
Deep Learned Multi-Modal Traffic Agent Predictions for Truck Platooning Cut-Ins

by

Samuel Paul Douglass Jr.

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 2, 2020

Keywords: Time Series Forecasting, Truck Platoon, LSTM, Cut-in Detection, Trajectory
Prediction

Copyright 2020 by Samuel Paul Douglass Jr.

Approved by

Scott Martin, Chair, Assistant Research Professor of Mechanical Engineering
David Bevly, Professor of Mechanical Engineering

Anh Nguyen, Assistant Professor of Computer Science and Software Engineering



Abstract

Recent advances in Driver-Assisted Truck Platooning (DATP) have shown success in link-

ing multiple trucks in leader-follower platoons using Cooperative Adaptive Cruise Control

(CACC). Such setups allow for closer spacing between trucks which leads to fuel savings.

Given that frontal collisions are the most common type of highway accident for heavy trucks,

one key issue to truck platooning is handling situations in which vehicles cut-in between pla-

tooning trucks. Having more accurate and quicker predictions of cut-in behavior would im-

prove the safety and efficiency of truck platooning by prompting the control system to react to

the intruder sooner and allow for proper spacing before the cut-in occurs.

This thesis implements a deep neural network that generates multimodal predictions of

traffic agents around a truck platoon in a simulated environment and culminates in testing on

data obtained from the Auburn truck platoon. The method uses Long Short-Term Memory

networks in an ensemble architecture to predict multiple possible future positions of vehicles

passing by a truck platoon over a 5 second prediction horizon and classifies the potential ve-

hicle behavior as ‘passing’ or ‘cut-in’ with prescribed certainties. The network performance

is compared to a baseline of common state-based predictors including the Constant Velocity

Predictor, the Constant Acceleration Predictor, and the Constant Turn Radius Predictor.

The Ensemble LSTM network is shown to be a promising predictor, outperforming state-

based predictors over a 5 second prediction horizon with lower average and standard deviation

of root mean squared error across 1000 test trajectories. The network is also shown to provide

good predictions for a cut-in detector, which is able to accurately detect cut-in behavior on

test trajectories with a balanced accuracy of 87.6 percent. Finally, the network is run on data

collected from the Auburn truck platoon to demonstrate the viability of adapting the system to

real world testing and development.

ii



Acknowledgments

I cannot be more thankful for the opportunities and quality of education that has been

provided to me by Auburn and the GAVLAB. I am truly lucky to have ended up here.

There are many who have helped me along through grad school and the writing of this

thesis. Thanks to Drew Jennings and David Bell for being great partners to work with on class

and research projects. Thanks to Amy Strong for editing all my reports, papers, and this thesis.

Thanks to James Pool for encouraging me through the troughs of my research. Thanks to the

guys in the truck team who have supported my work including Jacob Ward, Patrick Smith,

and Dan Pierce. You have saved me months of work. Thanks to Josh Wood for always being

available to answer homework questions. Thanks to Alec Letsinger who volunteered his time

to aid me in processing data. Thanks to Matt Boler for providing encouragement each time

I generated results. Thanks to Howard Chen who encouraged me to begin writing early, and

thanks to Tanner Watts who gave me the inspiration for this work.

Thank you to my wife Michelle for sustaining me so that I could work longer hours. Thank

you to my dad, who taught me how to read, write, and do math. Thank you to my mom, who

has supported me in everything. Thanks to my grandparents for housing me at the beginning.

And thanks to my Uncle Vito and Aunt Kristi for gifting me and my wife opportunities to travel

that we would only dream of having.

Thanks to my professors at the University of Georgia who have given me research op-

portunities and encouraged me to attend graduate school incluing Dr. Knox, Dr. McCord, Dr.

Lawrence, Dr. Rotavera, and Dr. Wagner. I wouldn’t be here without you. Go Dawgs.

Lastly, thank you to Dr. Bevly and Dr. Martin for setting me on a career path to perform

research in the areas I am passionate about.

Matthew 5:33-45

1 Corinthians 15:58

iii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Deep Learning Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 General Concepts in Machine Learning . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Performance Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 The Universal Approximation Theorem . . . . . . . . . . . . . . . . . 12

2.2.5 Active Learning Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Multi-Layer Perceptron (MLP) . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1.1 Rectified Linear Unit (ReLU) . . . . . . . . . . . . . . . . . 15

2.3.1.2 Variants of ReLU . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1.3 Sigmoid Activation Function . . . . . . . . . . . . . . . . . 16

2.3.1.4 tanh Activation Function . . . . . . . . . . . . . . . . . . . 17

iv



2.3.2 Back Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2.1 Stochastic Gradient Descent (SGD) . . . . . . . . . . . . . . 17

2.3.2.2 Adam Optimizer . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Recurrent Neural Networks (RNN) . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Long-Short Term Memory (LSTM) . . . . . . . . . . . . . . . . . . . 21

2.5.2 Gated Recurrent Unit (GRU) . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.3 Convolutional LSTM (ConvLSTM) . . . . . . . . . . . . . . . . . . . 23

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 State-Based Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Constant Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Constant Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Constant Turn Radius . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Stochastic Estimators for Tracking and Prediction . . . . . . . . . . . . . . . . 27

3.3.1 Discretized Continuous-Time State-Based Models . . . . . . . . . . . 28

3.3.1.1 Nearly Constant Velocity (NCV) . . . . . . . . . . . . . . . 28

3.3.1.2 Nearly Constant Acceleration (NCA) . . . . . . . . . . . . . 30

3.3.2 Direct Discrete-Time Kinematic Models . . . . . . . . . . . . . . . . 31

3.3.2.1 Nearly Constant Velocity (NCV) . . . . . . . . . . . . . . . 31

3.3.2.2 Nearly Constant Acceleration (NCA) . . . . . . . . . . . . . 32

3.3.2.3 Nearly Constant Speed (NCS) . . . . . . . . . . . . . . . . . 32

3.3.3 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Goal-Based Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



3.5 Machine Learning Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.3 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.4 Inverse Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 35

3.5.5 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 35

3.5.6 Mixture Density Network . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 LSTM for Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6.1 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6.1.1 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1.2 Differencing . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1.3 Power Transform . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.1.4 Standardization . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.1.5 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.1.6 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . 40

3.6.2 Sequence Prediction Input to Output Mapping . . . . . . . . . . . . . . 42

3.6.2.1 One-To-One . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.2.2 One-To-Many . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.2.3 Many-To-One . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.2.4 Many-To-Many . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.3 Encoder Decoder Models . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 LSTM Network for Cut-in Prediction and Detection in Simulated Environment . . . 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Training Data Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vi



4.2.1 Lateral Vehicle Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Longitudinal Vehicle Dynamics . . . . . . . . . . . . . . . . . . . . . 51

4.2.3 Pure Pursuit Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.4 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.5 Monte Carlo Trajectory Generation . . . . . . . . . . . . . . . . . . . 54

4.2.6 Sample Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.6.1 Passing Trajectory . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.6.2 Cut-in Trajectory . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.6.3 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Neural Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.4 Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.5 Loss Function for Ensemble Probability Output . . . . . . . . . . . . . 67

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Root Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1.1 Cut-In Network . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1.2 Passing Network . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1.3 Ensemble Network . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Predicted Time to Cut-in . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.3 Cut-in Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.4 Sampled Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Experimental Validation of Simulation Trained Neural Network . . . . . . . . . . . . 91

vii



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Truck Platoon Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Detection and Tracking of Neighboring Vehicles . . . . . . . . . . . . . . . . 92

5.3.1 Pure Pursuit Lane Drawing . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Road Constraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.3 Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.1 Trajectory Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.2 Cut-in Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Network Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A Vanilla RNN Backward Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B LSTM Backward Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.1 Diagram of LSTM Forward Propagation . . . . . . . . . . . . . . . . . . . . . 122

viii



List of Figures

1.1 The RMSE in the longitudinal distance as function of time for prediction using
an LSTM neural network consisting of 4 neurons. [16] . . . . . . . . . . . . . 3

1.2 Multimodal vs Single Modal Predictions of a Vehicle at an Intersection [21] . . 4

2.1 Multilayer Perceptron Network with one hidden layer of width 3 . . . . . . . . 14

2.2 Commonly used Activation Functions . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Diagram of RNN Forward Propagation . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Diagram of LSTM Forward Propagation . . . . . . . . . . . . . . . . . . . . . 21

3.1 Coordinate Transform of data from Cartesian to polar coordinates [51] . . . . . 41

3.2 One-To-One Sequence Prediction Model . . . . . . . . . . . . . . . . . . . . . 42

3.3 One-To-Many Sequence Prediction Model . . . . . . . . . . . . . . . . . . . . 43

3.4 Many-To-One Sequence Prediction Model . . . . . . . . . . . . . . . . . . . . 43

3.5 Many-To-Many Sequence Prediction Model . . . . . . . . . . . . . . . . . . . 45

3.6 Synced Many-To-Many Sequence Prediction Model . . . . . . . . . . . . . . . 45

4.1 Vehicle Rendering of Anvel Generic SUV . . . . . . . . . . . . . . . . . . . . 48

4.2 Bicycle Model used in Simulation Environment to Represent the Merging Vehicle 49

4.3 Sample Passing Trajectory with Look Ahead Distance of 90 meters . . . . . . . 57

4.4 Heading for a Sample Passing Trajectory with Look Ahead Distance of 90 meters 58

4.5 Longitudinal Velocity for a Sample Passing Trajectory with Look Ahead Dis-
tance of 90 meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Sample Cut-in Trajectory with Look Ahead Distance of 50 meters . . . . . . . 60

4.7 Heading for a Sample Cut-in Trajectory with Look Ahead Distance of 50 meters 61

4.8 Longitudinal Velocity for a Sample Cut-in Trajectory with Look Ahead Dis-
tance of 50 meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



4.9 100 Sampled Trajectories of Straight and Merging Vehicles . . . . . . . . . . . 62

4.10 100 Sampled Trajectories of Straight and Merging Vehicles Translated to the
Same Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.11 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.12 Cut-in Network Error on 488 test cut-in trajectories over 5 second prediction
horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.13 Passing Network Error on 512 Test Passing trajectories over 5 second prediction
horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.14 Mode Probability Calibration taken from 1000 Test Trajectories . . . . . . . . . 73

4.15 Distribution of Predictions by Predicted Probability . . . . . . . . . . . . . . . 74

4.16 Ensemble Network Error on 1000 Test Trajectories over 5 Second Prediction
Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.17 RMSE of Predicted Time to Cut In over 241 Cut-in Trajectories . . . . . . . . . 77

4.18 RMSE of Predicted Time to Cut In over 409 Cut-in Trajectories with a Mini-
mum 1.25 Seconds Before Cut-in . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.19 Sample Cut-in Mode Trajectory Prediction with 5 Second Horizon . . . . . . . 86

4.20 Sample Passing Mode Trajectory Prediction with 5 Second Horizon . . . . . . 88

5.1 Auburn University Truck Platoon . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 GPS Track of Data Collection Run along Interstate 85 . . . . . . . . . . . . . . 96

5.3 Tracked vehicle trajectories from the 10/01/2019 interstate 85 run using the
NCV Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Network Predictions on a Cut-in Trajectory at Different Time Epochs . . . . . . 99

A.1 Diagram of RNN Forward Propagation . . . . . . . . . . . . . . . . . . . . . . 120

x



List of Tables

4.1 Anvel Generic SUV Vehicle and Tire Parameters . . . . . . . . . . . . . . . . 49

4.2 Cut-in Predictor Performance over 488 Test Trajectories . . . . . . . . . . . . . 70

4.3 Passing Predictor Performance over 512 Test Trajectories . . . . . . . . . . . . 72

4.4 Ensemble Predictor Performance over 1000 Test Trajectories . . . . . . . . . . 76

4.5 Cut-in Detection Performance for Different Thresholds with 5 Second Horizon 82

4.6 Cut-in Detection Performance for Different Thresholds with 2 Second Search
Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 Sample Cut-in Mode Prediction Performance . . . . . . . . . . . . . . . . . . 87

4.8 Sample Passing Mode Prediction Performance . . . . . . . . . . . . . . . . . . 89

5.1 Estimated Times until Cut-in . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xi



1

Introduction

1.1 Background and Motivation

In 2018, the transportation industry in the United States reached $1.6 trillion, or 8% of

Gross Domestic Product. Of this, revenues in the trucking industry totalled $700 million, with

11 billion tons of freight moved throughout the country [1]. The average class 8 truck travels

6 times as many miles as the average passenger vehicle and consumes 26 times as much fuel

per year [25] [24]. This makes fuel consumption a large cost in the trucking industry, and even

small improvements can lead to large savings. For example, if the FedEx truck �eet, which is

comprised of roughly 25,000 trucks, improved gas mileage by 1% it would lead to $20 million

in savings per year. [37]

One of the promising areas of fuel savings in the trucking industry is truck platooning.

Truck platooning relies on Cooperative Adaptive Cruise Control (CACC) to allow trucks to

follow one another at distances as close as 50 feet. By having close spacings between vehicles,

the trucks experience fuel savings through drafting. CACC makes this close spacing possible

by removing human reaction time from the driving process. [77] [68].

In the research and development of CACC for platooning trucks at Auburn University,

there is a recurring problem of vehicles merging in between platooning trucks, otherwise known

as a ”cut-in”. When a cut-in is detected, it causes the CACC to switch references from the lead

truck to the cut-in vehicle in order to create more spacing between the follower truck and the

cut-in vehicle. This process leads to reduced fuel savings as it requires more work from the

longitudinal controller and can be dangerous if the gap is not wide enough by the time the

1



vehicle cuts in, and given that an 80,000 lb trailer requires between 400 and 500 ft of stopping

distance on the highway [37], there isn't much margin for error. One potential solution to

this problem is to begin creating the gap sooner, provided the platoon has knowledge of the

future pose of the cut-in vehicle. This thesis explores various prediction methods for vehicles

surrounding a simulated truck platoon, which is modeled to re�ect scenarios encountered on

the Auburn University truck platoon during highway testing.

The Auburn University truck platoon is comprised of two Peterbilt 579 and two military

Freightliner M915 trucks. Highway testing involves the two Peterbilt trucks platooning at

varying distances, of which the truck leading the platoon is referred to as the “lead” truck

and the truck following the lead truck is referred to as the “follower” truck.

On board the follower truck in the Auburn University truck platoon is a 64 channel delphi

radar which, coupled with DRTK relative positon vectors, is used to provide accurate range

estimates between the follower and lead truck for the CACC as well as to detect vehicle cut-

ins. The current method for detecting cut-ins is by estimating the intruding vehicle's local

position relative to the follower truck via radar measurements, estimating lane lines using the

relative position vector between the lead and follower trucks using radar measurements and

DRTK, and signaling a cut-in if the vehicle crosses over an estimated lane line between the

follower and lead truck. The lane lines are drawn by estimating a circular path between the

lead and follower trucks using Pure Pursuit and then extrapolating the drawn path laterally on

each side by a nominal lane width [77]. This holds well assuming the lead and follower trucks

keep to the center of their lanes and that each truck remains in the same respective lane.

Predicting the future pose of vehicles is an emerging �eld with many new innovations

coming in recent years. Currently, predictors most commonly used are state-based [32] and

stochastic prediction methods such as Kalman Filtering with a Nearly Constant Acceleration

Model [81], but the use of Machine Learning for prediction is gaining traction. Among the

methods studied are Hidden Markov Models [71] [16], CNNs [21], and LSTMs [82] [16]. Two

papers particularly in�uential to the network design in this thesis come from Cara et al. [16] at

TNO Helmond and Cui et al. at Uber [21].

2



Previous work by Cara et al. has shown that using a constant velocity predictor (CV) pro-

vides a good model of cut-in behavior, with Support Vector Regression and K-Nearest Neigh-

bor providing even better results [16]. In the study, these methods outperform Long Short-Term

Memory Recurrent Neural Networks (LSTM), a common neural network architecture used in

time series forecasting. However, the study used a small sample of 140 trajectories to train the

LSTM, which they acknowledge is likely too small to achieve a good generalized �t due to

their low number of cut-ins. Additionally, the predictions were produced in a unimodal nature

which likely causes the LSTM to average the output behavior of potential future trajectories,

leading to predictions that are less accurate. The average root mean squared error of the LSTM

trained in their study compared to a constant velocity predictor is shown in Figure 1.1.

Figure 1.1: The RMSE in the longitudinal distance as function of time for prediction using an
LSTM neural network consisting of 4 neurons. [16]

In other related work, Cui et al. used a Convolutional Neural Network (CNN) in con-

junction with a Multilayer Perceptron Model (MLP) to generate multi-modal vehicle trajectory

predictions of vehicle behavior in intersections [21]. The paper showed that Deep Learning net-

works have the ability to learn multiple behavior modes of traf�c agents in an intersection and

can accurately predict the correct mode of behavior that a vehicle approaching an intersection

will perform. This is useful, as on a highway a vehicle neighboring the platoon has primarily

3



two decisions, whether to continue straight or to merge right. An example of the averaging

prediction behavior is shown in Figure 1.2.

Figure 1.2: Multimodal vs Single Modal Predictions of a Vehicle at an Intersection [21]

Figure 1.2 shows a vehicle represented by a red rectangle approaching an intersection. The

predictions of the vehicle behavior are shown as the blue lines extending from the vehicle. The

plot on the right shows the result of a unimodal predictor, which averages the possible predicted

outcomes into a single prediction that predicts the car to drive off the road. The image on the

left uses two modes, one predicting a right hand turn, and the other predicting the vehicle to

drive straight through the intersection. The network assigns a percentage con�dence value to

each prediction that sums to one to indicate which mode is more likely to occur.

In addition to multimodal predictions, the paper incorporates contextual road information

by passing rasterized top down images of the road and traf�c scenario to the network. This

gives the network the ability to observe where the road and other cars are, allowing it to rule

out improbable trajectories. The downside of using CNN's, however, is the large amount of

memory it requires during training. Loading images for each time epoch requires a signi�cant

amount of video memory, requiring the designer to use small batch sizes. Thus training net-

works using this method requires methods to combat over-�tting such as early stopping, which

leads to long training times. On the other hand LSTMs can be trained very quickly to predict

sequences with good generalization provided they have enough training data.

4



This thesis aims to give LSTMs another shot at this problem by incorporating the princi-

ples developed by Cui et al. into the LSTM design process. The network has been designed

to output two trajectory predictions, one optimized to track and predict “passing” behavior and

the other to track and predict “cut-in” behavior. The two predictions are assigned probabilities

by the network that re�ects the network's con�dence in the predicted trajectories.

Training data for the network was created by simulating a bicycle model commanded to

follow merging or passing waypoints using a Pure Pursuit controller. Longitudinal dynamics

of the following vehicle are modeled using a second order transfer function that tracks a noisy

reference. This controller was used to drive the vehicle to a set longitudinal distance behind the

lead truck if it decided to cut into the platoon. The trucks were simulated as points traveling at

a constant velocity and separation distance. The simulation parameters, including look ahead

distance and longitudinal velocity, were randomly varied during training and testing to allow

the network to train off of a wide range of random trajectories. The scenarios are simpli�ed to

consider to single vehicles neighboring the truck platoon.

The Network performance is benchmarked against several state-based predictors which

use knowledge of the vehicles past and present states to predict future states [32]. These pre-

dictors include the Constant Velocity Predictor, the Constant Acceleration Predictor (CA), and

the Constant Turn Radius Predictor (CTR).

1.2 Contributions

The academic contributions of this thesis are listed below.

� Provided a thorough background on Time Series Forecasting and how it relates to Ma-

chine Learning and Ground Vehicle Navigation.

� Designed a Deep Neural Network to predict the future pose of vehicles around a truck

platoon.

� Compared the performance of the network to traditional state-based prediction methods.

� Designed and Evaluated a cut-in detection algorithm using network and state-based pre-

dictions.

5



� Evaluated the ability of a simulation trained neural network to predict behavior on exper-

imentally collected data.

1.3 Thesis Outline

This thesis consists of 4 remaining chapters. Chapter 2 provides an introduction to Ma-

chine Learning and introduces methods used in Deep Learning. Chapter 3 discuss background

in Time Series Forecasting. Chapter 4 discusses the Modeling and Simulation environment

used to generate training and test data sets for this thesis, the design of the network architec-

ture, training methodology, and results in the simulated environment. Chapter 5 discusses the

process of collecting empirical data from the Auburn University truck platoon, and provides

prediction results on that data. The �nal chapter contains a summary, conclusions, and future

work.

6



2

Deep Learning Background

2.1 Introduction

This chapter will introduce principles in Deep Learning that are used in this thesis. Sec-

tion 2.2 gives a topical presentation of general concepts in Machine Learning, describing Tasks,

Experiences, and Performance measures, and presenting the Universal Approximation Theo-

rem and Active Learning Pipeline. Sections 2.3, 2.4, and 2.5 present three commonly used

types of Neural Networks: Multi-layer Perceptron Models or Feedforward Neural Networks,

Covolutional Neural Networks, and Recurrent Neural Networks.

2.2 General Concepts in Machine Learning

In his 1997 text on Machine Learning, Tom Mitchell gives a de�nition of Machine Learn-

ing: “A computer is said to learn from experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks in T, as measured by P, improves with expe-

rience E” [54]. In the case herein the task T is to predict the future pose of traf�c agents around

a truck platoon and classify their behavior as either “passing” or “cut-in”. This is accom-

plished with the experience E of observing vehicle positions taken from radar measurements

over time, and with performance methods P being Mean Squared Error Loss and Cross-Entropy

Loss. The �rst objective of this chapter is to discuss the Machining Learning concepts of Task,

Experience, and Performance further, then to hone in on Deep Learning, a subset of Machine

Learning. Therein general equations used in Neural Networks will be developed, and Recurrent

Neural Networks will be introduced.

7



2.2.1 Task

Machine Learning is bene�cial in that it provides solutions to tasks that could otherwise

be too time consuming or dif�cult to be traditionally programmed. A task is the way a machine

learning algorithm processes an example, where an example is a collection of features that have

been quantitatively measured by an event or object that we would like the machine learning

algorithm to process. Features are typically represented as a vector

x 2 Rn (2.1)

where each value in the vectorx is a feature value. Commonly in Deep Learning, the type of

Machine Learning used herein, features are pixels of images which are used in image process-

ing. In this thesis, the features used in training are the time-ordered positions of traf�c agents

around the truck platoon.

Common tasks of Machine Learning include but are not limited to classi�cation, classi-

�cation with missing inputs, regression, transcription, machine translation, structured output,

anomaly detection, synthesis and sampling, imputation of missing values, denoising, and den-

sity estimation or probability mass function estimation [29].

Probably the most common of these tasks to a beginning Machine Learning practitioner is

classi�cation. Classi�cation involves training the algorithm to specify which category an input

belongs to. An example of this is tasking a machine learning algorithm with classifying an

image as either a dog or a cat.

Classi�cation with missing inputs is commonly used in the medical �eld. Classifying

objects with missing inputs complicates the task because the learning algorithm needs to learn

more functions in order to make the proper classi�cation. Usually probability density functions

are �tted to measure the con�dence of classi�cations. Such algorithms allow doctors to make

more accurate diagnoses without needing to perform more invasive or expensive procedures

[29].

Regression is the task of training the network to predict a numerical value given a sequence

of preceding numerical values. An example would be to feed the algorithm a sequence of

8



values such as[0; 1; 2; 3] and expect the algorithm to output the numberp = 4 or another

sequence of speci�ed length such as[4; 5; 6; : : : ; pn ]. This task is also commonly known as

time series forecasting and is used in stock market forecasting, weather forecasting, and product

recommendation [12]. The network discussed in Section 4.3 to provide obstacle pose prediction

solutions to the truck platoon is designed to perform this task. The task of Regression, or Time

Series Forecasting, is further elaborated upon in Chapter 3.

Transcription is the task of training an algorithm to describe an image or speech recording

with written text. Such tasks typically employ Recurrent Neural Networks, which will form

the basis of the Learning Algorithm designed herein. Machine Translation performs the task

of translating words from one language to another. A neural network architecture known as

the Encoder-Decoder model was designed to better perform this task than traditional methods.

Previously, one large network would be trained to both understand the �rst language and speak

the second. The Encoder-Decoder architecture divides this task into two independent tasks:

one to learn the �rst language and the other to speak the second language [3]. This method has

been shown to reduce overall network size and training time. Given that transcription is a task

closely related to Time Series Forecasting, it is likely that the Encoder-Decoder architecture

will improve network performance for Time Series Forecasting as well. Thus the Encoder-

Decoder architecture is included in the network design in Section 4.3. Encoder-Decoder models

are elaborated upon in Section 3.6.3.

Structured Output is a broad category of tasks and involves any task in which the output

is a vector with interrelationships between elements. Such tasks include mapping grammatical

structure to a sentence, identifying roads from an aerial view camera, and describing an image

with a sentence [45].

Anomaly Detection is commonly used in cyber security and tasks the algorithm with iden-

tifying events or objects that don't normally belong. Such algorithms perform tasks such as

fraud detection and spam email �ltering.

Synthesis and Sampling is the task of generating new samples of data similar to data

trained upon. One example is generating new landscapes in a video game [52] or using a

Generative Adversarial Network to generate new images [28].

9



Imputation of Missing Values is the task of predicting the values that are missing in a given

input. An example of this task is �lling in the missing hole in an image or �lling in the blanks

in a sentence.

Denoising is the task of modeling the conditional probability distributionp(xjx) or more

speci�cally predicting a �ltered sequence from a noisy one. Filtering properties of Deep Neural

Networks tend to be inherent and will be studied further herein [66].

Density estimation or Probability Mass Function Estimation is the task of capturing the

structure of the data given to the algorithm and de�ning a probability mass function for discrete

data or a probability density function for continuous data [29].

The tasks of this work incorporate both classi�cation and regression. The �rst task of the

network is to perform time series forecasting, of which a sequence of neighbor vehicle positions

are used to predict future positions. The second task is known as time series classi�cation, in

which the network is tasked to predict which of its output trajectories will have a lower root

mean squared error to the truth trajectory.

2.2.2 Performance Measure

The performance measure is a quantitative measure of performance of the learning algo-

rithm. In Deep Neural Networks, this performance measure is de�ned as the loss, which is the

value to be optimized in the training process of gradient descent. Performance measures must

be carefully chosen for each task. In image classi�cation a common performance measure is

Cross-Entropy Loss [29]. In sequence prediction the commonly used performance measure is

Mean Squared Error, otherwise known as L2 Loss, or Mean Absolute Error, otherwise known

as L1 Loss. This work employs Cross-Entropy to quantify the performance of the classi�er

and Mean Squared Error loss to characterize the regression performance. These performance

measures are further described in Section 4.3.5.

10



2.2.3 Experience

Machine Learning algorithms can be generally divided into several categories of experi-

ence methods including supervised learning, unsupervised learning, and reinforcement learn-

ing. These categories loosely organize Machine Learning algorithms by the way they're given

and process data sets.

Supervised learning is the experience method used in this work, and involves comparing

the network output to the truth output. This is one of the key processes in back-propagation,

which is described in Section 2.3.2. In this case, the predicted trajectories output from the net-

work are compared to the true trajectories, and the predicted con�dence probabilities assigned

to the predicted trajectories are calculated as a result of comparing the predicted trajectory pre-

dicted to have the lowest root mean squared error to the truth trajectory to the actual trajectory

with the lowest root mean squared error to the truth.

Unsupervised learning is much more dif�cult to implement and requires the algorithm

to learn without access to correct data points for comparison. Unsupervised learning is an

area of growing research due to its resemblance to the way humans learn and its dif�culty in

implementation. Tasks in unsupervised learning include density estimation and denoising [29].

Reinforcement Learning is a method of learning in which the data set used is not �xed and

employs a feedback loop between the learning algorithm and new experiences. A few examples

of this include a network designed to play Atari through trial and error [55], and a robot that

continually trains on new data to avoid obstacles [15]. Recently in April of 2019, OpenAI

sucessfully trained a network to beat professional teams in the video game DOTA [57]. The

network was trained by playing itself repetitively since June 2018.

Given that reinforcement learning has shown to be able to beat the best human players

in strategic video games, there is reason to believe that reinforcement learning can be used

extensively in the autonomous vehicle space. However, networks likely need to reach a certain

level of safety before they practice driving on the road [76]. For this reason, it is likely that

efforts like the one being made in this thesis will contribute signi�cantly toward this goal in

two ways. First, developing a high �delity simulation close to reality can allow for signi�cant

11



reinforcement learning before real world deployment, and second, algorithms trained and tested

manually in the ”Active Learning Pipeline” as described in Section 2.2.5 can provide ample

ground from which reinforcement algorithms can begin training from through transfer learning.

By this, in future work reinforcement learning be be used to give the platoon the ability to learn

as it runs.

2.2.4 The Universal Approximation Theorem

The Universal Approximation Theorem given by Hornik et al. in 1989 [36] and by Cy-

benko in 1989 [22] states that any continuous Borel measureable function can be approxi-

mated with any speci�ed non-zero amount of error by a Multilayer Perceptron Model with any

“squashing” activation function such as Sigmoid given the network has enough layers. In other

words, MLP models can be theoretically used to represent any function. However, successful

training to achieve satisfactory representation is not guaranteed. First, the network might not

be able to converge to the correct weights to approximate the function, second, the network

might over-�t the function desired to be approximated. This points to the “No Free Lunch”

theorem [78], in which there is no universally superior Machine Learning algorithm at learning

all possible tasks. To quote from Goodfellow, Bengio, and Courville [29]:

Fortunately, [this] holds only when we average over all possible data-generating

distributions. If we make assumptions about the kinds of probability distributions

we encounter in real-world applications, then we can design learning algorithms

that perform well on these distributions. This means that the goal of machine

learning research is not to seek a universal learning algorithm or the absolute best

learning algorithm. Instead, our goal is to understand what kinds of distributions

are relevant to the “real world” that an AI agent experiences, and what kinds of

machine learning algorithms perform well on data drawn from the kinds of data-

generating distributions we care about.

In other words, this thesis aims to 1) de�ne the desired tasks for the machine learning

algorithm to perform, 2) choose and design an algorithm well suited to learn and perform the

12



desired task, and 3) design relevant experience distributions for the network to train off of.

Hence, the efforts of the subsequent chapters below are set upon thoughtful design of each of

these facets.

2.2.5 Active Learning Pipeline

“Start out dumb, become brilliant over time.”

– Lex Fridman,MIT Deep Learning State of the Art 2020[27]

The Active Learning Pipeline [27], also dubbed the Data Engine by Telsa's AI director

Dr. Andrej Karpathy [41], is the iterative process of network design used by companies like

Waymo and Tesla to design their networks [27]. The process begins with designing a network

to perform a task given the steps listed above in Section 2.2.4. Then the network performance

is evaluated and failure modes are searched for. Once failure modes are found, the experience

distribution and network design is revised to account for the problems. Finally the network is

retrained and reevaluated, and so on.

This thesis aims to make one pass at the Active Learning Pipeline by 1) designing an

experience distribution in Section 4.2, 2) designing and training the network to perform the task

of predicting vehicle trajectories in Section 4.3, 3) evaluating the performance of the network

in Section 4.4 and Section 5.5, and 4) suggesting avenues for future work in future passes.

2.3 Multi-Layer Perceptron (MLP)

Multi-layer Perceptron models, also referred to as Feed Forward Neural Networks or

“Vanilla” Neural Networks, are the simplest kind of neural network. MLPs can be intuitively

thought of as a series of linear regressions, with nonlinearities added in between each regression

layer.

Linear Regression is a basic machine learning algorithm in which the parameters of a line

or polynomial are used to perform the task of classi�cation. The process involves data which

is input into a series of linear regressions that then calculate a classi�cation. This is given in

vector form by

f (x; W; b) = wT x + b (2.2)

13



Where x is the input array, w is a vector of weights, and b is a scalar commonly referred to as

the bias.

Multi-layer Perceptron Models contain at least three layers of linear regressions, usually

with activation functions at each node except the ones on the �rst layer. The architecture of

neural networks is de�ned as the width (number of nodes per layer) and the depth (total number

of layers). Stacking many layers on top of one another yields a “Deep Neural Network”, of

which the term “Deep Learning” is derived.

A diagram representation of a typical MLP architecture is shown in Figure 2.1.

Figure 2.1: Multilayer Perceptron Network with one hidden layer of width 3

This network has three layers total one hidden layer with three nodes. Algebraically this

network can be rewritten as:

h = g(W T x + b) (2.3)

WhereW is the vector of weights at each layer, b is the bias scalar at each layer,g is the

nonlinear activation function applied to the outputs of each layer, and x is the state passed

through each layer. Through a process known as back propagation, the network may be trained

to learn the weight vectorsWj and biasesbj to approximate a function, as given by the Universal

Approximation Theorem.

2.3.1 Activation Functions

The power of neural networks rests largely in the design and use of activation functions.

Designing a neural network without activation functions will yield a linear function like equa-

tion 2.2. Applying activation functions within the hidden layers of the network will provide the

14



network with nonlinearities, and it is these nonlinearities that allow neural networks to learn

complex problems well. Commonly used activation functions include Sigmoid, tanh, ReLU,

and ReLU variants such as leaky ReLU and GELU. These functions can be visualized in �gure

2.2 and will be discussed in brief below.

Figure 2.2: Commonly used Activation Functions

2.3.1.1 Recti�ed Linear Unit (ReLU)

The recti�ed linear unit or ReLU is one of the most common activation functions. It is

given by

g(f ) = max(0; f ): (2.4)

The bene�ts of ReLU are that it is computationally inexpensive compared to other activation

functions and that it has been found to increase the rate of loss convergence with stochastic

gradient descent [48]. The downside of ReLU is that it can cause nodes in the network to get

permanently stuck outputting zeros or “die” [42].

15



2.3.1.2 Variants of ReLU

Several variants of ReLU have been invented with the intention of �xing the dying node

problem. One of these is the Leaky ReLU, which instead of setting negative inputs to zero, it

multiplies them with a linear function with a small negative slope of around 0.01. Success of

the Leaky ReLU function is mixed [42].

Another variant is the Gaussian Error Linear Unit (GELU) function [33], which appears to

outperform ReLU in some studies. GELU also addresses the problem of not allowing negative

values to pass through the network. The GELU function is given by

g = 0:5f
�

1 + 2p
�

R xp
2

0 e� t � 2dt

�
(2.5)

which can be approximated with

g = :5f (1 + tanh(0:797885f + 0:035677f 3)) (2.6)

2.3.1.3 Sigmoid Activation Function

The sigmoid activation function is given by

� (f ) = 1 =(1 + e� f ) (2.7)

which ”squashes” signals passing through the function to values between 0 and 1. The sigmoid

function is meant to model the �ring of a neuron, with an output signal of 0 indicating the

neuron not �ring at all up to a maximum output signal of 1 indicating full �ring.

The sigmoid activation function suffers two main drawbacks. First it has a tendency to

saturate and kill gradients. If large positive or negative inputs enter the sigmoid activation

they will saturate very close to either 0 or 1. As such, the gradients calculated during back

propagation will be very close to zero. This has an effect of signi�cantly attenuating the signal

�owing through that node in the network. Secondly the sigmoid function is not zero centered.

This causes the output of the activation function to always be positive, which means the weights

16



of the network have no way to change sign. Due to these setbacks the sigmoid activation is

rarely used in modern neural network design, although they can still be found in the architecture

of more complex networks like the Long-Short Term Memory network [42].

2.3.1.4 tanh Activation Function

The tanh activation function ”squashes” signals passing through the function to a range

between -1 and 1.

tanh(f ) = 2 � (2f ) � 1 (2.8)

Like the sigmoid function it suffers from issues with saturating, however its bene�t is that it is

zero mean. Tanh is used more commonly than sigmoid today [43].

2.3.2 Back Propagation

Back Propagation is the fundamental supervised learning method of which neural net-

works are trained. This method has existed for decades [64], and since its inception, many

methods have been published with newer and faster ways to perform the process. Back propa-

gation works by �rst computing the calculating the end values given the inputs to the network,

which is the forward propagation of the network. Then the network outputs are run backwards

through the network, recursively applying the chain rule at each layer to compute the gradients

at each step. These gradients are then used to update the weights and bias of each layer in a

manner dependent upon the type of optimizer chosen, with the ultimate aim of minimizing the

loss of the output to a global minima. Two popular optimizers, among others, will be discussed

brie�y below.

2.3.2.1 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent performs the operation of gradient descent over minibatches

of data. The optimizer draws a sample or “minibatch” of data from the training data set, and

takes the average gradient across the minibatch of m examples. The gradient estimate is cal-

culated, multiplied by the learning rate, and subtracted off the original weights to create the

new weights. The use of minibatches is bene�cial in that it allows for faster computation time

17



with larger datasets, since small amounts can be passed through the computer at a time. Us-

ing Stochastic Gradient Descent introduces two hyperparameters: learning rate and batch size.

These parameters are tuned to improve learning performance. Adding a momentum term to the

SGD algorithm can speed up training by reducing the amount that SGD tends to zig-zag within

a bowl to get to the bottom. Momentum aims to solve poor conditioning of the Hessian matrix

and variance in the stochastic gradient [29]. There are several different methods to include

momentum in the optimizer model, with the most successful being the Adam optimizer.

2.3.2.2 Adam Optimizer

The name for the Adam Optimizer is derived from “Adaptive Moments”. It is an adaptive

learning rate optimizer that utilizes momentum which helps carry the minimization process

across local minima to make convergence to the global minimum more likely [29]. Adam is

currently held as one of the most ef�cient optimizers and it is therefore the optimizer used for

network training in this thesis. More information on the inner workings of Adam can be found

in [46].

2.4 Convolutional Neural Networks

Convolutional Neural Networks, originally composed in the late eighties by LeCun [50],

today make up the backbone of most image recognition networks. Although not used in this

thesis, these are worth being brie�y touched upon due to their signi�cant success in pushing the

state of the art in deep learning applications, particularly to applications in image classi�cation.

Convolutional Neural Networks have an inherent structure very similar to that of vanilla

neural networks or MLPs with the key difference being the replacement of conventional ma-

trix multiplication between layers with the convolutional operator. The convolutional operator

typically assumes the input to be shaped as an image with a length, width, and depth. In image

processing, the length and width make up the pixels of an image, while the depth is usually

comprised of three values representing the red, green, and blue color components. The con-

volutional operator uses at least one “�lter” which is a window that is slid across the image,

performing convolutions at each step. Filters can be designed to look for different features in

18



the image such as color and edges. The depth of the next layer in the convolutional neural net-

work is equal to the number of �lters parsing through the preceding layer. A typical summing

�lter of size 2x2 will be a 2x2 matrix of weights that are multiplied to the values in the image

that the �lter is panning over and then summed, essentially performing a dot product of the

weights and the values in the image. The new values outputted from the �lter make up that

next block in the next layer image, which is completed as the �lter pans across the preceding

image. The stride is the number of pixels the �lter pans over at a time. This is a tune-able hy-

perparamter. Padding is a processed used to increase size of images in order to make geometry

�ow better. Padding is usually set to zeros [42].

The use of CNNs may �nd itself in the truck platoon at some point or another. The obvious

use for them is for applications regarding image data received from cameras. Given images

from a camera on the follower truck, CNNs can be used to place bounding boxes on the lead

truck trailer, and can bound and classify other traf�c agents such as cars, trucks, and road signs.

These can be used to aid in visual odometry algorithms as well, such as determining the location

of lane lines or the relative location of other traf�c agents. Another application of CNNs to this

work could be using raster images of surrounding traf�c and road boundaries such as was done

in [21] in order to produce results similar to the results of this thesis, but perhaps more robust

to interactions between traf�c agents.

2.5 Recurrent Neural Networks (RNN)

Closing the loop on the networks mentioned above allows a network to relay information

to itself over training sequences and yields another class of neural networks known as Recur-

rent Neural Networks (RNNs). Recurrent Neural Networks specialize in processing sequential

information and due to their recurrent nature are able to learn more complex and longer term

sequential patterns. Recurrent Neural Networks can come in several different orientations:

many-to-many, one-to-many, and many-to-one. Many-to-many takes a sequence and outputs a

sequence. Similarly one-to-many takes one input (such as a photo) and outputs a sequence (a

description of the photo). Many-to-one takes in a sequence and outputs a single output [44].

These orientations are elaborated upon in Section 3.6.2.

19



A computational graph of a vanilla RNN is shown below.

Figure 2.3: Diagram of RNN Forward Propagation

The variable x is the vector input to the network, and the variable h is the hidden state

vector that is carried through from one RNN cell to the next. This variable is passed through to

the next RNN layer to share information about the past. As shown in the diagram, both the input

and hidden state are multiplied by their own respective weight vectors. Forward propagation

through a vanilla RNN is shown algebraically in equation 2.9.

hl
t = tanh

0

B
@W l

2

6
4

hl � 1
t

hl
t � 1

3

7
5

1

C
A (2.9)

wheret denotes the time step andl denotes each RNN cell.

There are two well known fundamental issues with vanilla RNNs. First is the issue of

overload of information. Flooded with data from the hidden state, the RNN has no way to

decide which information is needed and what is not, leading to loss of generalization. Second,

discovered originally by Bengio in 1994 [5] and Hochreiter back in 1991 [34], is the issue of

vanishing (or exploding) gradients during training. The vanishing gradient problem is caused

when small gradients less than zero pass from the end of a deep neural network back to the front

during back propagation. As the chain rule is applied at each layer, the gradients can shrink

exponentially. Similarly, when large gradients are passed back through back propagation in

deep networks, continual multiplications through the chain rule in back propagation can lead to

20



exploding gradients. One solution to the exploding gradients of RNNs is by gradient clipping

[58], however, to solve the problem of vanishing gradients, changing the architecture to the

Long-Short Term Memory Recurrent Neural Network is usually the route taken.

2.5.1 Long-Short Term Memory (LSTM)

The Long-Short Term Memory Recurrent Neural Network (LSTM) solves many of the

problems associated with the vanilla Recurrent Neural Network [35]. The LSTM solves the

vanishing gradient issue by carrying over the states in an additive manner between each layer

through the cell statec, and better learns long term dependencies through the use of a forget

gatef , which decides which information is useful for remembering. This allows the network

to only remember information that is important, leading to better use of context.

A computational graph of the LSTM Forward Propagation is shown below.

Figure 2.4: Diagram of LSTM Forward Propagation

LSTM Forward Propagation is given algebraically as:

2

6
6
6
6
6
6
6
4

i

f

o

g

3

7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
4

�

�

�

tanh

3

7
7
7
7
7
7
7
5

W

2

6
4

ht � 1

x t

3

7
5 (2.10)

ct = f � ct � 1 + i � g (2.11)

ht = o � tanh(ct ) (2.12)

21



WhereWh andWx are the weights multiplied to the training datax and the hidden states

h respectively. The vectorc is the cell state. The cell statec and hidden stateh both serve to

conserve information from one step in the network to the next, allowing the network to learn

time series dependencies. The vectorsa1, a2, a3, a4 serve as inputs to the forget gate, input gate,

“gate” gate, and output gates respectively. These gates collectively determine how information

is retained (or forgotten) as the network is trained. Back propagation equations for RNNs and

LSTMs are given in the Appendix. A detailed history of the LSTM can be found in [31].

2.5.2 Gated Recurrent Unit (GRU)

Gated Recurrent Units were devised by Cho et al. in 2014 as another architecture of

Recurrent Neural Network [18]. According to the �ndings of Karpathy et al. both LSTM

and GRU architectures achieve comparable performance while both outperforming traditional

RNNs when trained for character-level language modeling. The Gated Recurrent Unit is sim-

pler than the LSTM with only two gates instead of four. Algebraically GRUs take the form

2

6
4

r

z

3

7
5 =

2

6
4

�

�

3

7
5 W l

r

2

6
4

hl
t

hl
t � 1

3

7
5 (2.13)

~hl
t = tanh(W l

xhl � 1
t + W l

g(r � hl
t � 1)) (2.14)

hl
t = (1 � z) � hl

t � 1 + z � ~hl
t (2.15)

WhereW l
r is a matrix of shape [2n x 2n], andW l

g andW l
x are of shape [n x n].

Despite the successes of GRUs in recent studies, the LSTM network is still by far the

most popular Recurrent Neural Network used in application. For these reasons, the LSTM was

chosen for this work. Future studies may incorporate comparisons between LSTMs and GRUs

for this application if desired.

22



2.5.3 Convolutional LSTM (ConvLSTM)

When dealing with large arrays of input data or time-distributed image input data, one may

choose to use Convolutional LSTMs, which were originally developed by researchers from the

Hong Kong University of Science and Technology [79]. They proposed using a convolutional

LSTM (ConvLSTM) to predict future rainfall magnitude given radar images. Their �ndings

show that ConvLSTM layers are able to fuse the strengths of Convolutional Neural Networks

with LSTMs into a layer that can capture both time dependencies and spatial dependencies.

The Convolutional LSTM works by performing convolutions within the state-to-state and

state-to-input transitions of the LSTM. This is not to be confused with stacking a CNN layer in

front of an LSTM layer. Instead, the CNN is fused inside of the LSTM. The downside of the

ConvLSTM compared to the LSTM is longer training time. Therefore, one may try using an

LSTM for their problem �rst and see if the results are good enough before attempting to train

a ConvLSTM. For reference, the ConvLSTM forward propagation equations are given below:

2

6
6
6
6
6
6
6
4

i

f

o

g

3

7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
4

�

�

�

tanh

3

7
7
7
7
7
7
7
5

W �

2

6
4

H t � 1

X t

3

7
5 (2.16)

Ct = f � Ct � 1 + i � g (2.17)

H t = o � tanh(Ct ) (2.18)

where the formulation is the same as forward propagation for LSTMs, but the convolutional

operator� is applied between the weightsW and the hidden statesH and inputsX . Addi-

tionally, the cell stateC, hidden stateH , and inputX become 3 dimensional tensors with the

width, length, and depth that an image would have.

23



2.6 Conclusion

This concludes the discussion on machine learning concepts and the fundamentals of Deep

Neural Networks. To wrap up, Deep Neural Networks, per the Universal Approximation The-

orem, are theoretically able to approximate any nonlinear function or task. Some network

con�gurations are better at certain tasks than others. In this thesis, the task of the designed

network is to approximate the future positions of vehicles surrounding a truck platoon on a

highway, which falls within the general task of Time Series Forecasting. Recurrent Neural

Networks, particularly Long-Short Term Memory networks have been shown in literature to

perform particularly well at the task of time series forecasting, hence LSTMs are the chosen

algorithm in this thesis. From this we gather some tools with which to approach the overall

task of time series forecasting from a machine learning perspective, which will be explored in

the next chapter.

24



3

Time Series Forecasting

3.1 Introduction

Typical data used in Deep Learning applications, such as images used to train a neural

network to recognize traf�c agents, lacks a temporal dependency. Once the observations con-

tain a time dimension, they become a time series. To quote George Box, “A time series is a

sequence of observations taken sequentially in time” [7]. When working with time series data,

one may choose to understand it, or one may use it to make predictions of the future. The for-

mer is known as Time Series Analysis and aims at modeling the mechanism that give rise to an

observed series. The latter is known as Time Series Forecasting. While Time Series Analysis

can aid in Time Series Forecasting, it is not necessarily required to perform the task.

This chapter aims to survey various Time Series Forecasting methods used to forecast

vehicle behavior, and categorizes these methods into “State-Based” and Stochastic prediction

methods, “Goal-Based” prediction methods, and Machine Learning methods. Particular atten-

tion will be given to methods used later in this thesis including the Constant Velocity, Constant

Acceleration, and Constant Turn Radius predictors, and the Long-Short Term Memory Net-

work.

3.2 State-Based Predictors

In a report released by the Naval Surface Warefare Center in March 1994, several meth-

ods are detailed to generate the predicted future positions of incoming torpedo threats of US

Navy ships. In their work, future threat position prediction methods were split into two main

25



categories: State-Based predictors and Goal-Based predictors. State-based predictions involve

using the current pose of the vehicle and predicting out future pose via a state propagation

method. Such methods include Constant Velocity (CV), Constant Acceleration (CA), Constant

Turning Rate (CTR), Exponentially Deceasing Turning Rate (EDTR), and Helical predictors

[32]. Among these used in this thesis are the CA, CV, and CTR predictors. These predictors

will be described in the sections below.

3.2.1 Constant Velocity

The Constant Velocity Predictor operates by differentiating the last two trajectory obser-

vations of the tracked vehicle with respect to time such that

Vest =
pk � pk� 1

dt
: (3.1)

Wherep is the position vector of the tracked vehicle,dt is the time step, andVest is the estimated

velocity vector. Then future positions are estimated such that

pk+1 = pk + Vestdt: (3.2)

3.2.2 Constant Acceleration

Likewise the Constant Acceleration Model �rst estimates the vehicle's acceleration at the

current time instant such that

aest =
pk � pk� 1

dt2
�

pk� 1 � pk� 2

dt2
: (3.3)

Then future accelerations are estimated such that

pk+1 = pk + Vestdt +
1
2

aestdt2: (3.4)

26



3.2.3 Constant Turn Radius

The Constant Turn Radius Predictor holds the velocity magnitude constant over time while

allowing for lateral accelerations. The Constant Turn Radius predictions are calculated to be

pk+1 = pk + �V est + �a est: (3.5)

Where� and� are de�ned as

� =
sin 
 0t


 0
; (3.6)

and

� =
1 � cos 
 0t


 0
2 ; (3.7)

and
 is given to be


 =
norm(aest)
norm(Vest)

: (3.8)

3.3 Stochastic Estimators for Tracking and Prediction

Kalman Filtering [40] and other stochastic track �lters are commonly used to track obsta-

cles for collision avoidance using dynamic models derived from the state-based models men-

tioned above. The key addition to the state-based models in the �lter dynamics is the modelling

of noise in the dynamic model. The models are derived in two main methods, differing in the

treatment of noise: First is by driving the continuous dynamic model with continuous-time

white noise acceleration (for CV) or jerk (for CA) and discretizing for a given sampling period.

This is referred to as discretized continuous white noise and is given in Section 3.3.1. Second is

by de�ning the process noise in discrete time as a piecewise constant white noise sequence [4],

relying off the assumption that the process noise is constant and independent between sampling

periods. This is referred to as discrete white noise and is given in Section 3.3.2 [63]. The track

�lter using these models can be modi�ed to be a predictor by skipping the measurement update

and recursively running the process update out in time.

27



These models are widely used in applications related to this thesis. Cosgun et al. use a

Nearly Constant Acceleration (NCA) model in a Kalman Filter to provide obstacle detection for

their autonomous vehicle implementation [20]. Engineers at Mercedes-Benz use an Extended

Kalman Filter with a Nearly Constant Velocity (NCV) model to provide tracking solutions of

obstacle vehicles [81].

Similar to these works, the Nearly Constant Velocity model using discrete white noise

acceleration is used for the dynamic model of a Kalman Filter to track neighboring vehicles in

Chapter 5. The testing in Chapter 4 of this thesis focuses on ideal observations of neighboring

vehicles, of which radar measurements perfectly capture vehicle position. In this case, the

stochastic state-based models presented below will conform to the ideal models listed above.

For example, the Nearly Constant Velocity model will conform to the Constant Velocity model

in a non-noisy environment. In future work, once a sizeable data set is empirically collected

from the Auburn truck platoon, the stochastic models below can replace their ideal versions in

analysis.

The stochastic models will be presented given the two methods of modeling noise in the

subsections below.

3.3.1 Discretized Continuous-Time State-Based Models

In this method, the discrete kinematic motion models are derived by �rst de�ning the

continuous models driven by continuous time white noise and then discretizing. The models

resulting from this method are better suited to model systems with variable sampling intervals

[4].

3.3.1.1 Nearly Constant Velocity (NCV)

An object in motion with just slight changes in velocity over time can be modeled with a

continuous time zero-mean white noisev(t) acceleration such that

_x(t) = Ax(t) + Bv(t) (3.9)

28



where

v(t) = •r (t) (3.10)

and where

E[v(t)] = 0 (3.11)

and

E[v(t)v(t)] = ~q(t)� (t � � ) (3.12)

Equation 3.9 is expanded such that

2

6
4

_r (t)

•r (t)

3

7
5

| {z }
_x(t )

=

2

6
4

0 1

0 0

3

7
5

| {z }
A

2

6
4

r (t)

_r (t)

3

7
5

| {z }
x(t )

+

2

6
4

0

1

3

7
5

| {z}
B

v(t) (3.13)

Then discretizing gives

2

6
4

r k+1

_r k+1

3

7
5

| {z }
xk +1

=

2

6
4

1 dt

0 1

3

7
5

| {z }
A k

2

6
4

r k

_r k

3

7
5

| {z }
xk

+ vk (3.14)

wheredt is the time step,r k is the position,_r k is velocity, andvk is related tov(t) such that

vk =
Z dt

0
eA(dt� � )Bv(kdt + � )d� (3.15)

The covariance is then given as

Qk = E[v(k)v(k)0] =

2

6
4

1
3dt3 1

2dt2

1
2dt2 dt

3

7
5 (3.16)

where~q is the power spectral density for a time-invariant system [63]. Using a smallq value

gives the Nearly Constant Velocity model, as changes in velocity of the track are small com-

pared to the modelled velocity [4][63].

29



3.3.1.2 Nearly Constant Acceleration (NCA)

If the object being tracked is frequently maneuvering, the white noise can be modeled as

zero-mean white noise jerk such that

v(t) =
...
r (t) (3.17)

Then the dynamics are given as

2

6
6
6
6
4

_r (t)

•r (t)
...
r (t)

3

7
7
7
7
5

| {z }
_x(t )

=

2

6
6
6
6
4

0 1 0

0 0 1

0 0 0

3

7
7
7
7
5

| {z }
A

2

6
6
6
6
4

r (t)

_r (t)

•r (t)

3

7
7
7
7
5

| {z }
x(t )

+

2

6
6
6
6
4

0

0

1

3

7
7
7
7
5

| {z}
B

v(t) (3.18)

This is then discretized to give

2

6
6
6
6
4

r k+1

_r k+1

•r k+1

3

7
7
7
7
5

| {z }
xk +1

=

2

6
6
6
6
4

1 dt 1
2dt2

0 1 dt

0 0 1

3

7
7
7
7
5

| {z }
A k

2

6
6
6
6
4

r k

_r k

•r k

3

7
7
7
7
5

| {z }
xk

+ vk (3.19)

wheredt is the time step.r k , _r k , and•r k are position, velocity, and acceleration.vk is white,

zero mean process Wiener process acceleration error. The covariance is given as

Qk = E[v(k)v(k)T ] =

2

6
6
6
6
4

1
20dt5

k
1
8dt4

k
1
6dt3

k

1
8dt4

k
1
3dt3

k
1
2dt2

1
6dt3

k
1
2dt2 dt

3

7
7
7
7
5

~q (3.20)

Where ~q is the power spectral density ofv(t). Setting a small~q gives low jerk relative to

acceleration levels, leading to the Nearly Constant Acceleration Model [4].

This model works well to track highly maneuvering targets, so long as the measurement

noise is relatively low and there is a high enough sampling rate to capture each maneuver well.

30



If there are only 2 or 3 measurements taking during each maneuver, acceleration of the target

cannot be estimated well and the Nearly Constant Velocity model should be used instead [63].

3.3.2 Direct Discrete-Time Kinematic Models

The second method of de�ning the kinematic models used in tracking �lters is by de�ning

them directly in discrete time. This method is more commonly used [4], and is the method used

in de�ning the NCV model used in the tracking �lter currently on board the truck platoon as

described in Section 5.3.3.

3.3.2.1 Nearly Constant Velocity (NCV)

The Nearly Constant Velocity model is

2

6
4

r k+1

_r k+1

3

7
5

| {z }
xk +1

=

2

6
4

1 dt

0 1

3

7
5

| {z }
A k

2

6
4

r k

_r k

3

7
5

| {z }
xk

+

2

6
4

1
2dt2

dt

3

7
5

| {z }
B k

vk (3.21)

where

vk � N (0; � vk ) (3.22)

where, again, dt is the time step,r and _r are position and velocity, and acceleration, andvk is

discrete Wiener process noise that is assumed to be constant in between time steps. The process

noise covariance is related to the system such that

Q = E[BvkvkB T ] = Bk � 2
vkB T

k = � 2
vk

2

6
4

1
4dt4

k
1
2dt3

k

1
2dt3

k dt2

3

7
5 : (3.23)

Where� vk is a design parameter. Setting a small� vk gives the NCV model.

31



3.3.2.2 Nearly Constant Acceleration (NCA)

The NCA model as derived directly within discrete time is given as

2

6
6
6
6
4

r k+1

_r k+1

•r k+1

3

7
7
7
7
5

| {z }
xk +1

=

2

6
6
6
6
4

1 dt 1
2dt2

0 1 dt

0 0 1

3

7
7
7
7
5

| {z }
A k

2

6
6
6
6
4

r k

_r k

•r k

3

7
7
7
7
5

| {z }
xk

+
1
2

dt2dt1 (3.24)

and the covariance matrix is given as

Q = Bk � vkB T
k = � 2

vk

2

6
6
6
6
4

1
4dt4

k
1
2dt3

k
1
2dt2

k

1
2dt2

k dt2
k dt

1
2dt2

k dt 1

3

7
7
7
7
5

(3.25)

Again, setting a small� v gives low jerk relative to acclerations and leads to the Nearly Constant

Acceleration model.

3.3.2.3 Nearly Constant Speed (NCS)

The Nearly Constant Speed (NCS) model derived directly in discrete time can be used to

characterize movement of targets who maintain constant speed as they maneuver. This model

is analogous to the CTR predictor described in Section 3.2.3. From [63], the NCS model is

given as

Ak =

2

6
6
6
6
4

1 sin (
 k dtk )

 k

1� cos(
 k dtk )

 2

k

0 cos(
 kdtk) sin (
 k dtk )

 k

0 � 
 ksin(
 kdtk) cos(
 kdtk)

3

7
7
7
7
5

(3.26)

Where


 k =
k•r kk
k _r kk

: (3.27)

32



3.3.3 Kalman Filter

The Kalman Filter [40] is a recursive �lter that utilizes a dynamic model of a system to

predict the system's states through a time update, which it then corrects with measurements

during a measurement update. The Kalman Filter performs this process assuming linear dy-

namics and stochastic evolution of the model. Because the �lter is linear, the state estimates are

also stochastic. Thus the state estimation error can be characterized by a mean and covariance.

The steps of the Kalman Filter are given as

Time Update

8
>>>>>><

>>>>>>:

x̂ �
k+1 = Ak x̂+

k

P �
k+1 = AkP+

k AT
k + BkQkB T

k

P+
k = [ P �

k
� 1 + CT R�

k C]� 1

Measurement Update

8
>><

>>:

L k = P+
k CT R� 1

k

x̂+
k = x̂ �

k + L k(Yk � Cx̂ �
k )

(3.28)

WhereAk andBk are given by the CV or CA model,L k is the Kalman Gain,Yk is the measure-

ment update,Pk is the state error covariance, andRk is the measurement covariance matrix.

More information on the Kalman Filter can be found in [60] [63] [70].

3.4 Goal-Based Predictors

Goal-based predictors propagate the future states of the tracked vehicle forward in time

by assuming knowledge of 1) the vehicle's dynamics, 2) the vehicle's goal point, and 3) the

vehicle's guidance and control law [32]. The accuracy of the prediction heavily relies on the

accuracy on the assumptions made, therefore, a potential area of research would be to �nd

good vehicle models, goal points, and guidance and control laws for cut-in prediction. This,

however, is beyond the scope of this work, as the goal of this thesis is to train a network to learn

these assumptions.

33



3.5 Machine Learning Predictors

Many Machine Learning predictors have been applied to time series forecasting. A brief

summary of prior work for several predictors will be given below. This list is not compre-

hensive. There are likely other methods other than these that currently exist or are yet to be

invented that may perform well at time series forecasting. The algorithms chosen to be listed

below have been have been picked due to their application in literature to problems related to

traf�c behavior prediction.

3.5.1 Hidden Markov Model

In [71], Hidden Markov Models (HMMs) were used to predict driver behavior at inter-

sections. The study found that HMMs could use average velocities of vehicles approaching

an intersection to predict whether the vehicle would turn right, left, or stay straight with an

accuracy of 90 percent with mean prediction times of 7 seconds before the car reached the

intersection.

3.5.2 Bayesian Networks

Schreier et al. in [65] used Bayesian Networks to create maneuver based probabilistic

models to predict vehicle motion forward in time. The study incorporated random scenarios

and driver decisions, including “irrational” driver decisions, using Monte Carlo simulations.

The study divides predictions into different classes of maneuvers such as “Follow Road”, “Fol-

low Vehicle”, “Lane Change”, and “Target Brake”. Each maneuver relies on a model for pre-

dictions, including the Constant Acceleration and Constant Turn models.

3.5.3 Gaussian Processes

Wang et al. in [75] use Gaussian process dynamical models to learn nonlinear models

of human pose from motion capture data. The paper demonstrates the ability of the Gaussian

Processes to effectively learn nonlinear behavior, even with small sample sizes.

34



3.5.4 Inverse Reinforcement Learning

Reinforcement learning operates by training an agent to perform an action based off some

loss function or reward policy. Inverse Reinforcement Learning, also known as Inverse Optimal

Control, attempts to calculate the loss function used by the observed agent via expert observa-

tions of the actions of that agent. Work by Andrew Ng and Stuart Russell in 2000 explored

using Inverse Reinforcement Learning to predict Monte Carlo simulated trajectories [56], and

work by Kitani et al. explored Inverse Optimal Control to predict future motion of pedestrians

[47].

3.5.5 Convolutional Neural Networks

Engineers from Uber used Convolutional Neural Networks (CNNs) to predict the future

positions of vehicles around intersections [21]. The algorithm used top-down rasterized maps

of the road, lanes, vehicles, and vehicle orientations as input to a CNN. The time series output

from the CNN was concatenated onto a vector of the tracked vehicle states and fed through an

MLP network. The network outputted multiple trajectories with associated probabilities. This

paper inspired the multi-modal trajectory prediction method used in this thesis.

3.5.6 Mixture Density Network

Mixture Density Networks (MDN) [6] were used by Shah and Romijdners in conjunction

with LSTMs to predict the future position and success rate of NBA three point basketball

trajectories [66]. The Mixture Density Network and LSTM combination allowed for a network

output of Gaussian means and covariances for future basketball positions. The study found that

the combination could predict success rate of three point shots with an accuracy of 72 percent

at 8 feet from the basket. The prediction accuracy increased as balls moved closer to the basket,

maxing out at 94 percent accuracy at 2 feet from the basket.

35



3.6 LSTM for Time Series Forecasting

LSTMs have been widely studied and applied to many Time Series Forecasting prob-

lems including predicting basketball trajectories [66], handwriting [30], image captioning and

Shakespear play writing [44], and increasing reading ef�ciency by learning to read from left to

right [2]. According to Jason Brownlee of Machine Learning Mastery, LSTMs provide state

of the art results on dif�cult sequence problems [14][31]. Contrary to ordinary RNNS, LSTM

networks have the advantage of being able to remember context over large amounts of data due

to the workings of the forget gate as described in the previous chapter. For example, in the task

of sentence completion, giving a network the sentence fragment “I live in France so I speak”

and expecting the output to be “French”, requires knowledge of the context attached to living

in France. LSTMs have been shown to excel at learning these problems. This thesis set outs to

show their viability in forecasting traf�c behavior as well. But �rst, it is worth detailing a few

more concepts surrounding the practical implementation of LSTMs in Time Series Forecasting.

3.6.1 Data Augmentation

“The success of all Machine Learning algorithms depends on how you present

the data.”

– Mohammad Pezeshki,Mila [59]

Training a network on raw data is typically a bad idea, as networks have trouble training

off of data that has large variations in magnitude, non-normal distributions, or is non-stationary.

To help with training, the raw trajectory data must be prepared before being pulled into the net-

work. The most popular transforms to time series data include coordinate transform, power

transform, differencing, standardization, and normalization, usually performed in that respec-

tive order to the data. Once the network is trained, predictions are detransformed in reverse

order to arrive to the forecasted solution. In addition to having properties that enhance training,

data augmentation methods can also be used to increase the robustness of the learned solution.

This is further described in Section 3.6.1.6.

36



3.6.1.1 Stationarity

One of the goals of data augmentation is to ensure the time series is stationary. A time

series is considered stationary if its statistical parameters (mean and variance) are not changing

over time. In other words, a stationary time series does not have a trend or seasonality. As it

turns out, having a stable mean and variance can make machine learning models much easier

to train, and thus we explore ways of making time series models stationary. A useful method

to detrend a time series is by differencing consecutive values. Methods for deseasoning a time

series include differencing consecutive seasons in the data or by applying a log transform [11].

3.6.1.2 Differencing

Differencing is performed by subtracting the previous values from the current values at

each time-step, essentially performing a discrete differentiation of the data, estimating velocity

from position measurements, acceleration from velocity measurements, jerk from acceleration

measurements, etc. An example of differencing is given in Equation 3.29.

X train =

2

6
6
6
6
6
6
6
4

x

y

z

t

3

7
7
7
7
7
7
7
5

�! X train =

2

6
6
6
6
6
6
6
4

� x

� y

� z

� t

3

7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
4

xk

yk

zk

tk

3

7
7
7
7
7
7
7
5

�

2

6
6
6
6
6
6
6
4

xk� 1

yk� 1

zk� 1

tk� 1

3

7
7
7
7
7
7
7
5

(3.29)

This detrending of the data serves two main purposes. The �rst property of differencing

is that it can make data stationary by stabilizing the mean of the time series. It does this by

removing the changes of the time series data, helping to remove trends or seasonality [38].

Second, differencing allows the neural network to learn the trends of a sequence rather

than the original values, ensuring that the predictions can be made even if the data is shifted

in space or taken at different time intervals. This property of differencing is rather powerful in

spatial forecasting, as it can signi�cantly reduce the amount of data needed to train a network.

For example in [66], given a list of sequential positions taken from a basketball following

a 3 point shot trajectory, a network can learn to predict the next position in the sequence, so

long as the shot lies in the same area as shots that were trained upon and is headed toward the

37



origin located at the basket. In order to predict shots headed toward the basket on the other

side of the court, all that needs to be done is a rotation on the shots to orient them toward the

basket in the same way the training data was oriented. However, if the network tried to predict

shots taken at another point in space, such as shots not directed toward the basket or translated

away from the training data, the predictions would fail. Thus, in order to successfully learn the

dynamics of a basketball shot, the network would need to see examples of shots taken in all

points in space. If the basketball trajectories used for training were differenced beforehand, the

network would be able to predict the rest of the trajectory at any point in space and at any point

in time.

3.6.1.3 Power Transform

If the time series has a quadratic or exponential trend, applying a square root or log trans-

form can remove the respective power trend and reduce the trend to a linear one. These trans-

forms are given in equations 3.30 and 3.31.

X train = log(X ) (3.30)

Or

X train =
p

X (3.31)

Once the trend is linear, it can be detrended by consecutive differencing. Moveover, ap-

plying a power transform may aid in deseasoning the data if the variances grow with time [10].

Determining which power transform to use is typically a process determined visually with trial

and error until the variances and means appear to be of �rst or zeroth order.

3.6.1.4 Standardization

Standardization is a process of making the data zero mean with a standard deviation of

1. Standardization is commonly used when training neural networks as it aids in optimization

in the process of gradient descent. This is because of the way gradients are calculated during

the optimization process. If the features in the network are scaled differently, the gradients

38



for each feature will vary. Given that the step size toward the minima is the learning rate

multiplied by the gradient, training a network on unstandardized data will cause each feature

to have differing optimal learning rates. Standardization solves this problem by ensuring the

features have similar gradients, thus one learning rate can be chosen for all features and an

optimal solution can be reached quicker [61] [62].

Standardizing data is rather straight forward, simply subtract the mean value of the time

series and then divide by the standard deviation as is shown in Equation 3.32

X train =
X � �X

� X
(3.32)

It is important to accurately estimate the mean and standard deviations for standardiza-

tion. Using estimates given by the training set should suf�ce, given the training set is well

representative of the general time series problem at hand [13].

The standardization should be performed for each feature independently. Additionally, it

is important that standardization parameters are calculated from random samples of the train-

ing data prior to training as opposed to using means and standard deviations of each respective

training segment. This ensures the network predictions on new data be destandardized accu-

rately. Standardization also will not be accurate if the data is not yet stationary, thus differencing

and/or power transforms should be performed prior to standardization if the data is not already

stationary.

3.6.1.5 Normalization

Rescaling or normalizing the time series before training can be bene�cial when training

neural networks. This is because the activation functions within the networks can attenuate

signals that lie beyond certain ranges. For Long-Short Term Memory networks, the typical

activation functions used include sigmoid and tanh functions. Sigmoid functions will attenuate

data outside the bounds of 0 and 1, while tanh will attenuate signals outside -1 and 1. This was

seen in Figure 2.2. As such, it is prudent to normalize the data in between one of these two

ranges before training [13].

39



To normalize each feature in the time series tensor to values between 0 and 1, each feature

is �rst differenced by the global minimum, and then divided by the global maximum minus

the global minimum, as seen in Equation 3.33. To normalize between -1 and 1, perform the

procedure above and then multiply by 2 and subtract 1, as shown in Equation 3.34.

X train =
X � min (X )

max(X ) � min (X )
(3.33)

Or

X train =
2(X � min (X ))

max(X ) � min (X )
� 1 (3.34)

Like standardization, normalization requires accurate estimates of the statistical parame-

ters used in the transform. Particularly important is that normalization uses global parameters;

the use of local parameters would require knowledge of future minimum and maximum val-

ues. A potential dif�culty with normalization is that any errors in estimate maximums and

minimums will cause errors in the predictions after denormalization.

Additionally using global minimum and maximum values alone can cause large discrep-

ancies in the orders of magnitudes between features. Ideally, networks train off of time series

with order of magnitude differences within102. Any larger or smaller may harm the training

process. Thus, it is desirable to normalize only after differencing and standardizing the time

series data. This allows for accurate estimation of global minimums and maximums within a

predictable range, ensuring that the output values are in a desirable range. More information

on Normalization can be found in [49] and [9].

3.6.1.6 Feature Engineering

Perhaps some of the most practical transforms made to the data are transforms that aim to

reduce the degrees of freedom that the machine learning model is required to learn. In this step

lies much of the thought and creativity when a machine learning practitioner is attempting to

successfully train accurate and robust networks. Several examples of this have been discussed

above, particularly pertaining to transforming coordinate frames and differencing. First, rotat-

ing coordinate frames can signi�cantly reduce the amount of data needed to train a network as

40



well as the size of the network needed to learn a particular relationship. An example of this can

be seen in Figure 3.1.

Figure 3.1: Coordinate Transform of data from Cartesian to polar coordinates [51]

In order to design a network to classify the red dots from the blue dots in the plot on the

left, a nonlinear model would need to be learned. However, by transforming the coordinates

from cartesian to polar coordinates, the classi�cation problem is reduced to a �rst order linear

regression [51]. Such is the importance of carefully and thoughtfully transforming data before

it is chewed on by the network.

Another example of this was described in the subsection pertaining to differencing. By

performing consecutive differencing and training off changes in the states as opposed to the

states themselves, the network can predict future states within any area in space and time.

Finally, combining properties of the rotation transform and the difference transform can

be bene�cial to both the robustness of the trained network as well as reduction in network

complexity. The implementation discussed in Chapter 4 performs all predictions in a local

coordinate frame referenced to the radar located on the follower truck in the truck platoon

as seen in Figure 4.9. This way, the network only needs to learn trajectories moving in the

same general direction, thereby reducing the required complexity of the network. Similarly in

Chapter 5, tracks of neighboring vehicles are converted to Normal and Tangential Coordinates

referenced to the estimated center of the lane the trucks are platooning in. This transformation

removes the complexities of road curvature from the data the network is tasked with learning.

The effects of this transform is further explained in Sections 5.3.1 and 5.3.2.

41



3.6.2 Sequence Prediction Input to Output Mapping

Most neural network architectures are constrained to having a single input map to a single

output, known as “One-To-One”, however Recurrent Neural Networks can be con�gured to re-

ceive inputs of varying sizes, adding a level of �exibility when designing time series prediction

networks. These input sizes, or input-output mapping, can be an input sequence of size one

and an output sequence of size one (one to one), input sequences of varying size and output

sequences of size one (many to one), or receive inputs of varying size and output sequences of

varying size (many to many) [44].

3.6.2.1 One-To-One

One-To-One mapping, as shown in Figure 3.2, is commonly used with non-recurrent neu-

ral networks such as Convolutional Neural Networks and Multi-layer Perceptron Models. It

maps �xed size inputs to �xed size outputs. An example is feeding a network images and out-

putting classi�cations (image classi�cation). One-To-One modeling is not used in Recurrent

Neural Networks as it cannot learn over time steps.

x(0) u h(0)

x(1) u h(1)

x(n) u h(n)

Figure 3.2: One-To-One Sequence Prediction Model

3.6.2.2 One-To-Many

One-To-Many mapping, shown in Figure 3.3, involves mapping one �xed size input to a

sequence output. One common usage for this mapping is image captioning. The input to the

Recurrent Neural Network is an image, and the output is a caption describing the image.

42



x(0) u(0) h(0)

u(n) h(1)

x(m) u(0) h(m)

u(n) h(m+1)

Figure 3.3: One-To-Many Sequence Prediction Model

3.6.2.3 Many-To-One

The Many-to-One con�guration uses a vector of sequences to predict a future value, as is

depicted in Figure 3.4. An example would be given the list of numbers (1,2,3,4), the network

could predict the next number in the list to be 5. The Many-To-One con�guration can be used

in time series forecasting if all that is required is a single point in the future. If a vector of future

sequences is required the network can be run recursively after each prediction by appending the

new prediction onto the input vector and dropping the last value. The weakness in this method

is that it introduces compounding errors as the algorithm calculates new predictions using the

old predictions.

x(0) u(0)

x(1) u(n) h(1)

x(m) u(0)

x(m+1) u(n) h(m+1)

Figure 3.4: Many-To-One Sequence Prediction Model

43



A better application of Many-To-One is for time series classi�cation. Given a sequence

of values, the network can be trained to classify the sequence between different categories. An

example of this is predicting the success of NBA 3 point basketball shots given prior ball posi-

tions [66]. This thesis employs this con�guration to predict probabilities attached to predicted

trajectories.

A potential applications of the Many-To-One con�guration in Recurrent Neural Networks

in the �eld of vehicle control could be to train a network to perform the duties of a guidance

and control algorithm. A network could be trained to receive inputs of the vehicle's states,

positions of obstacles, location of waypoints on the road, etc. and output actuator inputs.

Another potential application of Many-To-One in Navigation could be to use a Recurrent

Neural Network as a nonlinear �lter. A network can be trained to provide navigation solutions

in dif�cult environments in which traditional methods such as Kalman Filters have trouble

performing. In pedestrian navigation, a network can be trained to operate in GPS denied en-

vironments using a map and imu measurements such as in [60]. It would be interesting to see

RNNs applied to other state of the art issues in the �eld of Guidance, Control, and Navigation

such as what is being done in this thesis.

3.6.2.4 Many-To-Many

The Many-To-Many con�guration removes the issue of compounding errors by allowing

the network to predict future values over a desired amount of steps into the future. A diagram of

this can be seen in Figure 3.5. The future sequence length is not �xed to the length of the input

sequence. For example, an input sequence of size 5 can be used to predict a future sequence of

size 10. This adds �exibility over other prediction methods that are limited to predicting �xed

sequence lengths. This is the chosen mapping to be used to predict the future pose of vehicles

neighboring the truck platoon given the vehicles' previous states, as a shorter time length can

be mapped to a longer prediction horizon.

44



x(0) u(0)

x(1) u(1)

x(m) u(n) h(m)

u(n+1) h(m+1)

u(n+2) h(m+2)

Figure 3.5: Many-To-Many Sequence Prediction Model

Another form of Many-To-Many maps synced sequence inputs to outputs, and can be seen

in Figure 3.6. An example of this would be labeling frames of video one frame at a time. This

method is used for CNN labeling of objects over time such as labeling vehicles in each epoch of

camera or radar data. This mapping could be useful in aiding radar detection algorithms. For

example, a forward facing camera could be used to validate detected radar objects like cars,

trucks, or clutter.

x(0) u(0) h(1)

x(1) u(1) h(2)

x(m) u(n) h(m)

Figure 3.6: Synced Many-To-Many Sequence Prediction Model

3.6.3 Encoder Decoder Models

Encoder Decoder Models divide the work of a network into two discrete tasks between

an Encoder and a Decoder network. The Encoder Network is tasked with receiving input data

45



and “encoding” meaning from the data into a vector. The Decoder Network is then tasked to

“decode” or interpret the vector outputted from the Encoder network and to generate predictions

from it. An example of this would be a network that is trained to translate a sentence written

in French to English. By using an Encoder-Decoder structure, one network can essentially be

trained to understand French, and the other to speak English. Together they work to complete

the entire task more ef�ciently than a single network of the same size. This allows for smaller,

more ef�cient network sizes [73][39][17].

3.7 Conclusion

Many methods of tracking and time series forecasting have been presented with aim to

predict the future states of systems. These methods include Kalman Filtering, state-based and

goal-based predictors, as well as machine learned and deep learned methods, including the

Long-Short Term Memory Recurrent Neural Network. Recurrent Neural Networks are a type

of deep neural network speci�cally designed to predict sequential behavior and have seen large

success in many areas including natural language processing, economics, and weather. This

thesis utilizes on the Long Short-Term Memory Network to take advantage of its ability to

learn complex nonlinear problems such as truck platoon cut-ins.

46



4

LSTM Network for Cut-in Prediction and Detection in Simulated Environment

“Essentially, all models are wrong, but some are useful.”

– George Box,Empirical Model-Building and Response Surfaces[22]

4.1 Introduction

A simpli�ed approach is given to provide proof of concept for the use of an LSTM pre-

dictor for track platoon cut-ins. A truck platoon is simulated to drive due north at a constant

velocity and constant spacing while a neighboring vehicle is randomly commanded to either

cut into the platoon or to drive past. The simulation is performed for straight, �at roads, and

vehicle pose estimates are calculated without radar noise. The results of this initial study serve

to guide the direction of the implementation in Chapter 5, in which these principles will be

applied to empirical data obtained from highway runs on the track platoon.

4.2 Training Data Design

One weakness of Deep Neural Networks is the requirement of large swaths of data needed

for training. If the training set for a network is too small, the network may fail to generalize

to new data sets after training, a phenomena well known as over-training or over-�tting. There

are several solutions to over-training including early stopping, decreasing the network size, and

dropout. However, none of these solutions plays to the advantages of Deep Neural Networks

as much as increasing the size of the data-set [72].

47




	Abstract
	Acknowledgments
	Introduction
	 Background and Motivation
	 Contributions
	 Thesis Outline

	Deep Learning Background
	Introduction
	 General Concepts in Machine Learning
	 Task
	 Performance Measure
	 Experience
	 The Universal Approximation Theorem
	 Active Learning Pipeline

	 Multi-Layer Perceptron (MLP)
	 Activation Functions
	 Rectified Linear Unit (ReLU)
	 Variants of ReLU
	 Sigmoid Activation Function
	 tanh Activation Function

	 Back Propagation
	 Stochastic Gradient Descent (SGD)
	 Adam Optimizer


	 Convolutional Neural Networks
	 Recurrent Neural Networks (RNN)
	 Long-Short Term Memory (LSTM)
	 Gated Recurrent Unit (GRU)
	 Convolutional LSTM (ConvLSTM)

	 Conclusion

	 Time Series Forecasting
	 Introduction
	 State-Based Predictors
	 Constant Velocity
	 Constant Acceleration
	 Constant Turn Radius

	 Stochastic Estimators for Tracking and Prediction
	 Discretized Continuous-Time State-Based Models
	 Nearly Constant Velocity (NCV)
	 Nearly Constant Acceleration (NCA)

	 Direct Discrete-Time Kinematic Models
	 Nearly Constant Velocity (NCV)
	 Nearly Constant Acceleration (NCA)
	 Nearly Constant Speed (NCS)

	 Kalman Filter

	 Goal-Based Predictors
	 Machine Learning Predictors
	 Hidden Markov Model
	 Bayesian Networks
	 Gaussian Processes
	 Inverse Reinforcement Learning
	 Convolutional Neural Networks
	 Mixture Density Network

	LSTM for Time Series Forecasting
	 Data Augmentation
	 Stationarity
	 Differencing
	 Power Transform
	 Standardization
	 Normalization
	 Feature Engineering

	Sequence Prediction Input to Output Mapping
	One-To-One
	One-To-Many
	Many-To-One
	Many-To-Many

	 Encoder Decoder Models

	 Conclusion

	LSTM Network for Cut-in Prediction and Detection in Simulated Environment
	 Introduction
	 Training Data Design
	 Lateral Vehicle Dynamics
	 Longitudinal Vehicle Dynamics
	 Pure Pursuit Controller
	 Radar
	 Monte Carlo Trajectory Generation
	 Sample Trajectories
	 Passing Trajectory
	 Cut-in Trajectory
	 Training Data


	Neural Network Design
	 Inputs and Outputs
	 Data Augmentation
	 Network Architecture
	 Network Training
	 Loss Function for Ensemble Probability Output

	 Results
	Root Mean Squared Error
	Cut-In Network
	Passing Network
	Ensemble Network

	Predicted Time to Cut-in
	Cut-in Detection
	Sampled Predictions

	 Conclusion and Discussion

	Experimental Validation of Simulation Trained Neural Network
	 Introduction
	 Data Collection
	 Truck Platoon Setup

	 Detection and Tracking of Neighboring Vehicles
	 Pure Pursuit Lane Drawing
	 Road Constraining
	 Kalman Filtering

	 Data set
	 Trajectory Visualization
	 Cut-in Trajectories

	 Network Results
	 Conclusion and Discussion

	 Conclusions
	 Summary
	 Conclusion
	 Future Work

	Bibliography
	Appendices
	Vanilla RNN Backward Propagation
	LSTM Backward Propagation
	Diagram of LSTM Forward Propagation


