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Abstract

In this dissertation, we study the differential geometry of the matrix groups. In litera-

tures, many authors proposed to compute matrix means using the geodesic distance defined

by an invariant Riemannian metrics on the matrix groups, and this approach has become

predominant; see references [20, 19, 5]. Most of papers in this field deal with either the space

of positive definite matrices or some special matrix group, and their results have a quite

similar form. The geometric means of the unitary group U(n) [15] was proposed by Mello in

1990. Later, Moakher gave the geodesic means on special orthogonal group SO(3) [17] and

symmetric positive definite matrix space SPD(n) [18].

In Chapter 1, the explicit geodesic and gradient forms of special matrix groups are

given, which would provide theoretical basis of computing the geometric mean. We have

also presented the results in a more unified form than those that have appeared in the

current literature.

Then, we study the curvatures of the matrix groups. Because the curvature provides

important information about the geometric structure of a Riemannian manifold. For exam-

ple, it is related to the rate at which two geodesics emitting from the same point move away

from each other: the lower the curvature is, the faster they move apart (see Theorem IX.5.1

in [2, Chapter IX.5]). Many important geometric and topological properties are implied by

suitable curvature conditions. In Chapter 2, we give a simple formula for sectional curva-

tures on the general linear group, which is also valid for many other matrix groups. This

formula appears to be new in literature and is extended to more general reductive Lie groups.

Additionally, we also discuss the relation between commuting matrices and zero sectional

curvature for GL(n,R).
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Finally we would like to point out that the main results in this dissertation appear in

Gan, Liao and Tam [6].
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Chapter 1

Geodesics on Matrix Groups

1.1 Introduction

Traditionally, arithmetic mean has been widely used to average numerical data to obtain

a mean value, which minimizes the sum of the square distances to the given point. More

recently, averaging the matrix data has become increasingly important in many applications,

especially when those matrices form a compact group or taken from the space of positive

definite matrices. As matrices may be regarded as vectors in a Euclidean space, they may

be averaged using the Euclidean distance. However, the matrix data are often taken from

a special matrix group, if they are averaged using the Euclidean distance, the mean value

may lie outside the group. Moreover, the matrix data are usually naturally associated to

matrix multiplication, rather than to matrix addition. Therefore, it is more suitable to use

a distance that is invariant with respect to the matrix multiplication to compute the matrix

mean, instead of the Euclidean distance which is invariant with respect to matrix addition.

In literature, to address the above concerns, many authors proposed to compute matrix

means using the geodesic distance defined by an invariant Riemannian metric on the matrix

group, and this approach has become predominant; see references [20, 19, 5]. Most of papers

in this field deal with either the space of positive definite matrices or some special matrix

group, and their results have a quite similar form. The geometric means of the unitary group

U(n) [15] was proposed by Mello in 1990. Later, Moakher gave the geodesic means on special

orthogonal group SO(3) [17] and symmetric positive definite matrix space SPD(n) [18]. The

purpose of this dissertation is to study some differential geometric aspects of matrix groups,

related to averaging matrix data. We will present these results in a more unified form than

those that have appeared in literature.
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1.2 Preliminary

Definition 1.2.1. Let V be a vector space and K be a group acting on V linearly. An inner

product 〈·, ·〉 on V is called K-invariant if for any k ∈ K and any u, v ∈ V , 〈ku, kv〉 = 〈u, v〉.

Let M be a manifold and G be a Lie group acting on M . Any g ∈ G is viewed as a

map g : M →M . It also induces a linear map Dg : TxM → TgxM for any x ∈M , called the

differential map of g at the point x, where TxM denotes the tangent space over M at x. See

Figure 1.1 for illustration.

TxM

M

γ(t)

xv

Figure 1.1: Tangent Space

A Riemannian metric on a manifold M is a family of inner products 〈·, ·〉x on tangent

spaces TxM , x ∈ M such that for each pair of vector fields X, Y on M , x 7→ 〈X, Y 〉x is a

smooth function. A manifold equipped with a Riemannian metric is called a Riemannian

manifold.

Definition 1.2.2. A Riemannian metric {〈·, ·〉 : x ∈ M} is called G-invariant if for any

x ∈M,u, v ∈ TxM and g ∈ G,

〈Dg(u), Dg(v)〉gx = 〈u, v〉x. (1.1)

Definition 1.2.3. Let M be a manifold and G be a Lie group acting on G. The G-action

is called transitive if for all x, y ∈M , there exists g ∈ G such that gx = y.
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Now, fix a point o in M . The group K := {g ∈ G : go = o} is a closed subgroup

of G, called the isotropy subgroup of G at o. Note that K acts on ToM linearly through

differentiable map. For simplicity, denote Dk by k for k ∈ K in the following.

Proposition 1.2.4. [10, p.200] Fix an inner product 〈·, ·〉o at ToM and denote Dg by g

here for simplicity. A necessary and sufficient condition for the existence of a G-invariant

Riemannian metric {〈·, ·〉x : x ∈ M} on M such that 〈·, ·〉x = 〈·, ·〉o is that 〈·, ·〉o is K-

invariant on ToM . Moreover, such a Riemannian metric is unique and is given by

〈X, Y 〉x = 〈g−1X, g−1Y 〉o, (1.2)

for any x ∈M , X, Y ∈ TxM and where g ∈ G is chosen to satisfy go = x.

Consider a special case first. If K = {e}, where e is the identity element of G, then any

inner product 〈·, ·〉 on ToM induces a G-invariant Riemannian metric on M .

Definition 1.2.5. In particular, because a Lie group G acts on itself by left translation

(g, x) 7→ gx, so any inner product on TeG = g (Lie algebra) induces a unique Riemannian

metric on G, that is invariant under left translation, called a left invariant Riemannian

metric on G.

Let M be an n-dimensional Riemannian manifold with Riemannian metric {〈·, ·〉x; x ∈

M}. On a coordinate neighborhood U with local coordinates x1, . . . , xn, let

gjk(x) = 〈 ∂
∂xj

,
∂

∂xk
〉x, x ∈ U, (1.3)

and let {gjk(x)} be the inverse matrix of {gjk(x)}. The Christoffel symbols are defined by

Γijk =
1

2

∑
p

gip(
∂

∂xj
gpk +

∂

∂xk
gjp −

∂

∂xp
gjk). (1.4)
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For any two vector fields X and Y on M , we may write

X(x) =
∑
i

ai(x)
∂

∂xi
and Y (x) =

∑
i

bi(x)
∂

∂xi
(1.5)

for x ∈ U , where ai(x) and bi(x) are some smooth functions on U . Define

DXY =
∑
i

(Xbi)
∂

∂xi
, (1.6)

and

Γ(X, Y ) =
∑
i,j,k

Γijkajbk
∂

∂xi
. (1.7)

Then DXY and Γ(X, Y ) are vector fields on U , but their values depend on the choice of

local coordinates and so cannot be regarded as vector fields on M . However,

∇XY = DXY + Γ(X, Y ) (1.8)

does not depend on local coordinates [3, p.314], and so is a vector field on M , called the

covariant derivative of Y with respect to X, which preserves the Riemannian metric in the

sense that

X〈Y, Z〉· = 〈∇XY, Z〉· + 〈Y,∇XZ〉. (1.9)

Let γ: [a, b]→ M be a smooth path. Its derivative γ̇ is a vector field along γ. Extend

it to a smooth vector field on M . Then the vector field ∇γ̇ γ̇ along γ does not depend on the

choice of extension. The path is called a geodesic if

∇γ̇ γ̇ = 0. (1.10)
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Thus, a geodesic is defined to be a smooth path γ such that the covariant derivative of γ̇

with respect to itself is zero. In local coordinates, this may be written as

γ̈ + Γ(γ̇, γ̇) = 0. (1.11)

Let γ : t → γ(t), (t ∈ [a, b]) be a smooth path in M with γ(a) = A and γ(b) = B. Its

length is defined as

L(γ) =

∫ b

a

‖γ̇(t)‖ dt, (1.12)

where

‖γ̇(t)‖ =
√
〈γ̇(t), γ̇(t)〉γ(t).

The Riemannian distance between A and B is defined to be the infimum of the length

functional L(γ) in (1.12) taken among all smooth paths γ with γ(a) = A and γ(b) = B. A

smooth path γ from A to B is a geodesic if and only if it or any of its reparametrization is

an extremal point of L(γ). The geodesic γ may also be characterized as an extremal point

of the following energy functional:

E(γ) =

∫ b

a

‖γ̇‖2 dt, (1.13)

because the associated Euler-Lagrange differential equation is just the geodesic Equation

((1.10)).

It is well known that the length of a geodesic γ(t) may not realize the Riemannian

distance between its end points, but it is locally minimizing in the sense that the small

enough geodesic segment realizes the distance between the end points. Because the covariant

derivative preserves the Riemannian metric, by (1.10), for any geodesic γ(t), t ∈ [a, b], ‖γ̇(t)‖

is a constant, and hence its length is given by

L(γ) = (b− a) ‖γ̇‖ . (1.14)

5



A submanifold H of M is called a sub-Riemannian manifold of M if H is equipped with

a Riemannian metric {〈·, ·〉Hx ; x ∈ H} induced by that of M , that is, for x ∈ H, 〈·, ·〉Hx is the

restrition of 〈·, ·〉x on TxH. The following result provides a relation between geodesics in M

and those in H, see section I.14 in [7] for more details.

Lemma 1.2.6. If γ is a curve in the submanifold H, and suppose that the curve γ is a

geodesic in M , then this curve γ is also a geodesic in H.

Proof. Let p and q be any two points on γ, where p = γ(r0) and q = γ(r). Let Np be a

spherical normal neighborhood of p in G. Then the geodesic segment can be defined

γpq : t→ γ(t) when |t− r0| ≤ |r − r0|

is contained in Np if r is sufficiently close to r0. Then the length of γpq satisfies

L(γpq) = dG(p, q) ≤ dH(p, q) ≤ L(γpq).

Thus, L(γpq) = dH(p, q). So, γpq is a curve of the shortest length in H joining p and q, that

is, an geodesic on submanifold H.

A geodesic in the Riemannian submanifold H may not be a geodesic in M . If all

geodesics in H are geodesics in M , then H is called a total geodesic submanifold of M .

1.3 Riemannian metric on matrix spaces

1.3.1 Riemannian metric of group GL(n,C)

The general linear group GL(n,C) is the group of n × n nonsingular matrices and it

is a Lie group. Let G = GL(n,C). The identity element e is the identity matrix I in G.

Then TIG = R2n2
= Cn2

, where Cn2
is the space of n× n complex matrices, which may be

identified with the Lie algebra gl(n,C) as vector spaces of GL(n,C). For X, Y ∈ Cn2
, define
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an inner product on Cn2
by

〈X, Y 〉 = Re tr (X∗Y ), (1.15)

where Re denotes the real part.

If X = {ajk + ibjk} and Y = {αjk + iβjk}, where i =
√
−1, then

〈X, Y 〉 =
∑
j,k

ajkαjk +
∑
j,k

bjkβjk.

So it is the usual Euclidean inner product, where X and Y are regarded as vectors in

R2n2
. So, according to Proposition 1.2.4, the inner product 〈·, ·〉 on Cn2

induces a unique

left invariant Riemannian metric on GL(n,C), given by

〈X, Y 〉A = 〈A−1X,A−1Y 〉, (1.16)

for any A ∈ GL(n,C) and X, Y ∈ Cn2
.

1.3.2 Riemannian metric of closed subgroups of GL(n,C)

A closed subgroup of GL(n,C) is a Lie subgroup. If G is a closed subgroup of GL(n,C),

then the left invariant Riemannian metric on GL(n,C) induces a left invariant Riemannian

metric on G by restriction, that is,

〈X, Y 〉A = 〈A−1X,A−1Y 〉, for any A ∈ G, X, Y ∈ g,

where g is Lie algebra of G. For example, since GL(n,R) is a closed subgroup of GL(n,C),

then the induced left invariant Riemannian metric on GL(n,R) is given by

〈X, Y 〉A = 〈A−1X,A−1Y 〉 = tr [(A−1X)T (A−1Y )]. (1.17)

7



1.3.3 Riemannian metric on positive definite matrices space

Let Pn be the space of all positive definite matrices in GL(n,C). Since Pn is a closed sub-

manifold of GL(n,C), it may equipped with the induced Riemannian metric from GL(n,C)

and becomes a sub-Riemannian manifold of GL(n,C). In the literature, a different Riemma-

nian metric is usually used that is invariant under the following congruence transformation

on Pn :

(g, p) 7→ gpg∗, (1.18)

for any g ∈ G = GL(n,C) and p ∈ Pn. Note that the isotropy subgroup K at the identity

matrix I ∈ Pn is the unitary group U(n), the group of all n × n unitary matrices. It is

easy to see that the inner product 〈·, ·〉 in (1.15) is U(n)-invariant, so by Proposition (1.2.4),

it induces a unique Riemannian metric on Pn, that is invariant under the G-action on Pn

defined by (1.18). However, in literature [1], people often use a different Riemannian metric

on P(n) that is congruence invariant given by

〈X, Y 〉p = 〈 p−1/2Xp−1/2, p−1/2Y p−1/2 〉, (1.19)

for X, Y ∈ TpPn and p ∈ Pn.

Hn

Pn

γ(t)

In
v

Figure 1.2: Tangent space Hn of Pn
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Because TpPn is the space of n×n Hermitian matrices Hn, which is illustrated in Figure

1.2, by (1.15) and the properties of the trace,

〈X, Y 〉p = Re tr (p−1Xp−1Y ). (1.20)

We remark that Hn, as a tangent space of Pn, contains Pn. So the figure is somewhat

misleading as the geometry is more intricate.

1.4 Geodesics

1.4.1 Geodesics in GL(n,C)

Lemma 1.4.1. For any H(t), h(t) ∈ Cn×n,

〈 [H(t), h(t)], H(t) 〉E = 〈h(t), [H∗(t), H(t)] 〉E, (1.21)

where 〈·, ·〉E denotes the Euclidean metric.

Proof.

〈 [H(t), h(t)], H(t) 〉E

= tr[(H(t)h(t)− h(t)H(t))∗H(t)]

= tr[h∗(t)H∗(t)H(t)−H∗(t)h∗(t)H(t)]

= tr[h∗(t)H∗(t)H(t)− h∗(t)H(t)H∗(t)]

= tr[h∗(t)(H∗(t)H(t)−H(t)H∗(t))]

= 〈h(t), [H∗(t), H(t)] 〉E.

9



Theorem 1.4.2. Let γ : [0, 1] → GL(n,C) be geodesic connecting A,B ∈ GL(n,C). By

minimizing the energy function

∫ 1

0

〈H(t), H(t) 〉E dt, (1.22)

where H(t) = γ−1(t)γ̇(t), we have

Ḣ(t) = H∗(t)H(t)−H(t)H∗(t). (1.23)

Proof. For any real number ε, the pertubation of the curve γ(t) is given by γ(t, ε) = γ(t)eεh(t),

where h(t) ∈ Cn×n. Let γ(0, ε) = A, γ(1, ε) = B for any ε. Then, we have

H(t, ε) = γ−1(t, ε)γ̇(t, ε) ∈ GL(n,C)

with H(t, 0) = H(t). So

γ̇(t, ε) =
dγ(t, ε)

dt
= γ̇(t)eεh(t) + εγ(t)ḣ(t)eεh(t).

So, we have

dH(t, ε)

dε

= γ−1(t, ε)
dγ̇(t, ε)

dε
+
dγ−1(t, ε)

dε
γ̇(t, ε)

= γ−1(t, ε)
d(γ̇(t)eεh(t) + εγ(t)ḣ(t)eεh(t))

dε
− γ−1(t, ε)dγ(t, ε)

dε
γ−1(t, ε)γ̇(t, ε)

= γ−1(t, ε)[γ̇(t)h(t) + γ(t)ḣ(t) + εγ(t)ḣ(t)]eεh(t) − γ−1(t, ε)γ(t)h(t)eεh(t)H(t, ε).
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Setting ε = 0, we have

dH(t, ε)

dε

∣∣∣
ε=0

= γ−1(t, 0)(γ̇h(t) + γ(t)ḣ(t))− γ−1(t, 0)γ(t)h(t)H(t, 0)

= γ−1(t, 0)(γ̇(t)h(t) + γ(t)ḣ(t)− γ(t)h(t)H(t))

= ḣ(t) +H(t)h(t)− h(t)H(t).

By minimizing the energy function
∫ 1

0
〈H(t), H(t)〉E dt, we have

d

dε

∫ 1

0

〈H(t, ε), H(t, ε) 〉E dt = 2

∫ 1

0

〈 dH(t, ε)

dε
,H(t, ε) 〉E dt.

Setting ε = 0, we have

∫ 1

0

〈 dH(t, ε)

dε
,H(t, ε) 〉E dt|ε=0

=

∫ 1

0

〈 ḣ(t) +H(t)h(t)− h(t)H(t), H(t) 〉E dt

=

∫ 1

0

〈 ḣ(t), H(t) 〉E + 〈H(t)h(t)− h(t)H(t), H(t) 〉Edt

= 〈h(t), H(t) 〉E|10+
∫ 1

0

(−〈h(t), Ḣ(t) 〉E + 〈h(t), H∗(t)H(t)−H(t)H∗(t) 〉E)dt

=

∫ 1

0

〈h(t),−Ḣ(t) +H∗(t)H(t)−H(t)H∗(t) 〉E dt = 0.

Since h(t) ∈ Cn×n is arbitrary, we get

Ḣ(t) = H∗(t)H(t)−H(t)H∗(t).

Theorem 1.4.3. Let γ : [0, 1] → GL(n,C) be geodesic connecting A,B ∈ GL(n,C). The

geodesic starting from γ(0) = A with γ̇(0) = X is given by

γA,X(t) = Aet(A
−1X)∗et[A

−1X−(A−1X)∗]. (1.24)
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Proof. Since the solution of Equation (1.23) is the geodesic on the group GL(n,C), we need

to verify the geodesic Equation (1.24) satisfying the Equation (1.23). Since

H(t) = γ−1(t)γ̇(t)

and

γ̇(t) = Aet(A
−1X)∗(A−1X)et[A

−1X−(A−1X)∗],

we have

H(t) = et[(A
−1X)∗−A−1X]e−t(A

−1X)∗A−1Aet(A
−1X)∗(A−1X)et[A

−1X−(A−1X)∗]

= et[(A
−1X)∗−A−1X](A−1X)et[A

−1X−(A−1X)∗].

Noting that

Ḣ(t) = et[(A
−1X)∗−A−1X][(A−1X)∗(A−1X)− (A−1X)(A−1X)∗]et[A

−1X−(A−1X)∗],

we compute

H∗(t)H(t)−H(t)H∗(t)

= et[(A
−1X)∗−A−1X](A−1X)∗(A−1X)et[A

−1X−(A−1X)∗]

−et[(A−1X)∗−A−1X](A−1X)(A−1X)∗)et[A
−1X−(A−1X)∗]

= et[(A
−1X)∗−A−1X][(A−1X)∗(A−1X)− (A−1X)(A−1X)∗]et[A

−1X−(A−1X)∗]

= Ḣ(t).
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1.4.2 Geodesics in subgroups of GL(n,C)

Let G be a closed subgroup of GL(n,C). The ∗-invariant Riemmanian metric on G has

been defined similar to equation (1.16). So, for A,B ∈ G, the geodesic starting from A with

γ̇(0) = X has the same form

γA,X(t) = Aet(A
−1X)∗et[A

−1X−(A−1X)∗]. (1.25)

For A,B ∈ U(n) or O(n), this geodesic connecting A and B takes a simple form as

γA,X(t) = Aet(A
−1X). (1.26)

For example, since GL(n,R) is a closed subgroup of GL(n,C). The ∗-invariant Riemmanian

metric on GL(n,R) is left invariant Riemmanian metric. Let γ : [0, 1] → GL(n,R) be

geodesic connecting A,B ∈ GL(n,R) with γ(0) = A and γ(1) = B. The geodesic starting

from A and γ̇(0) = X is

γA,X(t) = Aet(A
−1X)T et[A

−1X−(A−1X)T ]. (1.27)

An explicit formula for geodesics in GL(n,R) under a more general left invariant metric can

be found in Martin-Neff [14].

1.4.3 Geodesics in Pn the space of positive definite matrices

Theorem 1.4.4. The geodesic starting from P (0) = P in the space of positive definite

matrices with Ṗ (0) = X ∈ TPP under the congruence invariant metric is

γP,X(t) = P 1/2et(P
−1/2XP−1/2)P 1/2. (1.28)
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Proof. The geodesics on Pn can be found as on GL(n,C) by a variation method, essentially

repeating the computation in the proofs of Lemma 1.4.1, Theorem 1.4.2 and Theorem 1.4.3,

but using the inner product 〈X, Y 〉 = Re tr (XY ) instead of 〈X, Y 〉 = Re tr (X∗Y ) . The

computation is simpler now because various matrices are now Hermitian. In particular, we

now have Ḣ(t) = 0, where H(t) = γ(t)−1γ̇(t) as before. It is easy to verify γ(t) = exp(tX) is

the solution of the above differential equation with γ(0) = I and γ̇(0) = X, so it is a geodesic

starting at I. The general geodesic expression in (1.28) can be obtained by a congruence

transformation.

1.4.4 Riemannian distance function

Let G be a Riemannian manifold and let γ : [a, b] → G with γ(a) = A and γ(b) = B.

The length of γ is defined by

L(γ) =

∫ b

a

‖γ̇(t)‖ dt. (1.29)

The distance dG(A,B) between A and B on G is defined as the infimum of the length function

L(γ).

On Rn with the Euclidean metric, any straight line segment is the shortest piecewise

smooth curve segment between its endpoints. Thus, the distance function is equal to the

Euclidean distance dRn(A,B) = ‖A−B‖.

On other spaces, it is not as easy as Rn. Matrix logarithm would be introduced here to

define the Riemannian distance. When all the eigenvalues of matrix A lies in the nonnegative

real line, called principal logarithm, denoted by logA. Moreover, for any given matrix norm

‖·‖, if ‖A− I‖ < 1, then logA is defined as

logA =
∞∑
k=1

(−1)k+1 (A− I)k

k
.
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With Remannian metric, for U(n), O(n) and Pn, the Riemannian distance function on

G is defined by

dG(A,B) =
∥∥logB−1A

∥∥ , (1.30)

when ‖B−1A− I‖ < 1.

1.5 Gradients

1.5.1 Definition of Riemannian gradient

In order to average data, geodesic and gradient are two important tools. Since the gradi-

ent gives the rate and direction of fastest increase, it is widely used in numerical computation,

for example, the geodesic-based RSDA [5].

Let ∂Af denote the Euclidean gradient of function f with Euclidean metric and ∇Af

be the Riemannian gradient of function f with Riemannian metric.

Definition 1.5.1. Let f : GL(n,C)→ R be a differentiable function and ∇Af ∈ TAGL(n,C)

denote the Riemannian gradient of function f with respect to the metric (1.16), which is de-

fined by the following condition

〈∇Af,X 〉A = 〈X, ∂f(A) 〉E. (1.31)

1.5.2 Gradient on matrix spaces

Theorem 1.5.2. The Riemannian gradient of a sufficiently regular function f : GL(n,C)→

C associated to the Riemannian metric (1.16) satisfies

∇Af = AA∗∂f(A). (1.32)

Proof. According to Equation (1.31), for every X ∈ TAGL(n,C), we have
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〈X,∇f 〉A = 〈A−1X,A−1∇f(A) 〉

= tr [(A−1X)∗(A−1∇f(A))]

= tr [X∗(A−1)∗A−1∇f(A)]

= 〈X, ∂f(A) 〉E

= tr [X∗∂f(A)].

Then, we have

(A−1)∗A−1∇f(A) = ∂f(A)

∇f(A) = AA∗∂f(A).

Since X is arbitrary,

tr [X∗((A−1)∗A−1∇f(A)− ∂f(A))] = 0,

that is, for any X ∈ TAGL(n,R),

〈X, (A−1)∗A−1∇f(A)− ∂f(A) 〉 = 0.

Let G be a closed subgroup of GL(n,C). The left invariant Riemmanian metric on G

have been defined similar to Equation (1.16). According to Proposition 1.2.4, the Riemannian

gradient of the regular function f still satisfies ∇Af = AA∗∂f(A). For example, since

GL(n,R) is a closed subgroup of GL(n,C), its Riemannian gradient is ∇Af = AAT∂f(A).
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Theorem 1.5.3. The Riemannian gradient of a sufficiently regular function f : GL(n,R)→

R associated to the Riemannian metric (1.17) satisfies

∇Af = AAT∂f(A). (1.33)

Proof. According to Equation (1.31), for every X ∈ TAGL(n,R), we have

〈X,∇f 〉A = 〈A−1X,A−1∇f(A) 〉

= tr [(A−1X)T (A−1∇f(A))]

= tr [XTA−TA−1∇f(A)]

= 〈X, ∂f(A) 〉E

= tr [XT∂f(A)].

Thus, we have

A−TA−1∇f(A) = ∂f(A)

∇f(A) = AAT∂f(A).

Since X is arbitrary,

tr [XT [A−TA−1∇f(A)− ∂f(A)]] = 0,

that is, for every X ∈ TAGL(n,R),

〈X,A−TA−1∇f(A)− ∂f(A) 〉 = 0.
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Theorem 1.5.4. The Riemannian gradient of a sufficiently regular function f : P (n)→ R

associated to the Riemannian metric (1.17) satisfies

∇Pf = P
∂f(P ) + ∂∗f(P )

2
P. (1.34)

Proof. According to Equation (1.31), for every X ∈ Hn, we have

〈X,∇f 〉p = 〈P−1/2XP−1/2, P−1/2∇f(P )P−1/2 〉

= Re tr [(P−1X)(P−1∇f(P ))]

= Re tr [X(P−1∇f(P )P−1)]

= 〈X, ∂f(P ) 〉E

= Re tr [X∂f(P )].

Thus, we have

X(P−1∇f(P )P−1) = X
∂f(P ) + ∂∗f(P )

2

∇f(P ) = P
∂f(P ) + ∂∗f(P )

2
P.

1.5.3 Gradient of criterion function

Let f : G → R be a criterion function as the Riemannian distances between sample

points from the collection {B1, B2, · · · , BN} and a fixed point A as below,

f(A) :=
1

N

N∑
k=1

∥∥log(B−1k A)
∥∥2 . (1.35)

where A,B1, B2, · · · , BN ∈ G.
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By Karcher’s theorem [8], if the data to be averaged is sufficiently close to each other,

then the criterion function possesses exactly one minimizer. Thus the average matrix value

of {B1, B2, · · · , BN} is defined as

Ā = min
A∈G

f(A).

1.5.4 An alternative proof of Moakher’s Theorem

The following formula plays a key roll in computing the Euclidean gradient ∂f of the

criterion function f on U(n), O(n) and Pn. Moakher’s proof [18] is based on an integral

formula of matrix log. We have found a more direct and simpler proof.

Theorem 1.5.5. [18] Let A(t) be a matrix-valued function of the real variable t. Assume

that for all t in its domain, A(t) is an invertible matrix which does not have eigenvalues on

the closed negative real line. Then

d

dt
tr
[
(logA(t))2

]
= 2tr

[
logA(t)A−1(t)

d

dt
A(t)

]
. (1.36)

Proof. Here are some usual formula that are used in the following proof.

1. logA(t) =
∞∑
n=1

(−1)n−1 (A(t)−I)
n

n
for ‖A(t)− I‖ < 1.

2. d
dt

logA(t) =
∞∑
n=1

(−1)n−1 1
n

[
n−1∑
k=0

(A(t)− I)k d
dt
A(t)(A(t)− I)n−k−1

]
.

3. tr (AB) = tr (BA).

4. Any two analytic functions of the same matrix variable can commute.

5.
∞∑
n=1

An = (I − A)−1 for ‖A‖ < 1.
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For ‖A(t)− I‖ < 1, we have

d

dt
tr [(logA(t))2] = 2 tr

[
logA(t)

d

dt
logA(t)

]
= 2

∞∑
n=1

(−1)n−1
1

n
tr

[
logA(t)

n−1∑
k=0

(A(t)− I)k
d

dt
A(t)(A(t)− I)n−k−1

]

= 2
∞∑
n=1

(−1)n−1
1

n
tr

[
n−1∑
k=0

(A(t)− I)n−k−1 logA(t)(A(t)− I)k
d

dt
A(t)

]

= 2
∞∑
n=1

(−1)n−1
1

n
tr

[
n−1∑
k=0

logA(t)(A(t)− I)n−k−1(A(t)− I)k
d

dt
A(t)

]

= 2
∞∑
n=1

(−1)n−1
1

n
tr

[
n−1∑
k=0

logA(t)(A(t)− I)n−1
d

dt
A(t)

]

= 2
∞∑
n=1

(−1)n−1
1

n
tr

[
n logA(t)(A(t)− I)n−1

d

dt
A(t)

]

= 2 tr

[
logA(t)

∞∑
n=1

(−1)n−1(A(t)− I)n−1
d

dt
A(t)

]

= 2 tr

[
logA(t)[I − (I − A(t))]−1

d

dt
A(t)

]
= 2 tr

[
logA(t)A−1(t)

d

dt
A(t)

]
.

Since A(t) is analytic function and two analytic functions of the same matrix variable are

always equivalent if they are equivalent in the open set. So, this formula fits all the analytic

functions. Since

d

dt
A(t) =

∑
i,j

∂

∂aij
A
daij
dt

,

where ∂A
∂aij

is an analytic function, the differentiable functions also satisfy this formula.

We remark that [20, Theorem 2] and [19, Equation (10)] are false since Moakher [18]

computed d
dt

tr (logA(t))2, not d
dt

tr (logT A(t) logA(t)). Also, a key step has the same mistake

(see the penultimate equation [4, p.257]). Actually, both in the proof of [18, Proposition 2.1]

and our alternative proof of Moakher’s Theorem, we use the fact that two analytic functions

of the same matrix variable commute. Since taking transpose is not an analytic function,
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logT A(t) and logA(t) do not commute in general in both Lorentz group and symplectic

group. So, Moakher’s Theorem cannot be applied in Lorentz group and symplectic group to

compute d
dt

tr
[
logT A(t) logA(t)

]
. This subtle oversight led to the incorrect conclusions on

Riemannian gradients in [19] and [20].

Example 1.5.6. According to [20, Equation (10)], the Euclidean gradient of the criterion

function f(A) = 1
N

∑N
k=1

∥∥log(B−1k A)
∥∥2, where A,Bk ∈ Sp(2n,R) for k = 1, 2, . . . , N , is

∂Af =
2

N

N∑
k=1

A−T log(B−1k A).

Assume that ∂Af = 0. Then the above A is a critical point of the criterion function. We

generate an example of Sp(2,R) when N = 2. Choose

B1 =

−0.8012 0.3917

−0.3882 −1.0583

 , B2 =

 1.3109 0.2694

−1.8177 0.3892

 ∈ Sp(2,R).

Since ∂Af = 0, we have log(B−11 A) + log(B−12 A) = 0. Taking matrix exponential, we get

B−11 A = (B−12 A)−1. By multiplying by B−11 A, we obtain A by computing B1(B
−1
1 B2)

1
2 , that

is,

A =

 0.4822 0.6255

−2.0868 −0.6329

 .
However, we get f(e0.99 logA)− f(A) ≈ −0.0522 < 0 and f(e1.01 logA)− f(A) ≈ −0.0555 > 0,

which shows that A is not a critical point of the criterion function.

Example 1.5.7. According to [19, Equation (18)], the Euclidean gradient of the criterion

function f(A) = 1
N

∑N
q=1

∥∥log(B−1q A)
∥∥2, where A,Bq ∈ O(n, k) for q = 1, 2, . . . , N , is

∂Af =
2

N

N∑
q=1

A−T log(B−1q A).
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Assume that ∂Af = 0. Then the above A is a critical point of the criterion function. We

generate an example of O(1, 1) for N = 2. Choose

B1 =

 2.8318 −0.4587

−0.4587 0.4274

 , B2 =

 7.7282 −0.9171

−0.9171 0.2382

 ∈ O(1, 1).

Similar to Example 1.5.6, we obtain A by computing B1(B
−1
1 B2)

1
2 , that is,

A =

 4.6594 −0.6070

−0.6070 0.2937

 .
However, we get f(e0.99 logA) − f(A) ≈ −0.0103 < 0 and f(e1.01 logA) − f(A) ≈ 0.0111 > 0,

which shows that A is not a critical point of the criterion function.

1.5.5 Gradient on Unitary Group U(n)

The Lie group of unitary matrices is donoted by

U(n) = {Q ∈ GL(n,C) : QQ∗ = I}.

The corresponding Lie algebra is denoted by

u(n) = {A ∈ gl(n,C) : A∗ = −A}.

Theorem 1.5.8. The Riemannian gradient of the criterion function (1.35) on U(n) is

∇Af =
2

N

N∑
k=1

A log(B−1k A). (1.37)
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Proof. Since A,Bk ∈ U(n), then B−1k A ∈ U(n). Then log(B−1k A) ∈ u(n), so log∗(B−1k A) =

− log(B−1k A). By Moakher’s paper [18], we have

df(A) =
1

N

N∑
k=1

d
∥∥log(B−1k A)

∥∥2
=

1

N

N∑
k=1

d
[
tr (log∗(B−1k A) log(B−1k A)

]
= − 1

N

N∑
k=1

d
[
tr (log2(B−1k A)

]
= − 2

N

N∑
k=1

tr
[
log(B−1k A)(B−1k A)−1d((B−1k A)

]
= − 2

N

N∑
k=1

tr
[
log(B−1k A)A−1dA

]
= 〈 (− 2

N

N∑
k=1

(log(B−1k A)A−1)∗, dA 〉E.

Then, the Eculidean gradient is

∂Af = − 2

N

N∑
k=1

[
A−∗ log∗(B−1k A)

]
=

2

N

N∑
k=1

[
A log(B−1k A)

]
.

For any X ∈ TAU(n), we have

〈X,∇Af〉A = 〈A−1X,A−1∇Af〉

= Re tr [(A−1X)∗(A−1∇Af)]

= 〈X, ∂Af〉E

= Re tr [(A−1X)∗A−1∂Af ].

Then, we have

Re tr [(A−1X)∗(A−1∇Af − A−1∂Af)] = 0.
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For X ∈ TAU(n), there is

〈(A−1X)∗, (A−1∇Af − A−1∂Af)〉 = 0.

Note that A−1∇Af is the projection of A−1∂Af , that is,

A−1∇Af = 1
2
(A−1∂Af − ∂∗AfA−∗)

= 1
2
(A−1∂Af − ∂∗AfA).

Thus, from the Riemannian gradient expression (1.33)of GL(n,R), the Riemannian gradient

of this criterion function on U(n) is

∇Af =
2

N

N∑
k=1

A log(B−1k A).

1.5.6 Gradient on the Orthogonal Group O(n)

The Lie group of orthogonal matrices is denoted by

O(n) = {Q ∈ GL(n,R) : QQT = I}.

Then the corresponding Lie algebra is denoted by

o(n) = {A ∈ gl(n,R) : AT = −A}.

Theorem 1.5.9. The Riemannian gradient of the criterion function (1.35) on O(n) is

∇Af =
2

N

N∑
k=1

A log(B−1k A) (1.38)
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Proof. Since A,Bk ∈ O(n), then B−1k A ∈ O(n). Then log(B−1k A) ∈ o(n), so logT (B−1k A) =

− log(B−1k A). By Moakher’s result [18], we have

df(A) =
1

N

N∑
k=1

d
∥∥log(B−1k A)

∥∥2
=

1

N

N∑
k=1

d
[
tr (logT (B−1k A) log(B−1k A)

]
= − 1

N

N∑
k=1

d
[
tr (log2(B−1k A)

]
= − 2

N

N∑
k=1

tr
[
log(B−1k A)(B−1k A)−1d((B−1k A)

]
= − 2

N

N∑
k=1

tr
[
log(B−1k A)A−1dA

]
= 〈(− 2

N

N∑
k=1

(log(B−1k A)A−1)T , dA〉E.

Then, the Eculidean gradient is

∂Af = − 2

N

N∑
k=1

A−T logT (B−1k A) =
2

N

N∑
k=1

A log(B−1k A).

For any X ∈ TAO(n), we have

〈X,∇Af 〉A = 〈A−1X,A−1∇Af 〉

= Re tr [(A−1X)T (A−1∇Af)]

= 〈X, ∂Af 〉E

= Re tr [(A−1X)TA−1∂Af ].

Then, we have

Re tr [(A−1X)TA−1∇Af − A−1∂Af)] = 0.
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For X ∈ TAU(n), there is

〈 (A−1X)T , (A−1∇Af − A−1∂Af) 〉 = 0.

Note that A−1∇Af is the projection of A−1∂Af , that is,

A−1∇Af =
1

2
(A−1∂Af − ∂TAfA−T )

=
1

2
(A−1∂Af − ∂TAfA).

Thus, from the Riemannian gradient expression (1.33)of GL(n,R), the Riemannian gradient

of this criterion function on O(n) is

∇Af =
2

N

N∑
k=1

A log(B−1k A).

1.5.7 Gradient on the space of positive definite matrices Pn

Theorem 1.5.10. The Riemannian gradient of the criterion function (1.35) on Pn is

∇Af =
1

N

N∑
k=1

A log(B−1k A) +
1

N

N∑
k=1

log∗(B−1k A)A. (1.39)

Proof. Since the Riemannian distance of A,B ∈ Pn is

d(A,B) =
∥∥log(B−1A)

∥∥ =

[
n∑
i=1

log2 λi

]1/2
,
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where λi, i = 1, · · · , n are the eigenvalues of B−1A. We note that B−1A is similar to the

symmetric matrix B−1/2AB−1/2. Then by Moakher’s result [18], we have

df(A) =
1

N

N∑
k=1

d
∥∥log(B−1k A)

∥∥2
=

1

N

N∑
k=1

d
[
tr (log(B

−1/2
k AB

−1/2
k ))2

]
=

2

N

N∑
k=1

tr
[
log(B

−1/2
k AB

−1/2
k )(B

−1/2
k AB

−1/2
k )−1d(B

−1/2
k AB

−1/2
k )

]
=

2

N

N∑
k=1

tr
[
log(B

−1/2
k AB

−1/2
k )B

1/2
k A−1B

1/2
k B

−1/2
k (dA)B

−1/2
k

]
=

2

N

N∑
k=1

tr
[
B
−1/2
k log(B

−1/2
k AB

−1/2
k )B

1/2
k A−1dA

]
=

2

N

N∑
k=1

tr
[
log(B−1k A)A−1dA

]
= 〈 ( 2

N

N∑
k=1

(log(B−1k A)A−1)∗, dA 〉E.

Then, the Eculidean gradient is

∂Pf =
2

N

N∑
k=1

(A−1 log(B−1k A)).

Thus, from the Riemannian gradient expression (1.33) of GL(n,R), the Riemannian gradient

of this criterion function on Pn is

∇Af = A
∂Af + ∂∗Af

2
A

=
1

2
A

[
2

N

∑
k

(A−1 log(B−1k A)) + (
2

N

∑
k

(A−1 log(B−1k A)))∗

]
A

=
1

N

N∑
k=1

A log(B−1k A) +
1

N

N∑
k=1

log∗(B−1k A)A.
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Chapter 2

Curvature of matrix and reductive Lie groups

2.1 Introduction

The curvature provides important information about the geometric structure of a Rie-

mannian manifold. For example, it is related to the rate at which two geodesics emitting

from the same point move away from each other: the lower the curvature is, the faster

they move apart (see Theorem IX.5.1 in [2, Chapter IX.5]). Many important geometric and

topological properties are implied by suitable curvature conditions.

For example, for the three geodesic triangles in Figure 2.1, Figure 2.2 and Figure 2.3,

the geodesics x0x1 and x0x2 start from the same point x0 and move away from each other.

The second graph in each of Figure 2.1, Figure 2.2 and Figure 2.3 shows the projection of

these triangles. The curvature of the sphere, is positive. The curvature of the plane is zero.

The hyperbola has negative curvature. These illustrate the fact: the lower the curvature is,

the faster they move apart.

Figure 2.1: Curvature of the sphere

The classical geometric significance of the curvature tensor for a Riemannian manifold

can be found in Helgason [7]. Let M be a Riemannian manifold of dimension 2 and let p be
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Figure 2.2: Curvature of the plane

Figure 2.3: Curvature of the hyperbola

a point in M . Let Vr(0) denote the open ball in the tangent place TpM with center 0 and

radius r. Suppose r is so small that Expp is a diffeomorphism of Vr(0) onto the open ball

Br(p). Let A0(r) and A(r) denote the area of Vr(0) and Br(p), respectively. The curvature

of the 2-dimensional Riemannian manifold M of at the point p ∈M is defined as the limit

κ = 12 lim
r→0

A0(r)− A(r)

r2A0(r)
.

For a general Riemannian manifold M of any dimension, let N0 be a normal neighborhood of

0 in TpM and let Np = ExpN0. Let S be a two-dimensional vector subspace of TpM . Then

Exp(N0∩S) is a connected submanifold of M of dimension 2 and has Riemannian structure

induced by that of M . The curvature of Exp(N0 ∩ S) at p is called the sectional curvature

of M at p along the plane section S.
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In [16], Dr. Milnor gave an explicit formula for the curvature on a general Lie group

equipped with a left invariant Riemannian metric. The curvature of a Riemannian manifold

at a point can be described most easily by the bi-quadratic curvature function κ(x, y) =

〈Rxy(x), y〉. A given function κ(x, y) can occur as curvature function for some Riemannian

metric if and only if it is symmetric and bi-quadratic as a function of x and y, and vanishes

whenever x = y. The real number K = κ(u, v) is called the sectional curvature of the

tangential 2-plane spanned by u and v if u and v are orthogonal unit vectors. The Lie

algebra structure can then be described by n× n× n array of structure constant

αijk = 〈[ei, ej], ek〉,

where e1, e2, . . . , en is an orthonormal basis of the Lie algebra. Then the explicit sectional

curvature κ(e1, e2) is given by the formula

κ(e1, e2) =
∑
k

(
1

2
α12k(−α12k + α2k1 + αk12)

−1

4
(α12k − α2k1 + αk12)(α12k + α2k1 − αk12)− αk11αk22),

which shows that the curvature can be computed completely from the information about

the Lie algebra, together with its metric.

However, the curvature is usually not easy to compute explicitly. In the case of a Lie

group equipped with a left invariant Riemannian metric, Milnor [16] obtained an explicit

formula for sectional curvatures, but it is still quite complicated. To use it to compute a

sectional curvature, one has to embed the spanning vectors of the section in an orthonormal

frame and to compute the structure constants of the frame. Although it simplifies in many

special cases, we have not seen a simple formula for the sectional curvature on the general

linear group of matrices that is valid for all sections.
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Our main result of this chapter is a simple and direct formula for the sectional curvature

on the general linear group equipped with the left invariant Riemannian metric induced by

the Frobenius norm. This formula also holds on any matrix group that is invariant under

transposition, such as the orthogonal group and the Lorentz group, as they are totally

geodesic submanifolds of the general linear group. Indeed, similar formula is valid for the

more general reductive Lie groups. More details will be given later.

This chapter is organized as follows. After the preliminary material is introduced, we

establish our main result, Theorem 2.4.8 on the sectional curvature for the general linear

group in Section 2.4. In Section 2.5 we study the sectional curvature on GL(n,R) when

the two tangent vectors are commuting matrices in gl(n,R). In Section 2.6, we discuss the

curvature of the subgroups of GL(n,R). In Section 2.7, our formula in Theorem 2.4.8 is

extended to the reductive Lie groups.

2.2 Covariant derivative

LetG be GL(n,R). We may use the matrix elements gjk of g ∈ G as the local coordinates

on G. Then any vector field X on G may be written as

X(g) =
∑
j,k

ajk(g)
∂

∂gjk
,

for some smooth functions ajk(g) on G. Assume X and Y are left-invariant vector fields on

G, then

X(g) =
∑
j,k

(gu)jk
∂

∂gjk
, Y (g) =

∑
i,j

(gv)ij
∂

∂gij
,

for u, v ∈ g and g ∈ G.

31



For simplicity, we denote X(g) = gu and Y (g) = gv. Then

DXY (g) = X(gv)

= lim
t→∞

(g + tX)v − gv
t

= lim
t→∞

(g + tgu)v − gv
t

= lim
t→∞

g(I + tu− I)v

t

= guv.

Lemma 2.2.1. For A ∈ GL(n,R) and X ∈ TAGL(n,R),

ΓA(X,X) = XX∗A−∗ − AX∗A−∗A−1X −XA−1X, (2.1)

where Γ denotes the Christoffel symbol.

Proof. Let a smooth path γ : [0, 1] → GL(n,C) be a geodesic with A ∈ GL(n,C) and

X ∈ TAGL(n,C). According to Theorem 1.4.2, we know that the geodesic γ must satisfy

the equation

Ḣ(t) = H∗(t)H(t)−H(t)H∗(t),

where H(t) = γ−1(t)γ̇(t). Then, the geodesic satisfies the following form.

−γ−1γ̇γ−1γ̇ + γ−1γ̈ − γ̇∗γ−∗γ−1γ̇ + γ−1γ̇γ̇∗γ−∗ = 0

The geodesic equation, ∇γ̇ γ̇ = 0, can be written in the form

γ̈ + Γγ(γ̇, γ̇) = 0.

Thus,

Γγ(γ̇, γ̇) = γ̇γ̇∗γ−∗ − γγ̇∗γ−∗γ−1γ̇ − γ̇γ−1γ̇.
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Let γ = A ∈ GL(n,C) and γ̇ = X ∈ TAGL(n,C). Then, we have

ΓA(X,X) = XX∗A−∗ − AX∗A−∗A−1X −XA−1X.

Assume that the smooth path γ : [0, 1]→ GL(n,R) is the geodesic with A ∈ GL(n,R)

and X ∈ TAGL(n,R). Then, we have

ΓA(X,X) = XXTA−T − AXTA−TA−1X −XA−1X. (2.2)

For A = g ∈ GL(n,R),

Γg(X,X) = gu(gu)Tg−T − g(gu)Tg−Tg−1gu− gug−1gu

= guuT − guTu− guu.

Γg(X + Y,X + Y ) = g(u+ v)(u+ v)T − g(u+ v)T (u+ v)− g(u+ v)(u+ v)

= g(uvT + vuT − uTv − vTu− uv − vu),

Γg(X − Y,X − Y ) = g(u− v)(u− v)T − g(u− v)T (u− v)− g(u− v)(u− v)

= g(−uvT − vuT + uTv + vTu+ uv + vu).

It is well known that Γ has the following properties:

1. Γ(X, Y ) = Γ(Y,X).

2. Γ(α1X1 + α2X2, Y ) = α1Γ(X1, Y ) + α2Γ(X2, Y ) and

Γ(X,α1Y1 + α2Y2) = α1Γ(X, Y1) + α2Γ(X, Y2).
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Then, we have

4Γg(X, Y ) = Γg(X + Y,X + Y )− Γg(X − Y,X − Y )

= 2g(uvT + vuT − uTv − vTu− uv − vu).

So, the covariant derivative can be expressed as

∇XY = DXY + Γ(X, Y )

= guv +
1

2
g(uvT + vuT − uTv − vTu− uv − vu)

=
1

2
g(uvT + vuT − uTv − vTu+ uv − vu)

=
1

2
g([u, vT ] + [v, uT ] + [u, v]).

2.3 Curvature Tensor

As stated in the previous section, let G = GL(n,R) be equipped with the left invariant

Riemannian metric determined by the Frobenius inner product on the Lie algebra g =

gl(n,R) of G. Figure 2.4 shows that gl(n,R) is the tangent space of GL(n,R) at the identity

element In. Similar to Hn and Pn, Figure 2.4 is a little bit misleading since gl(n,R) contains

GL(n,R) but not shown in this figure.

gl(n,R)

GL(n,R)

γ(t)

In
v

Figure 2.4: Tangent space gl(n,R) of GL(n,R)
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The curvature tensor of the Riemannian connection is given by [7, p.43]

R(X, Y )Y = ∇X(∇Y Y )−∇Y (∇XY )−∇[X,Y ]Y, (2.3)

where [X, Y ] is the Lie bracket of vector fields. The curvature tensor is to measure the

intrinsic bending of G and the bending at each point is measured by the failure of mixed

partial derivatives to commute. Let X = gu and Y = gv for g ∈ GL(n,R) and u, v ∈ Rn×n,

the Lie bracket of vector fields is given by

[X, Y ] = XY − Y X

=
∑
j,k,p,q

(gu)jk(gv)pq
∂

∂gjk

∂

∂gpq
+
∑
j,k,p,q

(gu)jk
∂

∂gjk
(gv)pq

∂

∂gpq

−
∑
j,k,p,q

(gu)jk(gv)pq
∂

∂gjk

∂

∂gpq
−
∑
j,k,p,q

(gv)pq
∂

∂gpq
(gu)jk

∂

∂gjk

=
∑
j,k,p,q

[
(gu)jk

∂

∂gjk
(gv)pq

∂

∂gpq
−
∑
j,k,p,q

(gv)pq
∂

∂gpq
(gu)jk

∂

∂gjk

]

=
∑
j,k,p,q

[
(gu)jk

[
∂

∂gjk
(
∑
r

gprvrq)

]
∂

∂gpq
− (gv)pq

[
∂

∂gpq
(
∑
r

gjrurk)

]
∂

∂gjk

]

=
∑
p,q

∑
j,k

(gu)jkδpjvkq
∂

∂gpq
−
∑
j,k

∑
p,q

(gv)pqδpjuqk
∂

∂gjk

=
∑
p,q

∑
k

(gu)pkvkq
∂

∂gpq
−
∑
j,k

∑
q

(gv)jquqk
∂

∂gjk

=
∑
p,q

(guv)pq
∂

∂gpq
−
∑
j,k

(gvu)jk
∂

∂gjk

= guv − gvu

= g[u, v].

Then

∇[X,Y ]Y = 1
2
g([[u, v], vT ] + [v, [u, v]T ] + [[u, v], v]).
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Since

∇X(∇Y Y ) = ∇X(1
2
g([v, vT ] + [v, vT ] + [v, v]))

= ∇X(g[v, vT ])

= 1
2
g([u, [v, vT ]] + [[v, vT ], uT ] + [u, [v, vT ]])

= g[u, [v, vT ]] + 1
2
g[[v, vT ], uT ].

and

∇Y (∇XY )

= ∇Y (1
2
g([u, vT ] + [v, uT ] + [u, v]))

= 1
4
g{[v, (2[u, vT ] + 2[v, uT ] + [u, v] + [u, v]T )] + [([u, vT ] + [v, uT ] + [u, v]), vT ]}

= 1
2
g[v, ([u, vT ] + [v, uT ])] + 1

4
g[v, ([u, v] + [u, v]T )] + 1

4
g[([u, vT ] + [v, uT ] + [u, v]), vT ].

Thus, the curvature tensor is

R(X, Y )Y =∇X(∇Y Y )−∇Y (∇XY )−∇[X,Y ]Y

=g[u, [v, vT ]] + 1
2
g[[v, vT ], uT ]− 1

2
g[v, ([u, vT ] + [v, uT ])] + 1

4
g[v, [u, v]]

− 3
4
g[v, [u, v]T ]− 1

4
g[([u, vT ] + [v, uT ]), vT ]− 3

4
g[[u, v], vT ].

(2.4)

2.4 Sectional Curvature

The sectional curvature of the section spanned by linearly independent u and v in g is

S(u, v) =
〈R(u, v)v, u〉

〈u, u〉〈v, v〉 − 〈u, v〉2
. (2.5)

Note that the denominator is always positive. Indeed it is the area |u∧v| of the parallelogram

determined by u and v, so the sign of S(u, v) is the same as that of 〈R(u, v)v, u〉. Moreover,

when u and v are orthonormal, S(u, v) = 〈R(u, v)v, u〉.
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When u and v are regarded as left invariant vector fields, the sectional curvature S(u, v)

is in general a function on G, but by the left invariance of the metric, it is a constant on G.

We will compute 〈R(u, v)v, u〉 for any u, v ∈ g, starting with some special cases. Recall

that S and A are the spaces of symmetric and skew-symmetric matrices in g, respectively.

Because the Riemannian metric is left invariant, for any two left invariant vector fields

X = gu and Y = gv, the sectional curvature between X and Y does not depend on the point

g, so may be computed at identity matrix I. Assume that u ∈ g and v ∈ g are orthonormal.

The sectional curvature between X = gu and Y = gv is

〈R(X, Y )Y,X〉

= tr [(R(X, Y )Y )XT ]

= tr {[u, [v, vT ]]uT − 1
2
[uT , [v, vT ]]uT − 1

2
[v, ([u, vT ] + [v, uT ])]uT + 1

4
[v, [u, v]]uT

−3
4
[v, [u, v]T ]uT + 1

4
[vT , ([u, vT ] + [v, uT ])]uT + 3

4
[vT , [u, v]]uT}. (2.6)

If X, Y are orthonormal, then the sectional curvature between X = gu and Y = gv

is 〈R(X, Y )Y,X〉 listed above. If X, Y are not orthonormal, then the sign of the sectional

curvature between X and Y is the same as the sign of 〈R(X, Y )Y,X〉. Thus, we want

to find 〈R(X, Y )Y,X〉 and focus on its sign, where u is arbitrary and v is symmetric or

skew-symmetric.

To prove the theorem 2.4.1, we prove the following lemma.

Theorem 2.4.1. Assume that u ∈ g and v ∈ g are symmetric. Then 〈R(u, v)v, u〉 is

nonpositive. Additionally, it equals to zero if and only if u and v commute.
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Proof. Since u, v are symmetric,

〈R(u, v)v, u〉 = tr {1
4
[v, [u, v]]u− 3

4
[v, [v, u]]u+ 3

4
[v, [u, v]]u}

= tr {[v, [u, v]]u+ 3
4
[v, [u, v]]u}

= 7
4
tr {[v, [u, v]]u}

= −7
4
〈[u, v], [u, v]〉

= −7
4
‖[u, v]‖2

≤ 0,

with equality holds if and only if u, v commute.

Theorem 2.4.2. Assume that u ∈ g and v ∈ g are skew-symmetric. Then 〈R(u, v)v, u〉 is

nonnegative. Additionally, it is zero if and only if u and v commute.

Proof.

〈R(u, v)v, u〉 = tr {−1
4
[v, [u, v]]u+ 3

4
[v, [v, u]]u+ 3

4
[v, [u, v]]u}

= tr {1
2
[v, [u, v]]u− 3

4
[v, [u, v]]u}

= −1
4
tr{[v, [u, v]]u}

= 1
4
〈[u, v], [u, v]〉

= 1
4
‖[u, v]‖2

≥ 0,

with equality holds if and only if u, v commute.

Theorem 2.4.3. Assume that u and v are in g, where u is symmetric and v are skew-

symmetric. Then 〈R(u, v)v, u〉 is nonnegative. Additionally, it is zero if and only if u and v

commute.
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Proof.

〈R(u, v)v, u〉

= tr {[v, [u, v]]u+ 1
4
[v, [u, v]]u− 3

4
[v, [u, v]]u+ 1

2
[v, [u, v]]u− 3

4
[v, [u, v]]u}

= 1
4
tr {[v, [u, v]]u}

= 1
4
〈[u, v], [u, v]〉

= 1
4
‖[u, v]‖2 ≥ 0,

with equality holds if and only if u, v commute.

Let S be the space of symmetric matrices in g and A be the space of skew-symmetric

matrices in g, where g is the Lie algebra of GL(n,R).

Theorem 2.4.4. Let X = gu and Y = gv for g ∈ GL(n,R), u ∈ g and v ∈ A. Then

〈R(X, Y )Y,X〉 = 1
4
‖[X, Y ]‖2 ,

which is nonnegative. Additionally, it is zero if and only if X and Y commute.

Proof. If u ∈ S or u ∈ A, then it has a simple expression in Theorem 2.4.2 and Theorem

2.4.3. For these two cases, the sectional curvature is 1
4
‖[X, Y ]‖2 whose nonnegative with

zero if and only if u, v are commute, that is, X and Y commute.

For any u ∈ g, we can decompose u uniquely as

u =
u+ uT

2
+
u− uT

2
.

For simplicity, denote (u+ uT )/2 by u1 and (u− uT )/2 by u2. It is trivial to know that u1 is

symmetric and u2 is skew-symmetric. To find 〈R(X, Y )Y,X〉, we need to prove Claim 2.4.5
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listed after this proof. Since the inner product has bilinear property, we have

〈R(X, Y )Y,X〉

= 〈R(X1 +X2, Y )Y,X1 +X2〉

= 〈R(X1, Y )Y,X1〉+ 〈R(X2, Y )Y,X2〉+ 〈R(X1, Y )Y,X2〉+ 〈R(X2, Y )Y,X1〉

= 1
4
‖[u1, v]‖2 + 1

4
‖[u2, v]‖2

= 1
4
‖[X, Y ]‖2

≥ 0.

The equality holds if and only if [X, Y ] = 0, that is, X and Y commute.

Claim 2.4.5. Let X1 = gu1, X2 = gu2 and Y = gv for g ∈ GL(n,R), u1 ∈ S and u2, v ∈ A.

Then we have 〈R(X1, Y )Y,X2〉 = 0 and 〈R(X2, Y )Y,X1〉 = 0.

Proof. Because [u1, v] is symmetric and [u2, v] is skew-symmetric, [u1, v] and [u2, v] are or-

thogonal, that is, 〈[u1, v], [u2, v]〉 = 0. Then, we have

〈R(X1, Y )Y,X2〉

= tr {[u1, [v, vT ]]uT2 − 1
2
[uT1 , [v, v

T ]]uT2 − 1
2
[v, ([u1, v

T ] + [v, uT1 ])]uT2

+1
4
[v, [u1, v]]uT2 − 3

4
[v, [u1, v]T ]uT2 + 1

4
[vT , ([u1, v

T ] + [v, uT1 ])]uT2 + 3
4
[vT , [u1, v]]uT2 }

= −1
4
tr {[v, [u1, v]]uT2 }

= 1
4
tr {[v, [u1, v]]u2}

= 1
4
〈[u1, v], [u2, v]〉 = 0,
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and

〈R(X2, Y )Y,X1〉

= tr {[u2, [v, vT ]]uT1 − 1
2
[uT2 , [v, v

T ]]uT1 − 1
2
[v, ([u2, v

T ] + [v, uT2 ])]uT1 + 1
4
[v, [u2, v]]uT1

−3
4
[v, [u2, v]T ]uT1 + 1

4
[vT , ([u2, v

T ] + [v, uT2 ])]uT1 + 3
4
[vT , [u2, v]]uT1 }

= 1
4
tr {[v, [u2, v]]u1}

= 1
4
〈[u2, v], [u1, v]〉 = 0.

Claim 2.4.6. Let X1 = gu1, Y = gv and X2 = gu2 ∈ A for g ∈ GL(n,R), u1, v ∈ S and

u2 ∈ A. Then we have 〈R(X1, Y )Y,X2〉 = 0 and 〈R(X2, Y )Y,X1〉 = 0.

Proof. The proof is similar to Claim 2.4.5.

Theorem 2.4.7. Let X = gu and Y = gv for g ∈ GL(n,R), u ∈ g and v ∈ S. Let

X1 = (X +XT )/2 and X2 = (X −XT )/2. Then

〈R(X, Y )Y,X〉 = −7
4
‖[X1, Y ]‖2 + 1

4
‖[X2, Y ]‖2 ,

which can be zero with nonzero [X, Y ].

Proof. If u ∈ S, then it has a simple expression in Theorem 2.4.1. For this case, the sectional

curvature is −7
4
‖[u, v]‖2 whose sign is nonpositive with zero if and only if u, v commute, that

is, X and Y commute.

If u ∈ A, then it has a simple expression in Theorem 2.4.3. For this case, the sectional

curvature is 1
4
‖[u, v]‖2 whose sign is nonnegative with zero if and only if u, v commute, that

is, X and Y commute.
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For any u ∈ g, we can decompose u as the form in the proof of Theorem 2.4.4. The

following proof uses Claim 2.4.6.

〈R(X, Y )Y,X〉

= 〈R(X1 +X2, Y )Y,X1 +X2〉

= 〈R(X1, Y )Y,X1〉+ 〈R(X2, Y )Y,X2〉+ 〈R(X1, Y )Y,X2〉+ 〈R(X2, Y )Y,X1〉

= −7
4
‖[u1, v]‖2 + 1

4
‖[u2, v]‖2

= −7
4
‖[X1, Y ]‖2 + 1

4
‖[X2, Y ]‖2 .

Thus, given a symmetric Y , we can choose X to have 〈R(X, Y )Y,X〉 = 0 with a nonzero

[X, Y ].

Theorem 2.4.8. Let X = gu, Y = gv ∈ GL(n,R) for u, v ∈ g. Then 〈R(X, Y )Y,X〉 is

given by

〈R(X, Y )Y,X〉 = −2 ‖[X1, Y1]‖2 + 1
4
‖[X, Y ]‖2 + 2〈[Y1, X1], [Y2, X2]〉. (2.7)

Proof. For any u, v ∈ g, we can decompose u, v as the following form

u =
u+ uT

2
+
u− uT

2
,

and

v =
v + vT

2
+
v − vT

2
.

For simplicity, denote 1
2
(u + uT ) by u1,

1
2
(u − uT ) by u2,

1
2
(v + vT ) by v1 and 1

2
(v − vT ) by

v2. It is trivial to know that u1, v1 are symmetric and u2, v2 are skew-symmetric.
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Since the inner product has bilinear property and the property of curvature, 〈R(X, Y )Z,W 〉 =

〈R(Z,W )X, Y 〉, the general sectional curvature between X and Y can be written as

〈R(X, Y )Y,X〉

= 〈R(X, Y1 + Y2)(Y1 + Y2), X〉

= 〈R(X, Y1)Y1, X〉+ 〈R(X, Y2)Y2, X〉+ 2〈R(X, Y1)Y2, X〉.

For the term 〈R(X, Y1)Y1, X〉, the sectional curvature between an arbitrary X and a

symmetric Y1 is −7
4
‖[X1, Y1]‖2 + 1

4
‖[X2, Y1]‖2, which has been given in Theorem 2.4.7.

For the term 〈R(X, Y2)Y2, X〉, the sectional curvature between an arbitrary X and a

skew-symmetric Y2 is 1
4
‖[X, Y2]‖2, which has been given in Theorem 2.4.4.

For the term 〈R(X, Y1)Y2, X〉, it can be written as

〈R(X, Y1)Y2, X〉

= 〈R(X1 +X2, Y1)Y2, X1 +X2〉

= 〈R(X1, Y1)Y2, X1〉+ 〈R(X2, Y1)Y2, X2〉+ 〈R(X1, Y1)Y2, X2〉+ 〈R(X2, Y1)Y2, X1〉.

For the term 〈R(X2, Y1)Y2, X2〉 and 〈R(X2, Y1)Y2, X1〉 , we can find the curvature tensor

R(X2, Y1)Y2 first.

R(X2, Y1)Y2 = ∇X2(∇Y1Y2)−∇Y1(∇X2Y2)−∇[X2,Y1]Y2

= −3
4
g[u2, [v1, v2]]− 1

4
g[v1, [v2, u2]] + 1

2
g[v2, [v1, u2]].

Since [Y1, X2] and [Y2, X2] are orthogonal, we have

〈R(X2, Y1)Y2, X2〉 = 1
4
〈[Y1, X2], [Y2, X2]〉 = 0.
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The sectional curvature 〈R(X2, Y1)Y2, X1〉 will be the following form:

〈R(X2, Y1)Y2, X1〉

= tr {(−3
4
[u2, [v1, v2]]− 1

4
[v1, [v2, u2]] + 1

2
[v2, [v1, u2]])u

T
1 }

= −3
4
〈[u2, [v1, v2]], u1〉 − 1

4
〈[v1, [v2, u2]], u1〉+ 1

2
〈[v2, [v1, u2]], u1〉

= −1
4
〈[u2, [v1, v2]], u1〉 − (1

2
〈[u2, [v1, v2]], u1〉+ 1

2
〈[v2, [u2, v1]], u1〉)− 1

4
〈[v1, [v2, u2]], u1〉

= −1
4
〈[u2, [v1, v2]], u1〉+ 1

2
〈v1, [v2, u2]], u1〉 − 1

4
〈[v1, [v2, u2]], u1〉

= −1
4
〈[v1, v2], [u1, u2]〉+ 1

4
〈[v1, u1], [v2, u2]〉

= −1
4
〈[Y1, Y2], [X1, X2]〉+ 1

4
〈[Y1, X1], [Y2, X2]〉.

For the term 〈R(X2, Y1)Y2, X2〉 and 〈R(X1, Y1)Y2, X2〉 , we can find the curvature tensor

R(X1, Y1)Y2.

R(X1, Y1)Y2 =∇X1(∇Y1Y 2)−∇Y1(∇X1Y2)−∇[X1,Y1]Y2

=− 1
4
g[u1, [v1, v2]] + 1

4
g[v1, [u1, v2]] + 1

2
g[v2, [u1, v1]].

Since [Y1, X1] and [Y2, X1] are orthogonal, we have

〈R(X1, Y1)Y2, X1〉 = −3
4
〈[Y1, X1], [Y2, X1]〉 = 0.
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The sectional curvature 〈R(X1, Y1)Y2, X2〉 has the following form:

〈R(X1, Y1)Y2, X2〉

= tr {(−1
4
[u1, [v1, v2]] + 1

4
[v1, [u1, v2]] + 1

2
[v2, [u1, v1]])u

T
2 }

= 1
4
〈[u1, [v1, v2]], u2〉 − 1

4
〈[v1, [u1, v2]], u2〉 − 1

2
〈[v2, [u1, v1]], u2〉

= −(1
4
〈[u1, [v2, v1]], u2〉+ 1

4
〈[v1, [u1, v2]], u2〉)− 1

2
〈[v2, [u1, v1]], u2〉

= 1
4
〈[v2, [v1, u1]], u2〉 − 1

2
〈[v2, [u1, v1]], u2〉

= 1
4
〈[v1, u1], [v2, u2]〉+ 1

2
〈[v1, u1], [v2, u2]〉

= 3
4
〈[v1, u1], [v2, u2]〉

= 3
4
〈[Y1, X1], [Y2, X2]〉.

So,

〈R(X, Y1)Y2, X〉

= 〈R(X1, Y1)Y2, X1〉+ 〈R(X2, Y1)Y2, X2〉+ 〈R(X1, Y1)Y2, X2〉+ 〈R(X2, Y1)Y2, X1〉

= 3
4
〈[Y1, X1], [Y2, X2]〉 − 1

4
〈[Y1, Y2], [X1, X2]〉+ 1

4
〈[Y1, X1], [Y2, X2]〉

= 〈[Y1, X1], [Y2, X2]〉 − 1
4
〈[Y1, Y2], [X1, X2]〉.

Then, according to Claim 2.4.10, we have

〈R(X, Y )Y,X〉

= 〈R(X, Y1)Y1, X〉+ 〈R(X, Y2)Y2, X〉+ 2〈R(X, Y1)Y2, X〉

= −7
4
‖[X1, Y1]‖2 + 1

4
‖[X2, Y1]‖2 + 1

4
‖[X, Y2]‖2 + 2〈[Y1, X1], [Y2, X2]〉 − 1

2
〈[Y1, Y2], [X1, X2]〉

= −2 ‖[X1, Y1]‖2 + 1
4
‖[X, Y1]‖2 + 1

4
‖[X, Y2]‖2 + 2〈[Y1, X1], [Y2, X2]〉 − 1

2
〈[Y1, Y2], [X1, X2]〉

= −2 ‖[X1, Y1]‖2 + 1
4
{‖[X, Y1]‖2 + ‖[X, Y2]‖2 − 2〈[X1, X2], [Y1, Y2]〉}+ 2〈[Y1, X1], [Y2, X2]〉

= −2 ‖[X1, Y1]‖2 + 1
4
‖[X, Y ]‖2 + 2〈[Y1, X1], [Y2, X2]〉.
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The sectional curvature Equation (2.7) is also valid on many matrix groups, such as

Lorentz groups and symplectic group, as these are totally geodesic submanifolds of the

general linear group.

Corollary 2.4.9. The sectional curvature between any X and Y is nonpositive if X and Y

commute.

Proof. Since any X and Y is sum of a symmetric matrix and a skew-symmetric matrix.

Let X1, Y1 be the symmetric matrices and X2, Y2 be the skew-symmetric matrices and X =

X1 +X2, Y = Y1 + Y2. We have

[X, Y ] = [X1 +X2, Y1 + Y2] = [X1, Y1] + [X2, Y2] + [X1, Y2] + [X2, Y1].

Since X and Y commute, [X, Y ] = 0. Then the skew-symmetric [X1, Y1] + [X2, Y2] and

symmetric [X1, Y2] + [X2, Y1] are zero, respectively. We have [X1, Y1] = −[X2, Y2]. Thus, the

formula of the sectional curvature between X and Y can be simplified as

〈R(X, Y )Y,X〉 =− 2 ‖[X1, Y1]‖2 + 1
4
‖[X, Y ]‖2 + 2〈[Y1, X1], [Y2, X2]〉

=− 4 ‖[X1, Y1]‖2 ≤ 0.

Claim 2.4.10. For any X, Y ∈ GL(n,R), the following equation

‖[X, Y ]‖2 = ‖[X, Y1]‖2 + ‖[X, Y2]‖2 − 2〈[Y1, Y2], [X1, X2]〉

always holds.
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Proof. According to the Jacobi identity, we have

‖[X, Y ]‖2 = 〈[X, Y ], [X, Y ]〉

= 〈[X, Y1 + Y2], [X, Y1 + Y2]〉

= 〈[X, Y1], [X, Y1]〉+ 〈[X, Y2], [X, Y2]〉+ 2〈[X, Y1], [X, Y2]〉

= ‖[X, Y1]‖2 + ‖[X, Y2]‖2 + 2{〈[X1, Y1], [X2, Y2]〉+ 〈[X2, Y1], [X1, Y2]〉}

= ‖[X, Y1]‖2 + ‖[X, Y2]‖2 + 2{〈−[X2, [X1, Y1]], Y2〉+ 〈[X1, [X2, Y1]], Y2]〉}

= ‖[X, Y1]‖2 + ‖[X, Y2]‖2 + 2{〈[X2, [Y1, X1]], Y2〉+ 〈[X1, [X2, Y1]], Y2]〉}

= ‖[X, Y1]‖2 + ‖[X, Y2]‖2 + 2〈−[Y1, [X1, X2]], Y2〉

= ‖[X, Y1]‖2 + ‖[X, Y2]‖2 − 2〈[X1, X2], [Y1, Y2]〉.

For general linear group GL(n,R), their total geodesic submanifolds, for example,

Lorentz group and symplectic group, have the same form of sectional curvature as the man-

ifold GL(n,R).

2.5 Zero curvature and commutative property

Let u and v be two commuting matrices in g = gl(n,R). They span a 2-dimensional

abelian Lie sub-algebra of g. Let A be the associated abelian Lie subgroup of G = GL(n,R).

The induced Riemannian metric on A from the ambient space G is invariant under transla-

tions on A, so locally A is a Euclidean space and it has zero curvature. It is interesting to

know whether the 2-dimensional section of g spanned by u and v also has a zero sectional

curvature on G. It is also interesting to know, if the sectional curvature spanned by u and v

is zero, whether u and v are commuting. We will see that the answers to these two questions

are negative in general, but are positive under additional conditions.
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Theorem 2.5.1. The sectional curvature between any X and a skew-symmetric Y is zero if

and only if they commute.

Proof. This is the fact by the Theorem 2.4.4. 〈R(X, Y )Y,X〉 = 1
4
‖[X, Y ]‖2 for any X and

a skew-symmetric Y . Thus, 〈R(X, Y )Y,X〉 ≥ 0 with equality if and only if [X, Y ] = 0, that

is, X and Y commute.

Theorem 2.5.2. The sectional curvature between any two symmetric X and Y is zero if

and only if they commute.

Proof. This is the fact by the Theorem 2.4.1. 〈R(X, Y )Y,X〉 = −7
4
‖[X, Y ]‖2 for any two

symmetric X and Y . Thus, 〈R(X, Y )Y,X〉 ≤ 0 with equality if and only if [X, Y ] = 0, that

is, X and Y commute.

Example 2.5.3. For X, Y ∈ GL(n,R), 〈R(X, Y )Y,X〉 can be zero if X and Y do not

commute.

Proof. By the Theorem 2.4.8, 〈R(X, Y )Y,X〉 is given by Equation (2.7), that is,

〈R(X, Y )Y,X〉 = −2 ‖[X1, Y1]‖2 + 1
4
‖[X, Y ]‖2 + 2〈[Y1, X1], [Y2, X2]〉.

For example,

X =

 1 1 +
√

3
5

−1 +
√

3
5

1

 , Y =

 1 −1

1 2

 .
Then, X and Y can be decomposed as

X = X1 +X2 and Y = Y1 + Y2,

where

X1 =

 1
√

3
5√

3
5

1

 , X2 =

 0 1

−1 0


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and

Y1 =

 1 0

0 2

 , Y2 =

 0 −1

1 0

 .
Thus, 〈R(X, Y )Y,X〉 = 0 by Equation (2.7) with nonzero [X, Y].

From Corollary 2.4.9, we know that

〈R(X, Y )Y,X〉 = −4 ‖[X1, Y1]‖2

is nonpositive if X and Y commute. We know that if one of these two matrices is skew-

symmetric, the 〈R(X, Y )Y,X〉 can be zero if and only if X and Y commute. Here gives an

example to illustrate that 〈R(X, Y )Y,X〉 can be nonzero if X and Y commute for any X

and Y , where none is skew-symmetric.

Example 2.5.4. For X, Y ∈ GL(n,R), 〈R(X, Y )Y,X〉 can be nonzero if X and Y commute.

Proof. If two matrices are simultaneously diagonalizable, then both matrices commute. For

example, we choose X and Y by the following method,

X =


1 0 1

0 1 0

2 0 1




cos π
6
− sin π

6
0

sin π
6

cos π
6

0

0 0 1




1 0 1

0 1 0

2 0 1


−1

=


−
√
3
2

+ 2 −1
2

√
3
2
− 1

−1
2

√
3
2

1
2

−
√

3 + 2 −1
√

3− 1

 ,
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Y =


1 0 1

0 1 0

2 0 1




cos π
3
− sin π

3
0

sin π
3

cos π
3

0

0 0 1




1 0 1

0 1 0

2 0 1


−1

=


1
2

−
√
3
2
−1

2

−
√
3
2

1
2

√
3
2

1 −
√

3 0

 .
Then

X1 =
X +XT

2
=


−
√
3
2

+ 2 −1
2
−
√
3
4

+ 1

−1
2

√
3
2

−1
4

−
√
3
4

+ 1 −1
4

√
3− 1


and

Y1 =
Y + Y T

2
=


1
2
−
√
3
2

1
4

−
√
3
2

1
2
−
√
3
4

1
4
−
√
3
4

0

 .
Then, we know that [X1, Y1] = X1Y1−Y1X1 6= 0, that is, ‖[X1, Y1]‖2 6= 0. Thus, 〈R(X, Y )Y,X〉

can be nonzero (negative) for any two matrices X and Y , of which none is skew-symmetric,

if X and Y commute.

2.6 Curvature of subgroups

Let H be a closed subgroup of G = GL(n,R). Then H is a Lie subgroup of G and its

Lie algebra h is a sub-Lie algebra of g. The left invariant Riemannian metric on G induces

a left invariant Riemannian metric on H by restricting to the tangent spaces of H. Then H

becomes a sub-Riemannian manifold of G. For any u, v ∈ h, we may compute the sectional

curvature S(u, v) on G as defined by (2.5), and we may also compute the sectional curvature

SH(u, v) on H. In general, they are different, but if H is a totally geodesic sub-manifold of

G, then S(u, v) = SH(u, v). By definition, H is a totally geodesic sub-manifold of G if all the
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geodesics in G, starting in H and tangent to H, are contained in H and so are also geodesics

in H. In this case, it is well known that S(u, v) = SH(u, v); see for example Theorem 12.2 in

[7, Chapter I]. For exmaple, both the bigger blue circle and the smaller red circle in Figure

2.5 are totally geodesic sub-manifolds of the torus.

Figure 2.5: Totally geodesic sub-manifolds of the torus

By (3.9) in [14], the geodesic γ(t) in G = GL(n,R) with γ(0) = e and γ′(0) = u ∈ g is

given by

γ(t) = exp(tu>) exp(t(u− u>)).

Assume H is transpose-invariant, that is, for any h ∈ H, h> ∈ H. Then h is also transpose-

invariant. From the above geodesic expression, it is clear that any geodesic in G emitting

from e and tangent to H is contained in H. Because the Riemannian metric is left invariant,

this is true for the geodesic emitting from any point in H. It follows that H is a total

geodesic sub-manifold of G. We have proved the following result.

Theorem 2.6.1. Let H be a closed and transpose-invariant subgroup of G = GL(n,R),

and let it be equipped with the left invariant Riemannian metric determined by the Frobenius

inner product restricted to its Lie algebra h. Then Theorem 2.4.8 holds on H, that is, (2.13)

holds for u, v ∈ h.
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2.7 Reductive Lie group

Let us recall the definition of reductive group [9, Chapter VII].

Definition 2.7.1. The Harish-Chandra class H consists of 4-tuples (G,K, θ, B), where G is

a Lie group, K is a compact subgroup of G, θ is a Lie algebra involution of the Lie algebra g

of G, and B is a nondegenerate, Ad(G)-invariant, symmetric, bilinear form on g such that

1. g is reductive, that is, g = g1 + z, where g1 = [g, g] and z is the center of g.

2. g = k + p (called the Cartan decomposition), where k is the +1-eigenspace and p is the

−1-eigenspace under θ.

3. k and p are orthogonal with respect to B, and B is negative definite on k and positive

definite on p.

4. the map K × exp p→ G given by multiplication is a surjective diffeomorphism.

5. for every g ∈ G, the automorphism Ad(g) of g, extended to the complexification gC of

g is contained in IntgC.

6. the analytic subgroup G1 of G with Lie algebra g1 = [g, g] has finite center.

If (G,K, θ, B) ∈ H, then G is called a reductive Lie group.

The bilinear form B(·, ·) : g × g → R induces an Euclidean inner product Bθ(·, ·) on g

[9, p.448]:

〈X, Y 〉 := Bθ(X, Y ) = −B(X, θY ).

Note that Bθ|(k×k) = −B and Bθ|(p×p) = B, and that k and p are orthogonal under B and

thus under Bθ [9].

Example 2.7.2. (1) G = GL(n,R) is reductive with B(X, Y ) = tr (XY ) and θX = −X>.

Then 〈X, Y 〉 = Bθ(X, Y ) = tr (X>Y ), where X, Y ∈ gl(n,R).

52



(2) GL(n,C) is reductive with B(X, Y ) = Re [tr (XY )], where Re is the real part and

θX = −X∗. Then 〈X, Y 〉 = Bθ(X, Y ) = Re [tr(X∗Y )], where X, Y ∈ gl(n,C).

As in Section 3, the covariant derivative ∇uv under a left invariant metric is [16, (5.3)]

〈∇uv, w〉 =
1

2
(〈[u, v], w〉 − 〈[v, w], u〉 − 〈[u,w], v〉). (2.8)

In the rest of the paper, we will assume that G is equipped with the left invariant

Riemannian metric determined by 〈·, ·〉 = Bθ(·, ·) at g. Let ‖u‖ = 〈u, u〉1/2 be the associated

norm. It is easy to show

〈[u,w], v〉 = −〈w, [θu, v]〉. (2.9)

Proof.

〈[u,w], v〉 = −B([u,w], θv) = −B(w, [θv, u]) = −B(w, θ[v, θu])

= Bθ(w, [v, θu]) = −〈w, [θu, v]〉.

By (2.8) and (2.9),

〈∇uv, w〉 =
1

2
(〈[u, v], w〉+ 〈[θv, u], w〉+ 〈[θu, v], w〉).

It follows that

∇uv =
1

2
([u, v]− [u, θv]− [v, θu]). (2.10)

It is easy to show that

[k, k] ⊂ k, [p, p] ⊂ k, [k, p] = [p, k] ⊂ p. (2.11)
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According to (2.10), we have

∇uv =



1
2
[u, v], if u, v ∈ p or u, v ∈ k

−1
2
[u, v], if u ∈ p, v ∈ k

3
2
[u, v], if u ∈ k, v ∈ p.

(2.12)

By (2.9), 〈[w, u], v〉 = −〈u, [θw, v]〉 and we have the following lemma.

Lemma 2.7.3. Given u, v, w ∈ g, we have

〈[w, u], v〉 =


〈u, [w, v]〉, if w ∈ p

−〈u, [w, v]〉, if w ∈ k.

The curvature tensor R and sectional curvature S are defined in the same ways as (2.3)

and (2.5), respectively. We have the following result and we skip the proofs which are similar

to those in Section 2.4.

Theorem 2.7.4. Let G be a reductive Lie group. Let u, v ∈ g. Then

〈R(u, v)v, u〉 = −2 ‖[u1, v1]‖2 + 1
4
‖[u, v]‖2 + 2〈[u1, v1], [u2, v2]〉. (2.13)

So

1. Let u, v ∈ p. Then 〈R(u, v)v, u〉 = −7
4
‖[u, v]‖2 ≤ 0.

2. Let u, v ∈ k. Then 〈R(u, v)v, u〉 = 1
4
‖[u, v]‖2 ≥ 0.

3. Let u ∈ p and v ∈ k. Then 〈R(u, v)v, u〉 = 1
4
‖[u, v]‖2 ≥ 0.

4. Let u ∈ g and v ∈ k. Then 〈R(u, v)v, u〉 = 1
4
‖[u, v]‖2 ≥ 0.
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5. Let u ∈ g and v ∈ p. Then

〈R(u, v)v, u〉 = −7
4
‖[u1, v]‖2 + 1

4
‖[u2, v]‖2 .

Let H be a closed subgroup of G = GL(n,R) (or G = GL(n,C)) that is invariant

under (conjugate) transposition. It is known that [9, p.447] H is a reductive Lie group. By

Theorem 2.7.4, we obtain an alternative proof of Theorem 2.6.1 and extend it to include

complex matrix groups.

Corollary 2.7.5. Let H be a closed subgroup of GL(n,R) or (GL(n,C)) that is invariant

under (conjugate) transposition, and let it be equipped with the left invariant Riemannian

metric determined by the inner product in Example 2.7.2 restricted to its Lie algebra. Then

Theorem 2.4.8 holds for H.

Remark 2.7.6. Let G be a reductive Lie group with Lie algebra g. Let g = k + p be a given

Cartan decomposition corresponding to the Cartan involution θ. Let K be the analytic

subgroup of G with Lie algebra k. Let P = exp p. Note that G = K exp p and P is not a

group, so Theorem 2.7.4 does not apply. When P is equipped with the symmetric space

metric, it is a Riemannian manifold and the geodesic starting from p ∈ P takes the form

p1/2 exp(tu)p1/2, u ∈ p [13]. It is related to the geometric means in the context of symmetric

space of noncompact type and [13] evolves from the study of the matrix geometric means of

two n× n positive definite matrices [1]. See [11, 12] for some recent interesting results and

generalizations of matrix geometric means.
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