
True Random Number Generation from a High Frequency Chaotic Jerk Circuit

by

Remington Chase Harrison

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 14, 2019

Keywords: chaos theory, nonlinear dynamics, random number generation, Dieharder, jerk
chaos

Copyright 2019 by Remington Chase Harrison

Approved by

Robert N. Dean, Chair, McWane Endowed Professor of Electrical and Computer Engineering
Edmon Perkins, Assistant Professor of Mechanical Engineering
Lloyd Riggs, Professor of Electrical and Computer Engineering

Thaddeus Roppel, Associate Professor of Electrical and Computer Engineering

Abstract

Shown in this work is a method for true random number generation by directly sampling

a high frequency chaotic jerk circuit. A method for determination of the maximum Lyapunov

exponent, and thus the maximum bit rate for true random number generation, of the jerk sys-

tem of interest is shown. The system is tested over a wide range of sampling parameters in

order to simulate possible hardware configurations. The system is then implemented in high

speed electronics on a small printed circuit board to verify its performance over the chosen

parameters. The resulting circuit is well suited for random number generation due to its high

dynamic complexity, long term aperiodicity, and extreme sensitivity to initial conditions. Also,

a framework for evaluating other random number generation schemes based on chaotic sys-

tems is been given and is applicable to a wide variety of potential RNG solutions. This specific

system passes the Dieharder RNG test suite at 3.125 Mbps.

ii

Acknowledgments

I would like to thank my wife, Abbie, for supporting me over the course of our time at

Auburn. We have made so many new friends here that have helped us and made our time here

really special.

I would also like to thank my advisor, Robert Dean, for guidance through the graduate and

doctoral process, and his help on a multitude of details relating to this work.

I would like to thank my advising committee of Thad Roppel, Lloyd Riggs, and Edmon

Perkins, in their aid as well.

A special thanks goes to all of the members of the Nonlinear Dynamics Lab. I’ve enjoyed

working with all of you.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

1 Information, Entropy, and Randomness . 1

1.1 Compression . 2

1.2 The Coin Toss . 6

1.3 Entropy . 8

2 Overview of Chaos and Random Number Generators 11

2.1 Chaos . 11

2.2 Random Number Generation . 13

2.3 Laser Chaos and Random Number Generation 15

3 The Chaotic Jerk System . 18

3.1 Background . 19

4 Hardware Circuit Design . 23

4.1 Circuit Simulation . 23

4.2 Circuit Hardware . 26

4.3 Compact and Low Power Implementation . 32

4.3.1 Efficient Design of Chaotic Oscillators 32

4.4 Smaller Board Design . 33

4.4.1 PCB Implementation . 34

iv

4.4.2 Low Power Improvements . 38

5 Hardware Random Number Generation Results . 41

6 Other Methods Of Obtaining Randomness From Chaos 48

6.1 Von Neumann Corrector . 48

6.2 XOR Operation . 55

7 Conclusion . 59

8 Future Work . 60

References . 62

Appendices . 70

A Compiling and Using Dieharder on Windows . 71

B Creating a Printed Circuit Board using KiCad . 75

C Code Sections for Various Functions . 96

D Dieharder Output . 114

v

List of Figures

1.1 A 256x256 pixel black image, containing very little information 4

1.2 A 256x256 pixel image in a checkerboard pattern, also containing very little
information . 5

1.3 A 256x256 pixel image generated randomly, containing much more information 6

1.4 A screenshot of theent program running on two different �les 10

3.1 Sensitivity to initial conditions in the jerk equation. The red asterisk denotes
the point of divergence. 21

4.1 Block diagram of (3.2) . 23

4.2 LTSpice simulation of an ideal circuit implementation of (3.2) 24

4.3 Time domain plot ofx(t) with G = 1 . 24

4.4 Time domain plot ofx(t) with G = 10 M . 25

4.5 Phase space of the chaotic equation . 25

4.6 Real component implementation of (3.2) . 27

4.7 LTSpice simulation of (3.2) with real components 28

4.8 Time domain plot ofx(t) for the simulated system 29

4.9 Phase space (_x vs x) for the simulated system 29

4.10 Populated printed circuit board . 30

4.11 Time domain plot ofx(t) . 30

4.12 Phase space (_x vs x) . 31

4.13 x(t) andsgn(x(t)) . 31

4.14 Schematic of the resistor divider scaling the signum function 34

4.15 Resulting signum output showing bleedthrough 35

vi

4.16 Simulated phase space_x(t) vs. x(t) . 35

4.17 System schematic of the improved oscillator 36

4.18 Photograph of the assembled board . 37

4.19 Captured continuous outputx(t) . 37

4.20 Captured phase space of the assembled circuit board 38

4.21 Captured phase space of the assembled circuit board operating at 2.5 VDC . . . 39

4.22 The front and back of the populated circuit board which implements the jerk
equation at 4 MHz. 40

5.1 Partial output of Dieharder testing. More tests and results are given in Appendix
D than are shown here. 42

5.2 (a)6th bit of an ADC sample of the system at 0.2 Hz with a full scale range
of 2.5V. (b)8th bit of an ADC sample of the system at 0.2 Hz with a full scale
range of 2.5V. (c)9th bit of an ADC sample of the system at 0.2 Hz with a full
scale range of 2.5V. (d)10th bit of an ADC sample of the system at 0.2 Hz with
a full scale range of 2.5V. (e)12th bit of an ADC sample of the system at 0.2
Hz with a full scale range of 2.5V. (f)12th bit of an ADC sample of the system
at 0.5 Hz with a full scale range of 2.5V. (g)12th bit of an ADC sample of the
system at 1 Hz with a full scale range of 2.5V. 44

5.3 The hardware circuit board sampled by the Handyscope HS6 inside of Multi-
Channel. 46

5.4 Results from Dieharder testing of the hardware circuit. All bits were collected
at 3.25 MHz with a full scale voltage of� 2V. (a) 9th bit of each 16 bit sample
(b) 10th bit of each 16 bit sample (c) 11th bit of each 16 bit sample (d) 12th bit
of each 16 bit sample (e) 13th bit of each 16 bit sample (f) 14th bit of each 16
bit sample (g) 15th bit of each 16 bit sample (h) 16th bit of each 16 bit sample . 47

6.1 Results from simulated data with Von Neumann correction (bits 1-8) 51

6.2 Results from simulated data with Von Neumann correction (bits 9-16) 53

6.3 Results from hardware data with Von Neumann correction (bits 9-16) 54

6.4 Results from simulated data with XOR correction (bits 1-8) 56

6.5 Results from simulated data with XOR correction (bits 9-16) 58

A.1 The select packages screen within Cygwin Setup. Make sure that at least these
packages are installed. 72

A.2 Cygwin's terminal . 73

vii

A.3 Dieharder output with no commands given . 74

B.1 The homescreen of KiCad after a new blank project has been created 76

B.2 A blank EESchema schematic, with labelled items 76

B.3 Picking and placing a part withing EESchema 77

B.4 A basic EESchema schematic of the op amp circuit 77

B.5 A better EESchema schematic of the op amp circuit 78

B.6 Annotating the schematic . 79

B.7 A screenshot of the Design Rules Check output with some warnings 79

B.8 A screenshot of the blank footprint assignment screen 81

B.9 A screenshot of the �lled footprint assignment screen 81

B.10 A screenshot of the “Generate Netlist” screen in EESchema 82

B.11 A screenshot of the blank PCB layout in PCBnew 82

B.12 A screenshot of the read netlist window in PCBnew 83

B.13 A screenshot of the components ready to be placed in PCBnew 83

B.14 A screenshot of the layer setup in PCBnew . 84

B.15 Beginning step of creating the edges of the PCB 85

B.16 A completed border that de�nes the edges of the PCB 85

B.17 The components moved to their desired locations, but unrouted 86

B.18 Selecting a copper zone to begin drawing . 88

B.19 A copper zone drawn on inner layer 1 . 88

B.20 A copper zone drawn on the bottom layer . 89

B.21 A copper zone drawn on the second inner layer for the power planes 89

B.22 A completed layout where all components are connected with no unrouted nets 90

B.23 Changing the names of the connectors on the PCB 91

B.24 The front silk screen with designators, references, and values 92

B.25 The front silk screen in 3D . 93

viii

B.26 The back silk screen in 3D . 94

B.27 The completed board in 3D . 94

B.28 Plotting each of the layers as a gerber �le . 95

B.29 Plotting the drill locations for the PCB . 95

ix

List of Tables

1.1 Summary of �le sizes resulting from the previous exercise. 5

6.1 Bit Pair Probabilities of an Unbiased Sequence 49

6.2 Bit Pair Probabilities of a Biased Sequence . 49

6.3 Von Neumann Corrected Sequence . 49

6.4 The exclusive-OR truth table . 55

x

Chapter 1

Information, Entropy, and Randomness

In order to discuss the technical aspects of a random number generator based on a chaotic

system, the term random needs to be investigated �rst. Unfortunately, trying to simply de�ne

“random in a meaningful way proves easier said than done. A more apt approach perhaps is

to look how randomness is derived from information. This somewhat philosophical method of

approach is more roundabout than most, but hopefully will be fruitful in attempting to delve

into this topic appropriately.

Information, for the purposes of this discussion, can be assumed to be in�nitely precise

and available. More speci�cally, any value that can be described, measured, or transferred can

be done so to in�nite precision, and there are an in�nite number of such values. Of course, this

assumption is highly debatable and not meant to build into a proof of anything. It is merely a

baseline upon which to build an understanding of how humans understand and interpret infor-

mation. One could argue that the total information contained in any �xed space is by de�nition

not in�nite by quantum limits, but even then the total information is so large that it is effectively

freely available for the systems of interest. By making this assumption, a gradual building of

this understanding into a framework for a random number generator can be achieved.

What, then, is information? In the modern digital age, information is usually measured in

bits and bytes. There is a constant demand for both a higher throughput of data (colloquially

referred to as “bandwidth”, and measured in megabits per second), and reducing the amount of

data needed (referred to as compression). Often the abundance of available data for consump-

tion gives rise to an “information overload” where it is dif�cult to sort through what is desired

and what is not needed. Information itself is valuable to certain parties, most recently in the

form of user data sold to third parties without consent. “Big Data” has become a rising area

1

of innovation in order to sort large amounts of data and see trends that otherwise could not be

seen without accumulating these massive databases.

All of these are examples of what information can be, but none really capture the essence

of what information is in a meaningful way as far as a random number generator. Information

is an intuitive idea that most would be able to identify, yet would struggle to adequately and

concretely describe without a reference. However, by building upon an understanding of this

reference, certain properties of the reference will come to light and help form an understanding

of information itself. For this discussion, data compression will serve as a technical reference

to aid in realizing this de�nition.

1.1 Compression

Compression, in terms of a digital system, is the process of reducing the amount of data

needed to store a particular piece of information, whether it be a picture, music, or text. There

are a multitude of different algorithms for compression of data; a good resource for covering

these algorithms speci�cally is [1].

First, consider some data that is uncompressed. This data need not be in�nite or capture

every minute detail of the pre-digitized work. This data is considered “raw”, meaning there has

been no futher processing of this data other than the original digitization into bits. The data is

more than likely a direct conversion using an analog to digital converter with a set resolution.

The resulting data �le is merely a “list” of these samples in sequential order, perhaps with some

header information and metadata. Of course, this data format is not the most ef�cient form for

storing the data since these raw formats do not take into account information about the data

itself.

In order to increase the storage ef�ciency of this data, a compression algorithm is used to

condense the stored data down to a smaller size. Instead of going into speci�cs on how these

algorithms work, we will focus on what these algorithms achieve: lower storage requirements

by simply describing the data in a different way. We will also consider what is left and what is

discarded in the compression process.

2

Some compression algorithms are “lossless”, meaning that they reduce the required amount

of data needed to store all of the information without losing any information. This is most

readily seen in the PNG and FLAC storage formats for images and music, respectively. This is

achieved by removing redundant data that can be exactly replicated in the future or by storing

differences in sequential bytes (which are usually much smaller than the full byte value). There

are also “lossy” compression algorithms, such as JPG and MP3. These algorithms remove some

information contained in the data in exchange for a much lower storage requirement. The “dis-

carded” information is usually high frequency information that is at the extreme end of human

hearing (in the case of music) or hard edge information in pictures, resulting in some blurring

and “compression artefacts”, but when viewed from a distance are not noticeable. Note that

information is always lost in the original digitization process.

As an example, consider a completely black square image to be stored digitally (shown

in Fig.1.1). This image was generated in Matlab by converting an array of zeros into a �gure

usingimshow , and then saved in various �le formats. The �rst �le format, .bmp, is the stored

sequential array of the values, and is uncompressed. The second �le format, .png, is the image

stored with lossless compression speci�cally for images. The third �le format, .jpg, is a lossy

compression algorithm for images. The fourth �le format, .zip, is a generic lossless compres-

sion function given in Windows asSend to -> Compressed (zipped) folder in

the .bmp �le's right-click context menu. The .bmp format takes 65 kB of data to store digitally

(close to 256*256*8 bits per pixel). The .jpg format is able to reduce this �le size down to

1100 bytes. The .png format further reduces the �le size to merely 160 bytes. The .zip format

achieves a �le size slightly higher than the .png format at 221 bytes (the extra data coming from

increased header information). From the drastic reduction in �le size by using these various

compression algorithms, we can see that the original image contained very little information.

This makes sense intellectually as well, since the entire image could be described with a few

words (e.g. “256 pixel square entirely black”), which is a small amount of information.

Next, consider the same size image with a black and white checkerboard pattern (i.e. every

pixel is opposite the ones next to it, with colors limited to black and white), as shown in Fig.1.2.

This image was generated similarly to the previous one and again saved in the four different

3

Figure 1.1: A 256x256 pixel black image, containing very little information

formats. The .bmp format takes 8.1 kB to store uncompressed. The .jpg format is unable to

compress the picture and ends up taking 28.8 kB to store. In addition, it introduces artifacts

(e.g. colors other than black and white) into the picture. However, the .png format is able to

losslessly compress the image down to 135 bytes, with the .zip format taking up 211 bytes.

Even though there is some “information” in this image (more so than the completely black

image), the compression algorithms are able to reduce this image into a very small amount of

“real” data that can completely replicate the picture. Again, this exact pattern is easily described

in words, so the only unique properties of the image are the size and starting pixel color. These

properties are able to precisely de�ne the image.

Finally, consider an image with a random choice of black and white in each pixel (shown

in Fig.1.3), the pattern being created using therand function in Matlab and then processed in

the same way as with the previous two images. The uncompressed .bmp again takes 8.1 kB to

store. The .jpg format, much like the checkerboard pattern, fails at compressing the image and

takes 44 kB to store (over 5 times the original size). Interestingly, the .png and .zip formats

also both fail to compress the image, taking 8.2 kB to store. These results are summarized in

Table 1.1.

4

Figure 1.2: A 256x256 pixel image in a checkerboard pattern, also containing very little infor-
mation

Table 1.1: Summary of �le sizes resulting from the previous exercise.

.bmp .jpg .png .zip

black square 65 kB 1100 B 160 B 221 B
checkerboard 8.1 kB 28.8 kB 135 B 211 B

random 8.1 kB 44 kB 8.2 kB 8.2 kB

Why do all of the compression attempts fail on the last image? It is the same size as the

other images and even has the same ratio of pixel color as the checkerboard image. Of course, it

is because of the pattern of the individual pixels. In the checkerboard image, information about

one pixel completely de�nes every other pixel. In the random image, there is no information

gained about one pixel from examining any other (or all!) of the other pixels. Thus, the best

that the compression algorithms can do it simply list each pixel in order. Hence, the storage

requirement is very near the uncompressed .bmp size.

At this point, it can be said that information about something can be split into two parts.

First, there is information that is unknown, unique, or “random”. This is the information that

in incompressible and cannot be reduced without removing properties of the item. Second,

5

Figure 1.3: A 256x256 pixel image generated randomly, containing much more information

there is information that is known, predictable, or patterned. This is the part that compression

algorithms attempt to reduce to the base “unique” part of the information, which can then be

decompressed later. Some items, such as the black square, are almost entirely predictable.

Others, like the checkerboard, are some balance between unique and patterned. Finally, there

is the ”random”, which is the focus of much interest and research. The main goal of studying

randomness and random phenomena is to learn what parts can be understood as patterned, and

what parts are truly random. If one is able to remove the patterned part and only keep the

random, then a random number generator can be built.

1.2 The Coin Toss

Perhaps the most iconic random number generator known today is the simple coin toss.

This “heads or tails” device has decided outcomes with varying degrees of importance through-

out history, from choosing between places to eat with friends or deciding team placement in

sporting events, all the way to determining presidential candidates and other elected positions

in the United States. A large emphasis is placed on the fairness of the chosen coin, with a

6

weighted or even “double-headed” coin universally seen as unfair as the outcome is skewed

from a �fty-�fty distribution.

Despite the extensive use of the coin toss as a random number generator, its dynamics

have been thoroughly studied and have been found to be quite predictable [2][3]. In order to

perform a coin �ip, the coin is placed either heads up or heads down on the thumb, and then

the thumb �icks it upward. After the point at which the coin loses contact with the thumb, the

“initial conditions” are set, meaning that the dynamics of the coin �ip are allowed to propogate

forward without further input. Air resistance, gravity, and impact with the ground are the forces

that act upon the coin to ultimately determine the ending heads or tails decision.

By measuring the initial conditions of the coin (e.g. side initially up, rotational velocity,

upward velocity, mass of the coin, etc.) with enough accuracy, and by knowing certain prop-

erties of the environment (e.g. coef�cients of friction and restitution of the ground and coin,

initial height above ground, etc.), the outcome of the coin �ip can be con�dently predicted [4].

With enough sophistication in equipment, multiple sets of initial conditions can be measured

and mapped to their �nal outcomes, allowing rapid predictions in real time while the coin is

still in the air. These heads or tails “basins” of initial conditions show that various ranges in

speci�c initial conditions end up with the same outcome, meaning that measurement errors or

inaccuracy within these ranges do not affect the predicted outcome.

Given that the coin toss is so readily predictable by modern standards, it seems odd that it

is still so widely used with the assumption that the outcome is �fty-�fty. Most would realize

that the coin toss somehow “predictable”, but would continue to trust in the process for decision

making. Of course, in reality there is an understanding also that no one is measuring the coin's

initial conditions (beyond the the side up perhaps), and no one has ready access to equations

of dynamics for the coin into which to input the conditions. Hence, there is a mutuallack

of information during the coin toss among parties that prevents one from gaining a predictive

advantage over the other. The information is technically available to any observer, and the

�nal outcomecould be calculated, but rarely would anyone pursue attempting to perform the

prediction in real time.

7

So is the coin toss random? On one hand, there are accurate models for the coin toss

dynamics that take into account a multitude of different toss variables and scenarios, and mea-

suring these variables is fairly straight forward. With modern equipment, real time prediction

is certainly feasible. In this sense, the coin toss is not random: Given enough information about

the initial system, the outcome is con�dently known. On the other hand, the dynamics of the

coin toss map the initial conditions to an even distribution of heads and tails, and the initial con-

ditions of the system are mostly unknown to the parties and unable to be accurately measured

or in�uenced by a human to con�dently move them between the basins of initial conditions.

Even if steps were taken to measure the initial conditions, uncertainty in these measurements

could be enough to change the predicted outcome such that the con�dence in the prediction is

no better than the original �fty-�fty chance.

In essence, there are parts of the coin toss that are “known”, and there are parts that are

“random”. Speci�cally, the equations governing the trajectory of the coin while in the air and

when impacting the ground have been thoroughly researched and can be considered known.

The unknown part of the coin toss is only the initial condition of the system. The initial con-

ditions could be known with enough determination, and thus an accurate prediction could be

made, but in most situations this aspect of the coin toss remains hidden from all parties. This

is the random part that most rely on in order to make decisions. Even though the coin toss is

not precisely the ideal �fty-�fty chance that it is expected to be, it is good enough for most

purposes.

1.3 Entropy

“Entropy” is a term that is sometimes interchangeably used with randomness and infor-

mation in order to describe a sense of disorder or unpredictability. For this discussion, we will

focus instead on the more tangible aspects of entropy as it relates to random number generation.

A system that has entropy tends to move from states of order to states of disorder. Order

is denoted by stability, periodicity, or predictability. Disorder is denoted by instability, aperi-

odicity, or unpredictability. The entropy of a system is then a measure of the amount of that

disorder compared to the order in the system, or the tendency of the order to transition into

8

disorder. Entropy has a well established background using thermodynamic principles. When

considering each individual molecule of a system and the properties of them (known as “mi-

crostates”) as they relate to the properties of the overall system (known as “macrostates”), the

thermodynamic de�nition of entropyS can be written as 1.1.

S = kB ln(
) (1.1)

In this de�nition, kB is Boltzmann's constant (1:381� 10� 23J=K), and
 is the number of

equiprobable microstates. It follows from this de�nition that a system with a large number of

microstates has a high entropy, regardless of the macrostate of the system. Likewise, given the

macrostate of the system, the entropyS is a measure of how much more information is needed

to completely describe the system down to the microstate level.

This thermodynamic de�nition is very similar to the communication theory de�nition

given by Shannon [5, 6]:

H = �
nX

i =1

pi log2(pi) (1.2)

Here,H is the Shannon entropy, and thepi are the individual probabilities of each symbol.

For a binary system, the entropy is maximized whenp0 = p1 = 0:5. That is, when all probabil-

ities are equally likely, then the least amount of information is known about the system until it

is sampled. Likewise, once it is sampled, the maximum amount of new information is learned.

For example, a communication scheme that only sends 0's (p0 = 1; p1 = 0) has zero entropy

since no information is actually communicated.

In a technical sense, the entropy of a certain bit sequence is a measure of the information

contained in that sequence compared to the length of that sequence. This is usually measured

in bits per byte, with 8 bits per byte being the maximum entropy measure possible.ent is a

program available on Linux to quickly examine a bit stream or �le and evaluate various aspects

related to its randomness [7]. An example of this program running is shown in Fig. 1.4.

In the �rst �le tested, the data in the �le could technically have been represented with 6%

less data (i.e. 6% of the data is redundant). This amounts to an entropy of approximately 7.44

9

Figure 1.4: A screenshot of theent program running on two different �les

bits per byte. The second �le, however, is uncompressible. The data within this �le has the

maximum entropy possible at 8 bits per byte. For both �les, other metrics of randomness are

given in addition to the entropy. The arithmetic mean of the �le is the mean of all of the 8 bit

byte values from 0 to 255 that are represented in the �le. The Monte Carlo value for� is a

calculation based on using successive byte values as 24-bit XY coordinate pairs within a unit

square, and then measuring how many of those pairs land within the unit circle. The serial

correlation is a measure of how each byte relates to the previous byte; correlation denotes

predictability in the bit stream and thus redundant data.

10

Chapter 2

Overview of Chaos and Random Number Generators

2.1 Chaos

In the 1960's, in an attempt to create a model for weather patterns that had phenomena that

were unexplained by previous linear models, Edward Lorenz discovered a system that had very

peculiar properties [8]. When his system was simulated with very close initial conditions, the

future outputs were vastly different. Robert May, when describing population densities, found

an equation that did not have a steady state solution, was not periodic, and yet did not become

globally unstable [9]. These, along with other discoveries in the �eld of nonlinear dynamics,

ultimately led to the coining of the term “chaos” in order to describe these phenomena.

Today, chaos can be found in multiple areas, including phenomena in both natural and

arti�cial events. For example, weather patterns are chaotic in the sense that they are able to be

accurately predicted a few days in advance, but forecasts longer than a week suffer a drastic

decrease in con�dence. A normal pendulum has a simple periodic orbit dependent only on

gravity and the length of the pendulum, but when an extra joint is added to the pendulum to

make it a double pendulum, the motion of the end mass is complex and can complete full

revolutions around the second joint. Fluid mixing results in an overall homogeneous mixture

but has chaotic trajectories for the individual particles. Chaos also has strong similarities to

fractal geometry found in many plants and rock formations.

Chaos, before the formal recognition that it currently has, was mostly bundled into the

term “noise” and its effects were disregarded as unavoidable. While chaos does share a number

of characteristics with noise, some properties set chaos apart as a unique phenomenon. There

are also qualities of chaos that can be measured in a system of interest to quantify the existence

of chaos in that system.

11

One of the �rst properties of chaos is known as sensitivity to initial conditions. As the

designation implies, chaotic systems' future states have an extreme dependence on the starting

conditions of the systems. Small changes in these conditions quickly multiply into large de-

viations in the eventual trajectories that the system will take, even in the absence of any other

in�uence such as noise. Furthermore, extremely small perturbations in the system state at any

time will cause the same divergence in trajectories.

Chaotic systems also exhibit long term aperiodicity even though they are cyclic. Specif-

ically, chaotic systems can have a number of orbits that trajectories of the system will follow.

Certain trajectories will take different amounts of time to complete one cycle of an orbit. Other

trajectories will switch from one orbit to another for a time and then switch back. Each cycle of

an orbit takes a slightly different amount of time, and thus there is no �xed period of the system.

Phase space portraits and Poincare sections can shed greater insight into different orbits that a

chaotic system can have.

From this, chaotic systems have a spread spectrum power density. Whereas normal pe-

riodic systems have their spectral power mostly at a natural or resonant frequency, chaotic

systems have this power over a large frequency band or set of bands. Often this can extend

from near 0 Hertz to the fundamental frequency of the system without having a large de�ned

peak at any one point in that range.

Chaotic systems also exhibit what is known as topological mixing. This is an extension

of both the properties of sensitivity to initial conditions and aperiodicity. A set of points close

together on any trajectory of the system will, given enough time, become spread out over all

of the orbits of the system. An analogy is mixing food coloring into a pudding: once it starts

to be mixed, the color quickly becomes dispersed throughout the pudding until the mixture is

homogeneous. At this point, the color and the pudding cannot be unmixed. Likewise, it is

extremely dif�cult to determine the starting positions of the points in a chaotic system after this

mixing has occurred.

All of these properties gives rise to another useful characteristic of chaotic systems: they

are impossible to predict in the long term. For chaotic systems that can be de�ned as differential

equations, the short term behavior can be predicted with high accuracy. This accuracy quickly

12

drops off due to sensitivity to initial conditions and aperiodicity to the point that long term

behavior is essentially a random guess. At that point, new information needs to be gathered in

order to be able to predict the system again.

Thus, chaotic systems are ideal for random number generation. They are naturally un-

stable and are aperiodic, which prevents prior information about the system from being used

to determine long term behavior in the output. However, care must be taken so that random

numbers are extracted from the system correctly such that statistical randomness is preserved.

2.2 Random Number Generation

Most randomly generated numbers today are generated with an algorithm designed to

provide these numbers in a statistically uniform order. These algorithms are referred to as

pseudorandom number generators. The increase in the reliance on random numbers has caused

pseudorandom number generators to be present in almost every digital electronic system. Pseu-

dorandom number generators are extremely fast and ef�cient, only limited by the clock speed

of the algorithm and the power budget of the system. There are multiple different designs of

these generators, including linear feedback shift registers, block ciphers, and stream ciphers

[10][11].

However, as the name implies, pseudorandom number generators are not actually random.

Pseudorandom number generators are meant to provide a source of statistical randomness, not

true randomness. These generators are suitable for most everyday applications given that most

generators are isolated enough from user interface, and most consumers are only concerned

with the statistical randomness of random numbers. For extremely secure systems, this com-

promise is not acceptable.

There are a number of weaknesses in pseudorandom number generators that prevent them

from being truly random. One of the most prominent issues of a pseudorandom number gener-

ator is that it will eventually repeat itself. Some of these generators have extremely long cycle

lengths. Hence, there is a set amount of bits that can be taken from the generator before it

is guaranteed to start its output sequence over. Also, some con�gurations of a pseudorandom

number generator will not produce statistically random numbers. This is most prominently seen

13

in early con�gurations of linear feedback shift registers, where not only did the output repeat

itself, it did so before all combinations of output were given. Pseudorandom number generator

designs today go to great lengths to ensure that the output of the generator is as uniform as

possible and as long as possible before it repeats itself.

Ultimately the output of every pseudorandom number generator can be predetermined

given the initial states of the generator and the con�guration of the generator. Since there are

no outside states or in�uences to the generator, only an algorithm stored in memory, the future

output is �xed. If an outside entity wanted to predict the output sequence from a pseudorandom

number generator before they were actually generated, all that would be required would be to

take the state of the generator and run the algorithm faster until the future output of the �rst

generator was given by the second; no further information would be required. Normally, it is

very dif�cult to get any information from a pseudorandom number generator aside from the

output sequence, but once that information is known, the generator can be broken.

On the other hand, true random numbers are not based on a digital algorithm but rather on

a physical process. The true randomness comes from the inability to get full information about

either the system or the system state. For example, even if the dynamics of a physical system

were hypothetically known exactly, the system output would still be unable to be predicted

because the exact initial conditions cannot be measured. Likewise, if hypothetically the initial

conditions could be exactly known, the future output would still be unable to be predicted

because the system itself is never exactly known. In this way, physical processes provide a

source of true randomness in that nothing can be fully known or predicted.

In order to be useful random number generators, physical processes still must provide sta-

tistical randomness as well as providing true randomness. Usually, the random numbers taken

straight from the system will be biased in one way or another, and thus must be compensated

for in a post-processing step. The most famous of these steps is the Von Neumann corrector,

which takes a number sequence with a bit level bias and returns a new sequence where the bits

are weighted equally.

Statistical randomness can be examined using a number of tests designed to evaluate large

bit sequences for uniformity. Some programs that are publicly available include NIST and

14

Dieharder [12][13]. Ideally, a true random number generator will pass all of the performed tests

with every bit sequence tested. A large amount of data must be given to these programs in order

to assess randomness, and the physical process must be swept over its operating parameters in

order to ensure that the system maintains its randomness throughout operation.

2.3 Laser Chaos and Random Number Generation

Lasers have provided incredible improvements and applications to a multitude of different

areas, including manufacturing, medical, chemical, entertainment, and metrology [14][15][16][17][18].

Lasers' naturally small wavelengths allow extremely precise resolution when controlling the

laser output spatially, while still being able to lase with a high output power. Usually, in order

to keep the laser within a desired frequency range, a feedback mechanism is required; however,

this is readily achieved with various techniques [19][20][21].

Random number generation is one of the foundations of modern cryptosecurity. Without

a reliably random number source, encryption schemes for monetary and communication pur-

poses would be much easier to break. As such, random number generators need to be inherently

unstable, unable to be predicted, and yet easy to implement in a real system such that they can

ef�ciently be used.

Stability in laser frequency is normally desired for most applications, since for these ap-

plications the laser energy needs to be con�ned to a small bandwidth compared to the natural

frequency of the laser. However, for random number generation, the natural instability of the

laser can be exploited. In addition, a laser can be made more unstable by placing certain feed-

back paths in the system that multiply the natural instability.

Note that laser instability for random number generation does not mean instability in the

sense of lasing. Instability in normal laser systems means that there is no coherent beam be-

cause certain frequencies that the laser is designed to operate at are not supported by the optical

geometry of the system or by any electronics providing ampli�cation of the beam. Instability in

these systems refers to a phenomenon where the system is globally stable but not locally stable,

and is also not periodic. In a sense the laser output is random over a set of parameters, usu-

ally frequency or amplitude. Laser systems that exhibit this behavior are referred to as chaotic

15

systems. Chaotic phenomena in lasers have been reported and studied extensively in recent

decades [22][23][24][25]. Chaos can be present in laser systems through various means, most

of which involve a feedback mechanism [26]. In normal laser operation, feedback is used to

keep laser frequency locked into a very narrow bandwidth. Chaotic laser operation requires this

feedback to enhance the instability of the laser to the point that the nonlinear dynamics of the

system overwhelm the normal operation. A large amount of research in laser chaos has been

performed to mitigate or eliminate the effects of chaos in normal laser systems [27][28][29].

One method to induce chaos in a laser system is to couple a coherent, but much weaker,

output of the laser back into the system [30]. By doing this, coherence in the system collapses

and the laser is now no longer one speci�c frequency, but rather a broad range of frequencies,

ultimately resulting in a noiselike spectra. The gradual increase in frequency content of a signal,

noting higher order periodicitiy, is also known as period doubling [31].

Laser radar using a chaotically modulated carrier has been shown to provide a number

of advantages over conventional radar, including low probability of intercept and increased

resolution [32]. Creating a wideband signal for modulation at microwave frequencies presents a

challenge for most radar systems, but chaotic signals have the necessary properties to give these

bene�ts. Chaotic radar systems also have the ability to be synchronized with each other under

certain conditions, which allows for a transmitter and receiver pair to operate theoretically

undetected while still maintaining high resolution [33][34].

A lasers' naturally high frequency allows the chaotic phenomena to have a very high band-

width, on the order of 1 GHz. This allows for random numbers to be generated more quickly

than chaos found in other systems at lower frequencies, since a high throughput of random

numbers in a random number generator is desirable. Some schemes for extracting random

numbers from chaotic laser systems are shown below. Importantly, these schemes pass the ran-

dom number generator tests to ensure that the output is statistically random in addition to being

truly random.

One method of obtaining random numbers from a chaotic laser signal is to sample it with

an analog to digital converter. This method is suitable for high speed random number generation

because no post processing is necessary with a well designed system, which reduces system

16

complexity and increases robustness [35][36]. In these systems, the signal is sampled at a

high sample rate in order to acquire a number of bits, e.g. an 8-bit sample. One of these

bits is extracted and taken as a random bit. Then, another sample is taken and another bit

extracted. The continuous operation of sampling and extraction creates a bit stream that can

then be used as random numbers. Bit rates on the order of 10 Gbps are reported using this

method. Additionally, by taking more than one bit per sample, higher bit rates can be achieved,

but some statistical tests fail with the inclusion of more bits.

Another method is to sample the laser signal and then compare it with a time delayed

version of the laser signal [37]. This requires storage of the laser signal for later processing,

which might prohibit real time operation. First, the derivative of the laser signal amplitude

is taken as the new signal in order to avoid biases in the �nal output. Then, a bit-wise XOR

operation is performed between the signal sample and its time delayed derivative sample, and

then a subset of the bits are taken as the random bits. In this system, where the lowest 5 bits of

the XOR operation are taken at a sampling rate of 2.5 GHz, bit rates of 12.5 Gbps are achieved

while passing all statistical tests.

Additionally, by sampling both the clockwise and counterclockwise lasing modes within a

single cavity, multi-bit samples can be taken and then post processed similarly as above. This is

an improvement to other similar systems that use two separate laser cavities to achieve the same

statistical results [38]. Moreover, the optical feedback path chosen can be easily constructed in

a semiconductor, which allows ready implementation with an analog to digital converter and

any digital communication necessary. By taking 4 bits per sample, 40 Gbps is achieved in

practice.

17

Chapter 3

The Chaotic Jerk System

Electronic implementations of chaotic systems offer a variety of useful applications. The

deterministic yet unpredictable behavior of these types of systems lends well to inclusion in

areas such as acoustic ranging [39] and automotive collision avoidance radar systems [40][41],

random stimulating noise sources for MEMS [42], spread spectrum communication systems

[43], and random number generation (RNG)[44] [45]. These chaotic systems have shown

promise in having continuous power spectral density [46] as well as potential security against

various attacks under which other systems could be susceptible [47][48].

The primary application of interest for the oscillator in this paper is true RNG. RNGs

with high bit rates are increasingly needed as various areas of security become more reliant

on electronic means. Chaotic oscillators are especially well suited for use as RNGs due to

the long term unpredictable nature of the waveforms that are generated [49]. Moreover, these

oscillators can be used as seeds for pseudo-RNG (PRNG). This allows for the relatively higher

speed PRNG systems to be used more effectively [50, 51]. Different implementations of chaotic

oscillators into RNGs have been shown to pass the NIST test [52]. In addition, chaotic circuits

can be realized using minimal components and system footprint. [53].

Speci�cally, “double scroll” systems with discrete states similar to the one developed by

Saito et. al [54] have an advantage in that one “scroll” can be mapped to a “1” and the other to a

“0”. These types of chaotic oscillators potentially could require deskewing [55]; however many

developed systems achieve high bit rates without post processing any bits, thereby decreasing

the delay in the desired bit stream [56].

18

3.1 Background

This work explores chaotic jerk systems, which are de�ned by a third order ordinary

differential equation (ODE). These autonomous dissipative systems contain the lowest order

derivative that can produce continuous timed chaos. The term jerk comes from the de�nition

of successive derivatives in mechanical systems wherex is the displacement,_x is the velocity,

•x is the acceleration, and
...
x is called the “jerk” [57].

Chaotic systems must include a nonlinear term in order to generate chaos. The intended

application of interest is a RNG, so careful consideration was taken with regard to the potential

nonlinearity. In order to be able to more easily produce random bits, discrete nonlinearities

were considered. A candidate choice of a discrete nonlinearity can introduce discrete states

to a continuous time equation, making it easier to generate a random bit stream from an au-

tonomous system [58]. Sprott [58] gives many third order equations that exhibit chaos, but

most contain nonlinearities that are dif�cult to implement accurately in electronics, such as

multiplicative relationships, exponential functions, and trigonometric functions. However, one

speci�c nonlinearity listed is the nonlinear switching event de�ned by the signum function, as

de�ned in (3.1).

sgn(x) =
n +1; x � 0

� 1; x < 0
(3.1)

By using this nonlinearity in a continuous time system, this system is less complex and yet

more robust than an equivalent discrete time system, even though continuous time systems can

potentially undergo synchronization using a master-slave oscillator system [59].

Taking this speci�c nonlinearity into consideration, one of the equations given in [58], is

much simpler than the others:

...
x = � 0:5•x � _x � x + sgn(x) (3.2)

19

This system was carefully chosen because these functions can easily be implemented in mixed

signal electronic circuitry. The advantage of this discrete nonlinearity is that it can be im-

plemented in electronic circuitry by using a single comparator. This system's structure and

its state feedback topology are composed of a weighted summation of the system's states and

the output from the discrete nonlinearity. These mathematical functions can be implemented

in electronics by using a string of operational ampli�er (op amp) integrators, a comparator,

and an analog summing ampli�er. Implementation of this system in MOS has been proposed

and designed with desirable simulation results in the kHz frequency range, but has yet to be

physically realized [60]. These circuits could potentially require specialized MOS fabrication

techniques in order to reach high frequencies. The electronic design presented here requires

a small number of commercial off-the-shelf (COTS) components in order to be implemented.

This is advantageous in scaling the frequency of the design up to 4 MHz since the propagation

delay required to complete the feedback path is minimized.

Next, the maximum Lyapunov exponent (MLE) of the system needs to be estimated so

that the maximum bit rate for random number generation can be found. The method chosen

to accomplish this is a direct measurement of the divergence rate of many pairs of almost

identical trajectories in simulation. The sensitivity of these chaotic systems to initial conditions

causes trajectories that are different only by an amount well below measurement thresholds

of real systems to quickly diverge. The MLE is then calculated by comparing the inital offset

between the two systems with the time it takes for the difference in trajectories to reach a chosen

threshold. This calculation is given with the following equation

MLE =
ln(threshold

of fset)

time
(3.3)

where threshold is the chosen divergence limit, offset is the initial difference in states of the two

trajectories, time is the �nal time taken to reach the threshold, and ln is the natural logarithm.

Then, this translates into a theoretical maximum bit rate as follows

bitrate =
MLE
ln 2

� 1:443� MLE (3.4)

20

The bit rate given in (3.4) has units ofs� 1.

For the jerk system, many time domain simulations were performed in order to determine

the MLE by using a MATLAB script to implement the differential equations with a �xed time

step. Initial conditions for both systems (thex, _x, and•x states) were randomized such that they

were between� 1 and+1 so that the trajectories remained in the chaotic region of the attractor

rather than becoming globally unstable. Then an very small offset (between10� 12 and10� 8)

was applied to the second system'sx state. The threshold limit was chosen to be between10� 4

and10� 1. An example plot of divergence in the two trajectories for one set of the chosen offset

and threshold is shown in Fig. 3.1. In this �gure, an initial condition for the systems is chosen

and then one is separated by a small amount (d0 = 5� 10� 12 for this example). Then the systems

are simulated forward in time until they reach the speci�ed threshold (here,thresh = 1 � 10� 2

and is marked with an asterisk). After this point, the systems visibly diverge quickly.

Figure 3.1: Sensitivity to initial conditions in the jerk equation. The red asterisk denotes the
point of divergence.

The resulting MLE from many simulations with various initial conditions, thresholds, and

offsets was between0:152and0:153 for the jerk system. This then gives a bit rate of0:218

and0:221bits per second. Sprott reaches a very similar result for an MLE of the same system

when using another method with some approximations [61]. It can be seen visually that the

system has a natural ”frequency” of oscillation (when considering the time to complete one

orbit around half of the attractor) of approximately0:2Hz. Thus, the bit rate of the system

21

itself is around 1 bit per cycle. By framing the bit rate this way, the system can be scaled to any

frequency and the bit rate will remain constant with respect to the system. Speci�cally, when

the system is implemented at high frequency in an electronic circuit, the circuit will be able

to generate random bits at this higher natural frequency, as long as the system is represented

accurately.

22

Chapter 4

Hardware Circuit Design

4.1 Circuit Simulation

A block diagram of the chaotic jerk system in state feedback form is shown in Fig. 4.1.

The system's ideal dynamics were �rst simulated using ideal component models in LTSpice

as shown in Fig. 4.2. The parameter “G” sets the overall loop gain of each of the integrating

stages. Figs. 4.3 and 4.4 show the time domain ofx(t) for various values of G. The phase space

(_x vs: x) of the chaotic equation is shown in Fig. 4.5. Demonstration that the fundamental

frequency of oscillation increases as the loop gain G increases is shown in Figs. 4.3 and 4.4.

Thus, in order to achieve the highest possible frequency in the real circuit, the gains of the

integrating stages must be very high. A standard operational ampli�er integrator has a transfer

equation of (4.1).

vo =
� 1
RC

Z t

0
vin dt (4.1)

Figure 4.1: Block diagram of (3.2)

23

Figure 4.2: LTSpice simulation of an ideal circuit implementation of (3.2)

Figure 4.3: Time domain plot ofx(t) with G = 1

24

Figure 4.4: Time domain plot ofx(t) with G = 10 M

Figure 4.5: Phase space of the chaotic equation

25

Hence, the gain of each of the integrating stages is set by the values of the input resistor (R)

and feedback capacitor (C), and also is always negative. This is accounted for in the summing

ampli�er as the polarity of each stage will be the opposite of the stage before, but the polarity

of each term in (3.2) is referenced to
...
x .

However, the frequency of oscillation cannot be increased inde�nitely. Real operational

ampli�ers have �nite gain bandwidth products (GBP) and slew rate limitations. Since the gain

of the op amp integrators must be high, the primary frequency limitation of this implementation

is the GBP of the op amp. Equation (3.2) assumes that there is no propagation delay through the

string of integrators and comparator. In practice, the propagation delay through these devices

can cause signals that are assumed to be “in sync” to be “out of sync”. Additionally, non-ideal

op amp phase responses become more pronounced at higher frequencies that could potentially

be detrimental to the desired chaotic operation.

A simulation with models for real components is shown in Fig. 4.6. This circuit was

simulated in LTSpice as shown in Fig. 4.7. LT1818 op amps were chosen for their high

bandwidth, low propagation delay, and ability to operate from differential power supplies. The

LTC6752-2 comparator has separate input and output power supply power rails. This means

that the comparator's output can be scaled to� 1V to achieve proper scaling of the signum

function. Also, feedback resistors were added in parallel with the feedback capacitors in order

to prevent integrator latch up. Figs. 4.8 and 4.9 show the time domain and phase space of

this circuit simulation, respectively. These component model simulations are in agreement

with the ideal simulations at the target frequency of 4 MHz. Unfortunately, when the resonant

frequency is made any higher by decreasing the feedback capacitor value, the phase space

becomes increasingly distorted until the circuit is no longer chaotic. Thus, although the circuit

could potentially be made to oscillate at a higher frequency, the component values were chosen

so that the circuit maintains a clean phase space and time domain signal.

4.2 Circuit Hardware

A 4-layer printed circuit board (PCB) was developed using KiCad. A tutorial for creating

PCBs within KiCad is given in Appendix B. This prototype maintains the core components

26

Figure 4.6: Real component implementation of (3.2)

from the schematic in Fig. 4.7; however, additional components such as headers and decou-

pling capacitors were added for probing and �ltering the power supply. A photograph of the

populated PCB is shown in Fig. 4.10. Time domain and phase space plots of the hardware

circuit are shown in Figs. 4.11 and 4.20, respectively. An oscilloscope screen capture of the

signum function output of the circuit is shown in Fig. 4.13. This circuit is shown populated to

oscillate at the target 4 MHz fundamental frequency.

The hardware circuit is in close agreement with both the ideal simulation and the real

component simulation when comparing both the time domain and phase space plots. Moreover,

the signum output shown can be used as the random bit stream for a RNG. The circuit draws

approximately 40 mA from both the +5V and -5V power supplies, and draws approximately

2mA from both the +1V and -1V power supplies.

27

Figure 4.7: LTSpice simulation of (3.2) with real components

28

Figure 4.8: Time domain plot ofx(t) for the simulated system

Figure 4.9: Phase space (_x vs x) for the simulated system

29

	Abstract
	Acknowledgments
	Information, Entropy, and Randomness
	Compression
	The Coin Toss
	Entropy

	Overview of Chaos and Random Number Generators
	Chaos
	Random Number Generation
	Laser Chaos and Random Number Generation

	The Chaotic Jerk System
	Background

	Hardware Circuit Design
	Circuit Simulation
	Circuit Hardware
	Compact and Low Power Implementation
	Efficient Design of Chaotic Oscillators

	Smaller Board Design
	PCB Implementation
	Low Power Improvements

	Hardware Random Number Generation Results
	Other Methods Of Obtaining Randomness From Chaos
	Von Neumann Corrector
	XOR Operation

	Conclusion
	Future Work
	References
	Appendices
	Compiling and Using Dieharder on Windows
	Creating a Printed Circuit Board using KiCad
	Code Sections for Various Functions
	Dieharder Output

