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ABSTRACT 

 

 

 A segment of Alabama Highway 5 (AL-5) located in Perry County, Alabama has been 

experiencing severe pavement distress that is mostly caused by the behavior of soil beneath the 

roadway. AL-5 is a farm-to-market road that was built directly on the subgrade which consists of 

expansive clays with no compacted base. Previous laboratory tests confirmed shrink-swell 

behavior in the soil with swell pressures of up to 1500 psf. Five remediation techniques were 

investigated on sections of AL-5 in an attempt to identify a method that would increase the span 

between resurfacing. These remediation techniques included a sand blanket, vertical moisture 

barriers, lime columns, paved shoulders, and edge drains. Sensors were installed to remotely 

monitor the subgrade and asphalt conditions for the duration of the project. To further 

characterize the subgrade behavior, torsional ring shear tests were completed to determine the 

drained residual strength of the soil. Specimens from each remediation section were consolidated 

and then subjected to torsional shear in the ring shear device to determine the shear strength of 

the subgrade soils which may have contributed to pavement distress. 

 Continuous monitoring of the pavement and subgrade instrumentation has shown 

improvement in the pavement distress over the past few years with the lime column test section 

as the most improved. The torsional ring shear tests resulted in very low angles of peak and 

residual resistance for the subgrade; therefore, the material was very weak and likely has 

contributed to the pavement distress. Slope stability analyses concluded the roadway 

embankments were stable at the end of construction, but quickly began to fail as the peak and 

residual shear strength values were reached.  
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CHAPTER 1: INTRODUCTION  

 

1.1 Background 

 

Roadways in many parts of the United States and around the world experience pavement 

distress due to expansive clays. Expansive clays undergo large volume changes primarily 

occurring due to fluctuating moisture contents attributable to seasonal changes in precipitation. 

In the United States, damage from expansive clays has exceeded $10 billion in 1984, likely 

closer to $25 billion today, with half of the damages involving highways, streets, and roadways. 

(Steinberg 1985). 

Alabama Highway 5 (AL-5) is a heavy traffic roadway connecting Mobile to 

Birmingham in Alabama. AL-5 is a farm-to-market road and it was constructed by pavement 

directly on the subgrade with little or no aggregate base. In the segment studied in this research 

project, the subgrade consists of expansive clay that has caused significant pavement distress 

over many years. The distress includes large patches, rutting, and longitudinal cracks located 

along the majority of the roadway as shown in Figure 1 and Figure 2. In order to maintain safe 

roadway conditions, patching, levelling, and resurfacing is needed often on AL-5 and similar 

roads over expansive clay, which has been very expensive for the state of Alabama.  
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Figure 1: Distress Pavement at AL -5 (Herman 2015) 

 

 

Figure 2: Longitudinal Cracking along AL -5 (Herman 2015) 

 

The Alabama Department of Transportation (ALDOT) sponsored research project that 

this thesis contributes to consists of a four-mile segment of AL-5 located in Perry County, 

Alabama. Several remediation techniques were implemented along a four-mile length section of 

AL-5 to identify designs that could extend the life of the pavement. Instruments were installed 

into the subgrade and pavement to monitor the changes of the soil conditions and pavement 
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distress over an extended period of time to evaluate the performance of each remediation 

technique. 

Field observations have concluded possible slope stability problems on the roadway 

embankments. These slope failures at AL-5 could have occurred due to the drained fully soften 

strength of the clays. 

1.2 Objective 

 

The primary objective of this investigation was to determine the drained residual shear 

strength of the subgrade and the impact of the shear strength on the stability of AL-5 

embankments. A secondary objective was to continue monitoring the test section instrumentation 

and report the observations and conclusions of the performance of the test sections.  

1.3 Scope 

 

Eighteen ring shear tests were performed using the Bromhead Ring Shear Device 

(Bromhead 1979). The results of the tests were used to develop failure envelopes to determine 

the drained residual shear strength of the clay. The results were used on slope stability 

calculations to investigate the impact of the clay strength on the performance of the 

embankments sections of AL-5. Periodic data collection was conducted on AL-5 sensors along 

with quarterly IRI tests completed by The National Center of Asphalt Technology (NCAT). Data 

collection occurred remotely and through site visits. Data was reduced and plotted to observe 

potential trends in each section. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW  

 

 Shrink-swell behavior of soils is generally related to fluctuations in water content in soils 

and minerology. Therefore, saturated and unsaturated soil mechanics principles should be 

reviewed along with the minerology of expansive clays. 

2.1 Saturated Soils 

 

Saturated soil is known as a two-phase system consisting of water and soil particles. This 

system allows soil to be completely saturated meaning no air in the voids. If the material is 

below the water table, then the soil is most likely fully saturated. However, if the soil is located 

above the water table, the material will generally be in an unsaturated state. 

2.2 Unsaturated Soils 

 

 Unsaturated soil is generally known to be a three-phase system consisting of air, water, 

and soil particles. This system allows soil to be completely dry meaning no water in the voids. 

This assumption is rarely found in the field; therefore, soil is normally in an unsaturated state 

located somewhere in between being completely dry or completely saturated. 

2.2.1 Soil as a Four Phase System 

 

Instead of characterizing soil as a three-phase system, unsaturated soil can be considered 

a four-phase system for stress analysis. The fourth phase consists of the air-water interface also 

known as the contractile skin (Fredlund and Morgenstern 1977). There can be changes in the 

stress state of the contractile skin resulting in changes in water content, volume, or shear strength 

(Fredlund et al. 2012). Figure 3 shows an unsaturated element of soil with the four phases 

labeled. 
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Figure 3: Unsaturated Soil Element with Four Phases Labeled (Fredlund et al. 2012) 

 

Figure 4 shows the free body diagram for the contractile skin. The air pressure is greater 

than the water pressure in the unsaturated soil; therefore, the contractile skin will show a concave 

curvature towards the air pressure and tension will be applied to the contractile skin in order to 

maintain equilibrium (Fredlund et al. 2012). Using Figure 4, an equilibrium equation is 

computed and is given by Equation 1 (Nelson and Miller 1992). Equation 1 is known as Kelvinôs 

capillary model in which the surface tension of the contractile skin varies with temperature 

(Fredlund and Rahardjo 1993). The matric suction can be defined as the pressure difference ό

ό  in Equation 1. The matric suction and radius of curvature are inversely related because when 

the matric suction increases, the radius of curvature of the contractile skin decreases. 

 

Figure 4: Free Body Diagram of Contractile Skin (Nelson and Miller 1992) 
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ό ό

ςὝ

ὶ
 

Equation 1 

 

Where ό = air pressure 

 ό  = water pressure 

 Ὕ = surface tension 

 ὶ = radius of curvature 

 

2.2.2 States of Stress for Unsaturated Soils 

 

The state of stress must be considered when characterizing the behavior of a given soil. A 

state variable is a ñnon-material variable required for the characterization of a systemò (Fredlund 

and Rahardjo 1993). A state variable can be a stress state variable or a deformation state variable. 

A stress state variable characterizes stress equilibrium conditions; whereas, a deformation state 

variable characterizes deviations from an initial state. A relationship between different state 

variables generate unique empirical mathematical relationships called constitutive relations 

(Fredlund and Rahardjo 1993).  

The soil behavior of saturated soils can be described by the state of the effective stress on 

the soil shown in Equation 2. Changes in volume and shear strength are governed by the changes 

in effective stress (Fredlund et al. 2012).  

 

 „ „ ό  Equation 2 
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Where „ = effective normal stress 

 „ = total normal stress 

 ό = pore water pressure 

 

 Adding the fourth phase for an unsaturated soil increases the complexity for describing 

the behavior of the soil. An effective stress concept like the one used for saturated soil was 

created for unsaturated soil; however, it is much more difficult (Fredlund and Rahardjo 1993). 

Efforts were made to produce a single effective stress relationship for unsaturated soils (Croney 

et al. 1958, Bishop 1959, Aitchison 1961, Jennings 1961), but all the relationships incorporate 

soil properties; therefore, the relationships are considered to be constitutive rather than stress 

state descriptions (Fredlund and Rahardjo 1993). 

 An idea using two independent stress state variables to describe an unsaturated soil was 

proposed by Fredlund and Morgenstern (1977). They based their analysis on multi-phase 

continuum mechanics and included the fourth phase for unsaturated soils (Fredlund and Rahardjo 

1993). Three stress state variables were generated, but the most common ones used are the net 

normal stress („ ό  and the matric suction ό ό . These stress state variables were 

experimentally tested (Fredlund 1973) and are commonly accepted and used (Fredlund et al. 

2012). This is important because it describes the volume change responsible for the shrink-swell 

behavior beneath pavements. 

  To define the volume change of unsaturated soils, there are three common deformation 

state variables that are widely used. These deformation state variables include void ratio (Ὡ), 

gravimetric water content (ύ), and degree of saturation (Ὓ). There are other deformation state 
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variables possible if continuum mechanics notation is used (Fredlund et al. 2012). When 

combined with the stress state variables in mentioned above, two constitutive relationships are 

created and are shown in Equation 3 and Equation 4 . 

 

 ὨὩ ὥὨ„ ό ὥὨό ό  Equation 3 

 Ὠύ  ὦὨ„ ό ὦὨό ό  Equation 4 

 

where ὨὩ = incremental change in void ratio 

Ὠύ = incremental change in water content (gravimetric) 

`Ὠ„ ό  = incremental change in net normal stress 

Ὠό ό  = incremental change in matric suction 

ὥ= coefficient of compressibility with respect to change in net normal stress 

ὥ  = coefficient of compressibility with respect to change in matric suction 

ὦ = coefficient of water content change with respect to change in net normal stress 

ὦ = coefficient of water content change with respect to change in matric suction 

„  
„ „ „

σ
 

ό = pore air pressure 

ό  = pore water pressure 
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Since volume change uses two stress state variables, the plot of Equation 3 and Equation 

4 must take the form of a three dimensional shape. Figure 5 shows an example of the three-

dimensional shape for the void ratio and water content. As shown in Figure 5, the void ratio and 

water content are affected by a change in net normal stress and matric suction. It is a good 

assumption to assume the net normal stress will remain constant for an existing structure or 

underneath the pavement; therefore, volume change is solely controlled by the changes in matric 

suction. 

 

Figure 5: Constitutive Surfaces for an Unsaturated Soil: (a) Void Ratio Constitutive 

Surface; (b) Water Content Constitutive Surface (Fredlund et al. 2012) 

 

2.3 Minerology 

 

Montmorillonite is a very common and important mineral found in clays. 

Montmorillonite crystals can be very small in size, but the crystals have a strong attraction for 

water. Shrink-swell potential of soils containing montmorillonite is very high. Swelling pressures 



10 

 

develop and have caused damage to structures and pavements (Holtz et al. 2011). Holtz et al. 

(2011) suggest using Atterberg limits to classify active clay minerology. Clays containing 

montmorillonite generally plot near the U-line on Casagrandeôs plasticity chart shown in Figure 

6. 

 

 

Figure 6: Location of Common Clay minerals on Casagrandeôs plasticity chart (developed 

from Casagrande, 1948, and data in Mitchell and Soga, 2005) (Holtz et al. 2011) 

 

Specific surface is an important concept in soil minerology. Specific surface is the 

surface area of the soil divided by the unit volume. Therefore, the specific surface of a soil is 

inversely proportional to its grain size. Clay, made up of small soil particles, will have a larger 

specific surface than the same amount of coarse-grained soil (Holtz et al. 2011). 

Water naturally is attracted to clay particles because of the polar nature of water. A water 

molecule is electrostatically attracted to the surface of a clay crystal because of a positive and 

negative separate center of charge for each molecule. Hydrogen bonding creates the bond 

between the water and clay particle. Hydrogen bonding occurs when the hydrogen atom of the 
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water is attracted to the oxygen atoms on the surface of the clay. The cations in a water molecule 

can contribute to the hydration of clay minerals since the surface of a clay is negatively charged 

(Holtz et al. 2011). The cation in the water molecules are generally more concentrated near the 

surface of the clay crystals. The cations thermally diffuse away from the clay surfaces in order to 

achieve equilibrium on the surface of the clay. However, the diffusion is counterbalanced by the 

electrical attraction the cation has to the negatively charged surface of the clay which creates the 

diffuse double layer (Holtz et al. 2011). 

 

2.4 Soil Suction 

 

2.4.1 Soil Suction Components 

 

As explained above, volume change in expansive soils is primarily caused by a change in 

matric suction. Another type of soil suction includes osmotic suction which is commonly found 

in soils. Osmotic suction is caused by the presence of salts and cations as they dissolve in the 

pore water of the soil. Osmotic suction is fairly constant and is not considered in this 

investigation because the ground and pore water are assumed to be homogenous. In soils with 

very low water contents, osmotic suction can affect the soil and Equation 5 should be used. 

Equation 5 shows the relationship between matric and osmotic suction to create total suction.  

 ‪ ό ό “ Equation 5 

where ‪ = total suction 

ό ό  = matric suction 

“ = osmotic suction 
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2.4.2 Active Zone 

 

As mentioned previously, the water content; therefore, the soil suction, is a primary cause 

of the shrink-swell behavior of expansive unsaturated clays. In the upper few meters of soil, the 

water content fluctuates because of environmental factors. These environmental factors include 

vegetation and trees along with rainfall and temperature changes. The upper few meters of soil 

which experience seasonal suction changes is called the active zone (Nelson and Miller 1992). 

Figure 7 illustrates the active zone for a ground profile. 

 

Figure 7: Water Content Profiles in the Active Zone (Nelson and Miller 1992) 

 

2.5 Shear Strength 

 

2.5.1 Mohr-Coulomb Failure Criterion 

 

For saturated soil, the Mohr-Coulomb failure criterion can be used to calculate the shear 

strength of a given soil specimen using Terzaghiôs effective stress equation shown in Equation 2. 

Equation 6 shows the Mohr-Coulomb failure criterion.  
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 † ὧ „ὸὥὲ• Equation 6 

 

where † = shear strength 

 ὧ= effective cohesive intercept 

„= effective normal stress 

• = effective angle of internal friction 

 

The slope of the failure envelope is the effective angle of internal friction and the y-

intercept is the effective cohesion of the soil. For most non-cemented soils, the effective 

cohesion is zero. Figure 8 shows a general Mohr-Coulomb failure criterion for a saturated soil. 

 

Figure 8: Mohr -Coulomb Failure Criterion for Saturated Soil (Burrage 2016) 

 

2.5.2 Typical and Correlated Values for Soil and Asphalt Concrete 

 

Lambe and Whitman (1969) provide typical values for the drained shear strength of soil 

based on the Atterberg limits using data by Kenney (1959). Figure 9 shows the correlation 
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between sin of the peak friction angle and the plasticity index for normally consolidated soils. As 

the plasticity index increases, the drained shear strength decreases. Table 1 shows the summary 

of friction angle data from Lambe and Whitman (1969) for preliminary design depending on soil 

type. 

 

Figure 9: Relationship between sin fp and plasticity index for normally consolidated soils 

(After Lambe and Whitman 1969, Kenney 1959) 
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Table 1: Summary of Friction Angle Data for Use in Preliminary Design (Lambe and 

Whitman 1969) 

 

 Mitchell and Soga (2005) plotted residual friction angles as a function of effective normal 

stress raised to the minus one third power. This plot is shown in Figure 10 using data from 

Chattopadhyay (1972). In this figure, the residual friction angles are not affected when the 

normal stress is less than roughly 200 kPa. However, at higher stresses, the friction angle is 

independent of the stress and increases with larger stress values. 

 

Figure 10: Residual Friction Angle versus Effective Normal Stress Raised to the Minus One 

Third Power (Data from Chattopadhyay 1972) (Mitchel and Soga 2005) 

 



16 

 

The EPRI Manual uses several methods to estimate the undrained shear strength of a clay 

by correlating the strength to the plasticity index based on vane shear tests. These correlations 

provided in Figure 11 show an approximation of the undrained shear strength. 

 

Figure 11: Undrained Shear Strength Ratio versus Plasticity Index based on Vane Shear 

Tests (Kulhawy and Mayne 1990) 

 

 A case study completed by Pennsylvania State University evaluated triaxial strength tests 

of asphalt concrete mixtures to better understand rut resistance. The Mohr-Coulomb criteria was 

used to determine the cohesion and internal angle of friction for the different types of asphalt 

concrete tested (Christensen et al. 2000). Table 2 shows the values of the cohesion and internal 

angle of friction for the different asphalt concrete mixes.  

Table 2: c- and f- Values from Triaxial Testing on Asphalt Concrete (Christensen et al. 

2000) 

Mixture c (kPa) f (degrees) 

ID2/AC20 664 39.8 

ID3/AC20 685 34.1 

ID2/SB 814 39.3 

ID3/SB 838 36.3 

ID3/AC20/MF+ 665 36.8 

ID3/AC20/MF++ 537 41.8 

NY76 369 41.4 

NY96 480 42.5 

NY109 471 36.7 
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Mixture c (kPa) f (degrees) 

NY126 534 38.1 
 

2.5.3 Effect of Swelling on Clay Strength 

 

 Case studies have proven that when a clay swells, the shear strength is negatively 

affected; therefore, the shear strength is variable depending on the swell potential of the material. 

Sixty triaxial tests were performed on expansive shale which was classified as a fat clay by the 

Unified Soil Classification System (USCS) (Al -Mhaidib and Al -Shamrani 2006). The samples 

consisted of material 100% passing the No. 40 sieve and were remolded to form uniform 

remolded specimens at a predetermined water content (Al -Mhaidib and Al -Shamrani, 2006). The 

specimens were consolidated for approximately 24 hours under an isotropic confining pressure. 

After 24 hours had passed, water was introduced to the specimen and allowed to swell. The 

specimens could swell to 0%, 25%, 50%, 75%, and 100% of the ultimate vertical swell. When 

the predetermined percent swell value was achieved, the specimen was sheared to calculate the 

shear strength of the soil. The results were calculated in terms of the shear ratio which is the 

ratio of the shear strength of the swelled specimen and the non-swelled specimen (Al -Mhaidib 

and Al -Shamrani 2006), as shown in Equation 7. 

 

 
ὛὬὩὥὶ ὙὥὸὭέ 

ὛὬὩὥὶ ὛὸὶὩὲὫὸὬ έὪ ίύὩὰὰὩὨ ίὴὩὧὭάὩὲ

ὛὬὩὥὶ ὛὸὶὩὲὫὸὬ έὪ ὲέὲίύὩὰὰὩὨ ίὴὩὧὭάὩὲ
 

Equation 7 

 

Table 3 expresses the shear ratio values calculated for each of the swelled triaxial tests 

completed. The data agrees with the conclusion that the swelling of expansive clays has a large 

negative impact on the shear strength of the soil. Much of the shear strength was not present 
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when the specimen could swell to the ultimate vertical swell value. As shown in Table 3, as the 

percentage in vertical swell increased for each specimen, the shear ratio rapidly decreased. As 

the shear ratio approaches zero, the strength of the swelled specimen is also approaching zero as 

the strength of the non-swelled specimen remains constant for each specimen. 

Table 3: Calculated Values for Shear Ratio for all Tested Specimens (Al -Mhaidib and Al -

Shamrani 2006) 

    % Vertical Swell Before Shearing 

Initial Water Content (%) Confining Pressure (kPa) 25 50 75 100 

14 

25 0.32 0.09 0.07 0.04 

50 0.33 0.17 0.09 0.06 

100 0.35 0.20 0.15 0.08 

150 0.37 0.20 0.15 0.07 

Average 0.34 0.17 0.12 0.05 

18 

25 0.26 0.11 0.08 0.05 

50 0.26 0.16 0.11 0.08 

100 0.28 0.20 0.17 0.10 

150 0.33 0.22 0.18 0.11 

Average 0.28 0.17 0.14 0.09 

22 

25 0.36 0.27 0.18 0.11 

50 0.37 0.3 0.22 0.14 

100 0.39 0.32 0.27 0.20 

150 0.44 0.35 0.30 0.22 

Average 0.39 0.31 0.24 0.17 

Average 0.34 0.22 0.16 0.11 

 

2.6 Torsional Ring Shear Device 

 

The torsional ring shear device tests specimens under drained conditions to determine the 

residual shear strength of cohesive soils. The remolded specimen is consolidated and sheared at a 

predetermined water content. Generally, three phases of testing are conducted with three 

different normal stress levels. 
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2.6.1 Bromhead Ring Shear Test Procedure  

 

In a paper by Stark and Vettel (1992), four different test procedures were applied to soil 

specimens in a Bromhead Ring Shear Device (Bromhead 1979) to illustrate the effect the 

procedure has on the measured shear strength. The specimen is confined radially; therefore, wall 

friction is introduced to the inner and outer circumferences of the specimen from the top porous 

stone. The main concern for measuring the residual strength is the magnitude of wall friction that 

is developed. The further the top porous stone settles into the specimen, the more wall friction; 

therefore, a higher residual strength will be measured. Currently, there are four test procedures 

used to measure the drained residual strength including single stage, preshearing, multistage, and 

the ñflushò procedure (Stark and Vettel 1992). 

The single stage test procedure includes loading the remolded specimen to the desired 

normal stress and then shearing the specimen. The preshearing procedure includes preshearing 

the specimen prior to shearing at a rapid displacement rate of approximately 25 degrees per 

minute. The rapid displacement rate generally allows the specimen to rotate up to five 

revolutions. The multistage procedure reduces test duration by allowing all stages of testing to be 

performed on one specimen. The ñflushò procedure ensures the top porous stone remains near or 

flush with the surface of the specimen container. Only one test is performed for each specimen 

(Stark and Vettel 1992). 

Ring shear tests were performed on remolded Pierre shale material classified as a clay of 

high plasticity according to USCS. Each testing procedure was tested to determine the residual 

shear strength. Figure 12 shows the effects of the testing procedure on measured residual 

strength of the material. 
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Figure 12: Effect of Test Procedure on Measured Residual Strength of Pierre Shale (Stark 

and Vettel 1992) 

 

 Based on the results of the study shown in Figure 12, the flush procedure resulted in the 

lowest residual strength since the wall friction was minimized. A sensitivity study was completed 

to determine how much settlement the top porous stone could move before the wall friction 

started effecting the residual strength. It was determined the specimen could endure a total 

settlement of 0.75 mm or 15% of the initial height during consolidation and shearing and still 

produce reasonable strength values. If the top porous stone settles more than 0.75 mm or 15% of 

the initial height, the addition of soil and reconsolidation of the specimen is required (Stark and 

Vettel 1992). Therefore, the recommended test procedure used in this investigation is the ñflushò 

procedure. 

 

2.6.2 Porous Stones 

 

The specimen setup for a ring shear test includes two porous stones with the soil 

specimen in between the porous stones confined by the specimen container. The specimen and 

porous stone interface is important as the porous stone should not slide across the surface of the 

soil. A discussion by Stark (2016) criticizes research work from other researchers using the ring 

shear device specifically referencing the porous stones. Stark criticizes the work by (Castellanos 
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et al. 2016) where their paper claims the torsional ring shear device ñresults in very conservative 

fully softened shear strength envelopes.ò It has been determined that the conservative strength 

values are a result of the upper porous stone sliding over the soil and/or the sliding between the 

upper and lower porous stones (Stark 2016). Figure 13 shows a typical photograph of the ring 

shear specimen and container after testing according to Castellanos (2014). 

 

Figure 13: Photographs of Ring Shear Specimen (a) After Shearing (b) Close-up of Top 

Porous Stone After Shearing Showing the Smooth and Large Flat Areas (Castellanos 2014) 

 

Figure 13a shows the sliding effect of the top porous stone on the specimen. Figure 13b 

shows the insufficient serration pattern on the porous stone to create an interlocking between the 

soil and the upper porous stone. A better serration pattern is needed to create a shear surface 

within the soil instead of at the upper porous stone and soil interface (Stark 2016).  

A serration pattern was developed at the University of Illinois at Urbana-Champaign 

(UIUC) to increase the interlocking between the porous stone and the specimen. The new design 

results in only approximately 25% of the soil being in contact with the tips of the porous stone. 

Figure 14 shows the serration pattern developed at UIUC and the serration pattern used in this 

research. 
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Figure 14: Serration Pattern (a) developed at UIUC (b) Photograph of Serrated Porous 

Stone (Stark 2016) 

 

2.6.3 Case History 

 

 Stark and Eid (1992) conducted a field case history to investigate the effect of the test 

specimen and testing apparatus on the measured residual strength of the soil. A location in 

southern California was selected because there had been three previous landslides at the site prior 

to the slide that was investigated. The specimens were remolded and placed in the ring shear 

apparatus where the specimen was consolidated for one or two days and sheared for four days at 

a displacement rate of 0.018 mm/minute. A reverse direct shear test was also performed on 

samples from the same site. The shear box was reversed manually at the end of each horizontal 

travel of 0.5 centimeters. Two different types of specimens were used for the direct shear test 

which include remolded and precut, remolded specimens. The remolded specimens were 

consolidated to a desired normal stress and then sheared using a displacement rate of 0.0034 

mm/minute. The consolidation test required two to six days of testing while the direct shear test 

ran for 15 to 17 days in order to obtain a residual strength for the remolded specimens (Stark and 
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Eid 1992). The precut, remolded specimens were consolidated and then sheared at a 

displacement rate of 0.0034 mm/minute also. A precut specimen was prepared by following a 

special procedure developed by Mesri and Cepeda-Diaz (1986). Each half of the shear box was 

filled with material and then consolidated separately. After the material was consolidated, the 

material is precut using a razor blade in order to obtain a smooth and polished surface. The two 

precut specimens are then attached together and consolidated again before shearing. These 

shearing tests ran for approximately 10 to 11 days to acquire a residual strength. Figure 15 shows 

the results from the ring shear and direct shear tests. 

 

Figure 15: Drained Residual Failure Envelopes for Case History (Stark and Eid 1992) 

 

 The remolded specimens in the direct shear test resulted in a failure envelope much 

higher than the other tests. Since the duration of the direct shear tests are longer than the duration 

of a ring shear test, this direct shear method should not be used to measure the residual strength 

of the soil in order to save time if a ring shear apparatus is available (Stark and Eid 1992). The 

precut, remolded specimens used in the direct shear testing generally had good agreement with 

the ring shear testing. However, the ring shear apparatus better illustrates the slow decrease in 

strength after the peak strength is obtained as shown in Figure 16 (Stark and Eid 1992). 
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Figure 16: Shear Stress versus Horizontal Displacement Curves for Ring Shear and Direct 

Shear Tests (Stark and Eid 1992) 

 

 Based on this case history, Stark and Eid (1992) recommend using a torsional ring shear 

apparatus and remolded specimens to determine the residual strength of soil specimens. The 

precut, remolded direct shear tests did show good agreement with the ring shear tests, but in an 

interest of time, the ring shear test can be performed in 4 to 6 days; whereas, the direct shear tests 

on a precut, remolded specimen takes approximately 18 to 20 days (Stark and Eid 1992). 

2.7 Slope Stability 

 

 Slope stability is an important issue when embankments are built over soft soils such as 

expansive clays. Adequate design is needed to prevent slope failures and stabilize the 

embankment. Figure 17 shows the different types of embankment slope failures AL-5 could 

possibly experience.  
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Figure 17: Embankment Failures: (a) Infinite slope failure in embankment fill, (b) Circular 

arc failure in embankment fill and foundation soil, (c) Sliding block failure in embankment 

fill and foundation soil (FHWA 2001a) 

 

 There are multiple slope stability analysis methods available to determine the factor of 

safety of an embankment or slope. Embankment and slope failures located over soft soils 

generally show signs that the embankment has sunk down into the soft soil. As the embankment 

sinks, the adjacent ground at the toe of the embankment or slope heaves up causing the failure 

surface to follow a circular arc. Figure 18 shows a typical circular arc failure.  
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Figure 18: Typical Circular Arc Failure (FHWA 2001a) 

 

At failure, there are driving and resisting forces occurring. The driving force includes the 

weight of the embankment and the resisting force includes the total shear strength acting along 

the failure arc as shown in Figure 18. The factor of safety of the embankment can be computed 

by dividing the sum of the resisting movements by the sum of the driving movements. Failure 

will occur when the factor of safety is less than 1 or when the driving forces are greater than the 

resisting forces (FHWA 2001a). 

A common analysis method for determining the factor of safety of an embankment or slope 

is the Ordinary Method of Slices (Fellenius 1927). This method allows there to be some 

variability in the soil properties. For this method, the failure mass is divided into series of 

vertical slices which intersects a circular failure surface. Each slice contains one type of soil and 

the bottom of the slice will be a straight line. Figure 19 shows an example of the geometry of the 

ordinary method of slices. A free body diagram of one slice with different water conditions can 

be seen in Figure 20. 
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Figure 19: Geometry of Ordinary Method of Slices 

 

 

Figure 20: Free Body Diagram for a Slice 

 

The factor of safety can be determined using Equation 8. However, there are too many 

unknowns in the free body diagram of the slice to solve for the factor of safety. Some 

assumptions must be made in order to compute the factor of safety. Fellinius (1927) assumed the 

side shear and normal forces were equal and opposite; therefore, the forces cancel each other out. 

This simplifies the equations for the factor of safety. Figure 21 shows an example of a slope 
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embankment with the forces labeled. The resisting moment can be calculated by Equation 9. The 

driving moment can be determined from Equation 10. 

 
ὊὛ  

ὙὩίὭίὸὭὲὫ ὓέάὩὲὸ

ὈὶὭὺὭὲὫ ὓέάὩὲὸ
 

Equation 8 

 

 

Figure 21: Ordinary Method of Slices Example 

 

 ὓ Ὑ ὧЎὒ Ὑ ὡÃÏÓὥ όЎὒ ÔÁÎ• Equation 9 

 

Where ὓ  = Resisting Moment 

 R = Radius of failure arc 

 ὧ = Soil cohesion 

 Ўὒ  ЎὼÓÅÃὥ 

 ὡ  = Weight of slice 

 ὥ = Inclination of slice failure plane 

 ό = Water pressure force of slice 



29 

 

 • = Angle of internal friction for soil 

 

 ὓ Ὑ ὡÓÉÎὥ 
Equation 10 

 

where  ὓ  = Driving Moment 

As previously stated, the Ordinary Method of Slices ignores the shear and normal forces 

on each slice; therefore, it is a conservative method for analyzing slope stability. Bishopôs 

Method (Bishop 1955) is common method used to determine the factor of safety and is less 

conservative than the Ordinary Method of Slices. Bishopôs Method does include the normal 

forces on each slice but ignores the shear force on each slice. Figure 22 shows the free body 

diagram of a slice using Bishopôs Method. This method will change how the resisting moment is 

calculated. The equations for the resisting moment and the normal force on the slice is shown in 

Equation 11 and Equation 12. As shown in the following equation, Bishopôs Method is an 

iterative process. A factor of safety must be assumed to start the calculations. Since Bishopôs 

Method is a commonly used method, Bishopôs Method will be used in a slope stability software, 

SLIDE, to determine the factors of safety for AL-5 at the end of construction, peak strength, and 

residual strength. 
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Figure 22: Free Body Diagram of Slice using Bishopôs Method 

 

 ὓ Ὑ ὧЎὼÓÅÃὥ Ὑ ὔÔÁÎ• Equation 11 

 

 

ὔ
ὡ όЎὼ

ὧЎὼÔÁÎὥ
ὊὛ

ÃÏÓὥ
ÔÁÎ•ÓÉÎὥ
ὊὛ

 

Equation 12 

where Ni = Normal force on each slice 

 

The critical slip surface of a slope will result in a minimum factor of safety. To find the 

most critical slip surface, multiple circular failure surfaces must be evaluated using different 

center points or circles with a variety of radii values. A contour map is developed showing the 

factor of safety for each failure slip surface. An example of the process of determining the 

critical slip surface is shown in Figure 23. 
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Figure 23: Determining Critical Slip Surface of an Embankment (McCarthy 2007) 
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CHAPTER 3: PROJECT OVERVIEW  

 

3.1 Site Description 

 

The research site for this study is located west of Selma, AL in Perry County. The four-

mile section of Alabama Highway 5 is located between mile marker 50.85 to mile marker 54.85. 

This section of roadway is generally flat with the surrounding land being both wooded and 

farming land. The site is divided into eight half-mile sections as shown in Figure 24 and Table 4. 

Table 4: Test Sections 

Test Section Remediation Technique Milepost 

1 Control (CO) 

Sand Blanket (SB) 

Control (CO) 

50.85 ï 50.95 

50.95 ï 51.25 

51.25 ï 51.35 

2 Vertical Moisture Barriers (VB) 51.35 ï 51.85 

3 Lime Columns (LC) 51.85 ï 52.35 

4 6ô Paved Shoulders (PS) 52.35 ï 52.85 

5 Edge Drains (ED) 52.85 ï 53.35 

6 Control (CO) 53.35 ï 53.85 

7 Deep Mixing ï Canceled 53.85 ï 54.35 

8 Control (CO) 54.35 ï 54.85 
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Figure 24: Layout of Research Site (Google Earth) 

 

The original plans for the research site included a different remediation technique for 

each half mile section of roadway. However, after the initial site exploration was complete, it 

was noted that the clay layer in Test Section 8 was much thinner than other Test Sections. 

Therefore, no remediation was implemented in Test Section 8 and it was used as an additional 

control section. Test Section 7 was canceled due to the complexity of construction and therefore 

became another control section for the project. Due to more construction constraints and traffic 

control requirements, the sand blanket was only constructed in the center of the half mile long 
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