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Abstract

In this work, we focus on developing and analyzing novel probabilistic numerical ap-

proaches for solving several types of semi-linear nonlocal diffusion equations in both un-

bounded and bounded high dimensional spaces. First, we propose probabilistic schemes for

solving the partial integro-differential equation (PIDE) with Fokker-Planck operator related to

a jump-diffusion process in the unbounded domain Rd. Under a given probability space, we

exploit the probabilistic representation of the solution of PIDE to construct both temporal dis-

crete and temporal-spatial discrete schemes of the solution of PIDE. The rigorous error analysis

is provided to prove that the temporal discrete scheme can achieve first-order convergence. To

add in spatial discretization, the temporal-spatial discrete scheme incorporates with the high-

order piecewise polynomial interpolation that leads to high order convergence with respect to

spatial mesh size ∆x. Next, we consider another typical nonlocal diffusion equation, the frac-

tional Laplacian equations. Due to work studied by Serge Cohen and Jan Rosiéski (2007), and

S. Asmussen and Jan Rosiéski (2001), stable processes can be simulated by Lévy processes

that consist of the compound Poisson processes and appropriate Brownian motions. Hence the

fractional Laplacian operator can be approximated by the second partial integro-differential op-

erator. Our probabilistic schemes for the PIDE model introduced in Chapter 3 can give a novel

numerical approach for solving the fractional Laplacian equation. Third, we impose volume

constraints into PIDEs model and consider the initial-boundary value partial integro-differential

equations. The key idea is to exploit the regularity of the solution u(t, x) to avoid direct ap-

proximation of the random exit time corresponding to the boundary conditions. The error from

the exit time decays sub-exponentially with respect to temporal mesh ∆t when all interior grid

points are sufficiently far from the boundary. Moreover, our numerical methods lead to an

overall first-order convergence rate with respect to ∆t and achieve high order convergence with

respect to ∆x. Last, we introduce one application of the initial-boundary value PIDE problem,
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the approximation of the runaway probability of electrons in fusion tokamak simulation. Run-

away electrons (REs) generated during magnetic disruptions present a major threat to the safe

operation of fusion tokamak. A critical aspect of understanding REs dynamics is to calculate

runaway probabilities, i.e., the probability of an electron in the phase space will runaway on, or

before, a time t > 0. Mathematically, such probability can be obtained by solving the adjoint

equation of the underlying Fokker-Planck equation that controls the electron dynamics. In this

work, we present a sparse-grid probabilistic scheme for computing runaway probability. The

key ingredient of our approach is to represent the solution of the adjoint equation as a con-

ditional expectation, such that discretizing the differential operator becomes approximating a

set of integrals. The sparse grid interpolation is utilized to approximate the runaway probabil-

ity, and adaptive refinement is also exploited to handle the sharp transition layer between the

runaway and non-runaway region.
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Chapter 1

Introduction

Mathematical modeling plays an essential role in predicting behavior problems in business,

physical and biological science. The physical and mathematical models developed are often

highly simplified versions of reality. Nonetheless, we gained great insights in understanding

the underlying physical mechanisms through these models.

In many physical applications, we aim to describe how one quantity changes in relation

to another quantity. For instance, the distribution of some quantities evolves over time in a

solid medium. Such a relationship can be represented mathematically by derivatives. It should

be reasonable to express such principles in terms of differential equations. Differential equa-

tions can be divided into several types based on their own properties. The diffusion equation

is a type of partial differential equations (PDEs) relevant to the Markov process. Diffusion

equations can be formally classified into two types: local diffusion equations and nonlocal

diffusion equations. From the stochastic perspective, the diffusion is deemed nonlocal when-

ever the associated underlying stochastic process is given by a non-Brownian motion process,

i.e., a process without independent increments. The feature of nonlocal diffusion can be ap-

plied in a wide variety of fields of physics, finance, and insurance, such as contaminant flow in

groundwater, the dynamics of financial markets and risk measures [20, 26, 29]. The existence

and uniqueness of solutions of diffusion equations have been proved in [5, 41], but obtaining

the analytical solutions of such problems is typically difficult. Hence numerical solutions are

highly desired in applications. Various methods exist to build numerical solutions of diffusion

equations, e.g., meshless methods [3], finite-element-type methods [11] and continuous-time
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random walk (CTRW) methods [10, 29]. For the first two methods (can be classified as deter-

ministic methods), the nonlocal operator may lead to a severe computational cost due to non-

sparsity of the underlying linear or nonlinear systems and the CTRW methods as the typical

stochastic methods suffer the slow convergence and requiring a large number of data samples

to guarantee small errors. The key idea of our numerical approach is to exploit the probabilistic

representation of the solution of the differential equation, which can achieve stable and high

order numerical schemes.

A recently developed probabilistic numerical approach is exploited to provide a variational

analysis for a general class of nonlinear parabolic partial differential equations with Dirichlet

boundary conditions in Rd. The probabilistic approach connects the nonlinear parabolic partial

differential equations with Dirichlet boundary conditions with the decoupled forward-backward

stochastic differential equations (FBSDEs) with random terminal time. Peng and Pardoux [35]

have proved the existence and uniqueness of backward stochastic differential equations (BS-

DEs) with a fixed terminal time under some standard conditions. Moreover, the extension of

BSDEs with a random terminal time has been studied in [9, 34]. We refer to some litera-

ture [6, 30–32] that have been devoted to numerical methods for the solutions of BSDEs. One

typical technique to deal with the random exit time is approximating exit time [6], but it suffers

a low convergence rate. Another numerical approach is to use probabilistic representations of

their solution. An approximation solution of the Dirichlet problem has the form of expectation

of a functional of the chain trajectory, which involved by the Monte Carlo (MC) technique and

linear interpolation skills.

Due to errors in the measurements and inherent randomness of real dynamics, coefficients

and the forcing term of differential equations can be defined by a family of random functions

with a set of parameters. In reality, some initial and boundary conditions are often unknown,

and we are only given specific ranges of some values. Hence they are also suitable to be treated

as random variables or random processes. White noise is a typical stochastic process with an

independent and identical distribution, which is the generalized derivative of the Wiener pro-

cess or Brownian motion. Incorporating random processes into traditional ordinary differen-

tial equations (ODEs) or partial differential equations, we get stochastic differential equations
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(SDEs) or stochastic partial differential equations (SPDEs). The conventional approach for

approximating the action of random elements in the solution of ODEs or PDEs is the Monte

Carlo method [14]. Monte Carlo methods are a broad class of computational algorithms that

rely on repeated random sampling to obtain numerical results. The fundamental concept is to

use randomness to solve problems that might be deterministic in principle. However, the MC

method is not efficient in solving large-scale mathematical models.

Lévy processes form a significant class of stochastic processes that mainly contain both

Brownian motion and the Poisson process (finite /infinite jump amplitude). The stable pro-

cess that has paths of infinite variation is widely used in modeling complex physical and eco-

nomics phenomena. The simulation of a stable process has been investigated in a vast litera-

ture [4, 8, 22, 24]. Asmussen and Rosiński [4] showed that a Brownian motion could simulate

the remainder with a small variance in most cases. In the multidimensional space, the first tech-

nical issue is how to choose a compound Poisson process such that it is easy to simulate and the

choice also determines the form of the remainder process, which we want to approximate by

a Brownian motion. Serge Cohen and Jan Rosiński [8] conducted the theoretical analysis and

obtained the necessary and sufficient conditions for Gaussian approximations in multidimen-

sional spaces. The symmetric α stable (SαS) process as a particular case of stable processes

with infinity variation is the corresponding Lévy process of the fractional Laplacian operator.

In general, SαS process with (1≤ α ≤2) is different from the Gaussian process because it does

not have joint probability density functions and it is usually expressed by the characteristic

function.

Next, we look at one application of PIDEs with volume constraints in plasma physics. In

magnetically confined fusion plasma, runaway electrons (REs) can be generated during mag-

netic disruptions due to the strong electric field resulting from the rapid cooling of the plasma.

At high enough velocities, the drag force on a particle due to Coulomb collisions in plasma de-

creases as the particle velocity increases. As a result, in the presence of a strong enough parallel

electric field, fast electrons can “runaway” and be continuously accelerated. Understanding this

phenomenon has been an area of significant interest because of the potential impact that REs

can have to the safe operation of ITER. In particular, if not avoided or mitigated, REs can
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severely damage plasma facing components Ref. [13, 21, 28]. We propose a sparse-grid proba-

bilistic scheme to study RE dynamics in phase space.

The outline of this work is as follows: In Chapter 2, we introduce some important math-

ematical concepts and preliminaries related to probability space, stochastic differential equa-

tions, some fundamental knowledge about sparse grids quadrature and piecewise interpolation

polynomials in high dimensional irregular domains.

In Chapter 3, we propose novel numerical schemes for approximating the solution of PIDE

in unbounded domains based on the works [50, 54]. We derive the explicit probabilistic repre-

sentation of the solution of the initial PIDE associated with a backward jump-diffusion process

based on the nonlinear Feynman-Kac theory. The Feynman-Kac theory establishes the rela-

tionship between the PIDEs and a certain class of stochastic differential equations with jumps.

We propose both temporal discrete scheme and temporal-spatial discrete scheme taking ad-

vantage of the probabilistic representation. High-order convergence in spatial discretization

for the general PIDEs and the corresponding error analysis are still missing in the literature.

We exploit the Markovian property of the jump-diffusion process to prove that the temporal-

spatial discrete scheme that can obtain the high-order convergence with respect to ∆x to fill

the gap. Specifically, temporal integrals in the probabilistic representation of the solution of

PIDE are discretized using the implicit Euler method so that the temporal discrete scheme is

stable and achieves first-order convergence in the weak sense. High-order numerical meth-

ods for discretizing the probabilistic representation, such as the Crank-Nicolson scheme, can

also be used, but our goal is to develop stable and effective schemes for PIDEs that work in

complicate domains rather than seeking high-order convergence numerical schemes. In the

temporal-spatial discrete scheme, building composite quadrature rules is critical to approxi-

mate the conditional mathematical expectations with respect to both Brownian motion and the

compound Poisson process. In particular, the integrals only with respect to Brownian motion

are estimated by Gauss-Hermite rule and a specific form, e.g., Gauss-Legendre, Gauss-Jacobi

and Newton-Cotes rules, for approximating the integrals with respect to the compound Poisson

process can be determined based on the regularities of the kernel and the forcing term. Since

our examples are high-dimensional cases, the tensor products of quadrature rules will bring
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about the heavy computational cost. In this case, we use sparse-grid quadrature rules [7,18,19]

to alleviate the explosion of computational cost from the curse of dimensionality. Moreover, to

avoid the explosion of the total number of quadrature points with the number of time steps, we

construct the piecewise pth Lagrange polynomials on a pre-determined spatial mesh to evaluate

the integrands at quadrature points.

Chapter 4 is dedicated to describing the fractional Laplacian equations (partial differen-

tial equations with fractional Laplacian operator) and the corresponding numerical schemes

based on the Gaussian approximation [4, 8]. As well known, the fractional Laplacian operator

(−∆)α/2 is the infinitesimal generator of the symmetric α stable process for a fixed α ∈ (0, 2].

And due to the Gaussian approximation method for stable processes, the stable processes can

be approximated by an appropriate Lévy processes, i.e., a combination of an appropriate com-

pound Poisson process and a Brownian motion with small variance, which is related to PIDEs

studied by Chapter 3. The main contributions of this chapter are as follows: we simulate two

symmetric α stable processes with two different α = 0.5, 1.5 in one-dimensional space by

Lévy processes to illustrate the accuracy for Gaussian approximation. Next, we construct the

probabilistic schemes for the PIDE model which is the approximation of the fraction Laplacian

equation in three-dimensional space. We aim to give a novel numerical approach for approxi-

mating the solution of the fractional Laplacian equation.

In Chapter 5, we research the PIDE with volume constraints, which is a natural extension,

to the nonlocal case, of boundary conditions for local PDEs. Compared with the PIDEs model

in the unbounded domain Rd, the main issue in solving the PIDEs with volume constraint is

the low accuracy for approximating the probabilistic representation of the solution near the

Dirichlet boundary. To get the discretization approximation of the probabilistic representation

of the solution, we divide the probabilistic representation into two parts based on two event

subsets, i.e., one describes the event that the state of the underlying stochastic process remains

in bounded domain after a fixed time s, another one describes the event that the state of under-

lying has exited before or on a fixed time s. In order to avoid accurately approximating the exit

probability, the key is to set all interior grid points are sufficiently far from the boundary such

that the underlying stochastic process starting from any interior node of will have a tiny exit
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probability, we prove that given the temporal-spatial mesh T × K∆x, if the distance between

the boundary and all the interior grid points is on the order of O((∆t)
1
2
−ε), then the exit prob-

ability is on the order of O((∆t)ε exp(−1/(∆t)2ε)). For instance, we set the mesh size ∆x on

the order of O(
√

∆t), so that the process ~X
tn+1,x

s starting from any interior node of K∆x will

have a very small exit probability. In this case, piecewise cubic interpolation with O((∆x)4) is

needed to recover a O((∆t)2) local error.

In Chapter 6, we focus on the RE dynamics in 3-dimensional space with coordinates

(p, ξ, r), where p denotes the magnitude of the relativistic momentum and ξ the cosine of

the pitch angle θ, i.e., the angle between the electron’s velocity and the magnetic field, and

r the minor radius. In this case, the dynamics of the distribution of electrons is determined by

the Fokker-Planck (FP) equation describing the competition between the electric field acceler-

ation, Coulomb collisions, synchrotron radiation damping, and sources describing the second

generation of RE due to head-on collisions [40].The method we are proposing is different from

those based on the solution of the Fokker-Planck equation, e.g., Ref. [25,27], and also different

from the direct Monte-Carlo simulations. Instead, our approach is based on the Feynman-Kac

formula relating the solution of the adjoint equation and the corresponding system of stochas-

tic differential equations (SDEs). Specifically, we first represent the solution of the adjoint

equation as a conditional expectation with respect to the underlying SDEs that describe the

dynamics of the electrons. As such, the task of discretizing the differential operator becomes

approximating the conditional expectation, which includes a quadrature rule for numerical in-

tegration and an interpolation strategy for evaluating the integrand at quadrature points. In this

work, we use local hierarchical sparse grid methods [7,15,17,23,37] to handle the interpolation

for two reasons. First, the terminal condition of the adjoint equation is discontinuous, and the

adaptive refinement strategy of sparse grids can effectively capture such irregularity as well as

control the growth of the total number of grid points. Second, the problem is considered in a

high-dimensional space. The sparse gird can alleviate the computational cost.
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Chapter 2

Problem definitions and mathematical preliminaries

2.1 Probability space, random variables and stochastic processes

Having stated mathematical models we plan to deal with, we need to find reasonable proba-

bilistic concepts associated with the quantities mentioned and mathematical models. In this

section, we will discuss

• Random Variables.

• Independence.

• Families of random variables.

Before defining those probabilistic concepts, we first introduce the definition of proba-

bility space. Assuming that sampling space Ω consists of all the possible outcomes of some

experiments, i.e., the elementary events. Then the σ-algebra of subsets in Ω has the following

properties:

1. ∅ ∈ F , where ∅ is the empty set in Ω.

2. A ∈ F ⇒ AC ∈ F , where AC is the complement of A in Ω, i.e., AC = Ω\A.

3. A1, A2, . . . ∈ F ⇒ ∪∞i=1Ai ∈ F .

The triple (Ω,F , P ) is called a probability space, where the probability measure P is a map:

F → [0, 1]. The study of probability spaces is often restricted to the study of complete proba-

bility space, i.e., spaces which are right continuous and contain all P-null sets.
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Two setsA,B ∈ F are said to be independent if P (A∩B) = P (A)P (B). Two σ-algebras

F1 and F2 of F are called independent if

P (A1 ∩ A2) = P (A1)P (A2), ∀A1 ∈ F1, A2 ∈ F2.

A random variable, usually written X, is a variable whose possible values are numerical out-

comes of a random phenomenon. There are two types of random variables: discrete and contin-

uous. And a stochastic or random process is a mathematical object usually defined as a family

of random variables.

2.2 FBSDEs and PIDEs

In this section, we first introduce the decoupled forward-backward stochastic differential equa-

tions (FBSDEs) with jumps. Under the stochastic basis described in section 2.1, we assume

that the filtration is generated by two independent stochastic processes: one is a standard Brow-

nian motion {Bt}t≥0 and the other is a Poisson random measure µ on E × [0, T ], where the

space E = Rd \ {0} is equipped with its Borel field E , the compensator of µ is given as

ν(de, dt) = λ(de)dt, such that {µ̃(A × [0, t]) = (µ − ν)(A × [0, t])}0≤t≤T is a martingale for

all A ∈ E . The measure λ is assumed to be σ-finite satisfying

∫
E

(1 ∧ |e|2)λ(de) < +∞.

We introduce the following FBSDE with jumps


Xt = X0 +

∫ t

0

b(x,Xs)ds+

∫ t

0

σ(x,Xs)dWs +

∫ t

0

∫
E

c(s,Xs−, e)µ̃(de, ds),

Yt = ξ +

∫ T

t

f(s,Xs, Ys, Zs,Γs)ds−
∫ T

t

ZsdWs −
∫ T

t

Us(e)µ̃(de, ds),

(2.2.1)

where the drift coefficient b : [0.T ] × Rd → Rd and the local diffusion coefficient σ : [0.T ] ×

Rd → Rd×d are assumed to be globally Lipschitz, and let the jump coefficient c be measurable
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and such that for all e ∈ E,

|c(t, x, e)| ≤ C(1 ∧ |e|), x ∈ Rd,

|c(t, x, e)− c(t, x′, e)| ≤ C|x− x′|(1 ∧ |e|), x, x′ ∈ Rd,

and the process Γs is defined by Γs =
∫
E
Us(e)η(e)λ(de) for a bounded function η. For a fixed

terminal time T > 0, we define some sets of random processes, we denote S2 as the set of

Ft-adapted càdlàg processes {Yt, 0 ≤ t ≤ T} such that

‖Y ‖2
S2 := E

[(
sup

0≤t≤T
|Yt|
)2
]
<∞,

L2(W ) be the set of Ft-progressively measurable processes {Zt, 0 ≤ t ≤ T} which are such

that

‖Z‖2
L2(W ) := E

[∫ T

0

|Zt|2dt
]
<∞,

and by L2(µ̃) we denote the set of mapping U : Ω × [0, T ] × E → R which are P
⊗
E

measurable, where P denotes the σ-algebra of Ft predictable subsets of Ω × [0, T ], and such

that

‖U‖2
L2(µ̃) := E

[∫ T

0

∫
E

Ut(e)
2λ(de)dt

]
<∞.

Assuming the given functions f , ϕ are under standard assumptions stated in Theorem 2.1 in [5],

the FBSDE (2.2.1) has unique solution (Yt, Zt, Ut) ∈ S2 × L2(W )× L2(µ̃).

Next, we give a short presentation of the nonlinear Feynman-Kac theory and the corre-

sponding partial integro-differential equation. The extension of the nonlinear Feynman-Kac

thoery states that the adapted solution (Yt, Zt, Ut) can be related to the unique viscosity solu-

tion u(t, x) ∈ C([0, T ] × Rd) of the nonlinear PIDE with a second-order integral-differential

operator, such a PIDE typically involves a local convection term and a nonlocal integral.
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Let [0, T ] with T > 0 be a time interval, we consider the system of partial integro-

differential equations of parabolic type,


∂u

∂t
(t, x)−K[u](t, x)− f(t, x, u, σ∇u,B[u]) = 0, ∀(t, x) ∈ [0, T ]× Rd,

u(T, x) = ϕ(x), ∀x ∈ Rd,

(2.2.2)

where the second-order integral-differential operator K is defined of the form

K[u](t, x) =
d∑
i=1

bi
∂u

∂xi
(t, x) +

1

2

d∑
i,j=1

σσ>
∂2u

∂xi∂xj
(t, x)

+

∫
E

[
u(t, x+ c(t, x, e))− u(t, x)−

d∑
i=1

∂u

∂xi
(t, x)c(t, x, e)

]
λ(e)de,

(2.2.3)

and the operator B is an integral operator

B =

∫
E

[u(t, x+ c(t, x, e))− u(t, x)].

We define all functions b, σ, f , ϕ and c the same way as in the FBSDE (2.2.1). Under the initial

condition that Xt = x for a fixed t ∈ [0, T ), the triple (Y t,x
s , Zt,x

s , U t,x
s ) for t ≤ s ≤ T can be

represented by 
Y t,x
s = u(s,X t,x

s ),

Zt,x
s = σ(s,X t,x

s )∇u(s,X t,x
s ),

U t,x
s = u

(
s,X t,x

s− + c(s−, X t,x
s− , e)

)
− u(s,X t,x

s−).

(2.2.4)

Some physics models use Fokker-Planck operatorJ as the second order integro-differential

operator, which is the adjoint of the operator K. Assume that the amplitude c(t, x, e) is mono-

tonic x, let the post-jump state value be y = x + c(t, x, e) for each fixed (t, e) with in-

verse written as x = y − c̄(t, y, e) relating the pre-jump state to the post-jump state where

c̄(t, y, e) = c(t, x, e). For a fixed (t, e), if y = (I + c)x, take inverse matrix to each side gets

x = (I + c)−1y = (I − c̄)y, thus c̄ =: I − (I + c)−1 and dx = (1 − c̄y(t, y, e))dy, where

(1 − c̄y(t, y, e)) is the Jacobian of the inverse transformation, and the Fokker-Planck operator
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is then defined as

F [φ](t, x) =
1

2

q∑
i,j=1

∂2(σiφσ
>
j )

∂xi∂xj
(t, x)−

q∑
i=1

∂(biφ)

∂xi
(t, x)− λφ(t, x)

+

∫
E

[
q∑
i=1

∂(φc)

∂xi
(t, x, e) + φ(x− c̄(t, x, e)) |1− c̄x(t, x, e)|

]
λ(de),

(2.2.5)

where the Jacobian is

|1− c̄x(t, x, e)| =
∣∣∣∣1− det

[
∂c̄i(t, x, e)

∂xj

]
d×d

∣∣∣∣ . (2.2.6)

2.3 Sparse grid quadrature

The full tensor-product method for approximating multivariate functions and multidimensional

integrals are difficult to implement due to the curse of dimensionality, i.e., computational com-

plexity and storage dimensionality. The computational cost grows exponentially as the dimen-

sionality of the problem increases, therefore, it is necessary to overcome this computational

issue when the number of dimensional is large. Smolyak [42] first proposed the sparse tensor

product approximation, which expects to preserve a high accuracy of the relative error with re-

ducing the number of grid points compared to the full tensor-product rule. Sparse grid (SG) is a

method for approximating multidimensional functions and integrals, where the approximation

methods are constructed by using certain combinations of tensor products of one-dimensional

rules. We give a brief framework of sparse grid quadrature which will be used in the follow-

ing chapter and review some existing algorithms for the numerical integration of multivariate

functions defined on d-dimensional cubes introduced in [47]. For simplicity, we consider the

multidimensional integral of the function g(x) defined on the d-dimensional hypercube, i.e.,

x ∈ [−1, 1]d := D, linear transformation can be applied to translate [−1, 1] to any arbitrary

interval [a, b], and simple linear transformation will not affect the grid mesh. The multidimen-

sional integral

Idg :=

∫
D
g(x)dx,
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which is approximated by a sequence

Q[g] :=
N∑
i=1

wig(xi),

where the points {xi}Ni=1 and the weights {wi}Ni depend on the one dimensional rule and se-

lected tensors.

Trapezoidal rule: The weights of the Newton-Cotes formulas is determined by integra-

tion of the Lagrange polynomial based on the equidistant abscissas, which includes closed

version and open version. Sufficient accuracy requires large numbers of points, but it will lead

to the formulas numerically instable, therefore iterated versions, e.g., the iterated trapezoidal

rule, are commonly used. The trapezoidal rule is based on a piecewise linear approximation of

function g, which is defined as

Ung =
1

n+ 1

(
3

2
g

(
1

n+ 1

)
+

n−1∑
i=2

g

(
i

n+ 1

)
+

3

2
g

(
n

n+ 1

))
, (2.3.1)

and for any function g ∈ Cr([0, 1]), the error bounded by

∣∣Ung − I1g
∣∣ = O(n−r),

where the notion of regularity Cr is defined by [47]

Cr :=

{
g : D→ R, ‖∂

sg

∂xs
‖∞ <∞, s ≤ r

}
.

Clenshaw-Curtis rule: The Clenshaw-Curtis formulas is a stable and interpolatory inte-

gration formula and use the abscissas given as the extreme points of Chebyshev polynomials.

For the quadrature formula Un with degree fo Un is n− 1, the error bound is given as

∣∣Ung − I1g
∣∣ = O(n−r),
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Table 2.1: Gauss Rules Summary
Name Generalized Integral

Gauss-Patterson (nested rule):
∫ b
−a g(x)dx

Gauss-Legendre:
∫ b
−a g(x)dx

Gauss-Chebyshev type 1:
∫ b
−a g(x)(b− x)−0.5(x− a)−0.5dx

Gauss-Chebyshev type 2:
∫ b
−a g(x)(b− x)0.5(x− a)0.5dx

Gauss-Gegenbauer:
∫ b
−a g(x)(b− x)α(x− a)αdx

Gauss-Jacobi
∫ b
−a g(x)(b− x)α(x− a)βdx

Gauss-Laguerre
∫∞

0
g(x)(x− a)αe−b(x−a)dx

Gauss-Hermite
∫∞
∞ g(x)(x− a)αe−b(x−a)2

dx

the abscissas are given by

xi =
1

2

(
1− cos

(
πi

n+ 1

))
,

for i = 1, . . . , n, and the weights for add n are obtained

wi =
2

n+ 1
sin

(
πi

n+ 1

) (n+1)/2∑
j=1

1

2j − 1
sin

(
(2j − 1)πi

n+ 1

)
.

Gauss formulas: Gauss formulas can achieve the maximum possible polynomial degree

of exactness of 2n − 1, Gauss-Patterson is the only nested rule, and for the case of the unit

weight function, the abscissas are the zeros of the Legendre polynomial and the weights are

computed by integrating the associated Lagrange polynomials. We list some Gauss rules and

the corresponding generalized integrals Table 2.1, studying details refers to [43].

2.4 High interpolation on Delaunay triangulation

To introduce Delaunay triangulation (DT), we recall some definitions studied by [36],

• simplex is the convex hull of d+ 1 affinely independent points inRd.

• circumsphere is the sphere through the vertices of a simplex.

• flat is an affine subspace of dimension k, where k < d.
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Figure 2.1: Quadratic and Cubic elements in Tetrahedron

In 3D space, the convex hull of a given set P of n points is decomposed into tetrahedra,

Delaunay triangulation is the result from the Lawson flip algorithm such that the circumsphere

of every d-simplex is empty, i.e., it does not contain any the given points in its interior and the

amount of tetrahedra is not known in advance and can vary from O(n) to O(n2). There are

some properties of DT as follows [16]:

• DT is unique and no d + 2 points lie on a same d-sphere and no k + 2 points lie on a

common k-flat in non-degenerate position.

• DT includes O(n
d
2 ) simplices at most.

• DT has the minimizes the maximum radius of any simplex enclosing sphere.

High order elements: Quadratic and Cubic tetrahedron elements are 10 and 20 nodes

shown in figure 2.4, respectively. The quadratic element consists of six nodes at the middle of

the edges of the tetrahedron element and four-nodal, the corresponding shape functions based
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on the barycentric coordinates Li, i = 1, 2, 3, 4, are given as follows:



Ni = (2Li − 1)Li, i = 1, 2, 3, 4,

N5 = 4L2L3, N6 = 4L1L3,

N7 = 4L1L2, N8 = 4L1L4,

N9 = 4L2L4, N10 = 4L3L4.

(2.4.1)

The 20-node tetrahedron element is a cubic element consisting of four-nodal, two additional

nodes are added even on each edge of the element, and four-node control-face nodes given as:



Ni =
1

2
(3Li − 1)Li, i = 1, 2, 3, 4

N5 =
9

2
(3L1 − 1)L1L3, N6 =

9

2
(3L3 − 1)L1L3,

N7 =
9

2
(3L1 − 1)L1L2, N8 =

9

2
(3L2 − 1)L1L2,

N9 =
9

2
(3L2 − 1)L2L3, N10 =

9

2
(3L3 − 1)L2L3,

N11 =
9

2
(3L1 − 1)L1L4, N12 =

9

2
(3L1 − 1)L1L4,

N13 =
9

2
(3L2 − 1)L2L4, N14 =

9

2
(3L4 − 1)L2L4,

N15 =
9

2
(3L3 − 1)L3L4, N16 =

9

2
(3L4 − 1)L3L4,

N17 = 27L2L3L4, N18 = 27L1L2L3,

N19 = 27L1L3L4, N20 = 27L1L2L4.

(2.4.2)
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Chapter 3

Probabilistic schemes for the partial integro-differential equations in unbounded domains

3.1 Problem setting

We introduce in this section the partial integro-differential equation (PIDE) in the temporal-

spatial domain [0, T ]× Rd with T > 0, d = 1, 2, 3, i.e.,

∂u

∂t
(t, x)− L[u](t, x) = f(t, x, u), ∀(t, x) ∈ [0, T ]× Rd,

u(0, x) = ϕ(x), ∀x ∈ Rd,

(3.1.1)

where f is the forcing and ϕ is the initial condition. The partial integro-differential operator L

is of the form

L[u](t, x) =−
d∑
i=1

∂

∂xi
[bi(t, x)u(t, x)] +

d∑
i,j=1

∂2

∂xi∂xj
[Kij(t, x)u(t, x)]

+

∫
E

[u(t, x+ c(t, e))− u(t, x)]γ(e)de,

(3.1.2)

where b(t, x) ∈ Rd is the drift vector, K(t, x) ∈ Rd×d is the local diffusion tensor, the nonlocal

kernel γ(e) is assumed to be symmetric and integrable, i.e.,

γ(e) ≥ 0 ∀e ∈ Rd and λ =

∫
Rd
γ(e)de <∞, ρ(e) = γ(e)/λ, (3.1.3)
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and c(t, e) ∈ Rd with E := Rd\{0} is the jump coefficient. For the sake of simplicity, here we

assume the jump coefficient c(t, e) satisfies

∫
E

c(t, e)γ(e)de = 0.

The existence and uniqueness of the viscosity solution u(t, x) of PIDE (3.1.1) was proved

in [5]. In this work, we are interested in the numerical approximation of the viscosity so-

lution u(t, x) ∈ C([0, T ] × Rd). Since our numerical scheme is developed based on the

probabilistic representation of the viscosity solution, we now briefly recall the connection

between the PIDE and a stochastic differential equation (SDE) driven by Lèvy processes.

Let (Ω,G, (Gt))≤t≤T ,P) be a stochastic basis satisfying the completeness and right continu-

ity, where the filtration (Gt)0≤t≤T is generated by two mutually independent random processes,

i.e., a d-dimensional Brownian motion Bt and a Poisson random measure π(A, t) defined on

E × [0, T ]. The compensator of π and the compensated Poisson random measure are de-

noted by z(de, dt) = γ(e)de dt and π̃(de, dt) = π(de, dt) − z(de, dt), respectively, such that

{π̃(A × [0, t]) = (π − z)(A × [0, t])}0≤t≤T is a martingale for all A ∈ E with E being the

Borel field of E\{0}. Then, the operator L in (3.1.2) is the Fokker-Planck operator of the SDE

defined in (Ω,G, (Gt))≤t≤T ,P), i.e.,

Vt = V0 +

∫ t

0

b(s, Vs)ds+

∫ t

0

σ(s, Vs)dBs −
∫ t

0

∫
E

c(s, e)π̃(de, ds), (3.1.4)

where b and c are defined in (3.1.2), σ is the diffusion coefficient such that the local diffusion

tensor K(t, x) in (3.1.2) satisfies K = 1
2
σσ>.

3.2 The probabilistic numerical schemes

The nonlinear Feynman-Kac theory studied by [5, 50] establishes a link between the partial

differential equations (PDEs) and stochastic processes. Based on that relationship we propose

the probabilistic numerical schemes of the viscosity solution u(t, x) of PIDE (3.1.1). Specifi-

cally, we derive the probabilistic representation of u in section 3.2.1 and propose the numerical
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scheme in temporal discretization in section 3.2.2 and the temporal-spatial discrete scheme is

constructed in section 3.2.3.

3.2.1 The probabilistic representation

To build the explicit probabilistic representation of u(t, x) of initial value PIDE (3.1.1) in arbi-

trary time interval [0, T ], we consider the underlying jump-diffusion process being backward so

that the probabilistic representation is forward. In order to avoid the construction of backward

filtration in the whole time interval [0, T ] that is an uncommon definition in stochastic theory,

we consider the PIDE (3.1.1) in each subinterval [tn, tn+1] independently. To proceed it, we

introduce a uniform partition for the time interval [0, T ], i.e.,

T = {0 = t0 ≤ · · · ≤ tN = T},

with ∆t = ti − ti−1 for 1 ≤ i ≤ N . It is known that the non-divergence structure of the partial

intego-differential operator is a prerequisite for applying the nonlinear Feynman-Kac theory,

we hence transform the partial integro-differential operator L (3.1.2) into the non-divergence

form and define new drift functions

βi(t, x) := 2

q∑
j=1

∂Kij(t, x)

∂xj
(t, x)− bi(t, x)

the PIDE (3.1.1) in [tn, tn+1] can be rewritten as


∂u

∂t
(t, x)− L∗[u](t, x) = g(t, x, u),∀(t, x) ∈ [tn, tn+1]× Rd,

u(tn, x) = ϕ(tn, x),∀x ∈ Rq,

(3.2.1)
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Figure 3.1: Brownian motions simulation

where the non-divergence form operator L∗ and forcing g are expressed as

L∗[u](t, x) :=
d∑
i=1

βi(t, x)
∂u

∂xi
(t, x) +

d∑
i,j=1

Kij(t, x)
∂2u

∂xixj
(t, x)

+

∫
E

[u(t, x+ c(t, e))− u(t, x)] γ(e)de,

g(t, x, u) :=f(t, x, u) +

[
d∑

i,j=1

∂2Kij

∂xi∂xj
(t, x)−

d∑
i=1

∂bi
∂xi

(t, x)

]
u(t, x).

(3.2.2)

The operator −L∗[u](t, x) is the infinitesimal generator of the backward stochastic process

~X
tn+1,x

s for s ∈ [tn, tn+1], under the initial condition that ~X tn+1 = x, which is given by

~X
tn+1,x

s = x−
∫ s

tn+1

β(t, ~X
tn+1,x

t )dt+

∫ s

tn+1

σ(t, ~X
tn+1,x

t )d ~W t+

∫ s

tn+1

∫
E

c(t, e)µ̃(de, dt), (3.2.3)

where ~W t is the backward standard Brownian motion and µ̃ is a compensated Poisson random

measure on E that has the same jump intensity with π̃. Details about backward filtration and

stochastic processes are attached in Appendix 7.3.

To make it easy to understand the difference between Forward random process and back-

ward random process, we simulate two typical random processes in [0, 0.1], i.e., dPt = dBt

and dQt = d ~W t. See Figure 3.1.

To derive the probabilistic representation of the viscosity solution u(t, x), it is essential

to introduce the mathematical expectation notation, i.e., Extn+1
[·], which is crucial in stochastic
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area and will be used quite frequently. Also denote, for 0 ≤ n ≤ N − 1,

Extn+1
[·] := E[·| ~X tn+1 = x] (3.2.4)

defined on the complete stochastic space (Ω,F , (Ft)tn≤t≤tn+1 ,P), where the filtration (Ft)tn≤t≤tn+1

is generated by backward random processes ~W t and µ(A, t) in t ∈ [tn, tn+1]. Since the back-

ward random process { ~X
tn+1,x

s , s ∈ [tn, tn+1]} is only defined on [tn, tn+1], the initial condition

~X tn+1 = x is independent of filtration (Ft)tn+1≤t≤T . Based on the construction of Extn+1
[·] and

the Feynaman-Kac theory introduced in [5], the probabilistic representation of u(tn+1, x) is

derived as

u(tn+1, x) =Extn+1
[u(tn, ~X

tn+1,x

tn )]−
∫ tn

tn+1

Extn+1

[
g(t, ~X

tn+1,x

t , u(t, ~X
tn+1,x

t )
]
dt. (3.2.5)

The construction of probabilistic representation of u(tn+1, x) (3.2.5) is given in Appendix 7.4.

3.2.2 The temporal discrete scheme

Many classical numerical schemes have been proposed to accurately approximate the stochastic

integrals in the jump-diffusion process (3.2.3), i.e., the Euler scheme studied by [51, 52], the

Milstein scheme, the Itô-Taylor type weak and strong schemes of order β [24,38]. The explicit

Euler method is used in our numerical schemes to approximate the temporal integrals that

avoid solving the underlying nonlinear systems. Under the initial condition that ~X tn+1 = x in

[tn, tn+1], the approximation Xn is satisfying

Xn =x− β(tn+1, x)

∫ tn

tn+1

dt+ σ(tn+1, x)

∫ tn

tn+1

d ~W t +

∫
E

c(tn+1, e)

∫ tn

tn+1

µ̃(de, dt)

=x+ β(tn+1, x)∆t+ σ(tn+1, x)∆ ~W tn+1 +

N∆t∑
k=1

c(tn+1, ek),

(3.2.6)

where N∆t, i.e., the number of jumps in time interval ∆t, is the underling backward Poisson

process with intensity λ and the backward Wiener process ∆ ~W tn+1 := ~W tn− ~W tn+1 . Note that

the integrand Extn+1
[g(t, ~X

tn+1,x

t , u(t, ~X
tn+1,x

t ))] in equation (3.2.5) is a deterministic function
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of t ∈ [tn, tn+1], the implicit Euler scheme can be applied that guarantees stability and achieves

overall first order convergence with respect ∆t, i.e.

u(tn+1, x) =Extn+1
[u(tn, ~X

tn+1,x

tn )] + ∆tg(tn+1, x, u(tn+1, x)) +Rn+1, (3.2.7)

where the residual Rn+1 is equal to

Rn+1 =−
∫ tn

tn+1

Extn+1
[g(t, ~X

tn+1,x

t , u(t, ~X
tn+1,x

t ))]dt−∆tg(tn+1, x, u(tn+1, x)). (3.2.8)

We combine the approximation of the jump-diffusion process (3.2.6) and the temporal ap-

proximation of the probabilistic representation (3.2.7) to propose the temporal discrete scheme

for the viscosity solution u(tn+1, x) as follows:

Given the initial random variable un, we regard un+1(x) as the approximation of u(tn+1, x)

at the time level t = tn+1, ∀n = 0, · · · , N − 1, which satisfies


Xn = x+ β(tn+1, x)∆t+ σ(tn+1, x)∆ ~W tn+1 +

N∆t∑
k=1

c(tn+1, ek),

un+1(x) = Extn+1
[un(Xn)] + ∆tg(tn+1, x, un+1(x)).

(3.2.9)

Actually, the generalized θ schemes studied by [52, 53] are also applicable for estimating the

time integral in (3.2.5), e.g., θ = 1
2

leads to the overall second-order Crank-Nicolson scheme

incorporating with high order numerical schemes for approximating the jump-diffusion pro-

cess, e.g., the Itô-Taylor type weak schemes of order β = 2. We focus on building stable and

accurate numerical schemes for solving the PIDE (3.1.1) in this thesis, high order numerical

schemes will be studied in the future work.

3.2.3 The temporal-spatial discrete scheme

Before studying the temporal-spatial discrete scheme, we first define the intensity of Poisson

jumps λ(de) and the probability measure of the jump height ρ(e)de. We define λ(de) := γ(e)de

for e ∈ E, which is σ-finite due to the integrability assumption of γ(e) in (3.1.3) and ρ(e)de

being the probability measure of the jump height c(t, e) satisfies
∫
E
ρ(e)de = 1.
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The temporal discrete scheme (3.2.9) is not computationally feasible because the involved

mathematical expectation Extn+1
[·] is defined in the whole Rd, thus an effective spatial discretiza-

tion is necessary to estimate Extn+1
[·], we partition the d-dimensional Euclidean space Rd by a

tensor-product grid

K = K1 ×K2 ×× · · · × Kd,

where Kl for l = 1, . . . , d is a uniform partition of the one-dimensional real space R, i.e.,

Kl = {xlj|xlj ∈ R, j ∈ Z, xlj < xlj+1, lim
j→+∞

xlj = +∞, lim
j→−∞

xlj = −∞}.

Based on the tensor grid K, we turn to develop quadrature rules to estimate the mathematical

expectation Extn+1
[·] in (3.2.9) at (tn+1, xj) ∈ T ×K. It is observed that Exjtn+1

[·] is defined with

respect to the probability measure of the backward incremental stochastic process ∆ ~X
n

j :=

Xn
j − xj = Φ(tn+1, tn, xj) that is determined by the explicit Euler scheme, i.e.,

Φ(tn+1, tn, xj) = Xn
j −xj = β(tn+1, xj)∆t+σ(tn+1, xj)∆ ~W tn+1 +

N∆t∑
k=1

c(tn+1, ek), (3.2.10)

and the number of jumps of ~X t within [tn, tn+1), denoted by Nt, follows a Poisson distribution

with intensity λ. The size of each jump c(tn+1, e) follows the distribution ρ(e)de. Next we ob-

serve that ∆ ~W
l

tn+1
=
√

∆tξl for l = 1, 2, . . . , d, where random variable ξl follows the standard

normal distribution N(0, 1), thus we denote by %(ξ) := (%(ξ1), . . . , %(ξd)) the probability den-

sity function of ξ := (ξ1, . . . , ξd), the mathematical expectation Exjtn+1
[un] can be represented
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as

Exjtn+1
[un] =

∞∑
m=0

P (N∆t = m)E

[
un
(
xj + β(tn+1, xj)∆t+ σ(tn+1, xj)

√
∆tξ

+
m∑
k=1

c(tn+1, ek)

)]

=
∞∑
m=0

e−λ∆t (λ∆t)m

m!
E

[
un
(
xj + β(tn+1, xj)∆t+ σ(tn+1, xj)

√
∆tξ

+
m∑
k=1

c(tn+1, ek)

)]

=e−λ∆t

∫
Rd
un
(
xj + β(tn+1, xj)∆t+ σ(tn+1, xj)

√
∆tξ

)
%(ξ)dξ

+
∞∑
m=1

e−λ∆t (λ∆t)m

m!

∫
Rd

∫
E

· · ·
∫
E

un

(
xj + β(tn+1, xj)∆t

+ σ(tn+1, xj)
√

∆tξ +
m∑
k=1

c(tn+1, ek)

)
%(ξ)

m∏
k=1

ρ(ek)de1 · · · demdξ,

(3.2.11)

where c(tn+1, ek) for k = 1, . . . ,m is the height of the kth jump. We observe that the probabil-

ity of taking first m jumps in ∆t, i.e., P (N∆t = m) is of order O((λ∆t)m). Given a prescribed

accuracy, the mathematical expectation Exjtn+1
[un] can be approximated by the sum of a finite

sequence by remaining finite number of jumps. For instance, if we expect a first-order conver-

gence with respect to ∆t, i.e., the local truncation error Rn+1 should be of order O((λ∆t)2),

the first two terms should be retained assuming λ is of order O(1). We denote the approxi-

mation of Exjtn+1
[un] by retaining the first Mu + 1 terms by Exjtn+1,Mu

[un], where Mu means the

number of jumps in Exjtn+1
[un]. Next, we propose appropriate quadrature rules to approximate

multiple integrals in equation (3.2.11). To proceed, we first introduce two fundamental types

of quadrature formulas aiming to the normal distribution and the specified distribution of the

jump variable with compactly supported, respectively.

1. For a d-dimensional function k(x), the Gauss-Hermite quadrature formula is

∫
Rd
k(x)e−x

2

dx ≈
L∑
i=1

wik(ai). (3.2.12)
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where the quadrature weights {wi}Li=1 and the quadrature root {ai}Li=1 of the Gauss-Hermite

quadrature can be found in [1],

2. For a d-dimensional function k(x), the selected quadrature rule based on the proba-

bility density function %(ξ), e.g., Gauss-Legendre is available when %(ξ) follows a uniform

distribution, is generalized as

∫
E

k (ξ) %(ξ)dξ ≈
Q∑
q=1

w̃kq
(
ãkq
)
, (3.2.13)

the set {w̃q}Qq=1, {ãq}Qq=1 denote quadrature weights and quadrature points, respectively.

We need to approximate the m× d+ d dimensional integrals in (3.2.11) by combining the

above two basic quadrature rules depending on the properties of ρ(e), %(ξ) and the smoothness

of un. Without loss of generality, for m = 0, . . . ,Mu, we denote by {wi, ai} and {w̃mq , ãk,mq },

the set of weights and points of Gauss-Hermite rule and selected quadrature rule for estimating

the integrals with respect to ξ and {e1, . . . , ek} in (3.2.11), where k represents kth jump for

1 ≤ k ≤ m. Then the approximation of Exjtn+1
[un], denoted by Êxjtn+1,Mu

[un] is given by

Êxjtn+1,Mu
[un] =e−λ∆t

L∑
i=1

wju
n
(
xj + β(tn+1, xj)∆t+ σ(tn+1, xj)

√
2∆tai

)
+

Mu∑
m=1

e−λ∆t (λ∆t)m

m!

L∑
i=1

Qm∑
q=1

wiw̃
m
q u

n

(
xj + β(tn+1, xj)∆t

+ σ(tn+1, xj)
√

2∆tai +
m∑
k=1

c(tn+1, ã
k,m
q )

)
.

(3.2.14)

The quadrature points
{
xj + β(tn+1, xj)∆t+ σ(tn+1, xj)

√
∆tai +

∑m
k=1 c(tn+1, ã

k,m
q )

}L,Q
i=1,q=1

in (3.2.14) may not belong to the spatial grid K, constructing a pth order piecewise Lagrange

polynomial based on the spatial grid K is needed to compute un. We denote the pth order

piecewise Lagrange polynomial by un,p, i.e., un,p(x) :=
∑

i∈Zd u
n,p
i ψi(x), where ψi is the pth

order Lagrange nodal basis function and un,pi is an approximation of un(xi) studied by [46,50].

Based on the above discussion, given the random variables un(xj) for j ∈ Z, n=1, 2, . . . ,

24



N-1, the temporal-spatial discrete scheme is



Xn
j = xj + β(tn+1, xj)∆t+ σ(tn+1, xj)∆ ~W tn+1 +

N∆t∑
k=1

c(tn+1, ek),

un+1,p
j = Êxjtn+1,Mu

[un,p] + ∆tg(tn+1, xj, u
n+1,p
j ),

un+1(x) =

p+1∑
i=1

{
Êxjitn+1,Mu

[un,p] + ∆tg(tn+1, xji , u
n+1,p
ji

)
}
ψji(x),

(3.2.15)

where the interpolation points {xji}
p+1
i=1 ∈ K are the closet p + 1 neighboring points of x,

the quantitiy Mu denote the number of Poisson jumps in the approximation of Exjitn+1
[u] and

{ψji(x)}p+1
i=1 is the set of p-th order piecewise Lagrange basis function associated with {xji}

p+1
i=1 .

Since our scheme is an explicit time-stepping scheme, i.e., un+1(x) at each time point, which

can avoid the difficulty of solving the linear or nonlinear systems.

3.3 Error estimates

To analyze the relative errors of numerical schemes at temporal layer t = T starting from

initial point t = 0, all stochastic processes should be considered under a complete stochas-

tic space in [0, T ]. To proceed, we redefine some concepts and notations introduced in sec-

tion 3.2, which will not affect the structure of proposed numerical schemes. For a fixed

T ∈ [0,∞), we consider the backward jump-diffusion process ~X t (3.2.3) in the stochastic

space (Ω,F , (Ft)0≤t≤T ,P), where Ft is generated by two backward random processes ~W t and

µ onE×[0, T ], i.e.,Ft := F ~W
t,T ∨F

µ
t,T , where for any process ~ηt,F

~η
t,T := σ{ ~ηs− ~ηt; t ≤ s ≤ T}.

Note that the decreasing collection {Ft, t ∈ [0, T ]} is a decreasing filtration. In this case, the

bakward Brownian motion { ~W t}0≤t≤T and the compensator {µ̃}0≤t≤T are martingales with

respect to (Ft)0≤t≤T , where the initial condition ~X tn+1 = x in [tn, tn+1] is dependent with

filtration Ftn+1 , and the conditional mathematical expectation notation Extn+1
[·] is Ftn+1 mea-

surable. Moreover, we assume the terminal value of ~XT is FT measurable and E[| ~XT |2] ≤ ∞.
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3.3.1 Error estimate of the temporal discrete scheme

In this section, we analyze the temporal numerical scheme (3.2.9). The explicit Euler scheme of

the backward jump-diffusion (3.2.6) achieves first-order convergence that has been discussed in

the literature [38] and our strategy for estimating truncation error of un+1 follows the approach

of the previous work [50, 54], i.e., construct the upper bound of the global error by accumulat-

ing all local truncation errors recursively.

We set x = Xn+1 in (3.2.9) and define the errors of un+1(Xn+1) and gn+1 := g(tn+1, X
n+1,

un+1(Xn+1), respectively, by

en+1
u : = u(tn+1, X

n+1)− un+1(Xn+1),

en+1
g : = g(tn+1, X

n+1, u(tn+1, X
n+1))− gn+1,

(3.3.1)

where u(tn+1, X
n+1) = E[u(tn+1, Xtn+1)|Xtn+1 = Xn+1]. It should be noted that u(tn, ~X

tn+1,Xn+1

tn )

and u(tn, X
n) for 0 ≤ n ≤ N−1 are usually different stochastic processes because ~X

tn+1,Xn+1

tn

and Xn are two different processes obtained by (3.2.3) and (3.2.6), respectively. As such, the

residualRn+1
u is introduced as

Rn+1
u = EXn+1

tn+1
[u(tn, ~X

tn+1,Xn+1

tn )− u(tn, X
n)], (3.3.2)

and the following properties of the explicit Euler scheme (3.2.6) used in estimating residual

were studied by [38]:

1. Stability: for an integer r > 0, there exists a constant C ∈ (0,∞) such that

max
0≤n≤N

E[|Xn|r] ≤ C(1 + [|XT |r]). (3.3.3)

2. Approximation error: there exist a positive real number r such that for any function

g ∈ C4
P , we have

|EXn+1

tn+1
[g( ~X

tn+1,Xn+1

tn )− g(Xn)]| ≤ C(1 + |Xn+1|2r)(∆t)2, (3.3.4)
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where C4
p denotes the set of fourth order continuously differentiable functions which together

with their derivatives of order up to fourth have at most polynomial growth. One more estimate

for the backward jump-diffusion process (3.2.3) requires in the following arguments is that

under Assumption 4.1 in [54], if E[|XT |2m] < ∞ for some integer m ≥ 1, the solution of the

jump-diffusion in (3.2.3) has the estimate

EXn+1

tn+1
[| ~X

tn+1,Xn+1

s |2m] ≤ (1 + EXn+1

tn+1
[|Xn+1|2m])eC(tn+1−s), (3.3.5)

where s ∈ [0, tn+1] and C is a constant.

In the rest of section 3.3, we only analyze numerical schemes in one-dimensional case

(d = 1), and results can be extended to high-dimensional cases naturally. In addition to global

Lipschitz continuity on forcing term g, we need to impose some regularities on coefficients

in equation (3.2.1) to obtain error estimates. To proceed, we first introduce the notation of

regularity:

C(k1,...,kJ )
b (D1 × · · · ×DJ) =

{
φ :
∏J

j=1 Dj → R| ∂α1 ···∂αJ φ
∂α1x1···∂αJ xJ

is bounded and continuous for

0 ≤ αj ≤ kj, j = 1, . . . , J , where α = (α1, . . . , αJ), where J ∈ N+.
}

Based on the above assumptions and properties, we give the estimates of truncation errors

Rn+1 andRn+1
u in the following Lemma.

Lemma 3.1. Under Assumption 4.1 in [54], if ϕ(x) ∈ C6+α
b (R) with α ∈ (0, 1), β(t, x) ∈

C2,4
b ([0, T ] × R), g(t, x, y) ∈ C2,4,4

b ([0, T ] × R2), σ(t, x) ∈ C2,4
b ([0, T ] × R) and c(t, e) ∈

C2,∞
b ([0, T ]× R), then

E[|Rn+1|2] ≤ C(∆t)4, E[|Rn+1
u |2] ≤ C(∆t)4, (3.3.6)

where C is a positive constant depending on the upper bounds of ~XT and derivatives of β, σ,

c, ϕ, g and the jump intensity λ.
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Proof. For notational simplicity, we omit the superscripts of ~X
tn+1,Xn+1

t and define F (t, ~X t) :=

g(t, ~X t, u(t, ~X t)), then F ∈ C2,4
b ([0, T ]× R). We define three partial integro-differential oper-

ators,

L0F (t, x) :=
∂F

∂t
(t, x)− β(t, x)

∂F

∂x
(t, x)−K(t, x)

∂2F

∂x2
(t, x)

−
∫
E

[F (t, x+ c(t, e))− F (t, x)]λ(de),

L1F (t, x) := σ(t, x)
∂F

∂x
(t, x),

L−1F (t, x) := F (t, x+ c(t, e))− F (t, x).

(3.3.7)

Applying the Itô formula to F (s, ~Xs) for tn ≤ s ≤ tn+1, under the condition ~X tn+1 = Xn+1,

we have

F (s, ~Xs) =F (tn+1, X
n+1) +

∫ s

tn+1

L0F (t, ~X t)dt+

∫ s

tn+1

L1F (t, ~X t−)d ~W t

+

∫ s

tn+1

∫
E

L−1F (t, ~X t−)µ̃(de, dt).

(3.3.8)

Then substituting the above F (s, ~Xs) into the integral
∫ tn
tn+1

EXn+1

tn+1
[F (s, ~Xs)]ds, due to the

martingale property, we get

∫ tn

tn+1

EXn+1

tn+1
[F (s, ~Xs)]ds

=

∫ tn

tn+1

EXn+1

tn+1

[
F (tn+1, X

n+1) +

∫ s

tn+1

L0F (t, ~X t)dt+

∫ s

tn+1

L1F (t, ~X t−)d ~W t

+

∫ s

tn+1

∫
E

L−1F (t, ~X t−)µ̃(de, dt)

]
ds

=

∫ tn

tn+1

EXn+1

tn+1
[F (tn+1, X

n+1)]ds+

∫ tn

tn+1

∫ s

tn+1

EX
tn+1

tn+1
[L0F (t,Xt)]dtds

= −F (tn+1, X
n+1)∆t+

∫ tn

tn+1

∫ s

tn+1

EXn+1

tn+1
[L0F (t, ~X t)]dtds

= −F (tn+1, X
n+1)∆t+

∫ tn

tn+1

∫ s

tn+1

EXn+1

tn+1

[
L0F (tn+1, X

n+1)

+

∫ t

tn+1

L0L0F (z, ~Xz)dz
]
dtds

= −F (tn+1, X
n+1)∆t+

1

2
(∆t)2L0F (tn+1, X

n+1)

+

∫ tn

tn+1

∫ s

tn+1

∫ t

tn+1

EXn+1

tn+1
[L0L0F (z, ~Xz)]dzdtds.

(3.3.9)
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Thus, Eq. (3.2.8) equals

Rn+1 =−
∫ tn

tn+1

EXn+1

tn+1
[F (s, ~Xs)]ds−∆tF (tn+1, X

n+1)

=− 1

2
(∆t)2L0F (tn+1, X

n+1)−
∫ tn

tn+1

∫ s

tn+1

∫ t

tn+1

EXn+1

tn+1
[L0L0F (z, ~Xz)]dzdtds.

(3.3.10)

Take the expectation E[·] to Rn+1, by the Cauchy-Schwarz inequality, we have that

E[|Rn+1|] ≤E
[∣∣∣∣12(∆t)2L0F (tn+1, X

n+1)

∣∣∣∣]
+ E

[∣∣∣∣ ∫ tn

tn+1

∫ s

tn+1

∫ t

tn+1

EXn+1

tn+1
[L0L0F (z, ~Xz)]dzdtds

∣∣∣∣],
≤1

2
(∆t)2E[|L0F (tn+1, X

n+1)|]

+ (∆t)
3
2

√∫ tn

tn+1

∫ s

tn+1

∫ t

tn+1

E[|L0L0F (z, ~Xz)|2]dzdtds,

≤1

2
(∆t)2E[|L0F (tn+1, X

n+1)|] + sup
0≤t≤T

√
E[|L0L0F (z, ~Xz)|2](∆t)3,

≤C(∆t)2,

(3.3.11)

where the constant C depends on T , K and the upper bounds of derivatives of β, σ, c, ϕ, g

and the jump intensity λ. From the definitions of Rn+1
u , we easily get these following error

estimates by using properties (3.3.3) and (3.3.4)

E[|Xn+1|2] ≤ C(1 + E[|XT |2]),

E[|Rn+1
u |] ≤ C(1 + E[|Xn+1|2r])(∆t)2 ≤ C(1 + E[|XT |2r])(∆t)2.

(3.3.12)

Once we had Lemma 3.1, the convergence rate of the temporal discrete scheme follows

from the Theorem 3.2.

Theorem 3.2. Assume u(tn+1, X
n+1) be the exact solution satisfying equation (3.2.7) and

un+1(Xn+1) be the solution of the temporal discrete scheme (3.2.9), respectively, where n =
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0, 2, . . . , N − 1, then we have

E[|u(tn+1, X
n+1)− un+1(Xn+1)|] ≤ C∆t, (3.3.13)

where C is a constant defined in Lemma 3.1.

Proof. Subtracting (3.2.9) from (3.2.7), we have

en+1
u =u(tn+1, X

n+1)− un+1(Xn+1)

=EXn+1

tn+1
[u(tn, ~X

tn+1,Xn+1

tn )− un(Xn)] + ∆ten+1
g +Rn+1

=EXn+1

tn+1
[u(tn, ~X

tn+1,Xn+1

tn )− u(tn, X
n) + u(tn, X

n)− un(Xn)]

+ ∆ten+1
g +Rn+1

=EXn+1

tn+1
[enu] + ∆ten+1

g +Rn+1
u +Rn+1.

(3.3.14)

Thus

|en+1
u | ≤|EXn+1

tn+1
[enu]|+ L∆t|en+1

u |+ |Rn+1
u |+ |Rn+1|, (3.3.15)

where L is the Lipschitz constant of function g with respect of u. From Lemma 3.1 we have

E[|Rn+1|] ≤ C(∆t)2, E[|Rn+1
u |] ≤ C(∆t)2, (3.3.16)

hence the estimate for E[|enu|] can be written as:

E[|en+1
u |] ≤ E[|enu|] + L∆tE[|en+1

u |] + C(∆t)2, (3.3.17)

which is equivalent to

E[|en+1
u |] ≤ 1

1− L∆t
E[|enu|] +

C(∆t)2

1− L∆t
. (3.3.18)

We obtain, by induction, an upper bound of E[|en+1
u |], i.e.,

E[|en+1
u |] ≤ C∆t. (3.3.19)

30



3.3.2 Error estimate of the temporal-spatial discrete scheme

In this section, we focus on analyzing the error estimate for the temporal-spatial discrete scheme

(3.2.15). In order to avoid the Lebesgue constant of the pth order interpolant in error analysis

under L∞ that causes globally error blows up, the relative errors are considered under a desig-

nated norm that associate with transition probability density function of the backward process

~X t. To control the error coming from the quadrature rule involved in Êxjtn+1,Mu
[·], we give a

generalized Assumption 3.3, which can be specified according to the quadrature rule used in

the numerical scheme (3.2.15).

Assumption 3.3. For m = 1, . . . ,Mu, the error of the quadrature rule used in (3.2.14) is

controlled by

∣∣∣∣∣
∫
R

∫
E

· · ·
∫
E

un

(
xj + β(tn+1, xj)∆t+ σ(tn+1, xj)

√
∆tξ +

m∑
k=1

c(tn+1, ek)

)

%(ξ)
m∏
k=1

ρ(ek)de1 · · · demdξ −
L∑
i=1

Qm∑
q=1

wjw̃
m
q u

n

(
xj + β(tn+1, xj)∆t

+ σ(tn+1, xj)
√

2∆tai +
m∑
k=1

c(tn+1, ã
k,m
q )

)∣∣∣∣∣ ≤ CQ−r,

(3.3.20)

where r ≥ 0 is the convergence rate, C is a constant determined by the smoothness of un and

kernel ρ.

For the case m=0, i.e., only Brownian motion is involved in Êxjtn+1,Mu
[·], the quadrature

error is bounded by [39]

∣∣∣∣ ∫
Rd
un
(
xj + β(tn+1, xj)∆t+ σ(tn+1, xj)

√
∆tξ

)
%(ξ)dξ

−
L∑
i=1

wju
n
(
xj + β(tn+1, xj)∆t+ σ(tn+1, xj)

√
2∆tai

)∣∣∣∣ ≤ C
L!

2L(2L)!
(∆t)L,

(3.3.21)

where the constant C is independent with L and ∆t and 3-points Guassian-Hermite quadrature

rule can provide the second order convergence of local truncation.

31



Now, we introduce the designate norm that we use to measure the temporal-spatial ap-

proximation error, i.e.,

||v(tn+1, ·)|| := sup
µ∈[a0,b0]

∫
R
|v(tn+1, x)| ~ρtn+1|T (x|µ)dx, (3.3.22)

where [a0, b0] is any bounded sub-domain in R, and ~ρtn+1|tT (·|µ) is the transition probability

density function of backward process ~X t in (3.2.3) under the condition that XT = µ ∈ [a0, b0].

In this effort, function is only measured in the bounded domain [a0, b0] even variable x is

defined in R. Note that, due to the Markovian property of XT = µ ∈ [a0, b0], we have

~ρtn|tn+1
(ζ|x) ~ρtn+1|T (x|µ) = ~ρtn,tn+1|T (ζ, x|µ). (3.3.23)

The probabilistic representation of the exact value u(tn+1, x) of (3.1.1) at the time-space

point (tn+1, x) ∈ [0, T ]× Rd, from (3.2.7), is given as

u(tn+1, x) = Extn+1
[u(tn, ~X

tn+1,x

tn )] + ∆tg(tn+1, x, u(tn+1, x)) +O(∆t)2, (3.3.24)

Subtracting (3.2.15) from (3.3.24), and denoting en+1(x) = u(tn+1, x)− un+1(x), we have

en+1(x) =Extn+1
[u(tn, ~X

tn+1,x

tn )] + ∆tg(tn+1, x, u(tn+1, x)) +O(∆t)2

−
p+1∑
i=1

{
Êxjitn+1,Mu

[un,p] + ∆tg(tn+1, xji , u
n+1,p
ji

)
}
ψji(x)

=

{
Extn+1

[u(tn, ~X
tn+1,x

tn )]−
p+1∑
i=1

Êxjitn+1,Mu
[un,p]ψji(x)

}

+ ∆t

{
g(tn+1, x, u(tn+1, x))−

p+1∑
i=1

g(tn+1, xji , u
n+1,p
ji

)ψji(x)

}

+O(∆t)2

=en+1
I (x) + ∆t en+1

II (x) +O(∆t)2.

(3.3.25)
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In order to estimate en+1
I (x), we decompose it as follows,

en+1
I (x) = Extn+1

[u(tn, ~X
tn+1,x

tn )]−
p+1∑
i=1

Êxjitn+1,Mu
[un,p]ψji(x)

=Extn+1
[u(tn, ~X

tn+1,x

tn )]− Extn+1
[u(tn, X

n)]︸ ︷︷ ︸
en+1
I.1

+Extn+1
[u(tn, X

n)]− Extn+1
[un(Xn)]︸ ︷︷ ︸

en+1
I.2

+ Extn+1
[un(Xn)]− Extn+1,Mu

[un(Xn)]︸ ︷︷ ︸
en+1
I.3

+Extn+1,Mu
[un(Xn)]− Êxtn+1,Mu

[un(Xn)]︸ ︷︷ ︸
en+1
I.4

+ Êxtn+1,Mu
[un(Xn)]−

p+1∑
i=1

Êxjitn+1,Mu
[un,p]ψji(x)︸ ︷︷ ︸

en+1
I.5

,

where Xn is the the explicit Euler scheme for backward process ~X
tn+1,x

tn given in (3.2.6). Sim-

ilarly, we decompose en+1
II (x) as

en+1
II (x) =g(tn+1, x, u(tn+1, x))−

p+1∑
i=1

g(tn+1, xji , u
n+1,p
ji

)ψji(x)

= g(tn+1, x, u(tn+1, x))− g(tn+1, x, u
n+1(x))︸ ︷︷ ︸

en+1
II.1

+ g(tn+1, x, u
n+1(x))−

p+1∑
i=1

g(tn+1, xji , u
n+1,p
ji

)ψji(x)︸ ︷︷ ︸
en+1
II.2

.

We apply the norm defined in (3.3.22) on both sides of the error in (3.3.25) to botain

‖en+1(x)‖ =‖en+1
I.1 (x) + en+1

I.2 (x) + en+1
I.3 (x) + en+1

I.4 (x) + en+1
I.5 (x) + en+1

II.1 (x)

+ en+1
II.2 (x) +O(∆t)2‖

≤‖en+1
I.1 (x)‖+ ‖en+1

I.2 (x)‖+ ‖en+1
I.3 (x)‖+ ‖en+1

I.4 (x)‖+ ‖en+1
I.5 (x)‖

+ ‖en+1
II.1 (x)‖+ ‖en+1

II.2 (x)‖+O(∆t)2.

(3.3.26)
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The errors on the right side of the above inequality come from different numerical approxima-

tions, which we analyze individually. For the error en+1
I.1 , we have

‖en+1
I.1 ‖ =‖Extn+1

[u(tn, ~X
tn+1,x

tn )]− Extn+1
[u(tn, X

n)]‖

= sup
µ∈[a0,b0]

∫
R

∣∣∣Extn+1
[u(tn, ~X

tn+1,x

tn )]− Extn+1
[u(tn, X

n)]
∣∣∣ ~ρtn+1|T (x|µ)dx

≤ sup
µ∈[a0,b0]

∫
R
C(1 + |x|2r)(∆t)2 ~ρtn+1|T (x|µ)dx

=C(∆t)2 sup
µ∈[a0,b0]

EµT [1 + |x|2r]

≤C(∆t)2 sup
µ∈[a0,b0]

(1 + |µ|2r),

(3.3.27)

where the first inequality is coming from the result of the error estimate of residual Rn+1
u in

Lemma 3.1 and the last inequality comes from equation (3.3.5). For en+1
I.2 , we have

‖en+1
I.2 ‖ = ‖Extn+1

[u(tn, X
n)]− Extn+1

[un(Xn)]‖

= sup
µ∈[a0,b0]

∫
R

∣∣Extn+1
[u(tn, X

n
x )]− Extn+1

[un(Xn
x )]
∣∣ ~ρtn+1|T (x|µ)dx

= sup
µ∈[a0,b0]

∫
R

∣∣∣∣∫
R
[u(tn, ζ)− un(ζ)] ~ρn|n+1(ζ|x)dζ

∣∣∣∣ ~ρtn+1|T (x|µ)dx

= sup
µ∈[a0,b0]

∫
R

∣∣∣∣ ∫
R
[u(tn, ζ)− un(ζ)]

(
~ρn|n+1(ζ|x)− ~ρtn|tn+1

(ζ|x)

+ ~ρtn|tn+1
(ζ|x)

)
dζ

∣∣∣∣ ~ρtn+1|T (x|µ)dx

≤ sup
µ∈[a0,b0]

∫
R

∣∣∣∣∫
R

[u(tn, ζ)− un(ζ)]
[
~ρn|n+1(ζ|x)− ~ρtn|tn+1

(ζ|x)
]
dζ

∣∣∣∣ ~ρtn+1|T (x|µ)dx

+ sup
µ∈[a0,b0]

∫
R

∣∣∣∣∫
R

[u(tn, ζ)− un(ζ)] ~ρtn|tn+1
(ζ|x) ~ρtn+1|T (x|µ)dζ

∣∣∣∣ dx
≤ sup

µ∈[a0,b0]

∫
R

∣∣∣∣∫
R

[u(tn, ζ)− un(ζ)]
[
~ρn|n+1(ζ|x)− ~ρtn|tn+1

(ζ|x)
]
dζ

∣∣∣∣ ~ρtn+1|T (x|µ)dx

+ sup
µ∈[a0,b0]

∫
R

∫
R
|u(tn, ζ)− un(ζ)| ~ρtn,tn+1|T (ζ, x|µ)dζdx

= sup
µ∈[a0,b0]

∫
R

∣∣∣∣∣
∫
R
[u(tn, ζ)− un(ζ)][ ~ρn|n+1(ζ|x)− ρtn|tn+1(ζ|x)]dζ

∣∣∣∣∣ ~ρtn+1|T (x|µ)dx

+ ||en||,
(3.3.28)
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where ~ρn|n+1 is the transition probability density function of discrete backward process Xn

defined in (3.2.6). To approximate the first term on the right side, we first explicitly express the

Approximation error property of the explicit Euler scheme (3.3.4) as that there exist positive

real number r such that for any function g ∈ C4
P , we have

|Extn+1
[g( ~X

tn+1,x

tn )− g(Xn)]| =
∣∣∣∣∫

R
g(ζ) ~ρtn|tn+1

(ζ|x)dζ −
∫
R
g(ζ) ~ρn|n+1(ζ|x)dζ

∣∣∣∣
=

∣∣∣∣∫
R
g(ζ)

[
~ρtn|tn+1

(ζ|x)− ~ρn|n+1(ζ|x)
]
dζ

∣∣∣∣
≤ C(1 + |x|2r)(∆t)2.

(3.3.29)

According to the previous assumptions of coefficients β, σ, c and forcing g, it is easy to prove

u(t, x)− un(x) ∈ C4
P . Then based on the equation (3.3.30), we have

∣∣∣∣∫
R
u(tn, ζ)− un(ζ)][ ~ρtn|tn+1

(ζ|x)− ~ρn|n+1(ζ|x)]dζ

∣∣∣∣ ≤ C(1 + |x|2r)(∆t)2. (3.3.30)

Plugging equation (3.3.30) into equation (3.3.28), the truncation error ‖en+1
I.2 ‖ can be estimated

by

‖en+1
I.2 ‖ ≤‖e

n‖+ sup
µ∈[a0,b0]

∫
R
C(1 + |x|2r)(∆t)2 ~ρtn+1|T (x|µ)dx

≤‖en‖+ C(∆t)2 sup
µ∈[a0,b0]

EµT [1 + |x|2r]

≤‖en‖+ C(∆t)2 sup
µ∈[a0,b0]

(1 + |µ|2r).

(3.3.31)
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Also, for the error en+1
I.3 , we deduce that

‖en+1
I.3 ‖ =‖Extn+1

[un(Xn)]− Extn+1,Mu
[un(Xn)]‖

= sup
µ∈[a0,b0]

∫
R

∣∣Extn+1
[un(Xn)]− Extn+1,Mu

[un(Xn)]
∣∣ ~ρtn+1|T (x|µ)dx

= sup
µ∈[a0,b0]

∫
R

∣∣∣∣∣
∞∑

m=Mu+1

e−λ∆t (λ∆t)m

m!

∫
R

∫
E

· · ·
∫
E

un

(
x+ β(tn+1, x)∆t

+ σ(tn+1, x)
√

∆tξ +
m∑
k=1

c(tn+1, ek)

)
%(ξ)

m∏
k=1

ρ(ek)de1 · · · demdξ

∣∣∣∣∣
· ~ρtn+1|T (x|µ)dx

≤C(λ∆t)Mu+1,

(3.3.32)

where the above inequality is due to the Assumption 3.3 and constant C depends on the upper

bounds of un. For the error en+1
I.4 , we have

‖en+1
I.4 ‖ =‖Extn+1,Mu

[un(Xn)]− Êxtn+1,Mu
[un(Xn)]‖

=

∥∥∥∥∥e−λ∆t

[∫
R
un
(
x+ β(tn+1, x)∆t+ σ(tn+1, x)

√
∆tξ

)
%(ξ)dξ −

K∑
i=1

wiu
n

(
x

+ β(tn+1, x)∆t+ σ(tn+1, x)
√

∆tai

)]∥∥∥∥∥+

∥∥∥∥∥
Mu∑
m=1

e−λ∆t (λ∆t)m

m!

[ ∫
R

∫
E

· · ·∫
E

un
(
x+ β(tn+1, x)∆t+ σ(tn+1, x)

√
∆tξ +

m∑
k=1

c(tn+1, ek)

)
%(ξ)

m∏
k=1

ρ(ek)

de1 · · · demdξ −
K∑
i=1

Qm∑
q=1

wiw̃
m
q u

n

(
x+ β(tn+1, x)∆t+ σ(tn+1, x)

√
∆tai

+
m∑
k=1

c(tn+1, ã
k,m
q )

)]∥∥∥∥∥
:=A+B.

(3.3.33)
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The first term A can be controlled by

A =

∥∥∥∥∥e−λ∆t

[∫
R
un
(
x+ β(tn+1, x)∆t+ σ(tn+1, x)

√
∆tξ

)
%(ξ)dξ

−
K∑
i=1

wju
n

(
x+ β(tn+1, x)∆t+ σ(tn+1, x)

√
∆tai

)]∥∥∥∥∥
≤||e−λ∆tC(∆t)K || ≤ C(∆t)K .

(3.3.34)

Under the Assumption 3.3, the second term B can be controlled by

B ≤
Mu∑
m=1

e−λ∆t (λ∆t)m

m!
(CQ−r) ≤ Cλ∆tQ−r, (3.3.35)

thus,

‖en+1
I.4 ‖ ≤ C(∆t)K + Cλ∆tQ−r. (3.3.36)

For en+1
I.5 , based on the classic error bound of pth Lagrange interpolation, we have

||en+1
I.5 || =

∥∥∥∥∥Êxtn+1,Mu
[un(Xn)]−

p+1∑
i=1

Êxjitn+1,Mu
[un,p]ψji(x)

∥∥∥∥∥ ≤ C(∆x)p+1. (3.3.37)

For en+1
II.1 , due to the Lipschitz continuity of forcing g with respect to u, we obatin

‖en+1
II.1 ‖ = ‖g(tn+1, x, u(tn+1, x))− g(tn+1, x, u

n+1(x))‖

= sup
µ∈[a0,b0]

∫
R
|g(tn+1, x, u(tn+1, x))− g(t, x, un+1(x))| ~ρtn+1|T (x|µ)dx

≤ L sup
µ∈[a0,b0]

∫
R
|u(tn+1, x)− un+1(x)| ~ρtn+1|T (x|µ)dx

= L‖en+1‖,

(3.3.38)
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where L is the Lipschitz constant and for en+1
II.2 ,

‖en+1
II.2 ‖ =

∥∥∥∥∥g(tn+1, x, u
n+1(x))−

p+1∑
i=1

g(tn+1, xji , u
n+1,p
ji

)ψji(x)

∥∥∥∥∥
= sup

µ∈[a0,b0]

∫
R

∣∣∣∣∣g(tn+1, x, u
n+1(x))−

p+1∑
i=1

g(tn+1, xji , u
n+1,p
ji

)ψji(x)

∣∣∣∣∣
· ~ρtn+1|T (x|µ)dx

≤C(∆x)p+1.

(3.3.39)

Putting all estimates together, we get

‖en+1‖ ≤‖en‖+ C(∆t)2 sup
µ∈[a0,b0]

(1 + |µ|2r) + C(λ∆t)Mu+1 + C(∆t)K

+ Cλ∆tQ−r + C(∆x)p+1 + ∆t
(
L‖en+1‖+ C(∆x)p+1

)
.

(3.3.40)

Using induction technique and for sufficiently small ∆t, we have

‖en+1‖ ≤ C

[
∆t+ (λ∆t)Mu + (∆t)K−1 + λQ−r +

(∆x)p+1

∆t

]
. (3.3.41)

Summarize the above inequalities, we get the following theorem for the error estimate of

temporal-spatial scheme.

Theorem 3.4. let u(tn+1, x) be the exact solution of the PIDEs (3.1.1) at (tn+1, x) and un+1

be the solution of temporal-spatial discrete scheme (3.2.15). Under Assumption 3.3, the error

en+1(x) = u(tn+1, x)− un+1, where n = 0, 1, . . . , N − 1, can be estimated by

||en|| ≤ C

[
∆t+ (λ∆t)Mu + (∆t)K−1 + λQ−r +

(∆x)p+1

∆t

]
, (3.3.42)

where the constant C is depending on the XT , the jump intensity λ, the upper bounds of deriva-

tives of g, β, σ and ϕ.
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3.4 Numerical examples

In this section, we perform one three-dimensional synthetic example and one two-dimensional

example in the groundwater flow area to verify the theoretical analysis. Specifically, Example

1 with general stochastic parameters b, σ, c demonstrates the accuracy and effectiveness of the

temporal-spatial discrete scheme (3.2.15) for handling PIDE (3.1.1), we denote ∆t and ∆x as

the temporal and spatial step sizes, respectively. Based on uniform partitions in both temporal

and spatial domains and we test the convergence rate of our scheme (3.2.15) with respect to ∆t

and ∆x. To get the second-order convergence rate with respect to ∆x, we construct the cubic

interpolation based on Delaunay Triangulation. In this case, we are facing a large amount of six-

dimensional integration problems. The sparse grid quadrature rule can be used to decrease the

numbers of quadrature points. In the example 2, we set up a 2D groundwater flow model and

do simulate the evolution of hydraulic head instead of solving the relative error convergence,

where the dynamic is driven by Brownian motion and Poisson jump process, separately.

Example 1. We consider the following three-dimensional nonlocal PIDE


∂u

∂t
(t, x)− L[u](t, x) = f(t, x, u),∀(t, x) ∈ [0, T )× R3,

u(0, x) = ϕ(x),∀x ∈ R3.

(3.4.1)

The operator L is defined in (3.1.2) and parameters are given as:

• the drift coefficient: b(t, x) = x,

• the jump height function: c(t, e) = e,

• the symmetric kernel: γ(e) = 103 × 1|e|≤0.1,

• the diffusion coefficient:

σ(t, x) =


sin(x1) 0 0

0 cos(x3) 0

0 0 sin(x2)

 .

39



Figure 3.2: Spatial domains

We choose the exact solution to be

u(t, x) = sin

(
t

2

)
x4

1 + x2x3,

so that the forcing term f is given by

f(t, x) =
(
sin2(x1)− cos2(x1)− 3

)
u(t, x) +

x4
1

2
cos

(
t

2

)
− 2x2x3

+

(
4x4

1 − 4x3
1 sin(2x1)− 6x2

1 sin2(x1)− 2πx2
1

125
− 4π

350000

)
sin

(
t

2

) (3.4.2)

and the initial condition ϕ(x) is equal to u(0, x). We solve the PIDE (3.4.1) in two different

domains, i.e., the first one is a cube [0, 1]3, the second one is an incomplete cube, domains are

shown in Figure 3.2. To test the convergence rate with respect to ∆t, we set ∆x = 1
64

and

use linear interpolation with Delaunay Triangulation, which is enough to guarantee the first

order convergence. Since the symmetric kernel γ(e) is uniform with the support |e| ≤ 0.1 and

Brownian motion is also involved in the conditional expectation Exjtn+1
[·], we use sparse grids

based on Gauss-Legendre quadrature rule and Gauss-Hermite quadrature rule with enough high

level such that the truncation error of interpolation can be ignored, we set Mu = 1, i.e., one

jump in conditional expectation Êxjtn+1,Mu
[un] and divide the time interval [0, 1] into Nt with

∆t = 2−2, 2−3, 2−4, 2−5, 2−6, the error is measured in two different measure norms L∞ and

L2. Results are listed in table 3.1. As expected, the convergence rate with respect to ∆t is first

order in both spatial domains.
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Table 3.1: Errors and convergence rates with respect to ∆t in Example 1
∆t 2−2 2−3 2−4 2−5 2−6 CR

‖u− u‖L∞
cubic 4.6977e-01 2.0351e-01 8.2775e-02 3.2263e-02 1.4464e-02 1.2700

in-cubic 4.0173e-01 1.4239e-01 5.3069-02 2.5996e-02 1.2886e-02 1.2378
‖u− u‖L2

cubic 1.6159e-01 7.5064e-02 3.4977e-02 1.6026e-02 7.2867e-03 1.1170
in-cubic 1.1603e-01 5.0939e-02 2.3613e-02 1.0961e-02 5.0264e-03 1.1274

Next, we test the convergence rate with respect to ∆x, we observe in Theorem 3.4 that to

test the convergence rate with respect to ∆x, the quantity 1
∆t

should be in a reasonable range,

thus balancing ∆t and ∆x is needed here:

• To get the first order convergence rate with respect to ∆x, we use linear interpolation and

set ∆t = ∆x with T = 0.5.

• To get the second order convergence rate with respect to ∆x, we use cubic interpolation

and set ∆t = (∆x)2 with T = 0.25.

To access the cubic interpolation on Delaunay Triangulation, we need to bulid the finite

element approximation in each tetrahedron written as customary form, i.e.,

U(x1, x2, x3) =
N∑
i=1

ciui(x1, x2, x3),

where N is the number of nodes, i.e., N = 20 for cubic interpolation, ci is the shape function

and ui(x1, x2, x3) is the interpolant at ith node, i = 1, 2, . . . , N studied by [33, 55]. Compared

to the linear interpolation on Delaunay triangulation, the cubic interpolation requires much

more node points which aggravates the computational cost in high dimensional cases. Sparse

grid interpolation [7,37,43,45] could be used to alleviate this explosion that will be considered

in our future works. To test the first order convergence with respect to ∆x, we divide the

spatial domain D into Nx with ∆x = 2−2, 2−3, 2−4, 2−5 2−6, and set ∆t = ∆x. To test the

second order convergence with respect to ∆x, we divide the spatial domain D into Nx with

∆x = 2−1, 2−2, 2−3, 2−4 and set ∆t = (∆x)2. In Figure 3.3, we can see that the numerical

results verify the theoretical analysis.
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Figure 3.3: Errors and convergence rates with respect to ∆x in Example 1

Example 2. We present the evolution of the 2D hydraulic head model given as



∂u
∂t

(t, x)− L[u](t, x) = 0, (t, x) ∈ [0, T ]×D,

u(t, x) = 10[(1 + 1
2

sin t)x2 + 5x1], (t, x) ∈ (0, T ]× {∂Dtop ∪ ∂Dbot ∪ ∂Dright},

u(t, x) = sin t+ 2 + 4x1, (t, x) ∈ (0, T ]× ∂Dleft,

u(t, x) = 0, (t, x) ∈ 0× D̄,
(3.4.3)

where domain is given in Figure 7.3 in Appendix 7.5. And the partial integro-differential

operator L is determined by the underlying process, here we consider the dynamic system is

driven by Poisson jump process and Brownian motion process, respectively.

1. When the Lévy process does only consist of by Poisson jump process, based on the

Feynman-Kac theory, the infinitesimal operator L is a nonlocal operator given as

L[u] =

∫
E

(
u(t, x+ e)− u(t, x)

)
γ(e)de,

we set parameters as T = 10π, ∆t = π
16

and the kernel is defined by

γ(e) =


4, |e| ≤ δ,

0, otherwise.

(3.4.4)
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The larger jump horizon δ within reasonable range leads to a faster evolution of hydraulic head

u, such phenomenon is investigated by setting δ = 0.1 and 0.25, the results are shown in Figure

3.4.

2. We consider the the Lévy process does only consist of by Brownian motion to compare

with the nonlocal operator. In this case, L is the Laplace operator, i.e.,

L[u] =
1

2

2∑
i=1

∂2u

∂x2
i

(t, x),

since the heat equation allows an infinite speed of propagation, we consider this dynamic sys-

tem in a small time range, i.e., T = π
16

with ∆t = π
2048

. The evolution of u is shown in Figure

3.4.

Figure 3.4: The evolution of hydraulic head u(t, x) in Example 2
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Chapter 4

Probabilistic schemes for the fractional Laplacian equation

4.1 Problem setting

We first describe the fractional Laplacian equation that is the focus of Chapter 4 and demon-

strate that our probabilistic schemes in Chapter 3 provide a novel perspective to solve the frac-

tional Laplacian diffusion equation based on the study by [4, 8]. To proceed, we use a one-

dimensional numerical example to verify the Gaussian Approximation Theorem introduced by

J. Rosiński and S. Cohen [8], i.e., the Gaussian approximation of Lévy processes can simulate

a kind of stable processes. The second part is that we numerically test errors convergence rate

of the proposed schemes for estimating u(t, x) of the PIDE related to the Lévy process coming

from Gaussian approximation. In particular, we obtain the convergence rates with respect to

both ∆t and ∆x for two different α cases, i.e, α = 0.5 and 1.5.

Consider the following PDE with fractional Laplacian operator:


∂v

∂t
(t, x) + (−∆)α/2v(t, x) = f(t, x),∀(t, x) ∈ [0, T ]× Rd,

v(0, x) = ϕ(x), ∀x ∈ Rd,

(4.1.1)

where the fractional Laplacian operator is defined by

(−∆)α/2v(t, x) = Cd,α

∫
Rd

v(t, x)− v(t, y)

|x− y|d+α
dy, (4.1.2)

with Cd,α given as

Cd,α =
α2α−1Γ(α+d

2
)

πd/2Γ(2−α
2

)
.
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According to the Lévy-Khintchine lemma [2], the stochastic process corresponding to

fractional operator (−∆)α/2 is the symmetric α-stable process (SαS) X = {Xt, 0 ≤ t ≤ T}

with characteristic function being

φ(t, w) = E[eiwXt ] = exp {−e|w|α} ,

where w ∈ Rd, α ∈ (0, 2], i is the imaginary unit and the Lévy measure ν is defined by

ν(dz) = Cd,α
1

|z|d+α
dz ∀z ∈ Rd.

Note that (−∆)α/2 is the infinitesimal generator of that SαS process for a fixed α ∈ (0, 2].

4.2 Gaussian approximation of Lévy processes

To approximate a Lévy process that has paths of infinite variation by an appropriate compound

Poisson process leads to a significant error. S. Asmussen and J. Rosiński [4] proved that the

remainder process could be approximated by one Brownian motion with a small variance. In

other words, combining such a small variance Brownian motion with an appropriate Poisson

process can improve the approximation accuracy. In high-dimensional space Rd, we define a

Lévy process Xε := {Xε(t) : t ≥ 0}, for every ε ∈ (0, 1], with characteristic function of the

form

E[ei〈y,Xε(t)〉] = exp

{
t

∫
Rd

[
ei〈y,x〉 − 1− i〈y, x〉

]
νε(dx)

}
, (4.2.1)

where the Poisson random measure satisfies

∫
Rd
‖x‖2νε(dx) <∞.

Then Lévy process Xε(t) has zero mean and covariance E[Xε(t)Xε(t)
>] = tΣε, where Σε =∫

Rd x · x
>νε(dx). Theorem 2.2 in [4] states that suppose Σε is nonsingular for ε ∈ (0, 1], then

as ε→ 0, we have

Σ−1/2
ε Xε

d→ B (4.2.2)
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if and only if for every κ > 0

∫
〈Σ−1
ε x,x〉>κ

〈Σ−1
ε x, x〉νε(dx),

where B denotes a standard Brownian motion and ”
d→ ” stands for the weak convergence of

processes in the space D([0, T ),Rd) of càdlàg functions with the Skorohod topology. Right

now we can do the approximate simulation of multivariate SαS processes based on the above

technology for approximating the remainder process Xε.

We give a decomposition of Lévy measure ν as

ν = νε + νε,

where νε(Rd) < ∞. The SαS process X = {X(t), 0 ≤ t ≤ T} without drift term can be

decomposed as

X
d
= Xε +N ε = ν{‖x‖≤ε} + ν{‖x‖≥ε}, (4.2.3)

where N ε = {N ε(t), 0 ≤ t ≤ T} is a compound Poisson process with the jumps measure νε

and since the equation (4.2.2), we have

X
d→ Σ1/2

ε B +N ε (4.2.4)

Theorem 3.1 in [8] provides a theoretical basis of the approximation formula (4.2.4) and

we numerically verify the accuracy of that theorem by two α cases, i.e., α = 1.5 and 0.5 in

one-dimensional space. We choose an appropriate parameter ε and results are shown in Figure

4.1. In each case, the first subplot is plotting the compound Poisson process N ε. The second

subplot is the Brownian motion Σ
1/2
ε B. We compare the composite processes N ε + Σ

1/2
ε B, in

the third subplot, with the analytic probability density function of the SαS process X . In the

third subplot, we see that, with an appropriate number ε, the composite processes N ε + Σ
1/2
ε B

provides a reasonable approximation for the SαS process X .

The SαS process is the underling stochastic process of the fractional Laplacian equation

46



Figure 4.1: Gaussian approximation of Lévy process

47



and the Gaussian approximation-Lévy process is associated with PIDE introduced in Chapter

3. In the stochastic perspective, the Gaussian approximation gives us a new approach to ap-

proximate the solution v(t, x) in fractional Laplacian equation (4.1.1) by a solution u(t, x) of

PIDE with second order integro-differential operator. Here we focus on constructing the nu-

merical schemes for the solution u(t, x). The theoretical analysis for estimating the relative

error between u(t, x) and v(t, x) refers to literature [4, 8]. The underlying corresponding to

(4.1.1) is given as

Xα
t = Xα

0 +

∫ t

0

∫
E

ν̃(de, ds), (4.2.5)

where ν is the random measure of the SαS process, superscript 0 < α ≤ 2 is the fraction

Laplacian order, then Xα
t can be approximated by

Xα
t = Xα

0 +

∫ t

0

Σ1/2
ε dBt +

∫ t

0

∫
E

eν̃ε(de, ds), (4.2.6)

where the Poisson process measure ν̃ε is constructed according to the measure decomposition

(4.2.3). We know that the SDE (4.2.6) is the underlying stochastic process of the probabilistic

representation of the solution u(t, x) of the following PIDE in [0, T ]:


∂u

∂t
(t, x)− L∗[u](t, x) = f(t, x), ∀(t, x) ∈ (0, T ]× Rd,

u(0, x) = ϕ(x), ∀x ∈ Rd,

(4.2.7)

where L∗[u](t, x), the infinitesimal generator of the random process Σ
1/2
ε B +N ε, is defined as

L[u](t, x) =
1

2

d∑
i,j=1

(Σ1/2
ε )(Σ1/2

ε )>
∂2u

∂xi∂xj
(t, x)

+

∫
Rd

(
u(t, x+ e)− u(t, x)−

d∑
i=1

∂u

∂xi
e

)
λε(de),

(4.2.8)

where λε(de) is the jump intensity of random process measure which is defined as

νε(de) =


Cd,α

1

|e|d+α
de, ε ≤ |e|,

0, otherwise.

(4.2.9)
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We add an outer boundary εb to kernel νε(de), i.e., ε ≤ |e| ≤ εb so that it will be much easier to

select a quadrature rule for approximating spatial integrals with respect to jump variable.

4.3 Numerical examples

Example 3. We consider the fractional Laplacian equation (4.1.1) through solving the PIDE

(4.2.7) in R3. We choose the exact solution to be u(t, x) = (t+ x1)2 + x2x3, and consider two

different α cases.

Case 1: When α = 0.5, we choose ε = 0.2 and outside boundary εb = 0.3, then the

variance Σε is solved as

Σε =
0.21.58π

9
· C3,0.5I3×3

and the forcing term is given as

f(t, x) = 2(t+ x1)− 0.251.58π

9
C3,0.5.

The initial condition ϕ(x) can be gotten from u(t, x), the jump intensity

λ =

∫
E

νε(de) = 8πC3,0.5(0.2−0.5 − 0.3−0.5)

and the probability measure

ρ(e)de =
1

8π(0.2−0.5 − 0.3−0.5)|e|3.5
10.2≤|e|≤0.3de.

Case 2: When α = 1.5, we choose ε = 0.2 and outside boundary εb = 0.3, then the

variance Σε is

Σε =
8
√

0.2πC3,1.5

3
I3×3

and the forcing term is given by

f(t, x) = 2(t+ x1)− 8πC3,1.5

√
0.3

3
.
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Table 4.1: Errors and convergence rates with respect to ∆t in Example 3

α = 0.5
∆t

2−2 2−3 2−4 2−5 2−6 CR

‖u− u‖L∞

cubic 2.2916e-01 1.1179e-01 5.4899e-02 2.7300e-02 1.4526e-02 0.9993
in-cubic 2.2825e-01 1.1172e-01 5.4341e-02 2.6725e-02 1.4026e-02 1.0113

‖u− u‖L2

cubic 1.7846e-01 8.2772e-02 3.8682e-02 1.8766e-02 9.9604e-03 1.0468
in-cubic 1.6972e-01 7.7344e-02 3.5876e-02 1.6972e-02 8.6047e-03 1.0792

α = 1.5
∆t

2−2 2−3 2−4 2−5 2−6 CR

‖u− u‖L∞

cubic 1.6356 8.1391e-01 4.4791e-01 2.3528e-01 1.1458e-01 0.9461
in-cubic 1.3570 7.2056e-01 3.0769e-01 1.6742e-01 7.4434e-02 1.0482

‖u− u‖L2

cubic 8.6992e-01 5.1089e-01 2.6265e-01 1.2385e-01 5.7766e-02 0.9870
in-cubic 7.1458e-01 3.9250e-01 1.8760e-01 8.3060e-02 3.6301e-02 1.0838

The initial condition ϕ(x) can be gotten from u(t, x), the jump intensity

λ =

∫
E

νε(de) =
8π

3
C3,1.5(0.2−1.5 − 0.3−1.5)

and the probability measure is given as

ρ(e) =
3

8π(0.2−1.5 − 0.3−1.5)|e|4.5
10.2≤|e|≤0.3.

We expect the first order convergence with respect to both ∆t and ∆x for α = 0.5 and 1.5.

Temporal and spatial parameters are given as same as example 1 and results are shown in Table

4.1 and Figure 4.2. We see that both temporal discretization and spatial discretization errors

decay at the first order rate that verify the theoretical analysis in Section 3.3.
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Figure 4.2: Errors and convergence rates with respect to ∆x in Example 3
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Chapter 5

The PIDEs with Volume Constraints

5.1 Problem setting

Let D ∈ Rd denote a bounded open polygonal domain, we consider the following initial-

boundary value problem in [0, T ]× (D ∪Db) where T > 0 and D ∪Db ⊂ Rd with d = 1, 2, 3,

i.e.,
∂u

∂t
(t, x)− L[u](t, x) = f(t, x, u), ∀(t, x) ∈ (0, T ]×D ,

u(0, x) = u0(x), ∀x ∈ D ∪Db,

u(t, x) = ub(t, x), ∀(t, x) ∈ (0, T ]×Db,

(5.1.1)

where f is the forcing, u0 is an initial condition and ub is an volume constraint acting on

a volume Db that is disjoint from D . The volume constraint is a natural extension, to the

nonlocal case, of boundary conditions for local PDEs. The partial integro-differential operator

L is defined in (3.1.2). The well-posedness of PIDE (5.1.1) with random terminal time has

been studied by [9, 34].

5.1.1 The non-divergence form of the PIDE

We assume the coefficients of L in (3.1.2) have sufficient regularities, such that we can rewrite

the PIDE in (3.1.1) in a non-divergence form, i.e.,

∂u

∂t
(t, x)− L∗[u](t, x) = g(t, x, u) ∀(t, x) ∈ (0, T ]×D ,

u(0, x) = u0(x), ∀x ∈ D ∪Db,

u(t, x) = ub(t, x), ∀(t, x) ∈ (0, T ]×Db,

(5.1.2)
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where the non-divergence form operator L∗ is defined by

L∗[u](t, x) :=
d∑
i=1

βi(t, x)
∂u

∂xi
(t, x) +

d∑
i,j=1

Kij(t, x)
∂2u

∂xixj
(t, x)

+

∫
E

[u(t, x+ c(t, e))− u(t, x)] γ(e)de,

(5.1.3)

with the new drift coefficient βi being

βi(t, x) := 2
d∑
j=1

∂Kij(t, x)

∂xj
(t, x)− bi(t, x).

The new forcing term g is defined by

g(t, x, u) := f(t, x, u) +

[
d∑

i,j=1

∂2Kij

∂xi∂xj
(t, x)−

d∑
i=1

∂bi
∂xi

(t, x)

]
u(t, x).

Hereafter, we focus on solving the PIDE in (5.1.2).

5.2 The new probabilistic numerical scheme for the PIDEs

In this section, we move on proposing the probabilistic numerical schemes. The nonlinear

Feynman-Kac theory studied by [5] establishes a probabilistic representation of the solution

in PIDE (5.1.2) that is the same expression as the case of PIDE in the unbounded domain Rd.

Next, we consider the way to formulate the random time of the underlying backward stochastic

process ~Xs in (3.2.3) exits the bounded domain D .

5.2.1 Mesh generation

We construct the temporal-spatial meshes for approximating the PIDE (3.2.1). We use the same

temporal mesh T and remark that the temporal mesh T is not adapted to the jump instances

of the stochastic process defined in (3.2.3). In the spatial domain, we define a triangular or

tetrahedral mesh, denoted byK∆x, for the closed domain D , where ∆x indicates the maximum

size of the elements. We denote by J the index set for the grid points of K∆x. Since the

grid points can be divided into interior nodes {xi ∈ K∆x ∩ D} and boundary nodes {xi ∈
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K∆x ∩ ∂D}, we denote by Jinterior and Jboundary the index sets of interior and boundary nodes,

respectively.

5.2.2 The probabilistic representation of the PIDE solution

We now restrict the PIDE in (5.1.2) within one time step [tn, tn+1] and derive a probabilistic

representation of u(tn+1, x) using u(tn, x) and g(t, x, u(t, x)) for (t, x) ∈ [tn, tn+1] × (D ∪

Db). According to Dynkin’s formula [12], the operator −L∗ in (5.1.3) is the infinitesimal

generator of ~X
tn+1,x

s for s ∈ [tn, tn+1], so that we can exploit the Feynman-Kac theory to

derive a probabilistic representation to the solution of the initial-boundary value problem in

(5.1.2). For any test function u(t, x) ∈ C1([tn, tn+1]) × C2(Rd), we apply the Itô formula to

u(s, ~X
tn+1,x

s ) for s ∈ [tn, tn+1], and take mathematical expectation of the expansion, then we

have

u(tn+1, x) = E
[
u(s, ~X

tn+1,x

s )−
∫ s

tn+1

(
∂u

∂t
− L∗[u]

(
t, ~X

tn+1,x

t

))
dt

]
, (5.2.1)

where the operator L∗ is defined in (5.1.3). If u(t, x) is a strong solution of the PIDE in (5.1.2),

then we have a probabilistic representation of u(tn+1, x), i.e.,

u(tn+1, x) = E
[
u(s, ~X

tn+1,x

s )−
∫ s

tn+1

g
(
t, ~X

tn+1,x

t , u(t, ~X
tn+1,x

t )
)
dt

]
, (5.2.2)

where s ∈ [tn, tn+1] and g(t, x, u) is the forcing term in (5.1.2).

The boundary condition of the problem in (5.1.2) can be incorporated into the probabilistic

representation in (5.2.2) by defining an exit time of ~X
tn+1,x

t , i.e.,

τtn+1,x := sup
{
s < tn+1

∣∣ ~X
tn+1,x

s 6∈ D ∪Db, x ∈ D
}
,

which indicates the first exit time of the process ~X
tn+1,x

s defined in (3.2.3). Then, all the possible

paths of the process ~X
tn+1,x

s within [tn, tn+1] can be divided into two subsets, denoted by S1

and S2, i.e.,

S1 :=
{
τtn+1,x ≤ tn

}
and S2 :=

{
τtn+1,x > tn

}
, (5.2.3)
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where S1 describes the event that the state of ~X
tn+1,x

s remains in D ∪Db for any s ∈ [tn, tn+1],

and S2 describes the event that ~X
tn+1,x

s will exit the domain D ∪ Db at some time instance

within [tn, tn+1]. It is easy to see that P(S1) + P(S2) = 1. We can divide the expectation in

(5.2.2) into two parts based on the subsets S1 and S2, i.e.,

u(tn+1, x)

=P(S1)E
[
u(tn, ~X

tn+1,x

tn )−
∫ tn

tn+1

g
(
t, ~X

tn+1,x

t , u(t, ~X
tn+1,x

t )
)
dt

]
+ P(S2)E

[
ub(τtn+1,x, ~X

tn+1,x

τtn+1,x
)−

∫ τtn+1,x

tn+1

g
(
t, ~X

tn+1,x

t , u(t, ~X
tn+1,x

t )
)
dt

]
.

(5.2.4)

Even though we defined a temporal-spatial mesh in Section 5.2.1, we have not yet con-

ducted any discretization of the PIDE in (5.1.2). The discretization includes four steps, i.e., (i)

approximating the dynamic of the backward stochastic process ~X
tn+1,x

tn on the temporal-spatial

mesh, (ii) discretizing the temporal integrals in (5.2.4), (iii) approximating the expectation op-

erator E[·], and (iv) reconstructing the solution u(t, x). Those four steps will be described in

Section 5.2.3, 5.2.4, 5.2.5 and 5.2.6, respectively.

5.2.3 Approximation of the backward stochastic process

One of the challenges in discretizing (5.2.4) is to accurately approximate the second term of

the right-hand side, i.e., the exit probability P(S2) and corresponding conditional expectation.

Standard strategies can only provide O(
√

∆t), which, if used, will deteriorate the overall con-

vergence rate of our method. To circumvent such challenge, we introduce additional truncation

and discretization to the Euler scheme in (3.2.6), such that the probability P(S2) determined by

the final discretized ~X
tn+1,x

s will be on the order of O((∆t)2). If achieved, the second term on

the right-hand side of (5.2.4) can be neglected without affecting the desired convergence rate.

Specifically, we truncate the number of jumps within [s, tn+1], controlled by Ntn+1−s, to

maximumly one jump, i.e., replacing Ntn+1−s in (3.2.6) with Ntn+1−s ∨ 1 = min(Ntn+1−s, 1).

Such truncation is based on the fact that the probability of having more than one jumps within

∆t is on the order of O((λ∆t)2). Moreover, we have another two critical observations: (a) the

further the starting point x away from the boundary ∂D , the smaller the exit probability P(S2);
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(b) We only need to set the starting point x of ~X
tn+1,x

s on the grid points of the spatial mesh

K∆x defined in Section 5.2.1, in order to compute the approximation of u(tn+1, x) in (5.2.4)

on the grid points, and the value of u(tn+1, x) at other locations will be approximated by inter-

polation. Based on such two observations, we set the mesh size ∆x on the order of O(
√

∆t),

so that the process ~X
tn+1,x

s starting from any interior node of K∆x will have a very small exit

probability. In this case, piecewise cubic interpolation with O((∆x)4) is needed to recover a

O((∆t)2) local error. As such the final discretization scheme of ~X
tn+1,x

s in (3.2.3) is given by

X̂ tn+1,xi
s := xi + b(tn+1, xi)(tn+1 − s) + σ(tn+1, xi)∆ ~W tn+1−s +

Ntn+1−s∨1∑
k=0

c(tn+1, ek), (5.2.5)

for all interior grid points xi ∈ D ∩ K∆x.

Lemma 5.1. Given the temporal-spatial mesh T × K∆x, if all the interior grid points xi ∈

D ∩ K∆x satisfies

dist(xi, ∂D) > b̄∆t+ σ̄(∆t)
1
2
−ε, (5.2.6)

with b̄ and σ̄ the upper bounds of |b|, |σ| in [0, T ] × D ∪ Db. Then for any positive constant

ε > 0, there exists a sufficiently small ∆t such that

P(τ̂tn+1,xi > tn) ≤ C(∆t)ε exp

(
− 1

(∆t)2ε

)
,

where τ̂tn+1,xi is the exit time of the approximation X̂ tn+1,xi
s in (5.2.5), and the constant C > 0

is independent of ∆t.

The above lemma follows the approach from Theorem 3.2 in J.Yang [48]. When substitut-

ing the approximation X̂ tn+1,xi
s into the probabilistic representation in (5.2.4), the second term

on the right hand side can be viewed as an O((∆t)2) truncation error, such that (5.2.4) can be

rewritten as

u(tn+1, xi) = E
[
u(tn, X̂

tn+1,xi
tn )−

∫ tn

tn+1

g
(
t, X̂

tn+1,xi
t , u(t, X̂

tn+1,xi
t )

)
dt

]
+Rn+1, (5.2.7)

where xi ∈ D ∩ K∆x, and Rn+1 denotes the approximation error between (5.2.4) and (5.2.7).
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5.2.4 Temporal discretization of the probabilistic representation

Now we discretize the temporal integral in (5.2.7). The implicit Euler scheme can be ap-

plied that guarantees stability and achieves desired first order convergence with respect to ∆t.

Specifically, for any interior grid point xi ∈ D ∩ K∆x, we have

u(tn+1, xi) = E
[
u(tn, X̂

tn+1,xi
tn )

]
+ ∆t g(tn+1, xi, u(tn+1, xi)) +Rn+1, (5.2.8)

where the residual Rn+1 is assumed to absorb the truncation error from the implicit Euler

scheme. The advantage of using the probabilistic representation is that

E
[
g
(
tn+1, X̂

tn+1,xi
tn+1

, u(tn+1, X̂
tn+1,xi
tn+1

)
)]

= g (tn+1, xi, u(tn+1, xi)) ,

due to the Markovian property of X̂ tn+1,xi
tn+1

. As such, the value of u(tn+1, xi) can be com-

puted independently without knowing u(tn+1, xj) at any other locations xj , when neglecting

the residual terms in (5.2.8). Such decoupling helps avoid solving linear systems with possibly

dense matrices for the nonlocal problem under consideration.

5.2.5 Approximation of the conditional expectation

This subsection is to construct a quadrature rule for discretizing the conditional expectation in

(5.2.4). To proceed, we write out the expression of the expectation as

E
[
u(tn, X̂

tn+1,xi
tn )

]
=P(N∆t = 0) E

[
u
(
tn, xi + b(tn+1, xi)∆t+ σ(tn+1, xi)∆ ~W

)]
+ P(N∆t = 1) E

[
u
(
tn, xi + b(tn+1, xi)∆t+ σ(tn+1, xi)∆ ~W

)
+ c(tn+1, e)

]
= e−λ∆t

[∫
Rd
u
(
tn, xi + b(tn+1, xi)∆t+ σ(tn+1, xi)

√
∆tξ

)
%(ξ)dξ (5.2.9)

+ λ∆t

∫
Rd

∫
E

u
(
xi + b(tn+1, xi)∆t+ σ(tn+1, xi)

√
∆tξ + c(tn+1, e)

)
%(ξ)ρ(e)dqdξ

]
,
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where %(ξ) is the standard Gaussian probability density for ∆ ~W , ρ(e), defined in (3.1.3), is

the probability density function for the jump amplitude c(tn+1, e), and P(N∆t = 0) = e−λ∆t,

P(N∆t = 1) = e−λ∆tλ∆t with λ the jump intensity given in (3.1.3).

The two integrals in (5.2.9) can be approximated by Gaussian quadrature rules. The in-

tegral with respect to %(ξ) can be approximated by the Gauss-Hermite rule. It is proved in

Section 3.3 that the 3-point Gauss-Hermite rule (3d total) is sufficient to achieve a O((∆t)2)

local truncation error. The integral with respect to the jump amplitude e can be approximated

by either Newton-Cotes or Gaussian quadrature rules, depending on the nonlocal kernel γ(e)

under consideration.

Without loss of generality, we denote by {wm, ξm}Mm=0 the Hermite quadrature weights

and abscissae, and by {vl, ql}Ll=1 the selected rule for estimating the integrals in (5.2.9) with

respect to e. As such, the approximate expectation, denoted by Ê[·], is defined as

Ê[u(tn, X̂
tn+1,xi
tn )]

= e−λ∆t

[
M∑
m=1

wmu
(
tn+1, xi + b(tn+1, xi)∆t+ σ(tn+1, xi)

√
2∆t ξm

)
(5.2.10)

+ λ∆t
M∑
m=1

L∑
l=1

wmvl u
(
tn, xi + b(tn+1, xi)∆t+ σ(tn+1, xi)

√
2∆t ξm + c(tn+1, ql)

)]
.

Substituting (5.2.10) into (5.2.8), we obtain an updated approximation scheme

u(tn+1, xi) = Ê
[
u(tn, X̂

tn+1,xi
tn )

]
+ ∆t g(tn+1, xi, u(tn+1, xi)) +Rn+1, (5.2.11)

where the residual Rn+1 is assumed to absorb one additional error from (5.2.10).

5.2.6 The fully discrete scheme

It is easy to see that a temporal-spatial discretization scheme can be defined based on (5.2.11)

by neglecting the residual term Rn+1. Nevertheless, the quadrature points used in (5.2.10) may

not be the grid points on the spatial mesh K∆x, such that approximating u(tn+1, xi) only at the

interior grid points xi ∈ D ∩K∆x is not sufficient to move forward to the next time step. Thus,
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we need to reconstruct u(tn+1, x) on the closed domain D based on the approximate nodal

values of u(tn+1, xi) and the volume constraint ub(t, x). In this work, the approximation of

u(tn+1, xi), denoted by un,p(x), is defined by p-th order piecewise Lagrange interpolation on

the spatial mesh K∆x, i.e.,

un+1,p(x) =
∑

i∈Jinterior

un+1
i ψi(x) +

∑
i∈Jboundary

ub(tn+1, xi) ψi(x), (5.2.12)

where un+1
i denotes the nodal approximation of u(tn+1, x) at xi for i ∈ Jinterior, ub is the

boundary condition and ψi is the nodal basis function associated with xi. We combine all the

discretization schemes discussed in Section 5.2.3, 5.2.4, 5.2.5 and 5.2.6 into a fully discrete

scheme, presented in Algorithm 1.

Algorithm 1: The fully discrete scheme

Input: u0, ub, g, L∗, D , Db

Output: The approximation un,p(x) for n = 1, . . . , Nt;

1: Generate the temporal and spatial meshes T∆t and K∆x;

2: for n = 0, . . . , Nt − 1 do
3: for i ∈ Jinterior do
4: • Generate quadrature points used in (5.2.10) for m = 1, . . . ,M, l = 1, . . . , L

X̃i,m = xi + b(tn+1, xi)∆t+ σ(tn+1, xi)
√

2∆t ξm,

X̄i,l,m = xi + b(tn+1, xi)∆t+ σ(tn+1, xi)
√

2∆t ξm + c(tn+1, ql);

5: • Evaluate the interpolant un,p(x) to obtain un,p(X̃i,m) and un,p(X̄i,l,m);

6: • Compute Ê[un,p(xi, X̂
tn+1,xi
tn )] by substituting un,p(X̃i,m) and un,p(X̄i,l,m)

into the quadrature rule in (5.2.10);

7: • Compute the nodal value un+1
i by solving a nonlinear equation based on (5.2.11)

un+1
i = Ê

[
un,p(xi, X̂

tn+1,xi
tn )

]
+ ∆t g(tn+1, xi, u

n+1
i );

8: end for
9: Construct the interpolant un+1,p(x) using un+1

i and ub(t, x) via (5.2.12);

10: end for
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5.3 Numerical examples

Example 4. We consider the following three-dimensional nonlocal diffusion problem with

Dirichlet boundary condition,



∂u

∂t
(t, x)−

∫
E

(
u(t, x+ e)− u(t, x)

)
γ(e)de = f(t, x, u), ∀(t, x) ∈ [0, T ]×D ,

u(0, x) = ϕ(x),∀x ∈ D ∪Db,

u(t, x) = x2exp(− t

10
),∀(t, x) ∈ [0, T ]×Db,

(5.3.1)

where the symmetric kernel γ(e) = 82 × 1|e|≤ 1
8

and we consider the domain Dtotal := D ∪Db

in two cases, one is a cube [0, 1]3 and another one is a three-dimensional river model that is

shown in Figure 7.1 in Appendix 7.5. The interior region D consists of all grid points such that

their all quadrature points fall inside the union region Dtotal. We choose the exact solution to

be

u(t, x) = x2exp(− t

10
),

so that the forcing term f is given by

f(t, x) = −u(t, x)

10
− π

640
exp(− t

10
).

And the initial condition ϕ(x) can be solved directly from u. To test the convergence rate

with respect to ∆t, we set ∆x = 1
32

and use linear interpolation with Delaunay triangu-

lation which is enough to guarantee O(∆t). Since the symmetric kernel γ(e) is uniform

with the support |e| ≤ 1
8
, we use the sparse grids based on Gauss-Legendre quadrature rules

with enough high level and set Mu = 1, the time interval [0, 1] is divided into Nt with

∆t = 2−1, 2−2, 2−3, 2−4, 2−5. The errors of inner grid points are measured in two different

measure norms L∞ and L2. Results are shown in Table 4. As expected, the convergence rate

with respect to ∆t is first order in both space domains. Next, we test the convergence rate with

respect to ∆x, we consider a small river model that is shown in 7.2, results are listed in Figure

4. As Theorem 3 in stated [50], using linear interpolation with Delaunay Triangulation can get
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Table 5.1: Errors and convergence rates with respect to ∆t in Example 4, where T=1, ∆x = 1
32

∆t 2−1 2−2 2−3 2−4 2−5 CR

‖u− u‖L∞

cubic 1.1046e-01 5.5788e-02 2.7572e-02 1.3262e-02 6.0030e-03 1.0476
river 4.9923e-01 2.6885e-01 1.3963e-01 7.0783e-02 3.5222e-02 0.9576

‖u− u‖L2

cubic 5.1275e-02 2.6937e-02 1.3507e-02 6.4277e-03 2.7976e-03 1.0459
river 2.3797e-01 1.2670e-01 6.5254e-02 3.2838e-02 1.6176e-02 0.9706

Figure 5.1: Errors and convergence rates with respect to ∆x in Example 4

the second order convergence rate with respect to ∆x.
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Chapter 6

Runaway electrons model

6.1 Problem setting

We consider a three-dimensional runaway electrons model describing the dynamics of the mag-

nitude of the relativistic momentum, denoted by p, the cosine of the pitch angle θ, denoted by

ξ = cos θ, and the minor radius, denoted by r. The relativistic momentum p is normalized us-

ing the thermal momentum and the time is normalized using the thermal collisional frequency.

That is, if p̂ and t̂ denote the dimensional variables, then p = p̂/(mvT ) and t = νeet̂, where

vT =
√

2T/m is the thermal speed with T the plasma temperature and m the electron mass,

and the thermal collision frequency is νee = e4n lnnΛ/(4πε0m
2v3
T ) with e the absolute value

of the electron charge, ε0 is the vacuum permittivity and Λ the Coulomb logarithm. Specifically,

those dynamics are defined by the following stochastic differential equations



dp =

[
Eξ − γp

τ
(1− ξ2)− CF +

1

p2

∂

∂p

(
p2CA

)]
dt+

√
2CA dBp,

dξ =

[
E (1− ξ2)

p
− ξ(1− ξ2)

τγ
− 2ξ

CB
p2

]
dt+

√
2CB
p

√
1− ξ2 dBξ,

dr =
√

2DrdBr,

(6.1.1)
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where Bp, Bξ and Br are the standard Brownian motions, E is the electric field, and the func-

tions CA, CB, CF and Dr are defined by

CA(p) = ν̄ee v̄
2
T

ψ(y)

y
,

CB(p) =
1

2
ν̄ee v̄

2
T

1

y

[
Z + φ(y)− ψ(y) +

y2

2
δ4

]
,

CF (p) = 2 ν̄ee v̄T ψ(y),

Dr(p) = D0 exp(−(p/∆p)2),

φ(y) =
2√
π

∫ y

0

e−s
2

ds , ψ(y) =
1

2y2

[
φ(y)− ydφ

dy

]
,

y =
p

γ
, γ =

√
1 + (δp)2, δ =

vT
c

=

√
2T

mc2
,

with Z, c denoting the ion effective charge and the speed of light, respectively.

The problem we want to address is the computation of the probability that an electron with

coordinates (p, ξ, r) will runaway at, or before, a prescribed time. By “runaway” we mean that,

as a result of the electric field acceleration, the electron will reach a prescribed momentum,

pmax. The dependence of the runaway probability on pmax becomes negligible for large enough

pmax, which is the reason why this dependence is not usually accounted for explicitly. More

formally, for a given (t, p, ξ, r) ∈ [0, Tmax]× [pmin, pmax]× [−1, 1]× [0, 1], where pmin is a lower

momentum boundary, the runaway probability, PRE(t, p, ξ, r), is defined as the probability that

an electron located at (p, ξ, r) at the initial time instant t0 = 0 will acquire a momentum pmax

on, or before t > 0.

Mathematically, the runaway probability can be described as the escape probability of a

stochastic dynamical systems. For notational simplicity, we define

Xt := (p, ξ, r),
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and rewrite the SDE in (6.1.1) using Xt, i.e.,

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs with X0 ∈ D ⊂ R3, (6.1.2)

where D = [pmin, pmax] × [−1, 1] × [0, 1], and the drift b and the diffusivity σ can be easily

defined based on Eq. (6.1.1). In the following sections, we will use (6.1.2) to introduce our

probabilistic scheme and will come back to Eq. (6.1.1) in the section of numerical examples.

We divide the boundary of D into three parts ∂D1, ∂D2 and ∂D3, defined by

∂D1 := {p = pmax} ∩ ∂D,

∂D2 := ({p = pmin} ∪ {r = 1}) ∩ ∂D,

∂D3 := ({ξ = −1} ∪ {ξ = 1} ∪ {r = 0}) ∩ ∂D,

such that ∂D1 ∪ ∂D2 ∪ ∂D3 = ∂D. The boundary ∂D1 represents the runaway boundary. To

give a formal definition of the runaway probability, we denote the runaway time of Xt by

τ := inf
{
t > 0 |Xt ∈ ∂D1

}
,

which represents the earliest escape time of the process Xt that initially starts from X0 = x ∈

D. Then, the runaway probability can be formally defined by

PRE(t, x) = P {τ ≤ t |X0 = x ∈ D} . (6.1.3)

For a fixed T ∈ [0, Tmax], the probability PRE(T, x) can be represented by the solution of

the adjoint equation of the Fokker-Planck equation based on (6.1.2). Such adjoint equation is a
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backward parabolic terminal boundary value problem, i.e.,

∂u(t, x)

∂t
+ L∗(t, x)[u(t, x)] = 0 for x ∈ D, t < T,

u(t, x) = 1 for x ∈ ∂D1, t ≤ T,

u(t, x) = 0 for x ∈ ∂D2, t ≤ T,

∇u(t, x) = 0 for x ∈ ∂D3, t ≤ T,

u(T, x) = 0 for x ∈ D,

(6.1.4)

where the operator L∗(t, x) is the adjoint of the Fokker-Planck operator, defined by

L∗(x)[u] :=
d∑
i=1

bi
∂u

∂xi
+

1

2

d∑
i,j=1

(σσ>)i,j
∂2u

∂xixj
,

with bi the i-th component of the drift b(x), (σσ>)i,j the (i, j)-th entry of σσ> and xi the i-th

component of x. It is easy to see that PRE(T, x) can be represented by

PRE(T, x) = u(0, x). (6.1.5)

It should be noted that the runaway probability at each time T requires a solution of the

adjoint equation in (6.1.4), such that recovering the entire dynamic of PRE in [0, Tmax] requires

a sequence of PDE solutions. However, due to the time independence of b and σ in (6.1.2)

considered in this work, the dynamic of PRE(t, x) for (t, x) ∈ [0, Tmax]×D can be represented

by

PRE(t, x) = u(Tmax − t, x) for t ∈ [0, Tmax], (6.1.6)

where u is the solution of (6.1.4) with T = Tmax.

6.2 A sparse-grid probabilistic method for the adjoint equation

The theoretical foundation of our probabilistic scheme is the Feynman-Kac theory that links

the SDE in equation (6.1.2) to the adjoint problem in equation (6.1.4). This section focuses
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on solving the adjoint equation in equation (6.1.4). The probabilistic representation of u(t, x)

and the temporal discretization is given in Section 6.2.1. The spatial discretization including a

special treatment of the involved random escape time τ is provided in Section 6.2.2.

6.2.1 Temporal discretization

To write out the probabilistic representation of u(t, x) in Eq. (6.1.4), we need to rewrite the

SDE in Eq. (6.1.2) as the conditional form, i.e.,

X t,x
s = x+

∫ s

t

b(X t,x
t̄ )dt̄+

∫ s

t

σ(X t,x
t̄ )dBt̄ for s ≥ t, (6.2.1)

where the superscript t,x indicates the condition that X t,x
s starts from (t, x) ∈ [0, Tmax] × D.

Accordingly, we can define the conditional escape time

τt,x := min(τ 1
t,x, τ

2
t,x) (6.2.2)

with

τ 1
t,x := inf{s > t |X t,x

s ∈ ∂D1}, τ 2
t,x := inf{s > t |X t,x

s ∈ ∂D2}, (6.2.3)

such that the probabilistic representation of the solution u(t, x) of the adjoint equation in (6.1.4)

is given by

u(t, x) = E
[
u
(
s ∧ τt,x, X t,x

s∧τt,x

)]
, (6.2.4)

where s ∧ τt,x denotes the minimum of τt,x and s, τt,x is given in Eq. (6.2.2), and X t,x
s∧τt,x is

defined based on Eq. (6.2.1).

We then discretize the probabilistic representation of u in Eq. (6.2.4). The SDE in Eq. (6.1.2)

can be discretized in the interval [tn, tn+1] using the forward Euler scheme:

X tn,x
n+1 = x+ b(x)∆t+ σ(x)∆B, (6.2.5)
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where ∆B := Btn+1 −Btn and such that the Eq. (6.2.4) can be discretized as

un(x) = E
[
un+1

(
X tn,x
n+1

)
1{τtn,x>tn+1}

]
+ P

(
τ 1
tn,x ≤ tn+1

)
, (6.2.6)

where un(x) ≈ u(tn, x), τtn,x is defined in Eq. (6.2.2). The escape time τtn,x in Eq. (6.2.6)

should be defined by replacing X t,x
s with the Euler discretization, i.e., X tn,x

s = x + b(x)(s −

tn) + σ(x)(Bs − Btn) for s ≥ tn in Eq. (6.2.2). We use the same notation without creating

confusion. And 1{τtn,x>tn+1} is the characteristic function of the event that X tn,x
s does not

escape the domain D via ∂D1 ∪ ∂D2 before tn+1.

6.2.2 Sparse-grid interpolation for spatial discretization

To extend the time-stepping scheme in Eq. (6.2.6) to a fully-discrete scheme, we need to a

spatial discretization scheme to approximate un as well as a quadrature rule to estimate the

conditional expectation E[·]. In this work, we intend to use piecewise sparse grid interpolation

to approximate un(x) in D. Specifically, since the terminal condition of the adjoint equation in

Eq. (6.1.4) is discontinuous, we used hierarchical sparse grids with piecewise polynomials [7],

which is easy to incorporate adaptivity to handle the discontinuity.

Hierarchical sparse grid interpolation

The one-dimensional hat function having support [−1, 1] is defined by ψ(x) = max{0 , 1−|x|}

from which an arbitrary hat function with support (xL,i −∆xL, xL,i + ∆xL) can be generated

by dilation and translation, i.e.,

ψL,i(x) := ψ
(x+ 1− i∆xL

∆xL

)
,

where L denotes the resolution level, ∆xL = 2−L+1 for L = 0, 1, . . . , denotes the grid size of

the level L grid for the interval [−1, 1], and xL,i = i∆xL − 1 for i = 0, 1, . . . , 2L denotes the

grid points of that grid. The basis function ψL,i(x) has local support and is centered at the grid

point xL,i and the number of grid points in the level L grid is 2L + 1.
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One can generalize the piecewise linear hierarchical polynomials to high-order hierarchi-

cal polynomials [7]. As shown in Fig 6.1, for L ≥ 0, a piecewise linear polynomial ψL,i(x) is

Figure 6.1: Left: linear hierarchical basis; Middle: quartic hierarchical basis where the
quadratic polynomials appear since level 2; Right: cubic hierarchical basis where the cubic
polynomials appear since level 3.

defined based on 3 supporting points, i.e., xL,i and its two ancestors that are also the endpoints

of the support [xL,i −∆xL, xL,i + ∆xL]. For q-th order polynomials, q + 1 supporting points

are needed to define a Lagrange interpolating polynomial. To do this, at each grid point xL,i,

additional ancestors outside of [xL,i − ∆xL, xL,i + ∆xL] are borrowed to help build a higher-

order Lagrange polynomial. Then, the desired high-order polynomial is defined by restricting

the resulting polynomial to the support [xL,i −∆xL, xL,i + ∆xL]. Fig 6.1 illustrates the linear,

quadratic and cubic hierarchical bases, respectively.

With Z = L2(D), a sequence of subspaces {ZL}∞L=0 of Z of increasing dimension 2L + 1

can be defined as

ZL = span
{
ψL,i(x) | i = 0, 1, . . . , 2L

}
for L = 0, 1, . . . .

Due to the nesting property of {ZL}∞l=0, we can define a sequence of hierarchical subspaces

as WL = span
{
ψL,i(x) | i ∈ BL

}
, where BL =

{
i ∈ N

∣∣ i = 1, 3, 5, . . . , 2L − 1
}

for

L = 1, 2, . . ., such that ZL = ZL−1 ⊕WL and WL = ZL/ ⊕L−1
L′=0 ZL′ for L = 1, 2, . . .. Then,
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the hierarchical subspace splitting of ZL is given by

ZL = Z0 ⊕W1 ⊕ · · · ⊕WL for L = 1, 2, . . ..

The one-dimensional hierarchical polynomial basis can be extended to the N -dimensional

domains using sparse tensorization. Specifically, the N -variate basis function ψl,i(x) associ-

ated with the point xl,i = (xL1,i1 , . . . , xLN ,iN ) is defined using tensor products, i.e., ψl,i(x) :=∏N
n=1 ψLn,in(xn), where {ψLn,in(xn)}Nn=1 are the one-dimensional hierarchical polynomials as-

sociated with the point xLn,in = in∆xLn − 1 with ∆xLn = 2−Ln+1 and l = (L1, . . . , LN) is a

multi-index indicating the resolution level of the basis function. The N -dimensional hierarchi-

cal incremental subspace Wl is defined by

Wl =
N⊗
n=1

WLn = span {ψl,i(x) | i ∈ Bl} ,

where the multi-index set Bl is given by

Bl :=

i ∈ NN

∣∣∣∣∣ in ∈ {1, 3, 5, . . . , 2
Ln − 1} for n = 1, . . . , N if Ln > 0

in ∈ {0, 1} for n = 1, . . . , N if Ln = 0

 .

Similar to the one-dimensional case, a sequence of subspaces, again denoted by {ZL}∞L=0, of

the space Z := L2(D) can be constructed as

ZL =
L⊕

L′=0

WL′ =
L⊕

L′=0

⊕
α(l′)=L′

Wl′ ,

where the key is how the mapping α(l) is defined because it defines the incremental subspaces

WL′ = ⊕α(l′)=L′Wl′ . For example, α(l) = |l| = L1 + . . . + LN leads to a standard isotropic

sparse polynomial space.
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The level L hierarchal sparse grid interpolant of the approximation un(x) in Eq. (6.2.6) is

defined by

unL(x) :=
L∑

L′=0

∑
|l′|=L′

(∆L′1
⊗ · · · ⊗∆L′N

)un(x)

= unL−1(x) +
∑
|l′|=L

(∆L′1
⊗ · · · ⊗∆L′N

)un(x)

= unL−1(x) +
∑
|l′|=L

∑
i∈Bl′

[
un(xl′,i)− unL′−1(xl′,i)

]
ψl′,i(x)

= unL−1(x) +
∑
|l′|=L

∑
i∈Bl′

cl′,i ψl′,i(x),

(6.2.7)

where cl′,i = un(xl′,i) − unL′−1(xl′,i) is the multi-dimensional hierarchical surplus. This inter-

polant is a direct extension, via the Smolyak algorithm [42], of the one-dimensional hierarchical

interpolant.

Numerical strategy for handling the boundary condition

After the sparse grid, denoted by S, is constructed, the task becomes to estimate the right-

hand side of Eq. (6.2.6) at all the interior sparse grid points xi ∈ S ∩ D. The accuracy of

such estimation also depends on how to deal with P(τ 1
tn,x ≤ tn+1). It is known that P(τ 1

tn,x ≤

tn+1)→ 1 as x→ ∂D1. In Lemma 5.1, we stated, in the one-dimensional case, that if b and σ

are bounded functions, i.e.,

|b(t, x)| ≤ b and |σ(t, x)| ≤ σ for (t, x) ∈ [0, T ]×D,

with 0 ≤ b, σ ≤ +∞, and the starting point x in Eq. (6.2.5) is sufficiently far from the boundary

∂D satisfying dist(x, ∂D) ∼ O((∆t)1/2−ε) for any given constant ε > 0, then for sufficiently

small ∆t, it holds that

P(τ 1
tn,x ≤ tn+1) ≤ C(∆t)ε exp

(
− 1

(∆t)2ε

)
, (6.2.8)

where the constant C > 0 is independent of ∆t.
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Even though the estimate in Eq. (6.2.8) was proved for the one-dimensional case, it still

provides a good insight to design an accurate numerical scheme. The key idea is to eliminate the

destructive effect of P(τ 1
tn,x ≤ tn+1) in the construction of the temporal-spatial discretization

scheme by exploiting the estimate in Eq. (6.2.8). Specifically, we define the spatial mesh size

∆x of the sparse grid is on the order of

∆x ∼ O
(

(∆t)
1
2
−ε
)
,

such that, for each interior grid point xi, un(xi) in Eq. (6.2.6) can be approximated by

un(xi) ≈ E
[
un+1
L

(
X tn,xi
n+1

)]
, (6.2.9)

with the error on the order of O((∆t)ε exp(−1/(∆t)2ε)). The specific choice of ∆x will be

given in Section 6.2.3. Such strategy can avoid the approximation of the escape probability

P(τ 1
tn,x ≤ tn+1), but the trade-off is that we need to use higher order sparse grid interpolation

to balance the total error.

6.2.3 Quadrature for the conditional expectation

The last piece of the puzzle is a quadrature rule for estimating the conditional expectations

E
[
un+1
L

(
X tn,xi
n+1

)]
for xi ∈ S ∩ D. Such expectation can be written as

E
[
un+1
L (X tn,xi

n+1 )
]

=

∫
Rd
un+1
L

(
xi + b(xi)∆t+ σ(xi)

√
∆t ξ

)
%(ξ)dξ, (6.2.10)

where ξ := (ξ1, . . . , ξd) follows the d-dimensional standard normal distribution, i.e., ρ(η) :=

1
πd/2

exp(−(
∑d

`=1 η
2
` )/2). Thus, we utilized tensor-product Gauss-Hermite quadrature rule to

approximate the expectation. Specifically, we denote by {wj}Jj=1 and {aj}Jj=1 the weights and
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abscissae of the J-point tensor-product Gauss-Hermite rule, respectively. Then the approxima-

tion, denoted by Ê[un+1
L (X tn,xi

n+1 )] is defined by

uni = Ê
[
un+1
L (X tn,xi

n+1 )
]

=
J∑
j=1

wj u
n+1
L (qij), (6.2.11)

with

qij := xi + b(xi)∆t+ σ(xi)
√

∆t aj (6.2.12)

where ωj is a product of the weights of the one-dimensional rule and aj is a d-dimensional vec-

tor consisting of one-dimensional abscissae, respectively. When un+1
L (·) is sufficiently smooth,

i.e., ∂2J∗un+1/∂η2J∗

` is bounded for ` = 1, . . . , d with J∗ = J1/d, then the quadrature error can

be bounded by [39]

∣∣∣Ê[un+1
L (X tn,xi

n+1 )]− E[un+1
L (X tn,xi

n+1 )]
∣∣∣ ≤ C

J∗!

2J∗(2J∗)!
(∆t)J

∗
,

where the constant C is independent of J∗ and ∆t. Note that the factor (∆t)J
∗ comes from

the 2J∗-th order differentiation of the function un+1 with respect to η` for ` = 1, . . . , d. Thus,

to achieve first order global convergence rate O(∆t), we only need to use a total of J∗ = 27

quadrature points. Sparse-grid Gauss-Hermite rule could be used to replace the tensor product

rule when the dimension d is higher than 3. For the 3D runaway electron problem under

consideration, we found that a level 1 sparse Gauss-Hermite rule with 7 quadrature points

cannot provide sufficient accuracy, and a level 2 rule with 37 points is more expensive than the

tensor product rule. Thus, we chose to use the tensor-product rule in this work.

By putting together all the components introduced in Section 6.2, we summarize our prob-

abilistic scheme as follows:

Scheme 1 (The fully-discrete probabilistic scheme). Given the temporal spatial partition T ×

S, the terminal condition uN(xi) for xi ∈ S , and the boundary condition un(xi) for xi ∈

S ∩ ∂D. For n = N − 1, . . . , 0, the approximation of u(tn, x) is constructed via the following

steps:
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• Step 1: generate quadrature abscissae {qij}Jj=1, in Eq. (6.2.12), for xi ∈ S ∩ D;

• Step 2: interpolate un+1
L (x) at the quadrature abscissae to obtain {un+1

L (qij)}J
j=1;

• Step 3: compute the coefficients uni using the quadrature rule in Eq. (6.2.11);

• Step 4: construct the interpolant unL(x) by substituting uin into Eq. (6.2.7).

There are several advantages of our approach. First, the time-stepping scheme is totally

explicit but absolutely stable, which has been rigorously proved in work [49, 53]. Second, the

Feynman-Kac formula makes it natural to incorporate any sparse grid interpolation strategies to

approximate the solution uwithout worrying about the discretization of the differential operator

on the sparse grid. Third, it is easy to incorporate legacy codes for Monte Carlo based RE

simulation into our scheme to compute runaway probability. It is a valuable feature because

real-world RE models usually involve complex multiscale dynamics that are challenging to

solve using PDE approaches.

6.3 Numerical examples

We tested our probabilistic scheme with two examples. The first example is to compute the

escape probability of the standard Brownian motion. Since we know the analytical expression

of the escape probability, this example is used to demonstrate the accuracy of our approach.

The second example is to compute the runaway probability of the three-dimensional RE model

given in Section 6.1. The sparse grid interpolation and adaptive refinement are implemented

using the TASMANIAN toolbox [43].

6.3.1 Example 1: Escape probability of a Brownian motion

We consider the escape probability of a two-dimensional Brownian motion. The spatial domain

D is set to [0, 5]× [0, 5] and the temporal domain is set to t ∈ [0, 2] with Tmax = 2. The escape
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probability P (t, x) can be obtained by solving the standard heat equation

∂u

∂t
+

1

2
∆u = 0, (t, x) ∈ [0, Tmax]×D,

u(t, x) = 1, (t, x) ∈ [0, Tmax]× ∂D,

u(Tmax, x) = 0, x ∈ D.

(6.3.1)

The exact solution is given by

u(t, x) = 1 +
∞∑
m=1

∞∑
n=1

Amn sin (µmx1) sin (νnx2)e−λ
2
mnt,

where µm = mπ
5

, νn = nπ
5

, λ =
√

1
2(µ2

m+ν2
n)

. The escape probability P (t, x) can be obtained by

substituting u into Eq. (6.1.6), i.e., P (t, x) = u(Tmax − t, x).

We intend to demonstrate that our scheme can achieve first-order convergence O(∆t)

when probably choosing the sparse grid resolution, i.e., the levelL. To this end, we use compare

three cases, i.e.,

(a) Hierarchical cubic basis with ∆x ∼ O(
√

∆t),

(b) Hierarchical linear basis with ∆x ∼ O(
√

∆t),

(c) Hierarchical cubic basis with ∆x ∼ O(∆t),

where ∆x denotes the mesh size of the one-dimensional rule for building the sparse grids.

The error of the three cases are shown in Fig 6.2 and Fig 6.3. As expected, when setting

∆x ∼ O(
√

∆t), the escape probability P (τtn,x ≤ tn+1) for any interior grid point is on the

order of O((∆t)ε exp(−1/(∆t)2ε)), such that neglecting P (τtn,x ≤ tn+1) will asymptotically

not affect the first-order convergence w.r.t. ∆t. On the other hand, we need to use high-order

hierarchical basis to achieve comparable accuracy in spatial approximation. It is shown in Fig

6.2 that the use of the hierarchical cubic polynomials, introduced in [7], provides sufficient

accuracy to achieve a global convergence rate O(∆t). In comparison, when using linear basis

with ∆x ∼ O(
√

∆t), the linear sparse-grid interpolation only provides O((∆x)2) = O(∆t)

local convergence, such that our scheme dose not converge globally. From the second row of
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Figure 6.2: The relative error of the approximate escape probability of the standard Brownian
motion.

Fig 6.3, we can see that big errors are generated around the boundary of the spatial domain and

gradually propagate to the middle region of the domain. Similar phenomenon appears when

setting ∆x ∼ O(∆t). In this case, since the interior grid points near the boundary are so

close to the boundary that neglecting the escape probability P (τtn,x ≤ tn+1) leads to significant

additional error. This is the reason why big errors are firstly generated near the boundary (i.e.,

t = 0.5), and then propagate to the center.

6.3.2 The runaway probability of the three-dimensional RE model

Here we test our method using the 3D runaway electron model given in Eq. (6.1.1) with the

following parameters:

Tmax = 120, pmin = 2, pmax = 50, Z = 1, τ = 105, δ = 0.042,

E = 0.3, v̄ee = 1, v̄T = 1, D0 = 0.003, ∆p = 20.

Unlike the example about Brownian motion, where the discontinuous terminal condition is

smoothed out very fast, the evolution of the runaway probability PRE is more convection-

dominant. As such, we utilized adaptive sparse grids to capture the movement of the sharp
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Figure 6.3: The error distribution in the spatial domain [0, 5]× [0, 5] for the three cases consid-
ered in Fig 6.2 for t = 0.5, 1.0 and 2.0.

transition layer. The standard refinement approach is to construct an initial grid using all point

up to some coarse level, then consider the hierarchical surplus coefficients, e.g., the coefficients

of the basis functions, which are estimates of the local approximation error or how much cor-

rection is introduced by the associated node. The coarse grid is enriched by adding the children

of nodes with large coefficients ignoring all other points, the coefficients of the new nodes are

computed and the children of the children are added. The refinement process is repeated until

all coefficients fall below some desired tolerance. However, the standard refinement process

may stagnate when dealing with functions with localized sharp behavior which results in non-

monotonic decay of the coefficients (in the pre-asymptotic regime). In such a scenario, a node

located in the sharp region could have parents that all belong to the smooth region, then the

node is excluded from the grid. Even if descendants of the node converge on the sharp region

(following paths through other parents), the children have restricted support and cannot com-

pensate for the missing parent. A common remedy for this problem is to recursively add all

parents of all nodes, but this not desirable as it includes many nodes with small coefficients
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Figure 6.4: Cross sections of the runaway probability PRE as well as the corresponding adaptive
sparse grids at three time instances t = 24, 60 and 120.

which would have been ignored in the classic refinement. Therefore, we utilized a more flexi-

ble refinement procedure that considers both children and parents but is still restricted attention

to the immediate relatives to avoid oversampling. The parents’ selective refinement proce-

dure is described in details in [44] and it is implemented in the TASMANIAN open-source

library [43, 45].

The evolution of the runaway probability PRE as well as the corresponding adaptive sparse

grids are shown in Fig 6.4. The runaway boundary is at p = pmax = 50 and the main reason of

the an electron running away is the electric field acceleration, i.e., the term Eξ in the drift of

the momentum dynamics. The factor ξ = cos(θ) inEξ determines that the electrons with small

pitch angles will runaway sooner than the electrons with large pitch angles, which is consistent

with the simulation results in Fig 6.4. There are two sharp transition layers in this simulation,

i.e., the transition between the runaway and the non-runaway regions, and the boundary layer

around r = 1 due to small diffusion effect in the minor radius direction. In our simulation, we

used the 6-level sparse grid as the initial grid and gradually refine it with the tolerance being
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Figure 6.5: Comparison between the our approach and the direct MC for pitch angle θ = 15◦

and minor radius r = 0.5.

0.001. As expected, the adaptive refinement accurately captured the irregular behaviors. In

addition, since the analytical expression of PRE is unknown, we tested the accuracy of our ap-

proach by comparing with the direct Monte Carlo method for computing PRE at a few locations

in the phase space, and the result is shown in Fig 6.5.

6.4 Concluding remarks

We proposed a sparse-grid probabilistic scheme for the accurate and efficient computation of

the time-dependent probability of runaway. The method is based on the direct numerical solu-

tion of the Feynman-Kac formula. At each time step, the algorithm reduces to the computation

of an integral involving the previously computed probability of runaway and the Gaussian prop-

agator. Sparse-grid interpolation is utilized to recover the runaway probability function as well

as evaluate the quadrature points for estimating the conditional expectation in the Feynman-

Kac formulation. Even though the advantages of sparse grids have already been revealed in

solving the three-dimensional RE problem, we will extend our approach to higher dimensional

RE problems involving more complicated dynamics. For example, an important RE model to

be resolved is to incorporate the relativistic guiding center equations of electron motion into the

RE scenario. In this case, the deterministic dynamic of the guiding center motion is six order
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of magnitudes smaller than the collisional dynamics, which presents a significant challenge to

the design of numerical schemes.
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Chapter 7

Summary and Future Work

7.1 Summary

The main contribution of this dissertation is to develop and analyze the numerical solutions of

partial integro-differential equations with the second-order integral-differential operator and the

fractional Laplacian operator. For the PIDEs in unbounded domains, we constructed the proba-

bilistic numerical schemes of the solution and carried out relative error analysis, the first-order

temporal convergence rate and the high order spatial convergence rate. In high dimensional

space, domains are meshed by Delaunay triangulation and sparse grid quadrature rule is used

to approximate high order spatial integrals.

For the partial differential equations with fractional Laplacian operator, we first approx-

imate the SαS process by Lévy process that consists of Brownian motion and Poisson pro-

cess with finite jump amplitude based on Gaussian approximation studied by [4, 8]. Then we

construct the corresponding PIDE, which aims to approximate the goal fractional Laplacian

equation. Based on the probabilistic numerical schemes introduced in Chapter 3, we can nu-

merically approach the solution of fractional Laplacian equation.

For the PIDEs with volume constraints, we first derived the probabilistic representation

of the solution. To get the numerical schemes, we divided all possible paths of the underlying

stochastic process ~X t into two subsets base on the exit time and proved that the possibility of

the event that ~X t exits the bounded domain can be controlled by O(∆t)2 as the starting point

of ~X t is sufficiently far from the boundary of the interior domain. Based on that fact, a full

discrete algorithm is constructed.
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We proposed a sparse-grid probabilistic scheme for the accurate and efficient computation

of the time-dependent probability of runaway. The method is based on the direct numeri-

cal solution of the Feynman-Kac formula. At each time step, the algorithm reduces to the

computation of an integral involving the previously computed probability of runaway and the

Gaussian propagator. Sparse-grid interpolation is utilized to recover the runaway probability

function as well as evaluate the quadrature points for estimating the conditional expectation in

the Feynman-Kac formulation.

7.2 Future work

Even the sparse grid integration method was applied in our probabilistic numerical schemes for

solving the partial integro-differential equations. The computation cost is still huge when the

dimensionality is higher than three. We plan to incorporate the sparse gird interpolation rule

with our numerical schemes to alleviate the curse of dimensionality. There is one more im-

provement we can make is to estimate the relative error of the temporal-spatial discrete scheme

under the norm L∞. The technical issue is how to deal with the Lebesgue constant of high

order interpolation.

Another possible future project is the construct the probabilistic scheme for the nonlocal

diffusion equation with fractional Laplacian operator using the Fourier-cosine series. We al-

ready know the relationship between the fraction Laplacian operator and the α stable process.

The key idea is to construct an approximation of the expectation in the Fourier space.

Even though the advantages of sparse grids have already been revealed in solving the

three-dimensional RE problem, we will extend our approach to higher dimensional RE prob-

lems involving more complicated dynamics. For example, an important RE model to be re-

solved is to incorporate the relativistic guiding center equations of electron motion into the RE

scenario. In this case, the deterministic dynamic of the guiding center motion is six orders of

magnitudes smaller than the collisional dynamics, which presents a significant challenge to the

design of numerical schemes.
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Appendix

7.3 Construction of backward filtration

Let (Ω,F , (Ft)tn≤t≤tn+1 ,P) be a backward stochastic basis satisfying the hypotheses of com-

pleteness, i.e., Ftn+1 contains all the sets of P-measure zero and possesses left continuity, i.e.,

Ft = Ft−. The filtration {Ft}tn≤t≤tn+1 is assumed to be generated by two mutually indepen-

dent processes, i.e., one d-dimensional backward Brownian motion ~W t and one Poisson ran-

dom measure µ(A, t) on E × [tn, tn+1]. Under the probability space (Ω,F , (Ft)tn≤t≤tn+1 ,P),

with start point (tn+1, x), stochastic process { ~W t − ~W tn+1}tn≤t≤tn+1 is a martingale and

E

[(∫ tn

tn+1

d ~W t

)2 ∣∣∣∣Xtn+1 = x

]
=E

[(
~W tn − ~W tn+1

)2

| Xtn+1 = x

]
=E

[
~W
2

tn + ~W
2

tn+1
− 2 ~W tn+1

~W tn | Xtn+1 = x
]

=(tn − tn+1) + (tn+1 − tn+1)− 2(tn+1 − tn+1)

=−∆t.

(7.3.1)

The backward Poisson process Nt, i.e., the number of jump of ~X t with intensity λ satisfies

Ntn ≥ Ntn+1 and E[Nt] = λ(tn+1 − t) where t ∈ [tn, tn+1]. The compensator of µ and the

resulting compensated Poisson random measure are denoted by ν(de, dt) = λ(de)(−dt) and

µ̃(de, dt) = µ(de, dt)−ν(de, dt), respectively, such that µ̃(A, t) is a martingale with stationary

independent increments.
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7.4 Ito formula for backward stochastic differential equation

We consider the backward SDE in one dimensional space,

~X
tn+1,x

s = x−
∫ s

tn+1

β(t, ~X
tn+1,x

t )dt+

∫ s

tn+1

σ(t, ~X
tn+1,x

t )d ~W t +

∫ s

tn+1

∫
E

c(t, e)µ̃(de, dt).

(7.4.1)

Taking Itô formula to u(s, ~X
tn+1,x

s ), we have

u(s, ~X
tn+1,x

s ) =u(tn+1, x) +

∫ s

tn+1

∂u

∂t
dt+

∫ s

tn+1

(−β)
∂u

∂x
(t, ~X

tn+1,x

t )dt

+

∫ s

tn+1

∫
E

[
u
(
t, ~X

tn+1,x

t + c(t, e)
)
− u(t, ~X

tn+1,x

t )− c(t, e)∂u
∂x

]
λ(de)(−dt)

+

∫ s

tn+1

∂u

∂x
σ(t, ~X

tn+1,x

t )d ~W t +

∫ s

tn+1

1

2
σ2∂

2u

∂x2
(t, ~X

tn+1,x

t )(d ~W t)
2

+

∫ s

tn+1

∫
E

[
u
(
t, ~X

tn+1,x

t + c(t, e)
)
− u(t, ~X

tn+1,x

t )
]
µ̃(de, dt)

=u(tn+1, x) +

∫ s

tn+1

(
∂u

∂t
− L∗[u]

(
t, ~X

tn+1,x

t

))
dt

+

∫ s

tn+1

∂u

∂x
σ(t, ~X

tn+1,x

t )d ~W t

+

∫ s

tn+1

[u(t, ~X
tn+1,x

t + c(t, e))− u(t, ~X
tn+1,x

t )]µ̃(de, dt).

(7.4.2)

Taking mathematical expectation Extn+1
[·] on both sides of (7.4.2), due to the martingale prop-

erty, ∫ s

tn+1

∂u

∂x
σ(t, ~X

tn+1,x

t )d ~W t = 0,

∫ s

tn+1

[u(t,X
tn+1,x
t + c(t, e))− u(t,X

tn+1,x
t )]µ̃(de, dt) = 0.

Thus the probabilistic representation of u(tn+1, x) is given as

u(tn+1, x) =Extn+1
[u(tn, ~X

tn+1,x

tn )]−
∫ tn

tn+1

Extn+1

[
g(t, ~X

tn+1,x

t , u(t, ~X
tn+1,x

t )
]
dt, (7.4.3)
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7.5 River models in numerical examples

• River Model in Example 4 for testing the convergence rate with respect to ∆t.

Figure 7.1: River Model 1
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• River Model for testing the convergence rate with respect to ∆x.

Figure 7.2: River Model 2
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• River Model in Example 2.

Figure 7.3: River Model 3
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