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Abstract 
 
 

This dissertation is composed of three essays related to hedging and application of the 

Black-Scholes model. The first essay is motivated by the short-lived arbitrage model, which has 

been shown to significantly improve in-sample option pricing fit relative to the Black-Scholes 

model. We imply both volatility and virtual interest rates to adjust minimum variance hedge 

ratios. Using several error metrics, we find that the hedging model significantly outperforms the 

traditional delta hedge and a current bench-mark hedge based on the practitioner Black-Scholes 

model. Our applications include hedges of index options, individual stock options and 

commodity futures options. Hedges on gold and silver are especially sensitive to virtual interest 

rates. 

The second essay analyzes the optimal capital structure of a nation from a corporate 

finance perspective. In particular, we draw an analogy between a nation's fiat money and 

corporate equity following Bolton and Huang (2018). Based on dynamic capital structure theory, 

we develop a stochastic model to determine the optimal combination of fiat money and foreign-

currency debt used by a nation to fund its investments. The optimal capital structure of a nation 

depends on the trade-off between the inflation risk of fiat money and the default risk of foreign-

currency debt. Introducing outstanding debt to our model sheds light on how a nation 

dynamically adjusts its capital structure over time. Based on an analysis of 22 emerging 

economies, the empirical results support our theoretical model of the capital structure of a nation. 

The third essay studies the impact of changes in the Federal funds rate target on option 

prices. I find that, on average, an unanticipated 25-basis-point cut in the Federal funds rate target 

is associated with an 18.5% increase in S&P 500 index call options prices and an 18.6% decrease 

in the put options prices. However, the result is reversed in the 2008 financial crisis, during 
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which an unexpected cut in the Federal funds rate target raises market concerns. I conduct a 

quantitative analysis of the transmission channels in terms of underlying security price, volatility 

and interest rates. Evidence shows that FOMC monetary policy has more influence on the 

options market during the 2008 financial crisis. Bank equity options are more sensitive to the 

changes in the Federal funds rate target than S&P 500 index options. 
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Chapter I Using the Short-Lived Arbitrage Model to Compute Minimum Variance Hedge Ratios: 

Application to Indices, Stocks and Commodities 

  

1.1 Introduction 

Because market participants are generally risk averse, individuals and firms employ 

hedging strategies that reduce price or return volatility. Investment managers and firm CEO’s 

cannot control various inputs and outputs such as commodity prices, currency prices, equity prices, 

and bond prices. In such cases, options (and/or futures) are used to take positions that reduce 

volatility. Options are highly leveraged, have limited liability and are an efficient way to offset, or 

hedge, this volatility. Thus, there is significant demand for call and put options. In some cases, 

option demand can be satisfied by standardized exchange traded options. In many cases, however, 

customized options are required and this demand is satisfied by over-the-counter option writers.  

The over-the-counter (OTC) market for derivatives is documented by the Bank for 

International Settlements (BIS). According to BIS, the notional amount of outstanding equity 

linked OTC contracts was 2,930 billion US dollars in 20181. The OTC equity options account for 

more than 60 percent of this amount. The outstanding amount of OTC commodity contracts was 

1,898 billion US dollars with 7 percent of this amount in gold option contracts ($376 billion). 

Over-the-counter writers are exposed to risk by virtue of their short positions. To reduce 

exposure, the writer is obliged to take positions to offset the risk of the written options. By far the 

most basic and widely used method for reducing this risk is the delta hedge as calculated from the 

celebrated Black-Scholes (1973) model. The delta hedge can be easily implemented since 

 
1 www.bis.org/statisticsd8.pdf 
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managing the risk in a portfolio of options involves only trades in the underlying asset and a risk-

free account. 

Despite its landmark contribution to the financial industry, some Black-Scholes 

assumptions cannot be empirically justified. Over the past 45 years, researchers have extended or 

otherwise altered the Black-Scholes model in attempts to improve hedging and pricing. Some 

models extend the Black-Scholes model to better describe the dynamics of the underlying asset. 

For example, the jump-diffusion model of stock prices was introduced by Merton (1976) and 

further extended by a number of authors including Ball and Torous (1985), Naik and Lee (1990), 

and Bates (1991). Hull and White (1987, 1988), and Heston (1993) were early proponents of 

models that include both the underlying and stochastic volatility as state variables. Bates (1996), 

and Duffie, Pan, and Singleton (2000) develop models that includes both jumps and stochastic 

volatility. In a landmark study, Bakshi, Cao, and Chen (1997) investigated several models and 

hedging techniques. 

Theoretical models that effectively hedge jump-diffusions require the addition of options 

to the short term portfolio. See, for example, Andersen and Andreasen (2000) or He et al. (2006). 

In addition, models with multiple hedging instruments also theoretically improve hedging 

performance for smooth diffusions. In practice, however, multiple instruments pose significant 

issues. For example, a hedge portfolio with the underlying and an option would be efficacious only 

if there were synchronous or near synchronous trades of the target (hedged) option, the underlying, 

and the hedging option(s). Since options are typically less liquid than the underlying, synchronicity 

is a significant problem. Because of these difficulties and other considerations such as transaction 

costs, the single instrument hedge using the underlying remains the preferred approach among 

practitioners. 
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Notwithstanding improvements in modeling prices, the workhorse for pricing and single 

instrument hedging is the Practitioner Black-Scholes model. A key element of this model is a 

volatility surface that is derived by fitting implied volatilities to moneyness and maturity 

(Christoffersen and Jacobs, 2004). Other approaches have been developed to improve hedging 

performance by adjusting the Black-Scholes delta. One alter-native that has found traction in the 

literature is the minimum variance (MV) hedge ratio. The MV hedge remedies the failure of the 

delta hedge to account for multiple state variables that are correlated with the underlying. 

Shortcomings of the delta hedge have been addressed by a number of authors including Hagan, et 

al. (2002), Bartlett (2006), Alexander and Nogueira (2007), and Hull and White (2017). Other 

considerations also favor the MV hedge over the delta hedge. Christoffersen and Jacobs (2004) 

provide a compelling argument for choosing a hedging loss function that is consistent with the 

parameter estimation loss function. In its simplest incarnation, this means that a least squares loss 

function should be used to evaluate hedging performance if parameters are chosen to minimize in-

sample squared errors. 

Minimum-variance deltas have been developed using stochastic volatility as an additional 

state variable. Hull and White (HW, 2017) document that a number of researchers have shown 

improved hedging performance by combining the Practitioner Black-Scholes delta and Practitioner 

Black-Scholes vega. In these models, "Practitioner" implies that a formal stochastic process is not 

assumed but implied from the data. Hull and White develop a model of this nature by empirically 

determining the partial derivative of expected volatility with respect to price (vega). The model is 

tested against the SABR stochastic volatility model (Hagan et al., 2002) and the local volatility 

model using data from widely traded stocks, commodities, and ETFs. Their primary focus is 

hedging options on the S&P500 index. According to their performance metric ("gain"), the HW 
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hedging model shows significant improvements over the SABR model and the local volatility 

model. The HW hedge performance was better for calls than puts and better for indices than 

individual stocks. 

We develop a different MV hedge based on a practitioner version of the short-lived 

arbitrage (SLA) model of Otto (2000). The formula for the SLA model is essentially the same as 

that of the Merton Stochastic Interest Rate model. However, it differs in one crucial aspect. The 

short-lived arbitrage is latent but expressed as a state variable in the Merton bond price term. Since 

it is unobservable, Otto refers the Merton bond term as a "virtual bond." Hilliard and Hilliard (HH, 

2017), extend the Otto model for correlations with the underlying and find that jointly implied 

volatility and virtual bond price significantly improves fit vis-á-vis the Black-Scholes pricing 

model with implied volatility. They also find that put options have higher prices than call options 

relative to their Black-Scholes counterparts, consistent with the empirical findings of Cremers and 

Weinbaum (2010) and HH. Motivated by significantly better in-sample fit, we use the SLA model 

to develop a MV hedge ratio using jointly implied volatility and virtual bond price that takes delta, 

vega, gamma and rho exposure into consideration. Consistent with the SLA model, Greeks are 

computed using implied yield-to-maturity rather than observed rates. 

Using an extensive dataset from selected indices, individual stocks, and commodities, 

we demonstrate that SLA hedge ratios produce MV hedges that dominate delta hedges and our 

benchmark, the Hull-White (2017) hedge. In particular, compared to alternative hedges, the SLA 

hedge significantly reduces mean absolute errors, standard deviations, and the RMSE of daily 

hedging errors. In terms of point estimates, error metrics for stock indices from the SLA hedge 

were less than those of alternative hedging methods for calls in 36 out of 36 metrics. For puts, 

error metrics for the SLA hedge were better in 34 of 36 cases. Results were essentially the same 
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for stocks and commodities. We use the Diebold-Marino statistic to test for significance between 

the SLA hedge and alternatives hedges. Counts of significance for the SLA hedge versus 

alternatives at the 0.01 or 0.05 level for calls were as follows: 29 of 36 (indices), 20 of 36 (stocks), 

and 22 of 36 (commodities). For puts, the corresponding counts were: 18 of 36 (indices), 7 of 36 

(stocks) and 26 of 36 (commodities). There were no cases where an alternative hedge was 

significantly better than the SLA hedge. 

We decomposed the MV hedge ratio into component parts corresponding to the Greeks. 

The composition of the ratios was similar for both puts and calls. The BS delta terms contributed 

about 85 percent to the MV hedge ratio for equity indices and stocks and about 60 percent to the 

hedge ratio for commodities. The vega (𝜈𝜈) term contributed about 20 percent to the crude oil hedge 

ratio. For calls, rho (𝜌𝜌) contributed about 15 percent to gold and silver hedge ratios, consistent 

with evidence that precious metal returns are correlated with interest rates. This supports Bailey 

(1987) who used the Ramaswamy and Sundaresen (1985) stochastic interest model to study Gold 

Comex Options. He found average errors of $43 per contract with a stochastic interest rate model 

while a constant interest rate model had average errors of $96 dollars per contract. 

1.2 Minimum Variance Hedging 

Under the classical Black-Scholes model, the underlying asset follows a geometric 

Brownian motion (gBm) 𝑑𝑑𝑑𝑑 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑠𝑠 with constant drift and volatility. By construction, 

the delta of a call (𝛿𝛿𝐵𝐵𝐵𝐵 =  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
≔ 𝐶𝐶𝑠𝑠) nulls out random effects in a portfolio consisting of a call and 

the underlying asset. 

Equivalently, delta minimizes the variance of an investment portfolio consisting of an 

option, stock and bond written as 

𝐻𝐻 = −𝐶𝐶 + 𝛿𝛿𝛿𝛿 + 𝐵𝐵 , (1) 
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where 𝐶𝐶 is a call, 𝑆𝑆 is the underlying spot price, 𝐵𝐵 is a risk-free bond, and 𝛿𝛿 is the hedging ratio. 

The local change is 

𝑑𝑑𝑑𝑑 = −𝑑𝑑𝑑𝑑 + 𝛿𝛿𝛿𝛿𝛿𝛿 + 𝑑𝑑𝑑𝑑 

with variance  

𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑𝑑𝑑] = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑𝑑𝑑] + 𝛿𝛿2𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑𝑑𝑑] − 2𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿[𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑]. 

The first order condition for minimum variance (𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=0) leads to the result that  

𝛿𝛿𝑀𝑀𝑀𝑀 =
𝐶𝐶𝐶𝐶𝐶𝐶[𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑]
𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑𝑑𝑑]

=
𝐶𝐶𝐶𝐶𝐶𝐶[𝐶𝐶𝑠𝑠𝑑𝑑𝑑𝑑 + (∙)𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑]

𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑𝑑𝑑]
= 𝐶𝐶𝑠𝑠. 

So that the minimum variance delta, 𝛿𝛿𝑀𝑀𝑀𝑀, is equal to the standard Black-Scholes delta, 𝛿𝛿𝐵𝐵𝐵𝐵, when 

the only state variable is the underlying. 

1.2.1 Minimum-Variance Hedge Ratios Under Multiple State Variables 

Consider an option pricing model based on diffusions in the underlying, volatility and 

interest rates. Denote the equilibrium (call) option price as 𝐶𝐶 = 𝐶𝐶(𝑆𝑆,𝜎𝜎, 𝑟𝑟, 𝑡𝑡) with local 

change 

𝑑𝑑𝑑𝑑 = 𝐶𝐶𝑆𝑆𝑑𝑑𝑑𝑑 + 𝐶𝐶𝜎𝜎𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑟𝑟𝑑𝑑𝑑𝑑 + (∙)𝑑𝑑𝑑𝑑. 

Using the same setup as in equation (1), the minimum variance hedge ratio 𝛿𝛿𝑀𝑀𝑀𝑀 = 𝐶𝐶𝐶𝐶𝐶𝐶[𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑]
𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑𝑑𝑑]

 can 

be expressed as  

𝛿𝛿𝑀𝑀𝑀𝑀 =
𝐶𝐶𝐶𝐶𝐶𝐶[𝐶𝐶𝑆𝑆𝑑𝑑𝑑𝑑 + 𝐶𝐶𝜎𝜎𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑟𝑟𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑]

𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑𝑑𝑑]  , (2) 

𝛿𝛿𝑀𝑀𝑀𝑀 = 𝐶𝐶𝑆𝑆 + 𝐶𝐶𝜎𝜎
𝐶𝐶𝐶𝐶𝐶𝐶[𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑]
𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑𝑑𝑑] + 𝐶𝐶𝑟𝑟

𝐶𝐶𝐶𝐶𝐶𝐶[𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑]
𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑𝑑𝑑] . 

The easy result is that 𝛿𝛿𝑀𝑀𝑀𝑀 = 𝐶𝐶𝑆𝑆 when covariance are zero but otherwise 𝛿𝛿𝑀𝑀𝑀𝑀 depends on 

covariances, vega (𝐶𝐶𝜎𝜎) and rho (𝐶𝐶𝑟𝑟). But the result is not without complications. Specifically, how 

do we compute the partials? Do we require the multistate equilibrium model or will Black-Scholes 
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partials suffice? The answer to the latter question is a qualified yes. Bates (2005) and Alexander 

and Nogueira (AN, 2007) note that a sufficient condition for model free hedge ratios for options 

is that the underlying process be scale invariant. This condition is satisfied by most option pricing 

models, with notable exceptions being models based on arithmetic Brownian motion or the CEV 

model. When the underlying is scale independent, pure vanilla options are homogeneous of degree 

one (Merton, 1973) and a well known result of Euler gives  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝐶𝐶
𝑆𝑆
−
𝐾𝐾
𝑆𝑆
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. (3) 

The notion that delta (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛿𝛿) is model independent follows from the fact that, if traded, 

𝐶𝐶 is observable and  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  can be estimated from a set of prices with different strikes. Ergo, the 

delta is model independent. Similar model independence can be inferred for gamma (𝛾𝛾 =

𝜕𝜕2𝐶𝐶
𝜕𝜕𝑆𝑆2

)See Bates (2005). 

Alexander and Nogueira (2007) state that if competing models are scale invariant "the only 

reason their price ratios differ is because they have a different …t to the market prices of options." 

In fact, BS hedge ratios can be quite different from those of smile consistent models. The good 

news is that for the data studied, AN report that BS delta and gamma hedges perform better than 

model independent hedges for equity index options. We assume that MV approximations in 

equation (2) are useful even when Greeks from multi-state equilibrium models are replaced by BS 

Greeks. And, in any case, we test their efficacy against alternatives on a database of heavily traded 

indices, stocks and commodities. 

There is also a growing literature on how MV hedge ratios can be obtained by adjusting 

BS deltas. As noted by AN and outlined in equation (2), the adjustment depends on local 

covariances between the underlying and the additional state variables. Adjustments have been 
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investigated by HW (2017), Englemann, Fengler, and Schwendner (2006) and Alexander and 

Kaeck (2012). Alexander and Kaeck use the chain rule to compute the smile adjustment 𝛿𝛿𝑆𝑆𝐴𝐴 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

_ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. The covariance adjustment and smile adjustment are approximately the same since 𝜎𝜎 =

𝜎𝜎(𝑆𝑆) implies 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑂𝑂(𝑑𝑑𝑆𝑆2) and thus 𝐶𝐶𝐶𝐶𝐶𝐶[𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑]
𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑𝑑𝑑] ≈ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
. Alexander and Kaeck result can be 

obtained for three state variables by a straightforward extension of the chain rule. In the HW model, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is approximated by 𝜕𝜕𝜕𝜕[𝜎𝜎𝐼𝐼]
𝜕𝜕𝜕𝜕

 where 𝜎𝜎𝐼𝐼 is implied volatility. 

1.2.2 The Model of Short-Lived Arbitrage 

An important component of our hedging approach are the comparative statics suggested by 

a short-lived arbitrage model that depends on the value of a virtual bond. The Black-Scholes model 

is based on number of perfect capital market assumptions and fundamentally on the assumption of 

the absence of arbitrage. However, empirical studies have documented short-lived arbitrage 

opportunities in otherwise well functioning markets. See Sofianos (1993), HH and others. In a 

world of rational economic agents, the existence of arbitrageurs is prima facia evidence of arbitrage 

opportunities. Otto’s proxy for (latent) short-lived arbitrage is an Ornstein-Uhlenbeck process of 

the form 

𝑑𝑑𝑑𝑑 = 𝜅𝜅(𝜃𝜃 − 𝑥𝑥)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑥𝑥𝑑𝑑𝑍𝑍𝑥𝑥, (4) 

that is pinned to zero at option expiration (𝑇𝑇) and with long term mean 𝜃𝜃 = 0. The arbitrage 

variable is thus a bridge between current value 𝑥𝑥0 and 𝑥𝑥𝑇𝑇 = 0. Using conditional probabilities, HH 

(2017) convert the OU diffusion to a bridge diffusion and extend the Otto model to account for 

correlations between the arbitrage and underlying diffusion. 

Assuming gBm for the underlying and using the Garman (1977 ) setup for pricing with 

multiple state variables, the instantaneous change in the candidate portfolio sans delta risk is set 
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equal to 𝑦𝑦(𝑡𝑡) = 𝑟𝑟 + 𝑥𝑥(𝑡𝑡),  where 𝑟𝑟 is the risk-free rate. Although cast as a short-lived-arbitrage 

model, the variable 𝑥𝑥(𝑡𝑡) proxies for net frictions that act to perturb the risk-free rate. The net result 

is a pricing model that is isomorphic to Merton’s stochastic interest rate model (𝑦𝑦(𝑡𝑡) is the 

instantaneous virtual rate) where the bond is a non-traded "virtual bond." The virtual bond is of 

the form 𝑉𝑉 = 𝐵𝐵𝑟𝑟𝐵𝐵𝑥𝑥 where 𝐵𝐵𝑟𝑟 is the risk-free bond and 𝐵𝐵𝑥𝑥 is a function of the parameters of the 

bridge diffusion. For the functional form of 𝑉𝑉 = 𝑉𝑉(𝑥𝑥𝑡𝑡, 𝜅𝜅,𝜎𝜎𝑥𝑥,𝑇𝑇 − 𝑡𝑡) see Otto or HH. 

The SLA model for a call option (𝐶𝐶) is written  

𝐶𝐶 = 𝑆𝑆𝑆𝑆(𝑑𝑑1) − 𝑉𝑉𝑉𝑉𝑉𝑉(𝑑𝑑2), (5) 

where 𝑆𝑆 is the underlying spot price, 𝐾𝐾 is the strike price, 𝑉𝑉 ≔ 𝑒𝑒−𝑅𝑅𝑅𝑅  is the bond and 𝑅𝑅 is the 

virtual yield. The arguments 𝑑𝑑1 and 𝑑𝑑2 are standard BS calculations when volatilities and yields 

are implied. The pertubation from the constant rate may be because of short lived arbitrage, market 

frictions, or stochastic interest rates. It is not the same as a pure stochastic interest rate model, 

however, since the stochastic interest rate is the same for all firms in the economy while the virtual 

yield is unique to the frictions on the equity of a firm. For margined options, greek formulas do 

not depend on the risk-free rate2. For these options, the perturbed rate is 𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡), the virtual 

bond is, 𝐵𝐵𝑥𝑥 = 𝑒𝑒−𝑅𝑅∗(𝑇𝑇−𝑡𝑡) and 𝑅𝑅∗ is the pertubation due to frictions net of interest rates. 

Jointly implying volatility and the virtual bond, HH find that the SLA model significantly 

improves in-sample fits relative to the Black-Scholes model for each of a select set of stocks. Better 

SLA pricing performance suggests that "practitioner" SLA based hedges may also perform better. 

And this means specifically that implying latent virtual yields might lead to improved hedges. For 

more detail on the issue of hedging and model fit see Alexander and Kaeck (2012). 

 
2 The Brent Crude oil options that we use are margined options. 
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1.2.3 Practitioner Short-Lived Arbitrage Dynamics 

We consider non-local time and the role of gamma in developing the SLA hedge ratio. 

Local terms (𝑑𝑑𝑑𝑑) are replaced by finite terms (Δ𝑆𝑆) and changes in 𝐶𝐶 =  𝐶𝐶(𝑆𝑆,𝜎𝜎,𝑅𝑅, 𝑡𝑡) are written 

Δ𝐶𝐶 = 𝐶𝐶𝑆𝑆Δ𝑆𝑆 + 𝐶𝐶𝜎𝜎Δ𝜎𝜎 + 𝐶𝐶𝑅𝑅Δ𝑅𝑅 +
1
2
𝐶𝐶𝑆𝑆𝑆𝑆ΔS2 + 𝑂𝑂(Δ2), (6) 

and so  

𝛿𝛿𝑀𝑀𝑀𝑀 =
𝐶𝐶𝐶𝐶𝐶𝐶 �𝐶𝐶𝑆𝑆Δ𝑆𝑆 + 𝐶𝐶𝜎𝜎Δ𝜎𝜎 + 𝐶𝐶𝑅𝑅Δ𝑅𝑅 + 1

2𝐶𝐶𝑆𝑆𝑆𝑆ΔS2,ΔS�
𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑𝑑𝑑] , (7) 

Assuming Δ𝑆𝑆 is normal with mean 𝜇𝜇𝜇𝜇Δ and variance 𝜎𝜎2𝑆𝑆2Δ2, 𝐶𝐶𝐶𝐶𝐶𝐶[ΔS2,ΔS]
𝑉𝑉𝑉𝑉𝑉𝑉[ΔS]

= 2𝜇𝜇𝜇𝜇Δ and the 

minimum variance hedge ratio is  

𝛿𝛿𝑀𝑀𝑀𝑀 = 𝐶𝐶𝑆𝑆 + 𝛽𝛽1𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆 + 𝛽𝛽2𝐶𝐶𝜎𝜎 + 𝛽𝛽3𝐶𝐶𝑅𝑅 + 𝑂𝑂(Δ2), (8) 

where 𝛽𝛽1 = 𝜇𝜇Δ,𝛽𝛽2 = 𝐶𝐶𝐶𝐶𝐶𝐶[Δσ,ΔS]
𝑉𝑉𝑉𝑉𝑉𝑉[dS]

, and  𝛽𝛽3 = 𝐶𝐶𝐶𝐶𝐶𝐶[ΔR,ΔS]
𝑉𝑉𝑉𝑉𝑉𝑉[dS]

. After 𝜎𝜎 and 𝑅𝑅 are jointly implied using the 

SLA model, we compute Greeks and use equation (8) in a regression setup to estimate coefficients 

𝛽𝛽1,𝛽𝛽2, and 𝛽𝛽3. 

1.2.4 Data 

We test the proposed hedging method for options on selected indices, individual stocks, 

and commodity futures. The indices are the S&P 500 (SPX), the Nasdaq 100 (NDX), and the 

Russell 2000 (RUT); the individual stocks are Amazon (AMZN), Google (GOOGL), and 

Berkshire Hathaway (BRK.A)3; the three commodity futures are Brent Crude Oil Futures, 100 oz 

Gold Futures, and 5,000 oz Silver Futures. These assets and contracts are highly liquid and have 

been widely studied in the financial economics literature. 

 
3 Google essentially renamed itself as "Alphabet" in August 2015. It continues to trade under the same GOOG 
symbol. 
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We obtain daily interest rates, equity prices, and option data from OptionMetrics. Dividend 

yields on the underlying indices are from FactSet. The data for the commodity futures are from 

the Intercontinental Exchange (ICE). The options on indices are European style while options on 

individual stocks and commodities are American style. Options on Brent Crude futures are 

margined style and have no early-exercise premiums under weak assumptions (Hilliard and 

Hilliard, 2019). The options on commodities from the ICE do not contain information on Greeks 

and so the test design is slightly different from the test design for options on indices and individual 

stocks. Except for Gold and Silver, the data is from the period January 2, 2013 through June 27, 

2019. Data for options on 100 oz Gold Futures and 5,000 oz Silver Futures was first available on 

January 2, 2014. 

For options on indices and individual stocks, we retain only those with available bid price, 

offer price, implied volatility, delta, gamma, vega, and theta. We also delete options with no 

volume, except for options on Gold and Silver since available data does not report volume. To 

evaluate daily hedging performance, we select options that have at least two successive trading 

days. Options are retained if the maturity is at least 14 calendar days and the average of best bid 

price and best offer price is at least 25 cents. To avoid deep in- and out-of-the-money options, we 

delete call options with delta less than 0.05 or greater than 0.95, and put options with delta less 

than -0.95 or greater than -0.05. 

We summarize the data for indices, individual stocks, and commodities in tables I.1 

through table I.4. In table I.1 we present summary statistics for options on indices. More puts are 

traded than calls and short-term options dominate long-term options. There are 443,168 

observations on S&P 500 call options and 800,210 observations on S&P 500 put options. The 

average price of call options is higher than the average price for put options for all indices. 
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For individual stocks shown in table I.2, there are more call contracts traded than put 

contracts. And there are more contracts on Amazon options than on Google or Berkshire Hathaway. 

Individual stocks also tend to have longer maturities. The average maturities for calls on the S&P 

500, the NASDAQ 100 and the Russell 2000 are, respectively 51, 47, and 48 days while average 

maturities on Amazon, Google and Berkshire Hathaway are, respectively, 121, 111, and 198 days. 

Longer maturities and the reversal in contract volume is consistent with the notion that there is 

more hedging activity in indices and speculative activity in individual stocks. 

Descriptive statistics for options on commodity futures are given in Table I.3. Statistics for 

crude oil are based on the number of actual trades. Unfortunately, the ICE does not report volume 

on Gold and Silver so statistics here are derived from all open contracts. Summary statistics for 

the underlying commodity futures are given in Table I.4. 

1.3 Hedge Ratio Estimation and Error Metrics 

Estimating the MV delta for the Short Lived Arbitrage (SLA) model and testing for errors 

is done in several steps: 

1.3.1 Estimate Implied Parameters 

Using daily data we jointly estimate implied volatility and virtual yield for each day (𝑡𝑡). 

All observations surviving screens are used to calculate the 𝜎𝜎� and 𝑅𝑅� that minimizes the sum of 

squared errors, 𝐿𝐿𝑡𝑡. For day-t with 𝑛𝑛𝑡𝑡 observations let  

𝐿𝐿𝑡𝑡 = ��𝐶𝐶𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖 − 𝐶𝐶𝑖𝑖(𝜎𝜎𝑡𝑡,𝑅𝑅𝑡𝑡)�
2

𝑛𝑛𝑡𝑡

𝑖𝑖=1

, (9) 

so that 𝜎𝜎� and 𝑅𝑅� are given by 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐿𝐿𝑡𝑡(𝜎𝜎�, 𝑅𝑅�) where 𝐶𝐶𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖 is the observed call option price and 

𝐶𝐶𝑖𝑖(𝜎𝜎𝑡𝑡 ,𝑅𝑅𝑡𝑡) is the call option price under the SLA model with implied volatility 𝜎𝜎𝑡𝑡 and virtual yield 

𝑅𝑅𝑡𝑡. The subscript 𝑖𝑖 is unique to options with different strikes and maturities. The optimal 𝜎𝜎�𝑡𝑡 and 
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𝑅𝑅�𝑡𝑡 are thus the jointly implied volatility and virtual yield to maturity, respectively. To obtain a 

volatility parameter unique to a given contract we then fix 𝑅𝑅�𝑡𝑡  and recompute 𝜎𝜎�𝑖𝑖 , such that 

𝐶𝐶𝑖𝑖�𝜎𝜎�𝑖𝑖,𝑅𝑅�𝑡𝑡� = 𝐶𝐶𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖.  The end result of this procedure is a set of implied parameters 𝑅𝑅�𝑡𝑡 and 𝜎𝜎�𝑖𝑖 for 

each observation. 

1.3.2 Compute Greeks 

Use the parameters implied in step 1. and the SLA model to compute Greeks delta (𝛿𝛿), 

vega (𝜈𝜈), rho (𝜌𝜌), and gamma (𝛾𝛾). For convenience, functional forms for equities, futures options 

and margined options are given in the Appendix. 

1.3.3 OLS Regressions 

Using 26 weeks of data, OLS regressions are used to estimate 𝛽𝛽 coefficients required for 

the MV delta. We estimate 𝛽𝛽′s for the MV hedge ratios using non-local changes as follows: For 

each 26 week segment, use all observations to compute 

Δ𝐶𝐶𝑖𝑖 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑖𝑖Δ𝑆𝑆𝑡𝑡(𝑖𝑖) = 𝛽𝛽𝜎𝜎𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎𝑖𝑖Δ𝑆𝑆𝑡𝑡(𝑖𝑖) + 𝛽𝛽𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑖𝑖Δ𝑆𝑆𝑡𝑡(𝑖𝑖) + 𝛽𝛽𝛾𝛾𝑆𝑆𝑡𝑡(𝑖𝑖)𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑖𝑖Δ𝑆𝑆𝑡𝑡(𝑖𝑖) + 𝜖𝜖𝑖𝑖, (10) 

where 𝑡𝑡 = 1, 2, … , 130 days, and 𝑡𝑡(𝑖𝑖) is the day-t that corresponds to option-i. Specifically 𝑡𝑡(𝑖𝑖) =

𝑡𝑡 such that option 𝑖𝑖 is contained in the set 𝐼𝐼𝑡𝑡 = {𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑡𝑡}. There are 260 segments of 

weekly rolling regressions. 

1.3.4 Compute Hedge Ratios 

Using 𝛽𝛽′s and implied parameters from step 3 compute the SLA MV hedge ratios for each 

observation. To compute the hedge ratio for option-i, we take the 𝛽𝛽 coefficients from equation (10) 

and compute the SLA MV hedge ratio as 

𝛿𝛿𝑆𝑆𝑆𝑆𝐴𝐴𝑖𝑖 ≔ 𝛿𝛿0 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑖𝑖 + 𝛽𝛽𝜎𝜎𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎𝑖𝑖 + 𝛽𝛽𝑅𝑅𝑅𝑅ℎ𝑜𝑜𝑖𝑖 + 𝛽𝛽𝛾𝛾𝑆𝑆𝑡𝑡(𝑖𝑖)𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑖𝑖. (11) 

We also compute four other hedge ratios. They are: 1) 𝛿𝛿𝐵𝐵𝐵𝐵: Delta computed as a BS delta 

with observed short-term interest rates, 2) 𝛿𝛿𝐵𝐵𝐵𝐵𝐼𝐼 : Delta computed as BS delta with implied yields 𝑅𝑅�𝑡𝑡, 
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3) 𝛿𝛿𝐻𝐻𝐻𝐻: the Hull-White delta and estimation procedure computed with observed interest rates, and 

4) 𝛿𝛿𝐻𝐻𝐻𝐻𝐼𝐼 : The Hull-White MV delta and estimation procedure computed with implied yields 𝑅𝑅�𝑡𝑡. 

1.3.5 Compute Errors 

For each option (i) and for each of the five ratios 𝛿𝛿𝑗𝑗 we compute daily out-of-sample errors 

for the next five days. Specifically, the daily error for observation-i with hedge set on day-t is 

computed as  

𝜖𝜖𝑖𝑖
𝑗𝑗 ≔ Δ𝐶𝐶𝑖𝑖 − 𝛿𝛿𝑖𝑖

𝑗𝑗Δ𝑆𝑆𝑡𝑡(𝑖𝑖). (12) 

Although the 𝛽𝛽′s computed are fixed, the hedge ratios for contracts will typically be 

different because Greeks depend on strikes and maturities. 

1.3.6 Error Metrics 

Using errors computed in step 5 we use all observations and compute mean absolute errors, 

the standard deviations of errors, and the root-mean-square of errors (RMSE). We focus more on 

RMSE errors because 1) Christoffersen and Jacobs (2004) persuasively argue that the loss function 

should be the same as the loss function used to estimate parameters and 2) it is a measure of fit 

commonly used by other researchers. Results from the standard deviation metric are included but 

they are almost the same as RMSE results (they are mathematically the same if the sample mean 

is zero). We include the absolute error metric. 

1.3.7 Significance Tests 

The Diebold-Marino (1995) setup for a sequence of prediction errors is a follows: Let 𝑝𝑝 = 

observed out-of-sample price and  𝑝̂𝑝 be estimated price. The pricing error for observation-i and 

estimation methodology 𝑗𝑗, 𝑗𝑗 = 0, 1, … , 4 is  

𝑒𝑒𝑖𝑖
𝑗𝑗 = 𝑝𝑝𝑖𝑖 − 𝑝̂𝑝𝑖𝑖

𝑗𝑗 . 
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The error metric is defined as 𝑔𝑔(𝑒𝑒𝑖𝑖
𝑗𝑗). The average error metric for week-k is 

∑ 𝑔𝑔(𝑒𝑒𝑖𝑖
𝑗𝑗)𝑛𝑛𝑘𝑘

𝑖𝑖=1
𝑛𝑛𝑘𝑘

 =

𝑔̅𝑔𝑘𝑘
𝑗𝑗  where 𝑛𝑛𝑘𝑘 is the number of observations in week-k. In the sample there are 𝑇𝑇 = 338 weeks4. 

Let 𝑗𝑗 =  0 correspond to the SLA hedge. Other hedges, 𝑗𝑗 = 1, 2, … , 4, are defined in step 4. We 

use a Heteroscedasticity Autocorrelation Consistent (HAC) estimator to compute standard errors 

of  𝛼𝛼𝑗𝑗  in the regression 𝑑𝑑𝑘𝑘
𝑗𝑗 = 𝛼𝛼𝑗𝑗 + 𝜖𝜖𝑘𝑘  where 𝑑𝑑𝑘𝑘

𝑗𝑗 = 𝑔̅𝑔𝑘𝑘
𝑗𝑗 − 𝑔̅𝑔𝑘𝑘0,𝑘𝑘 = 1, 2, … ,𝑇𝑇. 5  The t-stat on  

𝛼𝛼𝑗𝑗 is the DM test statistic. 

1.4 Results 

We use several error metrics to compare hedging results using the BS delta, the HW delta, 

and the SLA delta. The BS delta is the Greek delta while the HW delta and SLA delta are minimum 

variance approximations. Hedge ratios are designated by: 𝛿𝛿𝐵𝐵𝐵𝐵(BS hedge), 𝛿𝛿𝐻𝐻𝐻𝐻 (HW hedge), and 

𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 (SLA hedge). Greeks for the BS delta and HW deltas are computed using both observed and 

implied interest rates. Greeks for the SLA hedge are computed using implied yields.  

1.4.1 Point Estimates 

As precursor to detailed significance tests, we first present a general overview of hedging 

error metrics for options on the S&P 500 index for different delta buckets in figures one through 

four6. There are 10 buckets containing observations for call deltas between 0.05 and 0.95. The 0.1 

bucket consists of deltas between 0.05 and 0.15. Other buckets are similarly centered. Error metrics 

are normalized by the average price of options in the bucket. Put buckets are similarly defined with 

negative deltas.  

 
4 The dataset contains 338 observation weeks for indices, stocks and oil. There are 271 observation weeks for gold 
and silver. 
5 We use the Dmarino module in Stata and Bartlett HAC standard errors to compute t-statistics (Baum, 2003). 
6 The delta bucket is defined as the usual Black-Scholes delta.adjusted for dividends. 
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Mean absolute value errors for calls are shown in figure I.1. The metric for the 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedge 

is smaller than the corresponding metric for the 𝛿𝛿𝐻𝐻𝐻𝐻 hedge for all delta buckets with near equality 

for the 0.2 bucket. The error metric for 𝛿𝛿𝐵𝐵𝐵𝐵  hedge is larger than that of the 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedge for all 

buckets and also larger than that of the 𝛿𝛿𝐻𝐻𝐻𝐻 hedge except for the largest four buckets (0.6, 0.7, 0.8 

and 0.9). 

RMSE errors for calls are shown in figure I.2. Results are similar to those of the absolute 

value metric. The error metric for the 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedge is smaller than those of other hedges for all 

buckets. Similar to figure I.1, 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆  and 𝛿𝛿𝐻𝐻𝐻𝐻  hedges strictly dominate the 𝛿𝛿𝐵𝐵𝐵𝐵  hedge with the 

exception of the metric for buckets 0.8 and 0.9 where the 𝛿𝛿𝐵𝐵𝐵𝐵 hedge metric is better than the 𝛿𝛿𝐻𝐻𝐻𝐻 

metric. 

Mean absolute errors for puts are shown in figure I.3. The error metric for the 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedge 

is less than that of the 𝛿𝛿𝐵𝐵𝐵𝐵 for all buckets except the -0.1 bucket and less than that of the 𝛿𝛿𝐻𝐻𝐻𝐻 hedge 

for all buckets except for the -0.6 and -0.5 bucket where the difference is negligible. 

RMSE errors for puts are shown in figure I.4. The 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedge has lower metrics than the 

𝛿𝛿𝐵𝐵𝐵𝐵 and the 𝛿𝛿𝐻𝐻𝐻𝐻 for all buckets except equality with 𝛿𝛿𝐻𝐻𝐻𝐻 at the -0.6 bucket. 

1.4.2 Diebold-Marino Test Statistics 

In tables I.5, I.6 and I.7 we present error metrics for hedging calls on selected indices, 

stocks, and commodities. In these tables we consider five different hedging ratios: The Black-

Scholes delta with observed interest rates (𝛿𝛿𝐵𝐵𝐵𝐵); the Black-Scholes delta with implied interest rates 

(𝛿𝛿𝐵𝐵𝐵𝐵𝐼𝐼 ); the Hull-White minimum variance delta with observed interest rates (𝛿𝛿𝐻𝐻𝐻𝐻), the Hull-White 

minimum variance delta with implied interest rates (𝛿𝛿𝐻𝐻𝐻𝐻𝐼𝐼 ) and the Short-Lived-Arbitrage minimum 

variance delta (𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆). All ratios with implied interest rates are jointly implied with volatility. 
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We use the Diebold-Marino statistic (see Section 3) to test for significant differences 

between error metrics. The difference in error metrics is computed by subtracting the sample mean 

of the 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 error metric from that of the candidate error metrics. A positive DM statistic 

corresponds to a smaller 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedging error. 

1.4.2.1 Results for Hedging Calls on Indices 

Results for hedging calls on the S&P 500, Russell 2000 and NASDAQ indices are given 

in table I.5. We focus our discussion on RMSE errors but results are similar for standard deviations 

and for absolute errors. Panel A gives results for the S&P 500. The 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedge gives the smallest 

RMSE and is significantly less than other hedges by the DM test on 12 of 12 comparisons. Panel 

B in table I.5 shows similar but somewhat weaker results for the Russell 2000. RMSE errors for 

the  𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedge are all smaller and differences are significant at the 0.01 or 0.05 for 9 of 12 

comparisons. NASDAQ results are given in panel C. Tests statistics are positive for all metrics 

and significant for the RMSE metric versus all alternatives. 

1.4.2.2 Results for Hedging Calls on Stocks 

Results for hedging calls on Amazon, Google and Berkshire stocks are given in table I.6. 

With one exception, the DM test statistics for the absolute value, standard deviation, and RMSE 

metrics are all positive, indicating lower average errors for the 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedge. The results for 

Berkshire, panel C, are strongest with the 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 error metric being significant at the 0.01 (0.05) 

level for 10 (2) of the twelve DM test statistics. 

1.4.2.3 Results for Hedging Calls on Commodities 

Results for oil, gold, and silver call options are given in table I.7. The DM test statistic is 

positive for all metrics and all commodities. For gold and silver, the DM statistic is significant at 

0.01or 0.05 in 9 of 12 comparisons. The results are weakest for oil, where the DM test statistic is 
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positive and significant at the 0.05 level in 4 of 12 cases. Compared to gold and silver, oil is a bit 

different since it has stochastic convenience yield while silver and especially gold are generally 

considered investment assets. Thus a Black-Scholes type model is more appropriate for gold and 

silver than for oil. 

1.4.2.4 Hedging Gains for Calls 

As in Hull-White (2017), we construct a measure of the improvement of the hedge using 

the 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedge as the benchmark. The measure is computed as 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∶= �
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
�
2

. (13) 

The error metrics are average absolute error, standard deviation, and RMSE. Comparison 

hedges use the two 𝛿𝛿𝐵𝐵𝐵𝐵 ratios and the two 𝛿𝛿𝐻𝐻𝐻𝐻 ratios. A gain greater than one corresponds to a 

smaller error metric using the 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedge ratio. Results are given in table I.8. Gains are greater 

than one for all indices, stocks, and commodities. The greatest RMSE gain is versus Berkshire 

Hathaway and 𝛿𝛿𝐻𝐻𝐻𝐻 hedge (Gain=1.6448). The smallest RMSE gain is versus Amazon and the  

𝛿𝛿𝐻𝐻𝐻𝐻𝐼𝐼   hedge (Gain=1.0017). The 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedge versus crude oil and gold was uniformly large versus 

all alternative hedging methods. The smallest RMSE gains were against indices, stocks and the  

𝛿𝛿𝐻𝐻𝐻𝐻𝐼𝐼  hedge ratio. 

1.4.2.5 Results for Put Hedges 

Tables I.9, I.10, and I.11 give results for put hedges. Overall, the results for hedging puts 

on indices, table I.10, are similar to the results for calls with the 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedge having a positive DM 

statistics in every comparison except one. Counts and significance levels for the S&P 500 and 

NASDAQ were relatively weaker however. Significance counts at 0.01 or 0.05 were: S&P 500 (6 

of 12), Russell 2000 (9 of 12) and NASDAQ (3 of 12). While DM t-statistics were positive, the  

𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 hedge was not significantly better than the 𝛿𝛿𝐻𝐻𝐻𝐻 hedge for the S&P 500 and NASDAQ. 



29 
 

The results for puts on stocks, table I.10, were also weaker than the results for calls. While 

positive, DM statistics were not significant at 0.01 or 0.05 for Amazon and in only two cases for 

Google. Anomalous to all other results, the DM statistic for the RMSE metric versus the 𝛿𝛿𝐻𝐻𝐻𝐻𝐼𝐼   

hedge was negative albeit not significant for Amazon. 

Results for hedging puts on commodities were strong (table I.11). All DM-statistics were 

positive and significant at the 0.01 or the 0.05 level in 26 of 36 cases. But, similar to calls, t-stats 

for put hedges were weaker for oil than for gold and silver. Hedging Gains for Puts. 

Gain results for puts are given in table I.12. Gains for commodities were all greater than 

one and generally larger than gains for stocks. Gains are also greater than one for all indices with 

the exception of the absolute error metric and 𝛿𝛿𝐵𝐵𝐵𝐵 and  𝛿𝛿𝐵𝐵𝐵𝐵𝐼𝐼  hedges for NASDAQ. All gains are 

greater than one for Amazon and Berkshire but less than one for the absolute error metric for 

Google and the 𝛿𝛿𝐵𝐵𝐵𝐵 and  𝛿𝛿𝐻𝐻𝐻𝐻 hedges. In summary, gains are positive in 32 of 36 cases. 

1.4.3 Parameters and Hedging Coefficients 

Hedging improvements are a result of using implied interest rates and adding greeks 

beyond the Black-Scholes delta. Percentage contributions to the average SLA hedge ratios are 

depicted in figures I.5 and I.6. For calls, figure I.5, the Black-Scholes delta term contributes about 

80 percent to the  𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 ratio for indices and 85% for stocks. Vega and gamma terms contribute 

slightly more than the rho term. But commodities are different. For hedge ratios on oil, the average 

contribution of the delta term falls to about 55 percent while vega contribution increases to about 

25 percent. Rho and gamma each contribute about 10 percent. For gold and silver, the delta 

contribution increases to about 65 percent while rho increases to about 15 percent. The combined 

contribution of vega and gamma is about 20 percent. 
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The pattern of greek contributions to hedge ratios for puts shown in figure I.6 is similar to 

that of calls for indices and stocks. However, rho is less heavily weighted for silver and gold, 

contributing just over 5 percent to the hedge ratio. 

The importance of rho, for hedging gold and silver calls and puts contrasts with its 

negligible contribution to the hedge ratio for indices and stocks. This is consistent with evidence 

that precious metal returns are correlated with interest rates. Precious metals, especially gold, are 

used as effective hedges against inflation and economic uncertainty. In addition, gold is 

denominated in US dollars in international markets and is influenced by U.S. interest rate policies 

(Wang, 2013). Thus, stochastic interest rates are likely an important state variable in equilibrium 

option pricing models for gold and silver. In a study of Gold Comex Futures Options, Bailey (1987) 

found that the Ramaswamy and Sundaresen (1985) stochastic interest rate model had an average 

error of $43 per contract while a constant interest rate model had an error of $96 dollars per contract. 

1.5 Conclusion 

The effect of the length of the hedging horizon and level of volatility warrant further 

investigation. We extended the hedging horizon from 5 to 20 days and examined equity (oil) 

hedges in periods of extreme volatility January 1, 2007 to December 31 (September 1, 2008 to 

December 31,2010). Because of data limitations and for economy of presentation, we look at 

subsets of all scenarios examined in earlier sections. 

1.5.1 Extended Hedging Horizon 

Using the same setup as before, we examined hedges with horizons of 5, 10, and 20 days 

for puts and calls. We only compute RMSE errors for HW and SLA hedges. The results are shown 

in table I.13. For indices (Panel A), there is virtually no change in RMSE as the horizon is extended. 

For Amazon, the daily RMSEs over 5, 10, and 15 day horizons are 2.7453, 2.7577 and 2.7470. 
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The HW hedge has a smaller RMSE than the SLA hedge at only one of 18 data points (the 20 day 

horizon for the Russell 2000). 

Results for stocks are shown in Panel B. The RMSEs for all SLA hedges are smaller than 

the HW RMSEs for puts and calls at all horizons. The horizon effect is negligible. At first blush it 

seems curious that Berkshire Hathaway RMSEs are about are 1/4 and 1/10 those of Google and 

Amazon, respectively. But from table I.2, average Berkshire Hathaway option prices follow 

approximately the same ratio. 

Commodity results are shown in Panel C. Increases in RMSEs are usually found only in 

the third significant place. In fact, for silver and gold there is no difference over horizons until the 

fifth or sixth place (not shown). Point estimates of SLA RMSEs are smaller than HW RMSEs in 

every case. 

1.5.2 Volatility Effects 

Our initial focus was on data from January 2, 2013 to June 27, 2019 (benchmark period). 

Here we investigate hedging performance during the high volatility period from January 1, 2006 

through December 31, 2010. This period includes the subprime crisis and recession dated from 

December 2007 to June 2009. We do not have options data for silver and gold during this period 

and to keep the number of tables manageable we only investigate the S&P 500, Amazon and Brent 

Crude. 

Results for calls are shown in table I.14. The differences in the magnitude of errors and 

DM statistics in the volatile versus the benchmark period are small and follow no systematic 

pattern. RMSEs for the SLA hedge and the benchmark (volatile) period are: S&P 500 2.0269 

(1.6792), Google 1.0941 (1.3570) and Brent Crude 0.1169 (0.2096). The SLA hedge still 
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dominates alternatives in the volatile period. All DM statistics are positive and are significant at 

0.01 or 0.05 as follows: S&P 500 (12 of 12), Google (2 of 12) and Brent Crude Oil (6 of 12). 

Results for puts are shown in table I.15. RMSEs are: Benchmark (volatile) period: Brent 

Crude 0.1152, (0.1623), S&P 500 2.7453, (1.7338) and Google 1.2814, (1.2412). All DM statistics 

are positive and DM statistics are significant at 0.01 or 0.05 as follows: S&P 500 (10 of 12), Google 

(0 of 12), and Brent Crude Oil (2 of 12). Results are a bit weaker for puts compared to those in the 

benchmark period. 

In summary, the SLA hedge performed well for calls in periods of high volatility. It does 

less well for puts though DM statistics remain positive for all cases. Only Brent Crude RMSE 

errors were larger for both put and calls during the volatile period. 

1.6 Conclusion 

Motivated by its derivation, the original benchmark for hedging custom option positions is 

the Black-Scholes delta. Based on least square loss functions, numerous authors have proposed 

choosing hedge ratios based on least squares approximations. These ratios depend on the pricing 

model used and the type of approximation employed. We develop a ratio based on a so-called 

"short lived arbitrage" model. In this model, the interest rate is latent and embodies deviations 

from model assumptions such as the possibility of arbitrage. We refer to this rate as the virtual 

interest rate. As such, we imply interest rates in the same manner that volatilities are implied. Using 

a least squares formulation we develop a ratio that is a function of the greeks delta, vega, rho, and 

gamma. The greeks are computed using the implied interest rate. 

Using a large data set that includes seven years of data and up to 800,000 observations, we 

evaluate the performance of the SLA hedge on a set of indices, stocks and commodities. We 

evaluate performance using the absolute value, standard deviation, and RMSE error metrics. In 
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terms of point estimates, error metrics from the SLA hedge bests alternatives for calls on indices 

in 36 of 36 metrics. For puts, error metrics from the SLA hedge was better in 34 of 36 cases. 

We use the Diebold-Marino statistic to test for significance between the SLA hedge and 

alternative hedges. Counts of significance at the 0.01 or 0.05 level for calls were as follows: 29 of 

36 (indices), 20 of 36 (stocks), and 22 of 36 (commodities). For puts the corresponding counts are: 

18 of 36 (indices), 7 of 36 (stocks) and 26 of 36 (commodities). Results were generally robust to 

periods of market stress and extended hedging horizons. 

The SLA hedge ratios were composed of four greeks. For calls, delta makes the strongest 

contribution, averaging about 85 percent of the hedge ratio for indices and stocks. The 

contributions to the hedge ratio for commodity hedges is a bit different. Delta accounted for about 

55 percent of the SLA hedge and rho up to 15 percent. Contrasted to its role in hedging indices 

and stocks, rho was especially important in gold and silver hedges, perhaps due to the strong 

relationship between precious metals and interest rates. 

The main contribution of the paper is the novel use of the virtual interest rate. Due to 

violations of standard pricing assumptions, the virtual interest rates is in effect a pertubation of the 

observed interest rate. We find that the perturbed rate can be used to improve hedge ratios in a 

practitioner Black-Scholes model.
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Figure I.1SPX Absolute Value Hedging Error for Calls by Delta Category 

  

Mean Absolute Errors normalized by average call price. Hedge ratios are set by the Black-Scholes delta (δBS), Hull-White Minimum 
Variance delta (δHW) and Short Lived Arbitrage Model delta (δSLA). For data description see notes, Table I.5. 
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Figure I.2. SPX RMSE Hedging Errors for Calls by Delta Category 

 

RMSE Errors normalized by average call price. See notes in Figure I.1. 
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Figure I.3. SPX Absolute Value Hedging Error for Calls by Delta Category 

 

Mean Absolute Errors normalized by average put price. See notes Figure I.1. 
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Figure I.4. SPX RMSE Hedging Errors for Puts by Delta Category 

 

RMSE Errors normalized by average put price. See notes in Figure I.1. 
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Figure I.5. Average Contribution of Greek Terms to SLA Hedge Ratio for Calls 

 

See notes, Table I.5. 
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Figure I.6. Average Contribution of Greek Terms to SLA Hedge Ratio for Puts 

 

See notes, Table I.5. 
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Table I.1.Summary Statistics for Index Options 

  S&P 500  RUSSELL 2000  NASDAQ 100 
Maturity   Number Price Mean Maturity Mean   Number Price Mean Maturity Mean   Number Price Mean Maturity Mean 
Panel A: Call Options           
All  443,168 35.820 50.781  143,477 22.308 48.332  99,092 80.903 46.699 
F14  169,001 26.092 22.417  59,357 16.952 22.170  43,742 56.567 21.699 
F31  178,926 32.809 43.607  52,233 23.948 42.641  36,495 75.281 42.534 
F61  53,659 48.428 73.280  19,965 26.727 73.426  10,591 125.481 73.387 
F91  20,227 57.336 101.615  5,655 28.461 102.932  3,699 177.720 102.449 
F123  8,963 70.395 148.387  3,643 32.792 147.071  2,410 159.454 148.118 
F183  10,463 91.181 251.244  2,241 37.993 244.323  1,842 191.984 241.441 
F366  1,929 130.098 501.476  383 82.066 513.292  313 240.549 551.824 
Panel B: Put Options           
All  800,210 27.429 54.505  239,274 18.034 47.632  131,858 61.360 39.113 
F14  268,728 18.629 22.510  83,425 12.758 22.832  60,747 48.014 21.665 
F31  327,976 24.277 44.054  101,739 18.101 43.071  52,731 63.530 42.919 
F61  109,416 34.269 73.161  40,664 22.882 72.724  13,938 87.654 72.318 
F91  45,317 39.580 102.721  6,955 26.947 102.582  3,144 121.657 101.117 
F123  24,693 50.704 147.968  3,667 34.725 146.909  843 120.836 144.005 
F183  20,274 80.961 249.195  2,101 49.361 251.839  402 252.320 241.070 
F366   3,806 142.754 460.180   723 83.162 514.221   53 312.511 640.132 
The data is from OptionMetrics and includes daily observations from January 2, 2013 January 28, 2019. F14 are options with 
maturities between 14 and 30 days. F31 are options with maturities between 31 and 60 days. F31 are options with maturities between 
31 and 60 days. Similarly, F61 have maturities from 61 to 90days, F91 from 91 to 122 days, F123 from 123 to 182 days, F183 from 
183 to 365 days, and F366 over 365 days. 
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Table I.2. Sample Descriptions 

  AMAZON  GOOGLE  BERKSHIRE HATHAWAY 
Maturity   Number Price Mean Maturity Mean   Number Price Mean Maturity Mean   Number Price Mean Maturity Mean 
Panel A: Call Options           
All  381,791 57.048 120.965  235,021 34.831 110.870  49,088 7.671 198.390 
F14  103,519 30.205 22.028  65,215 17.508 21.788  7,765 3.160 22.908 
F31  96,063 39.650 42.406  60,547 24.366 43.432  9,870 3.775 42.409 
F61  42,429 49.536 74.644  31,776 31.603 74.454  3,129 5.357 75.452 
F91  28,792 65.898 105.033  16,330 39.980 104.948  3,611 5.870 105.888 
F123  35,680 69.586 151.261  20,480 45.135 150.114  5,902 6.174 151.653 
F183  43,968 90.463 252.278  24,913 59.874 254.488  9,364 9.016 255.658 
F366  31,340 139.921 547.190  15,760 94.916 540.102  9,447 16.505 554.104 
Panel B: Put Options           
All  340,026 48.345 129.006  173,426 23.718 86.145  45,605 4.213 190.049 
F14  73,176 31.276 22.757  52,183 14.905 21.527  7,695 2.140 22.301 
F31  92,337 35.970 42.864  50,193 19.525 44.306  8,985 2.486 43.425 
F61  42,556 41.624 74.624  26,805 25.237 74.144  3,241 3.250 75.329 
F91  27,111 51.570 105.046  10,844 29.588 104.332  3,541 3.369 105.550 
F123  33,051 54.869 151.638  12,584 32.171 149.341  5,329 3.844 150.492 
F183  41,270 69.013 255.968  15,509 40.753 264.573  8,856 5.075 260.629 
F366   30,525 98.195 545.227   5,308 60.534 469.337   7,958 8.224 550.066 
The data is from OptionMetrics and includes daily observations from January 2, 2013 January 28, 2019. F14 are options with 
maturities between 14 and 30 days. F31 are options with maturities between 31 and 60 days. F31 are options with maturities between 
31 and 60 days. Similarly, F61 have maturities from 61 to 90days, F91 from 91 to 122 days, F123 from 123 to 182 days, F183 from 
183 to 365 days, and F366 over 365 days. 
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Table I.3. Summary Statistics on Options on Commodity Futures 

  Brent Crude Oil  100 oz Gold  5,000 oz Silver 
Maturity   Number Price Mean Maturity Mean   Number Price Mean Maturity Mean   Number Price Mean Maturity Mean 
Panel A: Call Options           
All  70,676 2.101 85.895  145,717 117.669 289.501  57,702 2.031 349.979 
F14  10,317 1.691 23.407  13,184 123.955 21.517  2,878 1.488 21.422 
F31  22,089 1.612 45.151  14,022 117.177 44.957  3,419 1.513 45.861 
F61  15,508 1.948 74.327  7,892 117.065 74.132  1,848 1.631 75.356 
F91  8,968 2.360 105.243  6,175 113.682 105.473  1,982 1.846 106.344 
F123  8,036 2.894 148.762  11,379 106.182 153.045  3,654 1.966 153.224 
F183  5,126 3.544 244.651  38,692 110.848 274.827  15,082 2.083 277.939 
F366  632 4.154 452.294  54,373 124.070 508.704  28,839 2.167 515.769 
Panel B: Put Options           
All  75,345 2.129 80.768  149,683 183.439 285.261  91,092 5.393 293.673 
F14  14,135 1.656 22.446  12,706 163.077 21.637  7,731 5.937 21.479 
F31  22,796 1.690 44.940  15,230 177.740 44.949  9,134 5.737 45.063 
F61  15,987 2.066 74.529  8,524 186.432 74.213  4,854 5.889 74.774 
F91  9,520 2.329 105.106  6,817 196.819 105.426  4,361 5.949 105.930 
F123  7,375 2.984 148.246  12,508 197.691 152.781  7,153 5.831 151.979 
F183  5,026 3.743 243.107  39,572 184.766 273.985  22,599 5.410 274.254 
F366   506 4.901 467.381   54,326 183.403 508.686   35,260 4.947 512.299 
The data is from ICE and includes daily observations from January 2, 2013 January 28, 2019 (Brent Crude Oil) and from January 2, 
2014 to June 28, 2019 (Gold and Silver). F14 are options with maturities between 14 and 30 days. F31 are options with maturities 
between 31 and 60 days. F31 are options with maturities between 31 and 60 days. Similarly, F61 have maturities from 61 to 90days, 
F91 from 91 to 122 days, F123 from 123 to 182 days, F183 from 183 to 365 days, and F366 over 365 days. 

  



 

43 
 

Table I.4. Summary Statistics on Commodity Futures 

  Brent Crude Oil  100 oz Gold  5,000 oz Silver 
Maturity   Number Price Mean Maturity Mean   Number Price Mean Maturity Mean   Number Price Mean Maturity Mean 
All  9,494 62.496 140.376  5,752 1283.557 268.409  5,775 16.624 269.302 
F14  865 62.727 21.972  712 1283.613 21.463  697 16.410 21.311 
F31  1,474 63.060 45.695  714 1271.234 44.723  711 16.398 44.827 
F61  1,449 63.169 75.311  342 1278.208 73.792  331 16.396 74.601 
F91  1,357 62.253 105.898  246 1281.362 105.301  276 16.549 105.641 
F123  1,966 62.347 150.395  429 1267.800 152.632  428 16.362 152.056 
F183  1,931 61.743 248.541  1,332 1294.935 274.209  1,332 16.682 273.796 
F366   452 62.653 482.135   1,977 1284.941 513.307   2,000 16.845 512.434 
The data is from ICE and includes daily observations from January 2, 2013 January 28, 2019 (Brent Crude Oil) and from January 2, 
2014 to June 28, 2019 (Gold and Silver). F14 are options with maturities between 14 and 30 days. F31 are options with maturities 
between 31 and 60 days. F31 are options with maturities between 31 and 60 days. Similarly, F61 have maturities from 61 to 90days, 
F91 from 91 to 122 days, F123 from 123 to 182 days, F183 from 183 to 365 days, and F366 over 365 days. 
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Table I.5. Error Metrics and Significance Tests for Calls on Indices 

Panel A. S&P 500  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 443,168 1.3370 2.2666 2.2668  2.769*** 2.922*** 2.828*** 
Delta Error Implied 443,168 1.3662 2.2772 2.2781  3.002*** 3.091*** 3.021*** 
HW Error Observed 443,168 1.2967 2.1135 2.1137  2.248** 2.142** 2.202** 
HW Error Implied 443,168 1.3066 2.1054 2.1055  2.081** 2.05** 2.102** 
SLA Error Implied 443,168 1.2673 2.0268 2.0269     
           
Panel B. Russel 2000  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 143,477 0.8806 1.4254 1.4258   2.626*** 2.997*** 2.594*** 
Delta Error Implied 143,477 0.9434 1.5156 1.5160  4.000*** 4.828*** 4.246*** 
HW Error Observed 143,477 0.8485 1.3446 1.3447  1.885*  2.023** 2.353** 
HW Error Implied 143,477 0.8400 1.3192 1.3193  2.033** 1.410 1.955* 
SLA Error Implied 143,477 0.8322 1.3057 1.3059     
           
Panel C. NASDAQ  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 99,092 3.6516 6.2788 6.2818  3.109*** 2.535** 3.045*** 
Delta Error Implied 99,092 4.0204 6.8713 6.8746  5.384*** 4.955*** 6.369*** 
HW Error Observed 99,092 3.4848 6.0338 6.0389  0.660 1.305 2.775*** 
HW Error Implied 99,092 3.4870 6.0371 6.0420  0.419 1.051 3.339*** 
SLA Error Implied 99,092 3.4500 5.8252 5.8303     

Hedge ratios are BSM Delta, Hull-White (HW, 2017) minimum variance ratios and Short-Lived-Arbitrage (δSLA) minimum variance 
ratios. Greeks are computed using observed interest rates and implied virtual rates as denoted. The test statistics are Diebold-Marino 
using weekly average of error metrics versus the Short Lived Arbitrage (δSLA) metric over 260 weeks. Metrics are the mean error, the 
average of absolute errors (Avg|Error|), the standard deviation of errors (Std Dev) and the root mean square of errors (RMSE). Obs is 
the total number of observations over all days. The data is from the period January 2, 2013 through June 28, 2019. 
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Table I.6. Error Metrics and Significance Tests for Calls on Stocks 

Panel A. Amazon  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 381,791 1.2933 2.0501 2.0571  1.664* 1.506 1.632 
Delta Error Implied 381,791 1.2848 1.9925 2.0030  2.139** 2.1** 2.181** 
HW Error Observed 381,791 1.2784 2.0676 2.0696  1.255 1.381 1.347 
HW Error Implied 381,791 1.2457 1.9894 1.9935  0.129 0.114 0.149 
SLA Error Implied 381,791 1.2446 1.9682 1.9755     
          
Panel B. Google  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 235,021 0.8345 1.1146 1.1164  2.33** 1.493 1.556 
Delta Error Implied 235,021 0.8484 1.1239 1.1260  6.097*** 5.118*** 5.785*** 
HW Error Observed 235,021 0.8344 1.1145 1.1163  2.324** 1.487 1.548 
HW Error Implied 235,021 0.8483 1.1238 1.1259  6.09*** 5.107*** 5.775*** 
SLA Error Implied 235,021 0.8171 1.0927 1.0941     
           
Panel C. Berkshire Hathaway Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 49,088 0.2023 0.2970 0.2973  2.209** 1.938* 1.668* 
Delta Error Implied 49,088 0.2125 0.3105 0.3109  3.594*** 3.769*** 3.375*** 
HW Error Observed 49,088 0.2164 0.3679 0.3679  2.325** 2.454** 2.445** 
HW Error Implied 49,088 0.1973 0.2936 0.2936  2.741*** 1.945* 2.552** 
SLA Error Implied 49,088 0.1929 0.2868 0.2869     

Hedge ratios are BSM Delta, Hull-White (HW, 2017) minimum variance ratios and Short-Lived-Arbitrage (δSLA) minimum variance 
ratios. Greeks are computed using observed interest rates and implied virtual rates as denoted. The test statistics are Diebold-Marino 
using weekly average of error metrics versus the Short Lived Arbitrage (δSLA) metric over 260 weeks. Metrics are the mean error, the 
average of absolute errors (Avg|Error|), the standard deviation of errors (Std Dev) and the root mean square of errors (RMSE). Obs is 
the total number of observations over all days. The data is from the period January 2, 2013 through June 28, 2019. 
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Table I.7. Error Metrics and Significance Tests for Calls on Commodities 

Panel A. Brent Crude Oil  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 70,676 0.0885 0.1242 0.1364  1.291 1.693* 1.819* 
Delta Error Implied 70,676 0.0912 0.1376 0.1493  2.357** 2.118** 2.075** 
HW Error Observed 70,676 0.0876 0.1241 0.137  1.219 1.841* 1.981** 
HW Error Implied 70,676 0.0875 0.1244 0.1373  1.166 1.786* 1.911* 
SLA Error Implied 70,676 0.0849 0.1027 0.1169     
          
Panel B. Gold   Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 145,717 0.9559 7.3609 7.401  1.979** 1.159 1.127 
Delta Error Implied 145,717 0.8841 7.0666 7.0856  2.527** 3.495*** 3.276** 
HW Error Observed 145,717 0.8581 7.3609 7.3912  1.334 2.729** 2.762*** 
HW Error Implied 145,717 0.8841 7.0666 7.0855  2.489** 3.493*** 3.284*** 
SLA Error Implied 145,717 0.8256 6.9804 6.9995     
          
Panel C. Silver   Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 57,702 0.0343 0.1766 0.1779  1.889* 2.388** 2.266** 
Delta Error Implied 57,702 0.0388 0.1815 0.1828  2.671*** 4.712*** 4.348*** 
HW Error Observed 57,702 0.0345 0.1777 0.179  2.213** 1.834* 1.734* 
HW Error Implied 57,702 0.0398 0.182 0.1834  3.673*** 4.700*** 4.249*** 
SLA Error Implied 57,702 0.0324 0.1702 0.1717         

Hedge ratios are BSM Delta, Hull-White (HW, 2017) minimum variance ratios and Short-Lived-Arbitrage (δSLA) minimum variance 
ratios. Greeks are computed using observed interest rates and implied virtual rates as denoted. The test statistics are Diebold-Marino 
using weekly average of error metrics versus the Short Lived Arbitrage (δSLA) metric over 260 weeks. Metrics are the mean error, the 
average of absolute errors (Avg|Error|), the standard deviation of errors (Std Dev) and the root mean square of errors (RMSE). Obs is 
the total number of observations over all days. The data is from the period January 2, 2013 through June 28, 2019 for Brent Crude oil 
and January 2, 2014 through June 28, 2019 for gold and silver.
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Table I.8. Gain in Squared Error Metric Ratios for Calls Using SLA 

Panel A. Indices  Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Hedge Rates  S&P 500  Russel 2000  NASDAQ 
Delta Error Observed  1.1130 1.2506 1.2507  1.1198 1.1918 1.1920  1.1203 1.1618 1.1609 
Delta Error Implied  1.1622 1.2623 1.2633  1.2852 1.3474 1.3476  1.3580 1.3914 1.3903 
HW Error Observed  1.0471 1.0874 1.0875  1.0398 1.0605 1.0603  1.0202 1.0729 1.0728 
HW Error Implied  1.0630 1.0790 1.0791  1.0190 1.0208 1.0206  1.0216 1.0741 1.0739 
SLA Error Implied  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 
              
Panel B. Stocks  Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Hedge Rates  Amazon  Google  Berkshire Hathaway 
Delta Error Observed  1.0797 1.0849 1.0843  1.0432 1.0405 1.0411  1.0999 1.0720 1.0733 
Delta Error Implied  1.0657 1.0248 1.0279  1.0783 1.0580 1.0591  1.2132 1.1717 1.1738 
HW Error Observed  1.0550 1.1035 1.0975  1.0430 1.0403 1.0408  1.2584 1.6448 1.6441 
HW Error Implied  1.0017 1.0216 1.0182  1.0780 1.0578 1.0589  1.0456 1.0477 1.0472 
SLA Error Implied  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 
              
Panel C. Commodities  Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Hedge Rates  Brent Crude Oil  Gold  Silver 
Delta Error Observed  1.0880 1.4643 1.3615  1.3406 1.1120 1.1180  1.1219 1.0765 1.0744 
Delta Error Implied  1.1549 1.7959 1.6291  1.1467 1.0249 1.0247  1.4309 1.1370 1.1347 
HW Error Observed  1.0647 1.4615 1.3726  1.0804 1.1120 1.1151  1.1325 1.0890 1.0870 
HW Error Implied  1.0634 1.4688 1.3786  1.1468 1.0248 1.0247  1.5102 1.1430 1.1410 
SLA Error Implied  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 
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Table I.9. Error Metrics and Significance Tests for Puts on Indices 

Panel A. S&P 500  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 800,210 0.9562 2.8465 2.8466  2.425** 2.011** 2.300** 
Delta Error Implied 800,210 0.9665 2.8006 2.8006  2.518** 2.135** 2.323** 
HW Error Observed 800,210 0.9491 2.788 2.7881  1.874* 0.386 0.574 
HW Error Implied 800,210 0.9503 2.7881 2.7882  1.524 0.201 0.099 
SLA Error Implied 800,210 0.9398 2.7451 2.7453     
          
Panel B. Russel 2000  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 239,274 0.9767 1.2117 1.2157  1.454 2.140** 1.954* 
Delta Error Implied 239,274 0.9829 1.2199 1.2247  1.935* 2.345** 2.238** 
HW Error Observed 239,274 0.9557 1.2062 1.2092  3.014*** 2.578*** 2.780*** 
HW Error Implied 239,274 0.9534 1.2089 1.2126  4.357*** 4.103*** 3.881*** 
SLA Error Implied 239,274 0.9508 1.2033 1.2071     
          
Panel C. NASDAQ  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 131,858 3.3467 6.2605 6.2638  1.005 1.466 1.384 
Delta Error Implied 131,858 3.3605 6.2302 6.2335  0.52 0.911 1.993** 
HW Error Observed 131,858 3.4061 6.0839 6.0906  2.142** 2.009** -0.374 
HW Error Implied 131,858 3.4245 6.0628 6.07  1.474 1.443 0.59 
SLA Error Implied 131,858 3.3972 6.0458 6.0536         

Hedge ratios are BSM Delta, Hull-White (HW, 2017) minimum variance ratios and Short-Lived-Arbitrage (δSLA) minimum variance 
ratios. Greeks are computed using observed interest rates and implied virtual rates as denoted. The test statistics are Diebold-Marino 
using weekly average of error metrics versus the Short Lived Arbitrage (δSLA) metric over 260 weeks. Metrics are the mean error, the 
average of absolute errors (Avg|Error|), the standard deviation of errors (Std Dev) and the root mean square of errors (RMSE). Obs is 
the total number of observations over all days. The data is from the period January 2, 2013 through June 28, 2019. 
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Table I.10. Error Metrics and Significance Tests for Puts on Stocks 

Panel A. Amazon  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 340,026 1.5485 2.917 2.9189  0.875 1.198 1.117 
Delta Error Implied 340,026 1.623 2.9202 2.9211  1.105 0.966 0.915 
HW Error Observed 340,026 1.5711 2.9964 2.9971  1.353 1.691* 1.608 
HW Error Implied 340,026 1.4951 2.6164 2.6172  0.007 0.619 -0.289 
SLA Error Implied 340,026 1.4735 2.6008 2.6021     
          
Panel B. Google  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 239,274 173,426 0.8454 1.2955  1.407 2.082** 2.308** 
Delta Error Implied 239,274 173,426 0.8443 1.2839  0.831 1.234 1.069 
HW Error Observed 239,274 173,426 0.8439 1.2981  1.399 1.472 1.916* 
HW Error Implied 239,274 173,426 0.8451 1.2888  1.375 1.241 1.393 
SLA Error Implied 239,274 173,426 0.845 1.2809     
          
Panel C. Berkshire Hathaway  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 45,605 0.1864 0.3134 0.3135  0.834 2.185** 2.179** 
Delta Error Implied 45,605 0.1883 0.3045 0.3047  1.49 1.831* 1.425 
HW Error Observed 45,605 0.1881 0.3123 0.3124  1.696* 2.371** 2.23** 
HW Error Implied 45,605 0.188 0.313 0.3132  1.633 2.232** 1.945* 
SLA Error Implied 45,605 0.1859 0.3035 0.3036         

Hedge ratios are BSM Delta, Hull-White (HW, 2017) minimum variance ratios and Short-Lived-Arbitrage (δSLA) minimum variance 
ratios. Greeks are computed using observed interest rates and implied virtual rates as denoted. The test statistics are Diebold-Marino 
using weekly average of error metrics versus the Short Lived Arbitrage (δSLA) metric over 260 weeks. Metrics are the mean error, the 
average of absolute errors (Avg|Error|), the standard deviation of errors (Std Dev) and the root mean square of errors (RMSE). Obs is 
the total number of observations over all days. The data is from the period January 2, 2013 through June 28, 2019.  
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Table I.11. Error Metrics and Significance Tests for Puts on Commodities 

Panel A. Brent Crude Oil  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 75,345 0.082 0.117 0.1298  1.082 1.448 1.839* 
Delta Error Implied 75,345 0.0826 0.117 0.1169  2.081** 2.522** 2.355** 
HW Error Observed 75,345 0.0831 0.119 0.1312  1.424 1.832* 2.052** 
HW Error Implied 75,345 0.0865 0.120 0.1295  2.383** 2.708*** 2.573** 
SLA Error Implied 75,345 0.0819 0.103 0.1152     
          
Panel B. Gold   Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 149,683 1.0481 11.953 11.96111  1.769* 2.123** 1.892* 
Delta Error Implied 149,683 1.0426 11.962 11.97106  1.800* 2.683*** 2.457** 
HW Error Observed 149,683 1.0201 12.014 12.02233  1.838* 2.889*** 2.887*** 
HW Error Implied 149,683 1.0273 12.007 12.0161  1.889* 3.797*** 3.835*** 
SLA Error Implied 149,683 0.8252 11.466 11.4757     
          
Panel C. Silver   Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 91,092 0.0276 0.367 0.3678  3.006*** 2.632*** 2.274** 
Delta Error Implied 91,092 0.0271 0.345 0.3453  4.571*** 3.473*** 3.323*** 
HW Error Observed 91,092 0.0272 0.368 0.3682  2.261** 2.134** 1.994** 
HW Error Implied 91,092 0.028 0.345 0.3457  3.386*** 3.339*** 3.144*** 
SLA Error Implied 91,092 0.0259 0.306 0.3061         

Hedge ratios are BSM Delta, Hull-White (HW, 2017) minimum variance ratios and Short-Lived-Arbitrage (δSLA) minimum variance 
ratios. Greeks are computed using observed interest rates and implied virtual rates as denoted. The test statistics are Diebold-Marino 
using weekly average of error metrics versus the Short Lived Arbitrage (δSLA) metric over 260 weeks. Metrics are the mean error, the 
average of absolute errors (Avg|Error|), the standard deviation of errors (Std Dev) and the root mean square of errors (RMSE). Obs is 
the total number of observations over all days. The data is from the period January 2, 2013 through June 28, 2019 for Brent Crude Oil 
and January 2, 2014 through June 28, 2019 for Gold and Silver. 
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Table I.12. Gain in Squared Error Metric Ratios for Puts Using SLA 

Panel A. Indices  Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Hedge Rates  S&P 500 

 
Russel 2000 

 
NASDAQ 

Delta Error Observed  1.0350 1.0750 1.0750 1.0550 1.0140 1.0140 0.9710 1.0720 1.0710 
Delta Error Implied  1.0580 1.0410 1.0410  1.0690 1.0280 1.0290  0.9790 1.0620 1.0600 
HW Error Observed  1.0200 1.0310 1.0310  1.0100 1.0050 1.0030  1.0050 1.0130 1.0120 
HW Error Implied  1.0230 1.0320 1.0320  1.0060 1.0090 1.0090  1.0160 1.0060 1.0050 
SLA Error Implied  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 
 

             
Panel B. Stocks  Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Hedge Rates  Amazon 

 
Google 

 

Berkshire Hathaway 
Delta Error Observed  1.1040 1.2580 1.2580 1.0010 1.0230 1.0230 1.0050 1.0670 1.0660 
Delta Error Implied  1.2130 1.2610 1.2600  0.9980 1.0050 1.0050 1.0260 1.0070 1.0070 
HW Error Observed  1.1370 1.3270 1.3270  0.9970 1.0270 1.0270  1.0240 1.0590 1.0590 
HW Error Implied  1.0300 1.0120 1.0120  1.0000 1.0120 1.0130  1.0230 1.0640 1.0640 
SLA Error Implied  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 
 

             
Panel C. Commodities  Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Hedge Rates  Brent Crude Oil  Gold  Silver 
Delta Error Observed  1.0020 1.2870 1.2710  1.4950 1.0870 1.0860  1.1280 1.4430 1.4440 
Delta Error Implied  1.0170 1.2970 1.0290  1.4990 1.0880 1.0880  1.0930 1.2730 1.2730 
HW Error Observed  1.0290 1.3240 1.2990  1.2560 1.0980 1.0980  1.0960 1.4470 1.4470 
HW Error Implied  1.1150 1.3480 1.2640  1.2600 1.0970 1.0960  1.1650 1.2760 1.2760 
SLA Error Implied  1.0000 1.0000 1.0000   1.0000 1.0000 1.0000   1.0000 1.0000 1.0000 
Results for calls. Gain is (comparison metric/SLA metric)^2. See notes Table I.5. 
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Table I.13. Extended Horizon RMSE Results: Comparison of Hull-White MV Ratios and Short-
Lived-Arbitrage MV Ratios 

   RMSE Call Errors  RMSE Put Errors 
 Hedging horizon    Obs HW SLA   Obs HW SLA 

Panel A. Index Options         
S&P500 5 days  443,168 2.1137 2.0269  800,210 2.7881 2.7453 
S&P500 10 days  443,168 2.1503 2.0697  800,210 2.9012 2.7577 
S&P500 20 days  443,168 2.1442 2.069  800,210 2.8836 2.747 
Russell 5 days  143,477 1.3447 1.3059  239,274 1.2092 1.2071 
Russell 10 days  143,477 1.3481 1.3007  239,274 1.225 1.225 
Russell 20 days  143,477 1.347 1.2993  239,274 1.2226 1.2275 
NASDAQ 5 days  99,092 6.0389 5.8303  131,858 6.0906 6.0536 
NASDAQ 10 days  99,092 6.0824 5.9533  131,858 6.1148 6.0613 
NASDAQ 20 days  99,092 6.0491 5.9202  131,858 6.0875 6.0536 

          
Panel B. Stock Options         
Amazon 5 days  381,791 2.0696 1.9755  340,026 2.9971 2.6021 
Amazon 10 days  381,791 2.0875 1.9847  340,026 3.0461 2.624 
Amazon 20 days  381,791 2.0822 1.9906  340,026 3.071 2.6482 
Google 5 days  235,021 1.1163 1.0941  173,426 1.2988 1.2814 
Google 10 days  235,021 1.1163 1.0949  173,426 1.2971 1.2768 
Google 20 days  235,021 1.1163 1.0937  173,426 1.3001 1.2773 
Berkshire 5 days  49,088 0.3679 0.2869  45,605 0.3124 0.3036 
Berkshire 10 days  49,088 0.3615 0.2885  45,605 0.3127 0.3037 
Berkshire 20 days  49,088 0.3579 0.2869  45,605 0.3138 0.3045 

          
Panel C. Commodities         
Brent Crude 5 days  70,676 0.137 0.1169  75,345 0.1312 0.1152 
Brent Crude 10 days  70,676 0.1367 0.1178  75,345 0.1309 0.1156 
Brent Crude 20 days  70,676 0.1371 0.1183  75,345 0.1313 0.1167 
Gold 5 days  145,717 7.3912 6.9995  149,683 12.02233 11.4757 
Gold 10 days  145,717 7.3912 6.9996  149,683 12.0215 11.4756 
Gold 20 days  145,717 7.3912 7.0024  149,683 12.0204 11.4764 
Silver 5 days  57,702 0.179 0.1717  91,092 0.3678 0.3061 
Silver 10 days  57,702 0.179 0.1717  91,092 0.3682 0.3061 
Silver 20 days   57,702 0.179 0.1717   91,092 0.3682 0.3129 
See notes, Table I.5.
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Table I.14. Error Metrics and Significance Tests for Calls During High Volatility 

Panel A. S&P 500  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 85,116 1.2947 2.1322 2.1327  2.710** 2.481** 2.408** 
Delta Error Implied 85,116 1.3684 2.1323 2.1332  4.726*** 4.660*** 4.440*** 
HW Error Observed 85,116 1.0820 1.7110 1.7136  2.442** 2.482** 2.296** 
HW Error Implied 85,116 1.0842 1.7144 1.7171  2.567** 2.643*** 2.908*** 
SLA Error Implied 85,116 1.0677 1.6769 1.6792     
          
Panel B. Google  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 109,224 0.8378 1.3890 1.3890  1.4280 1.0350 0.8900 
Delta Error Implied 109,224 0.8405 1.3692 1.3692  2.609*** 1.3220 1.0080 
HW Error Observed 109,224 0.8377 1.3889 1.3889  1.4250 1.0320 0.8880 
HW Error Implied 109,224 0.8404 1.3691 1.3691  2.605*** 1.3200 1.0060 
SLA Error Implied 109,224 0.8169 1.3570 1.3570     
          
Panel C. Brent Crude Oil  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 1,155,549 0.1298 0.2634 0.2634  1.1750 1.886* 1.940* 
Delta Error Implied 1,155,549 0.1517 0.2478 0.2478  2.105** 1.96** 2.192** 
HW Error Observed 1,155,549 0.1261 0.2615 0.2615  0.6680 1.745* 1.769* 
HW Error Implied 1,155,549 0.1494 0.2457 0.2457  2.689*** 2.322** 2.796*** 
SLA Error Implied 1,155,549 0.1286 0.2096 0.2096         

Hedge ratios are BSM Delta, Hull-White (HW, 2017) minimum variance ratios and Short-Lived-Arbitrage (δSLA) minimum variance 
ratios. Greeks are computed using observed interest rates and implied virtual rates as denoted. The test statistics are Diebold-Marino 
using weekly average of error metrics versus the Short Lived Arbitrage (δSLA) metric over 260 weeks. Metrics are the mean error, the 
average of absolute errors (Avg|Error|), the standard deviation of errors (Std Dev) and the root mean square of errors (RMSE). Obs is 
the total number of observations over all days. The data is from the period January 1, 2006 through December 31, 2010. 
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Table I.15. Error Metrics and Significance Tests for Puts During High Volatility 

Panel A. S&P 500  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 95,623 1.1519 1.9180 1.9180  2.3900** 2.156** 2.212** 
Delta Error Implied 95,623 1.1226 1.8497 1.8497  2.086** 1.716* 1.840* 
HW Error Observed 95,623 1.0884 1.7429 1.7429  3.126*** 2.871*** 2.645** 
HW Error Implied 95,623 1.0888 1.7438 1.7439  3.162*** 2.912*** 2.575** 
SLA Error Implied 95,623 1.0752 1.7338 1.7338     
          
Panel B. Google  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 86,680 0.7579 1.2594 1.2603  0.205 0.937 0.767 
Delta Error Implied 86,680 0.7545 1.2458 1.2471  0.355 0.443 0.337 
HW Error Observed 86,680 0.7578 1.2594 1.2603  0.199 0.934 0.765 
HW Error Implied 86,680 0.7578 1.2594 1.2603  0.199 0.935 0.765 
SLA Error Implied 86,680 0.7535 1.2397 1.2412     
          
Panel C. Brent Crude Oil  Error  DM Test 
Hedge Rates Obs Avg|Error| Std Dev RMSE  Avg|Error| Std Dev RMSE 
Delta Error Observed 1,563,921 0.1018 0.1695 0.1695  2.496** 1.812* 1.820* 
Delta Error Implied 1,563,921 0.1059 0.1651 0.1651  1.913* 1.802* 1.677* 
HW Error Observed 1,563,921 0.1004 0.1677 0.1677  2.506** 1.912* 1.857* 
HW Error Implied 1,563,921 0.1056 0.1656 0.1656  1.786* 1.674* 1.660* 
SLA Error Implied 1,563,921 0.0837 0.1622 0.1623         

Hedge ratios are BSM Delta, Hull-White (HW, 2017) minimum variance ratios and Short-Lived-Arbitrage (δSLA) minimum variance 
ratios. Greeks are computed using observed interest rates and implied virtual rates as denoted. The test statistics are Diebold-Marino 
using weekly average of error metrics versus the Short Lived Arbitrage (δSLA) metric over 260 weeks. Metrics are the mean error, the 
average of absolute errors (Avg|Error|), the standard deviation of errors (Std Dev) and the root mean square of errors (RMSE). Obs is 
the total number of observations over all days. The data is from the period January 1, 2006 through December 31, 2010.
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Chapter II On the Dynamic Capital Structure of Nations: Theory and Empirics 

 

2.1 Introduction 

It is always interesting to come across new and novel ways to view different parts of the 

world in which one lives. Consider, for example, an article published in the October 2017 issue of 

The Economist: “Why national accounts might be like a corporate balance-sheet?'' This article 

clearly caught our attention. It seemed at first glance to be a comparison stretched tremendously. 

Yet, after reading the paper by Bolton and Huang (2018), which was the basis for the article, it did 

not require a suspension of belief as regards the reasonableness of comparing the funding sources 

of a government to those of a company. Indeed, as they argue, fiat money is a claim on the output 

of a nation and is a reasonable equivalent to the equity of a firm, which is a claim on profits. 

Foreign-currency debt of a nation, moreover, is an analogy to a firm’s debt, which provides 

external funding. This similarity between the debt and equity of firms and the debt and fiat money 

of nations seems compelling enough to us to explore such a comparison further, following Bolton 

and Huang (2018). 

In the corporate finance world, the optimal capital structure is typically determined by 

maximizing the value of a firm. In particular, the solution to such a maximization problem enables 

one to determine the optimal combination of debt and equity to fund a firm’s investments. In a 

perfect capital market, in which the Modigliano-Miller (1958) theorem holds, the value of a firm 

is independent of its capital structure, or any particular combination of debt and equity. Importantly, 

Bolton and Huang (2016) establish an analog to this theorem for a nation. More specifically, they 

point out that a nation’s investments can be financed by issuing fiat money, domestic-currency 

debt (which is a money-like claim), and foreign-currency debt, or a combination of the three. In a 
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frictionless world, they argue it should not matter which combination of these funding options a 

nation chooses. 

The classical trade-off theory in choosing the optimal capital structure for corporations 

involves weighing the tax advantage of debt against the financial distress it creates in the event of 

a default. This particular approach does not directly apply to nations because there is no tax 

advantage associated with foreign-currency debt. Instead, the trade-off for a nation is between the 

inflation risk of fiat money and the default risk of foreign-currency debt. When a nation issues 

more fiat money than the production of goods and services, the value of fiat money depreciates 

due to the resulting inflation. As is the case when existing equity holders find their holdings diluted 

with the issuance of new equity, some of the wealth of those holding fiat money is transferred to 

the holders of newly issued fiat money. Consequently, a nation provides a premium when issuing 

money-like claims (e.g., domestic-currency debt) to those acquiring such claims to compensate for 

inflation risk. In the case of foreign-currency debt, however, its value is not diluted when fiat 

money is printed. Yet, foreign-currency debt is subject to default risk, as Argentina’s and 

Venezuela’s recent defaults on U.S. dollar-denominated sovereign debts amply demonstrates. 

The purpose of this paper is to pursue further the intriguing analogy identified by Bolton 

and Huang (2018). We do so by developing a dynamic model in order to determine the optimal 

combination of fiat money and foreign-currency debt used by a nation to fund its investments. The 

model that is used here was originally introduced by Brennan and Schwartz (1978) to 

quantitatively solve for the optimal capital structure of corporate firms. The use of a dynamic 

capital structure model of corporations or nations overcomes the defects of the static capital 

structure model in Bolton and Huang (2018). The defect is that financial decisions are inherently 

dynamic. For example, a firm typically adjusts its debt-to-equity ratio over time as the financial 
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and economic environment in which it operates changes. Bolton and Huang’s (2018) static model 

ignores a nation’s option to seek additional funding and fails to consider the impact of existing 

debt on new financing decisions. It is not surprise that increases in the amount of existing debt 

contribute to the default risk of newly issued debt, thus affect the financing decisions. Also, 

traditional corporate finance models typically only provide qualitative implications. For example, 

Miller (1977) compares the cost of a bankruptcy to the tax benefit of debt as the “horse and rabbit 

stew”, but no proof is provided as to the optimal size of either the horse or the rabbit. 

Importantly, Brennan and Schwartz (1978) are the first to develop a model to determine 

the optimal capital structure quantitatively. Based upon a diffusion processes to model firm value 

over time and a numerical solution approach, they are able to determine the optimal mix of debt 

and equity. Fischer, et al. (1989) extend the paper by Brennan and Schwartz (1978) by developing 

a dynamic capital structure model that allows for changes over time in firm value, cash flows, 

transaction costs, interest rates and the macroeconomic environment, more generally. Goldstein, 

et al. (2001) also develop a dynamic capital structure model related to that of Fischer, et al. (1989), 

and find that the optimal debt and equity mix based on the model is close to the observed actual 

mix.  

The dynamic model used in this paper is a stochastic control problem and follows from the 

work of Goldstein, et al. (2001). In particular, it is assumed that a nation maximizes the value of 

its investments by choosing the optimal combination of fiat money (and money-like domestic-

currency debt) and foreign-currency debt. Based on Miller's (1977) seminal paper, one is able to 

obtain a closed-form solution to our stochastic control problem. In general, we find increased 

inflation risk leads to investments funded more by foreign-currency debt, while greater default risk 

leads to investments funded by more fiat money or money-like domestic-currency debt. 



 

58 
 

Our paper contributes to the existing literature along two dimensions. First, this is the first 

paper that studies the dynamic capital structure of a nation from a corporate perspective. This 

brings new framework in studying how a nation finances its economy. Second, Bolton and Huang 

(2018) is an innovative theoretical work but lacks a thorough empirical support. We collect data 

of fiat money and debts of 22 emerging economies, which lend empirical supports to our 

hypotheses implied from the dynamic model.  

The remainder of the paper proceeds as follows. Section 2 develops the basic dynamic 

capital structure model for a nation, provides the optimal mix of fiat money and debt, and discusses 

the implications for our empirical work. Section 3 explains the hypotheses that flow from the 

model, describes the sample data used to test the hypotheses, and provides the results of the tests 

performed. 

2.2 Optimal Capital Structure for Nations 

2.2.1  Model Setup 

Consider a nation with a small open economy that plans to invest V0in a project at time 

zero to enhance productive capability. A representative agent runs the project and its value Vt 

evolves over time according to a geometric Brownian motion process as follows: 

𝑑𝑑𝑉𝑉𝑡𝑡
𝑉𝑉𝑡𝑡

= 𝜇𝜇𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜎𝜎𝐵𝐵𝑡𝑡, (1) 

where 𝐵𝐵𝑡𝑡  is a Brownian motion with Normal distribution 𝑁𝑁(0,𝜎𝜎2𝑡𝑡) and the initial value of 

investment is 𝑉𝑉0. 

A nation can issue fiat money, domestic-currency debt, foreign-currency debt, or a 

combination of the three to fund the investment. For simplicity, assume the two types of debt are 

perpetual. In this regard, according to Bloomberg data and BMI Research Report, perpetual bonds 

globally totaled $215 billion for 784 deals in 2017. Nations that issue perpetual bonds, some 
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through state-owned banks and corporations, include Argentina, Brazil, China, and India. Assume 

foreign-currency debt contributes a portion, p, of the investment, domestic-currency debt a portion, 

q, and the remaining portion, l (𝑙𝑙 = 1 − 𝑝𝑝 − 𝑞𝑞), is provided by fiat money. 

When the government does not default on its debt, any claim on the investment project 

continuously pays a nonnegative coupon, C, per instant of time, with an interest rate, r.  Denoting 

the value of such a claim by 𝐹𝐹(𝑉𝑉𝑡𝑡, 𝑡𝑡),  based on Black and Cox (1976), it satisfies the following 

partial differential equation (PDE): 

𝜇𝜇𝑉𝑉𝑡𝑡𝐹𝐹𝑣𝑣(𝑉𝑉𝑡𝑡, 𝑡𝑡) + 1
2
𝜎𝜎2𝑉𝑉𝑡𝑡2𝐹𝐹𝑣𝑣𝑣𝑣(𝑉𝑉𝑡𝑡, 𝑡𝑡) − 𝑟𝑟𝑟𝑟(𝑉𝑉𝑡𝑡, 𝑡𝑡) + 𝐹𝐹𝑡𝑡(𝑉𝑉𝑡𝑡, 𝑡𝑡) + 𝐶𝐶 = 0. (2)

For a debt that pays a constant time-independent cash flow, 𝐹𝐹𝑡𝑡(𝑉𝑉𝑡𝑡, 𝑡𝑡) = 0, so the PDE for debt 

reduces to the following: 

𝜇𝜇𝑉𝑉𝑡𝑡𝐹𝐹𝑣𝑣(𝑉𝑉𝑡𝑡, 𝑡𝑡) + 1
2
𝜎𝜎2𝑉𝑉𝑡𝑡2𝐹𝐹𝑣𝑣𝑣𝑣(𝑉𝑉𝑡𝑡, 𝑡𝑡) − 𝑟𝑟𝑟𝑟(𝑉𝑉𝑡𝑡, 𝑡𝑡) + 𝐶𝐶 = 0, (3)

which has a solution of the following form, 

𝐹𝐹(𝑉𝑉𝑡𝑡, 𝑡𝑡) = 𝐴𝐴0 + 𝐴𝐴1𝑉𝑉𝑡𝑡−𝑥𝑥 + 𝐴𝐴2𝑉𝑉𝑡𝑡
−𝑦𝑦, (4)

where 𝑥𝑥 = 1
𝜎𝜎2
��𝜇𝜇 − 𝜎𝜎2

2
� + ��𝜇𝜇 − 𝜎𝜎2

2
�
2

+ 2𝑟𝑟𝜎𝜎2� and 𝑦𝑦 = 1
𝜎𝜎2
��𝜇𝜇 − 𝜎𝜎2

2
� − ��𝜇𝜇 − 𝜎𝜎2

2
�
2

+ 2𝑟𝑟𝜎𝜎2�. 

Note that 𝐴𝐴0,𝐴𝐴1, and 𝐴𝐴2 are determined by boundary values and 𝑥𝑥 > 0 and 𝑦𝑦 < 0. 

2.2.2  Foreign- and Domestic-Currency Debt and Fiat Money 

Clearly, foreign-currency debt has default risk. If an investment project does not generate 

sufficient output a nation can decide to default on the debt, and, if so, debtholders suffer losses. 

Debtholders are not in a position to seize a nation’s assets. For this reason, if a threshold, 𝑉𝑉𝐵𝐵 , exists, 

a nation declares default if an investment project has a value, 𝑉𝑉𝑡𝑡 , that is below the threshold. 

Denoting foreign-currency debt by 𝐷𝐷𝑓𝑓(𝑉𝑉𝑡𝑡, 𝑡𝑡), then 

𝑙𝑙𝑙𝑙𝑚𝑚𝑉𝑉𝑡𝑡→𝑉𝑉𝐵𝐵𝐷𝐷𝑓𝑓(𝑉𝑉𝑡𝑡, 𝑡𝑡) = 0 and 𝑙𝑙𝑙𝑙𝑚𝑚𝑉𝑉𝑡𝑡→∞ 𝐷𝐷𝑓𝑓(𝑉𝑉𝑡𝑡, 𝑡𝑡) = 𝐶𝐶𝑓𝑓
𝑟𝑟

, 
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where 𝑐𝑐𝑓𝑓 is the coupon of foreign-currency debt and r is the interest rate. Thus, the value of 

foreign-currency debt is as follows: 

𝐷𝐷𝑓𝑓(𝑉𝑉𝑡𝑡, 𝑡𝑡) = 𝐶𝐶𝑓𝑓
𝑟𝑟
�1 − �𝑉𝑉𝐵𝐵

𝑉𝑉𝑡𝑡
�
𝑥𝑥
� . (5)

Assume a nation only issues foreign-currency debt and  𝐶𝐶𝑓𝑓
𝑟𝑟

= 𝑉𝑉0.  Debtholders require a premium 

to compensate for the default risk associated with the debt. Such a premium depends on the 

investment level 𝑉𝑉0 and the portion of foreign-currency debt, p (p=1 in this case). Denote the total 

cost (𝐷𝐷𝐶𝐶𝑓𝑓) of such debt, including principal and interest, as follows: 

𝐷𝐷𝐶𝐶𝑓𝑓(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡,𝑝𝑝) = 𝛼𝛼1(𝑉𝑉0,𝑝𝑝) �1 − �𝑉𝑉𝐵𝐵
𝑉𝑉𝑡𝑡
�
𝑥𝑥
� . (6)

Included in this equation is the risk premium, which is 𝛼𝛼1(𝑉𝑉0,𝑝𝑝)
𝐶𝐶𝑓𝑓/𝑟𝑟

− 1. It is intuitive to assume that 

𝛼𝛼1(𝑉𝑉0,𝑝𝑝) ≥ 𝐶𝐶𝑓𝑓
𝑟𝑟

 because the premium should be nonnegative. In addition, 𝜕𝜕𝛼𝛼1(𝑉𝑉0,𝑝𝑝)
𝜕𝜕𝑉𝑉0

> 0 , and 

𝜕𝜕𝛼𝛼1(𝑉𝑉0,𝑝𝑝)
𝜕𝜕𝜕𝜕

> 0, since greater investment funded by debt contributes to higher default risk.  

In contrast, domestic-currency debt contributes to inflation risk, since a nation can print 

fiat money not only to fund an investment project but also satisfy its domestic-currency debt 

obligations. To compensate for any potential losses in purchasing power, domestic debtholders 

will require a premium (higher yield) to compensate for the de facto default risk due to potential 

inflation. By a similar argument used for foreign-currency debt, the total cost of domestic-currency 

debt incorporating an inflation factor 𝛽𝛽 is expressed as follows: 

𝐷𝐷𝐶𝐶𝑑𝑑(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡,𝑞𝑞,𝛽𝛽) = 𝛼𝛼2(𝛽𝛽,𝑉𝑉0, 𝑞𝑞) �1 − �𝜓𝜓𝜓𝜓𝐵𝐵
𝑉𝑉𝑡𝑡
�
𝑥𝑥
� . (7)

Again, 𝜕𝜕𝛼𝛼2(𝛽𝛽,𝑉𝑉0,𝑝𝑝)
𝜕𝜕𝑉𝑉0

> 0 , 𝜕𝜕𝛼𝛼2(𝛽𝛽,𝑉𝑉0,𝑝𝑝)
𝜕𝜕𝜕𝜕

> 0 , and 𝜕𝜕𝛼𝛼2(𝛽𝛽,𝑉𝑉0,𝑝𝑝)
𝜕𝜕𝜕𝜕

> 0. Let 𝜓𝜓  indicate that the default 

thresholds of foreign- and domestic-currency debt are correlated so that the threshold for the latter 
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debt is 𝜓𝜓𝑉𝑉𝐵𝐵. In general, when an investment project underperforms, thereby lowing the value of 

the debt used to finance the project, a nation is more likely to repay its foreign-currency debt before 

its domestic-currency debt. The reason is that a nation can print fiat money to repay its domestic-

currency debt but this option is not available in the case of foreign-currency debt. 

For fiat money to be acceptable as a store of value, a nation provides a premium to 

compensate for inflation risk. The total cost of issuing fiat money as a funding source is expressed 

as: 𝐹𝐹𝐹𝐹(𝑉𝑉0, 𝑙𝑙,𝛽𝛽) = 𝛼𝛼3(𝛽𝛽,𝑉𝑉0, 𝑙𝑙), where 𝛼𝛼3(𝛽𝛽,𝑉𝑉0, 𝑙𝑙) has same properties as 𝛼𝛼2(𝛽𝛽,𝑉𝑉0,𝑞𝑞).  

The residual claims or equity value, which belongs to the nation, of the investment project at 

time t after subtracting both the foreign- and domestic-currency debt is expressed as follows: 

Ε(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡,𝑝𝑝, 𝑞𝑞, 𝑙𝑙,𝛽𝛽) = Ε�𝑉𝑉𝑡𝑡 − 𝐷𝐷𝐶𝐶𝑓𝑓(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡,𝑝𝑝) − 𝐷𝐷𝐶𝐶𝑑𝑑(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡,𝑞𝑞,𝛽𝛽) − 𝐹𝐹𝐹𝐹(𝛽𝛽,𝑉𝑉0, 𝑙𝑙)�.  (8) 

2.2.3  Optimization Problem and Solution 

What is the optimal combination of fiat money, domestic- and foreign-currency debt? The 

answer involves solving the following optimization problem: 

max
𝑝𝑝,𝑞𝑞,𝑙𝑙∈(0,1)
𝑝𝑝+𝑞𝑞+𝑙𝑙=1

Ε(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡,𝑝𝑝, 𝑞𝑞, 𝑙𝑙,𝛽𝛽) (9)
 

at time 0 when a nation decides on the mixture of funding sources. To proceed, assume 

𝛼𝛼1( 𝑉𝑉0,𝑝𝑝) = (𝑉𝑉0𝑝𝑝)𝜃𝜃 , 𝛼𝛼2(𝛽𝛽,𝑉𝑉0,𝑞𝑞) = (𝛽𝛽𝑉𝑉0𝑞𝑞)𝜃𝜃  and 𝛼𝛼3(𝛽𝛽,𝑉𝑉0, 𝑙𝑙) = (𝛽𝛽𝑉𝑉0𝑙𝑙)𝜃𝜃  for some 𝜃𝜃 ∈ (1,2) for 

simplicity. We choose the range (1,2) for 𝜃𝜃 for two purposes. First, 𝜃𝜃 ∈ (1,2) assures that, taking 

domestic-currency debt for example, the premium (𝛽𝛽𝑉𝑉0𝑞𝑞)𝜃𝜃−1 − 1 is positive. Second, risk-averse 

investors require a larger premium for holding additional debt. Apparently, the premium 

(𝛽𝛽𝑉𝑉0𝑞𝑞)𝜃𝜃−1 − 1 is a concave function with respect to the face value. The first order derivative 

(𝜃𝜃 − 1)(𝛽𝛽𝑉𝑉0𝑞𝑞)𝜃𝜃−2  is positive and the second order derivative (𝜃𝜃 − 1)(𝜃𝜃 − 2)(𝛽𝛽𝑉𝑉0𝑞𝑞)𝜃𝜃−3  is 

negative when 𝜃𝜃 ∈ (1,2). 
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Based on the following first-order conditions (FOC), 

0 = 𝜕𝜕Ε(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡,𝑝𝑝,𝑞𝑞,𝑙𝑙,𝛽𝛽)
𝜕𝜕𝜕𝜕

= −�1 − �𝑉𝑉𝐵𝐵
𝑉𝑉0
�
𝑥𝑥
� 𝜃𝜃𝑝𝑝𝜃𝜃−1𝑉𝑉0𝜃𝜃 + 𝑉𝑉0𝜃𝜃𝛽𝛽𝜃𝜃𝜃𝜃(1 − 𝑝𝑝 − 𝑞𝑞)𝜃𝜃−1, 

0 = 𝜕𝜕Ε(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡,𝑝𝑝,𝑞𝑞,𝑙𝑙,𝛽𝛽)
𝜕𝜕𝜕𝜕

= −�1 − �𝜓𝜓𝑉𝑉𝐵𝐵
𝑉𝑉0
�
𝑥𝑥
� 𝜃𝜃(1 − 𝑝𝑝)𝜃𝜃−1(𝛽𝛽𝑉𝑉0)𝜃𝜃 + 𝑉𝑉0𝜃𝜃𝛽𝛽𝜃𝜃𝜃𝜃(1 − 𝑝𝑝 − 𝑞𝑞)𝜃𝜃−1, 

the optimal foreign-currency debt portion is 

𝑝𝑝∗(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝛽𝛽) =
�1 − �𝜓𝜓𝑉𝑉𝐵𝐵𝑉𝑉0

�
𝑥𝑥
�
1

𝜃𝜃−1 
𝛽𝛽

𝜃𝜃
𝜃𝜃−1

�1 − �𝜓𝜓𝑉𝑉𝐵𝐵𝑉𝑉0
�
𝑥𝑥
�
1

𝜃𝜃−1 
𝛽𝛽

𝜃𝜃
𝜃𝜃−1 +  �1 − �𝑉𝑉𝐵𝐵𝑉𝑉0

�
𝑥𝑥
�
1

𝜃𝜃−1 
 , (10) 

the optimal domestic-currency debt portion is 

𝑞𝑞∗(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝛽𝛽) =
�1 − �𝑉𝑉𝐵𝐵𝑉𝑉0

�
𝑥𝑥
�
1

𝜃𝜃−1 
− �1 − �𝜓𝜓𝑉𝑉𝐵𝐵𝑉𝑉0

�
𝑥𝑥
�
1

𝜃𝜃−1 
�1 − �𝑉𝑉𝐵𝐵𝑉𝑉0

�
𝑥𝑥
�
1

𝜃𝜃−1 

�1 − �𝜓𝜓𝑉𝑉𝐵𝐵𝑉𝑉0
�
𝑥𝑥
�
1

𝜃𝜃−1 
𝛽𝛽

𝜃𝜃
𝜃𝜃−1 + �1 − �𝑉𝑉𝐵𝐵𝑉𝑉0

�
𝑥𝑥
�
1

𝜃𝜃−1 
 

, (11) 

and the optimal fiat money portion is 

𝑙𝑙∗(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝛽𝛽) =
�1 − �𝜓𝜓𝑉𝑉𝐵𝐵𝑉𝑉0

�
𝑥𝑥
�
1

𝜃𝜃−1 
�1 − �𝑉𝑉𝐵𝐵𝑉𝑉0

�
𝑥𝑥
�
1

𝜃𝜃−1 

�1 − �𝜓𝜓𝑉𝑉𝐵𝐵𝑉𝑉0
�
𝑥𝑥
�
1

𝜃𝜃−1 
𝛽𝛽

𝜃𝜃
𝜃𝜃−1 + �1 − �𝑉𝑉𝐵𝐵𝑉𝑉0

�
𝑥𝑥
�
1

𝜃𝜃−1 
 

. (12) 

The second-order condition (SOC) indicates that the maximum is obtained at p∗, q∗ and l∗. 

2.2.4  Dynamic Capital Structure of Nations 

The above analysis assumes that a nation has no other investment or debt at time 0. 

However, it may have multiple investment projects and related outstanding debt when issuing new 

debt for a new investment project. To derive the dynamic optimal debt structure, assume that a 

nation has an existing investment project 𝑉𝑉�𝑡𝑡, that follows the same geometric Brownian motion as 

𝑉𝑉𝑡𝑡. In this case, coupons 𝐶𝐶𝑓̅𝑓  and  𝐶𝐶𝑑̅𝑑 are paid on outstanding foreign- and domestic-currency debt, 
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respectively. If a nation decides to invest 𝑉𝑉0for a new project, the total investment value at time t 

becomes 𝑉𝑉𝑡𝑡 + 𝑉𝑉�𝑡𝑡. 

Since the additional debt contributes to a higher default risk and greater inflation potential, 

investors require a higher yield on the new debt due to the greater outstanding debt. Denote the 

greater outstanding debt influence on the new debt premium by the function f.  The new foreign-

currency debt cost is 

𝐷𝐷𝐷𝐷�𝑓𝑓(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡,𝑝𝑝) = 𝑓𝑓�𝐶𝐶𝑓̅𝑓 , 𝑟𝑟𝑓𝑓�𝛼𝛼1(𝑉𝑉0,𝑝𝑝) �1 − � 𝑉𝑉𝐵𝐵
𝑉𝑉𝑡𝑡+𝑉𝑉𝑡𝑡�

�
𝑥𝑥
� , (13)

where 𝑓𝑓�𝐶𝐶𝑓̅𝑓 , 𝑟𝑟𝑓𝑓�  is the impact of the outstanding foreign-currency debt on the additional foreign-

currency debt premium. It is reasonable to assume the following about the premium: 

𝑓𝑓�𝐶𝐶𝑓̅𝑓 , 𝑟𝑟𝑓𝑓� > 1 and  𝜕𝜕𝜕𝜕�𝐶𝐶𝑓̅𝑓,𝑟𝑟𝑓𝑓�
𝜕𝜕𝐶𝐶𝑓𝑓

> 0. 

To elaborate, 𝑓𝑓�𝐶𝐶𝑓̅𝑓 , 𝑟𝑟𝑓𝑓� essentially serves as a borrowing constraint in that it prevents countries 

from entering into a situation of “debt immiseration” 7. As the debt premium increases with 

additional debt issuance, it becomes a penalty and thereby incentivizes countries from ever 

increasing their debt as well as defaulting on existing debt.  

Similarly, the new domestic-currency debt cost is 

𝐷𝐷𝐷𝐷�𝑑𝑑(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡, 𝑞𝑞) = 𝑓𝑓(𝐶𝐶𝑑̅𝑑, 𝑟𝑟𝑑𝑑)𝛼𝛼2(𝛽𝛽,𝑉𝑉0, 𝑞𝑞) �1 − �𝜓𝜓𝜓𝜓𝐵𝐵
𝑉𝑉𝑡𝑡+𝑉𝑉𝑡𝑡�

�
𝑥𝑥
� . (14)

The outstanding foreign- and domestic-debt costs follow equations 6 and 7, but assuming debt is 

perpetual,

𝐷𝐷𝐷𝐷����𝑓𝑓�𝐶𝐶𝑓̅𝑓 , 𝑟𝑟𝑓𝑓 ,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡� = 𝐶𝐶̅𝑓𝑓
𝑟𝑟𝑓𝑓
�1 − � 𝑉𝑉𝐵𝐵

𝑉𝑉𝑡𝑡+𝑉𝑉𝑡𝑡�
�
𝑥𝑥
� , (15)

and  

 
7 See Campbell and Hercowitz (2019) for a discussion of this issue. 
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𝐷𝐷𝐷𝐷����𝑑𝑑(𝐶𝐶𝑑̅𝑑, 𝑟𝑟𝑑𝑑,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡) =
𝐶𝐶𝑑̅𝑑
𝑟𝑟𝑑𝑑
�1 − �

𝜓𝜓𝜓𝜓𝐵𝐵
𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�

�
𝑥𝑥

� . (16) 

What is the dynamic optimal capital structure of a nation when outstanding debt exists? 

The answer is found by maximizing the following: 

max
𝑝𝑝,𝑞𝑞,𝑙𝑙∈(0,1)
𝑝𝑝+𝑞𝑞+𝑙𝑙=1

Ε�𝑉𝑉0,𝑉𝑉�0,𝑉𝑉𝐵𝐵,𝑉𝑉�𝐵𝐵,𝑉𝑉𝑡𝑡,𝐶𝐶𝑓̅𝑓 ,𝐶𝐶𝑑̅𝑑,𝑝𝑝, 𝑞𝑞, 𝑙𝑙,𝛽𝛽� , (17)

where  

Ε�𝑉𝑉0,𝑉𝑉�0,𝑉𝑉𝐵𝐵,𝑉𝑉�𝐵𝐵,𝑉𝑉𝑡𝑡,𝐶𝐶𝑓̅𝑓 ,𝐶𝐶𝑑̅𝑑,𝑝𝑝, 𝑞𝑞, 𝑙𝑙,𝛽𝛽� = 𝑉𝑉𝑡𝑡 + 𝑉𝑉�𝑡𝑡 − 𝐷𝐷𝐷𝐷�𝑓𝑓(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡,𝑝𝑝) − 𝐷𝐷𝐷𝐷�𝑑𝑑(𝑉𝑉0,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡,𝑞𝑞) 

                                                                     −𝐷𝐷𝐷𝐷����𝑓𝑓�𝐶𝐶𝑓̅𝑓, 𝑟𝑟𝑓𝑓 ,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡� − 𝐷𝐷𝐷𝐷����𝑑𝑑(𝐶𝐶𝑑̅𝑑, 𝑟𝑟𝑑𝑑,𝑉𝑉𝐵𝐵,𝑉𝑉𝑡𝑡). (18)

By implementing the FOCs, the optimal solution is 

𝑝𝑝∗�𝑉𝑉0,𝑉𝑉𝐵𝐵,𝐶𝐶𝑓̅𝑓 ,𝐶𝐶𝑑̅𝑑 ,𝛽𝛽� =
�𝑓𝑓(𝐶𝐶𝑑̅𝑑 , 𝑟𝑟𝑑𝑑) �1 − � 𝜓𝜓𝜓𝜓𝐵𝐵

𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�
�
𝑥𝑥
�𝛽𝛽𝜃𝜃�

1
𝜃𝜃−1

�𝑓𝑓(𝐶𝐶𝑑̅𝑑 , 𝑟𝑟𝑑𝑑) �1 − � 𝜓𝜓𝜓𝜓𝐵𝐵
𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�

�
𝑥𝑥
�𝛽𝛽𝜃𝜃�

1
𝜃𝜃−1

+ �𝑓𝑓�𝐶𝐶𝑓̅𝑓 , 𝑟𝑟𝑓𝑓� �1 − � 𝑉𝑉𝐵𝐵
𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�

�
𝑥𝑥
��

1
𝜃𝜃−1

, (19) 

𝑞𝑞∗�𝑉𝑉0,𝑉𝑉𝐵𝐵,𝐶𝐶𝑓̅𝑓 ,𝐶𝐶𝑑̅𝑑 ,𝛽𝛽� =
�𝑓𝑓�𝐶𝐶𝑓̅𝑓 , 𝑟𝑟𝑓𝑓� �1 − � 𝑉𝑉𝐵𝐵

𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�
�
𝑥𝑥
��

1
𝜃𝜃−1

�𝑓𝑓(𝐶𝐶𝑑̅𝑑, 𝑟𝑟𝑑𝑑) �1 − � 𝜓𝜓𝜓𝜓𝐵𝐵
𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�

�
𝑥𝑥
�𝛽𝛽𝜃𝜃�

1
𝜃𝜃−1

+ �𝑓𝑓�𝐶𝐶𝑓̅𝑓 , 𝑟𝑟𝑓𝑓� �1 − � 𝑉𝑉𝐵𝐵
𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�

�
𝑥𝑥
��

1
𝜃𝜃−1

                                             −
�𝑓𝑓(𝐶𝐶𝑑̅𝑑 , 𝑟𝑟𝑑𝑑) �1 − � 𝜓𝜓𝜓𝜓𝐵𝐵

𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�
�
𝑥𝑥
��

1
𝜃𝜃−1

�𝑓𝑓�𝐶𝐶𝑓̅𝑓 , 𝑟𝑟𝑓𝑓� �1− � 𝑉𝑉𝐵𝐵
𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�

�
𝑥𝑥
��

1
𝜃𝜃−1

�𝑓𝑓(𝐶𝐶𝑑̅𝑑 , 𝑟𝑟𝑑𝑑) �1 − � 𝜓𝜓𝜓𝜓𝐵𝐵
𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�

�
𝑥𝑥
�𝛽𝛽𝜃𝜃�

1
𝜃𝜃−1

+ �𝑓𝑓�𝐶𝐶𝑓̅𝑓 , 𝑟𝑟𝑓𝑓� �1 − � 𝑉𝑉𝐵𝐵
𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�

�
𝑥𝑥
��

1
𝜃𝜃−1

, (20)

 

and   

𝑙𝑙∗�𝑉𝑉0,𝑉𝑉𝐵𝐵,𝐶𝐶𝑓̅𝑓 ,𝐶𝐶𝑑̅𝑑 ,𝛽𝛽� =
�𝑓𝑓(𝐶𝐶𝑑̅𝑑, 𝑟𝑟𝑑𝑑) �1 − � 𝜓𝜓𝜓𝜓𝐵𝐵

𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�
�
𝑥𝑥
��

1
𝜃𝜃−1

�𝑓𝑓�𝐶𝐶𝑓̅𝑓 , 𝑟𝑟𝑓𝑓� �1 − � 𝑉𝑉𝐵𝐵
𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�

�
𝑥𝑥
��

1
𝜃𝜃−1

�𝑓𝑓(𝐶𝐶𝑑̅𝑑 , 𝑟𝑟𝑑𝑑) �1 − � 𝜓𝜓𝜓𝜓𝐵𝐵
𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�

�
𝑥𝑥
�𝛽𝛽𝜃𝜃�

1
𝜃𝜃−1

+ �𝑓𝑓�𝐶𝐶𝑓̅𝑓 , 𝑟𝑟𝑓𝑓� �1 − � 𝑉𝑉𝐵𝐵
𝑉𝑉𝑡𝑡 + 𝑉𝑉𝑡𝑡�

�
𝑥𝑥
��

1
𝜃𝜃−1

. (21) 
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2.3 Hypotheses, Data and Empirical Results 

2.3.1  Capital Structure Hypotheses 

Inflation is an essential determinant of the composition of sovereign debt. A government 

with domestic-currency debt has an incentive to inflate away so as to mitigate the debt burden. A 

higher level of domestic-currency debt increases such incentive. Inflation reduces the purchasing 

power of fiat money as well as the value of domestic-currency debt, thereby shifting investor 

preferences for foreign-currency debt. Claessens et al. (2007) use panel data from 35 countries to 

study the determinants of development of domestic-currency government debt market. They find 

that lower inflation rates associate with lower volatilities of inflation and, consequently, a lower 

tendency for government to dilute its debt through inflation. The mitigated inflation risk 

contributes to the development and expansion of domestic-currency government debt markets. 

Their result is consistent with Ize and Yeyati’s (2003) finding that, in minimum variance portfolio 

equilibria, less volatility in inflation contributes to the deepening of financial dollarization. Burger 

and Warnock (2006) also share a similar finding that countries with stable inflation rates and strong 

creditor rights have more developed local bond markets and rely less on foreign-currency-

denominated bonds. 

An alternative explanation of the negative relationship between the level of inflation and 

domestic-currency debt issuance is that governments with high inflation do not need to issue large 

amounts of domestic-currency debt, as the inflation tax is a major source of government revenue. 

At the same time, governments with more fixed regimes may want to signal the credibility of their 

regime by issuing relatively more foreign currency debt. Torre et al. (2003) claim that issuing 

domestic-currency debt is more costly than foreign-currency debt, the additional cost incurred 

could be interpreted as a hedge against a future devaluation.  
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Above analysis is consistent with our model since, following equation 19-21, 

𝜕𝜕𝑝𝑝∗

𝜕𝜕𝜕𝜕
> 0, 𝜕𝜕𝑞𝑞

∗

𝜕𝜕𝜕𝜕
< 0, and  𝜕𝜕𝑙𝑙

∗

𝜕𝜕𝜕𝜕
< 0. 

Our first hypothesis is a direct description of our model’s prediction regarding inflation’s effects 

on a nation’s financing decision: 

H1: Higher inflation risk increases the issuance share of foreign-currency debt but reduces 

the issuance shares of both domestic-currency debt and fiat money. 

The ability and the willingness to pay is another important factor that determines the 

composition of sovereign debt. Given a nation’s willingness to pay, its foreign reserves partially 

determine its ability to pay off its foreign-currency debt and, consequently, the default risk. Paolo 

and Roubini (2009) find that a nation with relatively higher default risk is described by a handful 

of economic characteristics: high ratio of total external debt to the capacity to pay, high short-term 

debt over foreign reserves, etc.  

The increased default risk contributes to the additional cost of the debt. Using panel data 

from 16 emerging countries between year 1998 and 2002, Rowland and Torres (2004) reveal that 

a nation with less foreign reserves has to provide a higher yield for its debt. Min (1998) applies 

cross sectional analysis to sovereign bond data from 11 countries between year 1991 and 1995. He 

concludes that higher yield spreads are associated with a lower ratio of foreign reserves to GDP 

and other macroeconomic fundamentals. Similar findings also can be found in Budina and 

Mantchev (2000) for Bulgarian Brady bonds and Rojas and Jaque (2003) for Chilean sovereign 

bonds.  

Given a nation’s willingness to pay, a lower level of default chance, which is measured by 

the threshold 𝑉𝑉𝐵𝐵 , implied by sufficient foreign reserves mitigates the default risk of foreign-
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currency debt and contributes to the development of foreign-currency bond market. This analysis 

is reflected in equation 19-21: 

𝜕𝜕𝑝𝑝∗

𝜕𝜕𝑉𝑉𝐵𝐵
< 0, 𝜕𝜕𝑞𝑞

∗

𝜕𝜕𝑉𝑉𝐵𝐵
> 0, and  𝜕𝜕𝑙𝑙

∗

𝜕𝜕𝑉𝑉𝐵𝐵
> 0; 

and implies our second hypothesis:  

H2: Higher default risk reduces the issuance share of foreign-currency debt but increases 

the proportion of new money-like claims.  

A higher level of existing debt brings debt service difficulties and, consequently, possible 

liquidity problems. It is expected that a higher debt service level compromises the degree of 

creditworthiness, resulting in a higher yield spread (Min, 1998). An increase in foreign-currency 

debt leads to higher default risk, while greater accumulated domestic-currency debt increases 

inflation risk.  The increased risk of both have a negative impact on future debt issuance. This is 

consistent with the model since 

𝜕𝜕𝑝𝑝∗

𝜕𝜕𝐶𝐶𝑓̅𝑓
< 0,  𝜕𝜕𝑞𝑞

∗

𝜕𝜕𝐶𝐶𝑑̅𝑑
< 0, and  𝜕𝜕𝑙𝑙

∗

𝜕𝜕𝐶𝐶𝑓̅𝑓
> 0. 

Our third hypothesis is a direct description of the above partial derivatives:  

H3: Outstanding debt reduces the issuance shares of both foreign-currency and domestic-

currency debt. 

 Eichengreen and Mody (1998) study almost 1,000 developing country bonds issued over 

1991 to 1996 and find that the debt launches depend on not only the existing debt level measured 

by debt-to-GDP level but also the issue size. If a nation issues too much debt, it may be unable to 

handle the burden the debt imposes due to the associated principle and interest payments. If this 

happens, the nation is less likely to pay its domestic-currency debt but instead focus more on 

repaying its foreign-currency debt. In the same situation, investors prefer to hold foreign-currency 

debt, since: 
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𝜕𝜕𝑝𝑝∗

𝜕𝜕𝑉𝑉0
> 0,  𝜕𝜕𝑞𝑞

∗

𝜕𝜕𝑉𝑉0
< 0 and  𝜕𝜕𝑙𝑙

∗

𝜕𝜕𝑉𝑉0
< 0, 

which implies our fourth hypothesis: 

H4: The larger the initial investment the lower the issuance of domestic-currency debt, 

while the higher the issuance of foreign-currency debt. 

2.3.2  Sample and Data 

The sample used for the empirical analysis consists of quarterly data for domestic- and 

foreign-currency debt of the central government of 22 emerging countries, including Argentina, 

Brazil, Bulgaria, Chile, China, Columbia, Hungary, India, Indonesia, Latvia, Lithuania, Malaysia, 

Mexico, Peru, Philippines, Poland, Romania, South Africa, Thailand, Turkey, Ukraine and 

Uruguay, and covers the period 2004-2015. Data for sovereign bonds issued by the same countries 

come from Bloomberg. Information for each bond includes the institutional name of the debtor, 

the issue date, maturity, face value, coupon, price, yield to maturity, credit default swap (CDS) 

spread, and currency denomination. Inflation and GDP data come from World Bank Indicators, 

while the source of quarterly sovereign debt data is a new dataset constructed by Arslanalp and 

Tsuda (2014). Summary statistics for the variables are in Table II.1. 

Table II.2 contains basic information on sovereign debt and its composition in terms of 

foreign and domestic type by country. The first column shows the average annual level of debt 

issuance as a percentage of GDP for the various countries in the sample. Total issuance is the sum 

of the face value of debt issued in a given year for a given country, and the average level of issuance 

is 7.63 percent of GDP. The second column shows the average share of debt issuance denominated 

in domestic-currency for the sample period, which is 68.65 percent. 
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2.3.3  Empirical Results 

The first hypothesis test involves the relation between a change in the share of domestic-

currency debt and inflation. Higher inflation should lower the value of domestic-currency debt, so 

that investors are less likely to purchase additional such debt. The following three regressions are 

therefore estimated: 

𝑃𝑃𝑃𝑃𝑡𝑡𝑓𝑓 = 𝛼𝛼1 + 𝛼𝛼2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒, 

𝑃𝑃𝑃𝑃𝑡𝑡𝑑𝑑 = 𝛼𝛼1 + 𝛼𝛼2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒, 

𝑃𝑃𝑃𝑃𝑡𝑡𝑚𝑚 = 𝛼𝛼1 + 𝛼𝛼2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒, 

where 𝑃𝑃𝑃𝑃𝑡𝑡𝑓𝑓 ,𝑃𝑃𝑃𝑃𝑡𝑡𝑑𝑑  and 𝑃𝑃𝑃𝑃𝑡𝑡𝑚𝑚  denote the shares of foreign debt, domestic debt and fiat money, 

respectively. Inflation is the lagged quarterly inflation rate, using the consumer price index. Table 

II.3 shows there is a significantly positive relationship between inflation and the change in the 

proportion of foreign- currency debt, as hypothesized. In terms of economic significance, a one 

percentage point increase in inflation is associated with a 3.56 percent increase in the share of 

foreign-currency debt, which is about 10 percent of the average value of such debt for the countries 

in our sample. Inflation and both an increase in the issuance of domestic- currency debt and fiat 

money are negatively related, but the relationships are not statistically significant.  

The second hypothesis test involves the relationship of default risk to the composition of 

funding sources. The value-weighted Credit Default Swap (CDS) spread is used as a proxy for 

market default risk. Thus, the following two regressions are estimated: 

𝑃𝑃𝑃𝑃𝑡𝑡𝑓𝑓 = 𝛼𝛼1 + 𝛼𝛼2𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛼𝛼3𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑2 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒, 

𝑃𝑃𝑃𝑃𝑡𝑡𝑑𝑑 + 𝑃𝑃𝑃𝑃𝑡𝑡𝑚𝑚 = 𝛼𝛼1 + 𝛼𝛼2𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛼𝛼3𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑑𝑑2 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒, 

where CDS_Spread is the average, value-weighted CDS spread for foreign-currency debt issued 

during a quarter. Table II.4. Panel A confirms the hypothesis of a negative relationship between 
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default risk and the additional issuance of foreign-currency debt, with a nation tilting towards 

money-like claims for financing an investment project. The results indicate, moreover, that a ten-

basis point increase in the CDS spread associated with foreign-currency debt is related to 3-

percentage point decline in the share of foreign-currency debt.  In addition, the ratio of foreign 

exchange reserves-to-total debt is used as an alternative proxy for market default risk. The results 

in Table II.4, Panel B show a significantly positive relationship between the ratio of foreign 

exchange reserves-to-total debt and the proportion of newly issued foreign-currency debt, as 

hypothesized. 

The third hypothesis states that the larger the outstanding domestic-currency debt the 

higher the inflation risk, which means a nation has a greater incentive to dilute domestic-currency 

debt by issuing fiat money. At the same time, an increase in foreign-currency debt increases default 

risk. The following regressions are therefore estimated: 

𝑃𝑃𝑃𝑃𝑡𝑡𝑓𝑓 = 𝛼𝛼1 +  𝛼𝛼2𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒,  

𝑃𝑃𝑃𝑃𝑡𝑡𝑑𝑑 = 𝛼𝛼1 +  𝛼𝛼2𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒,  

𝑃𝑃𝑃𝑃𝑡𝑡𝑚𝑚 = 𝛼𝛼1 +  𝛼𝛼2𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒.  

Table II.5 presents the empirical results for these three equations. They show that more 

debt outstanding is associated with both less newly issued domestic- and foreign-currency debt. A 

one-percentage point increase in the ratio of outstanding foreign-currency debt to GDP is 

associated with 0.472 percent decrease in the share of foreign-currency debt. The results when 

including inflation, default risk and outstanding debt together in the same equation for explaining 

the different new funding portions are reported in Tables II.6 (Panel A and Panel B). The results 

are consistent with the previous and more disaggregated results.  
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The fourth and last hypothesis involves a concern among investors that too much 

investment may be undertaken. To test this hypothesis, the following regressions are estimated 

(using both OLS and Logit) based on individual issuances of both foreign and domestic debt: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝛼𝛼1 +  𝛼𝛼2 log(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) +  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑒𝑒, 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝛼𝛼1 +  𝛼𝛼2 log(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) +  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒, 

where the Invest Amount is the amount for each issue of new debt, whether foreign or domestic. 

The dependent variables are dummy variables. For example, Foreign_dummy equals one if the 

debt is foreign debt, otherwise zero. As is shown in Table II.7, he results indicate a greater issuance 

of foreign-currency debt when the amount of the initial investment requiring funding is larger. 

2.4 Conclusions 

A theoretical model of the optimal dynamic capital structure of a nation is developed. The 

model compares a nation to a company, following the novel paper by Bolton and Huang (2018). 

To make the model dynamic rather than static, we draw upon the earlier and important papers by 

Goldstein, et al. (2001) and Miller (1977). Based on the optimal mix of fiat money (and money-

like debt) and foreign-currency debt derived from the model, we derive several hypotheses. First, 

higher inflation increases the issuance share of foreign-currency debt but reduces the issuance 

shares of both domestic-currency debt and fiat money. Second, higher default risk reduces the 

issuance share of foreign-currency debt but increases the proportion of new money-like claims. 

Third, outstanding debt reduces the issuance share of both foreign-currency and domestic-currency 

debt. Lastly, the larger the initial investment the lower the issuance of domestic-currency debt, 

while at the same time the larger the issuance of foreign-currency debt.  

Each of these four hypotheses is tested based upon fiat money and debt data for 22 countries 

over the period 2004 – 2016. The results are consistent with the predictions of the model. In 
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particular, there is a significantly positive inflation relationship to the change in the proportion of 

foreign-currency debt, as predicted. Also, there is a significantly negative relationship between 

default risk and the additional issuance of foreign-currency debt, with a nation tilting towards 

money-like claims for financing an investment project. In addition, there is a significantly positive 

relationship between the ratio of foreign reserves-to-total debt and the proportion of newly issued 

foreign-currency debt. Furthermore, more debt outstanding is significantly associated with both 

less newly issued domestic- and foreign-currency debt. Lastly, the results indicate a greater 

issuance of foreign-currency debt when the amount of the initial investment requiring funding is 

larger. 

In summary, the comparison of a nation to a company seems reasonable, albeit novel, as 

the dynamic capital structure model and empirical results presented here seem to indicate.  
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Table II.1. Statistical Summary for Variables 

Variable Obs. Mean Std. Dev. Min Max 
Foreign-Currency Debt/(Total Debt + Fiat Money) 319 22.81 26.59 0.06 99.96 
Domestic-Currency Debt/(Total Debt + Fiat Money) 319 65.74 32.07 0.04 99.94 
Fiat Money/(Total Debt + Fiat Money) 319 11.44 18.71 0.00 90.80 
Log(GDP in $ billions) 340 25.59 1.25 22.57 28.43 
Total Debt/GDP 340 44.43 19.09 8.19 117.93 
Inflation 332 1.29 0.75 -0.35 3.39 
CDS Spread 302 123.10 85.51 39.00 449.97 
Yield-to-Maturity 340 2.38 4.47 -8.58 20.50 

 
 

Table II.2. Sovereign Debt Information for Sample Countries 

Country Name 
Annual Debt 

Issuance Average 
(% of GDP) 

Share of Issuance in Domestic-
Currency Debt 

Average (% of Issuance) 

Share of Issuance in 
Foreign-Currency Debt 

Average (% of 
Issuance) 

Argentina 7.66 32.00 68.00 
Brazil 10.53 68.84 31.16 
Bulgaria 2.58 36.42 63.58 
Chile 1.20 67.85 32.15 
China 20.36 87.53 12.47 
Colombia 2.91 79.53 20.47 
Hungary 7.52 70.10 29.90 
India 11.32 100.00 0 
Indonesia 1.88 80.51 19.49 
Latvia 5.78 36.69 63.31 
Lithuania 6.18 30.57 69.43 
Malaysia 23.74 94.89 5.11 
Mexico 4.43 94.74 5.26 
Peru 5.79 37.71 62.29 
Philippines 5.68 92.25 7.75 
Poland 10.09 77.82 22.18 
Romania 8.25 59.49 40.51 
South Africa 11.05 77.48 22.52 
Thailand 1.13 97.67 2.33 
Turkey 12.66 78.90 21.10 
Ukraine 2.95 52.38 47.62 
Uruguay 4.23 57.05 42.95 
Average 7.63 68.65 31.35 
 

 
  



 

74 
 

Table II.3. Inflation Risk and the Composition of Newly Issued Sovereign Debt and Fiat Money 
 (1) (2) (3) (4) (5) 

Variables 
Foreign- 
Currency 

Debt 

Domestic-
Currency 

Debt 
Fiat Money 

Fiat Money Plus 
Domestic-

Currency Debt 

Domestic-
Currency Debt 

/Total Debt 
      
Inflation 3.560* -3.047 -0.513 -3.560* -4.264* 
 (1.939) (2.483) (1.627) (1.939) (2.336) 
Fiat Money -4.720* 3.301 1.419 4.720* 4.595 
 (2.542) (3.254) (2.132) (2.542) (3.061) 
Log(GDP) -4.819* 6.488* -1.668 4.819* 6.148* 
 (2.712) (3.472) (2.275) (2.712) (3.266) 
Yield to Maturity -1.714*** 1.818*** -0.104 1.714*** 1.944*** 
 (0.363) (0.465) (0.305) (0.363) (0.437) 
Constant 251.891*** -174.012*** 22.121 -151.891*** -185.453*** 
 (26.689) (34.169) (22.387) (26.689) (32.143) 
      
Year Fixed Effects Yes Yes Yes Yes Yes 
Observations 319 319 319 319 319 
R-squared 0.317 0.231 0.030 0.317 0.290 
Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Table II.4. Default Risk and the Composition of Newly Issued Sovereign Debt and Fiat Money  
Panel A. using Credit Default Swap Spread 

  (1) (2) (3) (4) (5) 

Variables 
Foreign- 
Currency 

Debt 

Domestic-
Currency 

Debt 
Fiat Money 

Fiat Money Plus 
Domestic-

Currency Debt 

Domestic-
Currency Debt 

/Total Debt 
CDS Spread -30.134** 42.720** -12.586 30.134** 44.734*** 

 (11.608) (19.713) (10.219) (11.608) (15.469) 
CDS Spread Squared 7.961*** -11.469** 3.507 -7.961*** -11.993*** 

 (2.438) (4.137) (2.110) (2.438) (3.208) 
Fiat Money -14.886** 19.143 -4.257 14.886** 20.536** 

 (6.857) (11.408) (5.354) (6.857) (9.262) 
Log(GDP) 5.006 -9.705 4.699 -5.006 -10.001 

 (7.866) (12.742) (5.662) (7.866) (10.418) 
Yield to Maturity -1.357*** 1.361** -0.003 1.357*** 1.428** 

 (0.449) (0.553) (0.444) (0.449) (0.522) 
Constant 263.032*** -162.55** -0.479 -163.032*** -180.083*** 

 (51.811) (68.261) (28.918) (51.811) (60.317) 
Year Fixed Effects Yes Yes Yes Yes Yes 
Observations 283 283 283 283 283 
R-squared 0.438 0.369 0.071 0.438 0.445 
 

Panel B. Using Foreign Exchange Reserves/Debt 
 (1) (2) (3) (4) (5) 

Variables 
Foreign- 
Currency 

Debt 

Domestic-
Currency 

Debt 
Fiat Money 

Fiat Money 
Plus Domestic-
Currency Debt 

Domestic-
Currency Debt 

/Total Debt 
Foreign Exchange 
Reserves/Debt 

22.465*** -24.438*** 1.974 -22.465*** -22.838*** 
(6.007) (7.734) (5.170) (6.007) (7.248) 

Foreign Exchange 
Reserves/Debt Squared 

-5.078*** 5.515** -0.437 5.078*** 4.652** 
(1.724) (2.220) (1.484) (1.724) (2.081) 

Fiat Money -11.190*** 10.124*** 1.066 11.190*** 12.510*** 
 (2.756) (3.548) (2.372) (2.756) (3.326) 
Log(GDP) 0.915 0.474 -1.389 -0.915 -0.763 
 (2.812) (3.621) (2.421) (2.812) (3.393) 
Yield to Maturity -1.050*** 1.151*** -0.101 1.050*** 1.174*** 
 (0.344) (0.443) (0.296) (0.344) (0.415) 
Constant 249.503*** -171.134*** 21.631 -149.503*** -186.955*** 
 (26.445) (34.050) (22.763) (26.445) (31.913) 
Year Fixed Effect Yes Yes Yes Yes Yes 
Observations 319 319 319 319 319 
R-squared 0.352 0.262 0.031 0.352 0.323 
Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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Table II.5. Outstanding Sovereign Debt and the Composition of Newly Issued Sovereign Debt 
 (1) (2) (3) (4) (5) 

Variables Foreign- 
Currency Debt 

Domestic- 
Currency Debt Fiat Money 

Fiat Money 
Plus 

Domestic-
Currency 

Debt 

Domestic-
Currency 

Debt /Total 
Debt 

 
Outstanding Foreign-
Currency Debt/GDP 

-0.472*** -2.016*** 0.953** -1.063** -1.707*** 
(0.070) (0.661) (0.428) (0.523) (0.622) 

Lagged Fiat Money -4.410* 5.256 0.354 5.610** 6.556** 
 (2.500) (3.369) (2.184) (2.669) (3.171) 
Log(GDP) -5.066* 5.122 -0.919 4.203 4.642 
 (2.705) (3.724) (2.414) (2.950) (3.505) 
Yield to Maturity -1.281*** 1.561*** 0.011 1.572*** 1.677*** 
 (0.334) (0.446) (0.289) (0.353) (0.420) 
Constant 281.022*** -175.080*** 19.898 -155.182*** -186.294*** 
 (26.806) (36.778) (23.840) (29.130) (34.609) 
      
Year Fixed Effects Yes Yes Yes Yes Yes 
Observations 319 301 301 301 301 
R-squared 0.386 0.222 0.050 0.299 0.278 
Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Table II.6. Inflation Risk, Default Risk, and Outstanding Debt and the Composition of Newly 
Issued Sovereign Debt 
Panel A. Using Credit Default Swap Spread 
  (1) (2) (3) (4) (5) 

Variables 

Foreign-
Currency 

Debt 

Domestic-
Currency 

Debt 

Fiat 
Money 

Fiat Money 
Plus Domestic-
Currency Debt 

Domestic-
Currency Debt 

/Total Debt 
       
Inflation 5.277** 2.954 -5.041** -2.087 0.381 

 (2.128) (2.914) (1.984) (2.327) (2.696) 
CDS Spread -27.091*** 32.818*** -1.739 31.078*** 39.002*** 

 (6.813) (9.190) (6.257) (7.339) (8.505) 
CDS Spread Squared 7.259*** -10.212*** 1.443 -8.768*** -11.418*** 
 (1.593) (2.084) (1.419) (1.665) (1.929) 
Outstanding Foreign-
Currency Debt/GDP 

-0.421*** -2.740*** 1.493*** -1.247** -2.146*** 
(0.073) (0.688) (0.468) (0.549) (0.637) 

Fiat Money -9.815*** 17.857*** -3.610 14.246*** 19.336*** 
 (3.310) (4.233) (2.882) (3.380) (3.917) 

Log(GDP) -0.128 -7.113 3.105 -4.008 -7.845* 
 (3.540) (4.615) (3.142) (3.685) (4.271) 

Yield to Maturity -1.498*** 1.530*** 0.152 1.681*** 1.690*** 
 (0.368) (0.484) (0.329) (0.386) (0.448) 

Constant 292.517*** -179.617*** 13.315 -166.302*** -191.836*** 
 (26.753) (35.184) (23.955) (28.098) (32.561) 
      

Year Fixed Effects Yes Yes Yes Yes Yes 
Observations 267 267 267 267 267 
R-squared 0.494 0.375 0.098 0.438 0.441 
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Panel B. Using Reserve/Debt 
  (1) (2) (3) (4) (5) 

Variables 
Foreign-
Currency 

Debt 

Domestic-
Currency 

Debt 

Fiat 
Money 

Fiat Money Plus 
Domestic-

Currency Debt 

Domestic-
Currency Debt 

/Total Debt 
       
Inflation 5.488*** -2.924 -2.770 -5.694*** -4.892** 
 (1.913) (2.606) (1.717) (2.009) (2.425) 
Foreign Exchange 
Reserves/Debt 

17.717*** -27.893*** -2.599 -30.493*** -28.764*** 
(6.819) (8.762) (5.775) (6.757) (8.156) 

Foreign Exchange 
Reserves/Debt Squared 

-5.728*** 6.916*** 0.451 7.367*** 6.608*** 
(1.901) (2.626) (1.731) (2.025) (2.445) 

Outstanding Debt/GDP -0.480*** -1.770** 0.969** -0.800 -1.552** 
 (0.085) (0.693) (0.456) (0.534) (0.645) 
Fiat Money -2.482 9.194** 0.298 9.492*** 11.129*** 
 (3.034) (3.767) (2.483) (2.905) (3.506) 
Log(GDP) -6.818** 1.966 -0.610 1.356 1.343 
 (3.034) (3.906) (2.574) (3.012) (3.635) 
Yield to Maturity -1.501*** 1.273*** 0.143 1.415*** 1.452*** 
 (0.355) (0.485) (0.320) (0.374) (0.451) 
Constant 267.104*** -170.840*** 17.799 -153.041*** -189.560*** 
 (26.736) (38.474) (25.358) (29.669) (35.813) 
      
Year Fixed Effects Yes Yes Yes Yes Yes 
Observations 301 301 301 301 301 
R-squared 0.423 0.255 0.059 0.364 0.323 
Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Table II.7. Initial Amount of Investment Funded by Debt and Type of Debt Issued: Foreign or 
Domestic-Currency Debt 

  OLS OLS Logit Logit 

Variables 
Foreign 

-Currency 
Debt 

Domestic 
-Currency 

Debt 

Foreign 
-Currency 

Debt 

Domestic 
-Currency 

Debt 
      
Log(Amount Issued) 0.01405*** -0.01405*** 0.359*** -0.359*** 
 (0.002) (0.002) (0.058) (0.058) 
Maturity 0.00448*** -0.00448*** 0.074*** -0.074*** 
 (0.000) (0.000) (0.007) (0.007) 
Price -0.00024 0.00024 -48.368 48.368 
 (0.002) (0.002) (50.403) (50.403) 
Coupon 0.00373*** -0.00373*** 0.076*** -0.076*** 
 (0.001) (0.001) (0.017) (0.017) 
Log(Lagged Quarterly  -0.01174*** 0.01174*** -0.455*** 0.455*** 
Issued Debt) (0.002) (0.002) (0.068) (0.068) 
Lagged Fiat Money -0.61994** 0.61994** -19.316** 19.316** 
 (0.265) (0.265) (8.571) (8.571) 
Log(Lagged Total Debt) -0.04867*** 0.04867*** -0.382*** 0.382*** 
 (0.006) (0.006) (0.137) (0.137) 
Log(Quarterly GDP) 0.02035*** -0.02035*** -0.025 0.025 
 (0.005) (0.005) (0.125) (0.125) 
Constant -0.27967*** 1.27967*** 2.433 -2.433 
 (0.105) (0.105) (2.997) (2.997) 
     
Year Fixed Effects Yes Yes Yes Yes 
Observations 8,295 8,295 8,295 8,295 
R-squared (Pseudo) 0.083 0.083 0.214 0.214 
Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. In this tab, independent variables 
are dummy variables. For example, Foreign equals one if the issued debt is foreign debt, otherwise it is 
zero. 
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Chapter III The Reaction of Option Prices to the Changes in the Federal Funds Rate Target 

“I think that there is a problem with cutting rates because it shows a sense of alarm.”8  

─ Robert Shiller 

3.1 Introduction 

The statutory objectives for monetary policy in the Federal Reserve Act are maximum 

employment, stable prices, and moderate long-term interest rates. However, the immediate effects 

of the Federal Open Market Committee’s (FOMC) announcements are found in financial markets. 

Bernanke and Kuttner (2005) find that, on average, an unanticipated 25-basis-point cut in the 

Federal funds rate target is associated with about a 1% increase in broad stock indexes. But 

Kontonikas et al. (2013) claim that, throughout the 2008 financial crisis, stocks did not react 

positively to unexpected Federal funds rate cuts, which were interpreted as signals of the 

desperation of central bankers and the subdued future economic growth. Vahamaa and Aijo (2011) 

and Gospodinov and Jamali (2012) show that the surprise changes in the Federal funds rate target 

significantly increase the volatility of the S&P 500 index. Brenner et al. (2009) study the short-

term response of U.S. stock, Treasury, and corporate bond markets to the release of U.S. 

macroeconomic information, including FOMC’s target rate changes. Investors, researchers and 

policymakers have been interested in the impacts of monetary policy on the security markets and 

understanding the link between security pricing and monetary policy. 

In recent decades, the options markets have been developing with a dramatic increase in 

trading volume. As highly leveraged financial instruments, options have been widely exploited by 

market participants to manage risks, discover equity prices, forecast market movements, etc. 

Chakravarty et al. (2004) document that the contribution of options markets to price discovery is 

 
8 CNBC interview: https://www.cnbc.com/2019/08/20/robert-shiller-says-the-feds-rate-cut-had-the-opposite-
intended-effect-sparked-recession-alarm.html 

https://www.cnbc.com/2019/08/20/robert-shiller-says-the-feds-rate-cut-had-the-opposite-intended-effect-sparked-recession-alarm.html
https://www.cnbc.com/2019/08/20/robert-shiller-says-the-feds-rate-cut-had-the-opposite-intended-effect-sparked-recession-alarm.html
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about 17% on average. Faccini et al. (2015) extract information from S&P 500 index option prices 

to predict U.S. real economic activities. Despite its huge trading volume and close connections 

with other financial markets and the macroeconomy, there is limited research discussing how 

options markets respond to monetary policy decisions. In this study, I aim to contribute to the 

literature by examining the reactions of options prices to the changes in the Federal funds rate 

target. 

The efficient market hypothesis suggests that anticipated monetary policy decisions should 

have already been incorporated in security prices. Market participants only react to the surprise 

changes in the Federal funds rate target. Following the method from Kuttner (2001), I use Federal 

funds futures contracts to measure the unexpected Federal funds rate changes and am therefore 

able to estimate the impact of monetary policy shocks on options prices. This paper applies an 

“event-study” analysis style based on Bernanke and Kuttner (2005), the sample of events is the 

union of all days when the FOMC announces the Federal funds rate target decisions from 2003 to 

2017.  

Baseline results show that during expansionary periods a 25-basis-point unanticipated cut 

in the Federal funds rate is associated with an 18.5% increase the S&P 500 index call options 

prices and an 18.6% decrease in the put options prices. But the result is reversed during the 2008 

financial crisis, showing a clear structural change in the options market reaction to monetary policy 

changes. The reversed reactions are consistent with Kontonikas et al. (2013)’s finding that 

unexpected Federal funds rate target cuts signal worsening future economic activity that triggers 

market downturns. I also find that the effects of unanticipated cuts account for larger part of the 

response of S&P 500 index options prices in the 2008 financial crisis than in expansionary periods. 

When there is unusual uncertainty in the market, both option buyers and writers wait for the 
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information from the Federal Reserve to assess the state of current economic environment and to 

provide guidance through turbulent waters. 

Based on the Black-Scholes pricing model, the theoretical price for a call or a put option is 

a non-linear function of various inputs, including security price, strike price, security volatility, 

interest rates, and maturity. I apply the short-lived arbitrage model (Hilliard et al., 2019) to estimate 

how the changes in the Federal funds rate target drive option prices through the underlying security 

price, its volatility and interest rates. The results suggest that the majority of changes in S&P 500 

index options prices can be attributed to the movements of the underlying index. The direct 

influence of interest rates accounts for 10% to 18% of option prices changes depending on option 

types and business cycles. I also find that the options market does not fully incorporate available 

interest rate information before FOMC meetings and is less efficient during the 2008 financial 

crisis. 

Though the monetary policy decisions from FOMC have broad market impact, banks are 

particularly sensitive to the changes in the Federal funds rate change because of the nature of their 

business. I find that options on three major U.S. bank holding companies, including JP Morgan, 

Citigroup, and Wells Fargo, experience more volatility on FOMC meeting days. The regression 

results show that bank equity options respond more aggressively to the Federal funds rate changes 

in two senses – larger coefficient magnitudes and higher R-squared values.  

Endogeneity may impose potential econometric problems because monetary policy may 

react to the movements of financial markets, including the options market. However, as pointed 

out by Kontonikas et al. (2013), the endogeneity problem should be less of a concern when daily 

data are used within an event study framework. The FOMC’s decisions on Federal funds rate target 

are unlikely to be affected by the dynamics of financial markets on the same day, thus the chance 
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that my results are compromised by reverse causality running from options prices to changes in 

monetary policy is minimal.  

This study contributes to the existing literature on the relationship between monetary policy 

decisions and financial markets. I examine how options prices react to FOMC monetary policy 

decisions and reveal a structural change in the options market reaction during the 2008 financial 

crisis. Using the short-lived arbitrage model, I quantitatively measure the sources of options prices 

changes, providing a more detailed understanding of the movements in the options market. To my 

best knowledge, this is the first comprehensive study, both qualitatively and quantitatively, that 

directly connects the options prices and the Federal funds rate target. This paper also contributes 

to the debate of monetary policy effects over business cycles (Christiano et al., 2002; Gregoriou 

et al, 2009). I show that the expansionary Federal funds rate shocks during 2008 financial crisis 

were associated with market downturns, indicating the inefficiency of monetary policy when the 

market was filled with fears. In the end, this study adds to the literature that examines the impact 

of monetary policy decisions on banking sector (Yin et al., 2010; Ornella, 2015; Borio et al., 2017). 

I find a strong relationship between banks and interest rates from the reactions of stocks and 

options on three major bank holding companies to monetary policy shocks. 

The remainder of the paper is organized as follows. Section 2 discusses the construction of 

variables and the data used in the following empirical analysis. Section 3 revisits previous studies 

and reveal new findings under different sample periods. Section 4 reports and discusses the results 

from the empirical analysis. Section 5 concludes. 

3.2 Model and Data 

3.2.1 The Expected and Unexpected Components of the Fed Funds Rate Target Changes 
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Asset markets are forward looking and tend to incorporate any information about 

anticipated policy changes. However, it is difficult to separate the unexpected policy change that 

may generate a market response. For a monetary policy decision made on day 𝑑𝑑 of month 𝑚𝑚, 

Kuttner (2001) creates a measure for the unexpected change in the Federal funds rate target as 

below 

Δ𝑖𝑖𝑢𝑢 = 𝐷𝐷
𝐷𝐷−𝑑𝑑

�𝑓𝑓𝑚𝑚,𝑑𝑑
0 − 𝑓𝑓𝑚𝑚,𝑑𝑑−1

0 �, (1)

where 𝑓𝑓𝑚𝑚,𝑑𝑑
0  is the current-month 30 Day Federal funds futures rate and 𝐷𝐷 is the number of days in 

the month. The scale 𝐷𝐷
𝐷𝐷−𝑑𝑑

 is introduced because the contract settlement prices are based on monthly 

averages. The expected component of the rate changes is defined as the actual change minus the 

unexpected change, or  

Δ𝑖𝑖𝑒𝑒 = Δ𝑖𝑖 − Δ𝑖𝑖𝑢𝑢. (2) 

3.2.2 Short-Lived Arbitrage Option Pricing Model 

To study the channels of monetary transmission mechanism, I need an option pricing model 

to estimate how much the changes in security price, volatility, and interest rates contributes to the 

changes in option prices, respectively.  

The Black-Scholes model assumes constant volatility and interest rates, resulting in a 

simple and elegant option pricing formula. The Black-Scholes formula, however, does not fit the 

settings of this study. To estimate how the changes in the Federal funds rate target affect option 

prices through the underlying security price, volatility and interest rates, I use a model relaxing the 

constant constraints on volatility and interest rate. Hilliard and Hilliard (2017) show the advantage 

of the Short-Lived Arbitrage model in pricing options. Following the spirit of short-lived arbitrage 

model, I use the call pricing formula: 
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𝐶𝐶(𝑆𝑆𝑡𝑡,  𝐾𝐾,𝜎𝜎𝑡𝑡∗,  𝑟𝑟𝑡𝑡∗, 𝑡𝑡,𝑇𝑇) = 𝑁𝑁(𝑑𝑑1)𝑆𝑆𝑡𝑡 − 𝑁𝑁(𝑑𝑑2)𝐾𝐾𝑒𝑒−𝑟𝑟𝑡𝑡∗(𝑇𝑇−𝑡𝑡), (3) 

where 𝑑𝑑1 =
𝑙𝑙𝑙𝑙�𝑆𝑆𝑡𝑡𝐾𝐾�+�𝑟𝑟𝑡𝑡

∗+
𝜎𝜎𝑡𝑡
∗2

2 �(𝑇𝑇−𝑡𝑡)

𝜎𝜎𝑡𝑡∗√𝑇𝑇−𝑡𝑡
,  𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎𝑡𝑡∗√𝑇𝑇 − 𝑡𝑡. 

Using the method from Hilliard et al. (2019), I calculate the Greeks using the jointly 

implied volatility 𝜎𝜎∗ and interest rate 𝑟𝑟∗: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛿𝛿 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑁𝑁(𝑑𝑑1∗), 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = ν =  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑆𝑆𝑁𝑁′(𝑑𝑑1∗)√𝑇𝑇 − 𝑡𝑡,

  𝑅𝑅ℎ𝑜𝑜 = 𝜌𝜌 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐾𝐾(𝑇𝑇 − 𝑡𝑡)𝑒𝑒−𝑟𝑟𝑡𝑡∗(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝑑𝑑2∗). (4)
 

3.2.3 Data 

The data used in the empirical analysis consist of the S&P 500 index and its options, the 

VIX index, the stock prices and options of three major U.S. bank holding companies – JP Morgan, 

Citigroup, and Wells Fargo, Federal funds future prices, and the Federal funds rate target. 

OptionMetrics provide all data related to the prices and options of indices and stocks. Federal 

funds future prices are from FactSet and the Federal funds target rates are from the Federal Reserve 

Bank of St. Louis website.  

For options on the S&P 500 index and three major U.S. bank holding companies, I retain 

only those with at least two successive trading days to evaluate daily option price changes. I drop 

options with no trading volume, options whose price is less than 25 cents, and short-term options 

whose maturity is less than 14 days. I also delete deep in- and out-of-money options whose delta 

has absolute value less than 0.05 or greater than 0.95.  

Since my research focuses on the response of asset prices to specific events, I follow the 

“event-study” style analysis from Bernanke and Kuttner (2005). For the purpose of this research, 

the sample of events is defined as the union of all days when decisions on the funds rate target are 
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announced, with days corresponding to the scheduled FOMC meetings, from January 29, 2003 to 

December 13, 2017. I drop the FOMC meeting on December 16, 2008 because the FOMC shifted 

from a target number to a target range for the Federal funds rate. There are 8 scheduled FOMC 

meeting each year, therefore, there are 119 events in the sample.  

3.3 Previous Empirical Studies 

3.3.1 Data 

Since option price is a function of its underlying security’s price, the stock market is a channel 

through which a monetary policy shock exerts its influence on the options market. To understand 

the policy transmission mechanism, I apply the event study approach in Bernanke and Kuttner 

(2005) to estimate the impact of monetary policy on stock price. The idea is to regress the changes 

in stock price on the changes in the Federal funds rate target on FOMC meeting days: 

Δ𝑆𝑆𝑡𝑡/𝑆𝑆𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏Δ𝑖𝑖𝑡𝑡 + 𝜖𝜖𝑡𝑡 (5)  

and  

Δ𝑆𝑆𝑡𝑡/𝑆𝑆𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏𝑒𝑒Δ𝑖𝑖𝑡𝑡𝑒𝑒 + 𝑏𝑏𝑢𝑢Δ𝑖𝑖𝑡𝑡𝑢𝑢 + 𝜖𝜖𝑡𝑡. (6) 

where Δ𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑡𝑡−1, 𝑆𝑆𝑡𝑡 is the closing price on the FOMC meeting day and 𝑆𝑆𝑡𝑡−1is the closing 

price one-day before the FOMC meeting day. 

Regression (5) estimates the sensitivity of stock price to the changes in the Federal funds rate target, 

Bernanke and Kuttner (2005) apply the regression on the CRSP value-weighted return over the 

FOMC meeting days between June 1989 and December 2002 (see column (a) and (b) in Table 

III.1).  Because the available 30-Day Federal Funds Futures data provided by FactSet is limited, 

my replication only applies to the period from February 1994 to December 2002 (see column (c) 
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and (d)). My replication result suggests that the stock market only responds to the surprise 

components significantly and that the estimated coefficient of the surprise change is -2.56 that is 

significant at the 0.01 level, which is very similar to the finding in Bernanke and Kuttner (2005). 

Applying the same analysis to our sample period from January 2003 to December 2017, I 

find the opposite result for economic periods that are classified as expansionary versus 

recessionary. The recessionary periods (2008 financial crisis) last from the third quarter of 2007 

to the second quarter of 2009 according to the definition by the Federal Reserve Bank.9 The rest 

of the periods from 2003 to 2017 are classified as expansionary periods. During expansionary 

periods the S&P 500 index negatively responds to the unexpected changes, consistent with 

Bernanke and Kuttner's (2005) finding, as shown in Table III.2 column (b). However, over 

recessionary periods the S&P 500 index positively responds to the unexpected changes, which 

means that an unanticipated cut in the Federal funds rate target associate with a market downturn 

thus fails to stimulate the market (see Table III.2 column (d)). The positive correlation is consistent 

with Vahamaa and Aijo’s (2011) finding that an unexpected cut in the Federal funds rate has 

different effects on market volatility between expansive and restrictive policy cycles.  

3.3.2 FOMC Effect on the VIX index 

Volatility is an important factor that directly influences the price of an option. The VIX 

index, derived from S&P 500 index call and put options prices, is a proxy of the implied volatility 

of the S&P 500 index. Vahamaa and Aijo (2011) examine how the Federal Reserve’s monetary 

policy decisions affect the returns on the VIX index. They find a positive relationship between 

policy surprises and the VIX index and the impact of monetary policy varies between expansive 

 
9 Dates of U.S. recessions: https://fred.stlouisfed.org/series/JHDUSRGDPBR 

https://fred.stlouisfed.org/series/JHDUSRGDPBR
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and restrictive policy periods. I loosely replicated their research approach and find similar results. 

Then I repeat the regression for VIX index returns:  

Δ𝑉𝑉𝑉𝑉𝑋𝑋𝑡𝑡/𝑉𝑉𝑉𝑉𝑋𝑋𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏Δ𝑖𝑖𝑡𝑡 + 𝜖𝜖𝑡𝑡  (7)  

and  

Δ𝑉𝑉𝑉𝑉𝑋𝑋𝑡𝑡/𝑉𝑉𝑉𝑉𝑋𝑋𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏𝑒𝑒Δ𝑖𝑖𝑡𝑡𝑒𝑒 + 𝑏𝑏𝑢𝑢Δ𝑖𝑖𝑡𝑡𝑢𝑢 + 𝜖𝜖𝑡𝑡. (8) 

As shown in Table III.3, the VIX index responds positively to the unexpected changes in 

the Federal funds rate in expansionary periods, but the correlation is reversed in the 2008 financial 

crisis. This is not surprising because the VIX index moved in the opposite direction of the S&P 

500 index about 80% according to a CBOE report10. The negative relationship between the VIX 

index and the unexpected fund rate cuts shows that the expansionary monetary policy in an 

economic recession raises concerns about further economic slowdown. 

3.4 Empirical Studies 

3.4.1 FOMC Effect on S&P 500 Index Options 

The most straightforward way to study the effect of changes in the Federal funds rate on 

S&P 500 index options is to repeat the regressions as in the above section. But options should be 

treated differently because there are multiple options with different maturities and moneyness 

traded at different prices on the underlying security each day. I use open interest weighted option 

return to measure the overall options reaction to the change in the Federal funds rate target on each 

FOMC meeting day. Taking call options on the S&P 500 index for example, the option return on 

FOMC meeting date 𝑡𝑡  is 

 
10 CBOE report, http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/the-
relationship-of-the-spx-and-the-vix-index 

http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/the-relationship-of-the-spx-and-the-vix-index
http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/the-relationship-of-the-spx-and-the-vix-index
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Δ𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑡𝑡 =
∑ �𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑖𝑖,𝑡𝑡+1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑖𝑖,𝑡𝑡� × 𝑊𝑊𝑖𝑖,𝑡𝑡𝑖𝑖

∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑖𝑖,𝑡𝑡 × 𝑊𝑊𝑖𝑖,𝑡𝑡𝑖𝑖
, (9) 

where 𝑊𝑊𝑖𝑖,𝑡𝑡 is the open interest of option 𝑖𝑖 on e FOMC meeting vent date 𝑡𝑡. Because of liquidity 

considerations, I only retain options with maturity between 14 and 90 days. 

Next, I run the following two regressions: 

Δ𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏Δ𝑖𝑖𝑡𝑡 + 𝜖𝜖𝑡𝑡 (10) 

and  

Δ𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏𝑒𝑒Δ𝑖𝑖𝑡𝑡𝑒𝑒 + 𝑏𝑏𝑢𝑢Δ𝑖𝑖𝑡𝑡𝑢𝑢 + 𝜖𝜖𝑡𝑡. (11) 

The regression results reported in Table III.4 Panel A show that the S&P500 index call 

options only respond to unexpected changes in the Federal funds rate target. In expansionary 

periods, a 25-basis-point unanticipated cut is associated with about an 18.5% increase in the call 

options prices. However, the result is reversed in recessionary periods where a 25-basis-point 

unanticipated cut is associated with about a 48.1% decrease in the call options prices. The 

unexpected cut in the Federal funds rate target in an economic recession is interpreted as a negative 

signal because investors take such cuts as a prediction of a future market declines. This 

interpretation is consistent with past studies that interest rate cuts during the crisis were perceived 

by market participants as a signal of deteriorating economic prospects and reinforced “flight to 

safety” trading (Florackis et al., 2014; Kontonikas et al., 2013). The options market is very 

sensitive to a cut in recessionary periods with a 48.1% drop in the call options prices versus an 

18.5% increase in the put options prices during expansionary periods. The put options on S&P 500 

index behave similarly with the opposite direction. A 25-basis-point unanticipated cut is associated 

with a 18.6% drop in the put options prices in expansionary periods versus a 42.1% surge during 
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an economic recession see Table III.4 Panel B. The larger reaction magnitudes in the economic 

recession relate to the finding that the possibility of black swans is initially ignored, but ultimately 

turns into an overstated fear (Gennaioli et al., 2015). This result is also consistent with the finding 

in Bondt and Thaler (1985) that most people tend to overreact to unexpected and dramatic news 

events. 

The R-squared value is much higher for regressions in economic recessions than for those 

in economic expansions. This implies that the FOMC’s monetary policy decisions have more 

influence on the financial markets during recessionary periods. Perhaps the market participants, 

already in panic, wait for the macroeconomic forecast from the Federal Reserve and trade 

accordingly.  

The linear regression results describe the overall response of options to the changes in the 

Federal funds rates target. I take a different approach here because option prices are not a linear 

function of security price, security volatility or interest rates. To gain a more detailed 

understanding, I analyze how options prices react to the changes in the Federal funds rate through 

three channels: underlying security price, volatility, and interest rates. To do so, I apply the 

following first order approximation 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖,𝑡𝑡 =
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙𝑖𝑖,𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

× 𝑑𝑑𝑆𝑆𝑡𝑡 +
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙𝑖𝑖,𝑡𝑡
𝜕𝜕𝜎𝜎𝑖𝑖,𝑡𝑡

× 𝑑𝑑𝜎𝜎𝑖𝑖,𝑡𝑡 +
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙𝑖𝑖,𝑡𝑡
𝜕𝜕𝑟𝑟𝑡𝑡

× 𝑑𝑑𝑟𝑟𝑡𝑡. (12) 

As shown in the equation (12), the changes in the option prices can be attributed to three 

Greek terms: delta = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙𝑖𝑖,𝑡𝑡
𝜕𝜕𝑆𝑆𝑡𝑡

× 𝑑𝑑𝑆𝑆𝑡𝑡, vega = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙𝑖𝑖,𝑡𝑡
𝜕𝜕𝜎𝜎𝑖𝑖,𝑡𝑡

× 𝑑𝑑𝜎𝜎𝑖𝑖,𝑡𝑡, and rho = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑙𝑙𝑖𝑖,𝑡𝑡
𝜕𝜕𝑟𝑟𝑡𝑡

× 𝑑𝑑𝑟𝑟𝑡𝑡. The absolute 

value of each Greek term is applied to avoid negative terms.  
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Based on implied volatility and interest rates and using the three Greek terms from the 

Short-Lived Arbitrage model, I find that the delta term plays the key role while the vega and rho 

terms account for a significant part in determining the changes in the S&P 500 index call options. 

The rho term contributes about 18% in expansionary periods and 15% in recessionary periods (see 

Figure III.1). For S&P 500 index put options, the delta term still dominates and the rho term 

accounts for 10% to 12% depending on the business cycle.  

The delta term plays a more dominant role in recessionary periods than in expansionary 

periods. The explanation rests in the coefficients of the unexpected change found in Table III.2: 

The S&P 500 index responds more aggressively to the Federal funds rate change in an economic 

recession. To confirm this explanation, I regress each Greek term on the changes in Federal funds 

rate target:  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏Δ𝑖𝑖𝑡𝑡 + 𝜖𝜖𝑡𝑡 (10) 

and  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏𝑒𝑒Δ𝑖𝑖𝑡𝑡𝑒𝑒 + 𝑏𝑏𝑢𝑢Δ𝑖𝑖𝑡𝑡𝑢𝑢 + 𝜖𝜖𝑡𝑡. (11) 

Table III.5 shows that both delta and vega terms only respond to the unexpected part of 

target rate changes in expansionary periods. But the rho term, which is the sensitivity of an option 

to the interest rate, reacts not only to the unexpected changes in the Federal funds rate target but 

also to the expected changes. Table III.4 and 5 together show that though the S&P500 index 

options do not respond to raw funds rate changes, rho terms which relate to the interest rate respond 

to such shocks. This implies that, unlike the equity market, the options market does not fully reflect 

available information related to interest rates before FOMC announcements.  
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I repeat the analysis for Greek terms in recessionary periods. Table III.5 and 6 show that in 

general Greek terms respond to the unexpected changes in the Federal funds rate target more 

aggressively in recessionary periods. For example, in expansionary periods, a 25-basis-point 

unexpected cut associates with a 1.78% increase in the rho term of call options on the S&P 500 

index. The same cut associates with a 4.37% increase in the rho term in recessionary periods. As 

highly leverage financial assets, options are more sensitive to many market innovations than 

equities. Being exposed to options in an economic recession is even more risky. Table III.5 and 6 

together also confirm the opposite effect of monetary policy on the S&P 500 index and the VIX 

index during expansionary versus recessionary periods. The delta term of a S&P 500 call option 

on average responds to an unexpected 25-basis-point funds rate cut with an increase of 22.53% in 

expansionary periods while a 25.55% drop in recessionary periods.  The vega term of a S&P 500 

put option on average responds to an unexpected 25-basis-point funds rate cut with a 4.83% 

increase in expansionary periods while a 5.04% drop in recessionary periods.   

Information loss occurs when conducting an aggregate analysis. Regressing option prices 

changes to the changes in the Federal funds rate target fails to discover the dynamics of individual 

components related to security price, volatility, and interest rates. Above analysis of Greek terms 

reveals how each component contributes to the option prices around the FOMC announcements. 

This method allows market participants to both qualitatively and quantitatively understand the 

driving forces of option prices. 

3.4.2 Different FOMC Effects on S&P 500 Index Options Across Moneyness 

Trading asymmetries are found among different moneyness levels. Out-of-the-money 

(OTM) options on market indices are more heavily traded than other options are. Market 

participants purchase more OTM options on the S&P 500 index to hedge against a potential market 
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crash. I examine whether options across different moneyness levels respond to FOMC decisions 

differently.  

Define the moneyness of a call option by the ratio of the underlying security price and the 

strike price, that is, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑆𝑆𝑡𝑡/𝐾𝐾.  For a put option, the moneyness is defined inversely: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐾𝐾/𝑆𝑆𝑡𝑡. An option with moneyness between 0.98 and 1.02 is defined as an at-the-

money (ATM) option. The moneyness of an in-the-money (ITM) option is greater than 1.02 and 

the moneyness of an out-the-money (OTM) option is less than 0.98. 

Tables III. 7 and III. 8 return consistent results that OTM options, both calls and puts, are 

most sensitive to the unexpected changes in the Federal funds rate target, while ITM options are 

least sensitive. All regressions report insignificant coefficients of raw funds rate change and 

expected changes. It is true that OTM options have the least sensitivity of option price to the 

interest rate, rho. However, the returns of OTM options are more sensitive to the interest rate 

changes because they are cheaper than ATM and ITM options. Because OTM options have higher 

level of liquidity, stronger responses to interest rate shocks, and lower prices, they serve as cost-

efficient financial instruments to hedge or speculate the risks involved in FOMC monetary policy 

decisions. This is in line with the finding in Chen et al. (2005) that informed traders should transact 

OTM options to extract as much value as possible from their private information.  

In recessionary periods, options respond more to the unexpected Federal funds rate changes 

than they do during expansionary periods. The high R-squared value also indicates that FOMC 

monetary policies have more influence over other information sources when there is fear in the 

market. Unfortunately, the amplified influence of Federal funds rate cuts during the crisis is against 

the initial intend of the Federal Reserve, showing the inefficiency of conventional monetary policy.  
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3.4.3 FOMC Effect on Options of Banks 

My analysis by far has estimated the impacts of the Federal funds rate target changes on 

the option prices of a broad stock market index – the S&P 500 index. Now I turn to the impacts on 

banking industry. Because the majority of its assets and liabilities depends on the interest rate, 

banks are more sensitive to interest rate changes (Du et al., 2018). I examine this hypothesis based 

on stock prices of three major U.S. bank holding companies – JP Morgan, Citigroup, and Wells 

Fargo. 

Table III.9 show that bank stock prices behave differently from the S&P 500 index in two 

aspects. First, in general, bank stock prices are sensitive to both the expected changes and the 

unexpected changes in the changes in the Federal funds rate target. But the S&P500 index only 

react to the unexpected changes as shown in Table III.2. This difference suggests the higher 

sensitivity of bank equities to FOMC monetary policy changes (Fraser et al., 2002). Second, bank 

stock prices experience more volatility than the S&P 500 index on FOMC announcement days. 

On average, a 25-basis-point unexpected cut is followed by a 0.92% increase in the S&P 500 index 

in expansionary periods, the same cut is associated with increases of 1.43% for JP Morgan, 1.52% 

for Citigroup, and 1.20% for Wells Fargo stock prices. The difference is larger during the 2008 

financial crisis: a 25-basis-point unexpected cut in the crisis is associated with a 2.91% drop in the 

S&P 500 index versus a 7.84% decrease in JP Morgan stock price, a 9.24% decrease for Citigroup, 

and a 12.14% drop for Wells Fargo.  

Following the same logics, options on banks are expected to have a larger response 

magnitude on FOMC meeting days than those on the S&P 500 index. Furthermore, the rho term 

is expected to play a more important role in determining option price movements. Table III.10 

shows that on FOMC meeting days, the average absolute return of S&P 500 call options is 25.51%, 
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while the average absolute return of call options on Wells Fargo is as high as 33.48%. Call options 

on JP Morgan and Citigroup are also more volatile than their S&P 500 counterparts. Such 

differences are smaller for put options, but in general options on three major banks’ stocks have 

more volatility than S&P 500 index options across different moneyness.  

As shown in Table III.11, options on bank equities respond to not only the unexpected 

changes but also the expected changes in the Federal funds rate target during both expansionary 

periods and the 2008 financial crisis. The significant coefficients of the expected change indicate 

that the options on bank equities do not fully incorporate available information before FOMC 

announcements. Options on bank equities are more sensitive to the changes and regressions return 

higher R-squared during financial crises. The combined evidence suggests that changes in the 

Federal funds rate target have more influence on banking sector during a financial crisis. One 

explanation is that market investors overreact in the chaotic financial environment where the 

market efficiency is severely compromised (Lim et al., 2008). In particular, during periods of high 

interest rate volatility, interest rate volatility has more impact on stocks of financial intermediaries 

than non-financial firms (Yourougou, 1990). This finding is also consistent with the result in Choi 

et al. (1992) that the interest rate sensitivity of bank stock returns differs in the pre- and post-1979 

periods.  

Similar to the analysis for options on S&P 500 index, I plot the Greek terms for options on 

bank equities (see Figure III.2, III.3, and III.4). Compared to their counterparts on S&P 500 index, 

the changes in option prices on bank equities are less attributed to the delta term but more to the 

rho term as expected. Put options in recessionary periods are the exception. I conclude that the 

interest rate plays a more important role in bank equity options pricing than it does in S&P 500 

index options pricing. 
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3.5 Conclusions   

This paper studies the impact of monetary policy decisions on the options market. I find 

that an unexpected cut in the Federal funds rate target moves the options market in opposite 

directions between periods of expansion and recession. In expansionary periods, a 25-basis-point 

unanticipated cut is associated with about an 18.5% increase in S&P 500 index call options prices 

and an 18.6% drop in S&P 500 index put options prices. However, during the 2008 financial crisis, 

a 25-basis-point unanticipated cut is associated with about a 48.1% decrease in the S&P 500 index 

call options prices and a 42.1% increase in S&P 500 index put options prices. The higher R-squared 

and larger coefficients in regressions show that monetary policy decisions have more influence on 

the financial markets during the 2008 financial crisis.  

Using the Short-Lived Arbitrage model, I quantitatively measure three transmission 

channels for rate changes – equity price, market volatility and interest rates. Evidence show that 

the changes in the Federal funds rate target does not only indirectly moves the options market 

through equity price and its volatility, but also through interest rates directly. Bank equity options 

are more sensitive to monetary policy shocks, exhibiting more volatility than the options on the 

S&P 500 index in FOMC meeting days. Compared with options on the S&P 500 index, bank equity 

options react stronger to the changes in the Federal funds rate.  

The overall evidence suggests that cutting the Federal funds rate target, a conventional 

monetary policy tool, fails to boost the market in the 2008 financial crisis. Indeed, it is interpreted 

as a negative sign of future economy and contributes to market turmoil. As an empirical study on 

the effects of monetary policy on options markets, this paper helps investors, policymakers, and 

researchers better understand how options markets respond and incorporate the information from 

monetary policy decisions.  
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Figure III.1.Average Contribution of Greek Terms to Changes in S&P 500 Index Option Price 
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Figure III.2. Average Contribution of Greek Terms to Changes in JP Morgan Option Price 
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Figure III.3. Average Contribution of Greek Terms to Changes in Citigroup Option Price 
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Figure III.4. Average Contribution of Greek Terms to Changes in Wells Fargo Option Price 
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Table III.1.Market Index and Federal Funds Rate Changes. A Replication of Bernanke and 
Kuttner (2005) 

 1989 - 2002 (B&K 2005, 
Original) 

 1994 - 2002 (B&K 2005, 
Replicate)  

Regressor (a) (b)  (c) (d)  
Raw funds rate 
change -0.11   -0.803  

  (0.355)   (0.584)   
Expected change  0.67   0.0268    (0.406)   (0.621)  
Unexpected change  -2.55***   -2.560***    (0.914)   (0.809)  
Constant 0.17** 0.11  0.328** 0.276*   (0.079) (0.080)  (0.145) (0.139)         
R-squared -0.007 0.049  0.025 0.131  
The table reports the results of regressing S&P 500 index returns on changes in the Federal funds rate, 
column (c), and on the expected and unexpected components of the funds rate change, column (d). Columns 
(a) and (b) depict results for 1-day CRSP value-weighted equity from Bernanke and Kuttner's (2005) for 
comparison. 
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Table III.2. S&P 500 Index and Federal Funds Rate Changes 

 2003 - 2017 (exclude 2008 
financial crisis) 

 2008 financial crisis 

Regressor (a) (b)  (c) (d) 
Raw funds rate 
change -1.036   1.055  

 (0.817)   (2.254)  
Expected change  -0.875   3.029 
  (0.801)   (1.881) 
Unexpected change  -3.662***   11.64** 
  (1.344)   (4.082) 
Constant 0.288*** 0.297***  1.311* 1.407** 
 (0.103) (0.101)  (0.699) (0.544) 
      
R-squared 0.015 0.069  0.020 0.463 

The table depicts the results of regressing S&P 500 index returns on changes in the Federal funds rate, 
column (a) and (c), and on the expected and unexpected components of the funds rate change, column (b) 
and (d). 
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Table III.3. VIX Index and Federal Funds Rate Changes 

 2003 - 2017 (exclude 2008 
financial crisis) 

 2008 financial crisis 

Regressor (a) (b)  (c) (d) 
Raw funds rate 
change 7.452   3.971  

 (6.067)   (10.24)  
Expected change  6.352   -4.819 
  (5.975)   (8.673) 
Unexpected change  25.42**   -43.17** 
  (10.02)   (18.83) 
Constant -3.092*** -3.153***  -3.345 -3.775 
 (0.765) (0.752)  (3.174) (2.508) 
      
R-squared 0.014 0.060  0.013 0.442 

The table reports the results of regressing VIX index returns on changes in the Federal funds rate, column 
(a) and (c), and on the expected and unexpected components of the funds rate change, column (b) and (d). 
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Table III.4. S&P 500 Option Prices and Federal Funds Rate Changes 
Panel A. Call Options 

 2003 - 2017 (exclude 2008 
financial crisis) 

 2008 financial crisis 

Regressor (a) (b)  (c) (d) 
Raw funds rate 
change -17.08   6.159  

 (23.65)   (41.45)  
Expected change  -13.61   40.89 
  (23.48)   (35.76) 
Unexpected 
change 

 -73.89*   192.4** 
  (39.38)   (77.63) 
Constant 6.466** 6.660**  17.58 19.28* 
 (2.983) (2.954)  (12.85) (10.34) 
      
Observations 106 106  13 13 
R-squared 0.005 0.035  0.002 0.415 

 

Panel B. Put Options 
 2003 - 2017 (exclude 2008 

financial crisis) 
 2008 financial crisis 

Regressor (a) (b)  (c) (d) 
Raw funds rate 

change 19.76   -20.11  

 (19.08)   (42.97)  
Expected change  16.42   -47.77 
  (18.82)   (42.09) 
Unexpected 

change 
 74.42**   -168.5* 

  (31.56)   (91.36) 
Constant -9.123*** -9.310***  -13.53 -14.88 
 (2.407) (2.368)  (13.32) (12.17) 
      
Observations 106 106  13 13 
R-squared 0.010 0.053  0.020 0.259 

Panel A reports the results of regressing S&P 500 index call options on the Federal funds rate changes, 
column (a) and (c), and on the expected and unexpected components of the Federal funds rate changes, 
column (b) and (d). Panel B reports results for S&P 500 index put options. 
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Table III.5. Greek Terms of the S&P 500 Option Prices and Federal Funds Rate Changes 
Excluding the 2008 Financial Crisis 
Panel A. Call Options 

Regressor Delta term Delta term Vega term Vega term Rho term Rho term 
Raw funds rate change -22.36  -0.387  7.735**  
 (16.05)  (5.183)  (3.419)  
Expected change  -14.74  -1.687  7.127** 
  (16.21)  (5.271)  (3.482) 
Unexpected change  -90.12***  11.17  13.15* 
  (31.49)  (10.24)  (6.765) 
Moneyness -3.546** -3.414* -1.269** -1.291** -0.619 -0.630* 
 (1.766) (1.752) (0.570) (0.570) (0.376) (0.376) 
Constant 9.486*** 9.337*** -0.801 -0.775 -1.121** -1.109** 
 (2.191) (2.174) (0.707) (0.707) (0.467) (0.467) 
       
Observations 318 318 318 318 318 318 
R-squared 0.018 0.037 0.015 0.021 0.025 0.028 

 
Panel B. Put Options 
Regressor Delta term Delta term Vega term Vega term Rho term Rho term 
Raw funds rate change 10.15  1.534  -4.865***  
 (13.09)  (3.083)  (1.809)  
Expected change  4.268  -0.320  -4.479** 
  (13.15)  (3.067)  (1.832) 
Unexpected change  66.59***  19.32***  -8.572** 
  (24.64)  (5.748)  (3.433) 
Moneyness -2.128 -1.995 -0.495 -0.453 0.129 0.120 
 (1.345) (1.332) (0.317) (0.311) (0.186) (0.186) 
Constant -0.310 -0.503 -1.273** -1.334** 0.517 0.529* 
 (2.283) (2.262) (0.538) (0.528) (0.315) (0.315) 
       
Observations 315 315 315 315 315 315 
R-squared 0.010 0.033 0.009 0.049 0.025 0.030 

The table depicts the results of regressing Greek terms of options on the Federal funds rate. 
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Table III.6. Greek Terms of the S&P 500 Option Prices and Federal Funds Rate Changes During 
the 2008 Financial Crisis 
Panel A. Call Options 

Regressor Delta term Delta term Vega term Vega term Rho term Rho term 
Raw funds rate change 0.834  6.532  16.73***  
 (23.15)  (8.943)  (4.649)  
Expected change  2.305  -2.606  17.48*** 
  (17.23)  (8.781)  (4.482) 
Unexpected change  102.2***  -42.48**  34.91*** 
  (27.14)  (19.06)  (10.13) 
Moneyness 3.415 -1.956 -2.075 -2.075 -2.711** -2.528* 
 (6.898) (7.149) (2.664) (2.435) (1.303) (1.255) 
Constant 16.69 0.577 0.473 0.0265 2.940 2.893 
 (9.957) (7.753) (3.846) (3.518) (2.157) (2.073) 
       
Observations 39 39 39 39 39 39 
R-squared 0.007 0.356 0.031 0.213 0.336 0.404 

 

Panel B. Put Options 
Regressor Delta term Delta term Vega term Vega term Rho term Rho term 
Raw funds rate change -11.41  -1.946  -5.035***  
 (17.02)  (3.918)  (1.724)  
Expected change  -34.48**  -5.510  -5.269*** 
  (15.17)  (3.938)  (1.667) 
Unexpected change  -135.1***  -21.06**  -11.38*** 
  (32.94)  (8.549)  (3.680) 
Moneyness -1.350 -1.350 -0.151 -0.151 -0.0349 -0.0264 
 (5.071) (4.208) (1.167) (1.092) (0.503) (0.485) 
Constant -12.36* -13.49** -0.306 -0.480 0.850 0.821 
 (7.319) (6.079) (1.685) (1.578) (0.899) (0.867) 
       

Observations 39 39 39 39 39 39 
R-squared 0.014 0.340 0.007 0.155 0.193 0.271 

The table depicts the results of regressing Greek terms of options on the Federal funds rate. 
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Table III.7. S&P 500 Option Prices and Federal Funds Rate Changes by Moneyness Excluding 
the 2008 Financial Crisis 
Panel A. Call Options    

 ITM  ATM  OTM 
Regressor (a) (b)  (c) (d)  (e) (f) 
Raw funds rate change -10.36   -21.97   -29.51  
 (12.43)   (24.40)   (32.26)  
Expected change  -8.060   -18.34   -25.35 
  (12.23)   (24.22)   (32.14) 
Unexpected change  -47.85**   -81.26**   -97.42* 
  (20.52)   (40.62)   (53.91) 
Constant 4.825*** 4.953***  9.411*** 9.614***  8.551** 8.783** 
 (1.569) (1.539)  (3.078) (3.047)  (4.070) (4.044) 
         
Observations 106 106  106 106  106 106 
R-squared 0.007 0.054  0.008 0.038  0.008 0.031 

 

Panel B. Put Options 
 ITM  ATM  OTM 

Regressor (a) (b)  (c) (d)  (e) (f) 
Raw funds rate change 18.24   18.06   17.19  
 (13.89)   (18.02)   (19.83)  

Expected change  15.56   15.07   13.82 
  (13.63)   (17.81)   (19.58) 
Unexpected change  62.09***   66.91**   72.28** 
  (22.86)   (29.88)   (32.85) 
Constant -3.549** -3.701**  -6.793*** -6.960***  -9.847*** -10.04*** 
 (1.761) (1.724)  (2.273) (2.242)  (2.502) (2.464) 
         

Observations 105 105  106 106  106 106 
R-squared 0.016 0.068  0.010 0.048  0.007 0.047 
 The table depicts the results of regressing call and put option returns on the Federal funds rate changes. 
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Table III.8. S&P 500 Options and Federal Funds Rate Changes by Moneyness Excluding the 
2008 Financial Crisis 
Panel A. Call Options    
 ITM  ATM  OTM 
Regressor (a) (b)  (c) (d)  (e) (f) 
Raw funds rate change 1.979   2.169   12.69  
 (28.88)   (38.62)   (49.94)  
Expected change  27.57   36.66   52.34 
  (23.85)   (31.69)   (44.62) 
Unexpected change  139.3**   187.1**   225.3** 
  (51.78)   (68.79)   (96.86) 
Constant 13.38 14.64*  18.09 19.78*  21.71 23.65* 
 (8.956) (6.898)  (11.98) (9.163)  (15.49) (12.90) 
         
Observations 13 13  13 13  13 13 
R-squared 0.000 0.463  0.000 0.470  0.006 0.375 

 

Panel B. Put Options 
 ITM  ATM  OTM 

Regressor (a) (b)  (c) (d)  (e) (f) 
Raw funds rate change -14.92   -19.39   -24.41  
 (30.70)   (37.50)   (47.43)  

Expected change  -35.49   -45.10   -54.57 
  (29.68)   (35.94)   (46.65) 
Unexpected change  -125.2*   -157.3*   -186.2* 
  (64.42)   (78.01)   (101.3) 
Constant -9.062 -10.07  -12.23 -13.48  -14.91 -16.39 
 (9.521) (8.582)  (11.63) (10.39)  (14.71) (13.49) 
         

Observations 13 13  13 13  13 13 
R-squared 0.021 0.280  0.024 0.294  0.024 0.256 
Panels A and B report the results regressing S&P 500 index call and put option returns on the Federal funds 
rate changes. 
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Table III.9. Bank Stock Prices and Federal Funds Rate Changes 
Panel A. JP Morgan 

 2003 - 2017 (exclude 2008 financial crisis)  2008 financial crisis 
Regressor (a) (b)  (c) (d) 
Raw funds rate change -2.089   7.353  
 (1.863)   (6.858)  
Expected change  -1.866   11.83** 
  (1.383)   (4.193) 
Unexpected change  -5.723**   31.36*** 
  (2.656)   (8.312) 
Constant 0.535** 0.547***  4.319** 4.537** 
 (0.216) (0.200)  (1.614) (1.440) 
      
R-squared 0.018 0.049  0.148 0.505 

 
Panel B. Citigroup 
 2003 - 2017 (exclude 2008 financial crisis)  2008 financial crisis 
Regressor (a) (b)  (c) (d) 
Raw funds rate change -2.870*   9.085  
 (1.608)   (11.52)  
Expected change  -2.674**   14.28 
  (1.221)   (8.248) 
Unexpected change  -6.062***   36.96** 
  (2.044)   (15.06) 
Constant 0.609** 0.620**  6.165* 6.419* 
 (0.258) (0.250)  (3.264) (3.487) 
      
R-squared 0.022 0.037  0.071 0.221 

 
Panel C. Wells Fargo 

 2003 - 2017 (exclude 2008 financial crisis)  2008 financial crisis 
Regressor (a) (b)  (c) (d) 
Raw funds rate change -2.916**   13.53  
 (1.287)   (12.63)  
Expected change  -2.801***   20.06* 
  (1.027)   (9.534) 
Unexpected change  -4.796**   48.55*** 
  (1.931)   (15.17) 
Constant 0.342* 0.348*  7.764* 8.083* 
 (0.187) (0.182)  (3.974) (4.036) 
      
R-squared 0.043 0.052  0.111 0.278 

The table reports the results of regressing bank stock returns on the Federal funds rate changes, column (a) 
and (c), and on the expected and unexpected components of the funds rate change, column (b) and (d). 
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Table III.10. Absolute Percentage Change of Options and Federal Funds Rate Changes 
 Call Options  Put Options 

Options All ITM ATM OTM  All ITM ATM OTM 
S&P 500 25.51 16.01 28.73 30.02  23.16 17.40 23.92 25.45 
JP Morgan 28.76 21.43 34.38 29.70  24.78 18.19 26.34 27.47 
Citigroup 28.38 20.97 35.35 28.14  24.99 17.05 26.73 28.76 
Wells Fargo 33.48 23.88 43.08 31.69  25.95 18.16 28.04 27.95 

The table reports the average absolute percentage return of options on S&P500 index, JP Morgan, 
Citigroup, and Wells Fargo stocks on FOMC event days. 
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Table III.11.Bank Equity Options and Federal Funds Rate Changes 
Panel A. Call Options on JP Morgan 

 2003 – 2017 
 (exclude 2008 financial crisis) 

 2008 financial crisis 

Regressor (a) (b)  (c) (d) 
Raw funds rate change -65.76**   80.51**  
 (30.37)   (30.56)  
Expected change  -56.27**   109.3*** 
  (23.20)   (26.09) 
Unexpected change  -141.9***   221.2*** 
  (53.17)   (40.87) 
Moneyness 0.781 0.788  -2.879 -2.879 
 (3.315) (3.305)  (8.455) (7.999) 
Constant 14.46*** 14.34***  47.86*** 49.02*** 
 (5.511) (5.398)  (16.53) (16.27) 
      
R-squared 0.018 0.030  0.148 0.244 

 
Panel B. Put Options on JP Morgan 
 2003 - 2017  

(exclude 2008 financial crisis) 
 2008 financial crisis 

Regressor (a) (b)  (c) (d) 
Raw funds rate change 25.02   -18.54  
 (16.43)   (25.11)  
Expected change  20.64   -50.74*** 
  (13.67)   (10.19) 
Unexpected change  59.04**   -176.1*** 
  (26.11)   (20.07) 
Moneyness 4.218** 4.202**  5.386 5.386 
 (1.722) (1.713)  (5.628) (4.559) 
Constant -11.95*** -11.89***  -26.29*** -27.60*** 
 (2.714) (2.640)  (7.669) (6.588) 
      
R-squared 0.024 0.034  0.052 0.455 

 
 
 
 
 
 
 
 



 

112 
 

Panel C. Call Options on Citigroup 
 2003 - 2017  

(exclude 2008 financial crisis) 
 2008 financial crisis 

Regressor (a) (b)  (c) (d) 
Raw funds rate change -65.48***   25.21  
 (20.17)   (45.03)  
Expected change  -62.56***   45.62 
  (17.24)   (33.37) 
Unexpected change  -110.0***   157.7** 
  (33.17)   (64.33) 
Moneyness 1.482 1.470  11.89 11.95 
 (2.234) (2.235)  (10.13) (9.777) 
Constant 10.94*** 11.12***  7.247 8.802 
 (4.049) (4.020)  (13.59) (12.61) 
      
R-squared 0.027 0.035  0.067 0.176 

 

Panel D. Put Options on Citigroup 
 2003 - 2017  

(exclude 2008 financial crisis) 
 2008 financial crisis 

Regressor (a) (b)  (c) (d) 
Raw funds rate change 42.17***   -14.02  
 (14.19)   (27.54)  
Expected change  39.88***   -34.77** 
  (12.11)   (13.86) 
Unexpected change  76.02***   -149.8*** 
  (17.66)   (31.54) 
Moneyness 4.192** 4.187**  5.569 5.569 
 (1.625) (1.617)  (5.554) (4.469) 
Constant -11.91*** -12.03***  -13.24 -14.81** 
 (2.601) (2.545)  (7.810) (6.087) 
      
R-squared 0.046 0.059  0.050 0.384 
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Panel E. Call Options on Wells Fargo 
 2003 - 2017  

(exclude 2008 financial crisis) 
 2008 financial crisis 

Regressor (a) (b)  (c) (d) 
Raw funds rate change -82.11***   114.6  
 (20.51)   (83.94)  
Expected change  -77.60***   150.4** 
  (16.90)   (58.13) 
Unexpected change  -114.5***   419.3*** 
  (34.33)   (73.81) 
Moneyness 0.946 0.802  -4.479 -4.479 
 (2.844) (2.859)  (20.57) (18.94) 
Constant 10.37** 10.48**  82.87** 83.35** 
 (4.784) (4.778)  (38.38) (37.18) 
      
R-squared 0.036 0.040  0.059 0.163 

 

Panel F. Call Options on Wells Fargo 
 2003 - 2017  

(exclude 2008 financial crisis) 
 2008 financial crisis 

Regressor (a) (b)  (c) (d) 
Raw funds rate change 52.09***   -37.97  
 (15.59)   (29.29)  
Expected change  50.97***   -55.71*** 
  (15.59)   (17.89) 
Unexpected change  60.41**   -159.3*** 
  (25.06)   (40.85) 
Moneyness 3.305* 3.347*  4.625 3.741 
 (1.846) (1.841)  (7.263) (6.615) 
Constant -8.632*** -8.659***  -24.14*** -25.39*** 
 (2.537) (2.527)  (8.789) (8.446) 
      
R-squared 0.049 0.049  0.090 0.251 

The table depicts the results of regressing bank equity option returns on the Federal funds rate changes.  
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Appendix: Greeks for the Short Lived Arbitrage Model 
 

 

A1: Call options on spot indices or stocks with continuous dividend 𝑞𝑞 

𝐶𝐶 = 𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡)𝑆𝑆𝑆𝑆(𝑑𝑑1) − 𝑒𝑒−𝑅𝑅(𝑇𝑇−𝑡𝑡)𝐾𝐾𝐾𝐾(𝑑𝑑2), (14) 

 𝑃𝑃 = 𝑒𝑒−𝑅𝑅(𝑇𝑇−𝑡𝑡)𝐾𝐾𝐾𝐾(−𝑑𝑑2) − 𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡)𝑆𝑆𝑆𝑆(−𝑑𝑑1), (15) 

𝑑𝑑1 =
ln �𝑆𝑆𝐾𝐾� + �𝑅𝑅 − 𝑞𝑞 + 𝜎𝜎2

2 � (𝑇𝑇 − 𝑡𝑡)

𝜎𝜎√𝑇𝑇 − 𝑡𝑡
, (16) 

 

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎√𝑇𝑇 − 𝑡𝑡. (17) 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝛿𝛿):   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝑑𝑑1),
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡)(𝑁𝑁(𝑑𝑑1) − 1), 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝜈𝜈):   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡)𝑆𝑆√𝑇𝑇 − 𝑡𝑡𝑛𝑛(𝑑𝑑1), 

 

𝑅𝑅ℎ𝑜𝑜(𝜌𝜌):  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐾𝐾(𝑇𝑇 − 𝑡𝑡)𝑒𝑒−𝑅𝑅(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝑑𝑑2), 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝐾𝐾(𝑇𝑇 − 𝑡𝑡)𝑒𝑒−𝑅𝑅(𝑇𝑇−𝑡𝑡)𝑁𝑁(−𝑑𝑑2), 

 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝛾𝛾):  𝜕𝜕
2𝑆𝑆

𝜕𝜕𝑆𝑆2
= 𝜕𝜕2𝑃𝑃

𝜕𝜕𝑆𝑆2
= 𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡)𝑛𝑛(𝑑𝑑1)

𝑆𝑆𝑆𝑆√𝑇𝑇−𝑡𝑡
, 

 

where 𝑛𝑛(𝑑𝑑1) is the standard normal density, 𝑁𝑁 is the cumulative standard normal distribution, 

and 𝑅𝑅 and 𝜎𝜎 are implied.  

A2: Call options on gold and silver futures contracts 

𝐶𝐶 = 𝑒𝑒−𝑅𝑅(𝑇𝑇−𝑡𝑡)[𝐹𝐹𝐹𝐹(𝑑𝑑1) − 𝐾𝐾𝐾𝐾(𝑑𝑑2)], (18) 

 𝑃𝑃 = 𝑒𝑒−𝑅𝑅(𝑇𝑇−𝑡𝑡)[𝐾𝐾𝐾𝐾(−𝑑𝑑2) − 𝑆𝑆𝑆𝑆(−𝑑𝑑1)], (19) 
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𝑑𝑑1 =
ln �𝐹𝐹𝐾𝐾� + 𝜎𝜎2

2 (𝑇𝑇 − 𝑡𝑡)

𝜎𝜎√𝑇𝑇 − 𝑡𝑡
, (20) 

 

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎√𝑇𝑇 − 𝑡𝑡. (21) 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝛿𝛿):   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑒𝑒−𝑅𝑅(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝑑𝑑1),
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑒𝑒−𝑅𝑅(𝑇𝑇−𝑡𝑡)(𝑁𝑁(𝑑𝑑1) − 1), 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝜈𝜈):   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑒𝑒−𝑅𝑅(𝑇𝑇−𝑡𝑡)𝐾𝐾√𝑇𝑇 − 𝑡𝑡𝑛𝑛(𝑑𝑑2), 

 

𝑅𝑅ℎ𝑜𝑜(𝜌𝜌):  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −(𝑇𝑇 − 𝑡𝑡)𝐶𝐶, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −(𝑇𝑇 − 𝑡𝑡)𝑃𝑃, 

 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝛾𝛾):  
𝜕𝜕2𝑆𝑆
𝜕𝜕𝐹𝐹2

=
𝜕𝜕2𝑃𝑃
𝜕𝜕𝐹𝐹2

=
𝑒𝑒−𝑅𝑅(𝑇𝑇−𝑡𝑡)𝑛𝑛(𝑑𝑑1)
𝐹𝐹𝐹𝐹√𝑇𝑇 − 𝑡𝑡

. 

A3: Margined Options on Brent Crude Oil 

Interest rates do not appear in the gBm option pricing formula for margined options. The 

Greeks as the same as Greeks for equity style futures options except implied 𝑅𝑅 = 𝑅𝑅∗ is no longer 

virtual yield but a market friction perturbed from zero. 
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