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Abstract 
 

 

 Renewable energy sources, such as solar energy or geothermal energy, are promising to 

complement or even substitute unsustainable fossil fuel energy sources in direct thermal energy 

utilization. The requirement of a reliable and stable supply from renewable energy mandates highly 

effective energy storage systems that are capable to absorb and release a large amount of heat over 

a short period of time. This leads to the exploits of various phase change materials (PCM) with 

complex structures and/or compositions for their potential applications in thermal energy storage. 

Thermal transport properties of PCM are essential to the effectiveness of the thermal energy 

storage systems. Despite recent progresses in thermal conductivity measurements and atomistic 

level numerical simulation techniques, heat transfer mechanisms in nano-structured organic PCM 

and bulk crystalline PCM near melting temperatures are known only at a qualitative level. In both 

cases, Hook’s Law-like harmonic interatomic forces is no longer an accurate approximation to 

describe the atomistic dynamics that governs the heat transfer processes in these materials. 

Therefore, anharmonic effects that include the contributions of higher-order potential terms were 

considered. Further improvement of the effectiveness of complex PCM needs a more quantitative 

understanding of the fundamental mechanisms associated with thermal transport of these 

intrinsically anharmonic materials.  

We first performed a set of systematic molecular dynamics (MD) simulations of the 

structures and bulk thermal conductivity of mixtures of long-chain n-alkane molecules. We 
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identified how the orientation factor of the n-alkane mixtures is affected by the surface during the 

crystallization process, where the surface can be artificially adjusted to be attractive or repulsive 

to n-alkane molecules. We further demonstrated that the thermal conductivity of the mixtures 

correlate strongly with the orientation of n-alkane chains in the solid-state phase, yet it is 

insensitive to the number ratio of the mixture.  

Next, we focus on elucidating the microscopic mechanism of heat transfer across the van der 

Waals (vdW) force bonded molecular interfaces. To simplify our study, we constructed ideal 

crystal models of n-eicosane, where all molecules are perfectly aligned in the same direction. 

Knowledge of the interfacial thermal transport in such idealized n-alkane crystals is important to 

understanding the upper limits of overall thermal conductivity in such nano-structured molecular 

crystals. It is important to note that the thermal interfacial conductance (TIC) of these perfectly-

aligned n-alkanes crystals cannot be predicted by conventional interfacial heat transfer models 

such as the acoustic mismatch model (AMM) and the diffusive mismatch model (DMM), because 

both atomic structures and their vibrational dynamics are essentially identical at both sides of the 

interface when averaged over a long period of time. By analyzing the MD-simulated atomistic 

dynamics at the single atomic/molecular level, we unveiled a thermal coupling-decoupling 

mechanism that emerges from stochastic dynamics of atoms. Two parameters, the duration and 

strength of the thermal coupling, are identified to quantify the TIC from the single atomic level. 

This coupling-decoupling mechanism explains the temperature-inverse-TIC in n-alkanes and 

provides new insights into heat transfer across a broad range of flexible interfaces that consist of 

nano-meter long molecules and weak interfacial forces, such as interfacial self-assembled 

monolayers or paraffins or lipid types of soft materials. 
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Finally, we expanded our study to develop new transport theories and simulation methods 

that are applicable for a wide range of solids at the temperature conditions near the solid-to-liquid 

phase transition, i.e. melting. This study is in part motivated by our findings of the drastic effects 

of increasing anharmonic interfacial forces on heat transfer properties in n-alkanes near their 

melting temperatures. The failure of harmonic or quasi-harmonic approximations near melting 

temperatures is unavoidable in all types of PCM, including both soft molecular materials for near 

human-body temperature applications and the hard oxides adopted in the high-temperature 

applications. The widely-adopted phonon gas (PG) model, which requires anharmonic effects are 

perturbatively small, likely breaks down at such high temperatures. As the first step to develop a 

unified theoretical model for heat transfer within very anharmonic solids, either strongly-bonded 

bulk crystals or weakly-bonded molecular nano-materials, we proposed a Fokker-Planck equation 

(FPE) theory to describe stochastic fluctuations and relaxation processes of lattice vibration for a 

wide range of conditions, including those beyond the PG limit. Using the time-dependent, multiple 

state-variable probability function of a vibration FPE, we first derive time-correlation functions of 

lattice heat currents in terms of correlation functions among multiple vibrational modes, and 

subsequently predict the lattice thermal conductivity based on the Green-Kubo formalism. When 

the quasi-particle kinetic transport theories are valid, this vibration FPE not only predicts a lattice 

thermal conductivity that is identical to the one predicted by the phonon Boltzmann transport 

equation, but also provides additional microscopic details on the multiple-mode correlation 

functions. More importantly, when the kinetic theories become insufficient due to the break-down 

of the PG approximation, this FPE theory remains valid to study the correlation functions among 

vibrational modes in highly anharmonic lattices with significant mode-mode interactions and/or in 
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disordered lattices with strongly-localized modes. We also discussed the possible MD simulation 

algorithms that can extract the parameters of vibrational FPE for very anharmonic solids.   
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Chapter 1 Introduction 

1.1 Background 

Fossil fuels and electricity, which are conventional high-exergy sources of energy, will 

continue to provide the largest share of heating and cooling energy for human activities in the 

foreseeable future. At the same time, economically and environmentally sustainable renewable 

energy sources become increasingly vital to meet the ever-increasing world-wide energy demands 

as economy grows and quality of human lives improve. Direct heating technologies that utilize 

low-exergy renewable energy sources, for example, simple solar thermal collection systems, are 

especially promising for applications within the low-to-medium temperature range of 0-260 °C 

[1], i.e. the temperature range that is closely relevant to a majority of human activities, because 

they not only reduce the fossil fuels consumption but also lead to an optimization of the energy 

end-use efficiency (Figure 1-1).  

1.2 Thermal Energy Storage Through Phase Transition 

 Unfortunately, the temporal and spatial disparity between energy supply and energy 

demand imposes a fundamental challenge for any operationally stable and economically 

competitive utilization of renewable energies. In effect, storage of different forms of energy 

remains as the greatest obstacle to further utilization of renewable energy. In particular, thermal 

energy storage (TES) systems, which can effectively store and release heat, have become an 

indispensable component of any dispatchable renewable energy technology [2]. Most promising 

TES systems nowadays use the so-called phase change materials (PCM), which undergo solid to 

liquid transitions at their melting temperatures and absorb/release large amounts of latent heat with 
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only small volume change. This type of TES systems is often referred as latent heat TES (LHTES) 

systems. A class of organic PCM, e.g. alkanes or sugar alcohols, have been extensively studied as 

promising candidates for low-to-medium temperature LHTES systems. Previous studies have 

shown that a wide range of options of melting temperatures within this temperature range can be 

engineered using this class of organic PCM. As compared to low-melting metals and molten salts, 

these hydrocarbon-based PCM have higher energy storage density, negligible phase separation or 

super-cooling during phase transition, low toxicity and non-corrosiveness to metals.  

1.3 Improvement of Thermal Conductivity of PCM 

Further optimization of the properties of these organic PCM for thermal energy storage 

applications requires more detailed and quantitative understanding of microscopic heat transfer 

mechanisms inside these complex materials systems that consist of high density of internal 

interfaces that are only bonded with the relatively weak van der Walls (vdW) forces or hydrogen-

bond forces. For example, the inherently low thermal conductivity of organic PCM sets a 

constraint on thermal efficiency of LHTES system by limiting heat exchange between the PCM 

and heat transfer medium. The values of thermal conductivity and the prices of some typical 

engineering materials are presented in Figure 1-2. One technical solution to increase thermal 

conductivity is to design a LHTES system combined with highly thermally conductive structures, 

such as metal/carbon-based fins or forms, which essentially increases the contact area between the 

PCM and heat transfer medium with an inevitable increase in cost and mass of the LHTES system 

[4]. To enhance the flexibility of LHTES design, researchers have searched for other solutions. 

Nano-scale structures with high thermal conductivity are proposed to be used as fillers into PCM 

to synthesis nano-enhanced PCM [5]. These PCM filled with nano-composite can accelerate the 

charging/melting and discharging/solidification processes of LHTES system, resulting in an 
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enhancement of their thermal performance. One key obstacle to effectively engineer thermal 

transport properties in organic nano-composite PCM is the underlying filler-to-host interfacial heat 

transfer mechanisms that remain unclear at the molecular level.  

1.4 Thermal Transport at the Atomic scale 

Using molecular dynamics (MD) simulations, microscopic heat transfer mechanisms 

covering the macroscopic scale thermal transport properties can be assessed and explained by the 

collective behaviors of atoms. Considering n-alkane molecules, there exists a huge discrepancy 

between the inter-molecular and intra-molecular interactions, resulting in an obvious difference on 

the thermal transport rate within and among molecules. For a certain number of n-alkanes with 

linear chain structures, heat transfer within their molecules are nearly ballistic since the mean free 

path of the phonon is longer than the length of the molecular chains. The orientation of the 

molecules is a crucial parameter for their effective bulk thermal conductivities at the micro-scale 

level. 

Meanwhile, addition of nanostructures can serve as a template for those molecules to align 

in a more orderly way, which essentially provides more thermal transport tunnels and higher 

thermal conductivity. In addition, the molecular interfaces between two nano-meter long n-alkane 

molecular blocks with weak van der Waals interfacial bonding have relatively low thermal 

interfacial conductance (TIC). Unfortunately, the limited length of those long-chain n-alkanes, e.g. 

eicosane (C20H42) with a length of ~2 nm, inevitably introduces a large number of molecular 

interfaces to dominate thermal transport even though a microscopic molecular system is 

constructed from only thousands of molecules. However, the conventional acoustic mismatch 

(AMM) model or the diffusive mismatch model (DMM) [6] are clearly insufficient to predict TIC 

of this type of flexible interfaces because the dynamically-averaged atomic configurations on both 
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sides of such an interface are essentially identical, i.e. no atomistic mismatch exists. An improved 

atomistic-scale understanding of the interfacial heat transfer mechanisms is needed for 

development of next-generation of advanced materials with improved TIC. 

Our simulation studies of temperature-dependent interfacial thermal conductance of 

organic PCM clearly unveil the drastic effects of increasing the anharmonic chemical bonding on 

heat transfer properties around solids’ melting temperatures. Although such drastic increase of 

anharmonicity is expected in all PCM when they go through the solid-to-liquid structural 

transitions, there are lack of quantitative transport theories to quantify the effects on the thermal 

conductivity of highly anharmonic solids. Even for conventional crystals, our understanding of 

temperature-dependence of the thermal conductivity is largely based on the so-called phonon gas 

approximation (PGA) [7][8], which describes the thermal excitation and relaxation processes 

within a vibrating lattice in term of weakling interacting quasi-particles phonons and assumes the 

single-particle Bose-Einstein statistics for phonon number distributions at thermal equilibrium. 

When the PGA is valid, the phonon Boltzmann transport equation (phBTE) [9][10] is the default 

choice of transport theory for the thermal conductivity calculation from first principles. Other 

important assumptions adopted by the phBTE are: (1) the lifetime of every phonon is finite because 

of the scatterings by lattice anharmonicity, lattice defects/disorder, or other particles, and (2) each 

quasi-particle phonon travels at its group velocity. Multiple implementations of the phonon BTE 

methods have been reported in recent years, and the calculated results adopting various theoretical 

and numerical approximations have been systematically bench-marked among themselves and 

compared with available experimental data. The overall good agreement between the first-

principles computational results and available experimental data for a large number of crystals at 
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moderate temperatures establishes the phBTE as a practical and robust computational tool to 

design advanced technology materials with optimized thermal transport properties. 

However, concerns have been raised about the validity of the phonon BTE beyond the PGA 

limit, where interactions among the vibrational modes are significant and the weakly interacting 

quasi-particle approximation becomes insufficient. In addition, the group-velocity approximation 

limits the application of phBTE to study solids with strong structural disorder since the group 

velocity cannot be defined unambiguously without translational periodicity. The lack of a 

quantitative theory for lattice thermal conductivity beyond the PGA limit motivates us to develop 

a unified theoretical model for heat transfer within highly anharmonic solids, either strongly-

bonded bulk crystals or weakly-bonded molecular nano-materials. This study is of the broad 

interest to understand thermal transport properties of PCM, especially at the temperature ranges 

near the melting temperatures. 

1.5 Structure of the Dissertation 

Chapter 2 contains the literature reviews of the work on molecular structure of long-chain 

n-alkanes during crystallization/melting process in MD simulations, the thermal transport of long-

chain polymers by utilizing MD methods, and the predictions of the lattice thermal conductivity 

of crystalline solid based on first principle calculations.   

In Chapter 3, the theoretical methodologies utilized in this thesis are explained. MD 

simulation is described at first. The evaluation of thermal conductivity based on the non-

equilibrium MD approach is explained. Then, the calculation of lattice thermal conductivity in 

crystalline solid based on phBTE is presented.  



 6 

In Chapter 4, the effect of the orientation of the mixtures of n-alkanes molecules on the 

thermal conductivity of the n-alkane mixtures is illustrated by utilizing MD simulations. In 

addition, the contribution from the number ratio of the mixture is also discussed.  

In Chapter 5, a thermal coupling and decoupling mechanism of the interfacial thermal 

conductance of long-chain molecules in MD simulations is presented. Two thermal coupling 

parameters are evaluated quantitively for a wide temperature range.  

In Chapter 6, a Fokker-Planck equation (FPE) theory is presented to describe stochastic 

fluctuation and relaxation processes of lattice vibration over a wide range of conditions, including 

those beyond the PGA limit. By comparing the results of our vibration FPE and those of the phBTE, 

a quantitative criterion to delineate the break-down condition of the PGA at high temperatures is 

proposed. We further discuss the possible MD algorithms to extract the drift and diffusion 

parameters for vibrational normal modes at very high temperatures.      

Finally, the conclusions of the dissertation and the future research directions are presented 

in Chapter 7. 
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Figure 1-1 Thermal energy usage versus temperature distribution from 0 to 260 °C with Electrical System 

Energy Losses in the United State. The end-uses with the largest contribution are annotated. The total 

thermal energy demand from 0 to 260 °C in 2008 was 33.5 EJ (31.7 quads). [1] 
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Figure 1-2 Thermal conductivity vs. price for engineering materials. The colored areas indicate the family 

envelopes. The grey line is the approximate Pareto frontier which presents the optimal allocation of price 

on thermal conductivity. [3] 
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Chapter 2 Literature Survey 

In this chapter, a comprehensive literature survey on thermal transport of nano-structured 

polymeric solids and bulk crystals is presented. The review contains three parts: the first part 

discusses the molecular structure of n-alkanes during melting and crystallization in MD 

simulations; the second part focuses on the calculations of thermal transport of long-chain 

polymers by MD simulations. In the third part, a series of theoretical work on first-principles 

calculations of lattice thermal conductivity of crystalline solids are summarized. The strengths and 

limitations of the computational methods adopted in these studies are discussed.  

2.1 Molecular Structures 

In this section, a review of MD simulations to reveal the crystallization and melting of n-

alkanes are presented. The effect of the chain-length, crystallization temperature and surface 

potential on the dynamic characteristics and quantitative nucleation rate of n-alkane molecules are 

elucidated by MD simulations. For shorter chain n-alkanes, the strength of the surface potential is 

highly crucial to the orientation of the molecules in the crystal, adjusting the orientation of the 

lamella structure to be parallel or perpendicular to the surface. In addition, the orientation of the 

molecules is highly related to its microscopic thermal transport, which will be discussed in Chapter 

4. 

Straight-chain n-alkanes CnH2n+2 (henceforth denoted as Cn), as the main byproducts of 

petroleum processing, are promising candidates for thermal energy storage applications for the 

low-temperature range. In addition, these n-alkanes with heavy molecular weight crystallizing at 

low temperatures are the primary components forming the wax deposits, which involves nucleation 

of liquid molecules and thermal transport through the thin wax deposits layer[11][12]. 

Crystallization of n-alkanes has been widely investigated by experimental methods, identifying 
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the respective phases and transition temperatures[13]. During the crystallization processes, the 

rotator phases of n-alkanes are observed in-between the liquid and the crystalline solid phase, 

presenting noticeable variation of properties dependent on the n-alkanes’ molecular length and the 

even-odd effect[13][14]. Deeper understandings of crystallization of n-alkanes have been explored 

at the nanoscale by performing molecular dynamics (MD) simulations with various empirical and 

semi-empirical potentials.  

Shimizu and Yamamoto [15] carried out MD simulation on the melting and crystallization 

in the thin film of n-alkanes (C10H22) with the simple bead-spring model. As the surface molecules 

were perpendicular to the surface, it provided a stable surface to initiate the melting from the 

interior molecules. During crystallization processes, a layer-by-layer growth of stacked lamellae 

with a hexagonal structure can be reproduced by slow cooling due to the nucleation sites from the 

surface monolayers. The surface state of the thin film strongly affected the melting and 

crystallization processes of n-alkanes. 

Waheed et al. [15] performed nonequilibrium MD simulations to obtain the crystal growth 

rate for n-alkanes with a united-atom model. In the presence of a surface potential, the crystal of 

n-eicosane in a hexagonal phase grew on the surface potential from an amorphous phase as the 

temperature decreases from 400 K to 285 K. In addition, simulations in isothermal crystallization 

were performed for the temperature range from 225 K to 300 K. The growth rate of crystallization 

cannot be calculated above 295 K due to the formation and re-melting of molecules in the 

simulation. When the temperature dropped below 240 K, the simulations took too long to obtain a 

growth rate owing to the super low mobility of molecules. 

Yamamoto et al. [16] investigated the crystallization in short n-alkanes (C11H24) by MD 

simulations with a united atom model. An artificial ultrathin film was designed in the simulation 
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to serve as the substrate for molecular crystallization. Through adjusting the interaction force 

between substrate and molecules, the crystallization of short n-alkanes can present two different 

patterns: perpendicular and parallel growth. A strong attraction from the substrate led to a parallel 

lamella and a weak attraction substrate prefers the perpendicular lamellae that have a higher 

melting point than the bulk.  

Wentzel and Milner [18] executed an all atom simulation of pure of C23H48 and mixture of 

C21H44 C23H48 to characterize their disorder in n-alkane rotator phases. Three potentials (OPLS-

AA, Borodin and Smith, FW) were tested in the simulation and only the FW potential could 

provide a reasonable result agreeing with experimental observations of all the rotator phases. A 

spurious monoclinic crystal phase was found to be stably existing in a narrow temperature range 

between orthorhombic crystal and RI phases for all potentials, even though it was not observed 

from experiments, which might be a result of tiny energy difference between the orthorhombic and 

monoclinic crystals. In simulation with periodic boundary condition, pure C23 had difficulty in 

nucleating a region of amorphous melt in a relatively small initially-ordered system, resulting in a 

persistence in solid state at temperatures 15 K above the melting point. An extended temperature 

range of 35 K for stable rotator phases was observed in the 50 – 50 mixture of C21 and C23 alkanes, 

which was about two times that of the temperature range of pure C23. The extended temperature 

range for stable rotator phases is a result of the breakdown of interlayer interaction that lead to the 

crystal ordering in pure alkanes, which provides more experimental and numerical flexibility to 

the studies on the properties of the RI and RII phases. 

Anwar et al. [19] identified the microscopic mechanisms of homogeneous crystal 

nucleation and growth by conducting MD simulation of the crystallization of C20. As nucleation 

initiated, the molecular chain started aligning and then straighten with an increase in the local 
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density, leading to formation of an ordered structure. Other independent chains then tried to join 

to the existing crystallin cluster with one end and then slid to attaching the crystallized chains. 

Yi and Rutledge [20] studied homogeneous nucleation of the crystal phase in n-octane 

(C8H18) melts by MD simulation with a united atom model. Reasonable agreement of the structure 

of crystal phase and the melting temperature of C8 was achieved between the MD simulations and 

experimental results. In addition, a cylindrical nucleus model based on the classical nucleation 

theory was proposed to provide a description of the dependence of free energy on the nucleus size. 

At 170 K and 180 K, the free energy of formation reached their maximum value when the numbers 

of molecules were around 18 – 25. However, the critical nucleus was observed at 190 K due to the 

limitation of the size of the simulated system. In addition, as the temperature increased, the 

interfacial free energy of the side surface kept relatively stable, while the interfacial free energy of 

the end surface had significant drop from 5.4 mJ/m2 to about 3 mJ/m2.  

Yi and Rutledge [21] simulated the homogeneous nucleation of n-eicosane (C20H42) crystal 

from supercooled melt by MD with a united atom model. The melt C20 molecules were quenched 

from 400 K to 250 K for nucleation. After 40 nanoseconds, the crystal started stably to grow and 

the size of largest nucleus grew over 200 numbers to be serve as the object for rest of the system 

crystallization. There existed a relative flatness of the top the free energy barrier below 200 nuclei, 

which led to either the re-melt or the formation of a stable crystal phase. 

Luo et al. [22] performed MD simulation on the study of the crystallization behavior of 

pure n-alkanes and their binary and polydisperse mixtures. The response of the molecules with 

different chain-lengths to the equilibrium temperature led to the phenomena of segregation of 

molecules. Shorter chain n-alkanes have higher mobility in comparison to the longer ones at the 

same temperature, which leads to a strong molecular length-dependent segregation in the binary 
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mixtures of n-alkanes (C10  C20 and C10  C30). Smaller difference of the chain length of molecules 

in a polydisperse mixture exhibits a weaker segregation than the binary case.  

Yamamoto [23] studied the crystallization of multicomponent system of n-alkanes, binary 

mixtures of C10 – C20, a tertiary mixture of C10 – C14 – C20, and a quaternary mixture of C10 – C14 

– C20 – C25, by MD simulations. Due to existence of segregation among multicomponent system 

of n-alkanes, molecular domain structure with same chain-length were formed and the domain 

structures with closer chain-lengths were located closer while the distinct chain-length were well-

separated. This phenomenon is achieved by the self-diffusion of short chains which first escaped 

from a lamella then reattached to the neighbor lamella. In addition, the existence of the surface 

potential drives the long-chain molecules in the multicomponent mixture of n-alkanes forming a 

lamellar structure and leads to a rapid crystallization process. 

In this section, a review of MD simulations to reveal the crystallization and melting of n-

alkanes was presented. The effect of the chain-length, crystallization temperature and surface 

potential on the dynamic characteristics and quantitative nucleation rate of n-alkane molecules are 

elucidated by MD simulations. For shorter chain n-alkanes, the strength of the surface potential is 

highly crucial to the orientation of the molecules in the crystal, adjusting the orientation of the 

lamella structure to be parallel or perpendicular to the surface. In addition, the orientation of the 

molecules is highly related to its microscopic thermal transport, which will be discussed in Chapter 

4. 

 

2.2 Heat Transfer Properties of Long-Chain Polymers 

Due to the difficulty in direct measurement/observation of temperature distribution and/or 

heat fluxes at the nano-meter scale, molecular dynamics (MD) simulations have been widely 
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adopted to provide non-continuum theoretical models to understand heat transfer properties of 

polymers. While bulk non-metallic polymers with amorphous molecular structures typically have 

low bulk thermal conductivity, some MD simulation studies have shown that certain polymers 

with ordered or partially-ordered long molecular chains are intrinsically highly conductive of heat.  

Using an AIREBO all-atom potential based MD simulations with the Green-Kubo 

formalism and a modal decomposition analysis method, Henry and Chen [24] revealed a very high 

thermal conductivity (~ 1000 W/mK) in a single polyethylene (PE) chain, which is several orders 

of magnitude higher than that of a bulk PE. The existence of the non-attenuating modes with very 

long relaxation times has been proposed as the main contribution to this observed high thermal 

conductivity. The boundary scattering in the short chain-length cases is also found to suppress the 

effectiveness of this non-attenuating mode base heat transfer mechanism due to the high density 

of the internal chain-to-chain interfaces. 

Liu and Yang [25] further showed in their all-atom MD simulation studies that the 

enhancement of the thermal conductivity of polymer materials at the stretched condition correlates 

with an observed alignment of polymer chains due to mechanical stretching. The simulation results 

showed a more than five-fold increase in the thermal conductivity when the polymers were 

stretched three times the original length. A higher thermal conductivity of polymer can be reached 

with a slower stretching rate. In addition, the molecular weight also plays an important role on the 

thermal conductivity under the same stretching condition. More importantly, the enhancement of 

thermal conductivity of polymers is mainly driven by approaching a higher orientational order of 

molecules under larger strains.  

Luo et al. [26] performed NEMD simulations to study the thermal energy transport in 

polydimethylsiloxane (PDMS), an important long-chain component of thermal interface materials. 
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Although the thermal conductivity of a single molecular chain of PDMS is comparable with that 

of a single PE molecular chain, the overall bulk thermal conductivity of lab-synthesized bulk 

PDMS is only  ~ 7 W/mK, a value significantly lower than that of bulk PE materials. The huge 

discrepancy on bulk thermal conductivity between PE and PDMS is mainly contributed from the 

conformational disorders that are introduced by the random rotations in the silicon-oxygen-silicon 

segments in the PDMS molecular chains.  

Zhang and Luo [27] studied the influence of morphology on thermal conductivity of PE 

single chain and crystalline fiber using MD simulations. The morphology of crystalline PE is found 

to be sensitive to temperature, i.e. an ordered system transits to a disordered one as the temperature 

increases from 300 K to 700 K. This transition leads a monotonous decrease in crystalline PE’s 

thermal conductivity and an abrupt drop of the thermal conductivity is observed between 380 K 

and 400 K in a relaxed molecular system. By artificially increasing the dihedral energy in single 

PE chain, the molecule becomes stiffer and more thermally conductive due to reduction of the 

along-chain disorder and phonon scattering within chain. 

Liu and Yang [28] reported a comprehensive MD investigation of length-dependent 

thermal conductivity of eight different types of polymer materials: PE, polyacetylene, 

polybutadiene, polybenzimid, poly(p-phenylene), poly(phenylene ether), poly(methylene oxide) 

and poly(ethylene oxide).  They found that the polymer materials with stiffer backbones usually 

have higher thermal conductivity. The thermal conductivity of single polymer chain that consists 

of double carbon-carbon (C=C) bonds can be 2.6 times that of PE materials that consists of single 

carbon-carbon (C-C) bonded molecular chains. The thermal conductivity of polybutadiene, which 

consists of a mixture of single and double carbon-carbon bonds, is lower than that of PE. In 

addition, the polymers that incorporate into aliphatic/aromatic pristine chains have lower thermal 
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conductivities due to the creation of localized vibrational modes from mass disorder. As the length 

of the polymers increases, the intrinsic phonon scattering becomes more significant on their 

thermal transport. 

Zhang and Luo [29] took full advantage of the temperature-related morphology of 

crystalline PE to regulate its thermal conductivity in their MD simulations. By adjusting 

temperature from 380 K to 410 K, the thermal conductivity of crystalline PE drops from about 30 

W/mK to 5 W/mK with a transition from an ordered crystalline structure to an amorphous one. 

Meanwhile, the inverse switch of thermal conductivity can be reached by increasing the strain. 

The tunability of thermal conductivity can be achieved from 5 to 12 in MD simulations, with the 

largest value was reached by the combination of temperature and strain.  

Babaei, Keblinski and Khodadadi [30] [31] performed NEMD simulations on the 

calculation of thermal conductivity of the mixture of paraffin molecules and carbon nanotubes 

(CNT)/graphene in both solid and liquid phases. Interestingly, enhancement of thermal 

conductivity was found in the mixture but not directly originating from introduction of the carbon-

based nanofillers. Both fillers, CNT and graphene, are mainly treated as template for arrangement 

of the paraffin molecules in a more orderly way, leading a transition from amorphous to crystalline. 

Strong correlation was found between the thermal conductivity values and alignment parameters 

of the mixture, with the higher alignment parameter always connected to a registered high thermal 

conductivity. 

Zhang et al. [32] studied a series of polymer nanofibers and found the connections between 

their thermal conductivity and molecular characteristics by MD simulations at different 

temperatures. The suppression of segmental rotations and large phonon group velocity mainly 

result in the good thermal stability of polymer nanofibers, leading to a desirable thermal 
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conductivity. In addition, heavier atoms (e.g. oxygen) and weaker backbone bonds brought low 

thermal conductivity to polymers by employing a low phonon group velocity. At high temperatures, 

the confined segmental rotations become excited and the thermal conductivity of polymers drop 

due to the introduction of the disorder-phonon scattering. Therefore, the π-conjugate polymers 

with intrinsically ordered backbones, strong bonds and dihedral angles, can be the potential choices 

on fabricating nanofibers with high thermal conductivity for high-temperature applications. 

In addition to the aforementioned efforts on thermal conductivity of polymers, the 

interfacial thermal transport across them is also of great importance to the macroscopic thermal 

conductivity. In Chapter 5, the mechanisms that are applicable for amorphous interfaces will be 

discussed.  

2.3 Lattice Thermal Conductivity of Bulk Crystals 

 First-principles calculations of the lattice thermal conductivity (κLatt) of crystals are mainly 

performed by solution of the phBTE [33]. The theoretical foundation of the phonon BTE is the so-

called phonon gas (PG) model, which assumes that interactions among vibrational modes are weak 

enough that the numbers of phonons of each mode follow the single-particle Bose-Einstein 

distribution at equilibrium. The phBTE assumes that (1) each quasiparticle phonon travels at a 

group velocity vg, and (2) the lifetime τ of every phonon is finite because of the scatterings by 

lattice anharmonicity, lattice defects/disorder, or other particles. For electronic insulators, the 

necessary inputs for a phonon BTE calculation are the harmonic phonon spectra and the phonon 

scattering terms, both of which can be numerically calculated using the first-principles methods. 

Multiple implementations of the phonon BTE methods have been reported in recent years. The 

calculations can be categorized into two categories: (1) the single mode relaxation time 
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approximation (smRTA) ([34][35])  and (2) the full solutions of the phonon BTE, by either 

iteration methods, variational methods, or exact diagonalization methods. 

Within the smRTA approximation, Tang and Dong [34] predicted the κLatt of MgO at 

conditions ranging from ambient to the core-mantle boundary. A good agreement between the 

calculation and experimental results was achieved in the low pressure-temperature conditions, 

providing reasonable results for the κLatt of MgO in the lower mantle. These numerical results 

indicated that the calculated κLatt of MgO notably change with depth in the lower mantle, increasing 

from 15-20 W/mK around the 670 km to 40-50 W/mK around the mantle side of core-mantle 

boundary, providing a controversy of the constant-thermal-conductivity assumption adopted in 

many geodynamics simulation studies of low mantle.  Tang et al. [34] also further improved the 

numerical efficiency of their algorithms with massive code parallelization and extended their 

studies to the MgSiO3 perovskites, which consisted of a 20-atom unit. Based on the first principles 

predicted pressure and temperature dependence of the thermal conductivity of Fe-bearing MgO 

and MgSiO3, they proposed a theoretical model of the overall thermal conductivity of the lower 

mantle, which is approximately constant between 2.5 and 3.5 W/mK. These values imply that the 

mantle has a blanketing effect on heat flow across the core-mantle boundary. 

Broido et al.[35] presented a series of first-principles calculations of lattice thermal 

conductivity of Si and Ge, also within the smRTA approximation. For a wide range of temperature, 

excellent agreement (<5% difference at room temperature) between the calculated and measured 

intrinsic κLatt of silicon and germanium is achieved. The acoustic phonons are the main contribution 

to the κLatt of Si and Ge, providing 95% and 92% of κLatt of Si and Ge, respectively, at room 

temperature. Meanwhile, the optic phonons also served as dominating scattering channels for heat-

carrying acoustic phonons to prevent a dramatic increase in the κLatt. However, Ward et al. [36] 
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also demonstrated that the smRTA approximation is not universally valid. For example, smRTA 

fails to accurately predict κLatt in Diamond due to the neglect of the effects of the off-diagonal 

terms in the phonon-phonon scattering matrices. A full solution of BTE is necessary for the 

calculation of κLatt in Diamond. It is important to note that the discrepancy between the full 

solutions and the approximate smRTA solutions of phBTE usually diminished as the temperature 

increases, suggesting the effects is not related to the failure of PGA. 

Cepellotti and Marzari [37] reported a diagonalization method to numerically evaluate the 

eigenstates of the phonon scattering matrix in the phBTE. They further proposed to interpret such 

eigen-states as “relaxons”, a kind of collective phonon excitations, to provide an alternative kinetic 

description of microscopic thermal transport in crystalline materials. Each relaxon is a linear 

combination of all phonons and decays to its equilibrium state after excitation. The parity of 

relaxons show that only the odd relaxons contribute to heat flux and determine the κLatt but the 

even ones are not able to change the κLatt. This numerical diagonalization approach, although more 

computationally intensive, is valuable in the case the iterative method fails to converge in some 

cases, for example, 2D graphene. As “relaxon” behaviors manifest the correlated phonon dynamics, 

the “relaxon” effects are expected to more significant at lower temperatures rather than at high 

temperatures.    

To study anharmonic phonon interactions beyond the perturbative approximation, such as 

the phonon scattering rates calculated with the Fermi’s golden rule, Esfarjani and Chen [38] 

combined both MD simulation method and the lattice dynamics approach to study the thermal 

properties of Si. The extraction of the force constant from first-principle density functional theory 

calculations was applied to provide a reliable potential for MD simulations. Within the Green-

Kubo formalism, the heat flux autocorrelation was extracted from MD simulations for the κLatt 
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calculations. In addition, the extracted force constant was also applied to obtain the phonon life 

times in combination with the perturbation theory. Thus, the κLatt in an isotropic system can be 

calculated from the smRTA. The small differences of the κLatt between the two methods above the 

Debye temperature, i.e. the MD results are 10% to 20% higher than those of the lattice dynamics 

calculated, indicate that the phonon gas approximation is valid in Si bulk crystals for the studied 

temperature ranges.  However, it is important to point out that only 3rd and 4th order lattice 

anharmonicity are retained in their MD simulations in order to significantly reduce the 

computational loads of MD simulations. As a result, such approaches do not apply to highly 

anharmonic crystals, such as crystals near their melting temperatures.  

Similar combined MD and lattice dynamics studies have been reported Lu et al. [39] for 

the prediction of the κLatt of lead telluride (PbTe).  In this study, the MD simulations are carried 

out without the truncation of lattice anharmonicity, i.e. in principle, all orders of lattice 

anharmonicity are included. For the temperature range of 300 to 800 K, the anharmonic phonon 

dispersions are highly related to the temperature change and observed avoided crossing between 

transverse optical modes and longitudinal acoustic modes at 600 K. In addition, the phonon mean 

free paths of optical modes are shorter than the lattice constant, which can provide lower thermal 

conductivity at higher temperatures. This indicates a possibility of the break-down of the PGA in 

PbTe at the elevated temperatures, at least for the optic phonons. At the same time, the calculated 

low values of PbTE (1 – 2 W/mK) is consistent with experimental data. However, it remains 

unclear how much the small simulation cell artifacts affects the uncertainties of the derived values 

of κLatt, since the scattering rates are typically sensitive to the size of simulation cells. 

Another approach to evaluate the effects of increased anharmonicity at the evaluated 

temperatures have also been reported in recent years. Feng et al. [40] investigated the four-phonon 
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scattering in the calculation of κLatt of boron arsenide, silicon and diamond, and presented that the 

higher-order anharmonicity reduces the calculated κLatt to a great extent to agree with the 

experimental data at high temperatures. Including these four-phonon scatterings, the lifetime of 

optic phonon is significantly reduced due to the creation of more scattering configurations between 

optical and acoustic modes. This effect becomes more important at higher temperatures for 

crystalline materials. A detailed study on the effects of the phonon frequency renormalization to 

the thermal and thermal transport properties of NaCl is reported by Ravichandran and Broido [41]. 

Their conclusions are consistent with those of Feng et al. [40]. This class of calculations are still 

based on the PGA and phBTE. 

In summary, the calculated κLatt from phBTE adopting various theoretical and numerical 

approximations have been systematically benchmarked among themselves and compared with 

available experimental data. The overall good agreement between the first-principles 

computational results and available experimental data for a large amount of crystals at moderate 

temperatures establishes the phBTE as a practical and robust computational tool to design 

advanced technology materials with optimized thermal transport properties, wherever the PGA is 

a valid approximation. Meanwhile, concerns have been raised about the validity of the phonon 

BTE beyond the PG limit, where interactions among vibrational modes are significant and the 

weakly interacting quasiparticle approximation becomes insufficient.  
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Chapter 3 Computational Methodology   

3.1 Molecular Dynamics Simulation 

Classical molecular dynamics (MD) simulation is an atomic simulation method that 

provides the evolution of a micro-system by tracing the trajectories all the atoms in space. These 

atoms are generally treated as single particles in the simulation with neglecting the interaction 

within the atom. The interactions among those particles are usually calculated from an empirical 

force field. In addition, Ab-initio MD is required if the interactions within the atom, e.g. between 

ions and electrons, need to be considered. In classical MD simulations, the dynamics of all the 

particles are governed by the Newton’s equation of motion coupled with empirical potentials and 

appropriate initial and boundary conditions. To connect those individual atoms’ microscopic 

dynamics to macroscopic properties, statistical mechanics is usually used to analyze the simulation 

results. 

 

3.1.1 Governing equation 

The Newtonian equation of motion is in the governing position for running an MD 

simulation. For a system with N particles and potential EU at a time interval t, the equations are: 

2

U2 ( )i
i

dm E
dt

= −∇
r r , i = 1, 2, …, N ,    Eq. ( 3.1) 

where m is the mass of particles and r is the coordinate of each particles in space. It should be 

noted that the potential energy EU is only a function of all the particles’ coordinates in the system. 

Therefore, the essence to describe a molecular system is to provide the coordinates’ evolution of 

all the particles with certain constraints. 
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3.1.2 Potential energy 

In order to solve the Newton’s equation of motion, appropriate empirical potential energy 

functions are applied in the MD simulations. These potential energy functions, also called the force 

field, are a collection of mathematical expressions to describe the dependent energy of a system 

on the coordinates of its particles. An appropriate force field can provide a precise description of 

the molecular interactions and a proper reproduction of the system’s dynamics. For an organic 

molecular system, its total potential energy, EU, term can be always separated into the 

intramolecular, EintraU, and the intermolecular, EinterU, parts: 

U intraU interUE E E+= .     Eq. ( 3.2) 

The intramolecular potential energy itself that accounts for the interactions within a molecule is 

usually divided into four parts: 

intraU bond angle dihedral improperE E E EE + + += ,   Eq. ( 3.3) 

where Ebond, Eangle, Edihedral and Eimproper, represent the bond stretching interaction, angle bending 

interaction, torsional dihedral interaction and improper dihedral interaction, respectively. 

The intermolecular potential energy consists of the van der Waals (vdW) interaction in its 6 – 12 

Lennard-Jones form and the Coulomb interactions: 

12 6

interU 4 i j

ij ij C ij

Cq q
r r r

E σ σ
ε

ε
     − +           

= ,    Eq. ( 3.4) 

where ε stands for the depth of potential well and σ is the finite distance at which the inter-particle 

potential is zero, rij is the distance between particles i and j, C is an energy-conversion constant, qi 

and qj are the charges on the two particles, and εC is the dielectric constant.  

In MD simulation of organic materials, e.g. n-alkane, the all-atom force fields, such as 

OPLS (Optimized Potentials for Liquid Simulations) [42], COMPASS (Condensed-phase 
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Optimized Molecular Potentials for Atomistic Simulation Studies) [43] and ReaxFF (reactive force 

field) [44], have been applied to describe the thermodynamic properties by considering the motions 

of all the atoms in the molecular system. In addition, the united atom force field, approximately 

treating the methylene (–CH2–) and the methyl (CH3–) as groups of atoms, also provide robust 

macroscopic thermodynamic properties of n-alkane molecules due to the large mismatch between 

the high bond-stretching frequencies of the C–H bonds and low oscillating frequencies. Various 

united atom force fields, such as TraPPE (Transferable potentials for phase equilibria) [46], SKS 

(Smith, Karaborni and Siepmann) [47] and NERD (Nath, Escobedo and de Pablo-revised) [48] 

exist for n-alkanes MD simulations and have similar functions for describing the pairwise 

interaction, bond stretching, angle bending and dihedral torsion of such molecules. 

3.1.3 Solving MD governing equation 

To describe the evolution of a molecular system, it is required to solve the Newton’s 

equation at each time step and determine the new positions of particles. One of the widely-adopted 

methods is the Verlet algorithm, that starts from a Taylor series expansion of the position r of the 

particle i at the time step t+Δt, that is expressed as: 

2 2
2 3 4

2 2

( ) ( ) ( )1 1( ) ( ) ( )
2 6

i i i
i i

d t d t d tt t t t t t o t
dt dt dt

+ ∆ = + ∆ + ∆ + ∆ + ∆
r r rr r  Eq. ( 3.5) 

where the quantity Δt is the time step and o(Δt4) presents terms of order 4 or higher in Δt. 

Meanwhile, the equation for the particle’s position at the time step t-Δt is given by: 

2 2
2 3 4
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( ) ( ) ( )1 1( ) ( ) ( )
2 6

i i i
i i

d t d t d tt t t t t t o t
dt dt dt

−∆ = − ∆ + ∆ − ∆ + ∆
r r rr r

. Eq. ( 3.6)  
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The summation of Eq. ( 3.5) and Eq. ( 3.6) is: 

2
2 2

2

( ) ( )( ) 2 ( ) ( ) 2 ( ) ( )i i
i i i i i

i

d t tt t t t t t t t t t
dt m

+ ∆ ≈ − −∆ + ∆ = − −∆ + ∆
r fr r r r r

, Eq. ( 3.7) 

where f is the force on the particle i and is also a function of positions of the particles. Therefore, 

the calculation of new positions of all particles can be obtained from their previous positions. 

Meanwhile, the velocity v of the particle i can be determined by 

( ) ( )( )
2

i i
i

t t t tt t
t

+ ∆ − −∆
+ ∆ =

∆
r rv .    Eq. ( 3.8) 

The MD simulation always initiates with a random seed to provide a Maxwell-Boltzmann 

distribution of particles’ velocities which fits the initial temperature of the system. Combined with 

the initial velocities of all the particles, the positions of all particles are updated by adjusting them 

into their new positions at each time step. The time step is normally chosen to be of the order of 

0.5 femtosecond and depends on the atomic vibrations in the MD simulations. All simulations in 

this dissertation were performed with the large-scale atomic/molecular massively parallel simulator 

(LAMMPS) molecular dynamics package [49]. The limitation of the computational resource 

constrains the size of the simulation box and the number of atoms. Normally, a parallelized 

computer can deal with a simulation involving ~100,000 atoms and 30 nm3 volume of the 

simulation box. It is still a very small size compared to the materials in a practical physical case. 

In addition, it inevitably introduces a strongly artificial boundary effect since a large portion of 

atoms in the simulation box are at the surface of the simulation box. In order to minimize the 

effects from the surface atoms, a periodic boundary condition is always applied. As illustrated in 

Figure 3-1, when an atom moves out through one side of the simulation box with a periodic 

boundary condition, it simultaneously moves in from the other side of the simulation box. 
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3.1.4 Molecular dynamics ensembles 

The system properties in statistical mechanics are built from its microscopic states. Subject 

to the macroscopic constraints, three equilibrium ensembles, namely microcanonical (NVE), 

canonical (NVT) and isothermal-isobaric (NPT) are developed. An isolated system with a volume 

V, a total number of particles N, and a total energy of E is described as the NVE ensemble in which 

the constants of the volume, number of particles and energy is achieved by the Newton’s equation 

of motion. The NVT is an ensemble with fixed number of particles, volume and temperature T. A 

thermostat is used in NVT simulations to keep the temperature at a specific value by adding several 

dynamic variables which are coupled to the particle velocities. The NPT ensemble maintains 

constant temperature, pressure and number of particles, which is useful to provide an equilibrium 

condition for the molecules. The NVT and NPT are performed in MD simulations by time 

integration of the Nosé-Hoover style non-Hamiltonian equations of motion[50]. 

 

3.1.5 Thermal transport 

The calculation of the thermal conductivity is performed by using the non-equilibrium MD 

(NEMD) simulation. Through the Fourier’s equation, 

q Tκ= − ∇ ,     Eq. ( 3.9) 

the thermal conductivity, κ, of the molecular system can be determined by the known constant heat 

flux, q, and the ensuing temperature gradient, T∇ , fitted from the temperature profile. The 

resulting temperature gradient in the simulation box is realized by exchanging a constant kinetic 

energy among the atoms in the regions of the heat sink and heat sources which are set at the center 

and two sides of the simulation box, respectively. As illustrated in Figure 3-2, a typical temperature 

profile of n-alkanes in an NEMD simulation is illustrated. A slight asymmetry of the temperature 
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profile is observed in the figure even though the time averaged values have been considered. This 

asymmetry is originated from the size effect of the simulation box. In order to weaken this effect 

on the thermal conductivity of the mixture of n-alkanes, the thermal conductivities for different 

simulation box lengths (L) are calculated by using the NEMD method with the average of several 

ensembles. The values of the thermal conductivities corresponding to different simulation box 

lengths are then plotted as 1/k vs. 1/L.  Thus, the macroscopic thermal conductivity can be 

determined by extrapolating the values to 1/L = 0. Considering the anisotropic effect on thermal 

conductivity, the thermal conductivity tensor of n-alkanes should be addressed. The details can be 

founded in the analysis of Ref. [51]. 

3.2 Phonon Boltzmann Transport Equation 

Phonons, as the quanta of lattice thermal excitations, are the key thermal energy carriers in 

electronic insulators. The phonon Boltzmann transport equation (BTE) has gained some renewed 

interests as the default choice of the transport theory to predict the lattice thermal conductivity of 

crystalline solids because all the necessary inputs are readily derived from the first principles. The 

phonon BTE theory is valid within the phonon gas approximation such that each mode oscillates 

at a harmonic frequency, ω, at a thermal equilibrium and the ensemble-averaged number of 

phonons at this mode follows the Bose-Einstein distribution, i.e. 

( / )
1( )

1Beq eq k Tn n
e ωω = 〈 〉 =

−

,    Eq. ( 3.10) 

where  is the reduced Planck constant. In the presence of a constant temperature gradient T∇ , 

the phonon number nα for α = 1, 2, …, N, is deviated from neq, α as a result of thermal diffusion. At 

steady-state, the BTE for the phonon number at mode α is expressed by: 
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scattering

dnn
dt
α

α α
 ⋅∇ =  
 

v
.  Eq. ( 3.11)  

The left-hand term stands for the phonon diffusion, where vα is the group velocity of mode α. The 

right-hand term is the scattering term, which includes the incidents of the phonon-phonon, phonon-

electron, or phonon-defect scatterings. In addition, the phonon heat flux in x-direction, q, is 

calculated by considering the all phonon mode as: 

,
1

x xq n v
V α α α

α

ω= ∑ 

,   Eq. ( 3.12) 

where V is the crystal volume.  Once Eq. ( 3.11) is solved using a linearized method, then 

combining with Eq. ( 3.9) and Eq. ( 3.12), the thermal conductivity tensor can be represented as:  

 2
IJ IJc vα α α

α

κ τ=∑ ,  Eq. ( 3.13) 

where τα is the phonon lifetime and cα is the specific heat of phonon, expressed by:  

,
, ,2 ( 1)eq
eq eq

B

dndEc n n
dT dT k T

αα α
α α α α

ωω= = = − +


 .  Eq. ( 3.14) 

Therefore, the calculation of the lattice thermal conductivity is directly linked to the 

phonon properties, which contains two parts: (1) the dispersion relation of phonons from the 

atomic force constant and (2) the scattering matrix from the perturbation theory.  

3.2.1 Harmonic and anharmonic lattice dynamics 

Because atoms of a solid vibrate around their respective equilibrium lattice points, the Taylor series 

expansion of its potential energy EU around its equilibrium state can be expressed by: 
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,  Eq. ( 3.15)  
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where i, j and k are indices of atoms and I, J and K present the Cartesian coordinates (x, y and z). 

0UE  is the equilibrium potential energy and u is the small displacement of the atoms. The second- 

and third-order derivatives of the potential energy are known as the harmonic and cubic force 

constants. The first-order derivative is zero if all the atoms are at the equilibrium state. The first 

principles calculation based on density function theory are recently applied to obtain the 

equilibrium atomic position for the calculation for atomic force constants, which are available by 

software packages such as VASP [52] and quantum espresso [53]. 

3.2.2 Phonon-phonon scattering mechanism  

The phonon scattering rate, i fw→ , from the initial state i and final state f, for both scattering types 

is given by the Fermi golden rule as:  

22 | | | )|ˆ ( i fi f V Ew f i Eπ δ→ ∆ −=
 ,  Eq. ( 3.16) 

where V̂∆  denotes the difference of the true lattice Hamiltonian and the harmonic lattice 

Hamiltonian.   

In a perfect bulk non-metallic crystal, the V̂∆ is the anharmonic potential expressed in Eq. ( 3.15). 

The lowest order anharmonic term in Eq. (3.15) is the 3rd order lattice anharmonic force constants, 

which lead to three-phonon interactions. This three-phonon interaction contributes the majority of 

incidents of the phonon-phonon scattering in many solids. As illustrated in Figure 3-3, three-

phonon interactions have two types: (1) one phonon splits into two phonon modes or (2) two 

phonons combine to form one phonon. Both transitions require conservation energy, ω , and 

momentum, q , of phonons, thus: 

α β γ= + +q q q G  and α β γω ω ω= +   (type 1), Eq. ( 3.17) 
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α β γ+ = +q q q G  and α β γω ω ω+ =   (type 2), Eq. ( 3.18) 

where G is the reciprocal lattice vector or zero vector, corresponding to an Umklapp process or a 

normal process, respectively.  

Quantitative evaluation of all the possible configurations of three-phonon scattering events 

described in Equations Eq. ( 3.17) and Eq. ( 3.18) requires a large amount of computational 

resource, i.e. CPU time and RAM memories.  Fortunately, a couple of efficient implementations, 

such as ShengBTE [54] or phonon3py [55], have been developed to allow users to compute the 

lattice thermal conductivity of a crystal using only first-principles calculated harmonic force 

constants and  3rd order anharmonic force constants, i.e. without any adjustable parameters. A 

workflow for thermal conductivity calculation is illustrated Figure 3-4.  

3.3 Post-processing 

The post-processing of the simulated data (summation of individual atomistic heat currents, 

autocorrelations of individual atomistic velocities and time-series analyses of coupling-decoupling 

processes, etc.) in this dissertation is mainly performed by utilizing the Python opensource 

programing language (version 3.6.5). The matrix calculations and data manipulations reported here 

relied on the NumPY package. It is generally believed that the Python language provides a more 

convenient and flexible post-processing platform compared to other alternatives.  
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Figure 3-1 Illustration of a two-dimensional MD simulation box containing black points (molecules) 

incorporating periodic boundary condition on four sides. The gray points are the virtual images of the 

black ones. 
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Figure 3-2 A typical temperature distribution of n-alkanes in an NEMD simulation with an exchange rate 

of 0.01 kcal/(mol K) between the heat source and sink. 
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Figure 3-3 Schematic diagrams of two types of three-phonon scattering processes within a crystalline 

solid 
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Figure 3-4 Workflow for thermal conductivity calculation from the density function theory (DFT) to the 

Boltzmann transport equation (BTE)  
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Chapter 4 Thermal Transport of the Mixture of Long-Chain N-Alkanes 

In this chapter, the crystallization processes of a binary n-alkane mixtures based on the free 

surface and the imposed surface potential are firstly conducted. The thermal conductivity of the 

mixture is then evaluated and analyzed in relation to the orientation factor and the solid ratio of 

the mixtures. 

4.1 Methods 

4.1.1 Molecular system and cooling method 

In this work, all the MD simulations are performed utilizing LAMMPS. As listed in Table 

4-1, the simulation box contains a total number of 1200 n-alkane molecules, a combination of n-

eicosane (C20) and n-triacontane (C30), at different values of the number ratio of C30 (nC30). The 

united-atoms potential is applied to describe the n-alkanes’ molecules interaction instead of the 

all-atoms model due to limited contribution from the high-frequency vibration C-H bond to the 

macroscopic heat conduction flux. The methylene group (-CH2-) and the methyl group (CH3-) are 

treated as the interaction site in the united-atoms potential. The intramolecular bonding, angular 

and dihedral interactions are described by the NERD (after the authors’ names) force field [48]. 

The summary of the pertinent LJ parameters is listed in Table 4-2. In addition, considering the 

rapid decrease of the van der Waals force with the interatomic spacing increasing, a cut-off length 

is applied to reduce the required calculations in the MD simulations. This nonbonded interaction 

potential is calculated by the Lennard-Jones (LJ) potential with a 10 Å (~2.5 σ) cut-off distance. 

The summary of the pertinent LJ parameters is listed in Table 4-3. 

In MD simulation, the cooling processes (i) on the free surface and (ii) through imposition 

of the surface potential can be considered as two limiting crystallization schemes due to the marked 
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discrepancy on the structure of the ensuing crystallized n-alkane mixture. The n-alkane mixture is 

crystallized isotropically on the free surface from a liquid phase to a solid phase. The molecular 

system is cooled under the isothermal-isobaric ensemble (NPT) conditions with the periodic 

boundary condition applied in all three directions. 

In presence of an imposed surface potential, the periodic boundary condition cannot be 

applied to all three directions. As illustrated in Figure 4-1, an attractive substance modeled by a 

virtual LJ potential is introduced on the bottom surface of the simulation box, while the periodic 

boundary conditions are applied in the x- and y-directions. In comparison to the ε value of the LJ 

potential between molecules, a much greater value of εsurface is assumed to form a relatively strong 

attractive potential well. In order to minimize the ensuing effect on thermalization of the system, 

all the molecules are initially placed above the finite distance σsurface from the LJ well and a 5 Å 

cut-off distance of this potential is set to make sure that this potential can only interact with the 

bottom-most molecules. A repulsive wall is set on the top surface of the simulation box to prevent 

the escape of molecules during the simulation. The canonical ensemble (NVT) are conducted for 

the cooling processes of the n-alkanes mixture with the imposed surface potential approach. Both 

cooling methods are run at a cooling rate 1 K/ns. The value of the time step used in numerical 

integration of the governing equations was 0.5 fs in all simulations. 

4.1.2 Calculation of the thermal conductivity 

The calculation of the thermal conductivity of the n-alkanes mixture is conducted by using 

the non-equilibrium MD (NEMD) simulation and following the method outlined in Section 3.1.5. 

The resulting temperature gradient in the simulation box is realized by exchanging a constant 

kinetic energy (0.01 kcal/(mol fs)) between the atoms in the regions of the heat sink and heat 

sources which are set in the center and two sides of the simulation box, respectively. The solid 
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structure crystallized from the liquid phase is firstly equilibrated under NPT at 270 K and 

atmospheric pressure for 3 ns (6 million steps). The molecular system is then applied the heat flux 

under microcanonical ensemble (NVE) for 3 ns (6 million steps) to reach the steady-state.  The 

mean temperature profile is averaged for another 2 ns (4 million steps) of simulation. In order to 

weaken the simulation box length dependence of the thermal conductivity of the mixture of n-

alkanes, the thermal conductivities of the mixture n-alkanes for different simulation box lengths 

(L) are calculated by using the NEMD method. Computed values of the thermal conductivities 

corresponding to different simulation box lengths are plotted as 1/k vs. 1/L.  The macroscopic 

thermal conductivity can then be determined by extrapolating the values to 1/L = 0. 

4.1.3 Orientation factor and the solid ratio 

Due to the randomness of the distribution of the orientation of the molecular chains, an 

“orientation factor” is defined to quantify the whole molecular system’s orientation, 

S = ⟨| cos(θi)|⟩,     Eq. ( 4.1) 

where θi is the angle between the end-to-end vector of each individual molecule i and the heat flux 

direction with | | indicating the absolute value and ⟨ ⟩ standing for the ensemble average for all the 

molecules (Figure 4-2).  

The orientation factor can be used to analyze the collective effect of the whole molecular 

system’s orientation on the value of thermal conductivity. In addition, a crystallization criterion 

determined by the ratio of end-to-end distance over the fully-stretched length is defined to provide 

a quantitative measure of the solid morphology [22]. For a single n-alkane chain, if the ratio 

between the end-to-end distance and full-stretched length is greater than 0.9, it is defined as a 

straight molecule (all-trans-conformation) and is crystallized. Moreover, a crystallized chain must 

be found in a bundle with a minimum 3 nearby straight chains. The “solid ratio” representing 
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crystallinity is calculated simply as the ratio of the number of straight molecule over the number 

of all molecules. 

4.2 Results and Discussion 

4.2.1 Phase diagram of the n-alkane mixture 

As illustrated in Figure 4-3, the reduced nonbounded potential energy of n-alkane mixtures 

at different nC30 is changing with temperature. Each data point is averaged from 10 million steps 

(5 ns). It is shown clearly that n-alkane mixtures exhibit a reduction of the degree of supercooling 

during crystallization following the imposed surface potential route. In effect, the existence of the 

imposed surface potential acting as a nucleation plane decreases the energy barrier for 

crystallization. In Figure 4-4, several snapshots of the solid molecules during respective 

crystallization schemes are presented to illustrate the instantaneous state of the molecular systems 

following the free surface and the surface potential routes. As illustrated in Figure 4-4 (a) for the 

free surface approach, the onset of solidification is visible as seen at three sites of the simulation 

box when small molecular blocks are formed by several solid n-alkanes aggregating and pointing 

in the same direction. This is followed by more solid molecules starting to aggregate on the 

initially-formed molecular blocks and the size of the molecular blocks increases. In effect, several 

molecular blocks aligned in different directions are formed in the simulation box as the 

temperature goes down slowly. When the temperature of the molecular system reaches to the target 

cooling temperature, a solid n-alkanes mixture is formed with a certain orientation factor. In Figure 

4-4 (b), the evolution of the mixture in response to the imposed surface potential route during the 

crystallization processes is presented. At early time instant of the top row, several molecules form 

a recognizable lamellar structure and are constrained within a small distance from the bottom 

surface due to the strongly attractive potential well. Gradually, the molecules of C20 and C30 
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“join” on the lamellar structure and the lamella structure grows.  The final structures ensuing from 

the free surface and imposed surface potential routes shown on the bottom rows of Figure 4-4 are 

distinctly different. 

The values of the orientation factor of the molecular systems crystallized following both 

routes are illustrated in Figure 4-5. There is a clear discrepancy of the values of the orientation 

factors following these two cases. The surface potential treatment forces the molecules “laying 

down” and orienting randomly in the horizontal direction on the x-y planes. As a result of the 

existence of the imposed surface potential during crystallization of the mixtures, the orientation 

factor of the molecular system should be close to zero in the z-direction. The values being around 

0.1 are the result of incomplete stretching for several molecules. With the free surface treatment 

of the system, the values of the orientation factor of each molecular block in an infinitely large 

simulation box should be equally distributed due to the stochasticity of the formation of the initial 

molecular bulks. Hence, the ensemble average orientation factor in an n-alkane molecular system 

is equal to 0.5. 

During freezing, the solid ratio is increasing as cooling proceeds (Figure 4-6). The solid ratio 

of the n-alkane exhibits rapid rising trend when it is cooled from 310 K to 280 K following the 

imposed surface potential route, illustrating crystallization of the mixture from a liquid phase to a 

solid phase. However, after the temperature reaches 280 K, the solid ratio of the mixture is kept 

around 0.75 although the temperature keeps decreasing to 240 K. Following the free surface 

approach, crystallization process mainly happens in the range 275 K to 260 K and a lower solid 

ratio is formed in the final structure. 
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4.2.2 Thermal conductivity of the n-alkanes mixtures 

As illustrated in Figure 4-7, the inverse of the thermal conductivity of the molecular system 

is plotted against the inverse of the simulation box length in the imposed heat flux direction (z-

direction). The extrapolation of these values to 1/L = 0 gives the macroscopic thermal conductivity 

with the consideration of the size of the simulation box. In the meantime, the orientation factor is 

extracted from the final structure of the molecular systems. Since the mobility of molecular chains 

at 270 K is higher than that at the lower temperature, the orientation factors of the n-alkane 

mixtures while performing the calculation of thermal conductivity are higher than the mixture for 

the same nC30 system crystallized immediately from the liquid phase. In addition, replication of the 

simulation box during performing the calculation of thermal conductivity provides extra space in 

the z-direction for the cases crystallized following the imposed surface potential approach, which 

leads to an extra increase of the orientation factor. The macroscopic thermal conductivities of the 

n-alkane mixtures for different values of nC30 are illustrated as a function of the orientation factor 

in Figure 4-8. It is clearly observed that the orientation factor is still the main contribution to the 

values of the thermal conductivity of the molecular system over the wide range of the number ratio 

of C30 covered. Higher orientation factor in a system always leads to a high thermal conductivity 

of the n-alkane mixture, being consistent with the findings for molecular system of pure n-alkanes 

of ideal crystals.  The thermal conductivity of the pure n-alkane ideal crystal systems, e.g. C20 and 

C30, [65] are also included in Figure 4-8. The single crystal system of the pure n-alkanes can 

provide molecular structures with the maximum and minimum orientation factors by replicating 

the molecular structure in a certain direction. The differences in the thermal conductivities reflect 

the geometrical characteristics of intermolecular interactions occurring in individual single 

crystals. The combination of the weak van der Waals force between the methylene groups in adjoin 
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molecules and the low packing density on the plane transverse to the direction of molecular chains 

in the crystal, exhibiting a low thermal interfacial conductance, accounts for the small value of the 

thermal conductivity transverse to the direction of molecular chains. Along the molecular chain 

axis, although similar weak van der Walls forces are responsible for the methyl group layer 

between molecular blocks, the much longer molecular dimension in the chain direction markedly 

decreases the number of the thermal interfaces, allowing fewer sites of weak interaction per unit 

length to occur than for the transverse direction. This anisotropic property of single crystal 

provides the theoretical highest and lowest thermal conductivities attainable. 

Difference of thermal conductivity between the n-alkane mixtures with small orientation 

value (~0.1) and the stacked lamellae suggests that the solid ratio of the molecular system also 

plays an important role on thermal transport. The n-alkane mixtures crystallized following the 

imposed surface potential route have low solid ratio value even though they are at low temperature, 

suggesting that not all the molecules are in the fully-stretched form and contributing to thermal 

transport while the molecular system is in the solid state. These folded chains, being in a liquid-

like state, mainly reside in the small regions between the stacked lamellae structures in the n-

alkanes mixtures crystallized following the free surface approach (Figure 4-9). The stacked 

lamellas, based on the initial fully-stretched molecules, are growing as temperature is lowered. 

Therefore, the molecules in the regions between those stacked lamellas have a probability to be 

constrained from becoming fully-stretched due to the low mobility of these chains at low 

temperatures. These folded chains locally restrain thermal transport across the interface between 

the stacked lamella structures and increase the number of the effective thermal interfaces of the 

entire system.  
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4.3 Conclusions 

In summary, the effect of the morphology of the n-alkane mixtures at different nC30 on their 

thermal conductivity are studied by performing MD simulations. The n-alkane mixtures are 

crystallized from liquid phase to solid phase following the free surface and the imposed potential 

surface routes. Comparing to the random ordering of molecular chains resulting from the free 

surface approach during crystallization, a dominant layering of molecules can be observed for the 

system undergoing freezing following the imposed potential surface route. Determination of 

thermal conductivity based on those solid structures of the n-alkane mixtures suggests the strong 

correlation between the orientation factor and the thermal conductivity of the mixtures but a 

negligible influence of the number ratio of C30 on thermal conductivity of the mixtures. In 

addition, the solid ratio also plays a significant role on the thermal conductivity of n-alkane 

mixtures with small orientation factor values by adjusting the number of thermal interfaces of the 

entire molecular system. 
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Table 4-1 Details of the n-alkanes mixtures at different number ratio of C30 (nC30) 

nC30 C20 C30 

0 1200 0 

0.17 1000 200 

0.33 800 400 

0.5 600 600 

0.67 400 800 

0.83 200 1000 

1 0 1200 
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Table 4-2 Summary of the NERD united atom potential parameters 

Interaction Form Parameters 

Bond 2( ) ( )
2

r
eq

B

KU r r b
k

= −  
Kr = 96,500 K/Å2 

beq = 1.53 Å 

Angle 2( ) ( )
2 eq

B

KU
k

θθ θ θ= −  
Kθ= 62,500 K/rad2 

θeq = 114° 

Torsional 1 2 3
( ) (1 cos ) (1 cos 2 ) (1 cos3 )
B

U U U U
k
φ φ φ φ= + + + + +   

beq: Equilibrium bond length 

kB: The Boltzmann constant 1.3781×10-23 J/K 

r: Distance between atoms 

θeq: Equilibrium angle 

θ: Bond angle  

ψ: Torsional angle 
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Table 4-3 Parameters of the Lennard-Jones model for various pair potentials 

Interaction Form Parameters 

Nonbonded 
12 6

( ) 4U r
r r
σ σε

    = −    
     

 

CH2 – CH2 
ε = 0.0907 kcal/mol 

σ = 3.93 Å 

CH3 – CH3 
ε = 0.2059 kcal/mol 

σ = 3.91 Å 

CH3 – CH2 
2 3

1/2
CH CH( )ε ε ε= +

2 3CH CH

2
σ σ

σ
+

=  

Surface 

Potential 

12 6
surface surface

surface surface( ) 4U r
r r

σ σε
    = −    
     

  
εsurface = 10 kcal/mol 

σsurface = 3 Å 
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Figure 4-1 Schematic diagram of the molecular system cooling on the surface potential (z = constant). 

The periodic boundary condition is applied in the x- and y-directions. A potential well acting as an 

attractive substance is set on the bottom of the simulation box and a repulsive wall is set on the top. (Red 

and blue spheres represent the C20 and C30 atoms, respectively) 
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Figure 4-2 Schematic diagram of the end-to-end vector angle for a single molecule used in determining 

the orientation factor 
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Figure 4-3 The reduced nonbonded potential energy of the n-alkane mixtures at different nC30 following 

the imposed surface potential and the free surface schemes during cooling processes (1 K/ns) from the 

liquid phase to the respective solid phase. 
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280 K 315 K 

  
275 K 311 K 

  

272 K 306 K 

  
270 K 293 K 

(a) (b) 
Figure 4-4 Snapshots of the n-alkanes mixtures (nC30 = 0.83) during the cooling processes following (a) 

the free surface and (b) the imposed surface potential. (C20 is represented by red spheres and C30 is 

represented by blue spheres) 
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Figure 4-5 Orientation factor of each component in the n-alkane mixture resulting from the free surface 

and the imposed surface potential routes. (Only the orientation factor in the z-direction are presented for 

the cases with the imposed surface potential) 
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Figure 4-6 Solid ratio of the n-alkane mixture (nC30 = 0.5) during cooling process (1 K/ns) 
following the free surface and the imposed surface potential routes 
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Figure 4-7 Inverse of the thermal conductivity in the z-direction versus inverse of the multiple lengths of 

stacked layers for the n-alkane mixture in the solid phase crystallized following the free surface and the 

imposed potential surface approaches.   
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Figure 4-8 Correlation between the orientation factor and the thermal conductivity of the n-alkane 

mixtures at different nC30 (solid ratio of each case is labelled next to each symbol)  
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Figure 4-9 A top view of the n-alkane mixtures 

 (the blue lines represent the C30 molecules and the red lines represent the C20 molecules; the green 

boxes are regions where the molecules are folded) 
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Chapter 5 Thermal Coupling-Decoupling Mechanism  

Due to the difficulty in direct measurement/observation of temperature distribution and/or 

heat fluxes at the nano-meter scale [56], molecular dynamics (MD) simulations have been applied 

to provide non-continuum theoretical models to understand structural, dynamical, and heat transfer 

properties. In particular, non-equilibrium MD (NEMD) techniques have been widely adopted to 

directly evaluate TIC (Gk), namely the ratio of the imposed net heat flux density (q) and the 

simulated temperature jump across an interface (ΔT): Gk = q/ΔT 

[58][59][60][61][62][63][64][65][66]. The values of TIC depend on the interface morphology, 

which is sensitive to specific synthesis and processing conditions. Motivated by a recent study 

[30], suggesting that some nano-fillers may lead to formation of partially-ordered structures by 

arranging all molecules in one direction during crystallization and reported experimentally-

processed single crystal of n-eicosane (Figure 5-1 [67]), an ideal n-eicosane crystal model with 

perfectly-aligned molecules at the interfaces [65] has been extended to evaluate the upper limit of 

κ in n-alkanes in particular and soft-materials in general. In this chapter, the concept of ideal n-

eicosane crystals is adopted to model the molecular structures of n-eicosane using super-cell 

systems with 10 molecular blocks (154 molecules each) orderly-aligned along the x-direction. 

Identical to the previous chapter, MD simulations are carried out with the LAMMPS package at 

the level of “united atoms” (UA) approximation, and with the NERD type of force field potential 

and the Lennard-Jones (LJ) potential for the intra- and inter-molecular forces, respectively. 

5.1 Molecular Structure Details 

 The molecular structures of solid n-eicosane are simulated using super-cell models of the 

size of ten molecular blocks. Each molecular block consists of 154 n-eicosane molecules closely-

packed on the y-z plane, and these 154-molecule blocks (with the periodic boundary conditions on 
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the y-z plane) are aligned along the x-direction to form a crystal. These molecular blocks are 

labeled as blocks I, II, III and so on, with the last (right-most) block connected to the first block 

(the left-most) block through the periodic boundary condition of a super-cell model.  

 The MD time step was set as 0.5 fs. The systems were initially equilibrated under 

isothermal-isobaric ensemble (NPT) using the Nose-Hoover method at 1 atmosphere pressure and 

four different temperature points, i.e. 150 K, 200 K, 250 K and 300 K for 10 million steps (5 ns). 

Then, an NEMD simulation algorithm is adopted to impose transfer of kinetic energy from the 

heat sink to the heat source at the rate of 0.01 kcal/mol/fs for 10 million steps (5 ns) to simulate 

molecular configurations under the steady-state condition. Data at thermal equilibrium were 

collected from averaging every 20 steps (10 fs) for 1 million steps (0.5 ns) under micro-canonical 

ensemble (NVE). The temperature profiles under the steady-state condition were evaluated from 

the last 5 million steps.  

Figure 5-2 illustrates a snapshot of the atomistic structure of the simulated n-eicosane 

crystal thermally equilibrated at 1 atmosphere pressure and 150 K temperature. Each n-eicosane 

molecule chain consists of 18 methyl (–CH2–) UAs (shown as gray solid balls) and 2 methylene 

(CH3–) UAs (shown as red solid balls). We label all the UAs in each chain from 1 to 20 based on 

their position (i.e. labels 1 and 20 for a methylene and 2-19 for a methyl). The atom-atom bond 

lengths are found to be temperature-independent, with the average value of one bond around 1.53 

Å. Thermal fluctuation in bond lengths is also small, i.e. a standard deviation of the bond length 

was of the order 10-3 Å. At the same time, the thermal excitations are noticeable in the forms of 

collective translation and bond bending/twisting. We highlight two characteristic lengths, the 

interfacial/inter-block gap distance, linterface, and the “end-to-end” molecular chain length, lmolecule. 
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The theoretical temperature dependence of the average values of linterface and lmolecule are 

shown in Figure 5-3. The MD-simulated interfacial gap length between two neighboring molecular 

blocks linterface first increases steadily from around 3.4 Å at 150 K to 3.7 Å at 250 K, and then 

rapidly increases beyond 260 K, exhibiting signs of melting. The magnitude of linterface is consistent 

with many length scales associated with weak vdW type of bonding in carbon-based solids. For 

example, in graphite, the interlayer distance between two graphene sheets in graphite is also of the 

order of 3.4 Å. However, the nearly 10% increase in linterface from 150 K to 250 K is rather unusual 

in any solid material. This unusual large temperature dependence of linterface correlates with the 

inverse temperature dependence of lmolecule. The thermal excitations related to the bond angle 

bending motion typically only add a broadening of lmolecule around its mean value, but do not 

significantly alter the mean value of lmolecule. The inverse temperature dependence of lmolecule is 

found to be caused by the enhanced curving and twisting of nano-meter long molecular chains at 

the elevated temperatures. It is obvious that the interfacial structures and dynamics are strongly 

influenced by the intra-molecular thermal excitations. Although each molecule is statistically 

equivalent over a long period of time, the instantaneous atomic configurations can be quite 

different among neighboring molecules due to the intra-molecular thermal excitations.    

A closer examination of the motion of individual interfacial atoms suggests that the time 

evolution of the x-coordinate of one of these CH3– united atoms can be described with two scales, 

one with the smaller sub-Angstrom length scale and shorter sub-Pico-second time scale, and the 

other one with long 3-4 Å length scale and slower a few Pico-second time scale. The 

smaller/shorter position fluctuation is a common feature for oscillation type of thermal motions. 

For this CH3– atom, it is likely attributed to the bond angle bending motions. The larger/longer 

position fluctuation suggests weakly restoring or hopping type of thermal motions that associate 
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with flat energetic landscapes with multiple local equilibrium in the configuration space. More 

importantly, comparing the motion of one interfacial atom (Figure 5-4(a)) with that of its 

neighboring interfacial atoms (Figure 5-4(b), one from the same side of the interface, the other on 

the opposite side of interaction), we do not find any strong correlations among their motions. This 

suggests the weaker vdW type inter-molecular forces only play a minor role on the dynamics of 

CH3– atoms at interfaces, while the much stronger intra-molecular forces exert a dominant 

influence on the interfacial dynamics. As a result, we find a relatively marked and temperature-

dependent interfacial roughness (Figure 5-4 (c) and (d)). It is worth noting that the interfacial 

roughness in the conventional lattice-to-lattice interfaces typically has little temperature 

dependence after thermal annealing. 

5.2 Microscopic Heat Current 

Figure 5-5 shows the NEMD temperature profile of a molecular model with 30,800 united-

atoms, initially equilibrated at the pressure of 1 atm and the temperature of 300 K. In comparison 

to the TIC values of the dissimilar solid-solid interfaces [68][69][70][71][72][73], the NEMD 

results of the TIC between the neighboring ideal crystal blocks of the n-eicosane are illustrated in 

Figure 5-6. The TIC values between the rigid solid-solid interface are commonly predicted by the 

phonon acoustic mismatch mode and the phonon diffuse mismatch model. Due to the existence of 

the same n-eicosane blocks at both sides of the interface, the presence of overlapped vibration 

modes cannot be handled by the mismatch models. In addition, as the temperature increases, the 

decrease of the TIC value for n-eicosane contrasts the reported increase of the TIC values for the 

rigid solid-solid interfaces, which means that a new explanation of the TIC needs to be developed.  

In contrast to the conventional constant gradient temperature profiles observed in bulk 

materials systems, the NEMD simulations yield a characteristic temperature profile with 
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essentially uniform temperature distribution within each molecular block and noticeable 

temperature changes at the molecular interfaces. This edge-curved step-function-like temperature 

profile indicates that molecular vibrations propagate ballistically back-and-forth within a single 

molecule and that only a small fraction of these ballistic currents propagates through these 

molecular interfaces even though molecular vibrations on the opposite sides of an interface are 

essentially identical. More details can be found in the Appendix I. 

To unveil the dynamic details at the atomistic scale, we further define the time-dependent 

interfacial heat current Qint(t) as the instantaneous rate of total work, W, performed on atoms on 

the right, R, side of the interface exerted by the atoms from the left, L, side of the interface: 

( ) ( )
int atom atom

1 1
2 2

i i
L R R L L i i R i i

i R i L i R i L
Q W W q q→ → → →

∈ ∈ ∈ ∈

= − = − = ⋅ − ⋅∑ ∑ ∑ ∑f v f v
  Eq. ( 5.1)  

where vi represents the instantaneous velocity of an atom on the R or L side of the interface, and 

fL,R → i is the vdW force from all the atoms on the opposite side of the interface imparted to that 

atom. Under the steady-state condition, the time-averaged int ( )Q t  converges to the imposed heat 

current of 0.005 kcal/mol/fs. The quantity qatom represents the instantaneous thermal energy 

exchange between a single atom and all the atoms on the other side of the molecular interface.  

Our analysis shows that the total interfacial heat transfer in n-eicosane is predominantly achieved 

through the interaction between the end-atoms (i.e. the CH3– atoms at the end n-eicosane chains) 

in the two adjacent blocks. As illustrated in Figure 5-7, the heat current across the interface can be 

verified by the time-average of the heat current across the interface at 150 K, 200 K, 250 K and 

300 K. All four mean values of the heat current across the interface is around 0.005 kcal/mol/fs, 

which is consistent with the imposed heat current value. In addition, the summation of the heat 

current of all the atoms at each atomic layer (III-18, III-19, III-20, IV-1, IV-2 and IV-3) at 150 K 
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and 300 K are illustrated in Figure 5-8. The intensity of the summation of the heat current of all 

154 atoms in each atomic layer in both blocks decays as the distance between the corresponding 

atomic layers increases. This distance effect on the heat current across the interface is so strong 

that the observed heat transfer across the interface is only conducted by the interaction between 

the neighboring layers of the end-atoms (CH3– groups in atomic layers 1 and 20) in the two 

adjacent blocks. Although the distance between the two atomic layers decreases as temperature is 

lowered to 150 K, this effect still dominates the heat transfer across the interface. Therefore, the 

study of microscopic heat transfer across the interface can be achieved exclusively by focusing on 

the performance of these end-atoms. 

Since all the end-atoms, also referred as the interfacial atoms, are statistically equivalent, the 

ergodic assumption is valid with atom int ( ) /154q Q t= = 226 pW. Therefore, the interfacial heat 

flow can be analyzed at the level of a single molecular chain for gaining new insights on the 

correlation between the microscopic dynamics and the thermal energy fluctuations at equilibrium 

conditions, and the interfacial heat transfer processes at non-equilibrium steady-state conditions. 

To correspond to the analysis of atomic interfacial heat current qatom(t), we define the single 

molecule thermal conductance, 

atom ( )
k

q t
T

γ =
∆

 .        Eq. ( 5.2) 

As γk characterizes the rate of the interfacial heat transfer of individual molecules, the values of γk 

in industry-grade n-eicosane that consists of randomly aligned molecules likely correlate with the 

alignment angles between the molecule chains and the normal direction of the interface, and the 

conventional Gk reflects an ensemble average value of individual values of γk. For ideal crystals 

with identical value of γk for all the molecules, Gk = 154 γk/S, where S is area of the cross-section 

of the supercell models.  
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To extract the temperature discontinuity ΔT from the NEMD simulations, we focus on the 

molecular interface between blocks III and IV to minimize the artifacts induced by the relatively 

small distance (less than 14 nm) between the heat source and heat sink in the molecular system. 

At 300 K, ΔT is found to be 11.3 K, and it consists of two distinct components: a temperature 

jump/drop less than one Kelvin between interfacial end-atoms and their nearest distance neighbors 

in the identical molecule over the length scale of one Carbon-Carbon bond length, and a 

temperature discontinuity of a few Kelvins across a spatial gap about 0.3 nm. The contrast in the 

magnitudes of two ΔT components manifests the fact that an interfacial end-atom is more readily 

thermalized with its neighbors on the same side of the interfaces via strong Carbon-Carbon 

bonding forces than with other atoms on the opposite side of the interface via weak vdW forces. 

As a result, we predict a γk of 20 pW/K at 300 K for a molecule aligned normally to the interface, 

which corresponds to a Gk of 107 MW/m2/K and an effective κ along the alignment direction of 

0.3 W/mK. 

5.3 Thermally Coupling-Decoupling Mechanism  

To complement the simulations of steady-state temperature profiles, we calculate the instantaneous 

atomic heat flux qatom(t), as defined in Eq. ( 5.1), using the MD-simulated velocity and interfacial 

force of individual end-atoms. Figure 5-9 shows that qatom(t) is modulated by the vdW forces and 

it has two distinct patterns of cross-interface heat exchange. The first pattern of relatively large, 

pulse-like qatom(t) occurs when the interfacial end-atom is subject to an oscillating repulsive-

attractive interfacial force, while the second pattern of fairly small, noise-like qatom(t) occurs when 

the interfacial end-atom is subjected to a small and continuously attractive interfacial force for a 

period of a few picoseconds or longer. By defining the noise-like heat exchange periods as the 

uninterrupted time periods with small attractive interfacial forces that last more than 1 pico-second, 
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we estimate that the noise-like heat exchange periods count for nearly 45% of the total time at 300 

K. Yet, the accumulated heat current that flows across the molecular interface during these noise-

like time periods only accounts for less than 1% of the net interfacial heat transfer. We note that 

the alternating patterns of interfacial heat exchange emerge only at the atomistic scale, and the 

total interfacial heat currents (i.e. the summations of all the 154 individual qatom(t)) fluctuate over 

time with only very short correlation times.   

 Based on the observation of two alternating heat exchange patterns and the contrast in their 

contributions to the net heat transfer across an interface, we propose a dynamical fluctuation-

induced thermal coupling-decoupling mechanism for the vdW forces mediating interfacial heat 

transfer. Because the length of a single n-eicosane molecule is only of the order of a nano-meter, 

one molecule can instantaneously move collectively toward one direction due to thermal 

fluctuation in its molecular dynamics, resulting in a collision-like interaction with the molecules 

on the opposite side of the interface and rapid exchange of kinetic energy among them. During this 

collision process, the ballistic currents on both sides of the interfaces are thermally coupled to 

allow a net heat flow from the higher temperature side to the lower temperature side. However, 

the attractive vdW forces are anharmonic, and have a small maximum value, allowing the 

molecules to escape the regime of restoring forces and be subject to only very small (or even zero) 

attractive interfacial vdW forces for extended periods of time. Before dynamic fluctuations “kick” 

the molecule back into collision with the other molecules on the opposite side of the interface, this 

molecule is essentially thermally decoupled from those molecules on the opposite side of the 

interface, and no net energy is transferred across the interface through this molecule. To quantify 

the heat exchange properties at the atomistic scale, we propose two new microscopic parameters. 

The first parameter, defined as thermal coupling ratio, αc = thermally coupled time / total time, 
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represents the probability of the molecule being thermally coupled with the molecules on the 

opposite side of the interface. This αc parameter also reflects the rigidity/flexibility of a molecular 

interface, as it should approach 1 for conventional rigid lattice-to-lattice interfaces with quasi-

harmonic restoring forces. The second parameter is proposed to quantify the strength of thermal 

coupling. It has long been speculated that the efficiency of interfacial heat transfer correlates with 

the strength of interfacial forces. However, because the weak vdW forces that are intrinsically 

anharmonic, the harmonic spring constant concept is less relevant. Instead, we propose using the 

standard deviation (σc) of the pulse-like qatom fluctuation during the thermally-coupled time periods 

to quantify the effectiveness of interfacial heat transfer that is mediated with the weak and 

anharmonic forces. This concept of σc is applicable for the conventional lattice-lattice interfaces 

in principle. 

Furthermore, additional NEMD calculations with a different energy transfer rate (0.02 

kcal/mol/fs) or with different n-alkane chain lengths (see Appendix I.2) are performed, concluding 

that the values of both parameters, αc and σc, do not vary significantly among the studied NEMD 

energy transfer rates and the molecular chain lengths. These two newly-proposed interfacial heat 

exchange parameters manifest the intrinsic dynamical fluctuation at flexible interfaces and they 

can be evaluated using EMD simulations, where the temperature is more readily defined and the 

overall computational loads are significantly smaller. Figure 5-10 illustrates the extracted αc and 

σc parameters as functions of temperature using a series of EMD simulations from 150 K to 300 

K. As the thermal fluctuation increases with temperature, αc decreases from 0.85 at 150 K to about 

0.57 at 300 K. At the same time, the σc is roughly linearly proportional to temperature. As a 

comparison, the standard deviation (σd) of the noise-like qatom fluctuation during the thermally-

decoupled time periods not only is significantly smaller than σc, but also shows much smaller 
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temperature dependence. More importantly, the values of the single molecule thermal conductance 

𝛾𝛾k based on the classical NEMD at four temperatures, 150 K, 200 K, 250 K and 300 K, have an 

interesting linear correlation with αc σc / T (Figure 5-11 a). Based on the linear correlation, we 

propose a general theoretical model of single molecule TIC of a soft (i.e. “non-welded”) molecular 

interface based on the thermal coupling-decoupling mechanism of cross-interface heat transfer: 

(1 )k c c c d c cγ α γ α γ α γ= + − ≈ .    Eq. ( 5.3)  

Within this thermal coupling-decoupling theory, the effective single molecule TIC during the 

thermal decoupling time periods is approximately zero, i.e. 𝛾𝛾d ≈ 0.  The effective single molecule 

TIC during the thermal coupling time periods 𝛾𝛾c, which represents the upper limit value of 𝛾𝛾k in 

the case of rigid 100% thermal coupling, is proportional to σc/T. The magnitude and the 

temperature dependence of σc likely correlate with effective interfacial bonding strength during 

the thermally coupled time periods.  In the case of n-eicosane, the fitted coefficient of 

proportionality is 0.332, i.e. 𝛾𝛾c = 0.332σc / T.  This coefficient possibly manifests the level of 

mismatch between a single molecule and the block of molecules on the opposite side of the soft 

molecular interface during the thermally coupled time periods. As discussed in the “Molecular 

Structure Details” section, the instantaneous atomic configuration of a single molecule can be quite 

different from those on the opposite side of the interfaces due to intra-molecular bond 

bending/twisting.      

 Based on the thermal coupling-decoupling model Eq. ( 5.3), we plot the predicted single 

molecule conductance 𝛾𝛾k of a single crystal of n-eicosane, the Gk of an ideal interface, and the 

corresponding effective 𝜅𝜅 along the alignment direction from 150 K to 300 K in Figure 5-11  b, c 

and d. A key prediction of the thermal coupling-decoupling theory is that the temperature 

dependence of TIC depends on both the temperature dependence of σc and the temperature 
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dependence of αc. At the onset of melting in a phase change material, the change in αc has a 

significant effect on the TIC. Our theoretical model suggests that the intrinsic temperature 

dependence in bulk 𝜅𝜅 has a small, yet inverse temperature dependence near the melting 

temperature. This inverse temperature dependence is largely caused by a significant increase of 

the duration of the thermally-decoupled time periods at the onset of melting processes in n-

eicosane. 

5.4 Summary 

In summary, we combine MD simulations and a time-domain analysis of interfacial heat 

current flowing through a single molecule to study heat transfer across a vdW force-bonded 

flexible interface in n-eicosane. The nearly flat temperature distribution at a nano-meter scale in 

the NEMD simulations suggests that the heat current in a perfect n-eicosane crystal is both ballistic 

and spatially confined. The abrupt temperature changes at the both ends of n-eicosane molecules 

suggest that only a small portion of intra-molecule ballistic currents tunnel through the flexible 

molecular interfaces that are connected with the vdW forces. Based on a dynamic fluctuation-

induced thermal coupling-decoupling model, we quantify the interfacial heat exchange properties 

of a single molecule with two parameters, 𝛼𝛼c and 𝜎𝜎c. It was demonstrated that the single molecule 

thermal conductance correlates linearly with αc σc / T. Based on the NEMD simulations and the 

newly-proposed interfacial heat transfer model, we predict that when an n-eicosane molecule is 

aligned normal to a flexible molecular interface, its single molecule thermal conductance 𝛾𝛾k is 

roughly 19.9 pW/K at 300 K and has a small yet inverse temperature dependence near the melting 

temperature. Future studies on how the alignment angle between a single molecular chain and the 

normal direction of an interface affect parameters αc and σc is the next step to quantify the 

morphology-Gk relation. The origin of the linear correlation between 𝛾𝛾k and αc σc / T and the 
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material/interface properties that regulate the proportionality constant are not yet understood. This 

atomistic-scale thermal coupling-decoupling phenomenon and the corresponding linear correlation 

relation should be further tested in other flexible molecular interfaces of soft materials that are 

bonded with weak and anharmonic interfacial forces at the temperature regime near the melting 

temperatures. 
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Figure 5-1 An n-Eicosane single crystal grown by the Bridgman technique. [67] 
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Figure 5-2 Snapshot of five blocks of C20H42 molecules in an ideal crystal, with each block consisting of 

154 molecules closely-packed on the y-z plane. Each united atom (UA) in a C20H42 molecule chain is 

labeled from 1 to 20, from left to right. The UAs with indices of either 1 or 20 (shown as the red solid 

balls) are the CH3– groups identifying the molecular interfaces. The UAs with indices from 2 to 19 

(shown as grey solid balls) are the –CH2– groups.  
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Figure 5-3 Temperature dependence of the average values of linterface and lmolecule 
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Figure 5-4 The x-direction motion of (a) one interfacial atom and (b) its neighboring interfacial atoms 

(one from the same side of the interface, the other on the opposite side of interaction). The distribution of 

the difference between the x position of each of the interfacial atoms and the mean value of x position of 

all the interfacial atoms at (c) 150 K and (d) 250 K. 
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Figure 5-5 Temperature profile of an NEMD-simulated steady-state of a 10-block n-eicosane supercell 

model. The grey (light) and the red (dark) balls represent the CH2 and CH3 groups, respectively.  
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Figure 5-6 Interfacial thermal conductance values from the ideal crystal of n-eicosane in comparison to 

various solid-solid interfaces at different temperatures. 
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Figure 5-7  Heat current across the interface at different temperatures.   
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Figure 5-8 Heat current transported between atoms within different layers of blocks III and IV at 150 K 

and 300 K (q represents the general heat current across the interface from one block to its neighboring 

block). 
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Figure 5-9 Fluctuations of the instantaneous velocity, the vdW force on the CH3– group in block IV from 

block III, and the corresponding single-molecule interfacial heat current, over a representative time period 

of 7 ps. The vertical dash-line indicates the transition from a period of pulse-like thermal energy exchange 

to a period of noise-like thermal energy exchange.    
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Figure 5-10 Temperature dependence of two microscopic interfacial heat exchange parameters: the 

collision rate αc () and the standard deviation of the pulse-like heat currents σc () during the 

thermally-coupled periods. For comparison purposes, we also include results of standard deviation of the 

noise-like heat currents σd () during the thermally-decoupled time periods. 
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Figure 5-11(a) A nearly linear correlation between the values of the single molecule thermal conductance 

𝛾𝛾k and αc σc / T in n-eicosane between 150 K and 300 K. Model-predicted temperature dependence of (b) 

the single molecule thermal conductance 𝛾𝛾k when a molecule aligns normally to an interface, (c) thermal 

interfacial conductance Gk of a perfectly-aligned interface, and (d) the effective thermal conductivity κ 

along the alignment direction. 
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Chapter 6 Fokker-Planck equation for lattice vibration: Stochastic dynamics and thermal 

conductivity 

6.1 Introduction 

A schematic plot of a typical temperature dependence of lattice thermal conductivity (κLatt) 

in crystals is shown in Figure 6-1. Within the PG approximation, the phonon BTE predicts that 

κLatt of a crystal decays to zero with increasing temperature, T, at the rate of 1/T or faster. However, 

experimental measurements [74][75] reveal that the deviation from the 1/T scaling become 

noticeable as T approaches the melting temperature, Tmelt, of the lattice, with κLatt eventually 

reaching a low constant value. The omnipresence of these minimal thermal conductivities (κmin) 

[76] in all crystalline lattices suggests that as a lattice approaches its Tmelt, the increasingly strong 

anharmonic coupling among vibrational modes causes the breakdown of the PG model. Such 

breakdown might occur at moderate temperatures in relatively soft solids with large thermal 

expansion [77][78] or in the high temperature phases of solids whose 0 K phonon spectra contain 

imaginary frequencies [79]. In addition, the phonon BTE incorporates the concept of phonon group 

velocity, which is not properly defined in nonperiodic solids such as alloys, glass, or amorphous 

semiconductors [80], even at the conditions where all the vibrational modes remain quasiharmonic 

[81].  

When the accuracy of the phonon BTE theory is in question, the statistical linear response 

transport theory [82] is often combined with equilibrium molecular dynamics (MD) simulations 

to predict thermal transport properties [83][84][85][86]. For example, the Green-Kubo (GK) 

formalism states that thermal conductivity is proportional to the time-integral of the auto-

correlation function of heat flux [87][88]. Although the GK method is theoretically rigorous and 

valid beyond the PG approximation, its current implementations, based on the evaluations of 
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atomic trajectories, i.e., displacements and velocities, over a long period of time, usually require 

much more intensive computational loads. When no reliable empirical force-field interatomic 

potentials exist, ab initio MD simulations are necessary to simulate the complex lattice vibration. 

Yet, in practice, typical ab initio MD simulations are often carried out with only relatively short 

simulation periods (i.e., of the order of a few picoseconds) and using relatively small supercell 

models (i.e., of the order of a couple of hundred atoms) because their computational loads scale as 

order N3, where N is the number of atoms in a supercell model. These numerical finite-size artifacts 

sometimes impose relatively large uncertainties in the ab initio MD simulation results. Additional 

approximations are often needed to extract potential energy of each atom from the ab initio total 

energies of the supercell models to evaluate the correlation function of heat currents using the ab 

initio MD simulation results [89][90][91][92][93].  

More importantly, all the atomic trajectories in MD simulations have to be calculated 

numerically, even at the weak scattering limit of the PG model. This lack of analytical solutions 

of atomic trajectories in MD simulations hinders the development of quantitative theoretical 

models to interpret the simulated current-current correlation functions because it provides little 

insight on improving/correcting the PG model beyond the weak scattering limit. Ladd et al. [94] 

proposed a normal mode analysis (NMA) approach to evaluate the phonon lifetimes τ based on the 

damped oscillator approximation (DOA). Using the extracted phonon lifetimes, they derived the 

so-called Peierls phonon-transport expression of κLatt, which is understood to be only an 

approximate solution of the phonon BTE theory. Nevertheless, these types of NMA methods have 

been useful to interpret the phonon scattering in a MD simulation, and these methods have been 

implemented and further developed in recent years by many groups using both empirical potentials 

and ab initio methods [95][96][97][98]. However, both the DOA and the concept of phonon 
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lifetime/relaxation-time should be adopted only as semiquantitative models because the cross-

correlations among different vibrational modes cannot always be neglected. More robust 

theoretical models or concepts are needed to quantitatively interpret the NMA results of numerical 

MD simulations. 

In this chapter, a time-dependent statistical theory to quantitatively describe the thermal 

fluctuation and correlation properties of vibrational modes using a Fokker-Planck equation for 

lattice dynamics is presented. First, this vibration FPE theory does not treat the interactions among 

different vibrational modes as small perturbations. Instead, the theory includes two general sets of 

parameters, the drift A and the diffusion B coefficients, to explicitly characterize the mode-mode 

interactions. The results of this vibration FPE, expressed in terms of a time-dependent probability 

function of multiple-variable vibrational microstates, provide details of the dynamic relaxation 

processes of lattice vibration, and are readily used by the linear response transport theory to 

compute κLatt beyond the quasiharmonic phonon gas model. 

Second, this vibration FPE provides detailed information on the time-correlation properties 

of physical quantities without requirement of long-time MD simulations. The proposed vibration 

FPE derives the correlation functions based on the probability function governed by the drift A 

and diffusion B coefficients, which are defined in terms of ensemble averages at the δt→ 0 limit. 

It is important to emphasize that no a priori forms of correlation functions are assumed in a FPE 

calculation of correlation functions. As a result, when implemented with first-principles methods, 

this vibration FPE is promising to be both accurate and efficient to predict κLatt of novel and 

complex solids at wide-ranging conditions.  

Finally, the κLatt predicted by the vibration FPE converges to the one from the conventional 

phonon BTE within the phonon gas model. Because the FPE’s parameters of a lattice vibration 
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can be evaluated with either perturbative methods or simulation methods at the PG approximation, 

the vibration FPE theory establishes a systematical computational methodology to analyze errors 

of the simple PG model and to delineate the 

6.2 Stochastic Dynamics of Lattice Vibration 

6.2.1 Fokker-Planck equation 

The first fundamental assumption of this proposed Fokker-Planck equation for lattice 

vibration is that thermal lattice dynamics is a stochastic process at the microscopic level, and the 

probabilistic transition dynamics from one vibration microstate Γ to other thermally accessible 

microstates can be modeled with a statistical master equation [82][99]. When a specific microstate 

Γ0 is sampled at time t = 0, the initial probability function is simply 

0 0( , 0 | ) ( )P t δΓ = Γ = Γ −Γ .     Eq. ( 6.1) 

Regardless of the dynamic details of a stochastic process, the equilibrium ensemble theory 

constrains that at the long time limit of t →∞ , the probability function evolves into the canonical 

distribution function: 
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0( , | ) ( )
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eq
eq
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− Γ

Γ →∞ Γ → Γ = ,    Eq. ( 6.2) 

where kB is the Boltzmann constant, T represents temperature, E(Γ) denotes the energy of any 

micro-state Γ, and Zeq(T) denotes the equilibrium canonical partition function of the lattice 

vibration. The evolution of this probability function 0( , | )P tΓ Γ  provides a general and 

quantitative description of lattice thermal relaxation processes, from a single initially sampled  

micro-state Γ0
 to a set of all the thermally accessible micro-states that correspond to an equilibrium 
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distribution governed by the equilibrium statistics. The ergodic condition in lattice vibration is 

assumed. 

We further adopt the Born-von-Karman periodic boundary condition [7] to specify the 

vibrational micro-states with total N vibration modes, with N→∞ for an infinitely large crystal. 

Using the numbers of phonons at these modes, i.e. nα with α=1, 2, 3  ⋯,N, we specify a vibrational 

micro-state with a set of N-dimensional state-variables 1 2{ , , , }Nn n nΓ = 
. Through the Kramers-

Moyal expansion of the master equation, the time-evolution of this probability function  

0 0 0 0
1 2 1 2( , | ) ( , , , , | , , , )N NP t P n n n t n n nΓ Γ =    can be expressed in the form of a FPE [82][99]: 

2

1

1[ ( ) ] [ ( ) ]
2

NP A P B P
t n n nα αβ

α αβα α β=

∂ ∂ ∂
= − Γ ⋅ + Γ ⋅

∂ ∂ ∂ ∂∑ ∑
  Eq. ( 6.3)  

The assumption of a FPE is that the third-order expansion coefficients are approximately zero. 

According to the Pawula theorem, all the higher order expansion coefficients are zero if the third-

order expansion coefficients are zero [99]. Within this theoretical framework, the drift ( )Aα Γ and 

diffusion ( )Bαβ Γ  coefficients manifest the interactions among vibrational modes, and they are 

defined as: 

00

00

1( ) lim ( , ) ( , | )

1( ) lim ( , ) ( , ) ( , | )

t

t

t

t

A d n P t
t

B d n n P t
t

δ

α αδ

δ

αβ α βδ

δ δ
δ

δ δ δ
δ

→

→

′ ′ ′Γ ≡ Γ Γ Γ Γ Γ

′ ′ ′ ′Γ ≡ Γ Γ Γ Γ Γ Γ Γ

∫

∫
  Eq. ( 6.4) 

In the case that a stochastic lattice vibration can be modeled as a random process of transition from 

one vibrational microstate Γ to another microstate ′Γ  with a known rate of transition w ′Γ→Γ , Eq. ( 

6.4) can be approximated as 

( ) [ ( ) ( )]

( ) [ ( ) ( )] [ ( ) ( )]

A d n n w

B d n n n n w

α α

β β

α

αβ α α

′Γ→Γ

′Γ→Γ

′ ′Γ ≈ Γ Γ − Γ ⋅

′ ′ ′Γ ≈ Γ Γ − Γ ⋅ Γ − Γ ⋅

∫
∫   Eq. ( 6.5) 
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Within this statistical probability theory (Eq. ( 6.3)), the dynamic details of a stochastic lattice 

vibration rely on the knowledge of both drift A and diffusion B coefficients. As formulated in Eq. 

( 6.4), both A and B coefficients can be numerically calculated based on an ensemble of 

microscopic simulations over a short period of simulation time δt. Since the simulation periods for 

the parameter evaluation is short, it becomes practical to implement the numerical simulations 

using accurate yet numerically demanding first-principles methods. The overall computational 

loads of ensemble average, although still intensive, can be in principle distributed over a cluster of 

computer nodes to take full advantage of the state-of-the-art parallel high-performance computing 

platforms. Choosing an appropriate simulation period δt for the parameter calculations is not 

merely a numeric issue. The size of δt reflects the level of temporal coarse-graining. For example, 

in a bulk system, δt should be larger than the oscillating periods, as well as the ballistic time periods, 

to ensure the assumption of a thermal relaxation process. Different values δt might be needed when 

there are more than one drift/diffusion mechanism. For example, in an amorphous lattice, the 

drift/diffusion time scale for an extended vibrational mode likely differs significantly from that of 

a strongly localized vibration mode. Extensive future studies are needed to gain a better 

understanding of the forms of the A and B coefficients of a vibration FPE. 

 On the other hand, The general forms for the A and B coefficients defined in Eq. ( 6.4) 

imply that the proposed vibration FPE theory does not limit the magnitude of the mode-mode 

interactions in a lattice to be perturbatively small, nor does it require each mode correspond to a 

traveling wave with a specific group velocity vα


. Consequently, this vibration FPE, as formulated 

in Eq. ( 6.3), is valid for lattice vibration with a broad range of mode-mode interactions, including 

lattice vibration with strong anharmonic modes and/or disorder-induced spatially localized modes. 

In addition, in the weak scattering case that both initial (Γ) and final ′Γ  quantum vibration states 
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can be represented by the phonon representation 1 2 3| , , , , Nn n n n >
 and V̂∆  denotes 

perturbatively small deviations in the vibration Hamiltonian from that of the ideal phonon gas. We 

can use Fermi’s golden rule to calculate the rate of transition: 

2
1 2 3 1 2 3

2 ˆ| , , , , | | , , , , |N Nw n n n n V n n n nπ
′Γ→Γ ′ ′ ′ ′= < ∆ > 

   Eq. ( 6.6) 

6.2.2 Thermal relaxation: Fluctuation and correlation 

At thermal equilibrium, the instantaneous value of a quantity X, either macroscopic or 

microscopic, fluctuates around its equilibrium value Xeq. The dynamical process that brings the 

fluctuating value of X(t) back toward the Xeq is commonly referred as a thermal relaxation process. 

A self-correlation function of X: 

( ) (0) ( ) ( (0) ) ( ( ) )XX eq eq eq eqC t X X t X X X t Xδ δ≡ 〈 ⋅ 〉 = 〈 − ⋅ − 〉   Eq. ( 6.7) 

is often used to quantify the properties of this thermal relaxation process. When X can be expressed 

in terms of micro-state variables X(Γ), we can define a time-dependent expectation value 0( | )X t Γ

based on the probability function 0( , | )P tΓ Γ in the vibration FPE, staring with the initial 

probability function shown in Eq. ( 6.1): 

0 0

0 0

2
0 0

( | ) ( , | ) ( ),

( | ) ( , | ) ( )

1= [ ]( | ) [ ]( | )
2

X t d P t X

d X t P td X
dt t

X XA t B t
n n nα αβ

α αβα α β

Γ ≡ Γ Γ Γ ⋅ Γ

Γ ∂ Γ Γ
≡ Γ ⋅ Γ

∂

∂ ∂
⋅ Γ + ⋅ Γ

∂ ∂ ∂

∫

∫

∑ ∑
  Eq. ( 6.8) 

Clearly, ( )X t  starts at its initial value of 0 0( ) ( ) ( )X d XδΓ = Γ Γ −Γ Γ∫  and eventually relaxes 

back to its equilibrium value of ( ) ( )eq eqX d X P= Γ Γ Γ∫  when 0( , | ) ( )eqP t PΓ Γ → Γ  at the limit of 

t→∞. Similarly, the corresponding time-dependent statistical variance, defined as 
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2 2
0 0 0( | ) ( | ) ( | )X t X t X t∆ Γ ≡ Γ − Γ , relaxes from its initial value of 0 to its equilibrium value 

2
, ( ( ) ) ? ( ) 0X eq eq eqd X X P∆ = Γ Γ − Γ >∫ . 

By sampling the initial micro-states 0Γ  with the equilibrium probability function 0( )eqP Γ , 

we can re-write the time-correlation function of X , defined in Eq. ( 6.7), as:  

0 0

0 0 0 0

( ) = ( ) ( | )

= ( )( ( ) ) ( , | )( ( ) ),
XX eq

eq eq eq

C t X X t

d P X X d P t X X

δ δ〈 Γ ⋅ Γ 〉

Γ Γ Γ − Γ Γ Γ Γ −∫ ∫   Eq. ( 6.9) 

where ,( = 0) =XX X eqC t ∆  and ( ) 0XXC t →∞ = . A concept of an effective relaxation time ( Xτ ) of 

X  is frequently adopted as the time integration of the normalized self-correlation function 

,( ) ( ) /XX XX X eqc t C t≡ ∆ :  

0
( ) ,X XXc t dtτ

∞
≡ ∫   Eq. ( 6.10) 

 based on the approximation that /( ) t X
XXc t e τ−≈ . 

The dynamical correlation between two different quantities X  and Y  that fluctuate around 

their prospective equilibrium values ( eqX  and eqY  can be quantitatively formulated in terms of a 

cross-correlation function ( )XYC t : 

( ) (0) ( ) = ( (0) ) ( ( ) ) ,XY eq eq eq eqC t X Y t X X Y t Yδ δ≡ 〈 ⋅ 〉 〈 − ⋅ − 〉   Eq. ( 6.11) 

 and this cross-correlation function can be re-written using the probability distribution function 

0( , | )P tΓ Γ  of Eq. ( 6.3) :  

0 0

0 0 0 0

( ) = ( ) ( | )

= ( )( ( ) ) ( , | )( ( ) ),
XY eq

eq eq eq

C t X Y t

d P X X d P t Y Y

δ δ〈 Γ ⋅ Γ 〉

Γ Γ Γ − Γ Γ Γ Γ −∫ ∫  Eq. ( 6.12) 
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 where 0 0 0( ) [ ( ( ) ) ( )] [ ( ) ( ( ) )] = 0XY eq eq eq eqC t d X X P d P Y Y→∞ → Γ Γ − ⋅ Γ ⋅ Γ Γ ⋅ Γ −∫ ∫ . Since 

0 0 0( = 0) = ( )( ( ) ) ( ( ) ) = ( ) ( )XY eq eq o eq eq eq eqC t d P X X Y Y X X Y YΓ Γ Γ − ⋅ Γ − 〈 − ⋅ − 〉∫ , the ratio 

, ,( = 0) /XY XY X eq Y eqc C t≡ ∆ ⋅∆  is often referred as the correlation ratio, with = 0XYc  being 

interpreted as that the fluctuations in X  and Y  are statistically uncorrelated at thermal 

equilibrium. It is important to emphasize that even at the condition of zero correlation ration, i.e. 

= 0XYc , a cross-correlation function defined in Eq. ( 6.12) in not always zero at > 0t . 

Because the self-correlation function formula in Eq. ( 6.9) is a special case of the cross-correlation 

function formula in Eq. ( 6.12) with =X Y , we present only the results of the time derivative of 

a the cross-correlation function here based on Eq. ( 6.8) and Eq. ( 6.12):  

0
0 0 0

2
0 0

0 0 0

( | )( ) = ( ) ( )

1= ( ) ( ) { [ ]( | ) [ ]( | )}
2

XY
eq

eq

d Y tdC t d P X
dt dt

Y Yd P X A t B t
n n nµ µν

µ µνµ µ ν

δδ

δ

Γ
Γ Γ Γ

∂ ∂
Γ Γ Γ ⋅ ⋅ Γ + ⋅ Γ

∂ ∂ ∂

∫

∑ ∑∫
 Eq. ( 6.13) 

where A  and B  are the parameters (Eq. ( 6.4)) of the vibration FPE (Eq. ( 6.3)). Using the 

definitions of Yy A
nµ µ
µ

∂
≡ ⋅
∂

 and 
2Yy B

n nµν µν
µ ν

∂
≡ ⋅
∂ ∂

, we can re-write Eq. ( 6.13) in terms of the 

cross-correlation functions between X  and yµ  and those between X  and yµν :  

( ) 1(0) ( ) (0) ( )
2

1= (0) ( ) (0) ( )
2

1= ( ) ( ).
2

XY
eq eq

eq eq

Xy Xy

dC t X y t X y t
dt

X y t X y t

C t C t

µ µν
µ µν

µ µν
µ µν

µ µν
µ µν

δ δ

δ δ δ δ

= 〈 ⋅ 〉 + 〈 ⋅ 〉

〈 ⋅ 〉 + 〈 ⋅ 〉

+

∑ ∑

∑ ∑

∑ ∑

  Eq. ( 6.14) 

Furthermore, all the higher order time derivatives of ( )XYC t  function can also be derived based on 

Eq. ( 6.14) in a recursive fashion. 



 87 

Next, we summarize some key results in the case that X  and Y  are simply the α -th and 

β -th state variables nα  and nβ , with more detail on the mathematical derivation given in 

Appendix III. The commonly adopted concept of phonon occupation number of a vibrational mode 

can be generalized as the t -dependent expectation value of the state variable nα  during a thermal 

relaxation process, i.e. 0 0( | ) ( , | )n t d n P tα αΓ ≡ Γ Γ Γ∫ , with 0
,( | ) eqn t nα αΓ →  and 

0 2 0 0 2
,( | ) ( | ) ( | ) eqt n t n tα α α α∆ Γ ≡ Γ − Γ → ∆  at the t →∞  limit. At the weak phonon scattering limit 

of a phonon gas model, the thermal equilibrium values of ,eqnα  follow the Bose-Einstein 

distribution, and the corresponding statistical variances are , , ,= ( 1)eq eq eqn nα α α∆ + . Applying the 

vibration FPE ( Eq. ( 6.3)) to Eq. ( 6.8), we derive the time derivatives of 0( | )n tα Γ  and 0( | )tα∆ Γ  

as:  

0 0 0

0 0 0 0 0

( | ) = ( ) ( , | ) = ( | )

( | ) = ( | ) 2 [ ( | ) ( | ) ( | )]

d n t d A P t A t
dt
d t B t n A t n t A t
dt

α α α

α αα α α α α

Γ Γ Γ Γ Γ Γ

∆ Γ Γ + ⋅ Γ − Γ ⋅ Γ

∫

  Eq. ( 6.15) 

Furthermore, using Eq. ( 6.11), and Eq. ( 6.12), we define the cross-correlation functions between 

the fluctuating phonon number of α -th mode and the fluctuating phonon number of β -th mode 

(also referred to as two-mode correlation functions) as ( ) (0) ( )n n eqC t n n tα βα β
δ δ≡ 〈 ⋅ 〉  

, ,= (0) ( ) eq eq eqn n t n nα β α β〈 ⋅ 〉 − ⋅ , with , ,( = 0) = =n n eq eq eq eqC t n n n n n nα β α β α βα β
δ δ〈 ⋅ 〉 〈 ⋅ 〉 − ⋅ . We can 

further define the normalized two-mode correlation functions as:  

0 0 0 0

, , , ,

( ) ( ) ( ) ( | )
( ) = .

n n eq

eq eq eq eq

C t d P n n t
c t α βα β
αβ

α β α β

δ δΓ Γ Γ ⋅ Γ
≡

∆ ⋅∆ ∆ ⋅∆
∫

  Eq. ( 6.16) 
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Since =X nα  and =Y nβ , we have =y Aµ β µβδ⋅  and = 0yµν . Using Eq. ( 6.14), we can show 

that: 

0 0 0 0

, , , , , ,

( ) ( ) ( ) ( | )(0) ( )( )
= = = .

n A eqeq

eq eq eq eq eq eq

C t d P n A tn A tdc t
dt

α βα βαβ α β

α β α β α β

δδ Γ Γ Γ ⋅ Γ〈 〉

∆ ⋅∆ ∆ ⋅∆ ∆ ⋅∆
∫

 Eq. ( 6.17) 

Multiple-mode correlation functions can be defined in a similar fashion. For example, there is only 

one type of three-mode correlation function among the α -th, β -th, and γ -th mode:  

0 0 0 0 0

0 0 0 0 0
, , ,

(0) (0) ( ) = ( ) ( ) ( ) ( | )

( )( ( ) ) ( ( ) ) ( , | )( ( ) ),

eq eq

eq eq eq eq

n n n t d P n n n t

d P n n n n d P t n n

α β γ α β γ

α α β β γ γ

δ δ δ δ δ δ〈 ⋅ ⋅ 〉 Γ Γ Γ ⋅ Γ ⋅ Γ

= Γ Γ Γ − ⋅ Γ − Γ Γ Γ Γ −

∫
∫ ∫    Eq. ( 6.18) 

 and there are three types of four-mode correlation functions among four (α , β , µ , and ν ) 

modes: 

0 0 0 0 0 0

0 0 0 0 0 0
, , , ,

(0) (0) (0) ( ) = ( ) ( ) ( ) ( ) ( | ) =

( )( ( ) ) ( ( ) ) ( ( ) ) ( , | )( ( ) ),

eq eq

eq eq eq eq eq

n n n n t d P n n n n t

d P n n n n n n d P t n n

α β µ ν α β µ ν

α α β β µ µ ν ν

δ δ δ δ δ δ δ δ〈 〉 Γ Γ Γ ⋅ Γ ⋅ Γ ⋅ Γ

Γ Γ Γ − ⋅ Γ − ⋅ Γ − Γ Γ Γ Γ −

∫
∫ ∫   Eq. 

( 6.19) 

0 0 0 0 0

0 0 0 0 0
, , , ,

(0) (0) ( ) ( ) = ( ) ( ) ( ) ( | ) =

( )( ( ) ) ( ( ) ) ( , | )( ( ) ) ( ( ) ),

eq eq

eq eq eq eq eq

n n n t n t d P n n n n t

d P n n n n d P t n n n n

α β µ ν α β µ ν

α α β β µ µ ν ν

δ δ δ δ δ δ δ δ〈 〉 Γ Γ Γ ⋅ Γ ⋅ ⋅ Γ

Γ Γ Γ − ⋅ Γ − Γ Γ Γ Γ − ⋅ Γ −

∫
∫ ∫   Eq. 

( 6.20) 

0 0 0 0

0 0 0 0
, , , ,

(0) ( ) ( ) ( ) = ( ) ( ) ( | ) =

( )( ( ) ) ( , | )( ( ) ) ( ( ) ) ( ( ) ).

eq eq

eq eq eq eq eq

n n t n t n t d P n n n n t

d P n n d P t n n n n n n

α β µ ν α β µ ν

α α β β µ µ ν ν

δ δ δ δ δ δ δ δ〈 〉 Γ Γ Γ ⋅ ⋅ ⋅ Γ

Γ Γ Γ − Γ Γ Γ Γ − ⋅ Γ − ⋅ Γ −

∫
∫ ∫   Eq. 

( 6.21) 

Within the phonon gas model, the fluctuations of phonon occupation numbers at two different 

modes are considered to be statistically independent at a thermal equilibrium, i.e. 

< > =eq eq eqn n n nα β α β⋅ ⋅  for α β≠ . As a result, the values of the normalized time-correlation 
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function at = 0t  are simply ( = 0) =c tαβ αβδ , where αβδ  is the Kronecker- δ  symbol. Yet, the 

phonon gas model does not state the value of a cross-correlation function Eq. ( 6.16) at any other 

time 0t ≠ , except that ( ) 0c tαβ →  as t →∞ . Multiple-mode correlation functions remain poorly 

understood, even within the phonon gas model. 

6.2.3 Ornstein-Uhlenbeck process 

The FPE for a well-studied class of stochastic processes, the so-called Ornstein-Uhlenbeck 

(OU) processes [100], can be solved analytically. To demonstrate the properties of these OU 

processes, we start with a new set of zero-mean and unit-variance stochastic variables 

1 2 3= ( , , , , )Nx x x xΓ  , i.e. = 0eqxλ〈 〉  and 2 = 1eqxλ〈 〉 . The OU processes are defined in terms of 

their specific form of drift and diffusion coefficients: ( ) =A xλ λ λγΓ −  and ' ',
( ) = 2B λλλ λ λ

γ δΓ , with 

> 0λγ . Consequently, the Fokker-Planck equation for an OU type processes can be re-written in 

a separable multiple-variable partial differential equation:  

0 2
0

2
=1

( , | ) = [1 ] ( , | ),
NP t x P t

t x xλ λ
λ λ λ

γ∂ Γ Γ ∂ ∂
+ ⋅ + Γ Γ

∂ ∂ ∂∑
 

 

   Eq. ( 6.22) 

and its solution can be expresses as:  

 

2[ ( )]
2 ( )0

=1

1( , | ) = ,
2 ( )

x x t
N

tP t e
t

λ λ

λ

λ λπ

−
−

∆Γ Γ
∆

∏ 

  Eq. ( 6.23) 

where, 0( ) = ( ) tx t x e γλ
λ λ

−Γ ⋅ . and 2( ) = 1 tt e γλ
λ

−∆ − . More details on the solution of an OU type FPE 

can be found in Appendix IV. Here we highlight one key result of the time-correlation between 

any two state variables xλ  and xλ′  of an OU type process:  

' '
',

( ) = ( ) ( ) = .t
eqC t x t x t t e γλ

λλ λ λ λ λ
δ −

′ ′〈 ⋅ + 〉

  Eq. ( 6.24) 
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 More interesting results on the multiple variable correlation functions, such as the three-variable 

correlation functions: ' ' '( ) ( ) ( ) eqx t x t x t tλ λ λ′ ′′〈 ⋅ ⋅ + 〉 , ' ' '( ) ( ) ( ) eqx t x t t x t tλ λ λ′ ′′〈 ⋅ + ⋅ + 〉 , and the four-

variable correlation functions ' ' ' '( ) ( ) ( ) ( ) eqx t x t x t x t tλ λ λ λ′ ′′ ′′′〈 ⋅ ⋅ ⋅ + 〉  and ' ' '( ) ( ) ( )x t x t x t tλ λ λ′ ′′〈 ⋅ ⋅ + ⋅  

'( ) eqx t tλ′′′ + 〉 , ' ' ' '( ) ( ) ( ) ( ) eqx t x t t x t t x t tλ λ λ λ′ ′′ ′′′〈 ⋅ + ⋅ + ⋅ + 〉 , are presented in Appendix IV. 

For a lattice vibration to be classified as an OU process, its set of drift coefficients ( )A Γ  in the 

vibration FPE (Eq. 3) must satisfy the following conditions:  

 

, 1/2
,

,

0
, 1/2 0

,
,

( ) = ( ) ( ),

( | ) = ( ) ( ( | )) ).

eq
eq

eq

eq
eq

eq

A n n

dn t n t n
dt

α
α αβ β β

β β

αα
αβ β β

β β

∆
Γ − −

∆

∆Γ
− Γ −

∆

∑

∑




   Eq. ( 6.25) 

Here αβ  are matrix elements of the normalized drift matrix  , ,eqnα  and ,eqα∆  are respectively 

the equilibrium average value of the phonon number at α -th mode and the corresponding 

statistical variance at the equilibrium, and , = 1,2,3, , Nα β 
. 

 The   matrix, as defined inEq. ( 6.25), is a positive definite, real, and symmetric N N×  

matrix with a set of N  eigenvalues λγ  and corresponding normalized eigenvectors written as as 

,1 ,2 ,3 ,= ( , , , , )Nu u u u uλ λ λ λ λ


  for = 1,2,3, , Nλ 
. We then can transform the N -dimensional 

phonon number state variables 1 2= { , , , }Nn n nΓ 
 into an equivalent set of zero-mean and unit-

variance state variables 1 2 3= ( , , , , )Nx x x xΓ   using this set of eigenvectors:  

 

1/2
, , ,

=1

,
,1/2

=1 ,

= ( ) ,

= .

N

eq eq

N
eq

eq
eq

n n x u

n n
x u

α α α λ λ α
λ

α α
λ λ

α α

+ ∆

−

∆

∑

∑
  Eq. ( 6.26) 
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The linear transformation shown Eq. ( 6.26) also shows that the diffusion ( )Bαβ Γ  coefficients for 

an OU type lattice vibration that are related to its drift coefficients ( )Aα Γ  through the   matrix:  

1/2 1/2
, , , , , ,

=1
( ) = 2( ) = 2( ) .

N

eq eq eq eqB u uαβ α β λ λ α λ β α β αβ
λ

γΓ ∆ ⋅∆ ∆ ⋅∆∑ 
  Eq. ( 6.27) 

In the rest of the paper, the   matrix is referred as the normalized drift/diffusion matrix. 

Combining the results in Eq. ( 6.16), Eq. ( 6.24), and Eq. ( 6.26), we can show that the 

normalized two-mode correlation functions ( )c tαβ  (Eq. ( 6.16)) in this OU type lattice vibration 

are simply:  

, ,
=1

( ) = ,
N

tc t e u uγλ
αβ λ α λ β

λ

−∑
   Eq. ( 6.28) 

 with , ,=1
( = 0) = =Nc t u uαβ λ α λ β αβλ

δ∑ . We can generalize the normalized two-mode correlation 

functions in Eq. ( 6.28) in an integral form:  

0
( ) = ( ) ,tc t d e γ

αβ αβγχ γ
∞ − ⋅∫   Eq. ( 6.29) 

 with , ,=1
( ) = ( )N u uαβ λ α λ β λλ

χ γ δ γ γ⋅ −∑ . Eq. ( 6.29) indicates that a mode correlation function 

( )c tαβ  can be viewed as the t -space Laplace transformation of the γ -space function ( )αβχ γ . We 

refer to ( )αβχ γ  as the Laplace spectral function of ( )c tαβ . At the N →∞  limit, a Laplace spectral 

function ( )αβχ γ  converges to a continuous function defined in the spectral regime of [0, ]maxγ . 

The k -th moment of a ( )αβχ γ  function, defined as 
0

( ) ( ) kk dαβ αβµ γχ γ γ
∞

≡ ⋅∫ , is given as:  

, ,
=1

( ) = =< | | >= ( ) .
N

k k kk u uαβ λ α λ β λ αβ
λ

µ γ α β⋅∑  
   Eq. ( 6.30) 
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The results shown in Eq. ( 6.28) and Eq. ( 6.29) clearly demonstrate that in general the normalized 

mode self-correlaltion functions of lattice vibration do not decay as an exponetial function of time, 

and the time-integral of the cross-correlaltion functions are not zero for two different modes. Some 

recent simulation studies [97] have reported their implementation based on fitting the MD 

simulated mode self-correlation functions based on an assumed formula of 

, ,( ) t
eqC t e γα

αβ α α βδ −≈ ∆ ⋅ ⋅ , and they reported the fitted decay factors αγ  as the inverse of phonon 

life-times 1=α ατ γ −  in the phonon gas model. For such a simplification to be valid, the normalized 

drift/diffusion matrix   has to be close to a diagonal matrix:  

1 1

2 2

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 .N N

γ τ
γ τ

γ τ

−

   
   
   ≈ ⇔ ≈
   
   
   

1

 

 

         

 

 

   Eq. ( 6.31) 

However, the off-diagonal terms in the   matrix characterize the phonon-phonon mode 

scatterings, and they are usually not zero even within the approximation of the phonon gas model. 

Similarly, the cross-correlation functions between two vibrational modes are usually not zero even 

within the approximation of the phonon gas model. 

The analytical solution of the probability function of an OU type vibration FPE also 

predicts the time-correlation functions of multiple vibrational modes. For example, based on the 

derivation in Appendix II.1, all the correlation functions of odd-number vibrational modes are zero 

for an OU type lattice. There are three types of four-mode correlation functions:  
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, , , ,

, ', ' , ' ,
' ' '
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, , , ,

(0) (0) (0) ( ) = ( )
( ) (0) (0) (0) ( )

= ( ) [ ( ) ( ) ( )],
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   Eq. ( 6.32) 
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   Eq. ( 6.34) 

with ( )c tαβ  being the normalized time-correlation function between α -th mode and β -mode 

(Eq. ( 6.16), Eq. ( 6.28), and Eq. ( 6.29)), and the initial values of the four-mode time correlation 

functions derived as 

1
2

, , , ,(0) (0) (0) (0) = ( ) [ ]eq eq eq eq eqn n n nα β µ ν α β µ ν αβ µν αµ βν αν βµδ δ δ δ δ δ δ δ δ δ〈 〉 ∆ ∆ ∆ ∆ ⋅ + + .   Eq. ( 6.35) 

6.3 Lattice Thermal Conductivity 

6.3.1 Green-Kubo theory 

The fluctuation-dissipation theorem provides a general statistical theory to connect the 

equilibrium fluctuation processes of a macroscopic quantity e.g. the total heat current vector 

= ( , , )x y zJ J J J


 in a solid and the related irreversible transport processes, such as heat conduction 

at non-equilibrium conditions. Within the statistical linear response transport theory, the thermal 

conductivity tensor IJκ , with , = , ,I J x y z  labeling the Cartesian axes, is expressed in the Green-

Kubo formula in terms of the time integral of the current-current correlation functions[87][88]:  
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2 0

1= (0) ( ) ,IJ I J eq
B cell

dt J J t
k T N

κ
∞

〈 〉
Ω ∫

   Eq. ( 6.36) 

where Ω  and cellN  are respectively volume of the unit-cell and total number of cells in a super-

cell model with the Born-von Karman periodic boundary. 

At the atomistic level, the heat current J


 is a function of atomic forces, displacements and 

momenta, and various approximations have been proposed and discussed [101]. Assuming the heat 

current vector is also a function of phonon numbers of modes, i.e. 

1 2 3= ({ }) = ( , , , , )NJ J J n n n nΓ
  

 , we can use Eq. ( 6.9) to evaluate the current-current correlation 

functions. Under the condition of small thermal fluctuation, the Cartesian components of the heat 

current vector can be simplified as:  

= .I
I I

i

JJ n n
n α α α

α α

∂
≈ ∆ Λ ∆

∂∆∑ ∑
   Eq. ( 6.37) 

The seminal Peierls formula of the heat current of a phonon gas, =J n vα α αα
ω∆∑





 , is an 

approximation of this class, with =I Ivα α αωΛ 
. When the higher order terms(also referred as the 

non-harmonic terms) in the J  formula are included as the corrections to the linear terms 

formulated in Eq. ( 6.37), we can rewrite the IJ  as =I I Ii
J n Jα α δΛ ∆ +∑ . Consequently, the 

current-current correlation functions can be expressed as:  
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∑

   Eq. ( 6.38). 
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Wherever the non-harmonic Jδ


 terms in the vibrational heat current in a lattice are not negligible, 

time-correlation functions of multiple modes, such as the four-mode correlation functions shown 

in Eq. ( 6.32), Eq. ( 6.33) and Eq. ( 6.34), are needed to evaluate the current-current correlation 

function shown in Eq. ( 6.38). At the condition that the general linear approximation of Eq. ( 6.37) 

is valid, the time integral of (0) ( )I J eqJ J t〈 〉  is approximated in terms of time-integrals of 

normalized two-mode correlation functions ( )c tαβ :  

0 0

1/2
, , 0

(0) ( ) (0) ( )

= ( ) ( )

I J eq I J eq

I J eq eq

dt J J t dt n n t
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α β α β
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α β α β αβ
αβ

∞ ∞

∞

〈 〉 ≈ Λ Λ 〈∆ ∆ 〉

Λ Λ ∆ ⋅∆

∑∫ ∫

∑ ∫
   Eq. ( 6.39) 

Based on the GK formula, we now express Lattκ  in the form of:  

1/2
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1= ( ) ( ).IJ I J eq eq
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dtc t
k T N α β α β αβ

αβ

κ
∞

Λ Λ ∆ ⋅∆
Ω ∑ ∫    Eq. ( 6.40) 

As shown in Eq. ( 6.28) of Sec. 6.2.3, when a lattice vibration can be approximated as an Ornstein-

Uhlenbeck process, the lattice thermal conductivity is simply:  
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∑ 

  Eq. ( 6.41) 

6.3.2 Phonon Boltzmann transport equation 

As a kinetic transport theory, the phonon BTE theory is valid only within the phonon gas 

approximation, i.e. at a thermal equilibrium, each mode oscillates at a harmonic frequency ω  and 

the ensemble averaged number of phonons at this mode follows the Bose-Einstein distribution 
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( / )
1( ) = =

1Beq eq k Tn n
e ωω 〈 〉

−

 and 2 2= = ( 1)eq eq eq eq eqn n n n∆ 〈 〉 − 〈 〉 ⋅ + . In addition, the phonon BTE 

theory applies only to a crystalline solid, where each vibrational mode of this translation-invariant 

periodic lattice corresponds to a definite reciprocal-space k


 vector and a definite group velocity 

= ( )kv ω∇


 . 

When a constant temperature gradient rT∇


 is imposed on the periodic lattice , the 

ensemble averaged phonon numbers, nα  for = 1,2,3, , Nα 
, are no longer able to relax back to 

their original equilibrium values ,eqn α  as a result of thermal diffusion. Instead, each nα  approaches 

a space-dependent value when a steady-state is reached: 

0
diffusion scattering

n dn dn
dt dt dt
α α α∂     = − − =     

        Eq. ( 6.42) 

where the diffusion term at the 0rT →


▽  limit is approximated as  

, ,2· ( 1) .r eq eq r
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dn v n n n v T
dt k T
α α

α α α α α
ω  = − − + 
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⋅

 

 

▽ ▽

  Eq. ( 6.43) 

A common approximation for the scattering terms in the phonon BTE (Eq. 41) is the so-called 

linearized approximation:  

, ,
,

1 , ,

·( 1)
· ·( )

·( 1)

N
eq eq

eq
scattering eq eq

n ndn n n
dt n n

α αα
αβ β β

β β β=

+  − −  + 
∑ 

  Eq. ( 6.44) 

where   is referred as the linear phonon scattering matrix. 

Using the results of Eq. ( 6.43) and Eq. ( 6.44) and the definition of ,

, ,( 1)
eq

eq eq

n n
n n

α α
α

α α

φ
−

≡
⋅ +

, 

the steady-state phonon Boltzmann equation (Eq. ( 6.42)) can be re-written as a set of linear 

equations for αφ  with = 1,2,3, , Nα 
:  
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  Eq. ( 6.45) 

Similar to what we have derived in Sec. 6.2.3, we can solve the set of linear equations using the 

eigenvectors and the eigenvalues of the matrix L :  
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  Eq. ( 6.46) 

 where λγ  and uλ
  are the λ -th eigenvalue and eigenvector of the matrix  , and 1( )−  represents 

the inverse matrix of  . 

Based on the Peierls formula for the heat current of a phonon gas, the lattice thermal 

conductivity predicted by the linearized phonon BTE theory can be expressed as:  
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  Eq. ( 6.47) 

 where 2
, ,= ( ) ( 1)B eq eq

B

c k n n
k T α α
ω

⋅ ⋅ ⋅ +


 is the single mode heat capacity. 

To compare Lattκ  predicted by the phonon BTE (Eq. ( 6.47)) and the one by the Ornstein-

Uhlenbeck type vibration FPE (Eq. ( 6.41)), we first note that in the limit of weak phonon scattering 

of the phonon gas model, the variance of the phonon number fluctuation of a mode ,eqα∆  has 

already been shown to converge to the value of , ,( 1)eq eqn nα α⋅ + , and the Peierls formula of heat 

current should be valid. Furthermore, if we interpret that phonon occupation number nα  in the 
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phonon BTE as the time-dependent expectation value of the phonon number during the thermal 

relaxation process, we conclude that the normalized drift/diffusion matrix   in an OU type 

vibration FPE (Eq. ( 6.25)) converges to the linear phonon scattering matrix  , i.e. →  , at 

the weak phonon scattering limit of the phonon gas approximation. Consequently, Lattκ  predicted 

by the vibration FPE (Eq. ( 6.41)) converges to that predicted by the conventional phonon BTE 

(Eq. ( 6.47)). The so-called single mode relaxation approximation (SMRA) or relaxation time 

approximation (RTA) of a kinetic transport model corresponds to the cases where the phonon 

scattering matrix   (or the drift/diffusion matrix ( ) can be treated as a positively defined 

diagonal matrix (Eq. ( 6.31)). 

6.3.3 Discussion 

A comparison chart is shown in Table 6-1 to highlight commonality and distinction 

between the atomistic MD simulation method and the vibration FPE. The MD simulation approach 

has an absolute advantage in simulating the atomistic scale lattice heat currents at moderate and 

high temperature, and it applies consistently to disordered solids, very anharmonic solids, as well 

as fluids. However, MD simulations only provide a semi-quantitative description of the fluctuation 

properties of individual vibrational modes based on the damped oscillator model. Firstly, 

corrections to the quantized lattice vibration have to be considered at low temperature because of 

the classical nature of MD simulations,. Secondly, the mode lifetimes extracted from the numerical 

solutions of MD trajectories over long periods of simulation time reflect only partial information 

on the fluctuation and relaxation processes in lattice dynamics. Because of the assumption that all 

the cross-mode correlation functions between two different vibrational modes are zero, the damped 

oscillator approximation is equivalent to the single mode relaxation approximation or relaxation 

time approximation in kinetic transport theories. The predicted Lattκ  from these approximate 



 99 

kinetic theories are known to be noticeably underestimated comparing to those derived from the 

full solutions of the phonon BTE theory at low temperature [54] or in low dimension materials 

[37]. 

In contrast, the vibration FPE approach complements the conventional MD simulation 

approach for conditions in which the interactions among vibrational modes are moderate, and it 

can be adopted to delineate the breakdown conditions of the phonon gas model in MD simulations. 

Based on vibration FPE, we propose that the phonon gas model applies when the OU 

approximation of the drift and diffusion coefficients (Eq. ( 6.25) and Eq. ( 6.27)) is valid. By 

considering the normalized drift/diffusion   matrix in an OU type vibration FPE equivalent to the 

scattering   matrix in a phonon BTE , we have proved for the first time that the   derived from the 

linear response transport theory converges to that from the kinetic transport theory within the 

phonon gas approximation. 

When the interactions among vibrational modes are perturbatively small, the normalized 

drift/diffusion   matrix can be derived by using quantum perturbation theories for lattice vibration 

at low temperature. As temperature elevates to the semi-classical and classical regime, we can 

implement numerical algorithms to directly compute normalized drift coefficients and normalized 

diffusion coefficients using first-principles MD simulation methods. As these drift and diffusion 

coefficients are defined in the short time limit, high-performance parallel computer platforms can 

be utilized to distribute the computational load of such simulations in parallel. When the 

temperature dependence of   and   coefficients are extracted and tested with the OU approximation, 

we are able to not only quantitatively determine the temperature condition where the phonon gas 

model breaks-down, but also identify the individual vibrational modes that lead to the breakdown. 
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6.4 Conclusions 

In summary, we have developed a vibration Fokker-Planck equation theory to describe 

stochastic lattice dynamics in solids. Instead of using the molecular dynamics methods to simulate 

the atomic trajectories (i.e. positions and velocities as functions of time), we characterize the 

fluctuation and relaxation processes in terms of a time-dependent, multiple-mode probability 

function, which evolves from an arbitrarily sampled distribution at = 0t  to the equilibrium 

distribution as t →∞ . The lattice properties that govern the stochastic processes at the atomistic 

scale are coarse-grained into two sets of parameters of a vibration FPE, the drift A  and diffusion 

B  coefficients of vibrational modes (Eq. ( 6.4)). At the limit of weak mode-mode interactions, 

these drift/diffusion coefficients can also be computed by using perturbation theory (Eq. ( 6.5) and 

Eq. ( 6.6)). Beyond the perturbation approximation, these coefficients can also be directly 

computed using MD methods, including at the conditions in which the phonon gas approximation 

is insufficient. Because both drift/diffusion coefficients of the vibration FPE theory are defined at 

the limit of 0tδ → , the intensive computational loads of MD simulations can be distributed in a 

parallel computer platform using massive parallel algorithms. 

Our time-dependent probability theory presents a new paradigm to quantitatively compute 

correlation functions among vibrational modes (Eq. ( 6.16) and Eq. ( 6.17)6.). The advantages of 

this statistical approach is clearly demonstrated at the Ornstein-Uhlenbeck condition (Sec. 2.3), in 

which the vibration FPE has an analytical solution (Eq. ( 6.23) and Eq. ( 6.26)) and the correlation 

functions among multiple modes (Eq. ( 6.28), Eq. ( 6.32), Eq. ( 6.33) and Eq. ( 6.34) ) can be 

derived in terms of eigenvalues and eigenvectors of the normalized drift/diffusion matrix   (Eq. 

( 6.25) and Eq. ( 6.27)). The derived time-correlation function of lattice heat current at the level of 

Peierls harmonic flux model )Eq. ( 6.39) quantitatively illustrates the importance of counting the 
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contributions of both self and cross correlation functions between two modes (Eq. ( 6.40)). This 

approach in principle can be extended with multiple-mode correlation function to account effects 

of anharmonic correction terms in heat flux [101]. Furthermore, by equating this the   matrix of 

an OU type vibration FPE with the conventional phonon scattering matrix   (Eq. ( 6.44)) of a 

phonon BTE, we have presented the first rigorous mathematical proof to equalize the Green-Kubo 

theory of Lattκ  (Eq. ( 6.36) and Eq. ( 6.41)) and the BTE theory of Lattκ  within the phonon gas 

model. When perturbation theory (such as Fermi’s golden rule) becomes insufficient to accurately 

evaluate the phonon scattering matrix  , the full set of matrix elements of  , instead of just 

effective phonon lifetimes, can still be computed as the normalized drift/diffusion coefficients of 

an OU type FPE using the MD simulation approaches. As a results, the phonon gas model can be 

extended to a wider range of applications. 

Based on the vibration FPE theory, we further propose a quantitative criterion to define the 

phonon gas approximation, i.e. the propertied of lattice vibration can be described with the phonon 

gas model when the drift/diffusion coefficients of this vibrating lattice satisfy the OU condition 

(Eq. ( 6.25) and Eq. ( 6.27)). Based on this quantitative criterion to delineate the breakdown 

conditions of the phonon gas model, we have established the theoretical foudation to numerically 

study the mechanisms of lattice thermal conduction beyond the phonon gas model. The necessary 

first step in the future studies is to establish a better understanding on the general functions of A  

and B  coefficients at high temperature. Then, various numerical methods, such as adiabatic 

elimination of variables method, matrix continued-fraction method, or variational methods, will 

be adopted to solve the vibration FPE [99]. It is promising that this vibration FPE presents a new 

theoretical framework to accurately and effectively predict the stochastic vibrational processes and 

thermal transport properties beyond the phonon gas model. 
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Table 6-1 Comparison between MD method and FPE method 
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Figure 6-1 Dependence of the lattice thermal conductivity κLatt on temperature T , up to the melting 

temperature Tmelt. 
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Chapter 7 Summary and Future Works 

Future advances in energy storage is linked with the exploit of various properties of 

materials. In particular, thermal conductivity is always essential for selection of materials utilized 

in thermal energy storage system. Despite recent development of thermal conductivity 

measurements, the underlying mechanisms remain unknown for organic phase change materials 

and non-mentalis crystalline solids. This dissertation has explored the thermal transport of n-

alkanes at the nanoscale, and further proposed a theory to describe the stochastic dynamics of 

lattice vibration. Performing MD simulations provide a detailed understating of heat transfer 

within and between n-alkane molecules, and the new FPE theory gives new insights on the 

microscopic mechanism and how correlated phonons contribute to the lattice thermal conductivity. 

In Chapter 4, the mixture of long-chain n-alkanes are studied by MD simulation to illustrate 

the correlation between the orientation of molecules and their thermal conductivity. We 

demonstrate that there exists a strong correlation between the orientation factor and thermal 

conductivity of the n-alkane mixtures which is a result of the combination of the nearly 1-D 

molecular structure of long-chain n-alkanes and the huge discrepancy between the strong intra- 

and weak inter-molecular interactions. Basically, the directions with less number of interfaces 

provide a higher thermal conductivity in n-alkanes mixtures. This anisotropic heat transfer 

property in long-chain alkanes have barely been observed in macroscopic measurements of their 

thermal conductivity. Therefore, crystallization of n-alkanes from deposition in a very slow 

controlled growth rate is promising to create an ideal crystal of n-alkanes with strongly anisotropic 

effects. 

This interface-dominated thermal transport in n-alkanes leads us to the discovery of the 

underlying fundamental mechanism in their TIC in Chapter 5. By performing MD simulations and 
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a time-domain analysis of interfacial heat current flowing at a single molecular level to study heat 

transfer across a vdW force-bonded flexible interface in n-eicosane, a thermal coupling – 

decoupling mechanism of the thermal interfacial transfer in n-alkanes is found. Meanwhile, the 

interfacial heat exchange properties of a single molecule can be quantified by two parameters, the 

interfacial coupling time and the standard deviation of interfacial heat exchange. The inverse 

temperature dependence of the interfacial coupling time is the main contribution to the reduction 

of TIC in n-eicosane as the temperature increased. Further studies can be conducted on how the 

alignment angle between a single molecular chain and the normal direction of an interface affects 

the two interfacial parameters is the next step to quantify the morphology-TIC relation.   

 In Chapter 6, we proposed an FPE theory to describe the stochastic fluctuation and 

relaxation processes of lattice vibration over wide-ranging conditions, directly leading us to derive 

the time-dependent correlation function among multiple vibrational modes. This correlation 

function is important because of its essential position for the prediction of the lattice thermal 

conductivity from the Green-Kubo method. We have proven that the drift/diffusion coefficients in 

FPE is identical to the scattering matrix and the calculation of the lattice thermal conductivity from 

the Green-Kubo approach is converged to the one in phonon BTE under phonon gas mode. Further 

studies will focus on the combination of MD simulations and FPE, which is useful to predict the 

lattice thermal conductivity of crystalline solids at high temperatures when the phonon BTE breaks 

down. 
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Appendix I  

In this Appendix, the supplemental materials for Chapter 4 are provided. Specifically, the 

projected vibration density of the state of atoms in n-eicosane is analyzed. In addition, the effects 

of different values of imposed heat flux and the chain length of n-alkanes on thermal coupling 

parameters are presented. 

I. 1 Projected Vibration Density of States of Interfacial Atoms 

The molecular motions are also analyzed through examination of their velocity auto-

correlation functions and the corresponding power spectra (i.e. the Fourier transformation of auto-

correlation functions). In a solid with zero atomistic diffusivity, the power spectrum of an atom is 

proportional to the projected vibration density of states (pVDOS).  To focus on the motion at the 

molecular interfaces, we calculate the ensemble-averaged power spectra along three Cartesian 

directions at two representative temperatures, T = 150 K and T = 300 K. As the results of the y-

direction analysis are almost identical to those obtained for the z-direction, we only plot results 

associated with the x-direction and y-direction in Appendix Figure I.1. The power spectra along 

the y-direction (or z-direction) are consistent with those of “an amorphous Lennard-Jones system”, 

indicating that the projected motions within the molecular interface planes are largely determined 

by the vdW forces among neighbors. As temperature increases, the signature of structural disorder, 

i.e. the broadness of the spectra, becomes more significant.  

 On the other hand, the power spectra along the x-direction show much complex spectra 

with multiple sharp peaks from 0 up to 800 cm-1 in frequency.  As we know, the interface between 

molecular blocks of the ideal crystal of the long-chain n-alkanes can be described by the inter-

block interaction, which is the integral effect from the relative weak LJ potential between atoms 

at the interface. In addition to the LJ potential describing the inter-molecule interaction within the 
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molecular block, the intra-block interaction is also contributed by the strong bonding energy with 

the molecule. The significant discrepancy between intensity of the inter-block and intra-block 

forces leads the dynamics of the atoms at the interface to be dominated by the interaction within 

the molecular block, especially within the molecule. As the first order approximation, we interpret 

the x-direction power spectra with the simple one-dimensional linear chain model, with a unit-cell 

of 20 united-atoms connected with a strong spring and the united-atoms in the both edges 

connected to a much weaker spring that represents the interfacial vdW forces. Within this 

approximation, each peak corresponds to a vibration branch in the reciprocal space, and its width 

and shape are determined by the frequency dispersion with each branch. The sharpness of all the 

peaks indicates that the contrast in strength of intra-molecular forces and inter-molecular forces 

results in relatively small dispersions in these branches, i.e. relative narrow frequency bands.  The 

flatness in the vibration dispersions is also associated with the spatial localization of these vibration 

modes. We note that the higher frequency peaks typically have narrower widths, suggesting that 

the higher frequency vibration modes are much localized within each molecular chain. 

Consequently, the higher frequency vibration motions likely contribute less to the interfacial heat 

transfer across the molecular interfaces. The sharpness of peaks of the power spectrum, except for 

the lowest frequency peak, also suggests the non-attenuation characters of these vibrational modes. 

Therefore, the heat transfer within the nano-meter scale of each molecular chain is likely to be 

ballistic-like, instead of the diffusion-like. Meanwhile, the vibration motions that are represented 

in the lowest frequency peak show distinct features, both in term of its broader shape, and the large 

temperature dependence. These vibration motions likely play a vital role in heat transfer across the 

molecular interfaces. Overall, the analysis of vibration motion of interfacial atoms is in good 
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agreement with previous observation that the low-frequency vibration modes dominate the heat 

transfer across the interface between the nano-filers and the host materials. 

I. 2 Interfacial Heat Flux 

To study the effect of net heat flux on the thermal coupling-decoupling parameters, we 

have compared NEMD simulations with different heat flux rates.  The NEMD cases at an energy 

exchange rate of 0.01 kcal/(mol fs) are carried out at four different temperatures (150 K, 200 K, 

250 K and 300 K) for 0.5 nano-seconds. The case at an energy exchange rate of 0.02 kcal/(mol fs) 

is conducted at 150 K for 0.5 nano-seconds. Both NEMD simulations are performed after the 

system reaches the steady-state condition. As illustrated in Appendix Figure I.2, the values of the 

parameters describing the coupling-decoupling mechanism are not sensitive to imposed rate of net 

kinetic energy transfer. 

I. 3 Chain Length Dependence 

To study the chain length dependence of the thermal coupling-decoupling parameters, we 

have carried out additional equilibrium MD simulations using long-chain n-alkanes of two 

different lengths (C10H22 and C18H38). The chosen temperature range, between 200 K and 300 K, 

is within the melting temperature of different n-alkanes. MD simulations at each temperature are 

only carried out for a shorter period of 50 pico-seconds. Although the smaller amounts of data 

provide larger fluctuations of results in Appendix Figure I.3, we find that both the thermal coupling 

ratio (αc) and the standard deviations of single molecule interfacial heat currents (σc and σd) in 

these molecule chains are comparable and have similar temperature dependence. Therefore, the 

thermal interfacial conductance of ideal crystal of n-alkanes is not sensitive to their chain length. 
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Appendix Figure I.1 Projected vibrational density of the state of the atom at an interface  
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Appendix Figure I.2 Temperature dependence of two microscopic interfacial heat exchange parameters at 

imposed rates of net kinetic energy transfer: the thermal coupling ratio αc () and standard deviation of 

the pulse-like heat currents σc () during the thermally-coupled time periods. For comparison purposes, 

we also include results of the standard deviation of the noise-like heat currents σd () during the 

thermally-decoupled time periods. 
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Appendix Figure I.3 Temperature dependence of two microscopic interfacial heat exchange parameters of 

C10H22 (blue), C18H38 (red) and C20H42 (black): thermal coupling ratio αc () and standard deviation of the 

pulse-like heat currents σc () during the thermally-coupled time periods. For comparison purposes, we 

also include results of the standard deviation of the noise-like heat currents σd () during the thermally-

decoupled time periods.
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Appendix II 

II. 1 Expectation Values and Statistical Variances of Numbers of Phonons 

This Appendix provides derivation details on some formulas associated with the 

expectation values and statistical variances of the phonon numbers discussed in Sec. 6.2. We first 

define the t -dependent expectation values of the following three quantities using the ensemble 

average approach given in Sec. 2.2: 

0( | ) = ( ; )n t n d n P tα α αΓ ≡ 〈 〉 Γ Γ∫    Eq. (II.1)  

0( | ) = ( ; )n n t n n d n n P tα β α β α βΓ ≡ 〈 〉 Γ Γ∫   Eq. ( II.2) 

0( | ) =t n n n nαβ α β α β∆ Γ 〈 〉 − 〈 〉〈 〉   Eq. (II.3) 

Using the vibration FPE shown in Eq. ( 6.3), we then prove that the first-order t -derivatives of 

these three quantities in Eq. (II.1) and Eq. ( II.2) have the following forms:  
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with 0 0( ) = ( ) ( ) = ( ) ( , | ) = ( | )d n A P d n A P d A P d A P t A t
n nα α α α α α α
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We now get: 
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II. 2 Analytical Solutions of the FPE for an OU Process 

In this part of Appendix, we verify the analytical solutions of an OU type FPE (Eq. ( 6.22)) 

discussed in Sec. 6.2.3. For a probability function of one stochastic variable x  with zero-mean 

and unit-variance, the corresponding OU type FPE can is given as:  

2

2

( , ) = (1 ) ( , ).P x t x P x t
t x x

γ∂ ∂ ∂
⋅ + ⋅ +

∂ ∂ ∂    Eq. (II.9) 

With =d x x
dt

γ−  , 2 2= 2 (1d x x
dt

γ − ), and the initial values x  and 2x  being 0x  and 2
0( )x  

respectively, we have:  
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=
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−

−∆ − −   Eq. (II.10) 

We skip the details of derivation and only show that the analytical solution of Eq. (II.9) is given 

as:  

2( ( ))
2 ( )1( , ) = .
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x x t
tP x t e

tπ

−
−

∆

∆    Eq. (II.11) 

Using the analytical solution in Eq. (II.11), we can show that ( , )P x t
t

∂
∂

 on the left hand side of Eq. 

(II.9) is:  
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  Eq. (II.12) 

From the analytical solution Eq. (II.10), we also have 1( , ) = ( ) ( ( )) ( , )P x t t x x t P x t
x

−∂
−∆ ⋅ − ⋅

∂
 and 

2
1 2 2

2

( , ) = ( ) ( ) ( ( )) ( , )P x t t t x x t P x t
x

− −∂
−∆ + ∆ ⋅ − ⋅

∂
. These results give us the right hand side of Eq. 

(II.9) in the form of:  
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  Eq. (II.13) 

With both Eq. (II.12) and Eq. (II.13), we now verify that the probability function in Eq. (II.11) is 

indeed the analytical solution of Eq. (II.9). 
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For the case > 1N , the N -dimensional probability function of an OU type FPE (Eq. ( 

6.22)) can be expressed in a separable form 
=1

( , ) = ( , )NP t f x tλ λλ
Γ ∏ , and one N -variable FPE (Eq. 

( 6.22)) is converted into N  sets of partial differential equations:  

2

2

( , ) = (1 ) ( , )f x t x f x t
t x x

λ
λ λ λ

λ λ

γ∂ ∂ ∂
⋅ + ⋅ +

∂ ∂ ∂
   Eq. (II.14) 

 where = 1,2,3, Nλ 
. Similar to the solution shown in Eq. (II.11), we have the N  sets of 

solutions of 

2( )
21/2( , ) = (2 )

x x

f x t e
λ λ

λ
λ λπ

−
−

∆−∆ ⋅ , with ,0= tx x e γλ
λ λ

−  and 2= 1 te γλ
λ

−∆ − . Plugging these 

results in the separable multiple-variable formula, we now can verify that the analytical solution 

of Eq. ( 6.22) is indeed the probability function shown in Eq. ( 6.23). 

The analytical solution of the probability function for an OU type FPE allows us to directly 

derive the correlation functions among these state variables with zero-means and unit-variances. 

For example, the time correlation functions between any two such stochastic variables can be 

shown to have the following familiar forms:  
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Meanwhile, we can prove that all three-variable correlation functions for a multiple variable OU 

process zero:  
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⋅    Eq. (16) 
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We can further generalize that the correlation functions of odd-number variables, such as 

three-variable, five-variable, etc, are all zero. At the same time, the correlation functions of even-

number variables are not always zero. For example, for four-variable correlation functions, we 

have the following free formula:  
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