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Abstract

The matrix projection model (MPM) is one of the mainstream approaches for population

and environmental dynamics in biological and ecological sciences. MPM is very popular in

modern biological sciences mainly due to its simplicity and the ease in which results can be

explained. The main basis of MPM is a discrete staged transition matrix. MPM then projects

the current population into the next census. However, MPM forces continuous trait, such as

drought index, length, or mass into discrete staged classes. Easterling proposed the integral

projection model (IPM) to avoid this artificial breakpoints of a continuous trait. The application

of IPMs is rapidly growing in forest and wildlife ecology and it started attracting statisticians

only recently. While IPM has advantages over the MPM, existing IPM estimation techniques

are sensitive to outliers or mixing of population traits. We propose a robust fitting approach

for IPMs and we analyze how the gain in robustness in the continuous size variable affects the

estimation of population growth rate using a simulation study. We demonstrate the benefits of

the proposed approach by analyzing the population dynamics of African elephants (Loxodonta

africa) in Amboseli National Park, Kenya, where drought is thought to influence the population

dynamics. Furthermore, existing IPM fails to generate a fecundity kernel in the situation of

incomplete reproduction information. We propose a permutation based model to overcome this

situation and demonstrate the applicability using a real life dataset.
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Chapter 1

Introduction

Population dynamics of plants and animals is determined by changes in various vital rates

including fecundity, reproduction, survival, and growth. The integral Projection Model (IPM)

is one of the modern population dynamics model that was developed relatively recently by

Easterling and Elner in 2000. Interest in the application of IPMs is growing in the fields of

forest and wildlife ecology. It is only recently that it is attracting the attention of statisticians.

The Matrix Projection Model (MPM) is the model that is commonly used to quantify population

dynamics. MPM is very popular in biological sciences because of its simplicity and because

the results can be easily explained. However, MPM may underestimate population parameters

since it forces continuous size variable (mass, length, drought index) into discrete stages. In

this dissertation, we demonstrate a comprehensive set of tools for a smooth transition from

MPM to IPM and then improve parameter estimation for IPM. This dissertation consists of

two parts - robust integral projection models and permuted integral projection models. Rees

et al. (2014) demonstrate population dynamics of Soay-sheep using standard IPM approach

where the size variable, z (mass), follows a single Gaussian distribution. Heather et al. (2018)

shows the effect of temperature on the growth of gilthead seabream using the IPM approach

where we observe nearly perfect linear relationship between the Otolith radius at time t − 1

and the Otolith radius at time t. However, there is not enough explanation how to apply IPM

in the situation of two combined similar species where one has slightly larger Otolith radius

or one small group of gilthead seabream has larger variability in Otolith radius. In the recent

literature, Merow, Dahlgren and Metcalf (2014) improve the IPMs in the presence of outliers

or influential observations by using simple linear regression models and adjusting variances.

1



We are interested in constructing population dynamic models that take into account pos-

sible mixture of populations with respect to some of the vital rates. In this case, we are specif-

ically concerned with the case where the size of the plants or animals, which is a determinant

of the population growth rate, is not coming from a single Gaussian distribution. For example,

we can think of situations where an animal population under study is a mixture of two where a

small percentage of animals have a larger variability in their weight distribution. This calls for

robust methods of estimation to be incorporated in the modeling of population dynamics. This

is precisely the purpose of the first part of this study.

We will begin by reviewing robust regression, M estimation in particular. We will then

compare integral projection models for population dynamics based on the usual approach of

using the least squares estimation method to that ofM estimation under various size distribution

scenarios.

In the second part of this dissertation, we focus on how to minimize the cost of collecting

the population data, especially for long-lived animals that may not be easily tracked contin-

uously. Sometimes, it may take more than 60 years to achieve a complete life cycle of an

elephant herd (Moss, 2001). To track this life cycle for long period of time would be extremely

expensive. Again, collecting individual reproduction outcomes is time consuming, and in some

scenarios it is almost impossible (fish, turtle).

Without the exact knowledge of reproduction (who gave birth to whom), it is not possible

to calculate the population growth rate using standard IPM approaches. The motivation of

this research is part of a big elephant research project which started initially by Moss and

Croze in 1972 (Moss 2001). Dr. Cynthia Moss is an American wildlife researcher was born

in Ossining, New York, in 1940 (Yount, 1999). She moved to Africa in 1968 and has been

collecting the dataset ever since. The main focus the second part of this dissertation is to

propose a permutation based IPM estimation where there is missing information (eg. exact

mother is not known, exact size is missing, etc). In this dissertation, we explore a real data set

of Amboseli elephants from greater Amboseli National Park, Kenya. The dataset consists of 91

unique individual samples (Moss, Croze, & Lee, 2011). This data set has complete information;

2



thus, it will be used as a benchmark to validate the fidelity of our proposed approaches in

Chapter 4 and 5.

Drought Index at time t
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Reproduction Probability vs Drought Index

Figure 1.1: Reproduction probability of Amboseli elephants

Figures 1.1 and 1.2 give the survival and reproduction probability, respectively, of Am-

boseli elephants as a function of drought estimated using an IPM. A question of interest is if

there is any significant effects of drought index on asymptotic population growth rate of the

Amboseli elephant population. This will be explored in Chapter 4.

Another question of interest is to recover the asymptotic annual population growth rate, λ,

assuming no prior complete information of reproduction. The complete reproduction informa-

tion for one of the families (EB) is presented in Figure 1.3. In Chapter 5, we propose a model

that will provide estimates of vital rates even when this information is not completely known.
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Drought Index at time t
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Survival Probability vs Drought Index

Figure 1.2: Survival probability of Amboseli elephants

Members of EB family

Ye
ar

Annual Reproduction Information of EB Family

Figure 1.3: True reproductive information of Amboseli elephants (who is giving birth): In-
dividuals who reproduce offspring are represented by the darkened (repr=1) area, Individuals
who fail to reproduce offspring are represented by the thistled area (repr=0), and individuals
who no longer survive (surv=0) are represented by the no color zone.
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Chapter 2

Background

This background chapter covers the three entities we will be combining in the study of

population dynamics of species. These are the matrix projection model (MPM), integral pro-

jection model (IPM), and robust regression.

2.1 Matrix Projection Model

A principal goal in ecology and biological sciences is to determine the factors that in-

fluence the population growth rate. Individual get born, grow or shrink from one stage to

another stage, and reproduce or not reproduce conditional on survival. Matrix projection mod-

els contribute a connection between individuals and the population creating a descriptive life

cycle. Age specific information is required to build matrix projection models. The best strategy

to predict population dynamics is to explore the current condition of the population (Keyfitz,

1972). The population vital rates such as survival and reproduction probability depend on in-

dividual age-structured stages can be expressed as a transition matrix which project the current

population dynamics to a singular step forward in time.
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Figure 2.1: A life cycle for a species with a age-classified life history.

The equation of a matrix projection model can be expressed as follows (Caswell, 2001):

N(t+ 1)n×1 = An×n N(t)n×1 (2.1)

where,

A = transition or projection matrix

N(t+ 1) = population distribution of different stages at time, t+ 1

N(t) = population distribution of different stages at time, t

It is recommended to draw the life cycle for a species with stage or size structure before

formulating the transition matrix. Consider the individuals who transit from one stage to the

next stage with a probability, P . The individuals may reproduce or not reproduce while tran-

sitioning from one class to the next or remains same class, with a probability F . Figure 2.1

shows a life cycle of an age classified individuals as stated. The upper curved arrows at the

top of the life cycle represent the fecundity probability. The bottom curved arrow represents

the probability of individuals surviving and remaining in the same stage. The middle straight

arrows represent the transition probability.
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Adopting the life cycle in Figure 2.1, we can rewrite the equation (2.1) as follows:


N1

N2

N3


t+1

=


0 F2,1 F3,1

P1,2 P2,2 0

0 P2,3 0


︸ ︷︷ ︸

transition matrix


N1

N2

N3


t

(2.2)

where F3,1 is the fecundity of stage 3 and P2,1 is the probability of transition from stage 1

to 2. If we continue multiplication with a current population vector by the transition matrix,

the population gradually reaches a stable stage distribution. At this stage the proportion of

individual remains constant over time. Thereupon, we can compute population growth rate

using the following equation:

λ =
Nt+1

Nt

(2.3)

The growth rate calculated at this point is called asymptotic population growth rate, λ. Another

way, to compute the asymptotic population growth rate is to calculate the dominant eigenvalue

of the transition matrix, A.

Consider an elephant population that matches the description in Figure 2.1 with a transition

matrix

A =


0.00 0.23 0.28

0.90 0.60 0.00

0.00 0.92 0.00


Assume that elephant population consists of 5 members in group 1, 10 members in group

2, and 4 members in group 3. Using the equation 2.2, we can compute abundances to a singular

step forward in time. Continuing this process of multiplication of the current abundances by

the transition matrix, after approximately ten iterations the abundances reach a stable stage

distribution as reported in Figure 2.3. At this stage, we can calculate the growth rate using

equation (2.3).
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Figure 2.2: Population abundances for all aged-structure group over time
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Figure 2.3: Log scale of population abundances for all aged-structure group over time.
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Asymptotic population growth rate, λ = 1.576352 + 1.791492 + 0.4317041
1.541800 + 1.751502 + 0.4195401

= 1.023353. This

asymptotic growth rate can be calculated directly by obtaining the dominant eigenvalue of the

transition matrix, A. In this case, we find λ = 1.0235387. Thus for this contrived example, the

elephant population growth rate is about 2.3% each year.

Computational Algorithm

The outline of the algorithm pertaining to the matrix projection model (MPM) is as fol-

lows:

Step 1: formulate a transition / projection matrix

Step 2: using the members of each age-classified group define a initial vector abundance.

Step 3: multiply vector abundance by the transition matrix to get the vector abundance to a

singular step forward in time.

Step 4: repeat Step 3 until we get a stable stage distribution.

Step 5: at this stage calculate the asymptotic population growth rate.

While the matrix projection model (MPM) is the most used model to evaluate the popu-

lation dynamics in biological sciences, it may underestimates the population parameters since

it discretizes continuous variables as discussed in the introduction. Easterling proposed the

integral projection model (IPM) to avoid this artificial breakpoints of a continuous trait. In the

section, we will discuss the basic ideas behind the IPM and its wide applications.
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2.2 Integral Projection Model

We are interested in estimating vital rates that contribute to population dynamics of species.

Instead of discrete population groups, we will assume that the populations are continuously

structured where some continuous measure of individual state may influence growth, survival

or reproduction. For continuously structured populations, integral projection models (IPMs)

are commonly applied. IPMs combine statistical estimation through regression models with

population dynamic models from mathematical biology to study the contribution of different

phenomena to the growth of populations.

Integral Projection Models (IPMs) have gained widespread popularity since they were de-

veloped by Easterling and Elner in 2000. IPMs are commonly used for the analysis of dynamics

in wildlife ecology, conservation biology, and forestry and fisheries ecology. Although IPMs

are based on regression models, they have not yet received a lot of attention from statisticians.

The base of an IPM is the kernel. Cory Merow defined the IPM kernel as - “a function that

describes how the state of an individual at one time dictates its state and that of its offspring at

some future time. Individuals can be characterized in terms of one or more state variables that

explain variation in vital rates; often the state variable is some measure of size”. The kernel

explains how the size (zt) at time t,, transit to the next state of size zt+1 at time t + 1. It is

recommended to draw the life cycle carefully to represent the complete life census interval.

The distribution of the size zt is denoted by nzt and the integration of nzt over zt expresses

number of individuals conditional on survival probability.

The kernel is represented as a function K(zt+1, zt) of size that maps the current size, zt at

time t into a size zt+1 at time t+ 1. Kernel, K represents the individual survival, reproduction

and transition in size variable/s. Size, zt (mass, width, length, drought index etc) is a generic

variable which is correlated to survival and reproduction probability. Heather and Childs, 2018

used otolith radius and temperature as a size variables to construct an IPM for the growth rate of

gilthead seabream in Gulf of Lions (Mediterranean). They suggested that with increasing water

temperature reduce the growth rate of gilthead seabream in their study. Rees et al (2014) used

sheep mass as a size variable and suggested higher mass tends to increase population growth
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rate. Merow et al. (2014) considered log of the sum of the products of leaf number and highest

leaf length as the size variables. The kernel, which is at the the core of the IPM, performs a

similar role that the transition matrix plays in the MPM. We present a graphical comparison

between IPM and MPM in the diagram at end of this chapter.

IPM predicts population n(t+1)(zt+1) at time t + 1 by the following: (Easterling at el.

(2000), Merow at el. (2014) and Rees at el. (2014))

n(t+1)(zt+1) =

∫
all sizes

[P (zt+1, zt) + F (zt+1, zt)]nt(zt)dz (2.4)

=

∫ U
L
K(zt+1, z)n(z, t)dz (2.5)

where,

zt = individual size at time t

zt+1 = individual size at t+ 1

L = the lower size limits

U = the upper size limits∫
nt(zt)dz = represents the number of individuals

nt(zt) = size distribution at time t

n(t+1)(zt+1) = size distribution at time t+ 1

P (zt+1, zt) = growth/survival kernel

F (zt+1, zt) = fecundity /reproduction kernel

and K(zt+1, zt) = the full kernel = P (zt+1, zt) + F (zt+1, zt).

The integration completes the projection from size zt at time t to the next size zt+1 tran-

sition at time t + 1. This integration performs on main kernel K which consists of the sur-

vival/growth kernel P and the fecundity/reproduction kernel F . The kernel P explains popu-

lation that survive from one state to the next state and while the kernel F explains all possible

births of new recruits. Now let us explore the components of IPM discussed in equation 2.5.

The growth kernel consists of survival and size transition functions. It represents the size

transitions for those that survive. The growth kernel can be defined as follows:
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P (zt+1, zt) = g(zt+1, zt) ∗ s(zt) (2.6)

where,

g(zt+1, zt) = size transition function

s(zt) = survival probability

Here the functions g(·, ·) and s(·) are taken as

g(zt+1, zt) =
1√

2πσ2
z

exp
(

(zt − µz)2

2σ2
z

)
(2.7)

s(zt) =
exp(β0 + β1zt)

1 + exp(β0 + β1zt)
(2.8)

here µz = azt+ b is calculated using a regression model that predicts the size, zt+1 at time t+1

given the size zt at time t. This regression line is calculated from the scatter plot of size at time

t versus the size at time t+ 1 and the standard deviation, σz in the Equation (2.7) is calculated

from this regression model. The higher the σz the more scatter of the data from the regression

line. Survival probability in Equation (2.8) is estimated using a logistic regression model.

On the other hand, the fecundity kernel consists of reproduction, offspring size, survival,

and recruitment function. The fecundity kernel can be defined as follows:

F (zt+1, zt) = Of (zt+1, zt) ∗ s(zt) ∗ (1/2) ∗ rp(zt) (2.9)

where,

Of (zt+1, zt) = offspring size function

rp(zt) = reproduction probability

s(zt) = survival probability
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Similarly the fecundity kernel components can be expressed as follows:

Of (zt+1, zt) =
1√

2πσ2
rz

exp
(

(zt − µrz)2

2σ2
rz

)
(2.10)

rp(zt) =
exp(β2 + β3zt)

1 + exp(β2 + β3zt)
(2.11)

s(zt) =
exp(β0 + β1zt)

1 + exp(β0 + β1zt)
(2.12)

where µrz = aozt + bo is calculated using a regression model that predicts the size of offspring

zt+1 at time t + 1 given the maternal size zt at time t. This regression line is calculated from

the scatter plot of maternal size at time t versus the offspring size at time t + 1. The standard

deviation σrz in the Equation (2.10), which measures the vertical scatter in this scatterplot, is

also calculated from this regression model. The higher the σrz, the higher the variability of the

data around the regression line.

After estimating the growth and fecundity kernels, we step forward for the final step of

IPM. At this stage, we calculate the full kernel using Equation (2.5). A step by step computa-

tional algorithm to calculate population growth rate using IPM is presented at the end of this

section. The graphic at the end of this section that compares MPM and IPM gives a visual

representation of the algorithm.

The full Integral Projection Model components can be summarized as shown below in Ta-

ble 2.1:
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Table 2.1: Parameterize the IPM using vital rate parameters.

Function Details

g follows normal distribution
Growth function, g(zt+1, zt) with mean, µz = az + bzzt , sd = σz

az, bz, σz are estimated from regression model
[lm(zt+1 ∼ zt)]

Survival probability s(zt) logit[s(zt)]= as + bszt
as and bs are estimated from logistic regression
[glm(survival ∼ zt)]

Reproduction probability rp(zt) log[rp(zt)] = arp + brpzt
parameters are estimated using logistic regres-
sion [glm(reproduction ∼ zt)]

Of follows normal distribution
Offspring growth with µrz = arz + brzzt ,sd = σrz
function, Of (zt+1, zt) arz, brz, and σrz are estimated using regression

model [lm(recruitement ∼ zt)]

Recruitment probability, rcr logit[rcr] = arcr
parameter is estimated using logistic regression
model [glm(Recr ∼ 1)]
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Computational Algorithm

The outline of the algorithm pertaining to the integral projection model (IPM) is as follows:

Step 1: Define a function Par(az, bz, σz, as, bs, arp , brp , arz, brz) contains all parameters of vital

rate.

Step 2: Using generalized linear regression calculate all vital rates parameters and update the

function in step 1.

Step 3: Define growth function, g(zt+1, zt) = 1√
2πσ2

z

exp
(

(zt−µz)2
2σ2

z

)
that returns output as size,

zt+1 at time t+ 1 given the size, zt at time t as follows:

• plot individual size, zt at time t versus the individual size, zt+1 at time t+ 1

• using m-estimation calculate regression parameters (az and bz) and standard deviation σz

• define µz = az + bz ∗ zt , where zt is the size at time t

• generate a normal distribution with mean µz and standard deviation σz

• input the size, zt at time t using steps 10 through 12

• the growth function g(zt+1, zt) returns size zt+1 at time t+ 1 provided the size, zt at time

t.

Step 4: Define survival function, s(zt) = 1
1+exp(−µlgs)

which returns the survival probability of

size zt at time t as follows:

• define µlgs = as + bs ∗ zt, where zt is the size at time t

• input the size, zt at time t using steps 10 through 12

• return the survival probability of size zt at time t

Step 5: Define reproduction function, rp(zt) = 1
1+exp(−µlgp)

which returns the reproduction

probability of size zt at time t as follows:

• where, µlgp = arp + brpzt, and zt is the size at time t
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• input the size, zt at time t using steps 10 through 12

• return the reproduction probability of size zt at time t

Step 6: Define recruitment function, Of (zt+1, zt which returns the size distribution of offspring

at time t+ 1 as follows:

• plot maternal size, zt at time t versus the offspring size, zt+1 at time t+ 1

• using m-estimation calculate regression parameters arz and brz and standard deviation

σrz

• calculate mean µrz = arz + brz ∗ zt and the standard deviation σrz of the size,zt

• generate a normal distribution with mean µrz and standard deviation σrz

• input the size, zt at time t using steps 10 through 12

• return the offspring size transition of zt+1 at time t+ 1

Consider all individuals are recruited to the next census conditional on survival. So, in this

case rcr = 1

Step 7: Define survival or growth kernel function, P (zt+1, zt) = g(zt+1, zt) ∗ s(zt).

Step 8: Define reproduction kernel function, F (zt+1, zt) = Of (zt+1, zt) ∗ s(zt) ∗ (1/2) ∗ rp(zt).

Step 9: Define full kernel K(zt+1, zt) = P (zt+1, zt) + F (zt+1, zt).

Step 10:Calculate the size range of the data set as follows: L = l− 0.5 and U = u+ 0.5 where

l and u are min and max of the size respectively.

Step 11: Define number of elements in the matrix n = 200.

Step 12: Calculate mesh points, zt = L+k∗(U−L)/n−(U−L)/2n, where, k = 0, 1, 2, . . . n.

Step 13: Define a function which evaluates all pairwise components of the vector zt (mesh

points) and returns all elements of n× n matrix as an output of the function K(zt, zt).

Step 14: Calculate dominant eigenvalue and eigenvector of the n× n matrix.
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2.3 Robust Regression

Robust regression approaches provide an alternative to least squares or maximum likelihood

estimation for regression models and they are used when there is suspicion that data are con-

taminated with outliers or influential observations. It can also be used for the purpose of detect-

ing influential observations. It is well-known that ecological data will have outliers since they

are collected in uncontrolled conditions. Thus it is reasonable to explore whether using robust

regression to estimate components of the IPM provides an improvement over the traditional

maximum likelihood and least squares approaches. There are several techniques of robust re-

gression including M -estimation (Huber,1964, Almewally & Almong, 2018 and Hayes et. al.

2007) and R-estimation (Wilcox, 1998, 2010). However, we chose to use M -estimation in this

dissertation for two reasons:

• Two of the regression components in IPM have binary responses (reproduction and sur-

vival) and M -estimates have a stable algorithm for fitting generalized linear models,

including those with binary and count responses.

• M -estimates can be computed efficiently. There will be no appreciable difference be-

tweenM andR estimates (and perhaps other robust regression methods) from a practical

point of view to justify the additional computational time. We did not see a large differ-

ence in estimates when continuous responses (size) were fit using R or M estimation.

M -Estimation

Let us consider the current COVID-19 pandemic, where total confirmed cases are known

to depend on population density, the level of social distance, and mobility (indicates individual

movement). A multiple regression model for this relationship can be represented as follows:

y = β0 + β1x1 + β2x2 + β3x3 + ε (2.13)

where,
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y = total confirmed cases of COVID-19

x1 = population density / sqmi

x2 = social distancing

x3 = mobility

ε = a random error

The term linear indicates that the mean is a linear function of the unknown parameters

β0, β1, β2 and β3.

In general for p regressors, the multiple linear regression can be defined as

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε (2.14)

where y is the response variable, xj, j = 0, 1, · · · , p, are the regressor variables, the parameters

βj , j = 0, 1, · · · , p, are the regression coefficients, E(ε) = 0, and Var(ε) = σ2.

For a given predictor vector x′ = [1, x1, x2, · · · , xp] and an arbitrary vector b = [b0, b1, · · · , bp]′,

the model residuals are defined as

e = y − x′b .

Given data (x1, y1), . . . , (xn, yn), M-estimation (Huber,1964) determines the estimate of β =

[β0, . . . , βp]
′ by minimizing a particular objective function over all b

S =
n∑
i=1

ρ(ei) =
n∑
i=1

ρ(yi − x′ib)

For ordinary least squares estimator ρ(e) = e2 and for least absolute deviations estimator

ρ(e) = |e|.

A reasonable ρ should have the following properties:

1. ρ(e) ≥ 0

2. ρ(0) = 0

3. ρ(e) = ρ(−e)

4. ρ(ei) ≥ ρ(ej) for |ei| > |ej|
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For least squares regression we take the derivative of S =
∑
e2i with respect to the parameter

to obtain the score function which we equate to 0 (estimating equation)

∂S

∂βk
= 0→

n∑
i=1

eixki = 0

and for M-estimator, the estimating equation becomes

∂S

∂βk
= 0→

n∑
i=1

∂ρ

∂ei
xki = 0

If we define a weight function w(e) = 1
ei

∂ρ
∂ei

, the estimating equation can be written as

n∑
i=1

wieix′i = 0

Thus M-estimators can be found using the iteratively reweighted least squares approach.

We first assume the weights, fit, then calculate the residuals. Use those residuals to calculate

new weights and repeat until convergence.

The Huber M-estimator attempts to get the best of both the least-squares estimator (easy

to find the minimum) and the absolute deviation estimator (more robust)

ρ(e) =


e2

2
, if |e| ≤ k

k|e| − k2/2, |e| > k

(2.15)

Huber picked k = 1.345σ, which gives 95% efficiency (almost the same as OLS). There are

other weight functions that can be used. Some are presented in Table 2.2 and Figure 2.4.
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Figure 2.4: Top panel: Objective and weight functions for the least-squares, Middle panel:
Objective and weight functions for the Huber estimators, and Bottom panel: Objective and
weight functions for the Bi-square estimators. The tuning constants are k = 1.345 for the
Huber estimator and k = 4.685 for the bi-square estimator.
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Table 2.2: Least-Squares, Huber and Bisquare Estimation

Method Objective Function Weight Function

Least-Square ρLS(e) = e2 wLS = 1

Huber ρH(e) =

{
e2

2
, |e| ≤ k

k|e| − k2/2, |e| > k
wH(e) =

{
1, |e| ≤ k

k/|e|, |e| > k

ρB(e) =

Bisquare

{
k2

6

{
1−

[
1− ( e

2

k2
)
]3}

, |e| ≤ k

k2

6
, |e| > k

wB(e) =


[
1− ( e

2

k2
)
]2
, |e| ≤ k

0, |e| > k

We explore current data to visualize the benefits of M -estimation. We used a COVID-19

data set (Worldometer, 2020)-collection period between January 20, 2020 and May 4, 2020.

The scatter plot of population density/ sqmi against total COVID-19 confirmed cases is pre-

sented in Figure 2.5. We presented Huber weights and residuals (first and last five) of the

observations in Table 2.2 and observe the same pattern in Figure 2.4: means the absolute value

of residual, e increases , the weight, w(e) decreases.

Table 2.3: Huber weights and residuals

Obs State resid weight
32 New York 295748.539 0.02547065
39 Rhode Island -65146.791 0.11560598
13 Illinois 45295.824 0.16630999
30 New Jersey 40807.658 0.18465999
5 California 35534.851 0.21199818

45 Vermont -6306.092 1.00000000
46 Virginia 1627.353 1.00000000
47 Washington 5440.525 1.00000000
48 West Virginia -6397.277 1.00000000
49 Wisconsin -1801.677 1.00000000
50 Wyoming -2194.753 1.00000000

Again, we presented the Huber and Bi-square weights in Figure 2.6 and observe the similar

pattern defined in equation (2.15) as the absolute value of residuals increase, the Huber weights

and Bisquare weights both decrease. Again, in Figure 2.5, we observe a difference between

22



Population density / sqmi

To
ta

lc
on

fir
m

ed
ca

se
s

LS vs M-Estimation for COVID−19 Cases

Figure 2.5: COVID-19 Cases

M -regression (darked cyan line) and LS regression (red line) that provide the information of
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Chapter 3

Simulation Study on Robust IPM

In this study we used the data of Soay sheep population of the island of Hirta in Scotland.

Rees first simulated this data in 2014 to mimic the true population. To simulate the notion

of mixing populations, we will generate some outliers and observe how IPM deals with those

extreme sizes. The resulting work-flow can be applied to almost any life history that can be

approximated as a sequence of transitions in discrete time. We have decided to put together

our model with respect to this population since it has been a significant objective of research

into the elements and advancement of wild populations. The data set contains 6 variables as

follows:

zt = Mass of a Soay Sheep at time t (continuous)

zt+1 = Mass of a Soay Sheep at time t+ 1 (continuous)

Surv = Survive or not survive at time t (binary)

rep = Reproduce or not reproduce (binary)

rcr = Recruited or not recruited the offspring for the next census at time, t+ 1 (binary)

rcz = Recruited size (continuous)

First, we have explored the data set in Figures 3.1 and, 3.2. Thereupon, population growth

rate was estimated using standard IPM before mixing the population. The growth distribution

is g(zt+1, zt) ∼ N(µz, σz), where µz and σz were estimated using a regression model from the

scatter plot of size zt+1 at time t+ 1 versus size zt at time time t as presented in Figure 3.1 (b).

Thus, we projected the size, zt+1 at t + 1 by randomly generating a normal distribution with
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mean µz and standard deviation σz given its current size zt at time t. For example, in R, we can

use dnorm(zt, µz, σz).

From the size dependent survival plot in Figure 3.1 (a), we observed that the individual

with higher in size, zt tends to have a higher survival probability. We also noted a similar pattern

in size transition to the next census in Figure 3.1 (b). Thus, we calculated growth/survival kernel

P (zt+1, zt) as the product of size dependent survival probability s(zt) and the growth transition

g(zt+1, zt) using the IPM algorithm discussed in Chapter 2. The growth kernel projected the

population at time t to the next census at time t + 1. We visually observed that the growth

kernel in Figure 3.1 (c) is a good representation of size transition plotted in Figure 3.1 (b).

Again, Figure 3.2 (a) shows the size dependent reproduction probability. We observed that

individuals larger in size at time t (large zt) tended to have a higher survival probability. We

also observed a similar pattern in offspring size transition to the next census in Figure 3.2 (b).

Furthermore, the fecundity kernel is calculated as F (zt+1, zt) as half of the product of

size dependent reproduction probability rp(zt), offspring size transition Of (zt+1, zt), and size

dependent survival probability s(zt). We only take half since the focus is only on the population

of females. The fecundity kernel projected the population (offspring) at time t to the next census

at time t + 1. We observed that the fecundity kernel in Figure 3.2 (c) is a good representation

of offspring size transition plotted in Figure 3.2 (b).

The full kernel, K(zt+1, zt) = P (zt+1, zt) + F (zt+1, zt) for the Soay sheep data is shown

in in Figure 3.3 which is a 3D surface plot of the big matrix (100× 100 as we chose our bins

=100). The higher ridge represents the growth kernel which transits near the diagonal and

increases as a function of size. Equivalently, this represents individuals who survive to the next

census without much growing or shrinking in size. The second lower ridge is for fecundity

kernel, which represents the size variation in offspring. From the contour plot in Figure 3.3 (c)

a higher value of the kernel occurs at the top of the diagonal (≈ 0.1) where size of the Soay

sheep is higher. Therefore, sheep with size in this area contribute the most to the asymptotic

population growth rate λ.
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Figure 3.1: (a) Vital rates manifestation. (a) Size, zt dependent survival probability. Red curve
is estimated using logistic regression. (b) The scatter plot of maternal size , zt+1 at time t + 1
versus the maternal size, zt at time, t. The red line is estimated using ls-estimation. (c) Growth
kernel, P (zt+1, zt) = size dependent survival probability, s(zt) * growth transition, g(zt+1, zt).
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Figure 3.2: (a) Analysis of vital rates. (a) Size, zt dependent reproduction probability. Red
curve is estimated using logistic regression. (b) The scatter plot of offspring size , zt+1 at time
t + 1 versus the maternal size, zt at time, t. The red line is estimated using ls-estimation.
(c) Fecundity kernel, F (zt+1, zt) = size dependent reproduction probability, rp(zt) ∗
offspring size transition, Of (zt+1, zt) ∗ 0.5 ∗ size dependent survival probability, s(zt)
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Figure 3.3: Full kernel, K(zt+1, zt) = P (zt+1, zt) + F (zt+1, zt). The higher ridge dominates
the growth kernel which varies near diagonal and increases as size increases. The another
interpretation we made from this diagonal ridge as - individuals who survive to the next census,
without much growing or shrinking in size. The second lower ridge is for fecundity kernel,
which represents the size variation of offspring.
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The dominant eigenvalue (real part) of the big matrix represents the asymptotic population

growth rate, λ. This gives us λ = 1.025. Equivalently, the Soay sheep population growth rate

is 2.5% yearly.

The right eigenvector of the big matrix corresponding to the dominant eigenvalue, λ, is

the stable size distribution for the integral projection model as shown in Figure 3.4(red line)

(Easterling et. al, 2000). The predicted stable distribution is skewed to the left which is similar

to the observed size distribution in the dataset used to fit the model as shown in Figure 3.4

(dotted line).

In the situation where individuals have higher variance in size induced by external factors

(eg. drought) or mixing caused by migration from a different population, standard IPM ap-

proaches may underestimate or overestimate the asymptotic population growth rate since the

traditional estimation of IPM is highly sensitive to the presence of outliers. In this situation,

robust fitting of regression components of the IPM will likely provide estimators of the popula-

tion growth rate with better performance in terms of bias and variance. In a simulated scenario,

we created a virtual environment where size distribution follows a mixed normal distribution

where 5% are sampled from the t distribution with 10 degrees of freedom. This is then scaled

to have mean 2.978575 and scale 0.2896221. The remaining 95% are sampled from the nor-

mal distribution with mean 2.978575 and standard deviation 0.2896221. The mixed normal

distribution can be written as:

z ∼

 δ(0 ≤ X < 0.95) N(µ = 2.978575, σ = 0.2896221)

δ(0.95 ≤ X ≤ 1) t(df = 10) ∗ 0.2896221 + 2.978575
(3.1)

where X is a uniform random variable on the interval (0, 1) and δ(p) is 1 if p is true and 0 if p

is false.

Survival probability curves are estimated using logistic regression estimated via maximum

likelihood as well asM estimation with 200 replications from mixed normal (gray curves). The

red curve shows the true survival curve in Figure 3.5. Both logistic regression and robust logis-

tic regression give similar estimated survival curves (Figure 3.5(b)). Regression lines between

the size z of female sheep at t and size z′ at time t + 1 are estimated using the least squares
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Figure 3.5: (a) Estimated survival curve using logistic regression(gray curve), true survival
curve (red line) (b) survival curve using logistic M estimation(gray curve), true survival curve
(red line). (c) Regression line using least square regression(gray line), true regression line(red
line) and (d) Regression line using M- estimation (gray line), true regression line ( red line) for
200 replication of mixed normal distribution
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Figure 3.6: (a)Estimated reproduction curve(The probability of reproduction) using logistic
regression (b) Reproduction curve using logistic M estimation. (c) Regression line between
offspring and parent size using least square regression and (d) Regression line using M- esti-
mation for 200 replication of mixed normal distribution

approach of 200 replicates from mixed normal (gray curves in Figure 3.5 (c)) and the red line

shows true growth line. In Figure 3.5(d) regression lines are estimated using M -estimation

(gray curves) and the red line shows true growth regression line.

Reproduction probability curves are estimated using logistic regression estimated via max-

imum likelihood as well as M estimation with 200 replications from mixed normal (gray

curves). The black line shows true reproduction curve (Figure 3.6). Again, the reproduc-

tion probability profile obtained using maximum likelihood and robust logistic regression (Fig-

ure 3.6(b)) are similar. Regression lines between the size z of female soay sheep at t and the

offspring size z0 at time t + 1 are estimated for 200 replications from the mixed normal dis-

tribution using the least squares approach (gray curves in Figure 3.6 (c)). The red line in the

figure shows true growth line of offspring size. This process is repeated using M estimation.
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Figure 3.7: Density plot of the population growth rate for 200 replications of mixed normal
distribution using IPM (blue line) and RIPM (red line). Green line is the true asymptotic
population growth rate.

The results are given as the gray curves in Figure 3.6(d) and the red line shows true regression

line of offspring size.

In Figure 3.7 the density curve of 200 estimated population growth rates λ using M -

estimation (red line) and LS estimation (blue line). We observe a similar pattern in both sce-

narios.

For our second set of simulation experiments, we took scenarios in which we have a

smaller proportion of more extreme outliers.

For the first of these, we simulated data where 2% of the data are sampled from the normal

distribution with mean 5.978575 and standard deviation 0.2896221 and the remaining 98%

of the data are sampled from the normal distribution with mean 2.978575 standard deviation

0.2896221. The mixed normal distribution can be written as:

z ∼

 δ(0 ≤ X < 0.98) N(µ = 2.978575, σ = 0.2896221)

δ(0.98 ≤ X ≤ 1) N(µ = 5.978575, σ = 0.2896221)
(3.2)
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Figure 3.8: Right panel: Size regression lines using least squares regression (blue lines), true
line(green line) and regression lines using M- estimation (red lines) for 200 replication of mixed
normal distribution. Left panel: Density plot of the asymptotic population growth rate using
classical IPM (blue curve) and robust IMPM (red curve). Green curve is the true asymptotic
population growth rate. Top panel: 2% contamination, mean shift of 5, Middle panel: 1%
contamination, mean shift of 5, Bottom panel: 1% contamination, mean shift of 7
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where, as above, X is a uniform random variable on the interval (0, 1) and δ(p) is 1 if p is true

and 0 if p is false.

For the second of these, we simulated data with 1% of the data are sampled from the nor-

mal distribution with mean 5.978575 and standard deviation 0.2896221 and the remaining 99%

are sampled from the normal distribution with mean 2.978575, standard deviation 0.2896221.

For the third of these, we simulated data with 1% of the data are sampled from the normal

distribution with mean 7.978575 and standard deviation 0.2896221 and the remaining 99% are

sampled from the normal distribution with mean 2.978575, standard deviation 0.2896221.

In each of these scenarios, the contaminant distribution is the original distribution shifted

up by either 5 or 7. For the sake of brevity, we only report the linear fit of size transition and

the estimated λ values. These are given in Figure 3.8.

In all the cases, we observe that the classical IPM woefully misses the true value while the

robust IPM remains consistent.
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Chapter 4

Robust IPM: A Case Study on Elephant Population Dynamics

We explored the population dynamics of an elephant population that resides in Amboseli Na-

tional Park in Southern Kenya. The data are collected for the period 1973 to 2013. The Park,

which was established in 1974, covers an area of 392 km2 and the Amboseli ecosystem extends

over a much wider area of approximately 3500 km2 (Western, 1975).

The predominant habitat is semi-arid savannah (Pratt, Greenway & Gwynne, 1966) inter-

spersed with woodlands and permanent swamps. Rain falls mainly during 2 seasons: the ’long

rains’ of March, April and May and the ’short rains’ of November and December. Interspersed

are 2 dry seasons: January, February, and most of March and then June to October. As is

common in semi-arid savannahs the distribution of rainfall is unpredictable and highly variable

from year to year. Rainfall averages 341 mm per year (140, n=26). The minimum annual

rainfall was 136 mm and the maximum 837 mm (Moss, 2001).

AERP, the Amboseli Elephant Research Project is the Trust’s research arm. Since 1972

AERP has studied the Amboseli elephants, making it today one of the longest studied popula-

tions of free living large mammals in the world. AERP was first initiated in 1972 by Cynthia

Moss and Harvey Croze.

Relatively few poachers have been active in Amboseli Park. This is especially due to the

Maasai people, and the constant presence of tourists and researchers. Thus, Amboseli is one of

the few regions in Africa where the age structure of elephants has remained undistorted. The

area is monitored by game wardens and scientists throughout the year.
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(a) Amboseli National Park (b) Elephants in Amboseli National Park. Image
credit: Amoghavarsha JS, 2012

The subjects of the Amboseli Elephant Research Project, mostly notably the elephant

matriarch Echo, have been described at length in documentaries on PBS and Animal Planet

(Amboseli Trust, 2014).

In this study we use the longitudinal data of Amboseli elephants from 1972 to 2012 to

determine lifetime annual growth rate. In our IPMs, the Amboseli elephant is individual unit.

4.1 Analysis

Drought conditions are known to influence elephant population dynamics. Thus in the

analysis of the Amboseli elephant data, we take zt to be the level of drought in a particular year

and zt+1 the level of drought the following year. The variable ’repr’ represents if an individual

reproduced (repr =1) or not (repr = 0) and ’surv’ represents if an individual survived (surv = 1)

or not (surv = 0).

It is strongly recommended to draw a life cycle diagram before implementing IPM. We

presented the life cycle diagram of an elephant in Figure 4.1. This is a pre-reproductive census

as reproduction occurs right after the census at time t. The upper and lower part of this life cycle

make growth kernel, P (zt+1, zt), and fecundity kernel, F (zt+1, zt), respectively. The Amboseli

elephant life cycle begins at time t and the individuals who survive (s(zt) = 1) transit to the next

stage. There is a size transition g(zt+1, zt) to the next time census at t + 1. On the other hand,

the elephants reproduce (rp(zt) = 1) and each offspring has to survive (s(zO) = 1) to move

forward to the next stage. At this stage the offspring may or may not grow in size according
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Figure 4.1: Life cycle of elephant

to size transition Of (zt+1, zt) as presented in Figure 4.1. The life cycle of the elephant is used

as a guideline to formulate the main kernel K = s(zt)g(zt+1, zt) + s(zO) ∗ rp(zt) ∗ [f(z) =

1] ∗ 0.5 ∗Of (zt+1, zt) for modeling female elephant population dynamics.

4.2 IPM execution

To build the IPM of the Amboseli elephant data set, first we find the parameters of the

vital rates functions as presented in the Table 2.1.

At this stage we construct an IPM kernel which consists of survival and reproduction

kernel. For Amboseli elephant IPM kernel can be written as:

K(zt+1, zt) = s(zt) ∗ g(zt+1, zt) + s(zt)rp(zt)f(zt) ∗ 0.5 ∗Of (zt+1, zt)

where, K(zt+1, zt) is the full kernel. s(zt) is the survival probability from time t to time t+ 1.

g(zt+1, zt) is the growth distribution. pr is the reproduction probability. We assume there are

equal male and female elephant births in Amboseli park and we only track the dynamics of

female elephants; hence the multiplication of the kernel by 0.5. f(zt) is the size distribution

of recruits. Nt(zt) is the size distribution at time t and the integration of Nt(zt) over size is
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Figure 4.2: Estimating the model parameters of Amboseli elephant data. (a) Scatter plot of
survival against drought,: the red line is logistic regression estimation of the survival probabil-
ity. (b) Scatter plot of the drought,zt in current year, t against to the drought, zt+1 in the next
year t+ 1.: The darked turquoise line and the red line are the M-estimation and LS-estimation
of drought index in time, t respectively. (c) Scatter plot of reproduction against drought in-
dex, the red line is the logistic regression estimation of the reproduction probability. (d) Size
distribution of recruits.
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the number of individuals in that time interval. K(zt+1, zt) is a prediction function of zt that

projects the current size zt to the future size zt+1 for survivors and recruits. In our case, size is

a proxy for drought. So,

Nt+1(zt+1) =

∫
z∗
K(zt+1, zt)Nt(zt) dz

where z∗ consists of the lower (0.597) and upper (7.342) limits of the drought index.

Robust integral projection model (RIPM) performs better when there is a suspicion that the

data are contaminated with outliers or influential observations. We demonstrated the benefits

of RIPM over standard IPM in Chapter 3. It is well-known that ecological data will have

outliers since they are collected in uncontrolled conditions. Thus, it is practicable to explore

whether using RIPM to estimate vital rates provides an improvement over the standard IPM.

Furthermore, in this case study, drought index was used as a generic size variable. Outliers

had been observed in the plot of drought index as reported in Figure 4.2 as a suspicion of the

output of drought in 1976, 1984, 2008, 2009, and 2010. In this situation, we will compute the

vital rates using RIPM and IPM, and thereupon compare the results with the true demographic

information of Amboseli elephants.

Using standard IPM we calculated the growth, P (zt+1, zt), and fecundity, F (zt+1, zt) ker-

nels which are the main two components for IPM as reported in Figure 4.4. We fit the classical

IPM and robust IPM and we observed that the ridge of the growth kernel using standard IPM is

lower than the ridge of growth kernel using robust IPM. Again, we observed a similar pattern

in the full kernels given in Figures 4.5 and 4.6. The effect of this discrepancy on asymptotic

growth rate is discussed in Section 4.4. However, the ridge and shape of the graph of the

fecundity kernel in both models remains unchanged as reported in Figures 4.3 and 4.4.

For the IPM matrices, we used 100 bins, which gave rise to a big matrix of 100 × 100

of all pairwise combinations of all sizes (drought indices). The dominant eigenvalue of this

big matrix is 1.025 which is the asymptotic population growth rate λ of the Amboseli elephant

population. Equivalently, the growth rate of the Amboseli elephant population over the years

1972 - 2012 is 2.5% yearly.
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The comparison among estimated population using robust IPM, standard IPM, and the

true population from 1972 to 2012 are reported in Figure 4.13. The right eigenvector provides

stable size distribution as reported in Figure 4.15. Furthermore, in Figure 4.14 revealed the

reproductive distribution of the population, which is the left eigenvector of the big matrix.
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Figure 4.3: Growth and fecundity kernel using robust IPM. In the fecundity kernel, F (zt+1, zt)
we notice the higher elevation on the lower drought index side indicates the elephants produce
more offspring during the weather of lower drought index. Again, the steep slope represents the
individuals who transit from time t to the next next census at time t+ 1 conditional on survival
(s(zo) = 1) decrease in size (drought index) gradually. On the other hand, in the growth
kernel the ridge located along the vertical of drought index at time t indicates the individuals
who survive and transit to the next census without changing much in drought index. We also
observed that growth kernel is higher than the fecundity kernel, indicating that growth kernel
contributes more on asymptotic population growth rate. The distribution of this contribution
will be discussed in section 4.4.
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Figure 4.4: Growth and Fecundity Kernel using standard IPM

Figure 4.5: Full kernel, K(zt+1, zt) =
P (zt+1, zt)+F (zt+1, zt) using robust IPM.

Figure 4.6: Full kernel, K(zt+1, zt) =
P (zt+1, zt) + F (zt+1, zt) using standard
IPM.
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In Figure 4.4 we observed a similar pattern in the growth and fecundity kernel using stan-

dard IPM as we observed in Figure 4.3 using robust IPM. The only difference we noticed was

that the height of the growth kernel is lower using standard IPM than the robust IPM. This

means important areas of the growth kernel are better highlighted in the robust IPM that the

standard IPM.

4.3 Model Diagnostics

Dynamics of population varies population to population, proposing a good model is an

iterative process of finding errors and then find its solutions [1]. The diagnostics plots for the

elephant growth kernel in Figure 4.7 (a) shows no particular pattern in the residuals versus

corresponding fitted values. The red line should be approximately horizontal at zero. The

presence of a pattern may indicate a problem with some aspect of the linear model. So we can

assume linear relationship between the regressors and the response variables. The Q-Q plot of

residuals can be used to check the normality assumption. The Q-Q plot of a normal distribution

should approximately follow a straight line along the diagonal. In Figure 4.7 (b) all the points

do not fall approximately along this reference line, so we can assume non-normality. Again,

using Shapiro-Wilk normality test data we get W = 0.81409 and p-value < 2.2e− 16. Hence,

we reject null hypothesis saying that the residual data is normally distributed. Scale-location

plot in Figure 4.7 (c) to check the assumption of homoscedasticity. Here, we check to see if

there is a pattern in the residuals . If the red line in the plot is flat and horizontal with equally

and randomly spread data points, then we can assume that the homoscedasticity assumption is

satisfied. In our case, this is not satisfied. In the Figure 4.7 (d) the data does not present any

influential points. We do not observe red dashed line (Cook’s Distance) in the Residuals vs

Leverage plot, so we can assume that all points are well inside of the Cook’s distance bounds.

To diagnose the survival probability we plot survival probability vs drought index in Figure

4.8 (a). The black line the estimated line using logistic regression and the red line is the pre-

dicted line using generalized additive model via the restricted maximum likelihood (REML).

Figure 4.8 (b) shows fitted spline regression (blue line, not straight), so we can assume the
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Figure 4.7: (a) Residuals vs fitted plot (b) Normality of the residuals plot
(c) Scale-Location plot to check homoscedasticity (d) Residuals vs Leverage plot

generalized additive model and logistic regression are not equivalent for the estimation of sur-

vival probability. To diagnose the reproduction probability we plot reproduction probability

vs drought index in Figure 4.8 (c). The black line the estimated line using logistic regression

and the red dot is the predicted line using generalized additive model (REML). Figure 4.8 (d)

shows fitted spline regression (straight blue line), so in this case generalized additive model and

logistic regression give more or less equivalent results for reproduction probability .
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Figure 4.8: (a) Survival probability versus drought index, z (b) Spline vs Drought index, z (for
survival) (c) Reproduction probability versus drought index, z (d) Spline vs Drought index, z
(for reproduction)

4.4 Sensitivity and Elasticities

The main contemplate in this study is to suggest the best ways to the authority of Amboseli

National Park to administer the elephant as an endangered species. By exploring sensitivity

and elasticity, we can provide the information to the authority that which part of the generic

size variable (Drought Index) are contributing most to the asymptotic population growth rate.

Having the knowledge, authority can significantly increase the population growth rate by mon-

itoring the relevant information.

The first step for the sensitivity analysis is to observe the degree to which λ changes

when additional impediment is applied to the full kernel. We do this analysis by impeding full

kernel K(zt+1, zt) to K(zt+1, zt) + εI(zt+1, zt) where ε is a small constant and I(zt+1, zt) is

impediment kernel.

The sensitivity of an element of the kernel matrix can be defined as
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Figure 4.9: Sensitivity and elasticity function of the kernel, K using robust IPM.

sij =
∂λ

∂Kij

=
viwj

< w, v >
(4.1)

where, vi is the ith element of the reproductive value vector and wj is the jth element of the

stable size vector (Caswell 1978). So sensitivity analysis reveals how very small changes in K

affect the asymptotic population growth when other elements in K matrix are held constant.

One problem in interpreting the sensitivity is that demographic variables are measured in

different units. Elasticity analysis estimates the effect of a proportional change of the vital rates

on λ. The elasticity of a matrix element, eij is defined as :

eij =
∂ log λ

∂ logKij

=
∂λ
λ

∂Kij

Kij

=
Kijsij
λ

(4.2)

where Kij is the kernel elements (Zuidema and Franco, 2001). Elasticity , eij of a matrix

element, Kij can be acquired by multiplying Kij

λ
by sensitivity, sij in equation 4.1.

The matrix elements with higher sensitivity contribute more to the changes in asymptotic

growth rate. We observed the sensitivity surfaces of K with the transitions from the lowest

drought index areas have the greatest effect on asymptotic growth rate as shown in the Fig-

ure 4.9. Thus the sensitivity analysis provides an important insight on the impact of drought zt

on Amboseli elephants population growth rate. The Amboseli National Park’s authority may
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Figure 4.10: Elasticity Analysis of kernel P (zt+1, zt) and F (zt+1, zt) using robust IPM.

use this information to provide drought mitigating measures to decrease the impact of seasonal

droughts when the drought index shows high values. This will have the impact of increase the

asymptotic population growth rate, λ. Again, the elasticity function shows the elements of the

kernel have greatest impact on population growth rate in the area of smaller drought transitions.

To compare which kernel (survival or reproduction) has the greatest impact on λ we need to

find elasticity of survival and reproduction kernel individually.

Figure 4.10 gives the elasticity function of P (zt+1, zt) and F (zt+1, zt) for the robust IPM.

We see survival/growth kernel has the greatest impact on population growth rate. To compare

this two elasticity function we can double integrate this surface individually to get the total

volume. For growth/survival and reproduction kernel elasticity function we get 0.9206276 and

0.0793724, respectively. So survival and growth contribute 92% to the population growth rate

while reproduction only contributes about 8% to the total population growth rate. These results

are not very surprising in light of the fact that elephants are long-lived animals with relatively

low reproduction rates.
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Figure 4.11: Sensitivity and elasticity analysis using standard IPM.

Drought Index at t

D
ro

ug
ht

In
de

x
at

t
+

1

Elasticity of P

Drought Index at t

D
ro

ug
ht

In
de

x
at

t
+

1

Elasticity of F

Figure 4.12: Elasticity analysis of P (zt+1, zt) and F (zt+1, zt) using standard IPM.
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For the standard IPM, we observed similar size transitions in Figures 4.11 and, 4.12 as

we did in Figures 4.9 and 4.10. However, we noticed a significant difference in the height of

elasticities in fecundity kernels. We concluded from this comparison that the standard IPM un-

derestimated around 33% of the fecundity kernel than the robust IPM, once again highlighting

the better performance of robust IPM. The effect of this is further confirmed when we compare

the population estimated via the robust IPM versus the standard IPM (Figure 4.13). Again, the

difference between the two estimates is stark. While the standard IPM is affected by outlying

values of the drought index and an aberrant population decline in 2011-12, the robust IPM

remained true to the overall trend.

Finally, the reproductive value computes the “worth” of individuals of different stage

classes in terms of future offspring they are destined to contribute to the next generation, ad-

justed for the growth rate of the population (Fisher 1930). We noticed in Figure 4.14 higher

drought indices contribute less to the future generations. That is reproduction and/or survival

are both negatively affected by drought conditions.
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Figure 4.14: Reproduction values
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Figure 4.15: The density plot of initial size distribution(green line), estimated stable size
distribution using Robust IPM(red line)
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Chapter 5

Estimating the Population Growth Rate Using Permuted Integral Projection Model

5.1 Introduction

Integral projection model (IPM) consists of two parts, growth/survival kernel and fecun-

dity/reproduction kernel. Fecundity kernel is the multiplication of fecundity probability, repro-

duction probability, and the recruitment size distribution.

Without the information of reproduction probability, it is almost impossible to calculate

population growth rate using the standard integral projection model. To calculate reproduction

probability, it is essential to know who is giving birth; however, collecting this information is

significantly expensive and time consuming, in some scenarios it is almost impossible (fish,

turtle). The existing integral projection model fails to calculate the fecundity kernel in the sit-

uation of incomplete reproduction probability. In this research study, we propose a permuted

integral projection model (PIPM) in the situation of missing information of reproduction (who

is giving birth). We demonstrate the benefits of the proposed approach by analyzing the popu-

lation dynamics of African elephants in Amboseli National Park, Kenya.

5.2 Permuted Integral Projection Model

Reproduction is the process of producing new offspring. Individuals who transit from

time, t to time, t + 1 given that individuals survive, may or may not reproduce (Repr = 1

or 0). We usually assign the random variable of reproduction 1, if individuals reproduce and

0, if not. Matrix projection model forces continuous trait into discrete stages while the inte-

gral projection model restrain from these artificial subdivisions. The first step is to estimate

the reproduction probability given particular size (drought index) using the logistic regression
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model. The estimated logistic curve is used as the function of reproduction probability. if any

size (drought index) is given, then the function will provide the reproduction probability as an

output. The reproduction probability is estimated as :

p(zt+1) =
exp(β0 + β1zt)

1 + exp(β0 + β1zt)
(5.1)

where zt+1 and zt are the size at time t+1and t respectively. β0, and β1 are estimated from true

data (reproduction vs. size at time t) using the logistic regression model.

In the situation where data has incomplete reproduction (1 or 0) information (who is giving

birth), we are unable to estimate β0 and β1. Also, it may be very expensive and time consuming

to track the reproduction information (who is giving birth). If we know how many babies are

born yearly, reproduction probability can be recovered by a restricted permutation as discussed

in section 5.4.

The asymptotic population growth rate λ can be calculated using the algorithm given in

the following section. It involves a complex permutation scheme using binary matrices with

various restrictions on the margins and minimum gaps among the 1 values.

5.3 Computational Algorithm

The outline of the algorithm pertaining to the permuted integral projection model (PIPM)

is as follows:

Step 1: Generate a null vector of size m to save all asymptotic population growth rate, λ

Step 2: Run a for-loop for m iterations.

Step 3: Define a function Par(az, bz, σz, as, bs, arp , brp , µrz, σrz) contains all parameters of vital

rate.

Step 4: Using generalized linear regression calculate all vital rates parameters and update the

function in step 1.

Step 5: Define growth function, g(zt+1, zt) = 1√
2πσ2

z

exp
(

(zt−µz)2
2σ2

z

)
that returns output as size,

zt+1 at time t+ 1 given the size, zt at time t as follows:

• plot individual size, zt at time t versus the individual size, zt+1 at time t+ 1
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• using m-estimation calculate regression parameters (az and bz) and standard deviation σz

• define µzt = az + bz ∗ zt , where zt is the size at time t

• generate a normal distribution with mean µz and standard deviation σz

• input the size, zt at time t using steps 17 through 19

• the growth function g(zt+1, zt) returns size zt+1 at time t+ 1 provided the size, zt at time

t.

Step 6: Define survival function, s(zt) = 1
1+exp(−µlgs)

which returns the survival probability of

size, zt at time, t as follows:

• define µlgs = as + bs ∗ zt, where zt is the size at time t

• input the size, zt at time t using steps 17 through 19

• return the survival probability of size zt at time t

Step 7: Define reproduction function, rp(zt) = 1
1+exp(−µlgp)

which returns the reproduction

probability of size, zt at time, t as follows:

Step 8: Since we have incomplete reproduction information, by using steps 9 through 12,

reproduction information can be permuted.

Step 9: Calculate the total offspring in a year

Step 10 : Find the total possible candidates who may give birth by restricting their age and

survival information. If an individual gives birth within the current year, then this individual

would be considered as possible the candidate for the next two or three years depending on

their gestation period.

Step 11: Permute all offspring using the strategy discussed in section 5.4 to the possible candi-

dates (mother).

Step 12: Save the reproduction probability corresponding to the individual as rp(zt).

• where, µlgp = arp + brpzt, and zt is the size at time t
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• input the size, zt at time t using steps 17 through 19

• return the reproduction probability of size zt at time t

Step 13: Define recruitment function, Of (zt+1, zt which returns the size distribution of off-

spring at time t+ 1 as follows:

• plot maternal size, zt at time t versus the offspring size, zt+1 at time t+ 1

• using m-estimation calculate regression parameters arz and brz and standard deviation

σrz

• calculate mean µrz = arz + brzzt and the standard deviation σrz of the size,zt

• generate a normal distribution with mean µrz and standard deviation σrz

• input the size, zt at time t using steps 17 through 19

• return the offspring size transition of zt+1 at time t+ 1

Step 14: Define survival or growth kernel function, P (zt+1, zt) = g(zt+1, zt) ∗ s(zt).

Step 15: Define reproduction kernel function, F (zt+1, zt) = Of (zt+1, zt)∗s(zt)∗(1/2)∗rp(zt).

Step 16: Define full kernel K(zt+1, zt) = P (zt+1, zt) + F (zt+1, zt).

Step 17: Calculate the size range of the data set as follows: L = l−0.5 and U = u+0.5 where

l and u are min and max of the size respectively.

Step 18: Define number of elements in the matrix n = 200.

Step 19: Calculate mesh points, zt = L+k∗(U−L)/n−(U−L)/2n, where, k = 0, 1, 2, . . . n.

Step 20: Define a function which evaluates all pairwise components of the vector zt (mesh

points) and returns all elements of n× n matrix as an output of the function K(zt, zt).

Step 21: Calculate dominant eigenvalue of the n× n matrix.

Step 22: Repeat Step 3 through Step 21 .

Step 23: Draw the histogram and box-plot of λ as reported in Figure 5.7.

57



5.4 Restricted Permutation

Let us consider a 5× 3 matrix.

A B C

1 0 0

0 1 0

0 0 0

1 0 0

0 1 0

We need to determine how many unique ways this matrix can be permuted by restricting

row sum and spaces (at least two zeros) between two ones in a column. For small matrices,

answers should be straightforward, but it would be a tedious process to calculate all possible

combinations satisfying those restrictions for high dimensional matrices. Thus, we developed

a function that will solve this problem numerically.

For the example above, the matrix has five rows and the row sums are 1,1,0,1 and 1. Let

⊕ be the row sums. For the above matrix ⊕ = [1, 1, 0, 1, 1]t. Again, let φ denote the minimum

allowable space(s) between the non zero elements in each column and π denote the total number

of distinct permuted matrices. For φ = 3, we get total 6 distinct matrices as follows:



0 0 1

1 0 0

0 0 0

0 1 0

0 0 1





1 0 0

0 1 0

0 0 0

0 0 1

1 0 0





0 1 0

1 0 0

0 0 0

0 0 1

0 1 0





1 0 0

0 0 1

0 0 0

0 1 0

1 0 0





0 0 1

0 1 0

0 0 0

1 0 0

0 0 1





0 1 0

0 0 1

0 0 0

1 0 0

0 1 0


In the above matrices, it is observed that the row sum is always equal to ⊕ = [1, 1, 0, 1, 1]t.

There are at least three zeros (φ = 3) between ones in each column of the matrices.
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Table 5.1: Restricted Permutation Output.

Iteration φ π

30 1 20
500 1 36
5000 1 36

30 2 18
500 2 24
5000 2 24

30 3 6
500 3 6
5000 3 6

We explored some more scenarios in Table 5.1 and observed that the value of φ increased

as the value of π decreased. From these observations, it was found that increasing the value for

φ decreased the room for non-zero elements to permute. For n = 30 (number of iterations) and

φ = 1, π did not converge. However, for n = 500 and 5000, π converged in all scenarios (φ =1,

2 and 3). We observed the total number of unique permuted matrices under the restriction of ⊕

and φ were always equal to the multiple of matrices column numbers (p).

To observe the effect on π in increasing the column (p) of a matrix, we explored some

scenarios in Table 5.2. We continued to increase a column [1 0 0 0 0]t to the above 5 × 3

matrix. We observed as p increased, the value for π also increased, and in all scenarios π is

multiple of p.

These observations give us much needed information on the number of permutations that

need to be considered for actual populations (eg. the elephant population data) as these com-

putations are time consuming.
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Table 5.2: Scenarios of Restricted Permutation in increasing the column of a matrix .

Iteration p φ π

500 4 1 137
5000 4 1 144
10000 4 1 144
10000 4 2 108
10000 4 3 24

5000 5 1 400
15000 5 1 400
15000 5 2 320
15000 5 3 60

5000 6 1 898
15000 6 1 900
15000 6 2 750
15000 6 3 120

10000 7 1 1755
25000 7 1 1764
50000 7 1 1764
25000 7 2 1512
25000 7 3 210

5.5 Real Data Analysis

We explore the EB family population (elephants) in Amboseli National Park in South-

ern Kenya from 1973 to 2013. The park, which was established in 1974, covers an area of

392 km2 and the Amboseli ecosystem extends over a much wider area of approximately 3500

km2 (Western, 1975). Using robust IPM discussed in chapter 3, we calculated λ =1.031226;

therefore, the asymptotic population growth rate of the EB family is 3.1226% yearly. If we

had incomplete information concerning reproduction, there are steps we would take. If this

occurred, we would set up all possible combinations who may give birth in way where to-

tal number of offspring and possible candidates (mother) are preserved. We performed 200

permutations (possible reproduction paths), 46 out of these 200 permutations the asymptotic

population growth rate (λ) converged to 1.031226, where we set up the restrictions within a 2
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years gap to take into account the elephant gestation period which means if an individual gives

birth during the current year she will not be considered as a possible candidate (mother) for the

next two years.

If we use variables like a drought index as a proxy for size, the elephant family will have

a common ’size’ as in the above example and the asymptotic population growth rate converges

to 1.031226. Now consider an elephant family such that size varies individual to individual.

Assuming all variables remain same, we can estimate the distribution of a female’s foot length

(size) from the age of the female using the asymptotic equation by Lee and Moss (1995) as

Females Foot length = 42.05−24.32∗ exp(−0.1090∗ age ). We generated this artificial data

which represents the actual data as presented in Figure 5.1. Using the robust IPM discussed

in Chapter 3, we get the vital rate in Figure 5.6 and asymptotic population growth rate λ =

1.061468. In the situation where incomplete information of reproduction probability using

permuted integral projection model (PIPM), we can recover asymptotic population growth rate

(λ).

Out of 100 iterations 81 provide a complete path and follows the distributions in Figure

5.7 with mean 1.059546 which is very close to the true asymptotic population growth rate

1.061468. When the number of iterations is increased to 10000, we find 7973 complete paths

and the resulting growth rate follows the distributions in Figure 5.7 (c) and (d) with mean

1.060573, which is very close to the true asymptotic population growth rate 1.061468.
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Age of Amboseli elephant
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Figure 5.1: Foot length of Amboseli elephant. The red curve is the mean (µlength) of females
foot length. Moss et al. (2001) reported the relationship between age and foot length as,
µlength = 42.05− 24.32 ∗ exp(−0.1090 ∗ age ).
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Figure 5.2: True fecundity kernel, F (zt+1, zt) using robust IPM. F (zt+1, zt) revealed the higher
elevation on the medium foot size side indicates the elephant produce more offspring during
the foot size transition approximately from 29 to 42 cm.
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Table 5.3 shows the true scenarios of permuted distribution of 50×100 iterations. First

rows include all individuals of EB family where λ̂ is the estimated asymptotic population

growth rate assuming incomplete information of reproduction probability where we used re-

stricted permutation discussed in section 5.4 to recover the reproduction probability. On the

other hand λ is the true asymptotic population growth calculated using robust IPM method

using the true reproduction probability of EB family.

The rest of the rows show the result of the cumulative member/s removal to compare the

individual contribution and span (how long an individual is considered a possible candidate) ef-

fect on λ. For example second row shows the results excluding the mother Europa and third row

excluding mothers Europa and Eudora. Removing the mother Ebony from the group increases

the asymptotic population growth rate by 0.45% because Ebony did not have any offsprings in

reality. Adding more columns with different span decreases the success rate of complete path

and predicts λ with higher accuracy.
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Figure 5.3: Permuted fecundity kernels, F (zt+1, zt) using PIPM. 168 complete paths were re-
ceived that fulfilled all restrictions out of 200 iterations. Using these permuted reproduction
information, asymptotic population growth rates were calculated. First 8 corresponding fe-
cundity kernels reported here. Similar size transition patterns of true fecundity kernel were
observed as well.
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Members of EB family

Ye
ar

A Successful Permuted Reproduction Matrix

Figure 5.4: A successful iteration. If an individual gives birth within the current year, then
this individual would be considered as the possible candidate for the next two or three years
depending on her gestation period. The thistled column chunk is the time span of possible
candidate who may give birth and there should not be any gap (white color). Darkened area
within the thistled column chunk represent the year of reproduction. Row sum (total number
of babies reproduced in the current year) of the successful iteration should be constant.
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Members of EB family
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A Failed Permuted Reproduction Matrix

Figure 5.5: A iteration that fails to satisfy the constraints. In the current year (row), we observe
a gap in the column of ”EUDORA” means there is not enough possible candidates to distribute
fixed number of babies randomly.

Table 5.3: True Scenarios in IPM Permuted Distribution.

Iteration Cumulative
Removal
↓

Success
(mean)

Sd Possible
Candi-
date

OffspringSpan λ̂ Sd True
λ

50× 100 —— 27.88 3.2428 18 46 282 1.0612 0.0042 1.0615
50× 100 Europa 26.8 3.9383 17 45 275 1.0611 0.0040 1.0620
50× 100 Eudora 34.4 4.9693 16 41 245 1.062 0.0045 1.0607
50× 100 Erin 30.14 4.1748 15 36 221 1.0627 0.0046 1.0673
50× 100 Erica 29.34 4.4245 14 35 218 1.061 0.0040 1.0648
50× 100 Enid 72.44 4.4454 13 31 198 1.0589 0.0043 1.0575
50× 100 Emma 65.74 5.6489 12 29 183 1.0599 0.0041 1.0593
50× 100 Emily 66 4.6247 11 26 166 1.0669 0.0051 1.0666
50× 100 Elspeth 100 0 10 25 151 1.0709 0.0048 1.0661
50× 100 Elliot 100 0 9 22 135 1.0669 0.0049 1.0653
50× 100 Elettra 100 0 8 21 128 1.0669 0.0047 1.0660
50× 100 Eleanor 100 0 7 19 111 1.0702 0.0048 1.0677
50× 100 Elaine 100 0 6 19 109 1.0753 0.0053 1.0823
50× 100 Edwina 100 0 5 15 89 1.0649 0.0032 1.0690
50× 100 Echeri 100 0 4 14 82 1.0718 0.0060 1.0688
50× 100 Ebony 100 0 3 14 75 1.0776 0.0046 1.0733
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Figure 5.6: Estimating the model parameters of EB family. (a) Scatter plot of survival against
foot length, red line is logistic regression estimation of the survival probability. (b) Scatter plot
of the foot length ,z in current year, t against to the foot length, z1 in the next year t + 1.
Redline is M-estimation of foot length in time, t. (c) Scatter plot of reproduction against foot
length, red line is the logistic regression estimation of the reproduction probability. (d) Size
distribution of recruits.
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Figure 5.7: Top panel: Distribution of asymptotic population growth rate, λ for 100 iterations.
Bottom panel: Distribution of asymptotic population growth rate, λ for 10000 iterations. Solid
red lines on the graphs shows true λ.

Table 5.4: Hypothetical Scenarios in IPM Permuted Distribution.

Name Iteration Success
(mean)

Sd Possible
Candi-
date

Offspring Span λ̂ Sd True
λ

EUROPA 50× 100 80.12 3.474 16 46 275 1.064 0.004 –
EUDORA 50× 100 39.26 5.756 15 46 245 1.073 0.004 –
ERICA 50× 100 39.56 3.737 14 46 242 1.076 0.004 –
ENID 50× 100 38.68 4.757 13 46 222 1.081 0.002 –
EMMA 50× 100 37.6 4.953 12 46 207 1.086 0.003 –
EMILY 50× 100 0 0 11 46 190 – – –
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Table 5.5: Hypothetical Scenarios in IPM Permuted Distribution.

Name Iteration Success
(mean)

Sd Possible
Candi-
date

Offspring Span λ̂ Sd True
λ

EUROPA 50× 100 80.12 3.474 16 46 275 1.064 0.004 –
EUDORA 50× 100 39.26 5.756 15 46 245 1.073 0.004 –
ERICA 50× 100 39.56 3.737 14 46 242 1.076 0.004 –
ENID 50× 100 38.68 4.757 13 46 222 1.081 0.002 –
EMMA 50× 100 37.6 4.953 12 46 207 1.086 0.003 –
ELSPETH 50× 100 0 0 11 46 192 – – –

Table 5.6: Hypothetical Scenarios in IPM Permuted Distribution.

Name Iteration Success
(mean)

Sd Possible
Candi-
date

Offspring Span λ̂ Sd True
λ

EUROPA 50× 100 80.12 3.474 16 46 275 1.064 0.004 —
EUDORA 50× 100 39.26 5.756 15 46 245 1.073 0.004 —
ERICA 50× 100 39.56 3.737 14 46 242 1.076 0.004 —
ENID 50× 100 38.68 4.757 13 46 222 1.081 0.002 —
EMMA 50× 100 37.6 4.953 12 46 207 1.086 0.003 —
ECHERI 50× 100 37.7 4.683 11 46 200 1.092 0.002 —
EBONY 50× 100 38.56 5.61 10 46 193 1.095 0.003 —
EBONY 100 ×

100
38.64 4.994 10 46 193 1.095 0.003 —

ELAINE 50× 100 38.48 3.845 9 46 191 1.094 0.003 —
ELEANOR50× 100 0 — 8 46 174 — — —

Table 5.7: Hypothetical Scenarios in IPM Permuted Distribution (Decreasing Offspring while
PC constant ).

Name Iteration Success
(mean)

Sd Possible
Candi-
date

Offspring Span λ̂ Sd True
λ

EUROPA 50× 100 80.3 4.047 17 45 282 1.061 0.004 —
EUDORA 50× 100 89.7 2.501 17 41 282 1.053 0.005 —
ERIN 50× 100 90 3.232 17 36 282 1.043 0.005 —
ERICA 50× 100 90.14 3.003 17 35 282 1.041 0.005 —
ENID 50× 100 90 3.123 17 31 282 1.035 0.005 —
EMMA 50× 100 89.78 3.334 17 29 282 1.031 0.005 —
EMILY 50× 100 90.28 2.718 17 26 282 1.025 0.005 —
ELLA 50× 100 100 0 17 19 282 1.013 0.006 —
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Table 5.8: Hypothetical Scenarios in IPM Permuted Distribution (Decreasing Offspring while
PC constant ).

Name Iteration Success
(mean)

Sd Possible
Candi-
date

Offspring Span λ̂ Sd True
λ

EUROPA 50× 100 80.3 4.047 17 45 282 1.061 0.004 —
EUDORA 50× 100 89.7 2.501 17 41 282 1.053 0.005 —
ERIN 50× 100 90 3.232 17 36 282 1.043 0.005 —
ERICA 50× 100 90.14 3.003 17 35 282 1.041 0.005 —
ENID 50× 100 90 3.123 17 31 282 1.035 0.005 —
EMMA 50× 100 89.78 3.334 17 29 282 1.031 0.005 —
EMILY 50× 100 90.28 2.718 17 26 282 1.025 0.005 —
ELETTRA 50× 100 89.9 2.998 17 25 282 1.024 0.005 —
ELEANOR50× 100 90.1 2.823 17 23 282 1.021 0.006 —
EDWINA 50× 100 90.2 2.347 17 19 282 1.015 0.006 —
ECHERI 50× 100 90.32 3.107 17 18 282 1.013 0.006 —
ELSPETH 50× 100 89.84 3.31 17 16 282 1.01 0.006 —
ELSPETH 100× 100 89.81 2.987 17 16 282 1.01 0.006 —

71



Tables 5.4 through 5.8 show the results of hypothetical scenarios of permuted distribution

of 50×100 iterations. We explore a hypothetical group of elephants that represents the EB

family. λ̂ is the estimated asymptotic population growth rate assuming incomplete information

of reproduction probability where we used the restricted permutation scheme, as discussed

in section 5.4, to estimate the reproduction probability. In this situation, the true asymptotic

population growth rate λ remains unknown.

The tables show the cumulative member(s) removal in order to observe the individual con-

tribution, number of offspring, and the span (how long an individual is considered a possible

candidate) all have an effect on the estimated λ. For example, in Table 5.7 the first row shows

the results excluding Europa and the second row excluding Europa and Eudora. Tables 5.4

through 5.6 show that adding more column with different spans increases the success rate of

complete path and decreases the asymptotic population growth rate λ̂. This is a reasonable

observation as increasing the number of candidates without changing the total number of off-

spring will decrease the population growth rate. On the other hand, as expected, decreasing

the number of offspring decreases the asymptotic population growth rate, assuming the total

possible candidates remain constant as showed in Tables 5.7 and 5.8. Again, decreasing the

number of offspring increases the success rate of complete path in Tables 5.7 and 5.8 due to

more room being available for offspring to permute.

On account of the presence of long duration (more than 30 years ) as a possible candidate,

removing Eudora from the group increases the asymptotic population growth rate by 0.9 %,

in the hypothetical scenarios where the number of offspring remains constant as presented in

Table 5.6.

All of these patterns follow our expectations. It is important to note that using the per-

mutation scheme we are now able to quantify the uncertainties introduced due to incomplete

knowledge of the identity of birth givers or even when we only have proxy knowledge of size

(eg. age-footsize relationship). This is extremely useful for understanding population dynamics

of species that are not living in captivity and we only have periodic census information.
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5.6 Bayesian MCMC Simulation on elephant foot length and PIPM

In this section, we will demonstrate that the measurement of uncertainty in such cases can

be accomplished using Bayesian Markov Chain Monte Carlo sampling schemes. For instance,

for a given age, the distribution of size can be sampled to provide a size distribution without

knowing individual sizes. This uncertainty is propagated to the estimate of the population

growth rate. So, we expect wider confidence intervals in comparison to cases where we have

complete information. The Bayesian version of the linear model as discussed in Figure 5.6 (top

right) can be represented as:

Likelihood: zt+1 ∼ N(µz, σ
2
z)

Linear model: µz = β1 + β2 ∗ zt

Prior: β1 ∼ N(0, 1/100000)

Prior: β2 ∼ N(0, 1/100000)

Precision term:
1

σ2
z

= Γ(0.001, 0.001)

We ignored first 1000 iterations (burn in period) to update the model, thereupon, stored

150,000 iterations for posterior estimation of coefficients. Using these coefficients asymptotic

population growth rates were estimated as reported in Figure 5.8.
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Figure 5.8: The effect of Monte Carlo simulation on true asymptotic population growth rate, λ
in the situation of a complete reproduction information. Solid red lines on the graphs represent
true, λ.

To observe the effect of Monte Carlo simulation on permuted integral projection model,

asymptotic population growth rates were calculated using the algorithm as discussed in Ap-

pendix. Out of 50 iterations in PIPM, 42 successful complete paths were received. Thereupon,

in each successful iteration, uncertainty of the asymptotic population growth rate, λ was cal-

culated using 3000 Monte Carlo simulations. The first 12 outputs out of 42 successful itera-

tions were reported in Figure 5.9 and total combined asymptotic population growth rates were

presented in Figure 5.10. By comparing the Figures 5.8 and 5.10, we ascertained that the esti-

mation of asymptotic population growth rates, λ using permuted IPM have higher uncertainty

than the Bayesian approach.
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Figure 5.9: The effect of Monte Carlo simulation on PIPM. . Out of 50 iterations in PIPM, 42
successful complete paths were received. Thereupon, in each successful iteration, uncertainty
of the asymptotic population growth rate, λ was calculated using Monte Carlo simulation. We
presented the first 12 outputs out of 42 successful iterations.
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Figure 5.10: Total combined population growth rate, λ. 150,000 were used permuted integral
projection model The solid red lines typify the true λ.

76



Chapter 6

Conclusion and Discussion

In this dissertation we presented a comprehensive set of tools to improve upon existing

approaches for constructing an integral projection model of population dynamics.

Utilizing IPMs to bring continuous traits to population dynamics models has the poten-

tial to provide a powerful new approach to tackling an array of important questions in animal

ecology and evolution. IPMs can be used to answer important questions regarding popula-

tion dynamics in wildlife and plant ecology. In IPMs, regression is an essential component in

which we project the current population to a singular step forward in time. We have shown

empirically that standard implementations of integral projection models will generally severely

underestimate the population growth rate in presence of outliers in size variables or mixed-size

populations. In the presence of highly influential observations, LS based IPM estimation poorly

estimated population growth rates as reported in Figure 3.8, while we get very satisfactory re-

sults using M -estimation-based IPM. Thus, we recommend using M -estimation in the cases

where the population being modeled has high size variability. This has potential to be useful in

modeling animal and plant populations when the environment is changing drastically, such as

when a sub-population has larger or smaller than expected sizes.

In Chapter 5, an extension of the IPM was proposed in the circumstances of incomplete

knowledge of reproduction probability. The benefits of the proposed model were demonstrated

by exploring a real data set. The true reproductive information is presented in Figure 6.1 (left)

and a successful iteration of reproductive information (right) using restricted permutation (dis-

cussed in Chapter 5). The question is raised: Is permuted reproductive matrix a good rep-

resentation of true reproductive matrix? To answer this question, we estimated asymptotic
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A true reproductive information of Am-
boseli’s elephants (who is giving birth).
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A successful iteration of reproductive infor-
mation using restricted permutation.

Figure 6.1: Individuals who reproduce offspring are represented by the darkened (repr=1) area,
individuals who fail to reproduce offspring are represented by the thistled area (repr=0), and
individuals who no longer survive (surv=0) are represented by the no color zone.

population growth rates using true and permuted reproductive information. It was observed

that the asymptotic population growth rate λ from the permuted IPMs converge to the true λ in

the situation of common in size variables.

Furthermore, artificial individual size variable were generated to simulate the true size

variable of the Amboseli elephant. The asymptotic population growth rate was estimated using

a robust IPM, which is assumed to be the true population growth rate. Thereupon, the asymp-

totic population growth rate was calculated using the proposed permuted integral projection

model assuming incomplete information of reproduction probability. It was observed that the

asymptotic population growth rate converged to the true λ for n > 500.

Again, we presented the true fecundity kernel in Figure 5.1 (using true reproduction prob-

ability of Amboseli elephant). Additionally, fecundity kernels were estimated using proposed

permuted IPM. Out of 200 iterations, we received 168 complete paths and the corresponding

fecundity kernels, as reported in Figure 5.3 (presented only first 8 fecundity kernels due to

the space limitation). A similar size transition pattern of true fecundity kernel was observed as

well.

Therefore, with the estimated parameters, the permuted integral projection model can be

used for prediction of future asymptotic population growth rate λ in the situation of incomplete

information of reproduction probability. Collecting a long-term data set is very expensive and
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in some scenarios almost impossible. Our proposed permuted IPM significantly reduces the

cost time for collecting the long - term data on species that are difficult to monitor.

According to Moss, the African elephant faces two serious threats to its future:

(i) over-abuse for its ivory, meat, and skins and

(ii) loss of appropriate natural surroundings.

IPMs carrying continuous attributes to population dynamic models have the potential to

implement all inquiries related to animal and wildlife ecology. Again, wildlife ecology is in-

tegral to the ecosystem. However, human prosperity and progress towards unceasing devel-

opment are fundamentally gambled upon the planet’s ecosystem. In order to settle on these

sorts of choices for elephants, both all through secured zones, it is fundamental to comprehend

their essential reproductive and survival parameters. It is anticipated that this dissertation will

be of significance for future elephant data collection, modeling the effect of drought, elephant

size dependent IPM, and manifesting IPM in the situation of incomplete information of repro-

duction probability. All of these factors will help with the point of successful, profitable, and

sustainable future development.

Future work

There are a multitude of questions regarding the statistical estimation approaches for IPMs.

Here are a few items we would like to explore in future work:

• The Integral Projection Model can be developed to the elephant population dynamics and

the interaction with the environmental situations. So in future we will develop the robust

IPMs for continuously structured population with finite size, including both demographic

and environmental stochasticity in the dynamics.

• We will compare our results with those from State-Space Models. Confusingly these are

sometimes known as integrated population models (IPMs) in the ecological modeling

community although they are basically stochastic versions of MPMs with input variables.
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• We will also include foot size/ shoulder size (PC Lee, CJ Moss, 1995) as a predictor in

our model. We used a Bayesian MCMC approach to incorporate such information. It is

of interest to study how the subgroup characteristics affect on population growth rate.

• A theoretical understanding of the permuted IPM (PIPM) is combinatorial in nature.

Although from our simulations we can determine the proportion of complete paths based

on the number of candidate mothers, we would like to know if there is a theoretical

solution to this.

• A theoretical study of the Bayesian-PIPM is of interest as well. Our simulation shows

that this can reduce the uncertainty in the estimation of vital rates than just using Bayesian

MCMC alone ot PIPM alone.
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Appendix A

Monte Carlo Simulation on PIPM

A.1 Computational Algorithm

The outline of the algorithm pertaining to the Monte Carlo simulation (using JAGS ) on

permuted integral projection model is as follows:

Step 1: Generate a null vector of size m to save all asymptotic population growth rate, λ

Step 2: Run a for-loop for m iterations.

Step 3: Define a function Par(az, bz, σz, as, bs, arp , brp , µrz, σrz) contains all parameters of vital

rate.

Step 4: Using generalized linear regression calculate all vital rates parameters and update the

function in step 1.

Step 5: Define growth function, g(zt+1, zt) = 1√
2πσ2

z

exp
(

(zt−µz)2
2σ2

z

)
that returns output as size,

zt+1 at time t+ 1 given the size, zt at time t as follows:

Step 6: we will determine the hierarchical form of the model.

Step 7: likelihood of the data:

• define a for-loop as index, i from 1 to number of observation.

• define the coefficients of the linear model as b[1] and b[2],

foot size , at time, t = zt, and foot size , at time, t+ 1 = zt+1.

• generate a normal distribution, N [i] in each iteration with mean, µ[i] = b[1] + b[2] ∗ zt,

and standard deviation = precision.
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• set ith observation, y[i] = N [i]

Step 8: Non-informative prior for the coefficients:

• define a for-loop as index, j from 1 to 2 (total number of coefficients).

• generate normal distribution, with mean 0 and variance 1/1000000 [N.B. variance 1 mil-

lion to make it non-informative prior. For precision of a normal distribution variance

= 1/1000000 ] as : b[j] = n(0, 0.000001)

Step 9: precision term ( 1
σ2 = Γ(α, β)):

• define prior sample size = 5.0 and prior guess for the variance = 10

• generate a gamma distribution, G with shape parameter = 5.0/2.0︸ ︷︷ ︸
divide by 2.0 to turn into gamma parameter

and rate parameter = 5.0 ∗ 10.0/2.0

• set precision = G︸︷︷︸
Equivalent to an inverse gamma prior on the variance with same shape and scale parameters.

• set variance = 1
precision (deterministic relation between precision and variance).

• σ =
√

variance

Step 10: put steps 2 through 4 in a string and save as mod1 (JAGS required)

Step 11: Input the data as a list.

Step 12: define a vector of parameters (b′s and σ).

Step 13: define a function as a list to assign initial values of the parameters as:

• b[1] and b[2] follow normal distributions with mean 0 and variance 100.

• precision follows a gamma distribution with shape 1 and rate 1︸ ︷︷ ︸
exponential distribution

.

Step 14 specify the JAGS model

Step 15 set burning period 1000 iterations.

Step 16 get the posterior simulation.
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• plot individual size, zt at time t versus the individual size, zt+1 at time t+ 1

• using m-estimation calculate regression parameters (az and bz) and standard deviation σz

• define µzt = az + bz ∗ zt , where zt is the size at time t

• generate a normal distribution with mean µz and standard deviation σz

• input the size, zt at time t using steps 17 through 19

• the growth function g(zt+1, zt) returns size zt+1 at time t+ 1 provided the size, zt at time

t.

Step 17: Define survival function, s(zt) = 1
1+exp(−µlgs)

which returns the survival probability

of size, zt at time, t as follows:

• define µlgs = as + bs ∗ zt, where zt is the size at time t

• input the size, zt at time t using steps 17 through 19

• return the survival probability of size zt at time t

Step 18: Define reproduction function, rp(zt) = 1
1+exp(−µlgp)

which returns the reproduction

probability of size, zt at time, t as follows:

Step 19: Since we have incomplete reproduction information, by using steps 9 through 12,

reproduction information can be permuted.

Step 20: Calculate the total offspring in a year

Step 21 : Find the total possible candidates who may give birth by restricting their age and

survival information. If an individual gives birth within the current year, then this individual

would be considered as possible the candidate for the next two or three years depending on

their gestation period.

Step 22: Permute all offspring using the strategy discussed in section 5.4 to the possible candi-

dates (mother).

Step 23: Save the reproduction probability corresponding to the individual as rp(zt).
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• where, µlgp = arp + brpzt, and zt is the size at time t

• input the size, zt at time t using steps 17 through 19

• return the reproduction probability of size zt at time t

Step 24: Define recruitment function, Of (zt+1, zt which returns the size distribution of off-

spring at time t+ 1 as follows:

• plot maternal size, zt at time t versus the offspring size, zt+1 at time t+ 1

• using m-estimation calculate regression parameters arz and brz and standard deviation

σrz

• calculate mean µrz = arz + brzzt and the standard deviation σrz of the size,zt

• generate a normal distribution with mean µrz and standard deviation σrz

• input the size, zt at time t using steps 17 through 19

• return the offspring size transition of zt+1 at time t+ 1

Step 25: Define survival or growth kernel function, P (zt+1, zt) = g(zt+1, zt) ∗ s(zt).

Step 26: Define reproduction kernel function, F (zt+1, zt) = Of (zt+1, zt)∗s(zt)∗(1/2)∗rp(zt).

Step 27: Define full kernel K(zt+1, zt) = P (zt+1, zt) + F (zt+1, zt).

Step 28: Calculate the size range of the data set as follows: L = l−0.5 and U = u+0.5 where

l and u are min and max of the size respectively.

Step 29: Define number of elements in the matrix n = 200.

Step 30: Calculate mesh points, zt = L+k∗(U−L)/n−(U−L)/2n, where, k = 0, 1, 2, . . . n.

Step 31: Define a function which evaluates all pairwise components of the vector zt (mesh

points) and returns all elements of n× n matrix as an output of the function K(zt, zt).

Step 32: Calculate dominant eigenvalue of the n× n matrix.

Step 33: Repeat Step 3 through Step 21 .

Step 34: Draw the histogram and box-plot of λ as reported in Figures 5.9 and 5.10.
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