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Abstract 
 

 
Over the past forty years, the Apalachicola–Chattahoochee–Flint (ACF) river basin in 

Alabama, Georgia, and Florida has been the subject of numerous litigation and research 

regarding water allocation. The state of Georgia’s heavy reliance on the ACF’s water resources 

for the city of Atlanta water supply and agricultural production has been a partial cause of this 

conflict between Alabama, Georgia, and Florida.  Regional, watershed, and field-scale models 

have been employed by researchers to better understand the hydrology of this area; however, few 

studies exist focusing on proper multi-variable calibration and validation that include plant 

growth of cotton and peanut, surface runoff, soil moisture, and soil nitrate. Cotton and peanut are 

primary crops in this region and greatly affect the hydrology.  In addition, this area is home to 

many different types of soils.  Soil type and morphology can affect crop yields, but how different 

soils in Georgia effect crop yields in SWAT has yet to be quantified. 

The first objective of this study was to create, calibrate, and validate a field-scale model 

using the Soil and Water Assessment Tool (SWAT) of fields at a research station in the Lower 

Flint River Basin.  The research station modeled is the Stripling Irrigation Research Park (SIRP) 

located in Camilla, Georgia and run by the University of Georgia (UGA).  UGA provided all 

management information needed to create the model, including crop type, fertilizer rates, 

irrigation amounts, planting dates, harvest dates, and crop yields.  Three fields were modeled, 

which grew corn, peanut, and cotton, respectively, after a winter cover crop of Rye and strip-

tilling.  Each field contained three duplicate plots with 9 different fertilizer/irrigation treatments 

and had two plots with berms surrounding the plots to isolate overland flow. Plot specific soil 

nutrients, soil texture, biomass, yields, LAI for cotton, TKN, surface runoff, and composite 

runoff nutrient samples were obtained for the growing year 2018.  Multivariable calibration and 
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validation for surface runoff, soil moisture, crop biomass, corn and peanut yields, LAI for cotton 

(yields for cotton were not available), nitrogen uptake by plants, soil nitrate, and nitrate in runoff 

were conducted in this study. The model performed very good for surface runoff, crop growth, 

and nitrogen uptake, and fair for soil moisture and nitrate cycling except for soil nitrate in 

peanuts.    Calibration of each variable following runoff gradually improved surface runoff 

performance.  Analysis of nitrogen and water balances over 30 years were also simulated and 

found nitrate leaching to be very low compared to what is generally expected in this area.  

However, removing soil moisture and soil nitrate calibration, respectively, resulted in higher 

leaching values.  These results indicate calibrating with fewer variables and higher quality 

measured data can result in a more properly calibrated model.  

The second objective of this study was to use a field scale model to determine the effect 

of soil types in southwestern Georgia on crop yields and soil moisture.  A SWAT model 

previously calibrated for a cotton-cotton-peanut rotation in Tifton, Georgia was used in this study 

with 30 years of weather data from NLDAS.  24 different types of soils covering over 98% of 

Region V Soil-Water Conservation District (SWCD) in the STATSGO map were selected and 

integrated into the model, with Tifton and Orangeburg covering 46% of the area.  Soil properties 

from SSURGO were matched to the STATSGO soils and used in this study, allowing for the 

diversity of soils to be accounted for while also using a more detailed soils database.   A multiple 

comparison analysis of the different soils was run with the native SSURGO Tifton soil used as 

the control.  When under UGA Checkbook Irrigation, crop yields had little response to the 

different Georgia soil types tested in this study excepting for one very sandy soil.  Overall yields 

were lower for all Georgia soils investigated without irrigation, but top 305mm of soil will have 

a larger response to soil parameterization.  Soil moisture for the top layer showed much more 
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variation and all soils were statistically significant compared to the control soil.  Soil moisture 

tended to decrease as available water content decreased, clay content decreased, and hydraulic 

conductivity increased.  Future research into individual soil parameters effect on yields and soil 

moisture is needed to better understand the relationship between crop yields and soil properties 

in SWAT.  
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CHAPTER 1: Literature Review 

INTRODUCTION 

 Global warming has thus far had many terrible consequences, including but not limited to 

more variable weather patterns and severe droughts.  As the frequency of droughts increase, high 

crop production areas are at risk for severe crop losses, which in turn not only causes the farmer 

to take a serious economic hit, but global agricultural food production would suffer as well.  To 

help compensate for these dry years, agricultural producers often rely on irrigation from local 

groundwater sources.  More than 70% of total water withdrawals globally are used for irrigation 

and 90% of consumptive water uses (Siebert et al., 2010).   In addition, about 40% of 

groundwater withdrawal in the United States is used for agriculture (Wehr, 2014).  Such high 

levels of pumping have been shown to cause reduction in hydraulic conductivity, aquifer 

depletion, and land subsidence (Chen et al., 2003; Llamas et al., 2003; Zhu et al., 2015).  Thus, it 

is highly beneficial to investigate the consequences of these weather events as they relate to 

agriculturally dominated watersheds. 

 One such area, which has already suffered from increased drought frequency, is the 

southeastern United States (U.S.). The Apalachicola-Chattahoochee-Flint (ACF) River Basin is 

an interesting area with respect to droughts because of both the variety of land uses and long 

history of legislature surrounding the quality and quantity of water in this area.  The ACF basin 

has been a hot topic with water resources since 1989 due to three states’ reliance on its 

freshwater resources: Georgia, Alabama, and Florida (Stevens and Ruscher, 2014).  The top of 

the basin is located in Northern Georgia, where the Chattahoochee River meanders into East 

Alabama, joins the Flint River in southwestern corner of Georgia to become the Apalachicola 

River, and final drains through Florida into the Gulf of Mexico.  The ACF is nearly 385 miles 
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(619km) long, 50 miles (80km) wide, and the total drainage area is approximately 19,573 mi2 

(50,800 km2) with the greatest portion of the basin located in Georgia.  It is home to 

approximately 24,362 reservoirs, 81% of which are located in Georgia, followed by 11% in 

Alabama and 8% in Florida.  A main cause for the complicated legislature lies with the city of 

Atlanta, GA that is located at the top of the Chattahoochee River basin.  78% of the ACF system 

supplies Atlanta’s municipal water, and downstream of the river is twelve hydro-electric dams, 

recreational rivers, irrigation for crops, many habitats for endangered species, and the 

Apalachicola Bay, home of many estuarine fisheries and hatcheries (Wehr, 2014).  In addition, 

according to the United States Geological Survey, drought years in Georgia outnumber normal 

and high precipitation years since 1980, meaning Georgia will rely more on this system to help 

compensate for so many dry years (USGS, 2010).  However, over exploitation of the basin’s 

water resources could have highly negative consequences for the Apalachicola Basin. The 

Apalachicola River is a highly biodiverse area and houses many threatened and endangered 

species (Ruhl, 2005).  Limited water quantity and quality would be damaging to the aquatic life, 

but especially endangered mussel species in this area.  Overall, after thirty-five years of 

litigations without conclusive decisions, Florida petitioned the Supreme Court to take the case in 

2014, arguing to limit Georgia’s water use.  In October 2017 the Supreme Court decided to 

create a cap on Georgia’s water use during times of drought and the trial was appointed to a 

special master to determine details (Florida vs Georgia, 2017).  Despite the Supreme Court’s 

decision, no actionable changes have been made and the legal battles have no discernable end in 

sight.  

 In addition to being the primary water user in the ACF basin, Georgia is also a highly 

agriculturally productive area.   According to the USDA National Agricultural Statistics Service 
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(NASS), in 2017 Georgia ranked first nationally for broilers, peanuts, and utilized pecans, 

second for cotton lint and cotton seed, and seventh for sweet corn.  Georgia is also a top national 

producer of fruits and vegetables, ranking third for watermelon; fourth for Bell Peppers, 

Cantaloupes, and Cucumbers; fifth for Tobacco; sixth for Blueberries, cabbage, eggs, onions, 

and squash; and finally, seventh for the state fruit – Peaches – and snap beans.  There are many 

factors contributing to this agricultural productivity.  First, Georgia has an interesting variety of 

aquifers, consisting of a surficial aquifer system termed the Biscayne aquifer, an upper confining 

unit, the upper Floridian aquifer (UFA), a middle confining unit, the lower Floridian aquifer, and 

a lower confining unit (Torak and Painter, 2006).   These aquifers are karstic aquifers, meaning 

they consist of highly permeable limestone.  The upper confining layer consists primarily of 

clastic rocks with low permeability, mostly from Hawthorn Formation from the Miocene age.  

Recharge zones for the UFA are throughout the Lower Flint River Basin (LFRB), meaning 

access to this aquifer for farmers is easier and more cost effective. Thus, the UFA, due to both its 

size and water availability, is often the source of irrigation from groundwater in this area (Singh 

et al., 2016). 

 The second major factor in Georgia’s agricultural productivity is the soil and 

geomorphology of the area.  There are hundreds of different types of soil in Georgia, but the 

National Resource Conservation Service (NRCS) has six major categories: Limestone Valley 

Soils, Blue Ridge Soils, Southern Piedmont, Sand Hills, Southern Coastal Plain, and Atlantic 

Coast Flatwoods (2019).  Limestone Valley and Blue Ridge Soils are located in the northernmost 

portion of the state with more loamy, well-drained, fertile lowlands suitable for forage 

production.  The Southern Piedmont contains massive granite features and clayey soils with iron 

oxides, and the southernmost portions contain nutrient rich soils more suitable for row crops.  



4 
 

Below the Piedmont is the Sand Hills region which, as the name implies, contains largely sandy 

soils not suitable for plant growth.  The large Southern Coastal Plain Region contains a large 

variety of sandy, red clayey, and gravelly soils.  This area was previously an ancient marine 

coastline during the Mesozoic era, and although the sandier texture and frequent use of these 

soils for farmland make nutrients less abundant, nutrient management and easy access to the 

UFA mean this area is primarily used for row crops.  

 Hydrologic modelling programs are being employed more and more to investigate the 

impacts of these dangerous weather patterns in agriculture.  In 2011, Viger et al. published an 

article attempting to forecast and better understand the hydrological processes in the Upper Flint 

River Basin as affected by urbanization and climate change.  They used modeling program called 

Precipitation-Runoff Modeling System (PRMS), which is a physically based, distributed-

parameter watershed model. The model was used to produce an 11-year moving average for 

precipitation, temperature maximum and minimum, evapotranspiration, streamflow, subsurface 

flow, and groundwater flow through 2050.  The PRMS produced results for three configurations: 

changes in urbanization using a Forecasting Scenarios of Future Land-Cover Model (FORE-

SCE), changes in climate using Generalized Climate Models (GCMs), and combined changes in 

urbanization and climate.  Their results showed a general increase in stream flow and surface 

runoff, slight decrease in groundwater and subsurface flow, and decrease in evapotranspiration 

(Viger et al., 2011).  These results make sense with a predicted reduction in vegetation cover, 

increase in temperature, precipitation, and impervious surfaces.   

 Many studies in the Flint River Basin have been conducted with irrigation use as the 

primary focus.  After Georgia attempted to decrease irrigation pumping in 2002 by auctioning 

off water usage in the Flint River, 33,000 acres were removed from production, which was 
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predicted to increase water savings by 19-24% (Ban et al., 2007).  However, despite this effort 

actual water savings have been overshadowed by irrigation usage in drought years.  One study 

conducted by Mitra et al (2016) compared stream flow and groundwater flux in drought years 

with and without irrigation in the Lower Flint River Basin.  This study found at the time the 

Upper Floridian Aquifer supplied 80% of irrigation in the area and the remaining irrigation was 

supplied by streamflow.  Cotton, corn, and peanuts are the primary crop in this area, which are 

highly water consumptive crops.  They used the 2011 and 2012 water data (October 2010-

September 2012), which was during a two year La Niña drought and MODular Finite-Element 

model (MODFE) program.  This study found both streamflow and groundwater flow were 

negatively affected by irrigation withdrawal with the combined river-aquifer flux being the 

primary component effected.  Some areas experienced an overall decrease of as much as 9 feet (2 

meters).  Given this simulation is only for two years and droughts are predicted to increase, such 

severe irrigation could have serious consequences in the coming years. 

 Although increased irrigation results in decreased stream and groundwater flow, 

especially for streams being fed by aquifers, in some watersheds the actual connectivity of these 

two hydraulic systems are difficult to clarify within a karst watershed.  Rugel et al. (2016) 

conducted an isotopic study on a smaller watershed within the Flint River Basin to attempt to 

understand the heterogeneity of the watershed.  They found 10% of the fifty streams sampled 

contributed up to 42% of the groundwater along the 50km sampled stretch of river.  In addition, 

only 24% of the rivers entered groundwater dominated tributaries.  Some reaches were affected 

heavily by the 2011 drought and some showed little change in flow (Rugel et al., 2016).  This 

study shows how variable a karstic aquifer can affect a watershed and it also pointed out this sort 

of variability is often ignored in larger studies. 



6 
 

 One common model, which has been adopted around the world and with nearly 4000 

published articles to date due to its versatility, capability to handle a variety of watersheds, and 

great support, is the Soil and Water Assessment Tool (SWAT). SWAT was originally developed 

by Dr. Jeff Arnold for the USDA Agricultural Research Service to understand the impact of land 

management practices on water, sediment and agricultural chemical yields on large complex 

watersheds with varying soils, land use, and management conditions over long periods of time 

(Neitsch et al., 2011).  SWAT is a physically based model, meaning instead of parameterizing 

output results with regression relationships, the results are produced based on a wide variety of 

input data, such as weather, soil, land, vegetation, and land management practices.  In this way, 

highly complex watersheds can be modeled for water, sediment, crop growth, nutrient cycling, 

and more.  It maps a watershed basin, subbasins, and subbasin outlets based on elevation data 

and streamflow shape files if available.  SWAT also has a very high resolution by creating 

unique categories called Hydraulic Response Units (HRUs).  Each HRU has a unique land cover, 

soil type, and slope.  Outputs for the HRUs are calculated and then scaled up to the sub-basin 

outlet by the percent area of the HRU within the sub-basin.  When compared alongside eleven 

different hydrological models in 2003 by Borah and Berah, SWAT was determined to have high 

skill and a great potential for expansion.  SWAT is also capable of simulating processes in the 

soil based on a detailed database of soil properties, such as percolation, fixation, conversion of 

residues into plant available nitrogen and phosphorus, and nutrient losses (Neitsch et al., 2011).   

However, a warmup period is usually recommended to let all processes equilibrate (Daggupati et 

al., 2015).  Soil properties can be entered manually or imported from a database (Neitsch et al., 

2011). 
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 Although SWAT is used primarily to study the hydrology and nutrient cycling of a given 

study area, integration of the plant growth model Erosion-Productivity Impact Calculator (EPIC) 

has allowed researchers to also use this program to study the effect of various practices on crop 

growth and yields (Neitsch et al., 2011).  Modelling agricultural activity, such as the crops being 

grown and management practices, is very important for proper modelling of hydrological 

processes in agriculturally dominated watersheds because crops can affect soil, nutrients, and 

surface runoff. SWAT has been used frequently at catchment, watershed, and regional scales at 

multiple time steps, from sub-daily to yearly.  It has been suggested by researchers that soil 

moisture data should be used to better capture the differences in a regional scale model and 

satellite measurements have been used since availability of ground data is slim (Uniyal et al., 

2017). Also, another study found SWAT can perform better for soluble nitrogen transport at 

large scales but better for phosphorus transport at smaller scales (Wallace et al., 2018).  Thus, 

interest in using SWAT at the field scale to understand the hydrology and capture the 

heterogeneity of a watershed has grown.  Every farm has its own unique conditions and it is 

important to be able to simulate field-scale conditions with some confidence.    It will also 

describe the effects of soil chemical and physical properties on crop yields and describe studies 

using crop and hydrological models to simulate crop yields. 

1.2 Field Scale Studies 

Depending on the background of a user, the term “field” can mean different things to 

different people.  A study compiling information of many hydrological models at various scales 

defined a field as a “spatial unit with homogenous characteristics, including soil, topography, 

cropping system, and management practices” or which is also sometimes referred to as point 

scale simulations (Arnold et al., 2015).  This paper points out that some models have been 
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developed specifically for the purpose of creating field-scale models to understand various 

environmental and physical processes, such as CREAMS/GLEAMS, DRAINMOD, ADAPT, 

RZWQM, WEPP Hillslope, and DAISY.  Arnold et al. (2015) also mentioned most of these 

models are point scale models, except for DAISY, and do not consider the area of a watershed or 

field.  As a result, some of these programs are used in conjunction with other models to more 

appropriately take into account the cycling of a field or watershed.  For example, to study the 

effectiveness of BMP’s with controlling surface runoff and pollutant transport, one study 

compared both ADAPT and SWAT on three fields (Anand et al., 2007).  Both models performed 

similarly by simulating monthly totals well and individual events moderately (Anand et al., 

2007). 

Since SWAT delineates watersheds based on elevation and then further subdivides by 

soil and land use, individual fields are sometimes difficult to isolate in the model.  A literature 

review conducted by Karki et al. (2019) identified four methods to properly simulate agricultural 

fields: individual field SWAT models, modification of input files to create unique HRUs but 

keeping all properties, post-processing tools, and determining a relationship between model after 

automatically delineation and the fields in the watershed.  All of these methods can be effective 

depending on the purpose of the model (Karki et al., 2019).   For a model to be considered 

properly calibrated and validated, at least one variable affecting the hydrology must properly fit 

the observed data then other variables can be calibrated, such as plant growth and nutrient 

cycling (Daggupati et al., 2015; Moriasi et al., 2015). For watershed or larger scale modeling, 

usually a stream outlet near a stream gauge can be used for calibration, but smaller areas like 

individual fields are not always near a stream and thus other variables should be assessed, such 

as surface runoff, soil moisture, or evapotranspiration (Anand et al., 2007; Chen et al., 2018; Gali 
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et al., 2016; Karki et al., 2019; Maharjan et al., 2018; Wang et al., 2014).  Unfortunately, this 

means observed data can be very difficult to obtain.  Many different approaches have been tested 

to make up for this challenge and one researcher found calibration of multiple variables at the 

field scale can both increase the confidence of a field-scale model and also improve the 

prediction of all variables (Karki et al., 2019).  In this study, two plots in Tifton, Georgia were 

calibrated and validated for surface runoff, soil moisture, crop yields, and nitrate leaching.  

Single HRU method developed by the University of Perdue was used, where during the 

delineation process each subbasin represents a plot with one slope, soil type, and land use (Karki 

et al., 2019; Moloney et al., 2015).  The scenarios in this study tested different management 

practices on a cotton-cotton-peanut rotation, and one important conclusion from this study was 

that proper calibration of crops is a vital aspect of modeling fields well. 

Very few other studies exist modeling peanuts.  One study conducted by the University 

of Florida (Dourte et al., 2015) used a SWAT model to estimate irrigation demand for cotton and 

peanut rotations with the incorporation of sod and conventional rotations over 30 years; however, 

the model set up, calibration or validation processes used for their study are not clear.  The 

model was assessed for evapotranspiration and crop yields for corn, wheat, and soybeans in a 

previous study and performed well for both variables in all crops (Dourte et al., 2015; Dourte et 

al., 2014; Moriasi et al., 2015).  Linear regression was used to assess the performance of cotton 

and peanut yields for this model and the model performed good (R2 = 0.799) and very good (R2 

= 0.900) for both crops respectively according to the performance measure limits outlined by 

Moriasi et al. (2015).  Two other studies conducted on larger watersheds – 973 hectares – in 

India tested the effect of fertilizer and tillage practices on corn, peanuts, rice, and soybeans, the 

predominant crops in the area, on runoff, sediment, nitrate, and phosphate loading (Behera and 
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Panda, 2006; Tripathi et al., 2005).  The model was calibrated for daily surface runoff, sediment 

yield, nitrate, and phosphate.  No plant growth variables were calibrated or validated for this 

model.  Two years of data were available, so the model was calibrated with one year and 

validated for another year.  Even though the models were run at a daily time step they performed 

very good for all four variables in both calibration and validation.  These studies found mould 

bourd plough and conservation tillage increased yields no matter the fertilizer treatments, and the 

fertilizer treatments had little effect on yields.  In addition, the lowest nitrate loss was found with 

conservation tillage no matter the fertilization treatment.  Phosphorus losses in surface runoff 

also decreased under conservation tillage but losses increased as fertilizer treatments increased.   

On the other hand, apart from the aforementioned studies, more field-scale studies on 

cotton have been conducted in the Midwestern United States.  Over pumping of the Ogallala 

aquifer has caused investigation into different irrigation strategies with cotton rotations in both 

Texas and Oklahoma (Chen et al., 2018, 2019; Chen et al., 2017, 2019; Maharjan et al., 2018; 

Marek et al., 2016, 2017).  One study in particular in Bushland, Texas calibrated two fields for 

LAI and ET for cotton and forage corn (Marek et al., 2016).  After calibration, SWAT was able 

to predict monthly ET very well but only good for LAI, which was attributed to SWAT’s faulty 

plant growth algorithms (Marek et al., 2016). The model in Bushland, Texas was later used in a 

site comparing crop rotations water-saving capabilities using 90 years of historical weather data 

(Marek et al., 2017).  Three other studies assessing the auto irrigation and later improvement of 

the auto irrigation function in SWAT, which is triggered when plant or soil water deficit reaches 

a certain limit similar to soil moisture triggered irrigation (Karki et al., 2019), used 

evapotranspiration, LAI, and yield to calibrate their model for cotton, soybean, sorghum, forage 

corn, and sunflower (Chen et al., 2018; Chen et al., 2017, 2018).  They found for their model 
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simulated cotton and forage corn LAI and yields very well which was attributed to detailed 

management inputs (Chen et al., 2018; Chen et al., 2017).  When auto-irrigation was used, yields 

and ET performed much worse except when integrating an external irrigation scheduling 

program (Chen et al., 2018; Chen et al., 2017).  Multiple sites were later integrated into this 

study with primary concentration on forage corn for the crop of interest (Chen et al., 2019; Chen 

et al., 2019). SWAT predicted corn biomass and LAI very good for a site in Bushland Texas, 

Etter Texas, and Greeley, Colorado (Chen et al., 2019). 

1.3. Soil Properties effect on Crop Yields 

Soil physical and chemical properties can have a major effect on both the hydrology and 

vegetative growth of an area.  The latter has been the subject of much study in the southeast as 

nitrogen and phosphorus are very important macronutrients for row crops.   Nitrogen is available 

to plants in two forms – ammonium and nitrate.  The charged nature of these molecules means 

there are many ways for nitrogen to be lost to a system.  Ammonium can undergo denitrification 

under aqueous conditions, and both forms of nitrogen can be lost by runoff and leaching, 

especially in sandier soils with less organic matter to hold the nutrients.  Phosphorus can be lost 

in similar manners; however, the phosphorus cycle does not have an atmospheric component, 

meaning phosphorus buildup is also a concern in many soils.  In addition, in order for nitrogen to 

become plant available from organic substances, there also needs to be enough active carbon in 

the system to help promote decomposition.  One study using nonlinear parametric modelling 

technique found for wheat and spring barley Phosphorus and total carbon were some of the 

greatest contributing factors to crop yields and NDVI in Bedfordshire UK (Whetton et al., 2017).  

Another study in Denmark found after testing a wide range of soils on winter wheat and spring 

barley that organic carbon levels above 1% may sustain yields (Oelofse et al., 2015).   
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Soils’ ability to hold water against gravity, or field capacity, is also a consideration in 

row crops.  When so little water is in the soil that the overlying vegetation begins to experience 

water stress and wilts, a given soil has reached the wilting point.  The amount of water available 

to plants, or field capacity minus the wilting point, is referred to as the available water content.  

Soil texture can play a large role in soils ability to retain water.  Higher silt and clay content, due 

to the decrease of macropores, results in a higher available water content (Brady and Weil, 2008; 

Hoegenauer, 2014; van Lanen et al., 1992).  However, too high of a clay content can result in 

water restrictive layers and stunting of root growth.  The opposite is true for sandier soils.  Fine 

and sandier soils tend to have much higher hydraulic conductivity, meaning water flows through 

sandier soils much faster than clayey soils.  So although sandy soils have more macropores, can 

hold more air, and thus provide more underground oxygen exchange, these soils need much more 

irrigation because water is so quickly lost in the system (van Lanen et al., 1992).  Many different 

management practices have been tested and utilized by growers to increase soil fertility and 

decrease loss of nutrients and water.  Some studies have found when corn is tilled and rotated 

with a legume, it experienced increased yields and soil fertility (Agber et al., 2018).  Other 

studies have found integration of conservation tillage and cover crops in the southeast can 

increase soil organic carbon, soil structure, and ultimately yields (Hoegenauer, 2014; Reaves and 

Delaney, 2002).  Cover crops in particular can be beneficial to cash crops by protecting the soil 

from erosion, sequestering nutrients, reduce fertilizer applications, conserving soil moisture, and 

increasing soil carbon (Reaves and Delaney, 2002; SARE, 2007, 2019).  One study testing a sod-

based rotation system and different types of tillage practices found in the Southeastern US found 

cotton yields were not affected negatively or positively by conservation practices but peanut 

yields significantly improved with strip tillage (Hoegenauer, 2014). 
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Because field experiments are time consumptive and costly, researchers have employed 

modelling programs at regional, watershed, and field scales to better understand the hydrology, 

soil, and plant growth of a system.  Modeling agricultural activity, such as the crops being grown 

and management practices, is very important for proper modeling of hydrological processes in 

agriculturally dominated watersheds because crops can affect soil, nutrients, surface runoff, and 

evapotranspiration (Christopher et al., 2015; Maski et al., 2010; Neitsch et al., 2011).  One such 

study used Aquacrop, a crop water productivity model, to assess maize, wheat, and quinoa at 

three different sites in three different countries (Van Gaelen et al., 2015).  They found after 

calibration using a semi-quantitative approach, integration of soil fertility and water stress was 

very important in predicting crop yields (Van Gaelen et al., 2015). Another study conducted in 

North China Plain using the field-scale model daisy found increasing the detail of soil and 

weather data improved crop yield prediction, but also greatly improved regional drainage and 

leaching prediction (Manevski et al., 2019). Similarly, the Environmental Policy Impact 

Calculator (EPIC) was used by Wang et al. (2018) to investigate phosphorus losses in a corn-

soybean rotation.  They found EPIC performed well for surface runoff, drainage, and crop yields, 

but only adequately for Phosphorus due to limitations in simulating soil processes (Z. Wang et 

al., 2018).   Other researchers have found remote sensing, modelling, and machine learning to be 

effective ways to determine crop yields at various scales (Leroux et al., 2019; Srinivasan, R.; 

Zhang, X.; Arnold, 2010). 

1.4. Statement of Purpose 

In a 2016 review of SWAT papers, the number one most outstanding issue with SWAT 

studies was an improperly built model (Abbaspour et al., 2017).  Also, there is a clear lack of 

studies conducted focusing on proper crop calibration and validation studies in SWAT.  There 
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are even fewer studies conducted focusing on proper modeling of cotton and peanuts.  Given the 

importance of these crops in the Southeast and around the world, proper methods for calibrating 

cotton and peanuts is critical for a successful model.  In addition, the soil is very important in 

both the hydrology and proper simulation of crop yields, and more research into the relationship 

between soil and crops needs to be investigated.  With Georgia being of such agricultural 

importance, understanding how Georgia soils impact crop yields and soil moisture in SWAT 

would be very valuable for farmers and researchers to better understand the role soil plays in the 

ACF river basin.   

 

Thus, the objectives of this research were to: 

• Create a field-scale model of a research site in the Lower Flint River Basin, Stripling 

Irrigation Research Park, GA, which accurately represented the soil, crops grown, and 

management practices of the area.   

• Conduct a multivariable calibration and validation of the model including not just the 

hydrology but also the crop growth and nutrient cycling of the field with a heavy focus on 

measures assessing crop growth and cycling, such as biomass, LAI, yield, and nitrogen 

uptake.   

• Run scenarios with the calibrated and validated model and assess the impact of different 

management practices on recharge and leaching into the shallow aquifer for these plots.  

• Use a calibrated and validated field-scale SWAT model to assess the long-term impacts of 

different soil types in Georgia on crop yields and surface soil moisture.   
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 CHAPTER 2: Challenges with Integration of short-term Soil and Crop Observations in 

Multi-variable Calibration of SWAT Model at the Field-Scale  

ABSTRACT 

Over the past forty years, the Apalachicola–Chattahoochee–Flint (ACF) river basin in 

Alabama, Georgia, and Florida has been the subject of numerous litigation and research 

regarding water allocation. The state of Georgia’s heavy reliance on the ACF’s water resources 

for the city of Atlanta water supply and agricultural production has been a partial cause of this 

conflict between Alabama, Georgia, and Florida.  Regional, watershed, and field-scale models 

have been employed by researchers to better understand the hydrology of this area; however, few 

studies exist focusing on proper multi-variable calibration and validation that include plant 

growth of cotton and peanut, surface runoff, soil moisture, and soil nitrate. Cotton and peanut are 

primary crops in this region and greatly affect the hydrology.  The first objective of this study 

was to create, calibrate, and validate a field-scale model using the Soil and Water Assessment 

Tool (SWAT) of fields at a research station in the Lower Flint River Basin.  The research station 

modeled is the Stripling Irrigation Research Park (SIRP) located in Camilla, Georgia and run by 

the University of Georgia (UGA).  UGA provided all management information needed to create 

the model, including crop type, fertilizer rates, irrigation amounts, planting dates, harvest dates, 

and crop yields.  Three fields were modeled, which grew corn, peanut, and cotton, respectively, 

after a winter cover crop of Rye and strip-tilling.  Each field contained three duplicate plots with 

9 different fertilizer/irrigation treatments and had two plots with berms surrounding the plots to 

isolate overland flow. Plot specific soil nutrients, soil texture, biomass, yields, LAI for cotton, 

TKN, surface runoff, and composite runoff nutrient samples were obtained for the growing year 

2018.  Multivariable calibration and validation for surface runoff, soil moisture, crop biomass, 
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corn and peanut yields, LAI for cotton (yields for cotton were not available), nitrogen uptake by 

plants, soil nitrate, and nitrate in runoff were conducted in this study. The model performed very 

good for surface runoff, crop growth, and nitrogen uptake, and fair for soil moisture and nitrate 

cycling except for soil nitrate in peanuts.    Calibration of each variable following runoff 

gradually improved surface runoff performance.  Analysis of nitrogen and water balances over 

30 years were also simulated and found nitrate leaching to be very low compared to what is 

generally expected in this area.  However, removing soil moisture and soil nitrate calibration, 

respectively, resulted in higher leaching values.  These results indicate calibrating with fewer 

variables and higher quality measured data can result in a more properly calibrated model.  
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INTRODUCTION 

 Climate resiliency is a growing concern around the world, but especially in agriculture 

and water resources (Maharjan et al., 2018; Mishra et al., 2017).  As the frequency of droughts 

increase, high crop production areas are at risk for severe crop losses, which in turn not only 

causes the farmer to take a serious economic hit, but global agricultural food production would 

suffer as well.  To help compensate for these dry years, agricultural producers often rely on 

irrigation from local groundwater sources.  More than 70% of total water withdrawals globally 

are used for irrigation and 90% of consumptive water uses (Siebert, 2010).  In addition, about 

40% of groundwater withdrawal in the United States is used for agriculture (Wehr, 2014).  Such 

high levels of pumping have been shown to cause reductions in hydraulic conductivity, aquifer 

depletion, and land subsidence (Chen et al, 2003; Lopez-Geta & Orden, 2003; Zhu et al, 2015).  

Thus, it is highly beneficial to investigate the role of agriculture in sustainability with whatever 

tools at our disposal. 

Hydrologic modeling programs are being employed more and more to investigate the 

impacts of variable weather patterns in agriculture. One common model, which has been adopted 

around the world and with nearly 4000 published articles to-date due to its versatility, the 

capability to handle a variety of watersheds, and great support, is the Soil and Water Assessment 

Tool (SWAT). Although SWAT is used primarily to study the hydrology and nutrient cycling of 

a given study area, integration of the plant growth model Environmental Policy Impact 

Calculator (EPIC) has allowed researchers to also use this program to study the effect of various 

management practices on crop growth and yields (Neitsch et al., 2011).  Modeling agricultural 

activity, such as the crops being grown and management practices, is very important for proper 

modeling of hydrological processes in agriculturally dominated watersheds because crops can 
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affect soil, nutrients, surface runoff, and evapotranspiration (Christopher et al., 2015; Maski et 

al., 2010; Neitsch et al., 2011).   

SWAT has been used frequently at catchment, watershed, and regional scales, but one 

study in the Flint River Basin pointed out regional studies frequently neglect to capture the 

heterogeneity of an area (Rugel et al., 2016).  In this study, Rugel et al. (2016) found that, 

because the LFRB is a karstic system, groundwater and stream water can interact in 

unpredictable ways in the given watershed and are not captured at larger scales.  It has also been 

suggested by other researchers that soil moisture data should be used to better capture the 

differences in a regional scale models and satellite measurements have been used since 

availability of ground data is slim (Uniyal et al., 2017). Another study found SWAT can perform 

better for soluble nitrogen transport at large scales but better for phosphorus transport at smaller 

scales (Wallace et al., 2018).  Thus, interest in using SWAT at the field scale to understand the 

hydrology and capture the heterogeneity of a watershed has grown.  Every farm has its own 

unique conditions and it is important to be able to simulate field-scale conditions with some 

confidence.   

 Depending on the background of a user, the term “field” can mean different things to 

different people.  A study compiling information of many hydrological models at various scales 

defined a field as a “spatial unit with homogenous characteristics, including soil, topography, 

cropping system, and management practices” or which is also sometimes referred to as point 

scale simulations (Arnold et al., 2015).  This paper points out that some models have been 

developed specifically for the purpose of creating field-scale models to understand various 

environmental and physical processes, such as CREAMS/GLEAMS, DRAINMOD, ADAPT, 

RZWQM, WEPP Hillslope, and DAISY.  Arnold et al. (2015) also mentioned most of these 
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models are point scale models, except for DAISY, and do not consider the area of a watershed or 

field.  As a result, some of these programs are used in conjunction with other models to more 

appropriately take into account the cycling of a field or watershed.  For example, to study the 

effectiveness of BMP’s with controlling surface runoff and pollutant transport, one study 

compared both ADAPT and SWAT on three fields (Anand et al., 2007).  Both models performed 

similarly by simulating monthly totals well and individual events moderately (Anand et al., 

2007). 

Since SWAT delineates watersheds based on elevation and then further subdivides by 

soil and land use, individual fields are sometimes difficult to isolate in the model.  A literature 

review conducted by Karki et al. (2019) identified four methods to properly simulate agricultural 

fields: individual field SWAT models, modification of input files to create unique HRUs but 

keeping all properties, post-processing tools, and determining a relationship between model after 

automatically delineation and the fields in the watershed.  All of these methods can be effective 

depending on the purpose of the model (Karki et al., 2019).   For a model to be considered 

properly calibrated and validated, at least one variable affecting the hydrology must properly fit 

the observed data then other variables can be calibrated, such as plant growth and nutrient 

cycling (Daggupati et al., 2015; Moriasi et al., 2015). For watershed or larger scale modeling, 

usually a stream outlet near a stream gauge can be used for calibration, but smaller areas like 

individual fields are not always near a stream and thus other variables should be assessed, such 

as surface runoff, soil moisture, or evapotranspiration (Anand et al., 2007; Chen et al., 2018; Gali 

et al., 2016; Karki et al., 2019; Maharjan et al., 2018; Wang et al., 2014).  Unfortunately, this 

means observed data can be very difficult to obtain.  Many different approaches have been tested 

to make up for this challenge and one researcher found calibration of multiple variables at the 
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field scale can both increase the confidence of a field-scale model and also improve the 

prediction of all variables (Karki et al., 2019).  In this study, two plots in Tifton, Georgia were 

calibrated and validated for surface runoff, soil moisture, crop yields, and nitrate leaching.  

Single HRU method developed by the University of Perdue was used, where during the 

delineation process each subbasin represents a plot with one slope, soil type, and land use (Karki 

et al., 2019; Moloney et al., 2015).  The scenarios in this study tested different management 

practices on a cotton-cotton-peanut rotation, and one important conclusion from this study was 

that proper calibration of crops is a vital aspect of modeling fields well. 

Very few other studies exist modeling peanuts in SWAT.  One study conducted by the 

University of Florida (Dourte et al., 2015) used a SWAT model to estimate irrigation demand for 

cotton and peanut rotations with the incorporation of sod and conventional rotations over 30 

years; however, the model set up, calibration or validation processes used for their study are not 

clear.  The model was assessed for evapotranspiration and crop yields for corn, wheat, and 

soybeans in a previous study and performed well for both variables in all crops (Dourte et al., 

2015; Dourte et al., 2014; Moriasi et al., 2015).  Linear regression was used to assess the 

performance of cotton and peanut yields for this model and the model performed good (R2 = 

0.799) and very good (R2 = 0.900) for both crops respectively according to the performance 

measure limits outlined by Moriasi et al. (2015).  Two other studies conducted on larger 

watersheds – 973 hectares – in India tested the effect of fertilizer and tillage practices on corn, 

peanuts, rice, and soybeans, the predominant crops in the area, on runoff, sediment, nitrate, and 

phosphate loading (Behera and Panda, 2006; Tripathi et al., 2005).  The model was calibrated for 

daily surface runoff, sediment yield, nitrate, and phosphate.  No plant growth variables were 

calibrated or validated for this model.  Two years of data were available, so the model was 
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calibrated with one year and validated for another year.  Even though the models were run at a 

daily time step they performed very good for all four variables in both calibration and validation.  

These studies found mould bourd plough and conservation tillage increased yields no matter the 

fertilizer treatments, and the fertilizer treatments had little effect on yields.  In addition, the 

lowest nitrate loss was found with conservation tillage no matter the fertilization treatment.  

Phosphorus losses in surface runoff also decreased under conservation tillage but losses 

increased as fertilizer treatments increased.   

On the other hand, apart from the aforementioned studies, more field-scale studies on 

cotton have been conducted in the Midwestern United States.  Over pumping of the Ogallala 

aquifer has caused investigation into different irrigation strategies with cotton rotations in both 

Texas and Oklahoma (Chen et al., 2018, 2019; Chen et al., 2017, 2019; Maharjan et al., 2018; 

Marek et al., 2016, 2017).  One study in particular in Bushland, Texas calibrated two fields for 

LAI and ET for cotton and forage corn (Marek et al., 2016).  After calibration, SWAT was able 

to predict monthly ET very well but only good for LAI, which was attributed to SWAT’s faulty 

plant growth algorithms (Marek et al., 2016). The model in Bushland, Texas was later used in a 

site comparing crop rotations water-saving capabilities using 90 years of historical weather data 

(Marek et al., 2017).  Three other studies assessing the auto irrigation and later improvement of 

the auto irrigation function in SWAT, which is triggered when plant or soil water deficit reaches 

a certain limit similar to soil moisture triggered irrigation (Karki et al., 2019), used 

evapotranspiration, LAI, and yield to calibrate their model for cotton, soybean, sorghum, forage 

corn, and sunflower (Chen et al., 2018; Chen et al., 2017, 2018).  They found for their model 

simulated cotton and forage corn LAI and yields very well which was attributed to detailed 

management inputs (Chen et al., 2018; Chen et al., 2017).  When auto-irrigation was used, yields 
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and ET performed much worse except when integrating an external irrigation scheduling 

program (Chen et al., 2018; Chen et al., 2017).  Multiple sites were later integrated into this 

study with primary concentration on forage corn for the crop of interest (Chen et al., 2019; Chen 

et al., 2019). SWAT predicted corn biomass and LAI very good for a site in Bushland Texas, 

Etter Texas, and Greeley, Colorado (Chen et al., 2019). 

One such area, which has already suffered from increased drought frequency, is the 

southeastern United States (U.S.). The Apalachicola-Chattahoochee-Flint (ACF) River Basin is 

an interesting area with respect to droughts because of both the variety of land uses and long 

history of litigation surrounding the quality and quantity of water in this area.  The ACF basin 

has been a hot topic with water resources since 1989 due to three states’ reliance on its 

freshwater resources: Georgia, Alabama, and Florida (Stevens, 2014).  The top of the basin is 

located in Northern Georgia, where the Chattahoochee River meanders into East Alabama, joins 

the Flint River in southwestern corner of Georgia to become the Apalachicola River, and final 

drains through Florida into the Gulf of Mexico.  The ACF is nearly 619km long, 80km wide, and 

the total drainage area is approximately 50,800 km2 with the greatest portion of the basin located 

in Georgia.  It is home to approximately 24,362 reservoirs, 81% of which are located in Georgia, 

followed by 11% in Alabama and 8% in Florida.  A main cause for the complicated legislation 

lies with the city of Atlanta, GA that is located at the top of the Chattahoochee River basin.  The 

ACF system supplies 78% of Atlanta’s municipal water, and downstream of the river is twelve 

hydro-electric dams, recreational rivers, irrigation for crops, many habitats for endangered 

species, and the Apalachicola Bay, home of many estuarine fisheries and hatcheries (Wehr, 

2014).  In addition, according to the United States Geological Survey, drought years in Georgia 

outnumber normal and high precipitation years since 1980, meaning Georgia will rely more on 
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this system to help compensate for so many dry years (USGS, 2010).  However, overexploitation 

of the basin’s water resources could have highly negative consequences for the Apalachicola 

Basin. The Apalachicola River is a highly biodiverse area and houses many threatened and 

endangered species (Ruhl, 2005).  Limited water quantity and quality would be damaging to the 

aquatic life, but especially endangered mussel species in this area.  Overall, after thirty-five years 

of litigations without conclusive decisions, Florida petitioned the Supreme Court to take the case 

in 2014, arguing to limit Georgia’s water use.  In October 2017, the Supreme Court decided to 

create a cap on Georgia’s water use during times of drought and the trial was appointed to a 

special master to determine details (Florida vs Georgia, 2017).  Despite the Supreme Court’s 

decision, no actionable changes have been made and the legal battles have no discernable end in 

sight.  

 In addition to being the primary water user in the ACF basin, Georgia is also a highly 

agriculturally productive area.  According to the USDA National Agricultural Statistics Service 

(NASS), in 2017, Georgia ranked first nationally for broilers, peanuts, and utilized pecans, 

second for cotton lint and cotton seed, and seventh for sweet corn.  Georgia is also a top national 

producer of fruits and vegetables, ranking third for watermelon; fourth for Bell Peppers, 

Cantaloupes, and Cucumbers; fifth for Tobacco; sixth for Blueberries, cabbage, eggs, onions, 

and squash; and finally, seventh for the state fruit – Peaches – and snap beans.  There are many 

factors contributing to this agricultural productivity.  First, Georgia has an interesting variety of 

aquifers, consisting of a surficial aquifer system termed the Biscayne aquifer, an upper confining 

unit, the upper Floridian aquifer (UFA), a middle confining unit, the lower Floridian aquifer, and 

a lower confining unit (Fetter, 2001).  These aquifers are karstic aquifers, meaning they consist 

of highly permeable limestone.  The upper confining layer consists primarily of clastic rocks 
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with low permeability, mostly from Hawthorn Formation from the Miocene age.  Recharge 

zones for the UFA are throughout the Lower Flint River Basin (LFRB), meaning access to this 

aquifer for farmers is easier and more cost-effective. Thus, the UFA, due to both its size and 

water availability, is often the source of irrigation from groundwater in this area (Mitra et al 

2016). 

OBJECTIVES 

 In a 2016 review of SWAT papers, the number one most outstanding issues with SWAT 

studies was an improperly built model (Abbaspour et al., 2017).  Also, there is a clear lack of 

studies conducted focusing on proper calibration and validation of crop and soil processes in 

SWAT.  There are even fewer studies conducted focusing on proper modeling of cotton and 

peanuts.  Given the importance of these crops in the Southeast and around the world, proper 

methods for calibrating the growth and nutrient cycling of these crops is critical for a successful 

model.  Also, since calibration of multiple variables has increased the confidence of field-scale 

models in previous studies, calibration of soil and crop nutrient processes could be beneficial 

since field data is difficult to obtain.  Thus, the objectives of this study were to create a field-

scale model of a research site in the Lower Flint River Basin, Stripling Irrigation Research Park, 

GA, which accurately represented the soil, crops grown, and management practices of the area.  

Once the model was created, the second objective was to conduct a multivariable calibration and 

validation of the model including not just the hydrology but also the crop growth and nutrient 

cycling of the field with a heavy focus on measures assessing crop growth and soil processes, 

such as biomass, LAI, yield, plant nitrogen uptake, and soil nitrate.  Our third objective was to 

run scenarios comparing the absence and presence of soil moisture and soil nitrate calibration, 
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respectively, to see the long-term impacts on hydrology and nitrogen cycling when calibrating 

these terms in SWAT.  

Figure 1.1 Map of the Lower Flint River Basin in southwestern Georgia and location of the Stripling Irrigation 
Research Park in Mitchell County 

METHODS AND MATERIALS 

Study Area and Field Experiments 

 Stripling Irrigation Research Park is a research station, located in Camilla, GA managed 

by the University of Georgia.  The research park lies in a HUC8 watershed that is in the LFRB 

and is 5 miles from the Flint River in Mitchell County (Figure 1).  The primary source for 

irrigation in this park is the shallow aquifer, the Upper Floridian Aquifer, but wells for the deeper 

Clairborne aquifer are also in place.  A weather station is on site managed by the Georgia 

Weather Network, which includes but is not limited to daily measurements of precipitation, 

temperature, solar radiation, wind-speed, and relative humidity (Figure 2).  Newton Lateral 
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Fields containing three fields in a corn-cotton-peanut rotation followed by a rye winter cover 

crop were the focus of this study.  All fields were strip-tilled and all residue from the cover crop 

was left on the field after termination and prior to planting.  The three fields, North, Middle, and 

South, have a different crop growing in each field such that corn, cotton, and peanuts are all 

grown at the same time in a given year.  This rotation has been in place for many years in order 

to study variable rate irrigation systems and various fertilizer applications on three crops 

simultaneously (Migliaccio et al., 2015; Vellidis, et al., 2016a; Vellidiset al., 2016b).  Twenty-

seven plots are located in each field and in November 2017, berms were installed to isolate 

surface runoff for two plots each in the three fields.  AquaVents were also installed to measure 

overland flow from the plots; however, the plots were not isolated for subsurface flow.  

Composite runoff samples were also collected throughout the growing season to be assessed for 

nutrient content.  These water samples were sometimes composed of multiple runoff events 

depending on the amount of runoff generated by a given event.  In each field, nine different  
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Figure 1.2.  Map of Stripling Irrigation Research Park marking the location of the experimental fields and the 

weather station managed by the Georgia Weather Network  
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fertilizer and irrigation treatments were tested so each crop would have three duplicates.  Soil 

moisture sensors were installed after planting in each plot for irrigation measurement purposes.   

These sensors measure soil pressure at 8, 16, and 24 inches and use a cellphone signal to send 

continuous data to a netbook onsite, which automatically uploads the data to a cloud as it 

receives it (Vellidis et al., 2016).  Soil pressure data was then converted to soil moisture through 

the Van Genuchten equation and RETC, a program that uses texture and bulk density to generate 

parameters to be used in the Van Genuchten equation (van Genuchten, 1980; van Genuchten et 

al., 1991).  Each plot contains 8 rows, and tissue samples were collected every 3 feet for one row  

Figure 1.3.  Layout of Newton Lateral Fields in 2018 and location of plots isolated for surface runoff 
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every two weeks, along with backup samples.  Biomass and TKN data were collected from these 

tissue samples.  In addition, cotton plots also collected leaf area index throughout the growing 

season.  Composite soil samples in each plot were collected with soils cores prior to planting at 

depths of 6, 12, 18, 24, 30, and 36 inches, followed by samples at 6, 12, 24, and 36 inches 

throughout the growing season.  These samples were analyzed for texture, organic matter 

content, and nutrients including but not limited to nitrate concentrations.  More soil samples were 

collected for cotton and corn than for peanuts because nitrogen is not a concern in peanuts due to 

fixation.   

SWAT Model Description 

SWAT was originally developed by Dr. Jeff Arnold for the USDA Agricultural Research 

Service to understand the impact of land management practices on water, sediment and 

agricultural chemical yields on large complex watersheds with varying soils, land use, and 

management conditions over long periods of time (Neitsch et al. 2011).  SWAT is a physically 

based model, meaning instead of parameterizing output results with regression relationships, the 

results are produced based on a wide variety of input data, such as weather, soil, land, vegetation, 

and land management practices.  In this way, highly complex watersheds can be modeled for 

water, sediment, crop growth, nutrient cycling, and more.  It maps a watershed basin, subbasins, 

and subbasin outlets based on elevation data and streamflow shapefiles if available.  SWAT also 

has a very high resolution by creating unique categories called Hydraulic Response Units 

(HRUs).  Each HRU has a unique land cover, soil type, and slope.  Outputs for the HRUs are 

calculated and then scaled up to the sub-basin outlet by the percent area of the HRU within the 

sub-basin.  When compared alongside eleven different hydrological models in Borah and Berah 
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(2003), SWAT was determined to have high skill and a great potential for expansion.  SWAT is 

usually used over long-term studies but is capable of performing well at multiple time steps, 

including daily, hourly, monthly, and yearly (Abbaspour, 2015; Arnold et al., 2012). 

SWAT models plant growth and biomass as a function of leaf area index (LAI) and a 

species dependent radiation use efficiency (Neitsch et al., 2011).  The potential amount of 

biomass increase for a plant uses LAI to calculate the daily amount of photosynthetically active 

radiation captured by the plant and then multiplies it by the radiation use efficiency coefficient.  

The total biomass is a cumulative sum of the daily biomass increase.  LAI is simulated following 

an optimal leaf development curve until it reaches the max LAI, a parameter specified for each 

plant, after which it steadily declines depending the plant.  Nitrogen uptake by the plant from the 

soil in SWAT is directly related to biomass and is dependent on the growth stage of the plant.  

Plant nitrogen is taken from the soil nitrate pool, and more is taken from the top layers of the soil 

depending on the nitrogen uptake distribution parameter and root length.  Daily soil nitrate is an 

output of SWAT and is calculated based on the amount of organic matter, organic carbon, 

fertilizer applied, nitrification, mineralization, denitrification, volatilization, and decay of plant 

matter.  For legume species, nitrogen fixation is triggered when plant demand exceeds the 

available nitrate in the soil and goes directly into the plant.  

Data Inputs and Model Construction 

 The Single HRU method developed by Purdue was used, where a mask over the six plots 

being modeled was added with a low stream threshold, so that each of the six plots would 

generate an individual outlet on the runoff plots with a unique slope, soil, and land use (Moloney 

et al., 2015).  Digital Elevation Model from the USGS 3-dimensional Elevation Program 

Initiative, a 1M resolution Lidar elevation dataset, was used for the initial delineation (Arundel et 
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al., 2015).  Land use map for 2018 was downloaded from CropScape, projected, and modified so 

actual land uses were properly represented (Boryan et al., 2011; Teshager et al., 2016). Six 

outlets located on the experimental plots were selected and thus six subbasins generated – one 

subbasin for each plot hydrologically separate from the other. To generate a single HRU in each 

subbasin, 0% land, 60% soil, and single slope was selected for threshold HRU boundaries 

because one automatically generated subbasin extended into a different soil type. The area of the 

subbasin in both the text files and access database was modified to the actual plot drainage area.   

 The primary soil database used was the Soil Survey Geographic Database (SSURGO), 

first developed by the NRCS in 1990 and updated over time (Soil Survey Staff, 2012).  This soil 

database contains soil properties such as the number of layers and properties of each layer like 

hydraulic conductivity, bulk density, and texture.  The layers were modified such that the bottom 

of the top three layers matched the depths of the three soil pressure sensors (8, 16, and 24 inches) 

while keeping all SSURGO properties the same for each layer and the profile as a whole.  

Observed soil texture and organic carbon – calculated from organic matter content (Brady and 

Weil, 2008) – was also added to each plots’ soil database.  All management practices, including 

dates for planting and harvest, irrigation scheduling and amounts applied, fertilizer application 

dates and amounts, tillage operations, cover crop, and rotations obtained from UGA and research 

station personnel were incorporated into the model (See Appendix 1 for details).  A new fertilizer 

needed to be added to fertilizer database – Urea Ammonium Nitrate (UAN 28-0-0) – to properly 

simulate denitrification.  This fertilizer is a liquid based fertilizer applied through the irrigation 

system composed of 40% Ammonium Nitrate (34-0-0), 30% Urea (46-0-0), and 30% water, 

which means 71.4% of the nitrogen applied through UAN 28-0-0 goes into the ammonium pool 

and the remaining nitrogen into the nitrate pool.   
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Calibration and Validation Strategy 

 For surface runoff, each calibration plot was automatically calibrated separately using 

SWAT-CUP and the SUFI-2 algorithm.  SWAT-CUP uses a Latin hypercube method to find the 

best parameters within user-specified ranges for a given performance measure, referred to as 

objective functions (Abbaspour, 2015).  Parameters sensitive to surface runoff were chosen 

based on previous studies’ sensitivity analyses, which included CN2, ALPHA_BF, 

GW_DELAY, GWQMN, OV_N, and SURLAG (Karki et al., 2019; van Griensven et al., 2006).  

After surface runoff was sufficiently calibrated, a sensitivity analysis of parameters not sensitive 

for surface runoff but sensitive for soil moisture followed by layer-by-layer calibration of the top 

two layers for soil moisture was also conducted.  When the top three layers improved for soil 

moisture prediction in each plot, cumulative soil moisture for the top three layers was then 

manually calibrated and validated for each field.  Parameters used by other researchers were used 

but parameters affecting crop evapotranspiration were also investigated and used in this study.   

 After the hydrology was sufficiently calibrated and validated, manual calibration of crop 

biomass and crop yield were simultaneously conducted for corn and peanuts.  Since yield data 

was not available for cotton due to Hurricane Michael in 2018, biomass and LAI data were 

calibrated and validated simultaneously instead.  Crop nitrogen uptake was then manually 

calibrated followed by soil nitrate in the top 914mm of the soil profile and nitrate in the surface 

runoff.  Soil nitrate was of particular interest in calibration as leaching data was not available in 

the field study.  All parameters used for calibration and validation are listed in Table 1. 
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Table 1.1  All parameters used in calibration validation of runoff, soil moisture, biomass, yield, crop nitrogen, and 
soil nitrate along with the range of their initial perturbation limits as suggested by Moriasi (2015) and Karki (2019). 

Runoff Calibration 
 

 
Parameter Description Database Initial Ranges 
CN2 SCS Curve Number for Moisture Condition 2 .mgt +/- 0.3 
ALPHA_BF Baseflow alpha factor (days .gw 0.01-1 
GW_DELAY Groundwater Delay (days) .gw 1-1000 
GWQMN Threshold depth of water in the shallow aquifer (mm) .gw 0.01-5000 
OV_N Manning's "n" value for overland flow .hru +/- 0.3 
SURLAG Surface runoff lag time (days) .hru 1-20    

 
Soil Moisture Calibration  
Parameter Description Database Initial Ranges 
ESCO Soil evaporation compensation factor .hru 0.01-1 
GSI Max stomatal conductance in drought plant.dat 0.001-0.009 
EPCO Plant uptake compensation factor .hru 0.01-1 
SOL_BD Bulk Density (g/cm3; unique for each layer) .sol +/- 0.25 
SOL_AWC Available Water Capacity (mm/mm; unique for each layer) .sol Texture 

dependent 
SOL_K Hydraulic Conductivity (mm/hr; unique for each layer) .sol Texture 

dependent 
SOL_ALB Soil Albeto (unique for each layer) .sol +/- 0.3    

 
Crop Growth Calibration  
Parameter Description Database Initial Ranges 
HVSTI Harvest Index plant.dat +/- 0.3 
BLAI Max Leaf Area Index plant.dat +/- 0.3 
FRGRW Fraction of  the plant growing season corresponding to the 1st and 2nd 

point on the optimal leaf area development curve 
plant.dat +/- 0.15 

LAIMX Fraction of the max leaf area index corresponding to the 1st and 2nd point 
on the optimal leaf area development curve 

plant.dat +/- 0.3 

DLAI Fraction of Growing season when leaf starts declining plant.dat +/- 0.3 
T_BASE Min temperature for plant growth (degrees Celsius) plant.dat +/- 0.15    

 
Crop and Soil Nitrate Calibration  
Parameter Description Database Initial Ranges 
ANION_EXCL Anion Exclusion Coefficient (fraction) .sol +/- 0.3 
SOL_K Hydraulic Conductivity (mm/hr; unique for each layer) .sol Texture 

dependent 
RSDCO_PL Residue Decomposition Coefficient for each plant plant.dat +/- 0.3 
NPERCO Nitrate Percolation Coefficient .bsn 0.01-1 
NUPIDS Nitrogen Uptake Distribution Parameter .bsn +/- 0.3 
SDNCO Threshold value for Nutrient cycling water factor for denitrification .bsn +/- 0.15 
BN Fraction of N in plant at emergence, 0.5 maturity, and full maturity plant.dat +/- 0.15 
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 The performance measures or objective functions in this study were R2, percent bias 

(PBIAS), and Nash-Sutcliffe efficiency (NSE).  R2 measures the goodness of fit of the observed 

and simulated data, percent bias measures the model's tendency to over-simulate or under- 

simulate with respect to the observed data, and NSE measures the capability of the model to 

simulate the observed extreme events (Moriasi et al., 2015).  R2 and NSE values close to 1 and 

PBIAS values of 0 are considered perfect.  A negative and positive PBIAS indicates the model's 

tendency to over-predict and under-predict relative to the observed data, respectively.  

Appropriate values for each variable calibrated and validated are based on the literature 

presented in the appropriate table. To account for the limitations and variability of the measured 

data and the limitations of SWAT to predict well at a daily time step, the simulated soil moisture, 

crop growth, and nutrient cycling in this study were compared to all three duplicate plots.  If the 

simulated variables followed the trend or fell within the maximum and minimum values of the 

three plots, then the model was considered to be performing reasonably.  This is an especially 

useful strategy since cotton and peanuts have unique growth patterns and SWAT has had 

difficulty modeling these patterns in previous studies. 

Scenario Analyses 

 Using 30 years of weather data from the National Land Data Assimilation System 

(NLDAS), water and nitrogen balances were compared under three different conditions: 1) 

calibration of runoff, soil moisture, crop growth, crop nitrogen uptake, and soil nitrate; 2) 

calibration of all aforementioned variables except soil moisture; 3) calibration of all variables 

except soil nitrate.  In this way, the effect of soil processes in SWAT on hydrological and 

nitrogen cycling can be investigated in greater detail and the benefits of calibration of soil 

moisture and soil nitrate can be assessed. 
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RESULTS AND DISCUSSION 

 Due to complications with the field data, the plot used for corn surface runoff validation 

was not able to be used in this study.  A preliminary sensitivity analysis showed only CN2, 

GWQMN, and OV_N were sensitive for runoff in this model, thus only these values are 

presented in Table 1.4.  Although SWAT initial surface runoff predictions were good, SWAT-

CUP produced better runoff parameter changes and better simulation results relative to the 

observed (Table 1.3; Figure 1.4Error! Reference source not found.Error! Reference source 

not found.).  Some parameters for runoff initially seem high, but they are all not outside of the 

recommended calibration bounds from previous studies (Karki et al., 2019; Wallace et al., 2018).  

Not only were the statistics within the acceptable ranges, but the trend was also able to be 

captured for all calibration and validation plots. 

 

 Figure 1.4  Runoff observed versus simulated calibration results for corn calibration plot.  Note, observed validation 
data was not available in this study due to instrument complications. 
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Figure 1.5. Runoff observed versus simulated calibration results for peanut calibration (a) and validation (b) plots 

 

 

Figure 1.6.  Runoff observed versus simulated calibration results for cotton calibration and validation plot 
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For example, nearly all available water content and albeto values were placed to the maximum 
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Figure 1.7. Observed versus simulated soil moisture calibration results for corn calibration (a) and validation (b) 
plots 

 

Table 1.3  Final Calibration and Validation statistics for all variables assessed. 

Corn plots 
     

 
Calibration Validation 

Variable R2 PBIAS NSE R2 PBIAS NSE 
RUNOFF 0.775 -8% 0.736 - - - 
SOIL MOISURE 0.479 6% 0.307 0.363 -1% 0.366 
BOIMASS 0.988 5% 0.984 0.963 -22% 0.884 
YIELD - 8% - - 2% - 
CROP NITROGEN 0.933 18% 0.831 0.936 -8% 0.924 
SOIL NITRATE 0.345 34% 0.240 0.775 -5% 0.787        

Peanut plots 
     

 
Calibration Validation 

Variable R2 PBIAS NSE R2 PBIAS NSE 
RUNOFF 0.812 6% 0.810 0.876 26% 0.801 
SOIL MOISURE 0.271 1% 0.272 0.482 -20% 0.175 
BOIMASS 0.966 2% 0.922 0.901 -12% 0.845 
YIELD - -12% - - 4% - 
CROP NITROGEN - -2% 0.443 - -7% 0.383 
SOIL NITRATE 0.005 60% -0.165 0.011 67% -0.152        

Cotton plots 
     

 
Calibration Validation 

Variable R2 PBIAS NSE R2 PBIAS NSE 
RUNOFF 0.717 -10% 0.719 0.758 18% 0.747 
SOIL MOISURE 0.575 0% 0.327 0.512 4% 0.433 
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BOIMASS 0.673 12% 0.709 0.871 -14% 0.836 
LAI 0.742 -10% 0.645 0.980 3% 0.879 
CROP NITROGEN 0.671 27% 0.546 0.785 -3% 0.760 
SOIL NITRATE 0.681 14% 0.587 0.213 14% 0.337 

 

trend in this study was unrealistically high for this study area.   For example, available water  

content and soil reflectivity were increased for all plots to match amount of water held by the soil  

but not past the textural limits of the soil (0.25 mm H2O/mm soil for loamy sand) (Error! 

Reference source not found.).   

Bulk density was adjusted in a similar fashion.  Parameters affecting evapotranspiration were 

used to increase soil moisture variability, including a parameter in the crop database called the 

maximum stomatal conductance at high solar radiation and low vapor pressure deficit (GSI; units  

 

Figure 1.8. Observed versus simulated soil moisture calibration results for Peanut calibration (a) and validation (b) 
plots 

of m/s).  Other parameters used were the soil evaporation and plant uptake compensation factors 

(ESCO; EPCO).  Although all of these parameters helped SWAT capture the trend of the 

observed data, a majority of the variability was not able to be captured by this model.  We  

attribute this lack of ability to match the observed data to the placement of the soil moisture 
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SWAT has had difficulty predicting extreme values of observed soil moisture levels (Karki et al., 

2019).  One study found if the SWAT code was modified such that soil moisture was predicted  

 

Figure 1.9 Observed versus simulated soil moisture calibration results for cotton calibration and validation plots 

based on curve number, prediction improved (Rajib et al., 2016).  However, Rajib et al. (2016) 

note with this method, the effect on nutrients and plant growth is uncertain. 

 For all plots, after calibration of crop growth, biomass performed very well for all 

performance measures and matched the trends well by being within the range of the three 

duplicate plots (Error! Reference source not found.1.3; Figure 1.7).  Although the performance 

statistics for cotton biomass were not as great as corn and peanuts, this is not surprising since 

cotton growth is very different from corn and peanut growth.  Cotton is much more sensitive to 

lack of rainfall or irrigation and,  

as of yet, there is not a feature of SWAT to simulate chemical termination of cotton growth for 

harvest.  Yields for corn and peanuts were very good compared to the observed.  Similarly,  
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Figure 1.10. Observed versus simulated biomass calibration results for corn calibration (a) and validation (b) plots 

 
Figure 1.11.  Observed versus simulated biomass calibration results for peanut calibration (a) and validation (b) plots 

 
Figure 1.12.  Observed versus simulated biomass calibration results for cotton calibration (a) and validation (b) plots 
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cotton LAI performed well for both calibration and validation plots, with good performance 

measure statistics and the trend was followed. However, only one year of data was available so it 

is uncertain if this model accounts years under different weather conditions. 

 Previous studies on cumulative uptake of nitrogen in crops and daily nitrate levels in the 

soil have not been conducted, thus a sensitivity analysis of parameters affecting these variables 

needed to be performed alongside calibration.  The most sensitive variables affecting both crop 

uptake of nitrogen and soil nitrate were the amount of nitrogen in the plant at planting, half- 

maturity, and maturity (BN1, BN2, and BN3).  Another highly sensitive parameter for soil nitrate 

was the anion exclusion coefficient (ANION_EXCL), which affects the soil's ability to hold  

 

Figure 1.13.  Corn yield results after simultaneous biomass and yield calibration (a) and validation (b) 
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Figure 1.14. Peanut yield results after simultaneous biomass and yield calibration (a) and validation (b) 

anions in soil.  Increasing this parameter will exclude more anions, thus resulting in less nitrate  

and the soil but decreasing this parameter will have the opposite effect.  This parameter was 

more sensitive after hydraulic conductivity was lowered.  Other sensitive parameters included 

the rate at which a given crop residue moves to the soil nitrate pool (RSDCO_PL), fresh residue 

mineralization (CMN), threshold water level for denitrification (SDNCO), and the nitrogen 

uptake distribution parameter (NUPDIS).  It should be noted in this study that RSDCO in the  

.bsn database did not affect crop nitrogen or soil nitrate. Also, although CMN was sensitive, 

adjusting this parameter did not improve the trend of soil nitrate, so the default value was  
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Figure 1.15. Cotton LAI results after simultaneous biomass and LAI calibration (a)  and validation (b) 
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Figure 1.16. Corn crop nitrogen results after simultaneous crop nitrogen and soil nitrate calibration (a) and validation (b) 

 

Figure 1.17. Peanut crop nitrogen results after simultaneous crop nitrogen and soil nitrate calibration and validation 
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Figure 1.18. Cotton crop nitrogen results after simultaneous crop nitrogen and soil nitrate calibration (a) and validation (b) 

in the soil, which is not realistic to real-world conditions.  Modifying the code to produce a 

steadier supply of nitrogen to the plant by fixation might produce more realistic soil nitrogen 

cycling in the future for legumes. 

 

Figure 1.19. Corn soil nitrate results after simultaneous crop nitrogen and soil nitrate calibration (a) and validation (b) 
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Figure 1.20. Peanut soil nitrate (kg/ha) results after simultaneous crop nitrogen and soil nitrate calibration (a) and validation (b) 

 

Figure 1.21. cotton soil nitrate results after simultaneous crop nitrogen and soil nitrate calibration (a) and validation (b) 

  After running the model for 30 years (3 years of warmup), lack of soil moisture 
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SSURGO database has much lower available water content, which means less water will be held 

by the soil and instead escape either above the profile in surface runoff or below through shallow 
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less water leaving the soil profile means more is available for uptake by plants and evaporation.  
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Figure 1.22. Average Annual Hydrological Balance for Simulation (1990-2016) 

 The scenario results also indicated calibration of nitrate in the soil resulted in more 

nitrogen uptake from plants, less nitrogen fixation, less denitrification, and less nitrate escaping 

in lateral flow and leaching.  These results also make sense because the observed data used for 

calibration indicated more nitrate was being held by the soil than what the model was producing,  

 

Figure 1.23.  Average Annual Nitrogen Balance for Simulation (1990-2016) 
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Table 1.2  Default and calibrated values of the different sensitive parameters and all three crops assessed 
Runoff Calibration 

      
 

Corn Peanut Cotton 
Parameters Default Calibrated Default Calibrated Default Calibrated 

CN2 77 79.02 77 83.55 77 80.55 
GWQMN 1000 758 1000 324 1000 588 

OV_N 0.14 0.153 0.14 0.203 0.14 0.179        

Soil Moisture Calibration 
      

 
Corn Peanut Cotton 

Parameters Default Calibrated Default Calibrated Default Calibrated 

ESCO 0.95 0.65 0.95 0.7 0.95 0.6 
GSI 0.007 0.001 0.006 0.002 0.009 0.002 

EPCO 1 1 1 0.25 1 0.25 
SOL_BD1 1.59 2 1.59 1.4 1.59 1.4 

SOL_AWC1 0.08 0.17 0.08 0.25 0.08 0.22 
SOL_K1 331.2 284.4 331.2 331.2 331.2 331.2 

SOL_ALB1 0.16 0.16 0.16 0.26 0.16 0.26 
SOL_AWC2 0.08 0.25 0.08 0.25 0.08 0.25 

SOL_K2 331.2 152 331.2 152 331.2 152 
SOL_ALB2 0.16 0.16 0.16 0.26 0.16 0.26 
SOL_AWC3 0.08 0.25 0.08 0.25 0.08 0.15 

SOL_K3 331.2 152 331.2 152 331.2 152 
SOL_AWC4 0.11 0.11 0.11 0.25 0.11 0.25 
SOL_ALB4 0.16 0.16 0.16 0.26 0.16 0.26 
SOL_AWC5 0.13 0.13 0.13 0.25 0.13 0.2 
SOL_ALB5 0.16 0.16 0.16 0.26 0.16 0.26        

Crop Growth Calibration 
      

 
Corn Peanut Cotton 

Parameters Default Calibrated Default Calibrated Default Calibrated 

HVSTI 0.5 0.67 0.4 0.63 0.5 0.57 
BLAI 6 5.5 4 4.3 4 3.9 

FRGRW1 0.15 0.13 0.15 0.17 0.15 0.23 
FRGRW2 0.5 0.7 0.5 0.5 0.5 0.5 
LAIMX1 0.05 0.05 0.01 0.05 0.01 0.01 
LAIMX2 0.95 0.9 0.95 0.95 0.95 0.95 

DLAI 0.7 0.9 0.75 0.6 0.95 0.5 
T_BASE 8 10 14 15.5 15 14.5        

Crop and Soil Nitrate Calibration 
    

 
Corn Peanut Cotton 

Parameters Default Calibrated Default Calibrated Default Calibrated 

ANION_EXCL 0.5 0.2 0.5 0.2 0.5 0.2 
SOL_K1 331.2 121.6 331.2 331.2 331.2 331.2 
SOL_K2 331.2 121.6 331.2 152 331.2 152 
SOL_K3 331.2 121.6 331.2 152 331.2 152 
SOL_K4 100.8 80 100.8 32 100.8 100.8 
SDNCO 1.1 1 1.1 1 1.1 1 

RSDCO_PL 0.05 0.0101 0.05 0.0101 0.05 0.0101 
RSDCO_PL 0.05 0.0101 0.05 0.0101 0.05 0.0101 
NPERCO 0.2 0.1 0.2 0.1 0.2 0.1 
NUPIDS 20 1 20 1 20 1 

BN1 0.047 0.032 0.0524 0.0524 0.058 0.058 
BN2 0.0177 0.0177 0.0265 0.02 0.0192 0.023 
BN3 0.0138 0.11 0.0258 0.022 0.0177 0.0147 
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so the model was adjusted accordingly.  With more nitrate being held by the soil, more will be 

available by plants and less will be prone to vertical or lateral movement.  Similar to the results 

in the hydrological balances, lack of soil moisture calibration resulted in more nitrate being lost 

through leaching or surface runoff.  When compared to a different study conducted in Tifton, 

Georgia, leaching is much less in this site with soil moisture and soil nitrate calibration than 

without (Karki et al., 2019). Plant nitrogen stress was much higher without calibration of soil 

nitrate but not very different without soil moisture calibration, likely because nitrogen 

deficiencies were compensated by fixation of peanuts.  These results indicate calibration of extra 

soil variables could result the model behaving differently than what is expected of the system.  

 Thus, an important implication of this study is that calibration of many variables for 

field-scale studies is not necessarily a suitable option for a long-term modelling software like 

SWAT when temporal observed data is lacking because instead of capturing more aspects of a 

field model, model non-uniqueness or equifinality can occur.  This finding is consistent with 

other studies in watersheds at larger scales.  For example, a study conducted with SWAT and 

MODFLOW in agriculturally dominated watershed in Oklahoma showed a model calibrated 

very well for streamflow resulted in highly variable recharge patterns across the watershed 

(Acero Triana et al., 2019).  In this study, the authors point out the model produced great 

performance measure statistics but still resulted in the model behaving differently than what was 

known of the watershed.  Similar results were seen in the western united states for snowmelt 

dominant watersheds (Ficklin and Barnhart, 2014).  Ficklin and Barnhart found after using five 

different adequate calibration parameters sets for SWAT models of the Clearwater, Gunnison, 

and Sacramento River watersheds resulted in different future streamflow projections using 

downscaled Global Climate Models (2014).   
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CONCLUSIONS 

 After carefully building the field-scale model and thorough calibration and validation of 

the hydrology, crop growth, and nutrient cycling, the model performed reasonably well for most 

variables at this site except for soil moisture and soil nitrate in peanuts.  Biomass and nitrogen 

uptake from the crop were able to be simulated well and could be used to calibrate SWAT 

models in future studies.  Integration of crop database parameters into the calibration and 

validation of the model resulted in a better simulation of soil moisture; however, SWAT soil 

moisture and soil nitrate outputs had great difficulty matching the observed data, especially for 

peanuts.   It is not clear whether these difficulties are because of problems with the model or 

problems with the observed data.  Multiple years of data at a given site would result in a better 

understanding of the trends of the area.  More research into modeling fixation in legumes, in 

particular, is a necessity if soil nitrate is to be properly studied in peanuts with SWAT.  The 

scenario analysis conducted in this study revealed additional calibration of soil processes with 

low quality data could result in a model behaving differently than what is known of the study 

area.  Thus, calibration of more variables for a fewer number of years at the field scale, instead 

of providing a more comprehensive understanding of the area, could instead cause model 

equifinality.  The methods and results from this study can help provide more information for 

modelers in proper simulation of field scale models, especially of corn, peanuts, and cotton, to 

better capture the uniqueness of a landscape in larger-scale models.  
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CHAPTER 3: Comparison of Crop Yields and Soil Moisture with South Georgia Soils at 

the Field Scale under UGA Checkbook Irrigation 

ABSTRACT 

Proper water allocation can be a complicated and difficult matter solve, as is evidenced 

by the past forty years of litigation and conflict between Georgia, Alabama, and Florida over this 

very matter.  The state of Georgia’s use of the Apalachicola-Chattahoochee-Flint river basin’s 

water resources for the city of Atlanta and agricultural production is a primary cause for this 

litigation.  To help stakeholders and researchers understand this basin, the Soil and Water 

Assessment Tool has been employed to model the hydrology and land use practices in this area.  

Cotton and peanut are primary crops in this region and greatly affect the hydrology.  In addition, 

this area is home to many different types of soils.  Soil type and morphology can affect crop 

yields, but how different soils in Georgia effect crop yields in SWAT has yet to be quantified. 

Thus, the objective of this study was to use a field scale model to determine the effect of soil 

types in southwestern Georgia on crop yields, soil moisture, and nitrate leaching.  A SWAT 

model previously calibrated for a cotton-cotton-peanut rotation in Tifton, Georgia was used in 

this study with 30 years of weather data from NLDAS and the most common management 

practices in Georgia, including UGA Checkbook method for irrigation.  Twenty-four different 

types of soils covering over 98% of Region V Soil-Water Conservation District (SWCD) in the 

STATSGO map were selected and integrated into the model, with Tifton and Orangeburg 

covering 46% of the area.  Soil properties from SSURGO were matched to the STATSGO soils 

and used in this study, allowing for the diversity of soils to be accounted for while also using a 

more detailed soils database.   A multiple comparison analysis of the different soils was run with 

the native SSURGO Tifton soil used as the control.  When under UGA Checkbook Irrigation, 
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crop yields had little response to the different Georgia soil types tested in this study excepting for 

one very sandy soil.  Overall yields were lower for all Georgia soils investigated without 

irrigation, but top 305mm of soil will have a larger response to soil parameterization.  Soil 

moisture for the top layer showed much more variation and all soils were statistically significant 

compared to the control soil.  Soil moisture tended to decrease as available water content 

decreased, clay content decreased, and hydraulic conductivity increased.  Future research into 

individual soil parameters effect on yields and soil moisture is needed to better understand the 

relationship between crop yields and soil properties in SWAT. 
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INTRODUCTION 

  Water is an amazing resource and liquid water is one of the many things that 

distinguishes earth from billions of planets in the universe.  Water is what sustains most life, 

from humans to plant life, and the availability and quality of water is very important for a 

community to thrive.  As a result, the allocation of water can be a disputed subject as evidenced 

by the water wars in the southeastern united states.  Georgia, Alabama, and Florida in particular 

have fought over proper practices and allocation of the Apalachicola-Chattahoochee-Flint river 

basin’s water resources since 1989 (Stevens and Ruscher, 2014).  The top of the basin is located 

in Northern Georgia, where the Chattahoochee River meanders into East Alabama, joins the Flint 

River in southwestern corner of Georgia to become the Apalachicola River, and final drains 

through Florida into the Gulf of Mexico.  The ACF is nearly 385 miles (619km) long, 50 miles 

(80km) wide, and the total drainage area is approximately 19,573 mi2 (50,800 km2) with the 

greatest portion of the basin located in Georgia.  It is home to approximately 24,362 reservoirs, 

81% of which are located in Georgia, followed by 11% in Alabama and 8% in Florida.  A main 

cause for the complicated legislation lies with the city of Atlanta, GA that is located at the top of 

the Chattahoochee River basin.  The ACF system supplies 78% of Atlanta’s municipal water, 

and downstream of the river is twelve hydro-electric dams, recreational rivers, irrigation for 

crops, many habitats for endangered species, and the Apalachicola Bay, home of many estuarine 

fisheries and hatcheries (Wehr, 2014).  In addition, according to the United States Geological 

Survey, drought years in Georgia outnumber normal and high precipitation years since 1980, 

meaning Georgia will rely more on this system to help compensate for so many dry years 

(USGS, 2010).  However, overexploitation of the basin’s water resources could have highly 

negative consequences for the Apalachicola Basin. The Apalachicola River is a highly biodiverse 
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area and houses many threatened and endangered species (Ruhl, 2005).  Limited water quantity 

and quality would be damaging to the aquatic life, but especially endangered mussel species in 

this area.  Overall, after thirty-five years of litigations without conclusive decisions, Florida 

petitioned the Supreme Court to take the case in 2014, arguing to limit Georgia’s water use.  In 

October 2017, the Supreme Court decided to create a cap on Georgia’s water use during times of 

drought and the trial was appointed to a special master to determine details  (Florida vs Georgia, 

2017).  Despite the Supreme Court’s decision, no actionable changes have been made and the 

legal battles have no discernable end in sight.  

 In addition to being the primary water user in the ACF basin, Georgia is also a highly 

agriculturally productive area.  According to the USDA National Agricultural Statistics Service 

(NASS), in 2017, Georgia ranked first nationally for broilers, peanuts, and utilized pecans, 

second for cotton lint and cotton seed, and seventh for sweet corn.  Georgia is also a top national 

producer of fruits and vegetables, ranking third for watermelon; fourth for Bell Peppers, 

Cantaloupes, and Cucumbers; fifth for Tobacco; sixth for Blueberries, cabbage, eggs, onions, 

and squash; and finally, seventh for the state fruit – Peaches – and snap beans.  There are many 

factors contributing to this agricultural productivity.  First, Georgia has an interesting variety of 

aquifers, consisting of a surficial aquifer system termed the Biscayne aquifer, an upper confining 

unit, the upper Floridian aquifer (UFA), a middle confining unit, the lower Floridian aquifer, and 

a lower confining unit (Torak and Painter, 2006).  These aquifers are karstic aquifers, meaning 

they consist of highly permeable limestone.  The upper confining layer consists primarily of 

clastic rocks with low permeability, mostly from Hawthorn Formation from the Miocene age.  

Recharge zones for the UFA are throughout the Lower Flint River Basin (LFRB), meaning 

access to this aquifer for farmers is easier and more cost-effective. Thus, the UFA, due to both its 
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size and water availability, is often the source of irrigation from groundwater in this area (Mitra 

et al 2016). 

  The second major factor in Georgia’s agricultural productivity is the soil and 

geomorphology of the area.  There are hundreds of different types of soil in Georgia, but the 

National Resource Conservation Service (NRCS) has six major categories: Limestone Valley 

Soils, Blue Ridge Soils, Southern Piedmont, Sand Hills, Southern Coastal Plain, and Atlantic 

Coast Flatwoods (2019).  Limestone Valley and Blue Ridge Soils are located in the northernmost 

portion of the state with more loamy, well-drained, fertile lowlands suitable for forage 

production.  The Southern Piedmont contains massive granite features and clayey soils with iron 

oxides, and the southernmost portions contain nutrient rich soils more suitable for row crops.  

Below the Piedmont is the Sand Hills region which, as the name implies, contains largely sandy 

soils not suitable for plant growth.  The large Southern Coastal Plain Region contains a large 

variety of sandy, red clayey, and gravelly soils.  This area was previously an ancient marine 

coastline during the Mesozoic era, and although the sandier texture and frequent use of these 

soils for farmland make nutrients less abundant, nutrient management and easy access to the 

UFA mean this area is primarily used for row crops. 

 Soil physical and chemical properties can have a major effect on both the hydrology and 

vegetative growth of an area.  The latter has been the subject of much study in the southeast as 

nitrogen and phosphorus are very important macronutrients for row crops.   Nitrogen is available 

to plants in two forms – ammonium and nitrate.  The charged nature of these molecules means 

there are many ways for nitrogen to be lost to a system.  Ammonium can undergo denitrification 

under aqueous conditions, and both forms of nitrogen can be lost by runoff and leaching, 

especially in sandier soils with less organic matter to hold the nutrients.  Phosphorus can be lost 
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in similar manners; however, the phosphorus cycle does not have an atmospheric component, 

meaning phosphorus buildup is also a concern in many soils.  In addition, in order for nitrogen to 

become plant available from organic substances, there also needs to be enough active carbon in 

the system to help promote decomposition.  One study using nonlinear parametric modelling 

technique found for wheat and spring barley Phosphorus and total carbon were some of the 

greatest contributing factors to crop yields and NDVI in Bedfordshire UK (Whetton et al., 2017).  

Another study in Denmark found after testing a wide range of soils on winter wheat and spring 

barley that organic carbon levels above 1% may sustain yields (Oelofse et al., 2015).   

Soils’ ability to hold water against gravity, or field capacity, is also a consideration in 

row crops.  When so little water is in the soil that the overlying vegetation begins to experience 

water stress and wilts, a given soil has reached the wilting point.  The amount of water available 

to plants, or field capacity minus the wilting point, is referred to as the available water content.  

Soil texture can play a large role in soils ability to retain water.  Higher silt and clay content, due 

to the decrease of macropores, results in a higher available water content (Brady and Weil, 2008; 

Hoegenauer, 2014; van Lanen et al., 1992).  However, too high of a clay content can result in 

water restrictive layers and stunting of root growth.  The opposite is true for sandier soils.  Fine 

and sandier soils tend to have much higher hydraulic conductivity, meaning water flows through 

sandier soils much faster than clayey soils.  So although sandy soils have more macropores, can 

hold more air, and thus provide more underground oxygen exchange, these soils need much more 

irrigation because water is so quickly lost in the system (van Lanen et al., 1992).  Many different 

management practices have been tested and utilized by growers to increase soil fertility and 

decrease loss of nutrients and water.  Some studies have found when corn is tilled and rotated 

with a legume, it experienced increased yields and soil fertility (Agber et al., 2018).  Other 
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studies have found integration of conservation tillage and cover crops in the southeast can 

increase soil organic carbon, soil structure, and ultimately yields (Hoegenauer, 2014; Reaves and 

Delaney, 2002).  Cover crops in particular can be beneficial to cash crops by protecting the soil 

from erosion, sequestering nutrients, reduce fertilizer applications, conserving soil moisture, and 

increasing soil carbon (Reaves and Delaney, 2002; SARE, 2007, 2019).  One study testing a sod-

based rotation system and different types of tillage practices found in the Southeastern US found 

cotton yields were not affected negatively or positively by conservation practices but peanut 

yields significantly improved with strip tillage (Hoegenauer, 2014). 

Because field experiments are time consumptive and costly, researchers have employed 

modelling programs at regional, watershed, and field scales to better understand the hydrology, 

soil, and plant growth of a system.  Modeling agricultural activity, such as the crops being grown 

and management practices, is very important for proper modeling of hydrological processes in 

agriculturally dominated watersheds because crops can affect soil, nutrients, surface runoff, and 

evapotranspiration (Christopher et al., 2015; Maski et al., 2010; Neitsch et al., 2011).  One such 

study used Aquacrop, a crop water productivity model, to assess maize, wheat, and quinoa at 

three different sites in three different countries (Van Gaelen et al., 2015).  They found after 

calibration using a semi-quantitative approach, integration of soil fertility and water stress was 

very important in predicting crop yields (Van Gaelen et al., 2015). Another study conducted in 

North China Plain using the field-scale model daisy found increasing the detail of soil and 

weather data improved crop yield prediction, but also greatly improved regional drainage and 

leaching prediction (Manevski et al., 2019). Similarly, the Environmental Policy Impact 

Calculator (EPIC) was used by Wang et al. (2018) to investigate phosphorus losses in a corn-

soybean rotation.  They found EPIC performed well for surface runoff, drainage, and crop yields, 
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but only adequately for Phosphorus due to limitations in simulating soil processes (Z. Wang et 

al., 2018).   Other researchers have found remote sensing, modelling, and machine learning to be 

effective ways to determine crop yields at various scales (Leroux et al., 2019; Srinivasan, R.; 

Zhang, X.; Arnold, 2010). 

One model used worldwide with nearly 4000 published articles to-date due to its 

versatility, capability to handle a variety of watersheds, and great support, is the Soil and Water 

Assessment Tool (SWAT). Although SWAT is used primarily to study the hydrology and 

nutrient cycling of a given study area, integration of the plant growth model Environmental 

Policy Impact Calculator (EPIC) has allowed researchers to also use this program to study the 

effect of various management practices on crop growth and yields (Neitsch et al., 2011).  SWAT 

is also capable of simulating processes in the soil based on a detailed database of soil properties, 

such as percolation, fixation, conversion of residues into plant available nitrogen and 

phosphorus, and nutrient losses (Neitsch et al., 2011).   However, a warmup period is usually 

recommended to let all processes equilibrate (Daggupati et al., 2015).  Soil properties can be 

entered manually or imported from a database (Neitsch et al., 2011). 

OBJECTIVES 

 A majority of the research connecting soil and crop yields in SWAT is related to 

nutrients in the soil and best management practices.  Given the importance of soil on both the 

hydrology and proper simulation of crop yields, more investigation into the relationship between 

soil and crops needs to be investigated.  Also, with Georgia being of such agricultural 

importance, understanding how Georgia soils impact crop yields and soil moisture in SWAT 

would be very valuable for farmers and researchers to better understand the role soil plays in the 

ACF river basin.  Thus, the objectives of this study were to use a calibrated and validated field-
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scale SWAT model to assess the long-term impacts of different soil types in Georgia on crop 

yields and surface soil moisture.   

METHODS AND MATERIALS 

Study Area 

 Soils in Region V of Georgia Soil Water Conservation Districts were used in this study.  

The Georgia General Assembly established Soil and Water Conservation Districts (SWCDs) in 

1937 after the dust bowl as means to protect Georgia’s soil and water resources.  SWCDs are 

based on county lines, and Region V in particular contains 6 districts with 47 different counties 

(Table 2.1; Figure 2.24).  This area was chosen for many reasons: 1) it is a massive row crop hot 

spot in the state of Georgia 2) It is above the UFA 3) it contains both our model study site and 

counties in the ACF River Basin 4) has a very large variety of soils, from sandy soils to clay 

loams.   

 

Figure 2.24. Map of Georgia Soil and Water Conservation Districts (SWCDs) grouped by regions.  Legend of Region 5 SWCDs can 
be found in Table 2.1. 
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Table 2.3.  Legend for Georgia Region V Soil and Water Conservation Districts (SWCDs).  Numbers are followed by 
SWCD names and list of counties within each respective district 

# SWCD Counties 

38 Alapaha Berrien, Clinch, Cook, Echols, Lanier & Lowndes 

31 Flint River Baker, Calhoun, Decatur, Dougherty, Early, Grady, Miller, 
Mitchell & Seminole 

30 Lower 
Chattahoochee 
River 

Clay, Lee, Quitman, Randolph, Schley, Stewart, Sumter, Terrell 
& Webster 

32 Middle South 
Georgia 

Ben Hill, Brooks, Colquitt, Crisp, Irwin, Thomas, Tift, Turner 
& Worth 

28 Ochmulgee River Bibb, Crawford, Dooly, Houston, Macon, Peach, Pulaski, 
Taylor & Wilcox 

29 Pine Mountain Chattahoochee, Harris, Marion, Muscogee & Talbot 
 

SWAT Model Description 

SWAT was originally developed by Dr. Jeff Arnold for the USDA Agricultural Research 

Service to understand the impact of land management practices on water, sediment and 

agricultural chemical yields on large complex watersheds with varying soils, land use, and 

management conditions over long periods of time (Neitsch et al. 2011).  SWAT is a physically 

based model, meaning instead of parameterizing output results with regression relationships, the 

results are produced based on a wide variety of input data, such as  weather, soil, land, 

vegetation, and land management practices.  In this way, highly complex watersheds can be 

modeled for water, sediment, crop growth, nutrient cycling, and more.  It maps a watershed 

basin, subbasins, and subbasin outlets based on elevation data and streamflow shape files if 

available.  SWAT also has a very high resolution by creating unique categories called Hydraulic 

Response Units (HRUs).  Each HRU has a unique land cover, soil type, and slope.  Outputs for 

the HRUs are calculated and then scaled up to the sub-basin outlet by the percent area of the 
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HRU within the sub-basin.  When compared alongside eleven different hydrological models in 

2003 by Borah and Berah, SWAT was determined to have high skill and a great potential for 

expansion.  SWAT is usually used over long-term studies but is capable of performing well at 

multiple time steps, including daily, hourly, monthly, and yearly (Abbaspour, 2015; Arnold et 

al., 2012). 

The model used in this study is a field-scale model and was originally calibrated and 

validated in a previous study at a site in Tifton, Georgia (Karki et al., 2019).  This model 

underwent a multi-variable calibration and validation of surface runoff, soil moisture, crop 

yields, and nitrate with measured data from 1999-2006.  Surface runoff was calibrated and 

validated at a daily time step for four years and three years, respectively.  Soil moisture was 

limited, so it was calibrated from 2001-2003 and validated from 2004-2006 at a daily time step 

for the top 305 mm.  This site was also calibrated and validated with 5 years of cotton data and 3 

years of peanut data each.  Surface runoff flow and nitrate performed well and crop yields 

satisfactorily based on coefficient of determination (R2), Nash Sutcliffe efficiency (NSE), and 

percent bias (PBIAS) (Moriasi et al., 2015).  Recommended performance measure values were 

not available for soil moisture, but the trend was followed, and the performance measures were 

determined to be adequate.    
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Figure 2.2.  Map of calibrated and validated SWAT field-scale model used in this study, which is based on fields in Tifton, Georgia 
(Karki et al., 2019). 

Data Inputs and Isolating Soil Types 

  30 years of daily weather data from the National Land Data Assimilation network were 

used for the simulation to allow 3 years of warmup (1987-1989) and 27 years of simulation 

(1990-2016).  Georgia extension agents were consulted regarding specific common management 

practices from a typical cotton-cotton-peanut rotation and were integrated into the model (Table 

2).  In order to isolate soils covering Region V Georgia SWCDs, soils from the State Soil 

Geographic Dataset (STATSGO) were used in this study.  STATSGO was developed by the 

National Cooperative Soils Survey to develop a broad inventory of soils and non-soil areas that 

occur in a repeatable pattern on the landscape and can be cartographically shown at the map 

scale of 1:250,000.  25 Different Types of soils were selected covering 98% of the Region V.  

These soils were then matched to soils from the Soil Survey Geographic Database (SSURGO).  
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This database was used for the simulation because a preliminary analysis with STATSGO 

indicated the depth and number of soil layers were not representative of the area.  SSURGO is 

much more detailed than STATSGO with information collected at scales ranging from 1:12,000 

to 1:63,360.  SSURGO also generally results in better hydrological performance due to the 

higher resolution (Wang and Melesse, 2007).  The soils were matched between the databases on 

the basis of name, texture, location (within Region V), and depth of the individual soil layers.    

Table 2.4.  Management schedule for 3-year cotton-cotton-peanut rotation during the 30 simulation years 
 

Peanut Cotton 
Operation Description Date Description Date 
Fertilizer 

Application 
None - 4483 kg/ha poultry 

litter 
17-Apr 

Tillage Conventional 5-May Conventional 24-Apr 
Planting - 9-May - 1-May 
Irrigation UGA Checkbook 

based 
Weather 

dependent 
UGA Checkbook based Weather 

dependent 
Fertilizer 

Application 
- - 78.6 kg/ha of N-

sidedress 
20-Jun 

Cover Crop None - None - 
Harvest - 30-Sep - 30-Sep 

 

Data Analysis 

Annual crop yields and daily soil moisture for the top 305 mm were outputs analyzed in 

this study over the 30 years simulation.   A multiple comparison analysis was conducted using 

the R multcomp package on each simulation output with the control being the original soil type 

at the field site and the treatments being the Georgia soil types tested.  One-way ANOVA 

followed by Tukey’s post-hoc test was conducted and p-values less than 0.05 were considered 

significant when compared to the control.  For this study, the soil native to the research station – 

Tifton – with the SSURGO default settings as the control soil.  Any data without a normal 

distribution were transformed with Box-Cox transformation (1964). 
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RESULTS AND DISCUSSION 

 Due to non-normalized distributions of the data, Box-Cox transformations had to be 

applied to non-irrigated yield, irrigated soil moisture, and non-irrigated soil moisture data.  Data 

transformations were ineffective in normalizing the distribution for both nitrate leaching 

scenarios, thus consultations with statisticians will occur to properly analyze the effect on nitrate 

leaching.  

Although there was some variation between the soil types, only Mandarin soil produced 

significantly lower yields than the control under checkbook irrigation (Table 2.3; Figure 2.3 and 

2.4).   This is likely because, despite being under UGA checkbook irrigation, Mandarin had the 

highest amount of sand content (97%) and lowest available water content of all the soils tested.  

However, without irrigation, all soils resulted in lower yields and more soil types showed 

statistically significant difference in yields thank the control (pval<0.05) – specifically, Nankin, 

Cecil, Chewacla, Valdosta, Osier, Troup, Lakeland, Wilkes, Pelham, Leefield, and Mandarin 

(Figure 2.4).  Lakeland, Leefield, Pelham, and Wilkes all had similar yield results to Mandarin in 

the absence of irrigation, which is likely due to the high sand content and low available water 

content of these soils (Figure 2.4; Table 2.4).  However, it is unclear at this time the precise 

variable which caused the differences in yields in the absence of irrigation.   

On the other hand, soil moisture was significantly different for all soils compared to the 

control in both scenarios (Table 2.3; Figure 2.5 and 2.6).  Available water content is likely major  

Table 2.5.  One-way ANOVA results of crop yields and soil moisture for the different Georgia soil types 

 Degrees of Freedom F-value P-value 
Yields – Checkbook 23 1.513 0.0592 
Soil Moisture – Checkbook 23 6557 <2e-16 
Yields – No irrigation 23 12.81 <2e-16 
Soil Moisture – No irrigation 23 4687 <2e-16 

 



81 
 

 

 
Figure 2.25.   Average yield values (kg/ha) for each soil type tested over 27 years simulated under Checkbook Irrigation.  Control 
soil is highlighted in blue and the significantly different soil (pval<0.05) is highlighted in red. 

 

 

Figure 2.26.  Average yield values (kg/ha) for each soil type tested over 27 years without irrigation, sorted by not statistically 
different to most statistically different soil (pval <0.05).  Control is highlighted in blue and different soils are grouped by p-value. 
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 Figure 2.27.  Average Annual yield (kg/ha) for all Georgia soils during the simulation period for a cotton-cotton-
peanut rotation under UGA Checkbook irrigation, with the only statistically significant soil shown in red, control in 
orange, and all other soils in blue.  

 

contributing factor in the overall distribution of soil moisture in the top layer 305mm little major 

differences can be seen with and without irrigation.  Soil albeto seemed to have little effect on 

soil moisture or crop yields.  Soils with more clayey textures in the soil profile and low hydraulic 

conductivity tended to have higher soil moisture in the top layer.  This makes sense because soils 

with more clay will have fewer macropores and lower hydraulic conductivity will result in less 

percolation and thus less water lost in the soil profile.   

However, some soils showed surprising trends with regard to irrigation and soil moisture 

content.  For example, Chewacla and Wilkes had higher soil moisture content in the absence of 

irrigation.   Chewacla has a very high silt content and high available water content, so it is 

unclear why less added water contributed to higher soil moisture (Table 2.4; Figures 2.5 and 

2.6).  However, Muckalee soil had a lower soil moisture content than the control, which could be  
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Figure 2.28.  Average soil moisture values for each soil type tested over 27 years simulated under checkbook 
irrigation.  Control soil is highlighted in blue and statistically similar soils after the multiple comparison analysis are 
grouped from least to most significantly different. 
 

 
Figure 2.29.  Average soil moisture (mm) values for each soil type tested over 27 years without irrigation.  Control is highlighted 
in blue and the order is not changed from the ordering of from the previous figure so differences between irrigation scenarios 

are clear. 
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 Table 2.6.  List of soils followed by their respective important SSURGO database values.  Information for the whole soil profile is shown followed by top layer 
values of bulk density (BD), available water content (AWC), hydraulic conductivity (Ksat), percent (%) active carbon content, percent (%) clay/silt/sand, and 
reflectivity (albeto). 

Soil Name Number 
of 

Layers 

Hydro  
Soil 

Group 

Profile 
Depth 
(mm) 

Texture 
Distribution 

Top 
Layer 

BD 

Top 
AWC 

Top 
Ksat 

% 
Active 
Carbon 

% 
Clay 

% 
Silt 

% 
Sand 

Top 
Albeto 

Tifton (control) 6 B 1830 LS-SL-SCL-SCL  1.2 0.06 331.2 0.44 5.5 9.2 85.3 0.3 
Bonneau 2 A 1630 LS-SCL 1.5 0.08 331.2 0.73 10 4.3 85.7 0.3 
Cecil 4 B 1910 SL-SCL-C-L 1.4 0.13 100.8 0.44 12.5 19.6 67.9 0.3 
Chewacla 5 C 1780 L-SIL-L-SIL-SIL 1.45 0.2 32.4 1.45 22.5 37.7 39.8 0.37 
Davidson 4 B 1830 CL-CL-C-C 1.43 0.16 32.4 0.73 27.5 37.8 34.7 0.16 
Fuquay 3 B 2440 LS-SCL-SCL 1.65 0.07 331.2 0.73 6 9.1 84.9 0.3 
Grady 3 D 1570 L-SCL-C 1.33 0.14 32.4 1.45 25 36.5 38.5 0.23 
Henderson 3 B 1650 GR-SL-GR-C-C 1.4 0.13 82.8 0.73 18.5 15 66.5 0.3 
Iredell 4 C 1570 SL-C-L-SL 1.5 0.14 100.8 0.73 15 19.1 65.9 0.3 
Lakeland 2 A 2030 S-S 1.5 0.07 331.2 0.44 5 1.4 93.6 0.23 
Leefield 3 C 1910 LS-SL-SCL 1.53 0.06 331.2 0.87 6.5 9.2 84.3 0.23 
Mandarin 4 C 2030 S-FS-FS-FS 1.4 0.05 331.2 1.02 1.5 1.5 97 0.3 
Mascotte 6 B 2030 FS-FS-FS-FS-SCL-LS 1.35 0.1 331.2 2.61 2.5 0.7 96.8 0.23 
Muckalee 2 D 1570 L-SL 1.38 0.12 32.4 0.87 17.5 39.5 43 0.23 
Nankin 4 C 1650 SCL-SCL-SC-SCL 1.53 0.12 32.4 0.44 25 18 57 0.3 

Norfolk 3 B 1780 LS-SCL-SCL 1.63 0.09 331.2 0.73 5 15.8 79.2 0.37 

Orangeburg 4 B 1630 LS-SL-SCL-SCL 1.45 0.08 100.8 0.44 7 9.2 83.8 0.3 
Osier 3 A 1910 S-S-COS 1.48 0.07 331.2 2.03 5.5 1.6 92.9 0.23 
Pelham 3 B 1730 LS-SCL-SCL 1.6 0.07 331.2 0.87 7.5 9 83.5 0.3 
Plummer 2 B 1830 S-SCL 1.5 0.06 280.8 1.16 4 1.4 94.6 0.3 
Troup 2 A 2030 LS-SCL 1.5 0.1 331.2 0.44 7 9.2 83.8 0.23 
Valdosta 3 A 2510 S-LS-LS 1.43 0.07 331.2 0.44 5.5 1.6 92.9 0.3 
Vaucluse 4 C 1830 LS-SCL-SCL-SL 1.45 0.06 331.2 0.44 6 9.1 84.9 0.3 
Wilkes 3 C 1220 SL-CL-WB 1.4 0.13 100.8 0.73 12.5 19.6 67.9 0.37 
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because the overall soil thickness is not as high as the others (1570mm) but a similarly thick soil, 

Grady, did not have lower soil moisture.  One possible explanation could lie in the textural 

distribution of the two soils down the soil profile.  Muckalee has a low sand content in the top 

layers that increases farther into the earth, whereas Grady has the opposite trend and increasing 

clay content father from the surface.  This indicates the lower soil layer parameterization could 

play an important role of surface soil moisture in SWAT. 

The aforementioned parameters likely had an effect on soil moisture in the top 305 mm, 

but the most identifiable trend lies with available water content.  As the available water content 

decreased, soil moisture also decreased.  This too makes sense because available water content is 

directly related to how much water is in the soil layer in the SWAT equations (Neitsch et al., 

2011).   This trend can also be seen when comparing the soils average annual soil moisture and 

the seasonal soil moisture.   Soils with lower available water content had less soil moisture and 

less variability throughout the 27 years simulated.  All soils had higher soil moisture during the 

winter months and lower during the summer months, excepting the growing season when crop 

cover likely aided in water retention in the soil. 

 CONCLUSIONS 

 After testing 24 different Georgia soil types on a SWAT field scale model and running 

for 30 years (3 years warmup), crop yields had little response to the different soil types excepting 

for one very sandy soil under Checkbook irrigation, but the absence of irrigation showed 

decrease in yields and more sensitivity to soil parameters.  This means even though yields 

showed slight variation, with irrigation other soil parameters likely have a smaller effect on crop 

yields in this SWAT model.  However, soil moisture for the top layer showed much more 

variation and all soils were statistically significant compared to the control soil under both 
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irrigation scenarios.  Soil moisture tended to decrease as available water content decreased, clay 

content decreased, and hydraulic conductivity increased.  Future research is needed to clearly 

identify which soil property in the SWAT-soil database is responsible for the changes in soil 

moisture and yields.  A global sensitivity and uncertainty analysis on SWAT soil input 

parameters and both crop yields and soil moisture would be a likely next step.  Also, observed 

field cotton and peanut yields per soil type would assist in checking to make sure SWAT 

simulated yields are consistent in the real world.     
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CHAPTER 4: Thesis Conclusions 

1. SWAT is capable of modelling surface runoff, soil moisture, crop biomass, crop yields, 

and crop nitrogen at the field scale 

2. Integration of crop database parameters into the calibration and validation of the model 

resulted in a better simulation of soil moisture 

3. SWAT simulated soil moisture and soil nitrate had great difficulty matching the observed 

data, especially for peanuts. 

4. It is not clear whether these difficulties are because of problems with the model or 

problems with the observed data.   

5. The scenario analysis conducted in calibration study revealed additional calibration of 

soil processes with low quality data could result in a model behaving differently than 

what is known of the study area.   

6. Calibration of too many variables or with uncertain data could result in the model 

behaving differently than what is understood of a landscape 

7. When under UGA Checkbook Irrigation, crop yields had little response to the different 

Georgia soil types tested in this study excepting for one very sandy soil.   

8. Overall yields will be lower for all Georgia soils investigated without irrigation, but top 

305mm of soil will have a larger response to soil parameterization.   

9. Soil moisture for the top layer showed much more variation and all soils were statistically 

significant compared to the control soil.  Soil moisture tended to decrease as available 

water content decreased, clay content decreased, and hydraulic conductivity increased.   

10. Future research is needed to clearly identify which soil property in the SWAT-soil 

database is responsible for the changes in yields and soil moisture.   
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11. A global sensitivity and uncertainty analysis on SWAT soil input parameters and both 

crop yields and soil moisture would be a likely next step.   

12. Also, observed field cotton and peanut yields per soil type would assist in checking to 

make sure SWAT simulated yields are consistent in the real world.   

13. Analysis of other variables, such as surface runoff and leaching, would also assist in 

understanding how different soil types behave in a watershed  
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APPENDICES 

APPENDIX 1 – Supplementary Information on Newton Lateral fields 

Table A7.  Management Schedule for modelled plots in Newton Lateral Fields 

Corn 
   

Calibration Plot Validation Plot 
Description Date Description Date 

56 kg/ha N from Urea dry blend 3/7/2018 56 kg/ha N from Urea dry blend 3/7/2018 
89.6 kg/ha P from Urea dry blend 3/7/2018 89.6 kg/ha P from Urea dry blend 3/7/2018 
Strip Till 3/9/2018 Strip Till 3/9/2018 
50 kg/ha of mixture (Half 28-0-0 and half 
20-17-0) 

######## 50 kg/ha of mixture (Half 28-0-0 and half 
20-17-0) 

######## 

Double check about Phosphorus ######## Double check about Phosphorus ######## 
Planting ######## Planting ######## 
57 kg/ha of N applied via fertigation to High 
N plots 

5/9/2018 226 kg/ha of Urea applied via ground 
irrigation 

5/7/2018 

57 kg/ha of N applied via fertigation to High 
N plots 

######## Harvested plots ######## 

57 kg/ha  of N applied via fertigation to 
High N plots 

######## 
  

57 kg/ha  of N applied via fertigation to 
High N plots 

######## 
  

Harvested plots ######## 
  

    

Peanut 
   

Calibration Plot Validation Plot 
Description Date Description Date 

Strip Till ######## Strip Till ######## 
22.4 kg/ha N 5/1/2018 22.4 kg/ha N 5/1/2018 

56 kg/ha Phos 5/1/2018 56 kg/ha Phos 5/1/2018 
Planted 110 lbs seed/ac 06G variety ######## Planted 110 lbs seed/ac 06G variety ######## 

Inverted ######## Inverted ######## 
Harvested ######## Harvested ########     

Cotton 
   

Calibration Plot Validation Plot 
Description Date Description Date 

Strip Till ######## Strip Till ######## 
22 kg/ha N 5/1/2018 22 kg/ha N 5/1/2018 
56 kg/ha P 5/1/2018 56 kg/ha P 5/1/2018 
Planting ######## Planting ######## 
33.6 kg/ha N applied to fertigation plots 
(28-0-0-5) 

######## 95 kg/ha N applied to traditional plots via 
side dress 

######## 

33.6 kg/ha N applied to fertigation plots 
(28-0-0-5) 

7/2/2018 Hurricane Michael ######## 

28 kg/ha N applied to fertigation plots (28-
0-0-5) 

7/9/2018 Harvested data ######## 

Hurricane Michael ######## 
  

Harvested data ######## 
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Table A8.  Irrigation schedule for modelled plots in Newton Lateral Fields 

Corn Peanut Cotton 

Method: Checkbook SSA Method: NEW CB Rainfed Method: App Check- book 

Plot: Calibration Validation Plot: Validation Calibration Plot: Validation Calibration 

Date: mm mm Date: mm mm Date: mm mm 

4/20/2018 19.05 19.05 4/20/2018 0 0 4/20/2018 0 0 

4/30/2018 0 0 4/30/2018 0 0 4/30/2018 0 0 

5/2/2018 0 0 5/2/2018 0 0 5/2/2018 0 0 

5/4/2018 19.05 19.05 5/4/2018 0 0 5/4/2018 0 0 

5/7/2018 7.62 7.62 5/7/2018 0 0 5/7/2018 0 0 

5/10/2018 12.7 19.05 5/10/2018 0 0 5/10/2018 0 0 

5/12/2018 19.05 0 5/12/2018 12.7 12.7 5/12/2018 12.7 12.7 

5/14/2018 0 0 5/14/2018 12.7 12.7 5/14/2018 12.7 12.7 

5/18/2018 0 19.05 5/18/2018 12.7 12.7 5/18/2018 12.7 12.7 

5/21/2018 19.05 19.05 5/21/2018 0 0 5/21/2018 0 0 

6/5/2018 0 19.05 6/5/2018 12.7 12.7 6/5/2018 12.7 12.7 

6/7/2018 19.05 19.05 6/7/2018 0 0 6/7/2018 0 0 

6/8/2018 0 19.05 6/8/2018 0 0 6/8/2018 0 0 

6/13/2018 0 19.05 6/13/2018 0 0 6/13/2018 0 0 

6/14/2018 0 19.05 6/14/2018 12.7 12.7 6/14/2018 0 0 

6/15/2018 0 19.05 6/15/2018 0 0 6/15/2018 0 0 

6/19/2018 0 19.05 6/19/2018 0 0 6/19/2018 0 0 

6/21/2018 0 19.05 6/21/2018 0 0 6/21/2018 0 0 

6/22/2018 0 19.05 6/22/2018 9.53 0 6/22/2018 0 15.24 

7/11/2018 0 19.05 7/11/2018 9.53 0 7/11/2018 0 0 

7/13/2018 0 0 7/13/2018 0 0 7/13/2018 19.05 0 

7/16/2018 0 12.7 7/16/2018 0 0 7/16/2018 0 0 

7/19/2018 19.05 19.05 7/19/2018 9.53 0 7/19/2018 19.05 19.05 

7/30/2018 0 0 7/30/2018 9.53 0 7/30/2018 0 0 

7/31/2018 0 0 7/31/2018 9.53 0 7/31/2018 0 19.05 

8/7/2018 0 0 8/7/2018 9.53 0 8/7/2018 0 19.05 

8/9/2018 0 0 8/9/2018 9.53 0 8/9/2018 88.9 19.05 

Total 325.12 134.62 Total 130.21 63.5 Total 177.8 142.24 
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Figure A1.  Detailed plot map of the experimental corn field in 2018 with plot numbers and associated treatments 

 

Figure A2.  Detailed plot map of the experimental peanut field in 2018 with plot numbers and associated treatments 
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Figure A3.  Detailed plot map of the experimental cotton field in 2018 with plot numbers and associated treatments 

 

 

 


