index increases, the drained shear strelegtieaseslablel shows the summary

of friction angle data from Lambe and Whitman (1969) for preliminary design depending on soll

type.

0.9
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Remolded Soil, Activity > 0.75 O Remolded Soil
Undisturbed Soil, Activity < 0.75 A Undisturbed Soil, Activity > 0.75
Undisturbed Soil

O ¥ + X

Figure 9: Relationship between sirf , and plasticity index for normally consolidated soils
(After Lambe and Whitman 1969,Kenney 1959)
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Table 1. Summary of Friction Angle Data for Use in Preliminary Design(Lambe and
Whitman 1969)

Classification

Silt (nonplastic)
Uniform fine to
medium sand

Well-graded sand

Sand and gravel

Slope
Angle of Repose

Slope
i(°) (vert. to hor.)
26 1on2
to
30 1 on 1.75
26 1on2
to
30 1 on 1.75
30 1 on 1.75
to
34 1 on 1.50
32 1 on 1.60
to
36 1 on 1.40

Friction Angles

At At Peak Strength
Ultimate
Strength Medium Dense
() tan ¢,, #(°) tan ¢ (%)
26 0.488 28 0.532 30
to to to
30 0.577 32 0.625 34
26 0.488 30 0.577 32
to to o
30 0.577 34 0.675 36
30 0.577 34 0.675 38
to to to
34 0.675 40 0.839 46
32 0.625 36 0.726 40
to to to
36 0.726 42 0.900 48

Dense

tan ¢

0.577

0.675
0.675

0.726

0.839

1.030
0.900

Mitchell and Soga (2005) plotted residual friction angles as a function of effective normal

stress raised to the minus one third power. This plot is shofmgume 10 using data from

Chattopadhyay (1972)n this figure, the residual friction angles are not affected when the

normal stresss less than roughly 200 kPa. However, at higher stresses, the friction angle is

independent of the stress and increases with larger stress values.
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Figure 10: Residual Friction Angle versus Effective Normal Stress Raised to the Minus One
Third Power (Data from Chattopadhyay 1972 (Mitchel and Soga 2005)
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The EPRI Manual uses several methods to estimate the undrained shear strength of a clay
by correlating the strength to the plasticity index based on vane shear tests. These correlations

provided inFigurell show an approximation of the undrained shear strength.

[oX3 3 s, (VST) .
= =0.11+0.0037 P1 .

£t Gvo / .
~
~ 0.4} s 4
’_ [ ]
w L .’c" .
2 / ¢ !
& 0.2 .__:. -

0 1 1 1 L L 1 1 I 1
0 20 40 €0 80 100 120

Plosticity Index, PI (%)

1 1

Figure 11: Undrained Shear Strength Ratio versus Plasticity Index based on Vane Shear
Tests(Kulhawy and Mayne 1990)

A case study completed by Pennsylvania State University evaluated triaxial strength tests
of asphalt concrete mixtures to better understand sigtamce. The Moh€oulomb criteria was
used to determine the cohesion and internal angle of friction for the different types of asphalt
concrete teste(Christenseret al.2000) Table2 shows the values of the cohesion and internal

angle of friction for the different asphalt concrete mixes.

Table 2: ¢c- and f - Values from Triaxial Testing on Asphalt Cancrete (Christensen et al.

2000)

Mixture c(kPa) | f (degrees)
ID2/AC20 664 39.8
ID3/AC20 685 34.1
ID2/SB 814 39.3
ID3/SB 838 36.3
ID3/AC20/MF+ 665 36.8
ID3/AC20/MF++ 537 41.8
NY76 369 41.4
NY96 480 42.5
NY109 471 36.7
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Mixture c(kPa) | f (degrees)
NY126 534 38.1

2.5.3Effect of Swelling on Clay Strength

Case studies have proven that when a clay swh#sshear strength is negatively
affected; therefore, the shear strength is variable depending on the swell potential of the material
Sixty triaxial tests were performed on expansive shale which was classified as a fat clay by the
Unified Soil Classification System (USC@&I-Mhaidib andAl-Shamrani 2006)The samples
consisted of material 100% passing the No. 40 sieve and were rertomfdeth uniform
remolded specimens at a predetermined water coffeihaidib andAl-Shamrani, 2006)The
specimens were consolidated for approximately 24 hours under an isotropic confining pressure.
After 24 hours had passed, water was introduced tspeimen and allowed to swell. The
specimens could swell to 0%, 25%, 50%, 75%, and 100% of the ultimate vertical swell. When
the predetermined percent swell value was achieved, the specimen was sheared to calculate the
shear strength of the soil. The rigswvere calculated in terms of tekear ratiowhich is the
ratio of the shear strength of the swelled specimen and thewelled specimefAl-Mhaidib

andAl-Shamrani 2006)as shown ifEquation?.

YD OVYO 1 O WHO Q aiariXmxo Qa Q¢ Equation?
D OO 1 O ®E €1 0 'Qaiafmn Qa

"D OY 0 Q£

Table3 expresses the shear ratio values calculated for each of the swelled triaxial tests
completed. The data agrees with the conclusion that the swelling of expansive clays has a large

negative impet on the shear strength of the soil. Much of the shear strength was not present
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when the specimen could swell to the ultimate vertical swell vaAlsishown inTable3, as the
percentage in vertical swell increased for each specimen, the shear ratio rapidly decreased. As
the shear ratio approaches zero, the strength of the swelled specimen is also approaching zero as

the strength of the neswelled speciran remains constant for each specimen.

Table 3: Calculated Values for Shear Ratio for all Tested Specimer(&l-Mhaidib and Al -
Shamrani 2006)

% Vertical Swell Before Shearing
Initial Water Content (%)| Confining PressuréPa) 25 50 75 100
25 0.32 0.09 0.07 0.04
50 0.33 0.17 0.09 0.06
14 100 0.35 0.20 0.15 0.08
150 0.37 0.20 0.15 0.07
Average 0.34 0.17 0.12 0.05
25 0.26 0.11 0.08 0.05
50 0.26 0.16 0.11 0.08
18 100 0.28 0.20 0.17 0.10
150 0.33 0.22 0.18 0.11
Average 0.28 0.17 0.14 0.09
25 0.36 0.27 0.18 0.11
50 0.37 0.3 0.22 0.14
22 100 0.39 0.32 0.27 0.20
150 0.44 0.35 0.0 0.22
Average 0.39 0.31 0.24 0.17
Average 0.34 0.22 0.16 0.11

2.6 Torsional Ring Shear Device

The torsional ring shear device tests specimens under drained conditions to determine the
residual shear strength of cohesive soils. The remolded specimen is consolidated adatsaear
predetermined water conte@enerally, three phases of testing are conducted with three

different normal stredgvels
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2.6.1 Bromhead Ring Shear Test Procedure

In a paper by Stark and Vettel (199)r different test procedures were applied to soil
specimensn a Bromhead Ringhear DevicéBromhead 1979%p illustrate the effect the
procedure has on the measured shear strehigghspecimen is confined radially; therefore, wall
friction is introduced to the inner and outer circumferences of the specimen from the top porous
store. The main concern for measuring the residual strength is the magnitude of wall friction that
is developed. The further the top porous stone settles into the specimen, the more wall friction;
therefore, a higher residual strength will be meas@eadenty, there are four test procedures
used to measure the drained residual strength including single stage, preshearing, multistage, and

the #Afl us (barkapdVettel@993) r e

The single stage test procedure includes loading the remolded specimen to the desired
normal stress and then shearing the specitem preshearing procedure includes preshearing
the specimen prior to shearing at a rapid displacemenbfrafgoroximately25 degrees per
minute Therapiddisplacement rate generally allows the specimen to rofatefive
revolutions. The multistage procedure reduces test duration by allowing all stages of testing to be
performed on one s peci mesrhe todpgoreus Btdné rersamodnegsoro c e d
flush with the surface of the specimen container. Only one test is performed for each specimen

(StarkandVettd 1992)

Ring shear tests were performed on remoldiedreshale material classified as a clay of
high dasticity according to USCS. Each testing procedure was tested to determine the residual
shear strengtligure12 shows the effects of the testing procedure on measured residual

strength of the material.
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Figure 12 Effect of TestProcedure onM easuredResidual Strength of Pierre Shale (Stark

and Vettel 1992)

Based on the results of the study showRigure12, theflush procedure resulted in the

lowest residual strength since the wall friction was minimiZesensitivity study was completed

to determine how much settlement the top porous storid ooave before the wall friction

started effecting the residual strength. It was determined the specimen could endure a total

settlement of 0.75 mmr 15% of the initial heighduring consolidation and shearing and still

produce reasonable strength valuethe top porous stone settles more than 0.75an@5% of

the initial height the addition of soil and reconsolidation of the specimen is reqi8tackand

Vettel 1992)

procedure.

2.6.2 Porous Stones

Therefor e, t he

recommended

testh@roced

The specimen setup for a ring shear test includes two porous stones with the soill

specimen in between the porous stones confined by the specimen container. The specimen and

porous stone interface is important as the porous stone should not slide acsasfteeof the

soil. A discussion bystark (205) criticizes research work from other researchers using the ring

shear devicspecifically referencing the porous stongtarkcriticizesthe work by(Castellanos
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et al.2016)where their paper claimsthet si on a | ring shear device
fully softened shear strength envelopes. o |
values are a result of the upper porous stone sliding over the soil and/or the sliding between the
uppe and lower porous stonéStark 208). Figurel3 shows a typical photograph of the ring

shear specimen and container after testing according to Castellanos (2014).

Figure 13: Photographs of Ring Shear Specimen (&fter Shearing (b) Closeup of Top
Porous Stone After Shearing Showing the Smooth and Large Flat Areg€astellanos 2014)

Figurel3a shows the slidingffectof the top porous stone on the specintégurel13b
shows the insufficient serration pattern on the porous stone to cnaaterdbbckingbetween the
soil and the upper porous stone. A better serration pattern is needed to create a shear surface

within the solil instead of at the upper porous stone and soil intéB&mdk 2016)

A serration pattern was developed at the Usigiof Illinois at UrbanaChampaign
(UIUC) to increase the interlocking between the porous stone and the specimen. The new design
results in only approximately 25% of the soil being in contact with the tips of the porous stone.
Figurel4 shows the serration pattern developed at UIUC and the serration pattern used in this

research.
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Figure 14: Serration Pattern (a) developed at UIUC (b) Photograph of &rated Porous
Stone(Stark 2016)

2.6.3 Case Histoy

Stark and Eid (1992) conducted a field case history to investigate the effect of the test
specimen and testing apparatus on the measured residual strength of the soil. A location in
southern California was selected because there had been three prewsligdamt the site prior
to the slide that was investigated. The specimens were remolded and placed in the ring shear
apparatus where the specimen was consolidated for one or two days and sheared for four days at
a displacement rate of 0.018 mm/minutereverse direct shear test was also performed on
samples from the same sifehe shear box was reversed manually at the end of each horizontal
travel of 0.5 centimeter3wo different types of specimens were used for the direct shear test
which include remloled and precut, remolded specimens. f@moldedspecimens were
consolidated to a desired normal stress and then sheared using a displacement rate of 0.0034
mm/minute. The consolidation test required two to six days of testing while the direct shear test

ran forl5 to 17days in order to obtain a residsé&rengthfor the remolded specime(Starkand
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Eid 1992) The precut, remolded specimens were consolidated and then sheared at a
displacement rate of 0.0034 mm/minute as@recut specimen was prepared by following a
special procedure developed by Mesrd Ceped®iaz (1986). Each half of the shear box was
filled with material and then consolidated separately. After the material was consolidated, the
material is precut using a razor blade in order to obtain a smooth and polished surface. The two
precutspecimens are then attached together and consolidated again before shieesi|g.

shearing tests ran for approximately 10 to 11 days to acquire a residual stFeng#il5 shows

the results from the ring shear and direct shear tests.

< 150 : : . ‘

% ‘ KEY

St 100 e Ring Shear - Remolded

&2 a Direct Shear - Precut, Remolded 1
0_) = Direct Shear - Remolded

w 50

S

0 ' 1 ‘ i 2 _
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Effective Normal Stress (kPa)

Figure 15: Drained Residual Failure Envelopes for Case HistoryStark and Eid 1992)

The remolded specimens in the direct shearéssilted in a failure envelope much
higher than the other tests. Since the duration of the directtslséaare longr than the duration
of a ring shear testhisdirect sheamethod should not be used to measure the residual strength
of the soilin order to save time if a ring shear apparatus is avail@irkandEid 1992) The
precut, remolded specimens used in the direct shear testing generally had good agreement with
the ring shear testing. However, the ring shear apparatus better illustratls\tidecrease in

strength after the peak strength is obtaiagdhown irFigure16 (StarkandEid 1992)
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Figure 16. Shear Stress versus Horizontal Displacement Curves for Ring Shear and Direct
Shear TestqStark and Eid 1992)

Based on this case history, Stark and Eid (1992) recommend using a torsional ring shear
apparatus and remolded speeim to determine the residual strength of soil specimens. The
precut, remolded direct shear tests did show good agreement with the ring shear tests, but in an
interest of time, the ring shear test can be performed in 4 to 6 days; whereas, the direzstshear

on a precut, remolded specimen takes approximately 18 to 2@StaylsandEid 1992)

2.7 Slope Stability

Slope stability is an important issue when embankments are built over soft soils such as
expansive clays. Adequate design is needed to prelgge failures and stabilize the

embankmentFigure17 shows the different types of embankment slope failure$ Abuld

possibly experience.
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Figure 17: Embankment Failures: (a) Infinite slope failure in embankment fil, (b) Circular
arc failure in embankment fill and foundation soil, (c) Sliding block failure in embankment
fill and foundation soil (FHWA 2001a)

There are multiple slope stabilianalysis methods availalie determine the factor of
safety of an embamikent or slopeEmbankment and slope failurkgatedover soft soils
generally show signs thttte embankmertassunk down into the soft soil. As the embankment
sinks, the adjacent grouiadl the toe of the embankment or sltyaves up causing the failure

surface to follow a circular ar€igure18 shows a typical circular arc failure.
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Figure 18: Typical Circular Arc Failure (FHWA 2001a)

At failure, there are driving and resisting forces occurring.driveng force includes the
weight of the embankment and the resisting force includes the total shear strength acting along
the failure aras shown irFigure18. The factor of safety of the embankment can be computed
by dividing the sum of the resistimgovementdy the sum of the drivinghovementsFailure
will occur when the factor of safety is less than 1 or when the drigicgsaregreater than the

resistingforces(FHWA 2001a)

A common analysis method for determining the factor of safety of an embankment or slope
is theOrdinary Method of Slice@~ellenius 1927)This method allows there to be some
variability in the soil properéis.For this method, the failure mass is divided is¢oies of
vertical sliceswvhich intersects a circular failure surfaé&ach slice contains one type of soil and
the bottom of the slice will be a straight liégure19 shows an example of the geometry of the
ordinary method of slices. A free body diagram of one slice with different water conditions can

be seen irFigure20.
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Figure 19: Geometry of Ordinary Method of Slices

AXi

) - where: Ui = Water pressure force

/ Ti = Shear force
Ni = Normal effective force

Si ] Fiﬂ Ei = Normal forces on side
Si = Shear force on sides
Ei_{ Wi Sis1 2 Wi = Weight of slice

ai = Inclination of slice failure plane

Ti oo f Axi = Width of slice
ALi = Length of slice failure plane

ALi

Figure 20: Free Body Diagram for a Slice

The factor of safety can be determined ugtigqgation8. However, there are too many
unknowns in the free body diagram of the slice to solve for therfatgafety. Some
assumptions must be made in order to compute the factor of safety. Fellinius (1927) assumed the
side shear and normal forces were equal and opposite; therefore, the forces cancel each other out.

This simplifies the equations for the factd safety Figure21 shows an example of a slope
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embankment with the forces labeled. The resisting moment can be calcul&edabipn9. The

driving moment can be determined fréquationl0.

oy YQI 0iloraon ¢ Equationd
01 QU IE &N ¢ o
Rsinai |
R pil 1, b1, 61, 71| |
h 4
/S0l 2, 2, 2, 72
7l 5_-—
T
~ ] : Soil 3, c3, 93, 13
=\ Ni+ Ui

C O
Figure 21: Ordinary Method of Slices Example

0 Y OY0 Y wAT® oY0 OAI Equation9

Whered = Resisting Moment
R = Radius of failure arc
& = Soil cohesion
Yo o Yo O AR
@ = Weight of slice
® = Inclination of slice failure plane

0 = Water pressure force of slice
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* = Angle of internal friction for soll

5 Yoo OE] Equationl10

where 0 = Driving Moment

As previously stated, the Ordinary Method of Slices ignores the shear and faoesl
on each slicethereforejt is a conservative methodrfanalyzing slope stabilityBi s hop 6 s
Method(Bishop 1955)s common method used to determine the factor of safetys less
conservative than the Ordinary Method of SlicesBi shopés Met hod does i nc
forces on eachlice butignores the shear force on each slikigure22 shows the free body
diagramofasi e usi ng Bishopds Method. This method w
calculated. The equations for the resisting moment and the normal force on the slice is shown in
EquationllandEquationl2As shown in the foll owing equatio
iterative pra@ess. A factor of safety must be assumed to start the calcul&@ione.c e Bi shop6s
Method is a commonly used meth@®&li shopdés Met hod wi |l | be used i
SLIDE, to determine the factors of safety for-Alat the end of constructiopeak strength, and

residual strength.
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Figure 22 Free Body Diagram of Slice us

0 Y OYOOAR Y U OAI Equationll
, sy Y0 O AG Equationl12
5 w 0o Yw W
~ oo OAl ORJ
AT® —gv—

where N = Normal force on each slice

The critical slip surface of a slope will result in a minimum factor of safetyfind the
most critical slip surface, uftiple circular failure surfacemust beevaluated using different
center points ocircles with a variety of radii values. A contour map is developed showing the
factor of safety for each failure slip surfaé@ example of the process of determining the

critical slip surface is shown figure23.
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Figure 23: Determining Critical Slip Surface of an Embankment(McCarthy 2007)
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CHAPTER 3: PROJECT OVERVIEW

3.1 Site Description

The research siter this studyis located west of Selma, AL in Perry County. Ter-
mile section of Alabama HighwayiS located between mile mi@r 50.85 to mile marker 54.85.
This section of roadway is generally flat with the surrounding land being both wooded and

farming land. The site is divided into eight halfle sections as shown Figure24 andTable4.

Table 4: Test Sections

Test Section Remediation Technique Milepost

1 Control(CO) 50.85i 50.95
Sand Blanke(SB) 50.95i 51.25

Control(CO) 51.251 51.35

2 Vertical Moisture Barrier§VB) | 51.35i 51.85
3 Lime ColumngLC) 51.85i 52.35
4 66 Paved(PSho| 52.35i 52.85
5 Edge DraingED) 52.85i 53.35
6 Control(CO) 53.351 53.85
7 Deep Mixingi Canceled 53.851 54.35
8 Control(CO) 54.35i 54.85

32



Control

Deep Mixing- Canceled

Control

Edge Drains

Paved Shoulders

Lime Columns

Vertical Barriers

Sand Blanket

Figure 24: Layout of Research Site (Google Earth)

The original plans for the research site included a different remediation technique for
eachhalf mile section of roadway. However, after the initial site exploration was complete, it
was noted that the clay layer in Test Section 8 was much thinner tiarilest Sections.
Therefore, no remediation wamplementedn Test Section 8 andas used aanadditional
control section. Test Section 7 was canceled due to the complexity of constructtberafmie
becameanother control section for the projelbue to more construction constraints and traffic

control requirements, the sand blanket was only constructed in the center of the half mile long
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