Once Dishonest, Always Dishonest? Not Necessarily So!

by

Jiayi Liu

A thesis submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the
requirements for the Degree of
Master of Science

Auburn, Alabama
May 2, 2020

Keywords: personnel selection, cheating, faking, multi-hurdle,
behavior consistency, situational specificity

Copyright 2020 by Jiayi Liu

Approved by

Jinyan Fan, Chair, Professor of Psychology
Ana Franco-Watkins, Professor of Psychology
Jesse Michel, Associate Professor of Psychology
Abstract

Within selection settings, job applicants are motivated to engage in dishonest behaviors such as cheating and faking, in order to increase their chance of getting the job. The present research investigates whether applicants engage in dishonest behaviors across selection hurdles. I propose two opposite conceptual views on trial: (a) the behavioral consistency view predicting that applicants should display consistent behavior patterns (honest or dishonest) across selection hurdles, and (b) the situational specificity view positing that dishonest behaviors do not necessarily generalize across selection hurdles. Participants were 733 applicants for graduate programs at a large university in China, who went through a national entrance examination (1st hurdle) and then took an online personality test during the campus interview (2nd hurdle). The results show that (a) applicants who had cheated on the exam at the 1st hurdle were as likely to fake on the personality test at the 2nd hurdle as non-cheaters, and (b) cheaters and non-cheaters responded similarly to a warning message (over a control message) delivered at the beginning of the personality test. These findings, overall, do not support the behavior consistency view, but are more aligned with the situational specificity view.

Keywords: personnel selection, cheating, faking, multi-hurdle, behavior consistency, situational specificity
Acknowledgments

I would first like to express my sincere gratitude to my advisor Prof. Jinyan Fan for the continuous support of my graduate study and research. In the first two years of Ph.D. study, I was nervous and diffident, and Dr. Fan convincingly guided and encouraged me to be professional and do the right thing even when the road got tough. By working with Dr. Fan, I have learned the knowledge and experiences that cannot benefit from books. I have no doubt, without his persistent help, the goal of this article would not have been realized.

I would like to extend my thanks to my thesis committee, Prof. Ana Franco-Watkins and Prof. Jesse Michel, and my statistics professor Dr. Alejandro Lazarte, for their encouragement, insightful comments, and hard questions. Thank you for your patience and support.

Special thanks to my fellow lab mates, Alissa Zawacki, Teng Zhao, and Hairong Li, for the stimulating discussions, for being my second readers of this thesis, for all the fun and support we have had in the lab and studying years. Thanks should also go to the whole cohorts in Psychology Program. Thank you for providing a friendly, supportive, and liberate atmosphere for everyone.

Last but not least, I very much appreciate my family for supporting my decisions and dreams. Being far away from home is never as easy as my imagination, but love helps us stay together. This accomplishment would not have been possible without them. Thank you.
Table of Contents

Abstract .. ii
Acknowledgment ... iii
List of Tables ... v
Introduction ... 1
Literature Review... 2
 Cheating in Selection Exams ... 2
 Faking in Selection Procedures .. 5
 Dishonest Behaviors across Multiple Selection Hurdles 8
 Two Different Views ... 10
The Present Study ... 12
Method .. 13
 Sample and Procedure ... 13
 Instruments .. 15
Analytic Strategies .. 16
 Identity cheaters in the selection exam ... 16
 Identity fakers in the selection exam ... 17
 Analytic strategy ... 18
Results .. 19
Discussion ... 21
 Study limitations and future research directions .. 23
 Practical implication ... 24
References ... 26
List of Tables

Table 1 ... 19
Table 2 ... 20
Table 3 .. 2
Once Dishonest, Always Dishonest? Not Necessarily So!

Introduction

The relationship between applicants and the hiring organization is like an arm race. On one hand, the hiring organization attempts to expand the job candidate pool by presenting various desirable features of the advertised job and the organization. On the other hand, applicants try to detect the selection criteria and then behave in certain ways that they think the hiring organization wants to see. So, within selection contexts job applicants are inclined to send signals to the hiring organization that they are qualified for the job and will be committed employees (Bangerter, Roulin, & König, 2012). Hence, it has been well acknowledged that in order to increase their chance of getting a job offer, applicants are often motivated to send false signals, that is, they may engage in various dishonest behaviors such as cheating on selection exams, embellishing their resumes, and faking in interviews and/or on personality measures.

Although there has been a variety of research on cheating and faking issues in education and selection areas, most studies have yield mixed results. Researchers usually consider cheating and faking as two distinct behaviors, and used to separate them in research. So, we fail to see the connection between cheating and faking behaviors in mixed situations. Even though cheating and faking research has been an area of much debate (Griffith & Peterson, 2006), at present, there is an undeniable fact that these dishonest behaviors have arisen increasingly concern within selection contexts. I believe it is of vital importance to industrial-organizational psychologists to further examine dishonest behaviors for the sake of hiring more desirable applicants in selection settings.

Given that job applicants typically go through several selection hurdles, an interesting, yet the under-studied question is how likely they will behave dishonestly across
selection hurdles. The present study aims to answer this question through a rare dataset, in which a large group of applicants for graduate school in a Chinese university went through a national graduate school entrance examination (the first hurdle) and then an online personality test during the campus interview (the second hurdle).

Literature Review

Cheating in Selection Exams

What is cheating? Cheating is one form of dishonest behavior in this highly competitive society, and it has aroused people’s concern on how to understand and prevent this behavior. Any type of breaking the rules can be considered as cheating behavior. Individuals usually take these unethical actions with the hope to obtain the desired reward, but at the same time to avoid punishment. Cheatings have been found in various fields. For example, in educational area, students cheat to get higher grades (Bunn, Caudill, & Gropper, 1992), in academia, researchers plagiarize the work of others as well as forge research results to get their paper published, and in economic realm, companies evade tax to avoid paying huge amount of money. In the present study, I focus on the cheating behaviors in the selection area.

One form of cheating behaviors that prevent within selection contexts is cheating in selection/admission exams. Cheating in exams, especially student cheating is particularly widespread and on the rise. In 1964, Bowers surveyed a large diverse sample of U.S colleges and universities and found that three-fourths of the students had admitted to engaging one or more cheating behaviors (Bowers, 1964). This study replicated 30 years later at the school which had participated in Bowers’ survey and researchers observed a modest increase in exam cheating (McCabe, Trevino, 1997). There are various sorts of cheating, and the most frequently used methods of cheating include having someone else take the exam for the
applicant, obtaining test information from others, copying someone else’s answers, to name just a few (McCabe, Trevino, & Butterfield, 2001). After entering the new century, the Internet has brought more challenges in dealing with cheating in selection/admission exams. Young people are developing a laxer attitude towards cheating compared with their parents’ generation. Online testing, along with open resources and unproctored procedures, provides job applicants additional opportunities to cheat (Ma, Wan, & Lu, 2008).

Motives and influence factors. The primary motive for applicants to cheat in selection exams is to gain advantages. Research that investigates in the classroom has found people with lower GPAs are more likely to cheat than students with high grades, because they have more to gain (Kerkvliet & Sigmund, 1999). This cheating behavior is more likely to happen when students perceive pressure to perform well but fear they cannot succeed (Finn & Frone, 2004). And in the realm of the workplace, applicants cheat in the selection or admission exams for the sake of the desired position. However, besides this general view, there is another perspective that proposes cheating depends on the comparison. In the previous study, researchers place participants in a gain-loss frame using a matrix task, and they found that people cheat more to avoid a loss (Grolleau, Kocher & Sutan, 2016). This research suggests that the fear of a loss seems to lead to more dishonest behavior than the lure of a gain. Even though these two views are from different perspectives, both of them have confirmed that people frequently cheat to pursue their self-benefit.

Both individual factors and situational factors play important roles in affecting the decision to cheat. There has been bulk of empirical studies examined the individual factors, and numerous variables have been taken into consideration, including demographic and personality factors. Although people believe gender, age and religion affect the decision to cheat, there are not consistent results on the relationship between these personal attributes and cheating behaviors (Crown & Spiller, 1998). Additionally, researchers also investigate the
effect of personality factors on dishonest behaviors, and they found that locus of control, moral obligation, Type-A behavior, competitive achievement string, and self-esteem were all correlated with cheat (Perry, Kane, Bernesser, & Spicker, 1990; Ward, 1986). Consistent with research in individual factors, the role situational factors play in cheating has also generated a huge amount of attention. In the research, honor codes, sanction threats, surveillance, social learning, and peer context can all significantly influence the prevalence of cheating (Canning, 1956; Michaels & Miethe, 1989; Tittle & Rowe, 1973). Even though both individual and contextual factors are influential on the decision to cheat, there is some evidence revealing that overall situational factors have a stronger effect on the decision to cheat than personal factors (McCabe et al., 2001).

Detect methods. Several means have been developed to detect cheating. The most traditional way is the observation and surveillance of proctors; however, this method is time and money costly, and sometimes cannot detect all forms of cheating behaviors. With the issue of digital cheating and plagiarism being prevalent, researchers and organizations have begun to focus on using computer programs to detect the cheating, for example, institutions use error-similarity analysis to compare answers for paired of students, and apply random response model to analysis the answers to dichotomous questions (e.g., Bellezza & Bellezza, 1989; Clark & Desharnais, 1998). On the other hand, with the possibility to detect cheating, people also look for ways to reduce cheating. Precaution is the most common method, and rearranging the order of questions and vigilant monitoring during the test are also helpful. For online tests, keystroke analytics, certified online proctoring, protective item formats, strong machine and browser lockdown and some other methods have been used to prevent or reduce cheating (Forster, 2009).
Faking in Selection Procedures

What is faking? Faking is another form of dishonest behavior in the selection area and it is especially rife in interview and assessment. Different from cheating, faking, by definition, refers to an intentional distortion of responses in selection procedures (e.g., interviews, situational judgment tests, and personality inventories) in order to meet the perceived demands of selection situation (Levashina & Campion, 2007; Fan et al., 2012; Whetzel & McDaniel, 2009). For example, job applicants fake “good” in order to obtain high scores in selection procedures so that they may have better chances to get the job offer, and graduates exaggerate the achievements on their resumes and exhibit themselves in a more positive manner than presenting his or her “true” self during the interview.

However, applicant faking is not a straightforward and simple process. On the contrary, applicants do not think like psychometricians (Kuncel, Goldberg, & Kiger, 2011), nor respond in a systematic way (Krammer, 2019). Although the ultimate goal is to get a job offer, faking on selection procedures is not simply maximizing test scores (Kiefer & Benit, 2016; Kuncel et al., 2011). When applicants take a personality test, item difficulty, the use of extreme vs. middle responses, perception of organizations’ expectations, and assumptions about the interpretation could interact with each other in affecting applicants’ response pattern and faking behaviors (König, Merz & Trauffer, 2012; Roulin & Krings, 2019). As a result, applicants do not simply endorse extreme scores, nor elevating their responses in all items. Several recent studies have shown that applicants tend to fake more on job-relevant personality dimensions than on job-irrelevant ones (e.g., Fan et al., 2012; Krammer, 2019).

Despite the aforementioned sophisticated faking behaviors, however, the general tendency has been that faking leads to more favorable (not necessarily maximized) scores in real-world selection settings, particularly on job-relevant dimensions (see Birkeland, Manson, Kisamore, Brannick, & Smith, 2006). Therefore, faking is a complex decision-making process, and
according to several conceptual faking models (e.g., Goffin & Boyd, 2009; McFarland & Ryan, 2006), it is influenced by both individual differences (e.g. personality traits, ability, and motivation) and contextual factors (e.g. perceived opportunity and perceived knowledge of job).

Faking, social desirability responding (SDR) and impression management (IM) are incorporated in the definition, but cannot be used interchangeably in the selection contexts. Based on previous research, social desirability is defined as the tendency for people to present themselves in a socially favorable way (Levashina & Campion, 2007). For example, applicants may exhibit an overly positive self-image by emphasizing desirable traits and denying negative ones (Paulhus, 1984). So, people who score high SDR are considered to be “faking good”. However, social desirability does not necessarily equal to faking. Traditionally, people would assume that candidates were motivated to create a self-image based on socially desirable traits, whereas, Levashina and Campion (2006) made it more specific and found that job applicants distort their responses in job-desirable ways, but not necessarily in socially desirable ways.

The second component, which is often confused with faking, is impression management. IM has usually been conceptualized as one or two components of SDR (Paulhus, 1984), and it refers to the intentional behavior to create a positive or desirable image (Levashina & Campion, 2006, 2007). While IM emphasizes the intentional response distortion, it is not necessarily deceptive. Some forms of IM used in selection interviews can be honest and necessary to present one’s values and preferences, while there are also some sorts of IM that involve deceptive behaviors, misrepresentation, and constitute faking (Fletcher, 1990). Therefore, whether IM is deceptive or not depends on the situation, and job applicants can use IM tactics either in truthful or dishonest ways.
Faking measurements. Social desirability scales and bogus items are two commonly used measures to detect faking on non-cognitive measures. The most popular social desirability measure is the Impression Management scale developed by Paulhus (1998). The IM items tap into relatively uncommon good behaviors and relatively common bad behaviors. If an applicant endorses too many IM items so as to be highly unlikely to be obtained under normal circumstances, he or she is considered having faked on the personality test (Paulhus, 1998). Research shows that IM scores are extremely sensitive to test environment such that individuals tend to have substantially higher IM scores in selection vs. non-selection contexts (Paulhus, 2002). On the other hand, bogus items include non-existent concepts and techniques. If an applicant repeatedly claims knowing or mastering concepts and techniques that cannot be known, he or she is also considered a faker (Fan et al., 2012).

However, scholars have expressed skepticism regarding the validity of social desirability (SD) scores or IM scores (e.g., Griffith & Peterson, 2008). Such a skepticism rests primarily on the meta-analytic finding that controlling for SD scores or IM scores does not affect criterion-related validity of personality scores (Li & Bragger, 2006). Hence, researchers have proposed there should be a golden standard to capture faking, that is to compare incumbent or other non-selection context samples, and applicants scores (Griffith, Chmielowski, & Yoshita, 2007). Most studies show that applicants usually have higher scores than incumbents or people in the non-selection context (Paulhus, 2002). Based on this idea, applicants’ actual amount of faking can be determined by calculating the difference between the same person’s personality scores in both selection and non-selection contexts.

Implications. Besides the measurement, various faking-mitigation strategies have been suggested and can be classified into two categories. The first type of strategy is considered reactive in nature, in which they allow faking to occur during the testing process and address it post hoc, such as using IM and SDE scores to adjust scores (Fan et al., 2012).
In contrast, the second type of strategy is *preventative* in nature, by this means they try to prevent faking from occurring in the first place, such as inserting randomized item placement, subtle items and forced-choice format (Fan et al., 2012). Warning not to fake at the beginning of the test is also a common example of this strategy (Pace & Borman, 2006). Traditional warning messages typically contain an identification component that conveys to test-takers that faking can be detected and/or a consequence component that informs test-takers of the consequences of faking if caught (Dwight & Donovan, 2003). Furthermore, Fan et al. propose a new procedure for reducing faking on selection tests. They try to use a computer-based procedure to identify and warn potential fakers early on in the test and then give them a chance to recourse (Fan et al., 2012).

Dishonest Behaviors across Multiple Selection Hurdles

Cheating and faking are two distinct types of behaviors; however, they do share one commonality — they are both dishonest behaviors with the common goal of increasing the chance of getting a job offer. Whereas cheating occurs in selection exams, faking takes place in selection procedures such as personality tests and interviews.

Although we know quite a bit about dishonest behaviors in specific, discrete selection contexts (e.g., Fan et al., 2012; Levashina & Campion, 2007), the extent to which job applicants engage in dishonest behaviors across multiple selection hurdles has been under-studied.

Multi-hurdle, also called multi-stage, is a selection strategy in which only candidates above a threshold on an initial stage can proceed to subsequent stages of a selection process. Traditionally, organizations develop selection systems based on single predictor or stage and choose eligible candidates from a variety of decision rules such as top-down, banding, or random selection above a cutoff (Sackett & Roth, 1996). Although this approach meets the performance goals of organizations, it fails to address the diversity demand and may yield
biased group differences (Finch, Edwards, & Wallace, 2009). Multi-hurdle strategy, however, combining multiple predictors or stages, compensates the decision made on single-stage selection. For example, if one hurdle is used, only applicants with high scores on the single predictor might be hired, but with multi-hurdle procedure, applicants with low scores on screening predictor would be screened out firstly, and applicants with high scores on the screening predictor but mediocre scores on selection predictor might be hired. This approach is most appropriate when training is long, complex and expensive, and the cost of hiring error is high. Multi-hurdle strategy also enables the organization to assess the essential KSA that cannot be compensated by high levels of other KSAs. Thus, multi-hurdle selection has also been widely put into use nowadays.

However, research on multi-hurdle selection procedure has been quite limited, with most of the few existing studies using Monte Carlo simulations to explore the effect of multi-hurdle procedure on job performance and how to reduce racial adverse impact. (e.g., Finch et al., 2009; Roth, Bobko, Switzer, & Dean, 2001). I was only able to identify two empirical studies on dishonest behaviors in multi-hurdle contexts. Peterson, Griffith, and Converse (2009) measured applicants faking in an experimental setting, and ask participants to complete several measurements under the assumption that they were applying for a job. In this experiment, two selection scenarios were compared based on the number of fakers hired and hiring discrepancies. The results revealed that using multiple-predictor selection method (vs. single-predictor method) resulted in hiring fewer fakers, but still cannot eliminate the entire negative effect of faking. Additionally, Roulin and Bourdage (2017) examined personality traits as predictors of applicants’ use of impression management (IM) tactics and the variability in IM usage across multiple selection interviews. Participants were students who complete a variety of interviews with one or more organizations to obtain an internship. These authors found that applicants high in extraversion or core self-evaluation tended to use
more honest IM tactics and did not change their strategies across interviews, whereas applicants high in some undesirable personal traits such as Machiavellianism, Narcissism, and Psychopathy were more likely to use deceptive impression management tactics and also tended to adapt their IM approaches across interviews.

Both of the two studies show the implication of multi-hurdle selection in the selection area, however, they still have limitations. Peterson, Griffith, and Converse (2009) did not investigate applicants faking in a real selection environment, so it may have a problem to generate the result to a broader range of selection situations. And Roulin and Bourdage (2017), unfortunately, focused on students completing interviews when applying for different internship positions, which was not a multi-hurdle context. In addition, although Roulin and Bourdage looked at the variability of IM use, whether applicants continue to engage in dishonest behaviors across multiple hurdles remains unknown.

Two Different Views

The present study focuses on two research questions: (a) whether applicants who engage in dishonest behaviors in an early hurdle will continue to behave dishonestly in the subsequent hurdle, and (b) whether dishonest applicants identified in an early hurdle will respond differently to a warning message given at the beginning of the subsequent hurdle than honest applicants.

We argue that there are at least two conceptual views on this topic. The first view, based on the behavioral consistency principle (e.g., Funder & Colvin, 1991), predicts that individuals will exhibit consistent behavioral patterns across situations. For example, if an individual is the most fearful person in one situation, he or she will also be more likely to behave in a fearful manner in another situation. Accordingly, in selection situations, applicants should behave in the same honest or dishonest manner across different hurdles. Even more, the behavioral consistency principle assumes that past performance is the best
predictor of the future performance (Wernimont & Campbell, 1968). For instance, the students who have high GPAs in high school are more likely to perform well in colleges. Following this widely-accepted principle, it has been a common practice for organizations to evaluate applicants based on their past behaviors, in order to predict their future behaviors in the workplace.

However, other scholars have argued that although people maintain some degree of consistency, they change their behaviors in order to adapt to different situations (Funder & Colvin, 1991). Hartshorne and May (1928) conducted a study on cheating behavior of children at various games and found that a child who cheated at one game did not necessarily cheat at another, and the process was determined by not only honesty trait, morality, but also by specific situations. Additionally, recently researchers have proposed a faking dynamic model to describe the dynamic process of faking behavior in the organization (Roulin, Krings, & Binggeli, 2016). In their model, Roulin, Krings, and Binggeli regarded applicant faking as an adaptive response, which requires taking into consideration a host of factors such as motivation and capacity to fake. These two major factors are further influenced by the individuals’ abilities, past experiences, and attitudes, moreover, the selection outcomes, and the perceptions of the competitive environment. In another research, Pettit, Doyle, Lount, and To (2016) offered a dynamic perspective of the situational factors that promote unethical behavior. These authors examined the effects of a negative status change and positive status change on people’s motivation to cheat. The findings revealed that individuals cheat in order to avoid falling behind. So, individuals are likely to cheat when they are in a disadvantaged position in a competition; however, after they succeed in the competition, they will stop cheating. The above arguments are echoed by the second view, referred to as the situational specificity view, holds that individuals are not expected to engage in dishonest behaviors across selection hurdles.
In selection settings, hiring managers typically try to identify and screen out dishonest applicants, because they believe that if a candidate engages in dishonest behaviors during the application procedure, he or she will likely behave dishonestly again on the job once hired. This practice is consistent with the behavior consistency view. In contrast, the situational specificity view describes applicants’ behavior as dynamic and adaptive, and assumes that applicants use different strategies across selection contexts (Roulin, Krings & Binggeli, 2016; Roulin & Bourdage, 2017). This suggests that dishonest behaviors do not persist across selection contexts as traditionally thought. Based on the situational specificity view, hiring managers should be cautious when deciding to reject a candidate based on just one count of dishonest behavior. We believe that exploring the pattern of applicants’ dishonest behaviors across multiple hurdles may provide useful cues that may aid hiring managers in making more informed selection decisions.

The Present Study

The present study places the above two opposing views on trial through a rare dataset, in which a large number of applicants for graduate school in a Chinese university went through two hurdles in the selection procedure: (a) a national entrance examination, and (b) an online personality test during the campus interview. We examine two research questions and propose two sets of competing hypotheses:

(a) Whether applicants who had cheated on the entrance examination were more or less likely to fake on the personality test than non-cheaters.

Hypothesis 1a: Applicants who had cheated on the entrance examination at the 1st hurdle will be more likely to fake on the personality test at the 2nd hurdle than non-cheaters.

Hypothesis 1b: Applicants who had cheated on the entrance examination at the 1st hurdle will be equally likely to fake on the personality test at the 2nd hurdle as non-cheaters.
(b) Whether cheaters identified in the first hurdle responded to a pre-warning message differently than non-cheaters.

Hypothesis 2a: The warning message (over the control message) will be less effective in lowering personality scores at the 2nd hurdle among applicants who had cheated on the entrance examination at the 1st hurdle than among non-cheaters.

Hypothesis 2b: The warning message (over the control message) will have similar impacts on personality scores between cheaters and non-cheaters at the 2nd hurdle.

We believe the present study will contribute to the multi-hurdle study by (a) using a large real data set to explore the dishonesty pattern in a multi-hurdle selection context, and (b) examine the two competing views towards the dishonest behaviors across different situations.

Method

Sample and Procedure

Participants were 984 applicants for graduate programs at a large university located in a central city of China. In this sample, 34.5% of participants were male, the average age was 24.3 years old (SD = 2.8 years old), ranging from 18 to 43 years old, and all participants had a bachelor’s degree. These applicants had passed the national graduate school entrance examinations (the first hurdle) and were invited for a campus visit (the second and final hurdle). Before reporting to the campus interview, they were firstly logged in a computer system and instructed to complete an online personality test as part of the selection processes. They were told that candidates’ personality scores would be taken into consideration when the graduate school making selection decision. A warning and a control message were randomly assigned to participants at the beginning of the personality test. Also embedded in the personality test were an IM inventory and a bogus statement (BS) inventory.
The warning message states, “Thank you for applying for our graduate programs and participating in this portion of the selection process. The online personality test you will complete has several embedded social desirability items. These items identify candidates who attempt to tailor their responses to what they believe the Graduate School wants to hear, in order to increase their chance of being admitted. Candidates who are identified distorting their responses will be given a zero grade on the personality test, which shall negatively affect their chance of being admitted.”

The control message states, “Thank you for applying for our graduate programs and participating in this portion of the selection process. Please respond honestly to the online personality items.”

When applicants reported to the campus interview, they were debriefed through a written statement which explained that the online personality test they had completed was for research purposes only, and that their personality scores would not be used for selection decisions. Participants were then given a chance to withdraw their data from further analyses. During the campus interview, participants took an English language test and several subject exams, and went through an interview.

Out of the 984 applicants, 733 were admitted and then enrolled in fall, 2010. At the time, this school had implemented a multi-year program whereby all first-year graduate students completed a mandatory online psychological assessment (which included the Chinese 16PF and several other measures) in late October each year for self-awareness and development purposes. We were able to locate all aforementioned 733 individuals and obtained their Chinese 16PF scores in the new graduate student assessment and we will use those scores as baseline scores. In this sample, 34.4% of participants were male, the average age was 24.09 years old (SD = 2.84 years old), ranging from 18 to 43 years old. Further analyses were conducted based on this 733-applicant sample.
This study was approved by the Intuitional Review Board of a U.S. university with which the first author is affiliated (Protocol #16-091) and the Graduate School of this Chinese university.

Instruments

Personality test. The 185-item Chinese 16PF (Dai & Zhu, 1988) was used, which was translated and adapted from the fourth edition 16PF (Cattell, Eber, & Tatsuoka, 1970). Items were rated on a 3-point scale, ranging from *Agree* to *Disagree*. The Chinese 16PF has been widely used in both research and applied settings in China. According to prior research (e.g., Dai & Zhu, 1988; Song, Han, & Liu, 2006; Yang et al., 2007), Alpha coefficients for the Chinese 16PF ranged from mid .60s to low .80s, and 2-week test-retest coefficients ranged from low .60s to low .80s. In the present study, the Chinese 16PF was administered by a Chinese testing firm, who provided us only scale level data, and as a result, item-level data and reliabilities were not made available.

Relevance and direction rating were determined by nine subject matter experts (SMEs), which consisted of three Graduate Admission staff, two professors in applied psychology, two student counseling center staff, and two trained graduate school applicants. These SMEs, with no knowledge of the purpose of the present study, rated the favored direction of 16PF dimensions on a 3-point scale (1 = lower score favored, 2 = favored direction unclear; 3 = higher score favored). A 16PF dimension’s favored direction was considered clear and positive if at least 8 out of 9 SMEs had chosen 3 or clear and negative if at least 8 out of 9 had chosen. The final results show that seven 16PF dimensions (Factors C, G, H, L, O, Q3, and Q4) were rated as having clear favorable direction, so that we know on which direction applicants might fake on specific 16PF dimensions. Other 16PF dimensions were categorized as *job-irrelevant* dimensions (Factor A, E, F, I, M, N, Q1, and Q2) in which
they neither had a clear faking direction, nor high faking likelihood. Factor B was excluded, because it is a rough measure of cognitive ability, not personality.

Bogus statements. The BS inventory developed by Fan et al. (2012) was adopted from Dwight and Donovan’s (2003) Bogus Statement Scale. Respondents were asked to indicate how often they had engaged in several school activities during the past 12 months, with 13 genuine items and 2 bogus items. Items were rated on a 4-point scale ranging from 1 (*never*) to 4 (*often*). For the two bogus items, responses endorsing *never* were assigned 0 points, and all other responses 1 point. The Coefficient Alpha of the BS scale is .60 in the current sample.

Impression management. The 20-item Chinese version of the IM scale (Fan, Wong, Carroll, & Lopez, 2008) which adapted from the Balanced Inventory of Desirable Responding (Paulhus, 1998) was used in this study. The Chinese IM scale was validated in Chinese populations (Fan et al., 2012), and had a Coefficient Alpha of .90 in the current sample.

Analytic Strategies

Identity cheaters in the selection exam.

This university has used two criteria to identify cheaters in the selection exam. First, several staff working at the Graduate School admission office worked in pairs carefully compared the handwriting of applicants in the English test in the national entrance examination and in the on-campus English test. The two decided together whether a specific case yielded substantial differences in the handwriting. As a result, the interrater reliability could not be calculated. The identified cheaters were then called to the Graduate School office and were notified of the conclusion. Then identified cheaters had two options. Option 1: They plead guilty and will be disqualified for this year’s graduate school admission.
Option 2: They plead not guilty. Then their handwritings would be sent to a designated forensic agency for further verification. If verified of cheating, they would not be allowed to apply for any graduate school in China for the next three years. If cleared, they would remain in the applicant pool and their cases would be advanced to the next step. It turned out that 37 out of 984 applicants were identified as cheaters accordingly. However, none of the 733 applicants who were admitted and then enrolled in program were caught by handwriting cheating.

Second, this university intentionally designed the on-campus English test to have lower difficulty level than the English test in the national entrance examination such that if an applicant’s English test score in the former setting was substantially lower than the latter setting (by 30 points or larger on a 100-point scale as per the school’s policy), he/she was flagged as a cheater. It turned out that 87 out of the 984 applicants invited for the campus met this criterion. However, we were concerned that the 30-point score difference used by this university was based on experience, rather than theory or statistics. Thus, we decided to calculate a more defensible cutoff for score difference. Specifically, we constructed a 95% confidence interval (CI) around the on-campus English test scores (T2) using Gulliksen’s (1950) formula: 95% CI = T2 Score ± 1.96 × Standard Error of Prediction (SEP), where SEP = \(SD_{T2} \times \sqrt{1 - r_{xx}^2} \), with \(r_{xx} \) being the test-retest reliability of English test scores. The result reveals that 24 points should be the cutoff for score difference. One hundred and fifty-five (15.8%) out of 984 applicants were categorized as cheaters using the modified criterion. And 42 (5.7%) of them somehow got passes and enrolled in the program.

In total 42 (5.7%) cheaters were identified based on one of the two criteria.

Identity fakers in the personality test

Although the BS and IM scales seem to be justified as valid measurements, scholars have expressed skepticism regarding the validity of social desirability scores or IM scores
Therefore, given the within-subject design of this study, the analysis adopted a more rigorous method to identify fakers.

The rationale of identifying individual fakers is as follows. If I use Time 3 (development context) scores to predict Time 2 (selection context) scores, assuming faking does not occur and the time effect is accounted for, score fluctuation over time should be affected by measurement error only (Gulliksen, 1950). Similar to the approach to identify cheaters, I constructed a 95% confidence interval (CI) around the Time 3 personality scores using the formula: 95% CI = T3 Score ± 1.96 × Standard Error of Prediction (SEP), where $\text{SEP} = SD_{T3} \times \sqrt{1 - r_{xx}^2}$, with r_{xx} being the reliability of each personality factor. As a result, for each of the seven job-relevant personality factors, a confidence interval was calculated around the Time 3 personality score. For positive 16PF dimensions, I operationalized fakers as individuals whose Time 2 personality scores were higher than the upper limit of the CI. For negative 16PF dimensions, the rule was reversed. In total, 256 (34.9%) fakers were identified based on this criteria.

Analytic strategy

In the present study, I focus on the IM and BS scale, and the seven Chinese 16PF dimensions that subject matter experts (SMEs) rated as highly job-relevant. In examining the research question that whether cheaters identified in the first hurdle were more likely than non-cheaters to fake on the online personality test in the second hurdle, moderated logistic regression analysis, treating binary faker status at the 2nd hurdle as the outcome variable. In the regression model, cheater status (cheater vs non-cheater) and treatment (warning vs. no-warning) were entered as predictors in step 1, and then the cross-product of two main effects was added in step 2. As for the Research Question 2 which concerns on whether cheaters and non-cheaters respond differently to the warning message given at the beginning of the 2nd hurdle, an MANOVA test will be conducted to examine whether there is a main effect of
warning (pre-warning vs. no warning), a main effect of cheater status (cheaters vs. non-cheaters), and their interaction, while nine scores (IM, BS, C, G, H, L, O, Q3 and Q4) will be treated as the dependent variables. A significant MANONVA would justify conducting follow-up univariate ANOVAs.

Results

In testing the first set of research hypotheses, the logistic regression results (see Table 1) indicated that the treatment effect was significant ($B = -.48, p < .01$), with the warned applicants being 62% less likely than unwarned applicants to be categorized as fakers on the personality test. However, neither the main effect of cheater status ($B = -.18, p = .70$), nor the interaction effect ($B = .20, p = .77$) was significant. Thus, cheaters were as likely as non-cheaters to fake at the 2nd hurdle, supporting H1b, but not H1a.

Table 1

Logistic Regression Results for the Effect of Cheater Status at the 1st Hurdle and Warning on Faker Status at the 2nd Hurdle

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Step 1</th>
<th></th>
<th>Step 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>Wald χ^2</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>Cheater Status</td>
<td>-.09</td>
<td>.07</td>
<td>.91</td>
<td></td>
</tr>
<tr>
<td>Warning</td>
<td>-.47**</td>
<td>9.12</td>
<td>.62</td>
<td></td>
</tr>
<tr>
<td>Cheater Status × Warning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagelkerke R^2</td>
<td>.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ^2 (df)</td>
<td>9.25 (2)*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note. * $p < .05$. ** $p < .01$.

19
In testing the second set of hypotheses, we focused on the IM and BS scales and seven 16PF dimensions (Factors C, G, H, L, O, Q3, and Q4) that subject matter experts rated as having clear favored direction. This was done so that we know on which 16PF dimensions applicants might fake and which direction. Descriptive statistics for the four cells are presented in Table 2. An MANOVA yield a marginal significant treatment effect: $F(9, 721) = 1.71, p = .08, \eta^2 = .02$, a non-significant main effect of cheater status: $F(9, 721) = .95, p = .48, \eta^2 = .01$, and a non-significant treatment \times cheater status interaction effect: $F(9, 721) = 1.00, p = .43, \eta^2 = .01$. Follow-up univariate ANOVA results are presented in Table 3. These results indicated that the warning lowered personality scores to some extent, but not significantly. The difference in personality mean scores between cheaters and non-cheaters was overall not significant, and there was no significant interaction effect. Thus, cheaters and non-cheaters responded similarly to the warning, supporting H2b, but not H2a.

Table 2

Descriptive Statistics for IM, BS, and Seven Job-relevant Chinese 16PF Dimension Scores across Conditions

<table>
<thead>
<tr>
<th>Scale</th>
<th>Cheater (n = 42)</th>
<th>Non-Cheater (n = 691)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control (n = 22)</td>
<td>Warning (n = 20)</td>
</tr>
<tr>
<td>Impression Management</td>
<td>12.50 (6.15)</td>
<td>9.80 (5.82)</td>
</tr>
<tr>
<td>Bogus Statement</td>
<td>.77 (.87)</td>
<td>.60 (.68)</td>
</tr>
<tr>
<td>Factor C Emotional Stability</td>
<td>17.23 (2.79)</td>
<td>17.90 (2.73)</td>
</tr>
<tr>
<td>Factor G Rule-Consciousness</td>
<td>14.64 (2.65)</td>
<td>13.45 (3.20)</td>
</tr>
<tr>
<td>Factor H Social Boldness</td>
<td>13.73 (4.89)</td>
<td>13.75 (4.34)</td>
</tr>
<tr>
<td>Factor L Vigilance</td>
<td>7.91 (3.48)</td>
<td>7.90 (2.95)</td>
</tr>
<tr>
<td>Factor O Apprehension</td>
<td>8.09 (4.21)</td>
<td>8.00 (3.85)</td>
</tr>
<tr>
<td>Factor Q3 Perfectionism</td>
<td>13.27 (2.85)</td>
<td>12.70 (2.92)</td>
</tr>
<tr>
<td>Factor Q4 Tension</td>
<td>9.95 (3.05)</td>
<td>9.60 (3.22)</td>
</tr>
</tbody>
</table>
Note. IM = impression management. BS = bogus statements. Factors C, G, H, L, O, Q3, and Q4 are the seven job-relevant 16PF dimensions.

Table 3

Univariate Tests for the Effects of Pre-Warning and Cheater Status on IM, BS, and Job-relevant Chinese 16PF Dimension Scores

<table>
<thead>
<tr>
<th>Scale</th>
<th>Pre-warning</th>
<th>Cheater Status</th>
<th>Pre-warning × Cheater Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F (9, 721)</td>
<td>η^2</td>
<td>F (9, 721)</td>
</tr>
<tr>
<td>Impression Management</td>
<td>7.40**</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>Bogus Statement</td>
<td>6.89**</td>
<td>.01</td>
<td>2.92</td>
</tr>
<tr>
<td>Factor C Emotional Stability</td>
<td>.73</td>
<td>.00</td>
<td>.25</td>
</tr>
<tr>
<td>Factor G Rule-Consciousness</td>
<td>15.56**</td>
<td>.02</td>
<td>.40</td>
</tr>
<tr>
<td>Factor H Social Boldness</td>
<td>6.00*</td>
<td>.01</td>
<td>.14</td>
</tr>
<tr>
<td>Factor L Vigilance</td>
<td>.49</td>
<td>.00</td>
<td>.37</td>
</tr>
<tr>
<td>Factor O Apprehension</td>
<td>.48</td>
<td>.00</td>
<td>.33</td>
</tr>
<tr>
<td>Factor Q3 Perfectionism</td>
<td>2.56</td>
<td>.00</td>
<td>1.38</td>
</tr>
<tr>
<td>Factor Q4 Tension</td>
<td>.22</td>
<td>.00</td>
<td>.45</td>
</tr>
</tbody>
</table>

Note. *p < .05. **p < .01.

Discussion

The purpose of the present study was to investigate whether job applicants engage in dishonest behaviors across multiple selection hurdles. This article proposed competing research hypotheses based on two opposite conceptual views, that is, the behavioral consistency view and the situational specificity view. The study identified a rare dataset for empirical testing, which featured a real-world multi-hurdle selection context with different
selection methods (a selection exam and a personality test) and a large sample of graduate school applicants.

Results favored the situational specificity view. It is found that cheaters identified at the 1st hurdle were as likely as non-cheaters to fake on the 2nd hurdle personality test. Further, cheaters and non-cheaters responded similarly to a warning message delivered at the beginning of personality test. The findings suggest that when contemplating whether to engage in dishonest behaviors, job applicants face a complex decision-making task where they must take a host of factors into consideration such as selection hurdle, selection ratio, and cost/benefit tradeoff (Roulin et al., 2016). Dishonest behaviors are risky, and individuals might need to go through careful cost/benefit analysis before making such decisions. For instance, in the current context, the national entrance examination has a notoriously low passing rate (around 10%), whereas the campus interview has a much higher acceptance rate (around 80%). Therefore, it is possible that cheaters who had successfully got away with cheating and had passed the entrance examination might not see a strong need to fake on the personality test (Pettit et al., 2016). Additionally, behavioral consistency does not necessarily mean people should behave in a constant fashion all the time (Funder & Colvin, 1991). Indeed, people might change their behavior markedly across situations and yet maintain a substantial degree of interindividual consistency. Hence, cross-situational consistency should be considered as the third view in future research.

Another equally feasible explanation, as mentioned earlier, is that cheating and faking are two distinctive phenomena, and they should not be related to each other. People usually consider cheating as a severe dishonest behavior, while faking can be either severe or mild. Study suggests that individuals’ attitudes towards severe and mild dishonest behaviors can be different (Fell, König, & Kammerhoff, 2016), and this could yield different and even unrelated actions. Finally, the research design of this study of looks at different types of
dishonest behaviors across selection hurdles, which actually offers a strong test of the behavioral consistency view, in that positive results would provide strong support of this view, however, negative results would not convincingly refute it. Future research should consider using the same selection method across different hurdles to hold the type of dishonest behavior constant.

Study limitations and future research directions

Several study limitations should be noted. The first limitation is that given our Chinese sample in an educational organization, our findings might not generalize to Western societies and industrial organizations. Nowadays, in international personnel selection research and practice, researchers and organizations have awarded that there are cross-differences in applicants’ faking behaviors as well as the attitude toward applicants’ faking in job interviews. Scholars have found significant positive correlations between attitudes toward faking and power distance, in-group collectivism, and human orientation, whereas significant negative correlations between attitudes toward faking and uncertainty avoidance and gender egalitarianism (Fell et al., 2016). Therefore, cross-culture differences in applicants’ attitudes towards faking do exist. Applicants from different cultures may enter the selection with different mindsets, and act differently in dishonest behaviors. Future research is needed to replicate the findings across different societies and different types of organizations.

Secondly, participants’ difference scores of personality may not necessarily come from faking “good”. There is a possibility that applicants’ personality gets changed or developed during the six months, given the participants were all young people and their self-identity or personality is not so stable at that time.

Even though some scholars show doubtful attitudes towards faking scales, as researchers have recently begun to examine SD or IM scores as a moderator of criterion-related validity, the hypothesized faking effect has emerged, that is, personality validity is
high when SD or IM scores are low, and is low when SD or IM scores are high (e.g., Lanyon, Goodstein, & Weshba, 2014; O’Connell, Kung, & Tristan, 2011). Although the research on the validity of BS has been limited, but in a classic study, Pannone (1984) found that the correlation between bio-data scores and writing test scores was substantially smaller for applicants who endorsed the bogus item than for those who did not endorse the bogus item ($r = .26$ vs. $.55$). And in a recent paper, Dunlop et al. (2019) showed that over-claiming items, a concept similar to bogus statement, can indicate faking effectively and that those who had endorsed these over-claiming items did worse on an objective performance test than those who had not. Therefore, taken together, the use of IM and BS scores to identify fakers on the personality test seems to be justified. I recommend future study to identify faker in both two ways; calculating the actual amount of faking, and using IM or SD scores to measure faking.

Last but not least, although our findings favor the situational specificity view, we know little about the underlying mechanisms of and the decision-making processes behind this effect. Future research is needed to address this gap. I recommend the dynamic model of unethical behavior (Pettit et al., 2016) and the self-regulation and resource depletion model (Baumeister, Bratslavsky, Muraven, & Tice, 1998) as promising theoretical frameworks for future scholars to consider.

Practical implication

One practical implication of this study is that people's decisions and behaviors, especially dishonest behaviors, change according to situations. Judging a person based on one behavior could be wrong. The other implication is in the industrial world that hiring managers probably should be more cautious when rejecting a candidate based on one count of dishonest behavior, as our study suggests that this candidate is not necessarily more likely than other candidates to engage in other types of dishonest behaviors in the future. However, it would be hasty to draw the conclusion that identity dishonest behaviors are not important.
We should note that at least in selection exam contexts such a practice is still defensible, because cheating could give cheaters an unfair advantage over honest and qualified candidates. In other words, we are not questioning this practice, but one of the long-held rationales behind it.
References

1. *Industrial and Organizational Psychology*, 2, 31-34.

